WO2016037433A1 - 立体显示装置 - Google Patents

立体显示装置 Download PDF

Info

Publication number
WO2016037433A1
WO2016037433A1 PCT/CN2014/094048 CN2014094048W WO2016037433A1 WO 2016037433 A1 WO2016037433 A1 WO 2016037433A1 CN 2014094048 W CN2014094048 W CN 2014094048W WO 2016037433 A1 WO2016037433 A1 WO 2016037433A1
Authority
WO
WIPO (PCT)
Prior art keywords
grating
lens
light
display device
stereoscopic display
Prior art date
Application number
PCT/CN2014/094048
Other languages
English (en)
French (fr)
Inventor
魏伟
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/769,177 priority Critical patent/US10324303B2/en
Publication of WO2016037433A1 publication Critical patent/WO2016037433A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/31Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/34Stereoscopes providing a stereoscopic pair of separated images corresponding to parallactically displaced views of the same object, e.g. 3D slide viewers
    • G02B30/36Stereoscopes providing a stereoscopic pair of separated images corresponding to parallactically displaced views of the same object, e.g. 3D slide viewers using refractive optical elements, e.g. prisms, in the optical path between the images and the observer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/305Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using lenticular lenses, e.g. arrangements of cylindrical lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/344Displays for viewing with the aid of special glasses or head-mounted displays [HMD] with head-mounted left-right displays

Definitions

  • Embodiments of the present invention relate to a stereoscopic display device.
  • stereoscopic display has become a major trend in the display field.
  • the most basic principle of stereoscopic display is to make the left and right eyes of the person receive different images with parallax respectively, and then superimpose and reproduce the different images through the brain to form a three-dimensional stereoscopic view.
  • the three-dimensional display technology mainly includes two types of glasses and a naked eye. Since there is no need to wear glasses, the naked-eye three-dimensional display is getting more and more attention.
  • the conventional naked-eye stereoscopic display device includes a display panel 100 , a grating 200 , and a spacer glass 300 between the display panel 100 and the grating 200 .
  • the grating 200 is disposed on the light-emitting side of the spacer glass 300 .
  • the display panel 100 includes a plurality of first display units 101 and a plurality of second display units 102, and the first display unit 101 displays a left eye image, and the second display unit 102 displays a right eye image; the grating 200 includes a light shielding area and a transparent area. The light zone, therefore, the grating has a light splitting effect, so that the left eye only sees the left eye image, and the right eye only sees the right eye image, thereby generating a stereoscopic feeling.
  • the distance e between the eyes of the average person is about 65 mm
  • the line of sight of the human eye to the grating is H
  • the distance from the grating to the display unit is f
  • the pitch of the adjacent two display units is p.
  • the pitch p of two adjacent display units is a fixed value after the display panel is formed, and the interval e between the two eyes of the person is a fixed value
  • the distance f from the grating to the display unit and the view of the human eye to the grating It is proportional to H, that is, the larger the distance f from the grating to the display unit, the larger the line of sight H from the human eye to the grating.
  • the thickness is generally 7-8 times the thickness of the glass substrate on the light exit side of the display panel. Therefore, these products are relatively heavy and are not conducive to transportation and installation. However, if the distance from the grating to the display unit is reduced, although the thickness of the display device is reduced, the line of sight of the human eye to the grating is correspondingly reduced, which is disadvantageous for obtaining a 3D display effect at a distant distance.
  • Embodiments of the present invention provide a stereoscopic display device that can ensure a 3D display effect at a relatively long distance while reducing a distance from a grating to a display panel.
  • an embodiment of the present invention provides a stereoscopic display device, including: a display panel including a plurality of first display units and a plurality of second display units arranged alternately; a grating disposed on the light exit side of the display panel and including a plurality of light transmissive regions and a plurality of light shielding regions, wherein the display device includes a lens that has a converging effect on light at a corresponding position with each of the light transmissive regions of the grating.
  • FIG. 1 is a schematic view of a conventional stereoscopic display device
  • FIG. 2 is a schematic diagram of a stereoscopic display device according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of another stereoscopic display device according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of comparison between effects of a stereoscopic display device and a conventional stereoscopic display device according to an embodiment of the present invention
  • FIG. 5 is an optical path analysis diagram of a stereoscopic display device according to an embodiment of the present invention.
  • FIG. 6 is an exemplary structural diagram of a grating according to an embodiment of the present invention.
  • An embodiment of the present invention provides a stereoscopic display device, as shown in FIG. 2, comprising: a display panel 100 and a grating 200 on a light exiting side of the display panel 100, wherein the display panel 100 includes a plurality of first display units arranged alternately 101 and a plurality of second display units 102, and the first display unit 101 displays a left eye image, the second display unit 102 displays a right eye image; the grating 200 includes a light transmitting area a And a light shielding area b; the display device includes a lens 400 having a converging effect on the light at a position corresponding to the light transmitting area a of the grating 200, and the light of the first display unit 101 and the second display unit 102 is deflected by the lens 400, and the left eye The left eye image is received and the right eye receives the right eye image.
  • the display device includes a lens that has a converging effect on the light at a position corresponding to the light-transmitting region of the grating, and may include a lens that has a converging effect on the light at a position corresponding to each of the light-transmitting regions of the grating, or may be a lens corresponding to the lens.
  • the left eye receives the left eye image
  • the right eye receives the right eye image.
  • the display device shown in FIG. 2 further includes a spacer glass 300, and the grating 200 is disposed on the light exiting side of the spacer glass 300.
  • the light emitted by the first display unit 101 of the display device is L1
  • the light emitted by the second display unit 102 is R1.
  • the light L1 emitted by the first display unit 101 and the light path of the light R1 emitted from the second display unit 102 are indicated by a broken line, and at a position D from the grating 200, L1' and R1
  • the spacing is equal to the separation distance between the two eyes of the person, that is, the left eye receives the left eye image and the right eye receives the right eye image.
  • the light L1 emitted by the first display unit 101 and the light R1 emitted by the second display unit 102 are deflected by the lens 400 as shown by the solid line, and after being deflected by the lens 400, the distance grating 200 is S+D.
  • the distance between L1 and R1 is equal to the separation distance between the two eyes of the person, that is, the left eye receives the left eye image and the right eye receives the right eye image.
  • the display device can reduce the grating and While the distance of the unit is displayed, by providing a lens having a converging effect on the light in the light-transmitting region of the grating, the 3D image can be seen at the position of the original viewing distance.
  • the distance from the grating to the display unit is f1
  • the viewing distance from the human eye to the grating is H1
  • the left eye image displayed by the first display unit 101 and the second display unit 102 are displayed.
  • the right eye image is received by the left and right eyes at the position of H1, respectively.
  • the distance from the grating to the display unit is f2, and f1>f2
  • the line of sight of the human eye to the grating is H2
  • the left eye image displayed by the first display unit 101 and the right displayed by the second display unit 102 is received by the left and right eyes at the position of H2, respectively.
  • the display device of FIG. 4(b) further includes a lens 400 having a convergence effect on the light
  • the left eye image displayed by the first display unit 101 and the right eye image displayed by the second display unit 102 are deflected by the lens 400, at H2.
  • Display device In the case of thinner and lighter, it is also possible to view 3D images at a greater distance.
  • the display panel 100 includes a plurality of first display units 101 and a plurality of second display units 102 in the lateral direction and the longitudinal direction of the display panel 100 (FIG. 1 is only taken as a horizontal direction).
  • the first display unit 101 and the second display unit 102 may also be alternately arranged.
  • a stereoscopic display device includes a display panel, a grating, and a lens that has a converging effect on light at corresponding positions of the light-transmitting regions of the grating, and the first display unit and the first lens are opposite to the lens.
  • the display device After the light of the two display units is refracted by the lens, the left eye receives the left eye image at a farther position, and the right eye receives the right eye image, the display device can achieve convergence by the light when the display panel is lighter and thinner.
  • the acting lens is to view the 3D image at a greater distance.
  • the display device is provided with a lens having a converging effect on the light exiting side of each of the light-transmitting regions corresponding to the grating, each of the plurality of lenses having the same convergence effect, that is, each lens With the same shape, the degree of deflection of the light is the same.
  • the adjacent two light-transmitting regions or the plurality of light-transmitting regions may correspond to one lens, but the lens has the same convergence effect at each position corresponding to the two light-transmitting regions or the plurality of light-transmitting regions, for example, curvature.
  • the embodiment of the present invention will be described in detail by taking one light-transmitting region corresponding to one lens as an example.
  • a lens 400 having a converging effect on light is located on the light exiting side of the grating 200.
  • the lens having a converging effect on the light may also be located between the grating and the display panel, and when the lens is located between the grating and the display panel, a transparent adhesive may be filled between the grating and the display panel to facilitate fixing the lens and Grating.
  • the lens having a converging effect on light may be a triangular prism as shown in FIG. 3 or a plano-convex lens as shown in FIG. 2.
  • the light incident side of the lens 400 having a converging action on light is a flat surface
  • the light exiting side is a convex surface.
  • the convex surface of the plano-convex lens shown in FIG. 2 is a convex spherical surface
  • the convex surface of the triangular prism shown in FIG. 3 is an outward folded surface.
  • the optical axis of the plano-convex lens passes through the transparent region.
  • the center point is taken as the coordinate origin (0,0)
  • the x-axis is parallel to the grating
  • the y-axis is perpendicular to the grating
  • any point (x, y) of the convex surface of the lens having the convergence effect of light satisfies the following condition:
  • x is the x coordinate value corresponding to any point of the convex surface
  • y is the y coordinate value corresponding to any point of the convex surface
  • n is the refractive index of the lens
  • a is the incident angle
  • b is the difference between the refraction angle and the incident angle
  • c is The normal of any point on the convex surface is the angle between the side of the refracting ray and the x-axis
  • w is the maximum distance of the left and right eyes from the optical axis of the plano-convex lens when the left and right eyes are located on the optical axis side of the convex lens
  • S+D is the design position.
  • the distance from the grating, D is the distance of the first position from the grating, wherein the first position is the design position of the display panel without the lens.
  • the design location is the best place to get a 3D image. And obtaining the 3D image in the embodiment of the present invention is taken as an example at the optimal position.
  • the light emitted by the first display unit 101 of the display device is L1
  • the light emitted by the second display unit 102 is R1.
  • the light L1 emitted by the first display unit 101 and the light R1 emitted from the second display unit 102 are respectively L1' and R1' at a position where the distance from the grating is D, wherein L1' and The distance R1' is the interval e (about 65 mm) between the two eyes of the person such that the left eye receives the left eye image and the right eye receives the right eye image.
  • the light L1 emitted by the first display unit 101 and the light R1 emitted by the second display unit 102 are deflected by the lens 400 and shown as solid lines.
  • the distance grating S is formed.
  • the positions of +D are L1 and R1, respectively, where the distance between L1 and R1 is the interval e (about 65 mm) of the two eyes of the person such that the left eye receives the left eye image and the right eye receives the right eye image. That is, in the case where the display panel is made lighter and thinner, the 3D image is viewed at a long distance.
  • a lens is taken as an example, and the lenses of the transparent regions of the grating can refer to the design principle of the lens.
  • the display device may further include a grating 200 and a display.
  • the display device can be made lighter and thinner by reducing the thickness of the spacer glass, and at the same time, the pressure resistance of the display device can be improved by the transparent spacer glass. performance.
  • the width of the lens 400 having a converging effect on light is equal to the width of each of the light transmitting regions.
  • the grating is a unitary structure with a lens that has a converging effect on light.
  • the unitary structure that is, the grating and the lens having a converging effect on light, is a unitary structure. It may be a lens that forms a converging effect on light during the fabrication of the grating. It is also possible to form a lens having a converging effect on the light on the grating after the grating is formed.
  • the grating and the lens having a converging effect on the light may not be a unitary structure, and for example, the grating may be attached to the surface of the grating by an adhesive or the like.
  • the embodiments of the present invention do not limit this.
  • a grating and a lens having a converging effect on light can be formed by one patterning process.
  • a transparent photoresist is coated on the surface of the grating, and the photoresist is etched into a surface topography of a lens having a converging effect on light by one exposure, development, and etching.
  • a grating and a lens having a focusing effect on light can be formed by a photolithography process
  • a grating is formed by a photolithography process
  • a lens having a focusing effect on the light can be formed by forming a photoresist on the glass substrate.
  • a black Mylar sheet is attached to make it opaque to form a grating having a converging lens.
  • the lens and the grating formed in this way have a converging effect, and the grating and the lens having the converging effect on the light are simultaneously formed by the same material, and the lens and the grating formed with respect to different materials have good stability, the grating and The lens is not easily detached.
  • the stereoscopic display device includes: a display panel, a grating, and a lens having a convergence effect on light at a corresponding position of the light-transmitting region of the grating, and the left eye and the right eye may be more
  • the left eye image and the right eye image are respectively received at the far position, and the display device can realize the lens which has a convergence effect on the light in the case where the display panel is more light and thin.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Stereoscopic And Panoramic Photography (AREA)

Abstract

提供了一种立体显示装置,包括:显示面板(100),包括交替布置的多个第一显示单元(101)和多个第二显示单元(102);光栅(200),位于显示面板(100)出光侧且包括多个透光区(a)和多个遮光区(b),其中,在光栅(200)的每个透光区(a)对应位置处包括对光具有会聚作用的透镜(300)。这样,在降低光栅(200)到显示面板(100)的距离的同时,可保证在较远的距离获得3D显示效果。

Description

立体显示装置 技术领域
本发明的实施例涉及一种立体显示装置。
背景技术
近年来,立体显示已经成为显示领域的一大趋势。立体显示的最基本的原理是:使人的左右眼分别接收具有视差的不同图像,然后经过大脑对不同的图像进行叠加重生,从而形成三维立体观视。
三维显示技术主要包括眼镜式和裸眼式两种,由于不需要佩戴眼镜,裸眼式三维显示越来越受到关注。现有的裸眼立体显示装置如图1所示,包括:显示面板100、光栅200以及位于显示面板100和光栅200之间的间隔玻璃300,光栅200设置在间隔玻璃300的出光侧。其中,显示面板100包括多个第一显示单元101和多个第二显示单元102,且第一显示单元101显示左眼图像,第二显示单元102显示右眼图像;光栅200包括遮光区和透光区,因此,光栅具有分光作用,可使人的左眼只看到左眼图像,右眼只看到右眼图像,从而产生立体感觉。
如图1所示,一般人的两只眼睛的间隔e约为65mm,人眼到光栅的视距为H,光栅到显示单元的距离为f,相邻的两个显示单元的节距为p。参照图1,△ABC和△AED相似,则p:e=f:H。又由于显示面板形成后,相邻的两个显示单元的节距p为定值,且人的两只眼睛的间隔e为定值,则光栅到显示单元的距离f和人眼到光栅的视距H成正比,即光栅到显示单元的距离f越大,人眼到光栅的视距H就越大。对于电视、广告屏等大型显示装置,为了在较远的距离获得3D显示效果,需要在显示面板100和光栅200之间设置间隔玻璃300,以增大人眼到光栅的视距H,间隔玻璃300的厚度一般等于显示面板出光侧玻璃基板厚度的7-8倍。因此,这类产品比较厚重,不利于运输和安装。但如果减小光栅到显示单元的距离,虽然降低了显示装置的厚度,但人眼到光栅的视距也相应减小,不利于在较远的距离获得3D显示效果。
发明内容
本发明的实施例提供一种立体显示装置,在降低光栅到显示面板的距离的同时,可保证在较远的距离获得3D显示效果。
一方面,本发明的实施例提供了一种立体显示装置,包括:显示面板,包括交替布置的多个第一显示单元和多个第二显示单元;光栅,位于所述显示面板出光侧且包括多个透光区和多个遮光区,其中,所述显示装置在与所述光栅的每个透光区的对应位置处包括对光具有会聚作用的透镜。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为现有的立体显示装置示意图;
图2为本发明实施例提供的立体显示装置的示意图;
图3为本发明实施例提供的另一立体显示装置的示意图;
图4为本发明实施例提供的立体显示装置与现有的立体显示装置的效果对比示意图;
图5为本发明实施例提供的立体显示装置的光路分析图;
图6为本发明实施例提供的光栅的示例性结构图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的实施例提供了一种立体显示装置,如图2所示,包括:显示面板100和位于显示面板100出光侧的光栅200,其中,显示面板100包括交替布置的多个第一显示单元101和多个第二显示单元102,且第一显示单元101显示左眼图像,第二显示单元102显示右眼图像;光栅200包括透光区a 和遮光区b;显示装置在对应光栅200透光区a的位置处包括对光具有会聚作用的透镜400,第一显示单元101和第二显示单元102的光经透镜400发生偏转后,左眼接收左眼图像,右眼接收右眼图像。显示装置在对应光栅透光区的位置处包括对光具有会聚作用的透镜,可以是在对应光栅每个透光区的位置处分别包括一个对光具有会聚作用的透镜,还可以是一个透镜对应多个透光区,在透光区的光经透镜发生偏转后,左眼接收左眼图像,右眼接收右眼图像。其中,图2所示的显示装置还包括间隔玻璃300,光栅200设置在间隔玻璃300的出光侧。
示例性地,如图2所示,显示装置的第一显示单元101发出的光为L1,第二显示单元102发出的光为R1。在显示装置不添加透镜的情况下,第一显示单元101发出的光L1和第二显示单元102发出的光R1的光路如虚线所示,在距离光栅200为D的位置处,L1′和R1′的间距等于人两只眼睛的间隔距离,即左眼接收左眼图像右眼接收右眼图像。第一显示单元101发出的光L1和第二显示单元102发出的光R1经透镜400发生偏折后的光的光路如实线所示,经透镜400发生偏折后在距离光栅200为S+D的位置处,L1和R1的间距等于人两只眼睛的间隔距离,即左眼接收左眼图像右眼接收右眼图像。这样,通过添加对光具有会聚作用的透镜,3D图像的观看位置距离光栅更远,也就是,增加了视距。
由于光栅到显示单元的距离f和人眼到光栅的视距H成正比,光栅到显示单元的距离越大,人眼到光栅的视距就越大,则显示装置可以在减小光栅和到显示单元的距离的同时,通过在光栅透光区设置对光具有会聚作用的透镜,就可以在原来视距的位置处上看到3D图像。如图4所示,图4(a)中,光栅到显示单元的距离为f1,人眼到光栅的视距为H1,第一显示单元101显示的左眼图像和第二显示单元102显示的右眼图像在H1的位置处分别被左眼和右眼接收。图4(b)中,光栅到显示单元的距离为f2,且f1>f2,人眼到光栅的视距为H2,第一显示单元101显示的左眼图像和第二显示单元102显示的右眼图像在H2的位置处分别被左眼和右眼接收。由于图4(b)的显示装置还包括对光具有会聚作用的透镜400,第一显示单元101显示的左眼图像和第二显示单元102显示的右眼图像经透镜400发生偏转后,在H2的位置处分别被左眼和右眼接收,且可以实现H1+f1=H2+f2。即显示装置 更加轻薄的情况下,还可以在较远距离处观看到3D图像。
需要说明的是,对光具有会聚作用的透镜即光穿过所述透镜后被会聚。该具有会聚作用的透镜可以如图2所示,还可以如图3所示,当然还可以是凸透镜等其他对光线具有会聚作用的透镜,本发明的实施例仅以图2、图3所示的为例进行详细说明,相同的原理以及分析可以应用到其他对光线具有会聚作用的透镜,这里不再一一赘述。另外,如图2和图3所示,显示面板100包括多个第一显示单元101和多个第二显示单元102,在显示面板100的横向和纵向上(图1仅以横向为例),第一显示单元101和第二显示单元102还可以交替排列。
本发明实施例提供的一种立体显示装置,包括显示面板、光栅以及位于光栅的各透光区的对应位置处的对光具有会聚作用的透镜,相对于不加透镜,第一显示单元和第二显示单元的光通过所述透镜折射后,在更远位置处左眼接收左眼图像,右眼接收右眼图像,则显示装置可以实现在显示面板更加轻薄的情况下,通过对光具有会聚作用的透镜以在较远距离处观看3D图像。
示例性地,显示装置在对应于光栅的每个透光区的出光侧的均设置有一个对光具有会聚作用的透镜,多个透镜的每个具有相同的会聚效果,也就是,每个透镜具有相同的形状,光的偏转程度相同。当然,相邻的两个透光区或多个透光区可以对应一个透镜,但透镜在对应于两个透光区或多个透光区的每个位置处的会聚效果相同,例如,曲率一致,以保证各透光区的光的偏转相同,本发明实施例以一个透光区对应一个透镜为例进行详细说明。
示例性地,如图6所示,对光具有会聚作用的透镜400位于光栅200的出光侧。当然,对光具有会聚作用的透镜还可以位于光栅和显示面板之间,且当透镜位于光栅和显示面板之间时,还可以在光栅和显示面板之间填充透明胶,以有利于固定透镜和光栅。本发明实施例及附图以对光具有会聚作用的透镜位于光栅的出光侧为例进行详细说明。
可选的,对光具有会聚作用的透镜可以为如图3所示的三角棱镜,或如图2所示的平凸透镜。进一步的,如图2、图3所示,对光具有会聚作用的透镜400的入光侧为平面,出光侧为凸面。其中,图2所示平凸透镜的凸面为凸出的球面,图3所示的三角形棱镜的凸面为向外的折面。
可选的,如图5所示,平凸透镜(即透镜400)的光轴经过透光区的中 心点,以透光区的中心点为坐标原点(0,0),x轴与光栅平行,y轴与光栅垂直,对光具有会聚作用的透镜的凸面的任一点(x,y)满足以下条件:
n sin a=sin(a+b);
Figure PCTCN2014094048-appb-000001
Figure PCTCN2014094048-appb-000002
Figure PCTCN2014094048-appb-000003
其中,x为凸面的任一点对应的x坐标值,y为凸面的任一点对应的y坐标值,n为透镜的折射率,a为入射角,b为折射角与入射角之差,c为凸面上任意一点的法线在折射光线侧与x轴的夹角,w为左右眼位于凸透镜的光轴一侧时左右眼距离所述平凸透镜的光轴的最大距离,S+D为设计位置距离光栅的距离,D为第一位置距离光栅的距离,其中,第一位置为显示面板不加透镜的设计位置。设计位置为获取3D图像的最佳位置。且本发明实施例中获取3D图像均以在最佳位置为例。
当透镜满足以上条件时,如图2所示,显示装置的第一显示单元101发出的光为L1,第二显示单元102发出的光为R1。在显示装置不加透镜的情况下,第一显示单元101发出的光L1和第二显示单元102发出的光R1在距离光栅为D的位置处分别为L1′和R1′,其中,L1′和R1′的距离为人的两只眼睛的间隔e(约为65mm),使得左眼接收左眼图像,右眼接收右眼图像。而第一显示单元101发出的光L1和第二显示单元102发出的光R1经透镜400发生偏折后为实线所示,如图2所示,经透镜400发生偏折后在距离光栅S+D的位置处,分别为L1和R1,其中,L1和R1的距离为人的两只眼睛的间隔e(约为65mm),使得左眼接收左眼图像,右眼接收右眼图像。也就是,在保证显示面板更加轻薄的情况下,在远距离处观看到3D图像。
需要说明的是,本发明实施例及附图以一个透镜为例,光栅各透光区的透镜均可以参照上述透镜的设计原理。
可选的,如图2、图3所示,显示装置还可以包括位于光栅200和显示 面板100之间的透明的间隔基板300。当显示装置还包括位于光栅和显示面板之间的透明的间隔基板时,则可以通过降低间隔玻璃的厚度,使得显示装置更加轻薄,且同时还可以通过透明间隔玻璃提高显示装置的抗压等机械性能。
示例性地,如图6所示,对光具有会聚作用的透镜400宽度等于各透光区的宽度。本发明实施例具体以附图所示的为例。
示例性地,如图6所示,光栅与对光具有会聚作用的透镜为一体结构。所述一体结构即光栅和对光具有会聚作用的透镜为一个整体结构。其可以是在形成光栅的制作过程中,形成对光具有会聚作用的透镜。还可以是形成光栅之后,在光栅上形成对光具有会聚作用的透镜。
当然,在本发明的实施例中,光栅和对光具有会聚作用的透镜也可以不是一体结构,例如,光栅可以通过粘附剂等贴附到光栅的表面。本发明的实施例对此不进行限定。
示例性地,可以通过一次构图工艺形成光栅以及对光具有会聚作用的透镜。
例如,形成光栅之后,在光栅表面涂布透明光刻胶,通过一次曝光、显影和刻蚀,将光刻胶刻蚀为对光具有会聚作用的透镜的表面形貌。
示例性地,还可以通过光刻工艺形成光栅以及对光具有会聚作用的透镜,通过光刻的工艺形成光栅以及对光具有会聚作用的透镜,可以是在玻璃基板上形成光刻胶,通过一次曝光、显影形成光刻胶保留区域和光刻胶去除区域,对光刻胶保留区域进行等离子的干法刻蚀,在玻璃基板表面形成凸出的透镜或三角棱镜,再在光刻胶去除区域贴附黑色麦拉片,使其不透光,以形成具有会聚作用透镜的光栅。
这样形成的对光具有会聚作用的透镜和光栅为一体结构,且光栅和对光具有会聚作用的透镜是由同一材料同时形成,相对于不同材料形成的透镜和光栅,其稳定性好,光栅和透镜不易脱离。
本发明实施例提供的立体显示装置,包括:显示面板、光栅以及位于光栅的透光区的对应位置处的对光具有会聚作用的透镜,相对于不加透镜,左眼和右眼可以在更远位置处分别接收左眼图像和右眼图像,则显示装置可以实现在显示面板更加轻薄的情况下,通过对光具有会聚作用的透镜以在较远 距离处观看3D图像。以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
本申请要求于2014年9月12日递交的中国专利申请第201410465694.6号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (12)

  1. 一种立体显示装置,包括:
    显示面板,包括交替布置的多个第一显示单元和多个第二显示单元;
    光栅,位于所述显示面板出光侧且包括多个透光区和多个遮光区,
    其中,所述显示装置在与所述光栅的每个透光区的对应位置处包括对光具有会聚作用的透镜。
  2. 根据权利要求1所述的立体显示装置,其中所述透镜为三角棱镜或平凸透镜。
  3. 根据权利要求2所述的立体显示装置,其中所述三角棱镜或平凸透镜的入光侧为平面,出光侧为凸面。
  4. 根据权利要求3所述的立体显示装置,其中所述平凸透镜的光轴经过对应所述透光区的中心点,以所述透光区的中心点为坐标原点(0,0),x轴与所述光栅平行,y轴与所述光栅垂直,所述平凸透镜的凸面上任一点(x,y)满足以下条件:
    nsina=sin(a+b);
    Figure PCTCN2014094048-appb-100001
    Figure PCTCN2014094048-appb-100002
    Figure PCTCN2014094048-appb-100003
    其中,x为该点的x坐标,y为该点的y坐标,n为透镜的折射率,a为入射角,b为折射角与入射角之差,c为该点的法线在折射光线侧与x轴的夹角,w为左右眼位于平凸透镜的光轴一侧时左右眼距离所述平凸透镜的光轴的最大距离,S+D为设计位置距离所述光栅的距离,D为第一位置距离所述光栅的距离,其中,第一位置为所述显示面板不加透镜的设计位置。
  5. 根据权利要求1-4中任一项所述的立体显示装置,其中所述显示装置在所述光栅的每个透光区的对应位置处分别包括一个对光具有会聚作用的透镜。
  6. 根据权利要求1-4中任一项所述的立体显示装置,其中所述透镜位于所述光栅的出光侧。
  7. 根据权利要求1所述的立体显示装置,其中所述对光具有会聚作用的透镜的宽度等于每个所述透光区的宽度。
  8. 根据权利要求1所述的立体显示装置,其中所述显示装置还包括位于所述光栅和所述显示面板之间的透明的间隔基板。
  9. 根据权利要求1所述的立体显示装置,其中所述光栅与所述对光具有会聚作用的透镜为一体结构。
  10. 根据权利要求9所述的立体显示装置,其中通过一次构图工艺形成所述光栅以及所述透镜。
  11. 根据权利要求10所述的立体显示装置,其中所述光栅和所述对光具有会聚作用的透镜为相同材料。
  12. 根据权利要求1-4中任一项所述的立体显示装置,其中所述透镜位于所述光栅与所述显示面板之间。
PCT/CN2014/094048 2014-09-12 2014-12-17 立体显示装置 WO2016037433A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/769,177 US10324303B2 (en) 2014-09-12 2014-12-17 Stereoscopic display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410465694.6A CN104238126A (zh) 2014-09-12 2014-09-12 一种裸眼立体显示装置
CN201410465694.6 2014-09-12

Publications (1)

Publication Number Publication Date
WO2016037433A1 true WO2016037433A1 (zh) 2016-03-17

Family

ID=52226539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/094048 WO2016037433A1 (zh) 2014-09-12 2014-12-17 立体显示装置

Country Status (3)

Country Link
US (1) US10324303B2 (zh)
CN (1) CN104238126A (zh)
WO (1) WO2016037433A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102009921B1 (ko) * 2014-12-22 2019-08-12 삼성전자주식회사 무안경 3d 디스플레이용 프리즘 시트, 및 이를 구비한 디스플레이 장치
CN104614793A (zh) * 2014-12-30 2015-05-13 深圳市亿思达科技集团有限公司 光栅及立体显示装置
CN104656313B (zh) * 2015-03-10 2018-04-10 京东方科技集团股份有限公司 光配向装置及方法
CN104965254A (zh) * 2015-07-30 2015-10-07 上海宏盾防伪材料有限公司 一种动态3d全息元件及其制作方法
US10154251B2 (en) * 2015-12-21 2018-12-11 Visteon Global Technologies, Inc. Display assembly
CN106257321B (zh) * 2016-06-28 2021-11-30 京东方科技集团股份有限公司 3d抬头显示系统和方法
CN106019611A (zh) * 2016-07-21 2016-10-12 京东方科技集团股份有限公司 光控板、双视显示面板和显示装置
CN115842907A (zh) * 2018-03-27 2023-03-24 京东方科技集团股份有限公司 渲染方法、计算机产品及显示装置
TWI765842B (zh) * 2021-11-18 2022-05-21 李東奇 裸視立體顯示裝置及顯示方法
CN114660824A (zh) * 2022-04-18 2022-06-24 北京邮电大学 一种裸眼3d显示光学器件

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1573421A (zh) * 2003-06-17 2005-02-02 有限会社海电话 显示装置
CN101507288A (zh) * 2006-08-17 2009-08-12 皇家飞利浦电子股份有限公司 显示设备
WO2010052304A1 (de) * 2008-11-10 2010-05-14 Seereal Technologies S.A. Beleuchtungseinrichtung für ein autostereoskopisches display
JP2011081141A (ja) * 2009-10-06 2011-04-21 Seiko Epson Corp レンズアレイユニット、電気光学装置及び電子機器
US20110182570A1 (en) * 2010-01-25 2011-07-28 J Touch Corporation Three-dimensional video imaging device
JP2012168375A (ja) * 2011-02-15 2012-09-06 Seiko Epson Corp ガラス基板ユニット、立体画像表示装置、およびガラス基板ユニットの製造方法
CN103293689A (zh) * 2013-05-31 2013-09-11 京东方科技集团股份有限公司 一种可在不同显示模式之间切换的方法和显示装置
CN203275846U (zh) * 2013-05-31 2013-11-06 京东方科技集团股份有限公司 一种显示装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2556670Y (zh) * 2002-03-29 2003-06-18 江华 中空式结构柱镜立体光栅装置
AU2003280573A1 (en) * 2002-10-23 2004-05-13 Pioneer Corporation Image display and method for displaying image
JP5552354B2 (ja) * 2010-04-09 2014-07-16 株式会社三共 遊技機
CN102478715B (zh) * 2010-11-26 2014-06-25 京东方科技集团股份有限公司 立体显示装置
CN202057895U (zh) * 2011-02-24 2011-11-30 深圳华映显示科技有限公司 一种裸视立体显示装置
CN102751585B (zh) * 2011-04-20 2015-03-11 深圳光启高等理工研究院 电磁波透镜、波束扫描装置及方法
TW201319679A (zh) * 2011-11-07 2013-05-16 Ind Tech Res Inst 裸視多維顯示組件及其顯示器
US9363498B2 (en) * 2011-11-11 2016-06-07 Texas Instruments Incorporated Method, system and computer program product for adjusting a convergence plane of a stereoscopic image
CN102868900B (zh) * 2012-10-09 2014-06-18 四川大学 一种宽视角和无串扰的集成成像3d显示装置
TWI452345B (zh) * 2012-10-26 2014-09-11 Au Optronics Corp 立體顯示器及其顯示方法
CN103149732A (zh) * 2013-03-25 2013-06-12 京东方科技集团股份有限公司 一种显示面板及3d显示装置
CN103605174A (zh) * 2013-09-22 2014-02-26 郭振 多角度裸视立体成像光栅
CN203587894U (zh) * 2013-10-22 2014-05-07 南京大学 大视角定向成像透镜阵列结构
CN203643630U (zh) * 2013-11-04 2014-06-11 河南省卓特立体科技有限公司 柱镜3d成像光栅板材

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1573421A (zh) * 2003-06-17 2005-02-02 有限会社海电话 显示装置
CN101507288A (zh) * 2006-08-17 2009-08-12 皇家飞利浦电子股份有限公司 显示设备
WO2010052304A1 (de) * 2008-11-10 2010-05-14 Seereal Technologies S.A. Beleuchtungseinrichtung für ein autostereoskopisches display
JP2011081141A (ja) * 2009-10-06 2011-04-21 Seiko Epson Corp レンズアレイユニット、電気光学装置及び電子機器
US20110182570A1 (en) * 2010-01-25 2011-07-28 J Touch Corporation Three-dimensional video imaging device
JP2012168375A (ja) * 2011-02-15 2012-09-06 Seiko Epson Corp ガラス基板ユニット、立体画像表示装置、およびガラス基板ユニットの製造方法
CN103293689A (zh) * 2013-05-31 2013-09-11 京东方科技集团股份有限公司 一种可在不同显示模式之间切换的方法和显示装置
CN203275846U (zh) * 2013-05-31 2013-11-06 京东方科技集团股份有限公司 一种显示装置

Also Published As

Publication number Publication date
CN104238126A (zh) 2014-12-24
US20160252739A1 (en) 2016-09-01
US10324303B2 (en) 2019-06-18

Similar Documents

Publication Publication Date Title
WO2016037433A1 (zh) 立体显示装置
US10007122B2 (en) Three-dimensional display substrate, its Manufacturing method and three-dimensional display device
JP6262671B2 (ja) レンチキュラーレンズ、液晶回折格子及びディスプレー装置
JP6852896B2 (ja) 3d表示パネル、それを含む3d表示機器、及びその製造方法
US9448412B2 (en) Color filter substrate, fabrication method thereof and display device
WO2017156955A1 (zh) 双视显示装置
US9846310B2 (en) 3D image display device with improved depth ranges
US9383488B2 (en) Color filter substrate, manufacturing method therefor and 3D display device
CN103513311B (zh) 一种立体光栅和裸眼3d显示装置
US10534192B2 (en) Stereo display panel and display device having the stereo display panel
JP2014240960A (ja) 空間映像投映装置
KR20150064618A (ko) 멀티 스크린 디스플레이 장치
WO2016037434A1 (zh) 立体显示装置
TWI688790B (zh) 顯示裝置
US10215895B2 (en) Liquid crystal grating forming lenticular lenses
CN110703459A (zh) 一种浮空3d显示装置及其实现方法
CN110675782A (zh) 悬浮显示系统以及利用悬浮显示系统进行显示的方法
TWI489143B (zh) 裸眼三維影像顯示器
TWI479197B (zh) And a conversion means for converting the 2D image into a 3D image
JP7408537B2 (ja) ニアアイライトフィールド表示装置
TW202238223A (zh) 立體顯示裝置
US9311869B2 (en) Display system
TWM553427U (zh) 裸視立體顯示裝置及其透鏡結構層

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14769177

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14901540

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/09/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14901540

Country of ref document: EP

Kind code of ref document: A1