WO2017156955A1 - 双视显示装置 - Google Patents

双视显示装置 Download PDF

Info

Publication number
WO2017156955A1
WO2017156955A1 PCT/CN2016/092090 CN2016092090W WO2017156955A1 WO 2017156955 A1 WO2017156955 A1 WO 2017156955A1 CN 2016092090 W CN2016092090 W CN 2016092090W WO 2017156955 A1 WO2017156955 A1 WO 2017156955A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
display device
view display
dual
parallax barrier
Prior art date
Application number
PCT/CN2016/092090
Other languages
English (en)
French (fr)
Inventor
魏伟
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/535,973 priority Critical patent/US10656428B2/en
Publication of WO2017156955A1 publication Critical patent/WO2017156955A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • G09G3/002Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to project the image of a two-dimensional display, such as an array of light emitting or modulating elements or a CRT
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/12Beam splitting or combining systems operating by refraction only
    • G02B27/126The splitting element being a prism or prismatic array, including systems based on total internal reflection
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • G09G3/003Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to produce spatial visual effects

Definitions

  • Embodiments of the present disclosure relate to a dual view display device.
  • Double-view display refers to display technology that can see different images from different locations on one display at the same time.
  • the dual view display device mainly includes a display panel 5 and a light splitting device disposed on the light exit side of the display panel 5, that is, a dual view device.
  • the display panel 5 displays a two-dimensional image which is divided into a plurality of first display regions 51 and second display regions 52 which are alternately arranged.
  • a "parallax barrier" is described as a specific example of a dual vision device.
  • the parallax barrier 91 is composed of alternately arranged light-shielding strips and light-transmitting strips.
  • the parallax barrier 91 Through the parallax barrier 91, only a part of the display panel 5 can be seen in the first viewing zone 81 on the left side of the display panel 5 (ie, each a display area 51), and the second view area 82 on the right side of the display panel 5 can only see another part of the display panel 5 (ie, each of the second display areas 52), and the crosstalk area 83 can simultaneously see the first The display area 51 and the second display area 52.
  • Embodiments of the present disclosure provide a dual-view display device capable of reducing a central crosstalk region and improving a double-view display effect of a dual-view display device while ensuring a right and left viewing angle.
  • An embodiment of the present disclosure provides a dual view display device, including: a display panel including a plurality of first display areas and a plurality of second display areas, each of the first display areas and each of the second display areas along the display Arranging alternately in any direction of the panel, the plurality of first display areas for displaying a first image, the plurality of second display areas for displaying a second image, and a parallax barrier disposed on a light exit side of the display panel And comprising a plurality of light transmissive regions and a plurality of light shielding regions, each of the light transmissive regions and each of the light shielding regions being alternately disposed in a direction coinciding with any of the directions; and a light refraction element; wherein the plurality of light transmissive regions At least one of the light refraction elements is disposed on a side away from the display panel, the light refraction element covering at least the light transmissive area.
  • 1 is an exemplary schematic diagram of a dual view display device
  • FIG. 2 is a schematic cross-sectional view of a dual view display device provided by at least one embodiment of the present disclosure
  • FIG. 3 is a schematic cross-sectional view of a dual view display device provided by at least one embodiment of the present disclosure
  • FIG. 4 is a schematic cross-sectional view of a dual view display device provided by at least one embodiment of the present disclosure
  • FIG. 5 is an optical path diagram illustrating an enlarged viewing angle of a dual view display device according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of parameter selection of a dual view display device according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of parameter selection of a dual view display device according to an embodiment of the present disclosure.
  • Figure 8 is a view showing a light path with a gap between the parallax barrier and the light-refracting element
  • FIG. 9 is another schematic cross-sectional view of a dual view display device according to an embodiment of the present disclosure.
  • FIG. 10 is a flowchart of a method of manufacturing a dual view display device according to an embodiment of the present disclosure.
  • the dual-view display device includes: a display panel including a plurality of first display areas and a plurality of second display areas, each The first display area and each of the second display areas are alternately arranged along any direction of the display panel, the plurality of first display areas are for displaying a first image, and the plurality of second display areas are for displaying a second image; a parallax barrier disposed on the light exit side of the display panel and including a plurality of light transmissive regions and a plurality of light shielding regions, each of the light transmissive regions and each of the light shielding regions alternating in a direction consistent with any of the directions And a light refraction element; wherein at least one of the plurality of light transmissive regions is provided with the light refraction element on a side away from the display panel, the light refraction element covering at least approximately the light transmissive region .
  • a dual-view display device is provided with a light-refracting element by a light-transmitting region corresponding to a parallax barrier, and the light-refracting element is disposed in close proximity to a parallax barrier, which is capable of not being compared with the existing dual-view display device
  • the angle of the central crosstalk area is significantly reduced, thereby improving the dual view display effect of the dual view display device and improving the viewer's viewing experience.
  • the dual view display device 100 includes a display panel 110 including a plurality of pixels 111 arranged in an array, including alternately arranged in a row direction or in a column direction. Displaying a first display area P1 of the first image and a second display area P2 displaying the second image; the parallax barrier 120 is disposed on the light exit side of the display panel 110 and includes a plurality of light transmissions alternately arranged in the row direction or in the column direction a region 121 and a plurality of light-shielding regions 122; a light-refracting element 130 disposed on a light-emitting side of the parallax barrier 120, at least one of the plurality of light-transmitting regions 121 of the parallax barrier 120 corresponding to one light-refracting element 130, a light-refracting element 130 and a parallax barrier 120, the light refraction element 130 completely covers the corresponding light transmissive area
  • the extending direction of the light transmitting area 121 in FIG. 2 is perpendicular to the paper surface. Then, the extending direction of the light refraction element 130 is also a direction perpendicular to the plane of the paper. In other words, the longitudinal direction of the light refractive element 130 is the same as the longitudinal direction of the light transmitting region 121.
  • each light refracting element protrudes toward the light exiting side such that light passing through the light refracting element is refracted such that the central crosstalk region is reduced.
  • the number of the light refractive elements 130 is plural, and the plurality of light refractive elements 130 are in one-to-one correspondence with the plurality of light transmitting regions 121 of the parallax barrier 120.
  • the plurality of light transmissive regions 121 of the parallax barrier 120 only one or more, that is, a portion having a light refraction element 130 corresponding to one of the ones may be, that is, not all of them are transparent.
  • the light regions 121 each have a light-refracting element corresponding thereto, which is also within the scope of protection of the embodiments of the present disclosure, and although such a display effect may be slightly inferior, the central crosstalk region can also be reduced.
  • each of the light-transmitting regions 121 may have a corresponding one of the light-refracting elements 130, or two or more of the light-transmitting regions 121 may correspond to one light-refracting element 130, and those skilled in the art may The circumstances are chosen, and embodiments of the present disclosure do not limit this.
  • each of the light transmissive regions 121 may be provided with a corresponding light refraction element 130, and the corresponding light refraction element 130 completely covers the corresponding In the light-transmitting region, there is no gap between the light-refracting element 130 and the parallax barrier 120 in a region other than the light-transmitting region.
  • the thickness of the glue can be ignored in the present specification. Not counting, but there is no gap between the two.
  • the row direction in the present specification refers to a direction parallel to a horizontal plane, for example, a width direction of a display panel
  • a column direction refers to a vertical direction, for example, a height direction of a display panel.
  • the first display area displaying the first image and the second display area displaying the second image are pixel columns arranged in the row direction, where the first display area and the second display area may be
  • the pixel column may also be a sub-pixel column, and the number of the first and second display regions including the pixel column or the sub-pixel column may be greater than or equal to 1; correspondingly, displaying the first display region of the first image and displaying the second image
  • the second display area may also be a pixel row or a sub-pixel row, and the first display area and the second display area are alternately arranged along the column direction, and the number of the first and second display areas including the pixel row or the sub-pixel row may be greater than or equal to 1
  • the embodiments of the present disclosure do not limit this. It can be understood that the first display area and the second display area can be alternately arranged in any direction of the display panel.
  • the light transmission area and the light shielding area of the parallax barrier are in the column direction for splitting Extending and alternately arranged in the row direction; in the case where the first display area displaying the first image and the second display area displaying the second image are alternately arranged in the column direction, the light transmissive area and the light shielding area of the parallax barrier extend in the row direction And alternately arranged along the column direction.
  • the arrangement direction of the first display area displaying the first image and the second display area displaying the second image is consistent with the arrangement direction of the light transmission area and the light shielding area of the parallax barrier, and the extension directions of the first display area and the second display area are The light-shielding area and the light-transmitting area extend in parallel.
  • the first display area and the second display area each include one pixel column, but it should be clear to those skilled in the art that embodiments of the present disclosure are not limited thereto.
  • the selection may be made according to actual conditions, and may include two or more pixel columns, or one, two or more pixel rows.
  • each of the light-refracting elements may include two or more portions, each of which has two or more portions extending along the direction of the light-refracting element The splicing is formed, or each of the light-refracting elements is formed by splicing two or more portions in a direction perpendicular to the extending direction of the light-refracting elements, which is not limited by the embodiment of the present disclosure.
  • the light exit side refers to the display side.
  • the light refraction element 130 extends along a direction in which the light transmissive region of the parallax barrier extends, and a cross section taken along a direction perpendicular to the extending direction of the light refraction element 130.
  • the cross-sectional shape of the light-refracting element is the same.
  • the light-refracting element 130 may be a cylindrical convex lens extending along the extending direction of the light-transmitting region. As shown in FIG. 3, the light-refracting element faces the dual-view display device.
  • the light exit side is convex, and the convex surface of the cylindrical convex lens is a part of the cylindrical surface.
  • a plurality of light-refracting elements may have a space therebetween, in which a connection portion may be provided, the connection portion being a uniformly flat sheet shape and in full contact with the light-shielding region, the connection portion being compatible with the light-refracting element Integrally, or may be separated from the light-refracting element, contact the light-refracting element, and co-attached to the light-shielding area of the parallax barrier 120 together with the plurality of light-refracting elements, for the sake of simplicity of illustration, a plurality of light-refracting elements are not shown in the drawings The connection between the parts.
  • the plurality of light-refracting elements may have the same width or different widths; may have the same height; the plurality of refractive elements may be equally spaced, or adjacent light-refracting elements may have different spacing, the present disclosure
  • the embodiment does not limit this, and those skilled in the art can appropriately select according to actual needs.
  • each of the plurality of light-refracting elements may be a prism extending along an extending direction of the light-transmitting region, a cylindrical convex lens or a curved lens shown in FIG. 3, wherein a surface of the light-refracting element that is attached to the parallax barrier is flat That is, the face of the light-refracting element opposite to the parallax barrier is a plane, and the convex side surface of the curved lens is an irregular shape, for example, perpendicular to the extending direction of the light-refracting element
  • the cross-sectional shape may be a part of an ellipse or the like on the light-emitting side.
  • FIG. 4 shows an example of a curved lens, and as shown in FIG. 4, the protruding surface of the curved surface of the curved lens as the light refractive element is an irregular protruding surface.
  • each of the plurality of light refraction elements 130 formed as a prism may be a triangular prism, a quadrangular prism, a pentagonal prism, or the like, where the surface that is attached to the parallax barrier, that is, the surface facing the parallax barrier is a prismatic column One of the faces, the remaining cylinders of the prism are used to refract light.
  • the triangular prism is difficult to process, easy to manufacture, low in placement height, and the viewer's movement is not limited to be viewed at a long distance and at a close distance, or the display effect of the movement is less changed.
  • the face of the light refraction element facing the parallax barrier 120 is in contact with the parallax barrier and the width of the face is greater than or equal to the width of the light transmissive region 121 and less than the sum of the widths of one of the light transmissive regions 121 and the two light shielding regions 122.
  • the center line of the face of the light refraction element facing the parallax barrier 120 may overlap with the center line of the corresponding light transmissive area 121.
  • the center of the triangular prism is disposed on the center line of its corresponding light transmitting region. In this way, the dual-view display device can obtain a good display effect, and the viewers respectively located in the two display areas can obtain substantially the same visual experience, thereby improving the visual effect of the dual-view display device.
  • the face of the triangular prism facing the parallax barrier 120 that is, the bottom surface is in contact with the parallax barrier and the width S of the bottom surface is greater than or equal to the width of the light transmissive region 121 and less than one light transmissive region.
  • the face of the triangular prism facing the parallax barrier 120 that is, the center line of the bottom surface may overlap the center line of the corresponding light transmitting region 121. In this way, the dual-view display device can obtain a good display effect, and the viewers respectively located in the two display areas can obtain substantially the same visual experience, thereby improving the visual effect of the dual-view display device.
  • the width of the light-refracting element refers to the width of the face facing the parallax barrier in the direction perpendicular to the extending direction of the light-transmitting region.
  • the width herein refers to the width of the bottom surface.
  • the triangular prism may be an isosceles triangular prism, and as shown in FIG. 5, the two sides forming the vertex angle d are equal.
  • the dual-view display device has good symmetry, and the first display area and the second display area located on the left and right sides of the display device are also symmetrical, and the viewers respectively located in the two display areas can obtain the same visual experience.
  • the visual effect of the dual-view display device is improved, and the isosceles triangular prism is easy to manufacture, so that the manufacturing cost can be reduced.
  • the apex angle d of the triangular prism according to an embodiment of the present disclosure may be in the range of 70°-160°.
  • a spacer 140 is further disposed between the parallax barrier 120 and the display panel 110. As shown in FIG. 5, the thickness h of the spacer 140 is substantially equal to the parallax barrier 120. The spacing from the display panel 110.
  • the spacer 140 has the same refractive index as the light refractive element 130.
  • the spacer 140 and the light-refracting element 130 may be formed of the same material, for example, glass or the like.
  • the materials for fabricating the spacer and the light-refracting element include, but are not limited to, glass, and other light-transmitting materials.
  • the plurality of light refraction elements 130 have the same size, have the same height and width, and the height refers to the size along the extending direction of the light transmitting area.
  • the width refers to a dimension along a direction perpendicular to the direction in which the light-transmitting region extends. In this way, the light transmitted from each of the light-refracting elements can have a high consistency and the display effect is good.
  • the dual-view display device of the embodiment of the present disclosure by providing a corresponding light-refracting element disposed adjacent to the parallax barrier with respect to each of the light-transmitting regions of the parallax barrier, it is capable of being capable of being compared with the existing dual-view display device
  • the angle of the central crosstalk area is significantly reduced without changing the left and right viewing angles, thereby improving the dual view display effect of the dual view display device and improving the viewer's viewing experience.
  • AB, CD, and EF respectively correspond to the second display area P2 displaying the second image, the first display area P1 and the second display area P2 displaying the first image, wherein the broken line indicates that the light refraction element is not disposed, That is, the light that is directly emitted without being refracted, the solid line indicates the light that is refracted by the light refracting element, and the solid lines RL1 and LL1 are the light rays emitted from the edges C and D of the first display area P1, respectively, the solid line RL2 And LL2 are light rays emitted from edges E and F of the second display area P2, respectively, the solid line RL2' corresponds to light rays emitted from the right edge B of the second display area P2, and the solid line LL1' corresponds to the first display area Light rays emitted from the left edge G of P1, and broken lines Bb, Cc, Dd, Ee, Ff, and Gg are light rays e
  • FIG. 5 shows an exemplary illustration. As shown in FIG. 5, the central crosstalk area is aob before the cylindrical convex lens is disposed, and the central crosstalk area is mon after the cylindrical convex lens is disposed, which is clearly visible: after the cylindrical convex lens is disposed, the central crosstalk is The area is significantly reduced, while the left and right viewing angles have not changed significantly.
  • the central crosstalk region can be further improved compared to the case where there is a gap between the light-refracting element and the parallax barrier in the light-emitting direction. And eliminating the light-free region in the case where the light-refracting element and the parallax barrier have a space in the light-emitting direction.
  • FIG. 8 is a case where there is a gap between the light-refracting element and the parallax barrier in the light-emitting direction. As shown in FIG. 8, there is a gap G between the parallax barrier 120 and the light-refracting element 130, In the region between the efs, the light from the first display region P1 is totally reflected by the sides of the right triangular prism, so that no light enters the viewer's glasses, and thus there is no light zone.
  • the central crosstalk region is significantly increased with a space between the light-refracting element and the parallax barrier.
  • the triangular prisms are described below in conjunction with FIGS. 2, 6, and 7 in order to explain the parameter setting of the light-refracting elements according to the embodiments of the present disclosure.
  • the crosstalk angle of the CA central crosstalk region in FIG. 2 is the viewing angle of the dual view display device 100 and the viewing angle ranges from 35° to 75°, for example, may be 45°, and VL is perpendicular to the parallax.
  • the straight line of the barrier, the light emitted from the left edge E of the second display area EF in FIG. 2 is obtained as shown in FIG. 6, and the light B emitted from the right edge of the second display area AB in FIG. 2 is obtained as shown in FIG.
  • a is the width of the light transmissive region 121
  • p is the width of each pixel 111 of the display panel 110
  • m is the width of the black matrix of the display panel 110
  • d is the vertex angle of the triangular prism
  • h is the parallax barrier 120 and the display panel
  • the spacing between 110, n is the refractive index of the light-refracting element 130, and the apex angle d of the triangular prism is the angle that minimizes the crosstalk angle over the range of viewing angles.
  • the apex angle d of the triangular prism according to an embodiment of the present disclosure may be in the range of 70°-160°.
  • the viewing angle is maximized and the crosstalk angle is minimal, but for a triangular prism, it may be difficult to simultaneously satisfy: the maximum viewing angle while the crosstalk angle is minimal, thus, for implementation in accordance with the present disclosure
  • the triangular prism of the example can make the value of the apex angle d minimize the crosstalk angle within the viewing angle range of the dual-view display device, so that the dual-view display device with the triangular prism having the parameter can obtain a better double vision. display effect.
  • the bottom edge width S of the triangular prism satisfies the condition that the bottom edge width S is greater than or equal to the width of the light transmitting region 121 and smaller than the sum of the widths of one light transmitting region 121 and the two light blocking regions 122.
  • a 7-inch: 1280*800 pixel horizontal display panel is taken as an example.
  • the center The angle of the crosstalk region is 20°; and for the dual view display device provided with the light refraction element according to an embodiment of the present disclosure, wherein the apex angle of the triangular prism is 140° and the left/right viewing angle is 54.6°, the central crosstalk region The angle is reduced to 8.3°. It can be seen that the dual view display device according to an embodiment of the present disclosure can reduce the angle of the central crosstalk region while raising the left and right viewing angles.
  • the selection of the parameters can be similarly analyzed with reference to the example of the above triangular prism, which is not described in detail in the specification for the sake of brevity.
  • the present embodiment further provides a dual-view display device 200.
  • the second embodiment is different from the first embodiment in that the spacer 240 and the light-refracting element 230 are in the light-emitting direction of the display light.
  • the thickness of the gap 250 may also be less than the thickness of the parallax barrier 220.
  • any two adjacent light refraction elements 230 have a connection portion 260 between them, and the connection portion 260 is a uniformly flat sheet shape and the light shielding region 222 Fully in contact.
  • the light refractive element 230 may be integrally formed with the connection portion 260.
  • the connecting portion 260 connects the plurality of light-refracting elements 230 as a whole, or may be separated from the light-refracting element 230, contact the light-refracting element 230, and be co-attached to the light-shielding area of the parallax barrier 220 with a plurality of light-refracting elements, for example, In the process of attaching the plurality of light-refracting elements 230 to the parallax barrier 220, the alignment of the light-transmitting regions 222 in the light-refracting elements 230 and the parallax barrier 220 is performed only once, which facilitates the fabrication of the dual-view display device.
  • the embodiment further provides a method for manufacturing the dual view display device according to the first embodiment or the second embodiment.
  • the method for manufacturing the dual view display device includes: preparing a display panel, and the display panel includes an array. a plurality of pixels arranged, the plurality of pixels including a first display area displaying the first image and a second display area displaying the second image alternately arranged in the row direction or in the column direction; and the display of the parallax barrier on the display panel a side, the parallax barrier includes a plurality of light transmissive regions and a plurality of light shielding regions alternately arranged in a row direction or in a column direction; manufacturing a light refraction element and providing the light refraction element on a light exiting side of the parallax barrier, wherein a light refraction element is in contact with the parallax barrier and extends along an extending direction of the light transmissive region, at least one of the plurality of light transmissive regions of the parallax barrier corresponding
  • the number of the light refraction elements is plural, and the plurality of light refraction elements are in one-to-one correspondence with the plurality of light transmissive regions of the parallax barrier.
  • the number of the light refractive elements is plural, and the plurality of light refractive elements are in one-to-one correspondence with the plurality of light transmitting regions of the parallax barrier.
  • the parallax barrier for a plurality of light transmissive regions of the parallax barrier, only one or more, that is, a portion having a light refraction element corresponding to one of the ones, that is, not all of the light transmissive regions have corresponding thereto
  • the light-refracting element which is also within the scope of the embodiments of the present disclosure, although such a display effect may be slightly worse, the central cross-talk area can also be reduced.
  • each of the light-transmitting regions may have a corresponding one of the light-refracting elements, or two or more of the light-transmitting regions may correspond to one light-refracting element, and those skilled in the art may select according to actual conditions. Embodiments of the present disclosure do not limit this.
  • each light refracting element protrudes toward the light exiting side such that light passing through the light refracting element is refracted such that the central crosstalk region is reduced.
  • the light-refracting element may be a triangular prism, and manufacturing the light-refracting element includes determining a bottom surface width of the triangular prism and determining a vertex angle of the triangular prism.
  • determining the bottom surface width of the triangular prism includes: determining the bottom surface width according to the width of the light transmitting area such that the bottom surface width is greater than or equal to the width of the light transmitting area and less than one Determining the width of the light transmissive region and the width of the two light shielding regions; determining the apex angle of the triangular prism includes: according to the width of each pixel of the display panel and the width of the black matrix, the width of the light transmissive region of the parallax barrier, and the parallax The apex angle of the triangular prism is determined under the condition that the barrier is spaced from the display panel and the crosstalk angle of the central crosstalk region of the dual view display device is the smallest in the range of the viewing angle.
  • determining the apex angle of the triangular prism includes:
  • VA is the viewing angle of the dual view display device, for example, the viewing angle range is 35°-75 °, for example, may be 45°
  • CA is the crosstalk angle of the central crosstalk region of the dual view display device
  • a is the width of the light transmissive region
  • p is the width of each pixel of the display panel
  • m is the display The width of the black matrix of the panel
  • d is the apex angle of the triangular prism
  • h is the spacing between the parallax barrier and the display panel
  • n is the refractive index of the light-refracting element.
  • the apex angle d of the triangular prism according to an embodiment of the present disclosure may be in the range of 70°-160°.
  • the light refraction element is attached to a light exiting side of the parallax barrier.
  • the light-refracting element and the spacer are a unitary structure, and the light-refracting element and the spacer are made of a photosensitive paste attached to the parallax barrier.
  • manufacturing the light-refracting element and providing the light-refracting element on the light-emitting side of the parallax barrier may include: pasting the manufactured light-refracting element Attached to the light exit side of the parallax barrier.
  • a plurality of light-refracting elements may be separately fabricated and then attached to the light-emitting side of the parallax barrier corresponding to each of the light-transmitting regions, respectively, and the center line of each of the light-refracting elements may be transparent when attached The center lines of the light zones overlap.
  • the plurality of light-refracting elements may be integrally formed with the connecting portion between the adjacent light-refracting elements, such that the center line of the light-refracting element at the central position is aligned with the light-transmitting area of the central position when the bonding is performed.
  • the center line is sufficient so that the light-refracting elements and the light-transmissive areas at other positions are naturally aligned, which makes the attachment easier, reduces errors, and is easy to manufacture.
  • the gap may be filled with air, or if the adhesion process is performed in a vacuum, the gap It is a vacuum gap, but since the gap is very small, this does not affect the effect of the light refraction element reducing the central crosstalk region.
  • manufacturing the light-refracting element and providing the light-refracting element on the light-emitting side of the parallax barrier may include: applying a photosensitive adhesive on the parallax barrier; using the stamper The photosensitive adhesive is pressed and the photosensitive adhesive is cured by light; the stamper is removed.
  • the double-view display device thus manufactured is also applied to the light-transmitting region when the photosensitive paste is applied to the parallax barrier, so that there is no gap between the parallax barrier and the spacer in the light-transmitting region.
  • a dual-view display device and a method of fabricating the same wherein at least one of the plurality of light-transmissive regions of the parallax barrier corresponds to a light-refracting element that is in contact with the parallax barrier, Fully covering the corresponding light-transmitting region and extending along the extending direction of the light-transmitting region, the light-refracting element is disposed through the light-transmitting region corresponding to the parallax barrier, and the light-refracting element is in close proximity to the parallax screen Compared with the existing dual-view display device, it can significantly reduce the angle of the central crosstalk region without changing the left and right viewing angles, thereby improving the dual-view display effect of the dual-view display device and improving The viewer's viewing experience.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

一种双视显示装置。该双视显示装置(100)包括:显示面板(110),包括多个第一显示区(P1)和多个第二显示区(P2),每个第一显示区(P1)和每个第二显示区(P2)沿所述显示面板(110)的任一方向交替设置,所述多个第一显示区(P1)显示第一图像,所述多个第二显示区(P2)显示第二图像;视差屏障(120),设置在所述显示面板(110)的出光侧且包括多个透光区(121)和多个遮光区(122),每个透光区(121)和每个遮光区(122)沿与所述任一方向一致的方向交替设置;以及光折射元件(130);其中,所述多个透光区(121)中的至少一个在远离所述显示面板(110)的一侧上设置有所述光折射元件(130),所述光折射元件(130)至少覆盖该透光区(121)。该双视显示装置(100)可以在保证左右可视角度的基础上,减小中央串扰区的角度。

Description

双视显示装置 技术领域
本公开的实施例涉及一种双视显示装置。
背景技术
“双视显示”是指在同一时刻可从一个显示屏的不同位置看到不同图像的显示技术。
如图1所示,双视显示装置主要包括显示面板5和设于显示面板5出光侧的分光器件,也就是,双视器件。显示面板5显示二维图像,其分为多个交替排列的第一显示区51和第二显示区52。此处以“视差屏障91(parallax barrier)”作为双视器件的具体例子进行说明。由图1可见,视差屏障91由交替排列的遮光条和透光条组成,通过视差屏障91,在显示面板5左侧的第一视区81只能看到显示面板5的一部分(即各第一显示区51),而在显示面板5右侧的第二视区82只能看到显示面板5的另一部分(即各第二显示区52),在串扰区83则可同时看到第一显示区51和第二显示区52。
对于现有的双视显示装置,左右可视角度越大,中央串扰区也越大。
发明内容
本公开的实施例提供一种双视显示装置,其能够在保证左右可视角度的基础上,减小中央串扰区,改善双视显示装置的双视显示效果。
本公开的实施例提供一种双视显示装置,包括:显示面板,包括多个第一显示区和多个第二显示区,每个第一显示区和每个第二显示区沿所述显示面板的任一方向交替设置,所述多个第一显示区用于显示第一图像,所述多个第二显示区用于显示第二图像;视差屏障,设置在所述显示面板的出光侧并且包括多个透光区和多个遮光区,每个透光区和每个遮光区沿与所述任一方向一致的方向交替设置;以及光折射元件;其中,所述多个透光区中的至少一个在远离所述显示面板的一侧上设置有所述光折射元件,所述光折射元件至少覆盖该透光区。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例, 而非对本公开的限制。
图1是一种双视显示装置的示例性示意图;
图2是本公开至少一个实施例提供的双视显示装置的截面示意图;
图3是本公开至少一个实施例提供的双视显示装置的截面示意图;
图4是本公开至少一个实施例提供的双视显示装置的截面示意图;
图5是说明本公开实施例提供的双视显示装置的可视角度扩大的光路图;
图6是本公开实施例提供的双视显示装置的参数选取的示意图;
图7是本公开实施例提供的双视显示装置的参数选取的示意图;
图8示出了视差屏障和光折射元件之间具间隙的光路图;
图9是本公开实施例提供的双视显示装置的另一截面示意图;以及
图10是本公开实施例提供的双视显示装置的制造方法的流程图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,此处使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
本公开的至少一个实施例提供了一种双视显示装置及其制造方法。该双视显示装置,包括:显示面板,包括多个第一显示区和多个第二显示区,每 个第一显示区和每个第二显示区沿所述显示面板的任一方向交替设置,所述多个第一显示区用于显示第一图像,所述多个第二显示区用于显示第二图像;视差屏障,设置在所述显示面板的出光侧并且包括多个透光区和多个遮光区,每个透光区和每个遮光区沿与所述任一方向一致的方向交替设置;以及光折射元件;其中,所述多个透光区中的至少一个在远离所述显示面板的一侧上设置有所述光折射元件,所述光折射元件至少大约覆盖该透光区。根据本公开实施例的双视显示装置通过对应于视差屏障的透光区设置光折射元件,且该光折射元件紧靠视差屏障而设置,相对于现有的双视显示装置,其能够在不改变左右可视角度的情况下,显著减小中央串扰区的角度,从而改善双视显示装置的双视显示效果,且提升观看者的观视体验。
以下将结合附图对本公开实施例提供的双视显示装置及其制造方法进行详细说明,以使得本公开实施例的技术方案更加清楚。
第一实施例
本实施例提供一种双视显示装置100,如图2所示,双视显示装置100包括:显示面板110,包括阵列排布的多个像素111,包括沿行方向或沿列方向交替设置的显示第一图像的第一显示区P1和显示第二图像的第二显示区P2;视差屏障120,设置在显示面板110的出光侧且包括沿行方向或沿列方向交替设置的多个透光区121和多个遮光区122;光折射元件130,设置在视差屏障120的出光侧,视差屏障120的多个透光区121至少之一对应一个光折射元件130,光折射元件130与视差屏障120相接触,光折射元件130完全覆盖对应的透光区121,光折射元件130沿着透光区121的延伸方向延伸,例如图2中透光区121的延伸方向为与纸面相垂直的方向,那么光折射元件130的延伸方向也为与纸面相垂直的方向。换言之,光折射元件130的长度方向与透光区121的长度方向相同。
示例性地,每个光折射元件朝向所述出光侧凸出,从而使得通过光折射元件的光被折射而使得中央串扰区减小。
示例性地,光折射元件130的数量为多个,多个光折射元件130与所述视差屏障120的多个透光区121一一对应。
示例性地,对于视差屏障120的多个透光区121,可以仅一个或者多个,也就是,一部分具有与之一一对应的光折射元件130,也就是,并未全部透 光区121都具有与之对应的光折射元件,这也在本公开实施例的保护范围内,虽然这样的显示效果可能略差,但是也能减小中央串扰区。
示例性地,每个透光区121可以具有对应的一个光折射元件130,或者,两个或两个以上的透光区121可以对应于一个光折射元件130,本领域的技术人员可以根据实际情况进行选择,本公开的实施例并不对此进行限定。
为了图示的简洁,图2中仅示出了一个光折射元件130,但每个透光区121可以都设置有一个对应的光折射元件130,且该对应的光折射元件130完全覆盖对应的透光区,在除了透光区以外的区域,光折射元件130与视差屏障120之间不具有间隙,当然如果光折射元件是采用胶贴附到视差屏障,胶的厚度在本说明书中可以忽略不计,而视为二者之间没有间隙。
需要说明的是,本说明书中的行方向指的是平行于水平面的方向,例如,显示面板的宽度方向,列方向指的是竖直方向,例如,显示面板的高度方向。例如,图2中示出的是,显示第一图像的第一显示区和显示第二图像的第二显示区是沿行方向排列的像素列,这里,第一显示区和第二显示区可以是像素列也可以是亚像素列,第一和第二显示区包括像素列或亚像素列的数量可以大于等于1;对应地,显示第一图像的第一显示区和显示第二图像的第二显示区也可以是像素行或亚像素行,则第一显示区和第二显示区沿着列方向交替设置,第一和第二显示区包括像素行或亚像素行的数量可以大于等于1,本公开的实施例并不对此进行限定。可以理解的是,第一显示区和第二显示区可以沿所述显示面板的任一方向交替设置。
相对应地,在显示第一图像的第一显示区和显示第二图像的第二显示区沿行方向交替设置的情况下,为了分光,则视差屏障的透光区和遮光区在列方向上延伸而沿行方向交替设置;在显示第一图像的第一显示区和显示第二图像的第二显示区沿列方向交替设置的情况下,视差屏障的透光区和遮光区在行方向上延伸而沿列方向交替设置。显示第一图像的第一显示区和显示第二图像的第二显示区的布置方向和视差屏障的透光区和遮光区的布置方向一致,第一显示区和第二显示区的延伸方向与遮光区以及透光区的延伸方向平行。
为了便于说明,图2中示出的是:第一显示区和第二显示区均包括一个像素列,但本领域的技术人员应该清楚的是,本公开的实施例并不限于此, 可以根据实际情况而进行选择,可以包括两个或两个以上像素列,或者一个、两个或两个以上像素行。
示例性地,在本公开的实施例中,每个光折射元件可以包括两个或两个以上的部分,每个光折射元件由两个或两个以上的部分沿着光折射元件的延伸方向拼接而形成,或者,每个光折射元件由两个或两个以上的部分沿着垂直于光折射元件的延伸方向的方向拼接而形成,本公开的实施例并不对此进行限定。
这里应该注意的是,出光侧指的是显示面侧。
例如,在本公开一实施例提供的双视显示装置100中,光折射元件130沿着视差屏障的透光区的延伸方向延伸,在沿着垂直于光折射元件130的延伸方向剖取的截面中,光折射元件的截面形状都是相同的,例如,光折射元件130可以是沿着透光区的延伸方向延伸的柱状凸透镜,如图3所示,光折射元件朝着双视显示装置的出光侧凸出,该柱状凸透镜的凸出面是圆柱面的一部分。
示例性地,多个光折射元件之间可以具有间隔,该间隔中可以设置连接部,所述连接部是均匀平坦的片状且与所述遮光区完全接触,该连接部可以与光折射元件成一体,或者可以与光折射元件分离、接触光折射元件且与多个光折射元件共同贴附到视差屏障120的遮光区,为了图示简洁,附图中并未示出多个光折射元件之间的连接部。
还需要说明的是,在视差屏障的遮光区的宽度非常小的情况下,对应于每个透光区而设置的光折射元件之间可能不具有间隔,这也在本公开实施例的保护范围内。
示例性地,多个光折射元件可以具有相同的宽度或不同的宽度;可以具有相同的高度;多个折射元件可以等间隔设置,或者相邻的光折射元件可以具有不同的间隔,本公开的实施例并不对此进行限定,本领域的技术人员可以根据实际需要而适当进行选择。
例如,多个光折射元件的每个可以是沿着透光区的延伸方向延伸的棱镜、图3中示出的柱状凸透镜或者曲面透镜,其中光折射元件的与视差屏障贴合的面为平面,也就是,光折射元件的与视差屏障相对的面是平面,该曲面透镜的凸出侧表面是不规则形状,例如,垂直于光折射元件的延伸方向的 截面形状在出光侧可以为椭圆的一部分等。图4示出了曲面透镜的一个示例,如图4所示,作为光折射元件的曲面透镜的出光侧的突出面为不规则突出面。
例如,形成为棱镜的多个光折射元件130的每个可以是三角棱镜、四角棱镜、五角棱镜等,这里,与视差屏障贴合的表面,也就是,面对视差屏障的面为棱镜的柱面之一,棱镜的其余柱面用于对光进行折射。
这里,三角棱镜加工难度低,易于制造,放置高度要求低,且在远距离和近距离观看观看者的移动不受限或者移动带来的显示效果改变较小。
示例性地,光折射元件的面对视差屏障120的面与视差屏障接触且该面的宽度大于或等于透光区121的宽度且小于一个透光区121与两个遮光区122的宽度之和。例如,在本公开一实施例提供的双视显示装置100中,光折射元件的面对视差屏障120的面的中心线可以与对应的透光区121的中心线重叠。三角棱镜的中心设置在其对应的透光区的中心线上。这样,双视显示装置能够获得良好的显示效果,分别位于两个显示区的观看者能够得到大致相同的视觉体验,从而提升双视显示装置的视觉效果。
例如,如图2和图5所示,三角棱镜的面对视差屏障120的面,也就是,底面与视差屏障接触且底面的宽度S大于或等于透光区121的宽度且小于一个透光区121与两个遮光区122的宽度之和,每个三角棱镜覆盖一个透光区。相应地,三角棱镜的面对视差屏障120的面,也就是,底面的中心线可以与对应的透光区121的中心线重叠。这样,双视显示装置能够获得良好的显示效果,分别位于两个显示区的观看者能够得到大致相同的视觉体验,从而提升双视显示装置的视觉效果。
需要说明的是,光折射元件的宽度指的是面对视差屏障的面的在垂直于透光区的延伸方向上的宽度,例如,对于三角棱镜,这里的宽度指的是底面的宽度。
示例性地,在本公开一实施例提供的双视显示装置100中,三角棱镜可以为等腰三角棱镜,如图5所示,形成顶角d的两条边相等。采用等腰三角棱镜,双视显示装置具有良好的对称性,位于显示装置左右侧的第一显示区和第二显示区也对称,分别位于两个显示区的观看者能够得到相同的视觉体验,从而提升双视显示装置的视觉效果,且等腰三角棱镜易于制造,从而能够降低制造成本。
示例性地,根据本公开实施例的三角棱镜的顶角d可在70°-160°的范围内。
例如,在本公开一实施例提供的双视显示装置100中,视差屏障120与显示面板110之间还设置有间隔体140,如图5所示,间隔体140的厚度h大致等于视差屏障120与显示面板110之间的间距。
例如,在本公开一实施例提供的双视显示装置100中,间隔体140与光折射元件130具有相同的折射率。
例如,在本公开一实施例提供的双视显示装置100中,间隔体140与光折射元件130可以采用相同的材料,例如,玻璃等形成为一体。
需要说明的是,制作间隔体与光折射元件的材料包括但不仅限于玻璃,也可以为其它透光材料。
例如,在本公开一实施例提供的双视显示装置100中,多个光折射元件130具有相同的尺寸,具有相同的高度和宽度,高度指的是沿着透光区的延伸方向的尺寸,宽度指的是沿着垂直于透光区的延伸方向的尺寸。这样可以使从各个光折射元件透射出的光具有较高的一致性,显示效果较好。
根据本公开实施例的双视显示装置中,通过相对于视差屏障的每个透光区提供相对应的紧靠视差屏障而设置的光折射元件,相对于现有的双视显示装置,其能够在不改变左右可视角度的情况下,显著减小中央串扰区的角度,从而改善双视显示装置的双视显示效果,且提升观看者的观视体验。
下面结合附图2对根据本公开实施例的双视显示装置如何减小中央串扰区进行详细说明。
在图2中,AB、CD、EF分别对应于显示第二图像的第二显示区P2、显示第一图像的第一显示区P1和第二显示区P2,其中虚线表示未设置光折射元件,也就是,未发生折射而直接射出的光线,实线表示经过光折射元件而发生折射的光线,实线RL1和LL1分别为从第一显示区P1的边缘C和D射出的光线,实线RL2和LL2分别为从第二显示区P2的边缘E和F射出的光线,实线RL2’对应于从第二显示区P2的右边缘B出射的光线,实线LL1’对应于从第一显示区P1的左边缘G出射的光线,虚线Bb、Cc、Dd、Ee、Ff和Gg为从显示区的边缘B、C、D、E、F、G出射的光线。
由图2可见,未发生折射时,doc为第一显示区CD的可见区,fme为第 二显示区EF的可见区,而二者的交叠区域,即de之间的区域为中央串扰区;而发生折射之后,RL1和LL1之间的区域为第一显示区CD的可见区,RL2和LL2之间的区域为第二显示区EF的可见区,而二者的交叠区域,即,RL1和LL2之间的区域为中央串扰区,显然:de之间的区域明显大于RL1和LL2之间的区域,由此可见,通过对应于透光区设置光折射元件,中央串扰区被显著减小,且左右可视角度并未发生显著改变。
图2中是以三角棱镜为例进行了说明,对于其他形式的光折射元件,通过对应于透光区设置光折射元件,中央串扰区的也能够被减小。图5给出了示例性图示,如图5可见,未设置柱状凸透镜之前,中央串扰区为aob,而设置了柱状凸透镜之后,中央串扰区为mon,明显可见:设置柱状凸透镜之后,中央串扰区显著减小,而左右可视角度并未发生显著改变。
而且,对于本公开的实施例而言,通过使得光折射元件紧靠视差屏障而设置,相比于光折射元件与视差屏障之间在出光方向上具有间隔的情况,中央串扰区能够被进一步提高,且消除了光折射元件与视差屏障之间在出光方向上具有间隔的情况下的无光线区。
下面结合图8进行说明,图8给出了光折射元件与视差屏障之间在出光方向上具有间隔的情况,如图8所示,在视差屏障120与光折射元件130之间具有间隙G,在ef之间的区域,来自第一显示区P1的光被右侧的三角棱镜的侧边全反射,从而没有光线进入观看者的眼镜,这样而存在无光线区。
进一步地,与光折射元件紧靠视差屏障设置的情况相比,通过进行光线平移发现,光折射元件与视差屏障之间具有间隔的情况下中央串扰区明显增大。
下面结合图2、图6和图7以三角棱镜为了对根据本公开实施例的光折射元件的参数设置进行说明。
参照图2,图2中CA中央串扰区的串扰角度,VA是双视显示装置100的可视角度且可视角度范围为35°-75°,例如,可以为45°,VL是垂直于视差屏障的直线,取图2中的第二显示区EF的左边缘E出射的光线得到图6,取图2中第二显示区AB的右边缘出射的光线B得到图7。
参照图6,根据折射定律、几何知识和三角函数知识,可以得到以下关系式:
Figure PCTCN2016092090-appb-000001
nsin(a2)=sin(a3);
Figure PCTCN2016092090-appb-000002
a6=a4+a2=90°-a1
a2+a5=90°;
由以上可以得到:
Figure PCTCN2016092090-appb-000003
进而得到关系式:
Figure PCTCN2016092090-appb-000004
参照图7,根据折射定律、几何知识和三角函数知识,可以得到以下关系式:
Figure PCTCN2016092090-appb-000005
c6=90°-c1
Figure PCTCN2016092090-appb-000006
c2+c5+c6=90°;
nsin(c2)=sin(c3);
由以上可以得到:
Figure PCTCN2016092090-appb-000007
Figure PCTCN2016092090-appb-000008
进而得到关系式:
Figure PCTCN2016092090-appb-000009
由图2、图6和图7可知,中央串扰区的串扰角度CA=90°-a3-a4,左或右可视角度VA=a3+a4-c4,将以上得到的公式带入,可以得到:
Figure PCTCN2016092090-appb-000010
Figure PCTCN2016092090-appb-000011
其中a是透光区121的宽度,p是显示面板110的每个像素111的宽度,m是显示面板110的黑矩阵的宽度,d是三角棱镜的顶角,h是视差屏障120与显示面板110之间的间距,n是光折射元件130的折射率,三角棱镜的顶角d为在可视角度范围内使得串扰角度最小的角。
示例性地,根据本公开实施例的三角棱镜的顶角d可在70°-160°的范围内。
对于双视显示装置,所期望的是:可视角度最大且同时串扰角度最小,但是对于三角棱镜而言,可能难以同时满足:可视角度最大而同时串扰角度最小,因此,对于根据本公开实施例的三角棱镜,可以使得其顶角d的取值在双视显示装置的可视角度范围内使得串扰角度最小,从而采用具有该参数的三角棱镜的双视显示装置能够获得较好的双视显示效果。
对于三角棱镜的另一个参数底边宽度S,其满足这样的条件:底边宽度S大于或等于透光区121的宽度且小于一个透光区121与两个遮光区122的宽度之和。
例如,对于根据本公开实施例的三角棱镜,以7寸:1280*800像素的横屏显示面板为例,对于没有提供光折射元件的双视显示装置,左/右视角为50°时,中央串扰区的角度为20°;而对于根据本公开实施例的提供有光折射元件的双视显示装置,其中三角棱镜的顶角为140°,左/右视角为54.6°时,中央串扰区的角度减小为8.3°。由此可见,根据本公开实施例的双视显示装置,能够在提升左右视角的同时,减小中央串扰区的角度。
对于除了三角棱镜形式之外的光折射元件,其参数的选取可以参考以上三角棱镜的示例进行相似的分析,为了简洁,本说明书并不对此进行详述。
第二实施例
本实施例还提供的一种双视显示装置200,如图9所示,第二实施例与第一实施例的区别之处在于,间隔体240与光折射元件230在显示光的出光方向上在透光区221具有间隙250,间隙250的厚度等于视差屏障220的厚度。
例如,间隙250的厚度也可以小于视差屏障220的厚度。
例如,在本公开一实施例提供的双视显示装置200中,多个光折射元件230的任意相邻两个之间具有连接部260,连接部260是均匀平坦的片状且与遮光区222完全接触。
例如,光折射元件230可以与连接部260一体形成。连接部260将多个光折射元件230连接为一个整体,或者可以与光折射元件230分离、接触光折射元件230且与多个光折射元件共同贴附到视差屏障220的遮光区,例如在贴附多个光折射元件230到视差屏障220的过程中,只需进行一次光折射元件230和视差屏障220中透光区222的对准,方便了双视显示装置的制作。
本实施例的其它部分可以参照第一实施例中的相关内容,重复部分在此不再赘述。
第三实施例
本实施例还提供了第一实施例或第二实施例所述的双视显示装置的制造方法,如图10所示,该双视显示装置的制造方法包括:准备显示面板,显示面板包括阵列排布的多个像素,多个像素包括沿行方向或沿列方向交替设置的显示第一图像的第一显示区和显示第二图像的第二显示区;将视差屏障设置在显示面板的出光侧,视差屏障包括沿行方向或沿列方向交替设置的多个透光区和多个遮光区;制造光折射元件且将所述光折射元件提供在所述视差屏障的出光侧,其中所述光折射元件与所述视差屏障相接触且沿着所述透光区的延伸方向延伸,所述视差屏障的多个透光区至少之一对应一个所述光折射元件,所述光折射元件完全覆盖对应的透光区。
示例性地,所述光折射元件的数量为多个,所述多个光折射元件与所述视差屏障的多个透光区一一对应。
示例性地,光折射元件的数量为多个,多个光折射元件与所述视差屏障的多个透光区一一对应。
示例性地,对于视差屏障的多个透光区,可以仅一个或者多个,也就是,一部分具有与之一一对应的光折射元件,也就是,并未全部透光区都具有与之对应的光折射元件,这也在本公开实施例的保护范围内,虽然这样的显示效果可能略差,但是也能减小中央串扰区。
示例性地,每个透光区可以具有对应的一个光折射元件,或者,两个或两个以上的透光区可以对应于一个光折射元件,本领域的技术人员可以根据实际情况进行选择,本公开的实施例并不对此进行限定。
为了简洁,与第一实施例和第二实施例相同的结构和部件这里将不再重复描述,这里主要描述制造方法。
示例性地,每个光折射元件朝向所述出光侧凸出,从而使得通过光折射元件的光被折射而使得中央串扰区减小。
示例性地,在本实施例提供的双视显示装置的制造方法中,光折射元件可以是三角棱镜,制造光折射元件包括:确定三角棱镜的底面宽度以及确定三角棱镜的顶角。
例如,在本实施例提供的双视显示装置的制造方法中,确定三角棱镜的底面宽度包括:根据透光区的宽度确定底面宽度使得底面宽度大于或等于所述透光区的宽度且小于一个所述透光区与两个所述遮光区的宽度之和;确定三角棱镜的顶角包括:根据显示面板的每个像素的宽度以及黑矩阵的宽度、视差屏障的透光区的宽度、视差屏障与显示面板之间的间距且在可视角度范围内双视显示装置的中央串扰区的串扰角度最小的条件下,确定三角棱镜的顶角。
例如,在本公开一实施例提供的双视显示装置的制造方法中,根据显示面板的每个像素的宽度以及黑矩阵的宽度、视差屏障的透光区的宽度、视差屏障与显示面板之间的间距且在可视角度范围内双视显示装置的中央串扰区的串扰角度最小的条件下,确定三角棱镜的顶角包括:
利用以下关系式:
Figure PCTCN2016092090-appb-000012
Figure PCTCN2016092090-appb-000013
确定三角棱镜的顶角从而在双视显示装置的可视角度范围内使得中央串扰区的串扰角度最小,其中VA是双视显示装置的可视角度,例如该可视角度范围为35°-75°,例如,可以为45°,CA是双视显示装置的中央串扰区的串扰角度,a是透光区的宽度,p是显示面板的每个像素的宽度,m是显示 面板的黑矩阵的宽度,d是三角棱镜的顶角,h是视差屏障与显示面板之间的间距,n是光折射元件的折射率。
示例性地,根据本公开实施例的三角棱镜的顶角d可在70°-160°的范围内。
在一些实施方式中,所述光折射元件贴附在所述视差屏障的出光侧。
在一些实施方式中,所述光折射元件和所述间隔体为一体式结构,所述光折射元件和所述间隔体由贴附在所述视差屏障上的光敏胶制成。
例如,在本公开一实施例提供的双视显示装置的制造方法中,制造光折射元件且将所述光折射元件提供在所述视差屏障的出光侧可以包括:将制造得到的光折射元件贴附在视差屏障的出光侧。
示例性地,多个光折射元件可以分别制造,然后分别对应于每个透光区而贴附到视差屏障的出光侧,在进行贴附的时候,每个光折射元件的中心线可以与透光区的中心线交叠。
备选地,多个光折射元件可以与位于相邻光折射元件之间的连接部一体形成,这样贴合时,只需将中央位置的光折射元件的中心线对齐中央位置的透光区的中心线即可,从而其他位置的光折射元件和透光区自然对齐,这样使得贴附起来更容易,且能够减小误差,易于制造。
对于通过贴附而连接光折射元件和视差屏障来说,在透光区,视差屏障和间隔体之间可能具有间隙,间隙中会填充有空气,或者如果贴附工艺中在真空中进行,间隙是真空间隙,但是,由于间隙非常小,这并不影响光折射元件减小中央串扰区的效果。
例如,在本公开一实施例提供的双视显示装置的制造方法中,制造光折射元件且将光折射元件提供在视差屏障的出光侧可以包括:在视差屏障上涂敷光敏胶;利用压模压制光敏胶且对光敏胶进行光照固化;去除压模。
这样制造的双视显示装置,在视差屏障上涂敷光敏胶时,也会涂敷到透光区,从而在透光区,视差屏障和间隔体之间不具有间隙。
根据本公开实施例的双视显示装置及其制造方法,该双视显示装置中,视差屏障的多个透光区至少之一对应有一个光折射元件,该光折射元件与视差屏障相接触、完全覆盖对应的透光区且沿着所述透光区的延伸方向延伸,通过对应于视差屏障的透光区设置光折射元件,且该光折射元件紧靠视差屏 障而设置,相对于现有的双视显示装置,其能够在不改变左右可视角度的情况下,显著减小中央串扰区的角度,从而改善双视显示装置的双视显示效果,且提升观看者的观视体验。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。
本申请基于并且要求于2016年3月18日递交的中国专利申请第201610159145.5号的优先权,在此全文引用上述中国专利申请公开的内容。

Claims (20)

  1. 一种双视显示装置,包括:
    显示面板,包括多个第一显示区和多个第二显示区,每个第一显示区和每个第二显示区沿所述显示面板的任一方向交替设置,所述多个第一显示区用于显示第一图像,所述多个第二显示区用于显示第二图像;
    视差屏障,设置在所述显示面板的出光侧且包括多个透光区和多个遮光区,每个透光区和每个遮光区沿与所述任一方向一致的方向交替设置;以及
    光折射元件;
    其中,所述多个透光区中的至少一个在远离所述显示面板的一侧上设置有所述光折射元件,所述光折射元件至少覆盖该透光区。
  2. 根据权利要求1所述的双视显示装置,其中所述光折射元件的数量为多个,多个光折射元件与所述视差屏障的多个透光区一一对应。
  3. 根据权利要求2所述的双视显示装置,其中每个所述光折射元件的面对所述视差屏障的面是平面且与所述视差屏障接触,每个所述光折射元件的面对所述视差屏障的所述面的宽度大于或等于所述透光区的宽度且小于一个所述透光区与两个所述遮光区的宽度之和。
  4. 根据权利要求2所述的双视显示装置,其中所述光折射元件包括棱镜、柱状凸透镜或曲面透镜。
  5. 根据权利要求4所述的双视显示装置,其中所述棱镜包括三角棱镜、四角棱镜或五角棱镜。
  6. 根据权利要求4所述的双视显示装置,其中每个所述光折射元件的面对所述视差屏障的面的中心线与对应的所述透光区的中心线重叠。
  7. 根据权利要求5所述的双视显示装置,其中每个所述光折射元件是三角棱镜,所述三角棱镜的底面面对所述视差屏障且与所述视差屏障接触且所述三角棱镜的底面宽度大于或等于所述透光区的宽度且小于一个所述透光区与两个所述遮光区的宽度之和。
  8. 根据权利要求7所述的双视显示装置,其中所述三角棱镜的底面的中心线与对应的所述透光区的中心线重叠。
  9. 根据权利要求8所述的双视显示装置,其中所述三角棱镜为等腰三角 棱镜。
  10. 根据权利要求9所述的双视显示装置,其中所述三角棱镜的顶角d满足以下关系式:
    Figure PCTCN2016092090-appb-100001
    Figure PCTCN2016092090-appb-100002
    其中VA是所述双视显示装置的可视角度,CA是所述双视显示装置的中央串扰区的串扰角度,a是所述透光区的宽度,p是所述显示面板的每个像素的宽度,m是所述显示面板的黑矩阵的宽度,d是所述三角棱镜的顶角,h是所述视差屏障与所述显示面板之间的间距,n是所述光折射元件的折射率,所述三角棱镜的顶角d为在可视角度范围内使得串扰角度最小的角。
  11. 根据权利要求10所述的双视显示装置,其中所述可视角度的范围为35°-75°。
  12. 根据权利要求1-5中任一项所述的双视显示装置,其中所述视差屏障与所述显示面板之间还设置有间隔体。
  13. 根据权利要求12所述的双视显示装置,其中所述间隔体与所述光折射元件具有相同的折射率。
  14. 根据权利要求13所述的双视显示装置,其中所述间隔体与所述光折射元件采用相同的材料形成为一体。
  15. 根据权利要求14所述的双视显示装置,其中所述间隔体与所述光折射元件由玻璃制成。
  16. 根据权利要求13所述的双视显示装置,其中所述间隔体与所述光折射元件在显示光的出光方向上在所述透光区具有间隙,所述间隙的厚度等于所述视差屏障的厚度。
  17. 根据权利要求1-5中任一项所述的双视显示装置,其中所述光折射元件贴附在所述视差屏障的出光侧。
  18. 根据权利要求12所述的双视显示装置,其中所述光折射元件和所述间隔体为一体式结构,所述光折射元件和所述间隔体由贴附在所述视差屏障上的光敏胶制成。
  19. 根据权利要求2-4中任一项所述的双视显示装置,其中所述多个光折射元件的任意相邻两个之间具有连接部,所述连接部是均匀平坦的片状且与所述遮光区完全接触。
  20. 根据权利要求2-4中任一项所述的双视显示装置,其中所述多个光折射元件具有相同的高度和宽度。
PCT/CN2016/092090 2016-03-18 2016-07-28 双视显示装置 WO2017156955A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/535,973 US10656428B2 (en) 2016-03-18 2016-07-28 Dual view display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610159145.5 2016-03-18
CN201610159145.5A CN105654874B (zh) 2016-03-18 2016-03-18 双视显示装置及其制造方法

Publications (1)

Publication Number Publication Date
WO2017156955A1 true WO2017156955A1 (zh) 2017-09-21

Family

ID=56495013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/092090 WO2017156955A1 (zh) 2016-03-18 2016-07-28 双视显示装置

Country Status (3)

Country Link
US (1) US10656428B2 (zh)
CN (1) CN105654874B (zh)
WO (1) WO2017156955A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105654874B (zh) 2016-03-18 2022-01-25 京东方科技集团股份有限公司 双视显示装置及其制造方法
CN106019611A (zh) * 2016-07-21 2016-10-12 京东方科技集团股份有限公司 光控板、双视显示面板和显示装置
CN107193069B (zh) * 2017-07-04 2019-08-23 京东方科技集团股份有限公司 一种光栅及双视显示装置
CN108172125B (zh) 2018-01-31 2021-02-09 京东方科技集团股份有限公司 一种显示装置、汽车
GB2571921A (en) * 2018-03-05 2019-09-18 Flexenable Ltd Displays
CN108540791B (zh) * 2018-04-25 2020-01-24 京东方科技集团股份有限公司 一种双视显示方法和装置
CN113556532B (zh) * 2021-07-20 2024-07-30 北京京东方显示技术有限公司 一种显示装置
CN114255668A (zh) * 2021-12-02 2022-03-29 重庆惠科金渝光电科技有限公司 显示面板及显示装置
CN114236862B (zh) * 2021-12-15 2024-10-22 重庆惠科金渝光电科技有限公司 光学元件及显示装置
CN116724266A (zh) * 2022-01-07 2023-09-08 厦门市芯颖显示科技有限公司 显示面板及其制作方法、显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101105579A (zh) * 2003-08-30 2008-01-16 夏普株式会社 多视图定向显示器
JP2008040027A (ja) * 2006-08-03 2008-02-21 Sharp Corp 多重画像表示装置
CN102067020A (zh) * 2008-06-24 2011-05-18 夏普株式会社 液晶显示面板及液晶显示装置
CN104730604A (zh) * 2015-04-21 2015-06-24 合肥京东方光电科技有限公司 光折射结构及制作方法、彩膜基板及制作方法、显示装置
CN105654874A (zh) * 2016-03-18 2016-06-08 京东方科技集团股份有限公司 双视显示装置及其制造方法
CN205428452U (zh) * 2016-03-18 2016-08-03 京东方科技集团股份有限公司 双视显示装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2405519A (en) * 2003-08-30 2005-03-02 Sharp Kk A multiple-view directional display
US7518664B2 (en) * 2005-09-12 2009-04-14 Sharp Kabushiki Kaisha Multiple-view directional display having parallax optic disposed within an image display element that has an image display layer sandwiched between TFT and color filter substrates
JP4933553B2 (ja) * 2006-09-07 2012-05-16 シャープ株式会社 画像表示装置、電子機器およびパララックスバリア素子
TW201126204A (en) 2010-01-25 2011-08-01 J Touch Corp Three-dimensional video imaging device
WO2012176089A1 (en) 2011-06-22 2012-12-27 Koninklijke Philips Electronics N.V. Autostereoscopic display device
JP2014190995A (ja) * 2013-03-26 2014-10-06 Japan Display Inc 表示装置及び電子機器
CN103293689B (zh) * 2013-05-31 2015-05-13 京东方科技集团股份有限公司 一种可在不同显示模式之间切换的方法和显示装置
TWI491925B (zh) * 2013-12-06 2015-07-11 Zhangjiagang Kangde Xin Optronics Material Co Ltd A super stereoscopic vision separation element
CN104656307B (zh) 2015-03-25 2017-12-08 京东方科技集团股份有限公司 双视场显示面板和双视场显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101105579A (zh) * 2003-08-30 2008-01-16 夏普株式会社 多视图定向显示器
JP2008040027A (ja) * 2006-08-03 2008-02-21 Sharp Corp 多重画像表示装置
CN102067020A (zh) * 2008-06-24 2011-05-18 夏普株式会社 液晶显示面板及液晶显示装置
CN104730604A (zh) * 2015-04-21 2015-06-24 合肥京东方光电科技有限公司 光折射结构及制作方法、彩膜基板及制作方法、显示装置
CN105654874A (zh) * 2016-03-18 2016-06-08 京东方科技集团股份有限公司 双视显示装置及其制造方法
CN205428452U (zh) * 2016-03-18 2016-08-03 京东方科技集团股份有限公司 双视显示装置

Also Published As

Publication number Publication date
US20180120574A1 (en) 2018-05-03
US10656428B2 (en) 2020-05-19
CN105654874B (zh) 2022-01-25
CN105654874A (zh) 2016-06-08

Similar Documents

Publication Publication Date Title
WO2017156955A1 (zh) 双视显示装置
JP5024992B2 (ja) 表示装置
EP2728570B1 (en) Array-type display device
US9229240B2 (en) Lens grating and display device
US20180149875A1 (en) 3D Display Device
US20140078274A1 (en) Autostereoscopic display device
US9383488B2 (en) Color filter substrate, manufacturing method therefor and 3D display device
WO2016037433A1 (zh) 立体显示装置
KR20220045234A (ko) 지문 센싱 모듈 및 전자 장치
US10782457B2 (en) Grating for dual vision display and dual vision display apparatus
WO2017177654A1 (zh) 一种显示装置
WO2016004710A1 (zh) 双视场显示器及其制造方法、驱动方法
US20210088808A1 (en) Multi-view display device
US10215895B2 (en) Liquid crystal grating forming lenticular lenses
WO2016115784A1 (zh) 基板、光栅以及显示面板
KR20150064618A (ko) 멀티 스크린 디스플레이 장치
US10203429B2 (en) Light refraction structure and its manufacture method, color filter substrate and its manufacture method, and display device
CN109239932A (zh) 透镜式显示器
US9813696B2 (en) Stereoscopic image display device
JP2014135120A (ja) 面光源装置、表示装置および照明装置
KR20160044430A (ko) 입체 표시 장치
KR20130020299A (ko) 프리즘을 이용한 광 시야각 입체 영상 표시 장치
CN205428452U (zh) 双视显示装置
US20160381351A1 (en) Transparent autostereoscopic display
TWI522651B (zh) 立體顯示器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15535973

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16894116

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16894116

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 17/05/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16894116

Country of ref document: EP

Kind code of ref document: A1