WO2024022078A1 - 一种微透镜阵列基板及其制备方法、显示装置 - Google Patents

一种微透镜阵列基板及其制备方法、显示装置 Download PDF

Info

Publication number
WO2024022078A1
WO2024022078A1 PCT/CN2023/106154 CN2023106154W WO2024022078A1 WO 2024022078 A1 WO2024022078 A1 WO 2024022078A1 CN 2023106154 W CN2023106154 W CN 2023106154W WO 2024022078 A1 WO2024022078 A1 WO 2024022078A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
microlens
light
orthographic projection
microlens array
Prior art date
Application number
PCT/CN2023/106154
Other languages
English (en)
French (fr)
Inventor
郭康
李多辉
宋梦亚
舒适
张锋
顾仁权
谷新
袁广才
董学
于静
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2024022078A1 publication Critical patent/WO2024022078A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method
    • G02B3/0018Reflow, i.e. characterized by the step of melting microstructures to form curved surfaces, e.g. manufacturing of moulds and surfaces for transfer etching
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method
    • G02B3/0031Replication or moulding, e.g. hot embossing, UV-casting, injection moulding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • G02B30/29Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays characterised by the geometry of the lenticular array, e.g. slanted arrays, irregular arrays or arrays of varying shape or size
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses

Definitions

  • the present disclosure relates to but is not limited to the field of display technology, and specifically relates to a microlens array substrate, a preparation method thereof, and a display device.
  • microlens arrays need to be used to display three-dimensional images or virtual displays.
  • the current microlens array mainly uses single-point diamond to make the microlens (MLA) template, and then uses nanoimprint technology to make the microlens substrate.
  • MLA microlens
  • the solution of using single-point diamond for MLA template has problems such as high cost and difficulty in large-scale production.
  • using the method of photolithography thermal reflow whether it is to directly form a microlens array or to use it as an imprint template for nanoimprinting to form a microlens array, it is difficult to achieve the production of a close-contact lens array.
  • Light can pass from adjacent lenses. Ejected from the gap between microlenses, problems such as crosstalk may occur.
  • the above problems can be achieved by adding a light-shielding pattern (such as a black matrix) between adjacent microlenses to achieve the effect of a close-contact lens array.
  • the light-shielding pattern can prevent light from emitting from the gap between adjacent microlenses.
  • the alignment accuracy of the gap between the light-shielding pattern and adjacent microlenses is poor, and it is difficult to accurately form the light-shielding pattern at the gap between adjacent microlenses.
  • an embodiment of the present disclosure provides a microlens array substrate, including:
  • a microlens film layer is provided on one side of the substrate.
  • the microlens film layer includes at least one microlens array.
  • the microlens array includes a plurality of microlenses and a plurality of microlenses located between adjacent microlenses. septal part;
  • a barrier layer is provided on the side of the microlens film layer away from the substrate, and at least part of the orthographic projection of the barrier layer on the substrate overlaps with the orthographic projection of the microlens on the substrate;
  • a light-shielding layer is provided on the side of the microlens film layer away from the substrate.
  • the light-shielding layer includes at least one light-shielding pattern.
  • the at least one light-shielding pattern is located where the orthographic projection of the substrate and the spacing portion are located. The orthographic projections of the substrates overlap.
  • the orthographic projection of the light-shielding pattern on the substrate completely overlaps the orthographic projection of the spacer on the substrate.
  • the orthographic projection of the spacer portion on the substrate is located in the orthographic projection of the light shielding pattern on the substrate, and the area of the spacer portion on the orthographic projection of the substrate is smaller than the orthographic projection of the spacer portion on the substrate. The area of the orthogonal projection of the light-shielding pattern on the substrate.
  • the blocking layer includes a first portion, an orthographic projection of the first portion on the substrate overlaps an orthographic projection of the microlens on the substrate, and at least part of the light shielding pattern is on The orthographic projection of the substrate overlaps the orthographic projection of the microlens on the substrate, and at least part of the light-shielding pattern is disposed on a side of the first part away from the substrate and in contact with the first part .
  • the barrier layer further includes a second portion, an orthographic projection of the second portion on the substrate overlaps an orthographic projection of the spacer portion on the substrate, and at least part of the The light-shielding pattern is disposed on a side of the second part away from the substrate and in contact with the second part.
  • first portion and the second portion are integrally formed.
  • the microlens film layer further includes a first alignment mark, and the orthographic projection of the first alignment mark on the substrate is different from the orthographic projection of the microlens on the substrate.
  • the substrate includes a second alignment mark, and at least part of the first alignment mark overlaps with the second alignment mark in an orthographic projection of the substrate.
  • a flat layer is further included, the flat layer is disposed on a side of the blocking layer and the light-shielding layer away from the substrate, and the refractive index of the flat layer is lower than the refractive index of the microlens. Rate.
  • the difference between the refractive index of the microlens and the refractive index of the flat layer Not less than 0.1.
  • the microlenses are in a strip shape, the microlenses extend along a first direction, a plurality of microlenses are arranged along a second direction, and the microlenses are arranged in the second direction.
  • the length is 10 microns to 300 microns; and/or the arch height of the microlens is 5 microns to 30 microns; and/or the length of the spacer portion in the second direction is 1.5 microns to 5 microns.
  • the blocking layer uses an inorganic light-transmitting material.
  • the barrier layer has a thickness of 10 nanometers to 100 nanometers.
  • the light shielding pattern has a maximum thickness of 1 to 5 microns.
  • embodiments of the present disclosure also provide a display device, including any of the aforementioned microlens array substrates.
  • embodiments of the present disclosure also provide a method for preparing a microlens array substrate, including:
  • the microlens film layer includes a plurality of microlenses and spacers located between adjacent microlenses;
  • a barrier layer is formed on the side of the microlens film layer away from the substrate; at least part of the orthographic projection of the barrier layer on the substrate overlaps with the orthographic projection of the microlens on the substrate;
  • a light-shielding film is formed on the side of the barrier layer away from the substrate, and a patterning process is performed on the light-shielding film so that the light-shielding film forms at least one light-shielding pattern.
  • the at least one light-shielding pattern is projected in front of the substrate. It overlaps with the orthographic projection of the spacer portion on the substrate.
  • Figure 1 is a schematic structural diagram of a display device according to an embodiment of the present disclosure
  • Figure 2 is a schematic structural diagram of a microlens array substrate according to an embodiment of the present disclosure
  • Figure 3 is a cross-sectional view of a microlens array substrate according to an embodiment of the present disclosure
  • Figure 4 is a second cross-sectional view of a microlens array substrate according to an embodiment of the present disclosure
  • Figure 5 is a third cross-sectional view of a microlens array substrate according to an embodiment of the present disclosure.
  • Figure 6a is a schematic structural diagram of the microlens array substrate formed into a substrate according to an embodiment of the present disclosure
  • Figure 6b is a schematic structural diagram of the microlens array substrate after forming a microlens film layer according to an embodiment of the present disclosure
  • Figure 6c is a schematic structural diagram of the microlens array substrate after forming a barrier layer according to an embodiment of the present disclosure
  • Figure 6d is a schematic structural diagram of the microlens array substrate after forming a light-shielding film according to an embodiment of the present disclosure
  • Figure 6e is a schematic structural diagram of the microlens array substrate after forming a light-shielding layer according to an embodiment of the present disclosure
  • Figure 6f is a schematic structural diagram of the microlens array substrate after forming a flat layer according to an embodiment of the present disclosure
  • Figure 6g is a schematic structural diagram of the display device of the present disclosure.
  • Figure 7 is a scanning electron microscope photograph of the microlens array substrate after the light-shielding film was produced during the manufacturing process according to the embodiment of the present disclosure
  • FIG. 8 is a scanning electron microscope photograph of the microlens array substrate after forming a light-shielding pattern during the manufacturing process according to the embodiment of the present disclosure.
  • connection should be understood in a broad sense.
  • it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection, or an electrical connection; it can be a direct connection, an indirect connection through an intermediate piece, or an internal connection between two elements.
  • connection should be understood in a broad sense.
  • it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection, or an electrical connection; it can be a direct connection, an indirect connection through an intermediate piece, or an internal connection between two elements.
  • a transistor refers to an element including at least three terminals: a gate electrode, a drain electrode, and a source electrode.
  • the transistor has a channel region between a drain electrode (drain electrode terminal, drain region, or drain electrode) and a source electrode (source electrode terminal, source region, or source electrode), and current can flow through the drain electrode, channel region, and source electrode .
  • the channel region refers to the region through which current mainly flows.
  • the first electrode may be a drain electrode and the second electrode may be a source electrode, or the first electrode may be a source electrode and the second electrode may be a drain electrode.
  • the functions of the "source electrode” and the “drain electrode” may be interchanged with each other. Therefore, in this specification, “source electrode” and “drain electrode” may be interchanged with each other.
  • electrical connection includes a case where constituent elements are connected together through an element having some electrical effect.
  • component having some electrical function There is no particular limitation on the “component having some electrical function” as long as it can transmit and receive electrical signals between the connected components.
  • elements having some electrical function include not only electrodes and wiring, but also switching elements such as transistors, resistors, inductors, capacitors, and other elements with various functions.
  • parallel refers to a state in which the angle formed by two straight lines is -10° or more and 10° or less. Therefore, it also includes a state in which the angle is -5° or more and 5° or less.
  • vertical refers to a state where the angle formed by two straight lines is 80° or more and 100° or less, and therefore includes an angle of 85° or more and 95° or less.
  • film and “layer” may be interchanged.
  • conductive layer may sometimes be replaced by “conductive film.”
  • insulating film may sometimes be replaced by “insulating layer”.
  • the preparation method of a microlens array substrate in the related art includes: making alignment marks on the substrate, and making a patterned light-shielding pattern based on the formed alignment marks. Continue to fabricate microlenses on the substrate after forming the light-shielding pattern.
  • the traditional positioning method is a bottom-up method.
  • the alignment device of the imprinting equipment is used to stack and align the microlens film layer and the light-shielding pattern produced in the previous step. , but due to the poor alignment accuracy of the alignment device, the deviation between the microlens and the light-shielding pattern is large.
  • photoresist thermal reflow technology it is necessary to first use photolithography to make a light-shielding pattern, and then continue to make microlenses on the substrate with the light-shielding pattern formed in the previous step.
  • the main process includes: The photoresist is exposed under the cover of the mask.
  • the exposure pattern is circular, rectangular or regular hexagonal.
  • the exposed photoresist is developed and the residual material is cleaned. It is placed on the heating platform and hot melt formed. .
  • photoresist thermal reflow technology to make microlenses.
  • the problem of large light pattern width generally greater than 3 microns (um)
  • the process of manufacturing microlenses using nanoimprint technology and photoresist thermal reflow technology both involves the alignment operation between the microlens film layer and the light-shielding pattern, which increases the complexity of the overall manufacturing process of the microlens array substrate. , there are problems such as low alignment accuracy and reduced light extraction rate.
  • FIG. 1 is a schematic structural diagram of a display device according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic structural diagram of a microlens array substrate according to an embodiment of the present disclosure.
  • Figure 3 is a cross-sectional view of a microlens array substrate according to an embodiment of the present disclosure.
  • Fig. 3 is a cross-sectional view along the A-A’ direction in Fig. 2.
  • Figure 1, Figure 2, and Figure 3 three directions are defined to explain the technical solution.
  • the first direction is marked Y
  • the second direction is marked X
  • the third direction is marked Z.
  • the first direction and the second direction are marked as Z.
  • the direction and the third direction are all different.
  • the first direction, the second direction and the third direction are perpendicular to each other.
  • An embodiment of the present disclosure provides a display device, which includes a display panel 100 and a microlens array substrate 200 arranged opposite each other.
  • the microlens array substrate 200 is located on the light emitting side of the display panel 100 .
  • the display panel 100 may be an organic light emitting diode (OLED for short) display panel, a quantum dot light emitting diode (QLED for short) display panel and a micro light emitting diode (miniLED or Any of the self-luminous display panels such as microLED) display panels, or it can also be a liquid crystal display (LCD) panel.
  • OLED organic light emitting diode
  • QLED quantum dot light emitting diode
  • miniLED micro light emitting diode
  • LCD liquid crystal display
  • the display panel may include a display area, a binding area located on at least one side of the display area, and a frame area located on other sides of the display area.
  • the display area of the display panel includes a plurality of sub-pixels constituting a pixel array, the plurality of sub-pixels may be configured to display dynamic pictures or still images, and the display area may be called an active area (AA).
  • the display area of the display panel may include a plurality of pixel units arranged in a matrix.
  • at least one pixel unit may include a first sub-pixel that emits light of a first color, a second sub-pixel that emits light of a second color, and third and fourth sub-pixels that emits light of a third color.
  • Each sub-pixel may include a pixel circuit and a light-emitting element.
  • the pixel circuit is electrically connected to the scanning signal line, the data signal line and the light-emitting control line respectively.
  • the pixel circuit may be configured to receive data under the control of the scanning signal line and the light-emitting control line.
  • the data voltage transmitted by the signal line outputs a corresponding current to the light-emitting element.
  • the light-emitting element in each sub-pixel is connected to the pixel circuit of the sub-pixel.
  • the light-emitting element is configured to emit light with corresponding brightness in response to the current output by the pixel circuit of the sub-pixel.
  • the first sub-pixel may be a red sub-pixel (R) emitting red light
  • the second sub-pixel may be a blue sub-pixel (B) emitting blue light
  • the sub-pixel may be a green sub-pixel (G) emitting green light.
  • the shape of the light-emitting elements of the sub-pixels can be rectangular, rhombus, pentagon or hexagon, and the light-emitting elements of the four sub-pixels can be arranged in a diamond shape to form an RGBG pixel arrangement.
  • the light-emitting elements of the four sub-pixels may be arranged horizontally, vertically, or in a square manner, which is not limited in this disclosure.
  • the pixel unit may include three sub-pixels, and the light-emitting elements of the three sub-pixels may be arranged horizontally, vertically, or vertically, which is not limited in this disclosure.
  • One microlens 4 can be used to enhance the light emitted by the light-emitting element of one sub-pixel, that is, the microlens 4 is arranged in a group with one sub-pixel along the direction of the thickness of the microlens array substrate.
  • one microlens 4 is used to enhance the light emitted by the light-emitting elements of two or more sub-pixels.
  • the display panel 100 may include: a base substrate, a driving circuit layer, a light emitting structure layer, and a packaging structure layer sequentially disposed on the base substrate.
  • the display panel may include other film layers, such as touch structure layers, etc., which are not limited in this disclosure.
  • an embodiment of the present disclosure provides a microlens array substrate 200 .
  • the microlens array substrate 200 can be used in the above display device.
  • the microlens array substrate 200 includes a substrate 1, a microlens film layer 2 disposed on one side of the substrate 1, a barrier layer 5 disposed on the side of the microlens film layer 2 away from the substrate 1, and a barrier layer 5 disposed on the side of the microlens film layer 2 away from the substrate 1.
  • the light-shielding layer on one side of the substrate 1 includes at least one light-shielding pattern 6 .
  • the microlens film layer 2 includes at least one microlens array 3, and the microlens array 3 can be a contact microlens array or a non-contact microlens array.
  • the technical solution is explained by taking setting up a non-tight microlens array 3 as an example.
  • the microlens array 3 includes a plurality of microlenses 4 and spacers 7 located between adjacent microlenses 4 .
  • the orthographic projection of at least part of the barrier layer 5 on the substrate 1 overlaps the orthographic projection of the microlens 4 on the substrate 1 .
  • the orthographic projection of at least part of the light-shielding pattern 6 on the substrate 1 overlaps with the orthographic projection of the spacer 7 on the substrate 1 .
  • the spacer 7 is away from the surface of the substrate 1 side to
  • the distance between the surface of the substrate 1 close to the microlens film layer 2 is no greater than the minimum distance from the surface of the microlens 4 away from the substrate 1 to the surface of the substrate 1 close to the microlens film layer 2,
  • Two adjacent microlenses 4 and the spacer 7 between the two adjacent microlenses 4 are combined to form a groove, and the light-shielding pattern 6 is located in the groove.
  • the orthographic projection of the barrier layer 5 on the substrate 1 overlaps with the orthographic projection of each microlens 4 on the substrate 1 , and the orthographic projection of the barrier layer 5 on the substrate 1
  • the projections overlap with the orthographic projection of each spacer 7 on the substrate 1 , that is, the barrier layer 5 can cover the entire microlens array 3 .
  • the light-shielding pattern 6 is disposed on the side of the barrier layer 5 away from the substrate 1 and is in contact with the barrier layer 5 .
  • the orthographic projection of the barrier layer on the substrate may overlap with the orthographic projection of each microlens on the substrate and not overlap with the orthographic projection of each spacer on the substrate, and the light-shielding pattern is disposed on the microlens.
  • the light-shielding pattern is located on the spacer part and in contact with the spacer part.
  • FIG. 7 is a scanning electron microscope photograph of the microlens array substrate after the light-shielding film was produced during the manufacturing process according to the embodiment of the present disclosure.
  • FIG. 8 is a scanning electron microscope photograph of the microlens array substrate after forming a light-shielding pattern during the manufacturing process according to the embodiment of the present disclosure.
  • a barrier layer 5 is provided on the side of the microlens film layer 2 away from the substrate 1
  • a light-shielding pattern 6 is provided on the side of the barrier layer 5 away from the substrate 1.
  • the light-shielding layer is formed during etching.
  • the barrier layer 5 is used to protect the portion where the microlens 4 is located to avoid over-etching during the etching process and change the morphology of the microlens 4.
  • the light-shielding film 6' located in the gap between two adjacent microlenses 4 is significantly thicker than the light-shielding film 6' located on the surface of the microlens 4, thus providing a prerequisite for the self-alignment solution.
  • the light-shielding film 6' between the two microlenses 4 forms a light-shielding pattern 6.
  • the structure of the microlens array substrate 200 of the embodiment of the present disclosure is such that the light-shielding pattern 6 is formed in the groove commonly surrounded by two adjacent microlenses 4 and the spacer 7 . Since the thickness (Z-direction) of the light-shielding film 6' located in the gap between two adjacent microlenses 4 is larger than the thickness of the light-shielding film 6' located on the surface of the microlens 4, when performing the patterning process on the light-shielding film 6', The light-shielding film 6' located in the gap between two adjacent microlenses 4 still remains to form a light-shielding pattern 6.
  • the light-shielding pattern 6 serves as a light-shielding function between adjacent microlenses 4 and prevents the light emitted from adjacent microlenses 4 from interacting with each other. crosstalk.
  • the production of the light-shielding pattern 6 does not require new alignment tooling, and the width (X-direction) of the light-shielding pattern 6 is not limited by the traditional photolithography line width; so that the microlens and the light-shielding pattern adopt self-alignment technology and have extremely high alignment. Precision; and has the advantages of simple production process and high light efficiency.
  • the light-shielding pattern 6 is obtained through a patterning process to be formed between two adjacent microlenses 4, so that the light-shielding pattern 6 and the spacer 7 have a better fit surface and contact performance to improve the microlens array substrate. Water and oxygen reliability of 200.
  • one microlens 4 may be provided in a strip shape extending along the first direction.
  • a plurality of elongated microlenses 4 are arranged at equal or non-equal intervals along the second direction.
  • the projection of a microlens array 3 along the third direction can be arranged in a regular or irregular shape such as rectangle, ellipse, polygon, etc.
  • Figure 4 is a second cross-sectional view of a microlens array substrate according to an embodiment of the present disclosure.
  • the dimension W along the X direction between the profiles of the two microlenses 4 changes, and the light shielding pattern 6 provided between the two microlenses 4 changes along the X direction along the Z dimension.
  • the direction is changing, that is, a non-constant value, which will affect the area of the orthographic projection of the light-shielding pattern 6 on the substrate 1 along the Z direction.
  • the length L1 of the microlens 4 along the first direction (X direction) may be set between 10 micrometers ( ⁇ m) and 300 micrometers ( ⁇ m).
  • the arch height H of the microlens 4, that is, the size along the third direction (Z direction), can be set between 5 micrometers ( ⁇ m) and 30 micrometers ( ⁇ m).
  • the length L2 of the spacer portion 7 along the first direction (X direction) may be set between 1.5 micrometers ( ⁇ m) and 5 micrometers ( ⁇ m).
  • the microlenses in the embodiments of the present disclosure may be microconvex lenses.
  • the microconvex lenses have a small focal length (eg, 2-3 mm), which can reduce the thickness and weight of the device.
  • the diameter of the microlenses in the embodiments of the present disclosure is not limited, for example, the microlenses can reach the micron level.
  • the microlens in the embodiment of the present disclosure includes at least one of a spherical lens, an aspherical lens, and a free-form lens.
  • the microlens in the embodiment of the present disclosure may be an aspherical lens.
  • the curvature radius of the aspherical lens changes continuously from the center to the edge, and good aberration correction can be maintained to obtain the required performance. .
  • the application of aspherical lenses brings excellent sharpness and higher resolution, and at the same time, the miniaturization design of the lens becomes possible.
  • the material of the microlens in the embodiment of the present disclosure may be a light-transmitting material, such as glass or transparent plastic.
  • the substrate 1 in the embodiment of the present disclosure may be made of a light-transmitting material, such as a glass substrate, a transparent plastic substrate, or a flexible substrate or other light-transmitting substrate.
  • the microlens film layer 2 in the embodiment of the present disclosure is generally made of photoresist.
  • the molding process of the microlens 4 can choose nanoimprint technology or photoresist thermal reflow technology, and the specific molding process is not limited here.
  • the orthographic projection of at least part of the light-shielding pattern 6 on the substrate 1 overlaps with the orthographic projection of the spacer 7 on the substrate 1 in the embodiment of the present disclosure.
  • the light-shielding pattern 6 is on the substrate 1
  • the orthographic projection completely coincides with the orthographic projection of the spacer 7 on the substrate 1; or, the orthographic projection of the spacer 7 on the substrate 1 is located in the orthographic projection of the light-shielding pattern 6 on the substrate 1, and the spacer 7 is on the orthogonal projection of the substrate 1.
  • the projected area is smaller than the area of the light-shielding pattern 6 projected forwardly on the substrate 1 . That is to say, the profiles and the spacing portions 7 of two adjacent microlenses 4 can form a storage space for accommodating the light-shielding pattern 6, realizing positioning using structural features and simplifying the manufacturing process of the microlens array substrate 200.
  • the light-shielding pattern 6 in the embodiment of the present disclosure can be made of black polymer, and can be obtained by a patterning process using a black matrix film layer with high light absorbance. For obtaining the black matrix, dry etching, etc. can be selected.
  • the maximum thickness of the light shielding pattern 6 along the Z direction may be 1 micron ( ⁇ m) to 5 micron ( ⁇ m).
  • the barrier layer 5 may be made of an inorganic light-transmitting material, such as silicon oxynitride (SION), silicon nitride (SIN), silicon oxide (SIO), or aluminum oxide (Al 2 O 3 ). , one or more of titanium dioxide (TiO 2 ), etc.
  • the thickness of the barrier layer 5 may be set between 10 nanometers (nm) and 100 nanometers (nm).
  • the barrier layer 5 can be formed using PECVD (Plasma Enhanced Chemical Vapor Deposition, plasma enhanced chemical vapor deposition) or PEALD (atomic layer deposition) or Sputter (sputtering), which will not be described in detail here.
  • the barrier layer 5 includes a first portion 52 and a second portion 51 .
  • the first part 52 and the second part 51 can be integrally formed to form a film layer structure, that is, the first part 52 and the second part 51 can be made of the same material through the same manufacturing process.
  • the orthographic projection of the first part 52 on the substrate 1 overlaps with the orthographic projection of the microlens 4 on the substrate 1 to protect the profile of the microlens 4 and avoid damage to the profile of the microlens 4 during the manufacturing process. Damage, thereby affecting the optical performance of the microlens 4.
  • the orthographic projection of the second part 51 on the substrate 1 overlaps with the orthographic projection of the spacer part 7 on the substrate 1.
  • the second part 51 can completely cover the spacer part 7 to provide
  • the microlens array substrate 200 has high reliability in blocking water and oxygen.
  • the first part and the second part may be two independent film layers, that is, the first part and the second part may be made of the same or different materials through the same or different preparation processes.
  • a gap may be provided between adjacent first parts and second parts, or they may be in contact with each other.
  • FIG. 5 is a third cross-sectional view of a microlens array substrate according to an embodiment of the present disclosure.
  • the microlens array substrate 200 further includes a flat layer 8 .
  • the flat layer 8 is disposed on the side of the barrier layer 5 and the light-shielding layer away from the substrate 1 . At least part of the flat layer 8 covers the microlens 4 and the light-shielding pattern 6 .
  • the edge of the flat layer 8 may be flush with the edge of the microlens array 3 , or the edge of the flat layer 8 may cover the edge of the microlens array 3 along the orthographic projection of the substrate 1 .
  • the flat layer 8 can flatten the microlens array substrate 200 and protect the microlens 4 and the light-shielding pattern 6 to avoid damage to the microlens 4 and the light-shielding pattern 6 in subsequent processes, thereby affecting the light output quality of the display device.
  • the film thickness of the flat layer 8 in the embodiment of the present disclosure may be set between 5 micrometers ( ⁇ m) and 30 micrometers ( ⁇ m).
  • the flat layer 8 can be made of a transparent material, such as a transparent adhesive material.
  • the flat layer 8 can be made of acrylate, epoxy, polyurethane or other polymers.
  • the flat layer 8 can be formed by inkjet printing, screen printing, flash evaporation, or PECVD.
  • the refractive index of the flat layer 8 in the embodiment of the present disclosure is set to be lower than the refractive index of the microlens 4.
  • the refractive index range of the flat layer 8 can be set between 1.3 and 1.6.
  • the refractive index of the microlens 4 The rate range can be set between 1.5 and 1.8.
  • the difference between the refractive index of the microlens 4 and the refractive index of the flat layer 8 in the embodiment of the present disclosure is not less than 0.1 to improve the optical performance of the microlens array substrate 200 .
  • the microlens film layer further includes at least one first alignment mark.
  • the orthographic projection of the first alignment mark on the substrate does not overlap with the orthographic projection of the microlens on the substrate.
  • the substrate includes At least one second alignment mark, at least part of the first alignment mark overlaps with the second alignment mark in the orthographic projection of the substrate, the first alignment mark and the second alignment mark are arranged in a group, during the production of the microlens array During the process of manufacturing the substrate 200, the first alignment mark is used to align with the second alignment mark to align the microlens film layer to the substrate to ensure the accuracy of the microlens in adjusting the emitted light.
  • the microlens film layer 2 further includes a peripheral portion 9 .
  • the peripheral portion 9 is located around the microlens array 3, and the peripheral portion 9 and the microlens array 3 can be integrally formed. to One less first alignment mark is located on the peripheral portion 9 .
  • FIG. 6a to 6f are flow charts for manufacturing microlens array substrates according to embodiments of the present disclosure. As shown in the figure, embodiments of the present disclosure also provide a method for manufacturing a microlens array substrate. The production method may include the following steps:
  • the substrate 1 includes at least one second alignment mark 11, and the second alignment mark 11 is used for positioning with the subsequently formed microlens film layer 2, as shown in FIG. 6a.
  • microlens coating includes:
  • a microlens film is made on the substrate 1, and the microlens film is formed into the microlens film layer 2 using nanoimprint technology or photoresist thermal reflow technology.
  • the microlens film layer 2 includes at least one microlens array and at least one first alignment mark 91, and the microlens array includes a plurality of microlenses 4 and spacers 7 located between adjacent microlenses 4;
  • the first alignment mark 91 is aligned with the second alignment mark 11 on the substrate 1, so that the microlens film layer 2 is bonded to the substrate 1, as shown in FIG. 6b.
  • Forming the barrier layer includes: forming the barrier layer 5 on the side of the microlens film layer 2 away from the substrate 1 on the substrate 1 with the above structure.
  • the structure of the barrier layer 5 has been explained previously and will not be described again here. Wherein, at least part of the orthographic projection of the barrier layer 5 on the substrate 1 overlaps with the orthographic projection of the microlens 4 on the substrate 1.
  • the barrier layer 5 covers all the microlenses 4 and all the spacers 7, as shown in Figure 6c .
  • Forming a light-shielding film includes: forming a light-shielding film 6' on the side of the barrier layer 5 away from the substrate 1 on the substrate 1 with the above structure, wherein the light-shielding film 6' covers a plurality of microlenses 4 and adjacent microlenses 4 The space 7 between them is as shown in Figure 6d.
  • Forming the light-shielding layer includes: performing a patterning process on the light-shielding film 6' on the substrate 1 forming the above structure, so that the light-shielding film 6' forms at least one light-shielding pattern 6, and a light-shielding pattern 6 is projected in front of the substrate 1 with a spacer Part 7 overlaps in the orthographic projection of substrate 1, as shown in Figure 6e.
  • the "patterning process” mentioned in this embodiment includes processes such as deposition of film layers, coating of photoresist, mask exposure, development, etching, and stripping of photoresist, and is a mature preparation process in related technologies.
  • Deposition can use known processes such as sputtering and chemical vapor deposition, and coating can use known coating processes.
  • Known methods can be used for etching, and there are no specific limitations here.
  • Forming the flat layer includes: forming a flat layer 8 on the side of the barrier layer 5 and the light-shielding layer away from the substrate 1 on the substrate 1 with the above structure, as shown in Figure 6f.
  • An embodiment of the present disclosure also provides a display device.
  • the display device includes any of the aforementioned microlens array substrates.
  • the display device can be a mobile phone, a tablet computer, a smart wearable product (such as a smart watch, a bracelet, etc.), a personal digital assistant (personal digital assistant, PDA), a vehicle-mounted computer, etc.
  • PDA personal digital assistant
  • the embodiments of the present disclosure do not place any special restrictions on the specific form of the above-mentioned foldable display device.
  • Figure 6g is a schematic structural diagram of the display device of the present disclosure.
  • the display device includes an oppositely arranged display panel 100, a microlens array substrate 200, and an adhesive layer 300 located between the display panel 100 and the microlens array substrate 200.
  • the adhesive layer 300 is used to assemble the display panel 100 and the microlens array substrate 200 .
  • OCA Optically Clear Adhesive
  • OCA is colorless and transparent, has a light transmittance of over 90%, good bonding strength, can be cured at room or medium temperatures, and has small curing shrinkage.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Geometry (AREA)
  • Mathematical Physics (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

一种微透镜阵列基板(200)及其制备方法、显示装置。微透镜阵列基板(200)包括衬底(1);微透镜膜层(2),设置在衬底(1)的一侧,微透镜膜层(2)包括至少一个微透镜阵列(3),微透镜阵列(3)包括多个微透镜(4)以及位于相邻微透镜(4)之间的间隔部(7);阻挡层(5),设置在微透镜膜层(2)远离衬底(1)一侧,且至少部分阻挡层(5)在衬底(1)的正投影与微透镜(4)在衬底(1)的正投影交叠;遮光层,设置在微透镜膜层(2)远离衬底(1)一侧,遮光层包括至少一个遮光图案(6),至少一个遮光图案(6)在衬底(1)的正投影与间隔部(7)在衬底(1)的正投影交叠;微透镜(4)与遮光图案(6)采用自对准技术,具有极高的对位精度。

Description

一种微透镜阵列基板及其制备方法、显示装置 技术领域
本公开涉及但不限于显示技术领域,具体涉及一种微透镜阵列基板及其制备方法、显示装置。
背景技术
在裸眼3D、AR/VR或光场等显示技术中,需要利用微透镜阵列实现三维画面或是虚拟显示画面的显示。目前的微透镜阵列主要采用单点金刚石制作微透镜(MLA)模版,然后采用纳米压印技术进行微透镜基板的制作。但是,采用单点金刚石进行MLA模版的方案存在成本较高、难以大尺寸化等问题。而采用光刻热回流的方式,不论是直接形成微透镜阵列,还是基于其作为压印用模版进行纳米压印形成微透镜阵列,均难以实现密接型透镜阵列的制作,光线可从相邻的微透镜之间的间隙处射出,发生串扰等不良。
上述问题可以通过在相邻的微透镜之间增加遮光图案(比如黑色矩阵)的方案,实现密接型透镜阵列的效果,遮光图案能够防止光线从相邻的微透镜之间的间隙处射出,然而,在形成遮光图案过程中,遮光图案与相邻微透镜之间的间隙对位精度差,遮光图案很难精准的形成在相邻微透镜之间的间隙处。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
第一方面,本公开实施例提供了一种微透镜阵列基板,包括:
衬底;
微透镜膜层,设置在所述衬底的一侧,所述微透镜膜层包括至少一个微透镜阵列,所述微透镜阵列包括多个微透镜以及位于相邻所述微透镜之间的 间隔部;
阻挡层,设置在所述微透镜膜层远离所述衬底一侧,且至少部分所述阻挡层在所述衬底的正投影与所述微透镜在所述衬底的正投影交叠;
遮光层,设置在所述微透镜膜层远离所述衬底一侧,所述遮光层包括至少一个遮光图案,所述至少一个遮光图案在所述衬底的正投影与所述间隔部在所述衬底的正投影交叠。
在示例性实施方式中,所述遮光图案在所述衬底的正投影与所述间隔部在所述衬底的正投影完全交叠。
在示例性实施方式中,所述间隔部在所述衬底的正投影位于所述遮光图案在所述衬底的正投影中,且所述间隔部在所述衬底正投影的面积小于所述遮光图案在所述衬底正投影的面积。
在示例性实施方式中,所述阻挡层包括第一部分,所述第一部分在所述衬底的正投影与所述微透镜在所述衬底的正投影交叠,至少部分所述遮光图案在所述衬底的正投影与所述微透镜在所述衬底的正投影交叠,至少部分所述遮光图案设置在所述第一部分远离所述衬底一侧,并与所述第一部分接触。
在示例性实施方式中,所述阻挡层还包括第二部分,所述第二部分在所述衬底的正投影与所述间隔部在所述衬底的正投影交叠,至少部分所述遮光图案设置在所述第二部分远离所述衬底一侧,并与所述第二部分接触。
在示例性实施方式中,所述第一部分和所述第二部分一体成型。
在示例性实施方式中,所述微透镜膜层还包括第一对位标记,所述第一对位标记在所述衬底的正投影与所述微透镜在所述衬底的正投影不交叠,所述衬底包括第二对位标记,至少部分所述第一对位标记在所述衬底的正投影与所述第二对位标记交叠。
在示例性实施方式中,还包括平坦层,所述平坦层设置在所述阻挡层和所述遮光层远离所述衬底一侧,所述平坦层的折射率低于所述微透镜的折射率。
在示例性实施方式中,所述微透镜的折射率与所述平坦层的折射率之差 不小于0.1。
在示例性实施方式中,所述微透镜呈长条状,所述微透镜沿着第一方向延伸,多个微透镜沿着第二方向排列,所述微透镜在所述第二方向上的长度为10微米至300微米;和/或,所述微透镜的拱高为5微米至30微米;和/或,所述间隔部在所述第二方向上的长度为1.5微米至5微米。
在示例性实施方式中,所述阻挡层采用无机透光材料。
在示例性实施方式中,所述阻挡层的厚度为10纳米至100纳米。
在示例性实施方式中,所述遮光图案的最大厚度为1微米至5微米。
第二方面,本公开实施例还提供了一种显示装置,包括前面任一所述的微透镜阵列基板。
第三方面,本公开实施例还提供了一种微透镜阵列基板的制备方法,包括:
在衬底上形成微透镜膜层;所述微透镜膜层包括多个微透镜以及位于相邻所述微透镜之间的间隔部;
在所述微透镜膜层远离所述衬底一侧形成阻挡层;至少部分所述阻挡层在所述衬底的正投影与所述微透镜在所述衬底的正投影交叠;
在所述阻挡层远离所述衬底一侧形成遮光薄膜,对所述遮光薄膜进行构图工艺,使所述遮光薄膜形成至少一个遮光图案,所述至少一个遮光图案在所述衬底的正投影与所述间隔部在所述衬底的正投影交叠。
在阅读并理解了附图和详细描述后,可以明白其它方面。
附图说明
附图用来提供对本申请技术方案的理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1为本公开实施例的显示装置的结构示意图;
图2为本公开实施例的微透镜阵列基板的结构示意图;
图3为本公开实施例微透镜阵列基板的剖视图一;
图4为本公开实施例微透镜阵列基板的剖视图二;
图5为本公开实施例微透镜阵列基板的剖视图三;
图6a为本公开实施例微透镜阵列基板形成衬底后的结构示意图;
图6b为本公开实施例微透镜阵列基板形成微透镜膜层后的结构示意图;
图6c为本公开实施例微透镜阵列基板形成阻挡层后的结构示意图;
图6d为本公开实施例微透镜阵列基板形成遮光薄膜后的结构示意图;
图6e为本公开实施例微透镜阵列基板形成遮光层后的结构示意图;
图6f为本公开实施例微透镜阵列基板形成平坦层后的结构示意图;
图6g为本公开显示装置的结构示意图;
图7为本公开实施例微透镜阵列基板在制作过程中制作遮光薄膜后的扫描电镜照片;
图8为本公开实施例微透镜阵列基板在制作过程中形成遮光图案后的扫描电镜照片。
附图标记说明:
100-显示面板;
101-200-微透镜阵列基板,1-衬底,11-第二对位标记,2-微透镜膜层,
3-微透镜阵列,4-微透镜,5-阻挡层,51-第二部分,52-第一部分,6-遮光图案,6’-遮光薄膜,7-间隔部,8-平坦层,9-外围部,91-第一对位标记;
300-胶层。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚明白,下文中将结合附图对本公开的实施例进行详细说明。注意,实施方式可以以多个不同形式来实施。所属技术领域的普通技术人员可以很容易地理解一个事实,就是方式和 内容可以在不脱离本公开的宗旨及其范围的条件下被变换为各种各样的形式。因此,本公开不应该被解释为仅限定在下面的实施方式所记载的内容中。在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合。
在附图中,有时为了明确起见,夸大表示了各构成要素的大小、层的厚度或区域。因此,本公开的一个方式并不一定限定于该尺寸,附图中各部件的形状和大小不反映真实比例。此外,附图示意性地示出了理想的例子,本公开的一个方式不局限于附图所示的形状或数值等。
本说明书中的“第一”、“第二”、“第三”等序数词是为了避免构成要素的混同而设置,而不是为了在数量方面上进行限定的。
在本说明书中,为了方便起见,使用“中部”、“上”、“下”、“前”、“后”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示方位或位置关系的词句以参照附图说明构成要素的位置关系,仅是为了便于描述本说明书和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。构成要素的位置关系根据描述各构成要素的方向适当地改变。因此,不局限于在说明书中说明的词句,根据情况可以适当地更换。
在本说明书中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解。例如,可以是固定连接,或可拆卸连接,或一体地连接;可以是机械连接,或电连接;可以是直接相连,或通过中间件间接相连,或两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。
在本说明书中,晶体管是指至少包括栅电极、漏电极以及源电极这三个端子的元件。晶体管在漏电极(漏电极端子、漏区域或漏电极)与源电极(源电极端子、源区域或源电极)之间具有沟道区域,并且电流能够流过漏电极、沟道区域以及源电极。注意,在本说明书中,沟道区域是指电流主要流过的区域。
在本说明书中,第一极可以为漏电极、第二极可以为源电极,或者第一极可以为源电极、第二极可以为漏电极。在使用极性相反的晶体管的情况或 电路工作中的电流方向变化的情况等下,“源电极”及“漏电极”的功能有时互相调换。因此,在本说明书中,“源电极”和“漏电极”可以互相调换。
在本说明书中,“电连接”包括构成要素通过具有某种电作用的元件连接在一起的情况。“具有某种电作用的元件”只要可以进行连接的构成要素间的电信号的授受,就对其没有特别的限制。“具有某种电作用的元件”的例子不仅包括电极和布线,而且还包括晶体管等开关元件、电阻器、电感器、电容器、其它具有各种功能的元件等。
在本说明书中,“平行”是指两条直线形成的角度为-10°以上且10°以下的状态,因此,也包括该角度为-5°以上且5°以下的状态。另外,“垂直”是指两条直线形成的角度为80°以上且100°以下的状态,因此,也包括85°以上且95°以下的角度的状态。
在本说明书中,“膜”和“层”可以相互调换。例如,有时可以将“导电层”换成为“导电膜”。与此同样,有时可以将“绝缘膜”换成为“绝缘层”。
本公开中的“约”,是指不严格限定界限,允许工艺和测量误差范围内的数值。
经本公开发明人的研究发现,相关技术微透镜阵列基板的制备方法包括:在衬底上制作对位标记,基于所形成的对位标记制作图案化的遮光图案。在形成遮光图案后的衬底上继续制作微透镜。制作微透镜常用到的工艺有两种,一种是纳米压印技术(Nanoimprinting Technology),另一种是光刻胶热回流技术。
在采用纳米压印技术制作微透镜的过程中,传统的定位方式是自下而上的方式,利用压印设备的对位装置,将微透镜膜层和前序制作的遮光图案进行堆叠对位,但由于对位装置的对位精度较差,导致微透镜与遮光图案的偏差较大。在采用光刻胶热回流技术制作微透镜的过程中,需要先采用光刻工艺制作遮光图案,然后在前序形成遮光图案的衬底上继续制作微透镜,主要工艺过程包括,对衬底上的光刻胶在掩模的遮蔽下进行曝光,曝光图案呈圆形、矩形或者是正六边形等,对曝光后的光刻胶进行显影并清洗残余物质,放置于加热平台上,热熔成型。采用光刻胶热回流技术制作微透镜存在着遮 光图案宽度较大的问题,一般大于3微米(um),导致微透镜的成型率下降,降低了显示装置的显示效果。由此可见,采用纳米压印技术和光刻胶热回流技术制作微透镜的过程,均涉及到微透镜膜层与遮光图案间的对位操作,增加了微透镜阵列基板整体制作工艺的复杂性,存在着对位精度较低,出光率下降等问题。
图1为本公开实施例显示装置的结构示意图。图2为本公开实施例微透镜阵列基板的结构示意图。图3为本公开实施例微透镜阵列基板的剖视图一。其中,图3为图2中A-A’方向的剖视图。如图1、图2、图3所示,定义三个方向以便进行技术方案的阐述,第一方向标识为Y,第二方向标识为X,第三方向标识为Z,第一方向、第二方向和第三方向均不相同,示例的,第一方向、第二方向和第三方向两两相互垂直。本公开实施例提供了一种显示装置,该显示装置包括相对设置的显示面板100以及微透镜阵列基板200,微透镜阵列基板200位于显示面板100的出光侧。
在示例性实施方式中,显示面板100可以是有机发光二极管(organic light emitting diode,简称OLED)显示面板,量子点发光二极管(quantum dot light emitting diodes,简称QLED)显示面板和微发光二极管(miniLED或microLED)显示面板等自发光显示面板中的任一种,还可以是液晶显示(liquid crystal display,简称LCD)面板。
在示例性实施方式中,显示面板可以包括显示区域、位于显示区域至少一侧的绑定区域以及位于显示区域其它侧的边框区域。
在示例性实施方式中,显示面板的显示区域包括组成像素阵列的多个子像素,多个子像素可以被配置为显示动态图片或静止图像,显示区域可以称为有效区域(AA)。显示面板的显示区域可以包括以矩阵方式排布的多个像素单元。例如,至少一个像素单元可以包括出射第一颜色光线的第一子像素、出射第二颜色光线的第二子像素和出射第三颜色光线的第三子像素和第四子像素。每个子像素可以均包括像素电路和发光元件,像素电路分别与扫描信号线、数据信号线和发光控制线电连接,像素电路可以被配置为在扫描信号线和发光控制线的控制下,接收数据信号线传输的数据电压,向发光元件输出相应的电流。每个子像素中的发光元件分别与所在子像素的像素电路连接, 发光元件被配置为响应所在子像素的像素电路输出的电流发出相应亮度的光。
在示例性实施方式中,第一子像素可以是出射红色光线的红色子像素(R),第二子像素可以是出射蓝色光线的蓝色子像素(B),第三子像素和第四子像素可以是出射绿色光线的绿色子像素(G)。在一些示例中,子像素的发光元件的形状可以是矩形状、菱形、五边形或六边形,四个子像素的发光元件可以采用钻石形(Diamond)方式排列,形成RGBG像素排布。在其它示例性实施例中,四个子像素的发光元件可以采用水平并列、竖直并列或正方形等方式排列,本公开在此不做限定。在另一些示例性实施例中,像素单元可以包括三个子像素,三个子像素的发光元件可以采用水平并列、竖直并列或品字等方式排列,本公开在此不做限定。一个微透镜4可用于增强一个子像素的发光元件射出的光线,即沿微透镜阵列基板厚度的方向,微透镜4与一个子像素成组设置。或者,一个微透镜4用于增强两个以上子像素的发光元件射出的光线。
在示例性实施方式中,在垂直于显示面板100的方向上,显示面板100可以包括:衬底基板、依次设置在衬底基板上的驱动电路层、发光结构层以及封装结构层。在一些可能的实现方式中,显示面板可以包括其它膜层,如触控结构层等,本公开在此不做限定。
在示例性实施方式中,图2和图3所示,本公开实施例提供了一种微透镜阵列基板200。该微透镜阵列基板200可以用于上述显示装置中。该微透镜阵列基板200包括衬底1、设置在衬底1的一侧的微透镜膜层2、设置在微透镜膜层2远离衬底1一侧的阻挡层5以及设置在阻挡层5远离衬底1一侧的遮光层,遮光层包括至少一个遮光图案6。微透镜膜层2包括至少一个微透镜阵列3,微透镜阵列3可以为密接性微透镜阵列,或者是非密接性微透镜阵列。以设置一个非密接性微透镜阵列3为例进行技术方案的阐述。
在示例性实施方式中,如图1、图2、图3所示,微透镜阵列3包括多个微透镜4以及位于相邻微透镜4之间的间隔部7。阻挡层5的至少部分在衬底1的正投影与微透镜4在衬底1的正投影交叠。遮光图案6的至少部分在衬底1的正投影与间隔部7在衬底1的正投影交叠。
在示例性实施方式中,如图3所示,间隔部7远离衬底1一侧的表面至 衬底1靠近微透镜膜层2一侧的表面之间的距离不大于微透镜4远离衬底1一侧的表面至衬底1靠近微透镜膜层2一侧的表面之间的最小距离,使相邻两个微透镜4以及相邻两个微透镜4之间的间隔部7组合形成凹槽,遮光图案6位于该凹槽内。
在示例性实施方式中,如图3所示,阻挡层5在衬底1的正投影均与每个微透镜4在衬底1的正投影交叠,以及阻挡层5在衬底1的正投影均与每个间隔部7在衬底1的正投影交叠,即阻挡层5可以覆盖整个微透镜阵列3。遮光图案6设置在阻挡层5远离衬底1一侧,与阻挡层5接触。
在一些实施例中,阻挡层在衬底的正投影可以均与每个微透镜在衬底的正投影交叠,与每个间隔部在衬底的正投影不交叠,遮光图案设置在微透镜膜层远离衬底一侧,至少部分遮光图案位于间隔部上,并与间隔部接触。
图7为本公开实施例微透镜阵列基板在制作过程中制作遮光薄膜后的扫描电镜照片。图8为本公开实施例微透镜阵列基板在制作过程中形成遮光图案后的扫描电镜照片。本公开实施例的微透镜阵列基板200通过在微透镜膜层2远离衬底1的一侧设置阻挡层5,在阻挡层5远离衬底1的一侧设置遮光图案6,在刻蚀形成遮光图案6过程中,利用阻挡层5对设有微透镜4的部分进行保护,避免刻蚀过程中发生过刻,改变微透镜4的形貌。如图7所示,位于两个相邻的微透镜4间隙处的遮光薄膜6’明显较位于微透镜4表面的遮光薄膜6’厚,从而为自对准的方案提供先决条件。如图8所示,刻蚀后微透镜4表面已不存在遮光薄膜6’,两个微透镜4之间的遮光薄膜6’形成遮光图案6。
由此可见,本公开实施例的微透镜阵列基板200的结构使得遮光图案6形成在相邻两个微透镜4以及间隔部7共同围成的凹槽内。由于位于相邻两个微透镜4之间间隙处的遮光薄膜6’厚度(Z向)较位于微透镜4表面的遮光薄膜6’的厚度大,因此在对遮光薄膜6’进行构图工艺时,位于相邻两个微透镜4间隙处的遮光薄膜6’依然还有剩余以形成遮光图案6,遮光图案6起到相邻微透镜4间遮光的作用,避免相邻微透镜4的出射光线互相串扰。遮光图案6的制作无需新增对位工装,且遮光图案6的宽度(X向)不受传统光刻线宽的限制;使得微透镜与遮光图案采用自对准技术,具有极高的对位 精度;并具有制作工艺简单,光效高等优点。遮光图案6通过构图工艺获得,以形成于两个相邻的微透镜4之间,使得遮光图案6与间隔部7之间具有较好的贴合型面以及接触性能,以提高微透镜阵列基板200的水氧可靠性。
在示例性实施方式中,如图1、图2所示,一个微透镜4可设置为沿第一方向延伸的长条状。多个呈长条状的微透镜4沿第二方向等间隔或者非等间隔排布。一个微透镜阵列3沿第三方向的投影可设置呈矩形、椭圆形、多边形等规则或不规则形状。
图4为本公开实施例微透镜阵列基板的剖视图二。如图4所示,沿Z向,两个微透镜4的型面之间沿X向的尺寸W是变化的,设置在两个微透镜4之间的遮光图案6沿X向尺寸沿着Z向是变化的,即非恒定值,这将影响到遮光图案6沿Z向在衬底1上的正投影的面积。
在示例性实施方式中,如图4所示,微透镜4沿第一方向(X向)的长度L1可设置在10微米(μm)到300微米(μm)之间。微透镜4的拱高H,即沿第三方向(Z向)的尺寸可设置在5微米(μm)到30微米(μm)之间。间隔部7沿第一方向(X向)的长度L2可设置在1.5微米(μm)到5微米(μm)之间。
在示例性实施方式中,本公开实施例中微透镜可以为微型凸透镜,微型凸透镜焦距较小(例如2-3mm),能够减小装置的厚度和重量。
在示例性实施方式中,本公开实施例中微透镜的口径不限,例如微透镜可达到微米级。
在示例性实施方式中,本公开实施例中微透镜包括球面透镜、非球面透镜以及自由曲面透镜中的至少一种。
在示例性实施方式中,本公开实施例中微透镜可以为非球面透镜,非球面透镜的曲率半径从中心到边缘之曲率连续发生变化,可以维持良好的像差修正,以获得所需要的性能。非球面透镜的应用,带来出色的锐度和更高的分辨率,同时镜头的小型化设计成为了可能。
在示例性实施方式中,本公开实施例中微透镜的材质可以为透光材料,例如,玻璃或透明塑料。
在示例性实施方式中,本公开实施例中衬底1可以选用透光材料,例如,玻璃基材,或者是透明塑料基材,或者是可挠式基材等透光的基材。
在示例性实施方式中,本公开实施例中微透镜膜层2一般采用光刻胶制作成型。微透镜4的成型工艺可选择纳米压印技术或者是光刻胶热回流技术等,具体成型工艺在此不作限定。
在示例性实施方式中,本公开实施例中遮光图案6的至少部分在衬底1的正投影与间隔部7在衬底1的正投影存在交叠,例如,遮光图案6在衬底1的正投影与间隔部7在衬底1的正投影完全重合;或者,间隔部7在衬底1的正投影位于遮光图案6在衬底1的正投影中,且间隔部7在衬底1正投影的面积小于遮光图案6在衬底1正投影的面积。也就是说,相邻的两个微透镜4的型面与间隔部7可构成容纳遮光图案6的容纳空间,实现了利用结构特征进行定位,简化了微透镜阵列基板200的制作工艺。
在示例性实施方式中,本公开实施例中遮光图案6可采用黑色聚合物,可选用具有高吸光率的黑色矩阵膜层通过构图工艺获得。对于黑色矩阵的获得,可选择干法刻蚀等。遮光图案6沿Z向的最大厚度可为1微米(μm)至5微米(μm)。
在示例性实施方式中,阻挡层5可采用无机透光材料,例如可以是氮氧化硅(SION)、氮化硅(SIN)、氧化硅(SIO)、三氧化二铝(Al2O3)、二氧化钛(TiO2)中的一种或者几种等。阻挡层5的厚度可设置为10纳米(nm)到100纳米(nm)之间。阻挡层5可采用PECVD(Plasma Enhanced Chemical Vapor Deposition,等离子体增强化学的气相沉积法)或者PEALD(原子层沉积法)或者Sputter(溅镀法)等方式制作成型,在此不再展开赘述。
在示例性实施方式中,如图3所示,阻挡层5包括第一部分52和第二部分51。第一部分52和第二部分51可以一体成型,形成一个膜层结构,即第一部分52和第二部分51可以采用相同的材料通过同一制备工艺制备而成。第一部分52在衬底1上的正投影与微透镜4在衬底1上的正投影交叠,以用于对微透镜4的型面形成保护,避免制作过程对微透镜4型面造成的损坏,以致影响微透镜4的光学性能。第二部分51在衬底1上的正投影与间隔部7在衬底1上的正投影交叠,第二部分51可以对间隔部7进行完全覆盖,以提 高微透镜阵列基板200阻隔水氧的可靠性。
在一些实施例中,第一部分和第二部分可以为互相独立的两个膜层,即第一部分和第二部分可以采用相同或不同的材料通过相同或不同的制备工艺制备而成。相邻的第一部分和第二部分之间可以设置间隔,也可以互相接触。
图5为本公开实施例微透镜阵列基板的剖视图三。如图5所示,微透镜阵列基板200还包括平坦层8。平坦层8设置在阻挡层5和遮光层远离衬底1的一侧。平坦层8的至少部分覆盖微透镜4以及遮光图案6。平坦层8的边缘可与微透镜阵列3的边缘相平齐,或者平坦层8的边缘沿衬底1的正投影覆盖微透镜阵列3的边缘。平坦层8可使微透镜阵列基板200平坦化,并可保护微透镜4以及遮光图案6,避免后续工艺对微透镜4以及遮光图案6造成损坏,以致影响显示装置的出光质量。
在示例性实施方式中,本公开实施例中平坦层8的膜厚可设置在5微米(μm)到30微米(μm)之间。平坦层8可以采用透明材料,例如,透明胶材,示例的,平坦层8可以采用丙烯酸酯类、环氧类或者是聚氨酯类等聚合物。平坦层8可采用喷墨打印,或者丝网印刷,或者闪蒸,或者PECVD等方式制作成型。
在示例性实施方式中,本公开实施例中平坦层8的折射率设置为低于微透镜4的折射率,平坦层8的折射率范围可设置在1.3到1.6之间,微透镜4的折射率范围可设置在1.5到1.8之间。
在示例性实施方式中,本公开实施例中微透镜4的折射率与平坦层8的折射率之差不小于0.1,以提高微透镜阵列基板200的光学性能。
在示例性实施方式中,所述微透镜膜层还包括至少一个第一对位标记,第一对位标记在衬底的正投影与微透镜在衬底的正投影不交叠,衬底包括至少一个第二对位标记,至少部分第一对位标记在衬底的正投影与第二对位标记交叠,第一对位标记与第二对位标记成组设置,在制作微透镜阵列基板200的过程中,第一对位标记用于与第二对位标记进行对位,以将微透镜膜层对位到衬底上,以保证微透镜对出射光调节的精度。
在示例性实施方式中,如图2所示,微透镜膜层2还包括外围部9。外围部9位于微透镜阵列3的周边,外围部9与微透镜阵列3可一体成型。至 少一个第一对位标记位于外围部9上。
图6a至图6f为本公开实施例微透镜阵列基板的制作流程图。如图所示,本公开实施例还提供一种微透镜阵列基板的制作方法。该制作方法可包括如下步骤:
(1)形成衬底。其中,衬底1包括至少一个第二对位标记11,第二对位标记11用于与后续形成的微透镜膜层2进行定位,如图6a所示。
(2)形成微透镜膜层。微透镜膜层包括:
先在衬底1上制作微透镜薄膜,利用纳米压印技术或者是光刻胶热回流技术,使微透镜薄膜形成微透镜膜层2。其中,微透镜膜层2包括至少一个微透镜阵列以及至少一个第一对位标记91,微透镜阵列包括多个微透镜4以及位于相邻微透镜4之间的间隔部7;
然后,将第一对位标记91与衬底1上的第二对位标记11进行对位,使微透镜膜层2与衬底1贴合,如图6b所示。
(3)形成阻挡层。形成阻挡层包括:在形成上述结构的衬底1上,在微透镜膜层2远离衬底1一侧形成阻挡层5。关于阻挡层5的结构在前面已经阐述,在此不再赘述。其中,阻挡层5的至少部分在衬底1的正投影与微透镜4在衬底1的正投影交叠,例如,阻挡层5覆盖所有微透镜4以及所有间隔部7,如图6c所示。
(4)形成遮光薄膜。形成遮光薄膜包括:在形成上述结构的衬底1上,在阻挡层5远离衬底1一侧形成遮光薄膜6’,其中,遮光薄膜6’覆盖多个微透镜4以及位于相邻微透镜4之间的间隔部7,如图6d所示。
(5)形成遮光层。形成遮光层包括:在形成上述结构的衬底1上,对遮光薄膜6’进行构图工艺,使遮光薄膜6’形成至少一个遮光图案6,一个遮光图案6在衬底1的正投影与一个间隔部7在衬底1的正投影交叠,如图6e所示。
其中,本实施例中所说的“构图工艺”包括沉积膜层、涂覆光刻胶、掩模曝光、显影、刻蚀、剥离光刻胶等处理,是相关技术中成熟的制备工艺。沉积可采用溅射、化学气相沉积等已知工艺,涂覆可采用已知的涂覆工艺, 刻蚀可采用已知的方法,在此不做具体的限定。
(6)形成平坦层。形成平坦层包括:在形成上述结构的衬底1上,在阻挡层5以及遮光层远离衬底1一侧形成平坦层8,如图6f所示。
本公开实施例还提供了一种显示装置。该显示装置包括前面任一所述的微透镜阵列基板。该显示装置可以是手机、平板电脑、智能穿戴产品(例如智能手表、手环等)、个人数字助理(personal digital assistant,PDA)、车载电脑等。本公开实施例对上述可折叠显示装置的具体形式不做特殊限制。
图6g为本公开显示装置的结构示意图。在示例性实施方式中,如图6g所示,该显示装置包括相对设置的显示面板100、微透镜阵列基板200以及位于显示面板100与微透镜阵列基板200之间的胶层300。利用胶层300以实现显示面板100与微透镜阵列基板200的组装。胶层300可选用OCA(Optically Clear Adhesive)。OCA具有无色透明、光透过率在90%以上、胶结强度良好,可在室温或中温下固化,且有固化收缩小等特点。
本公开中的附图只涉及本公开涉及到的结构,其他结构可参考通常设计。在不冲突的情况下,本公开的实施例即实施例中的特征可以相互组合以得到新的实施例。
本领域的普通技术人员应当理解,可以对本公开的技术方案进行修改或者等同替换,而不脱离本公开技术方案的精神和范围,均应涵盖在本公开的权利要求的范围当中。
虽然本公开所揭露的实施方式如上,但所述的内容仅为便于理解本公开而采用的实施方式,并非用以限定本发明。任何所属领域内的技术人员,在不脱离本公开所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本发明的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (15)

  1. 一种微透镜阵列基板,包括:
    衬底;
    微透镜膜层,设置在所述衬底的一侧,所述微透镜膜层包括至少一个微透镜阵列,所述微透镜阵列包括多个微透镜以及位于相邻所述微透镜之间的间隔部;
    阻挡层,设置在所述微透镜膜层远离所述衬底一侧,且至少部分所述阻挡层在所述衬底的正投影与所述微透镜在所述衬底的正投影交叠;
    遮光层,设置在所述微透镜膜层远离所述衬底一侧,所述遮光层包括至少一个遮光图案,所述至少一个遮光图案在所述衬底的正投影与所述间隔部在所述衬底的正投影交叠。
  2. 根据权利要求1所述的微透镜阵列基板,其中,所述遮光图案在所述衬底的正投影与所述间隔部在所述衬底的正投影完全交叠。
  3. 根据权利要求1所述的微透镜阵列基板,其中,所述间隔部在所述衬底的正投影位于所述遮光图案在所述衬底的正投影中,且所述间隔部在所述衬底正投影的面积小于所述遮光图案在所述衬底正投影的面积。
  4. 根据权利要求1所述的微透镜阵列基板,其中,所述阻挡层包括第一部分,所述第一部分在所述衬底的正投影与所述微透镜在所述衬底的正投影交叠,至少部分所述遮光图案在所述衬底的正投影与所述微透镜在所述衬底的正投影交叠,至少部分所述遮光图案设置在所述第一部分远离所述衬底一侧,并与所述第一部分接触。
  5. 根据权利要求4所述的微透镜阵列基板,其中,所述阻挡层还包括第二部分,所述第二部分在所述衬底的正投影与所述间隔部在所述衬底的正投影交叠,至少部分所述遮光图案设置在所述第二部分远离所述衬底一侧,并与所述第二部分接触。
  6. 根据权利要求5所述的微透镜阵列基板,其中,所述第一部分和所述第二部分一体成型。
  7. 根据权利要求1至6任一所述的微透镜阵列基板,其中,所述微透镜膜层还包括第一对位标记,所述第一对位标记在所述衬底的正投影与所述微透镜在所述衬底的正投影不交叠,所述衬底包括第二对位标记,至少部分所述第一对位标记在所述衬底的正投影与所述第二对位标记交叠。
  8. 根据权利要求1至6任一所述的微透镜阵列基板,还包括平坦层,所述平坦层设置在所述阻挡层和所述遮光层远离所述衬底一侧,所述平坦层的折射率低于所述微透镜的折射率。
  9. 根据权利要求8所述的微透镜阵列基板,其中,所述微透镜的折射率与所述平坦层的折射率之差不小于0.1。
  10. 根据权利要求1至6任一所述的微透镜阵列基板,其中,所述微透镜呈长条状,所述微透镜沿着第一方向延伸,多个微透镜沿着第二方向排列,所述微透镜在所述第二方向上的长度为10微米至300微米;和/或,所述微透镜的拱高为5微米至30微米;和/或,所述间隔部在所述第二方向上的长度为1.5微米至5微米。
  11. 根据权利要求1至6任一所述的微透镜阵列基板,其中,所述阻挡层采用无机透光材料。
  12. 根据权利要求1至6任一所述的微透镜阵列基板,其中,所述阻挡层的厚度为10纳米至100纳米。
  13. 根据权利要求1至6任一所述的微透镜阵列基板,其中,所述遮光图案的最大厚度为1微米至5微米。
  14. 一种显示装置,包括权利要求1至13任一所述的微透镜阵列基板。
  15. 一种微透镜阵列基板的制备方法,包括:
    在衬底上形成微透镜膜层;所述微透镜膜层包括多个微透镜以及位于相邻所述微透镜之间的间隔部;
    在所述微透镜膜层远离所述衬底一侧形成阻挡层;至少部分所述阻挡层在所述衬底的正投影与所述微透镜在所述衬底的正投影交叠;
    在所述阻挡层远离所述衬底一侧形成遮光薄膜,对所述遮光薄膜进行构 图工艺,使所述遮光薄膜形成至少一个遮光图案,所述至少一个遮光图案在所述衬底的正投影与所述间隔部在所述衬底的正投影交叠。
PCT/CN2023/106154 2022-07-26 2023-07-06 一种微透镜阵列基板及其制备方法、显示装置 WO2024022078A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210885728.1A CN115185025A (zh) 2022-07-26 2022-07-26 一种微透镜阵列基板及其制备方法、显示装置
CN202210885728.1 2022-07-26

Publications (1)

Publication Number Publication Date
WO2024022078A1 true WO2024022078A1 (zh) 2024-02-01

Family

ID=83521529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/106154 WO2024022078A1 (zh) 2022-07-26 2023-07-06 一种微透镜阵列基板及其制备方法、显示装置

Country Status (2)

Country Link
CN (1) CN115185025A (zh)
WO (1) WO2024022078A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115185025A (zh) * 2022-07-26 2022-10-14 京东方科技集团股份有限公司 一种微透镜阵列基板及其制备方法、显示装置
CN117111186A (zh) * 2023-04-10 2023-11-24 荣耀终端有限公司 透光结构及可穿戴设备
CN116125569B (zh) * 2023-04-14 2023-09-12 福建福特科光电股份有限公司 一种基于纳米压印的微透镜阵列制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104253238A (zh) * 2013-06-28 2014-12-31 环球展览公司 包含障壁覆盖的微透镜膜的装置和其制造方法
US20190181384A1 (en) * 2017-11-17 2019-06-13 The Regents Of The University Of Michigan Sub-electrode microlens array for organic light emitting devices
CN111353480A (zh) * 2020-04-26 2020-06-30 欧菲微电子技术有限公司 微透镜组件、制备方法、光学指纹模组及电子装置
CN114545648A (zh) * 2020-11-18 2022-05-27 京东方科技集团股份有限公司 一种显示面板及其制作方法
CN114609704A (zh) * 2022-02-28 2022-06-10 京东方科技集团股份有限公司 微透镜阵列及制备方法、压印模板和显示装置
CN115185025A (zh) * 2022-07-26 2022-10-14 京东方科技集团股份有限公司 一种微透镜阵列基板及其制备方法、显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08201795A (ja) * 1995-01-26 1996-08-09 Toray Ind Inc ブラックマトリクス基板およびそれを用いたマイクロレンズアレイシートの製造方法
KR20090061310A (ko) * 2007-12-11 2009-06-16 주식회사 동부하이텍 이미지 센서 및 그 제조방법
JP2010271465A (ja) * 2009-05-20 2010-12-02 Ricoh Co Ltd 遮光膜付マイクロレンズアレイの製造方法、製造装置、及び遮光膜付マイクロレンズアレイ
JP2014102268A (ja) * 2012-11-16 2014-06-05 Seiko Epson Corp マイクロレンズアレイ基板、電気光学装置、および電子機器
JP2015049468A (ja) * 2013-09-04 2015-03-16 セイコーエプソン株式会社 マイクロレンズアレイ基板の製造方法、電気光学装置の製造方法
JP2016001210A (ja) * 2014-06-11 2016-01-07 セイコーエプソン株式会社 マイクロレンズアレイ基板の製造方法、マイクロレンズアレイ基板、電気光学装置、電子機器
CN112382648A (zh) * 2020-11-13 2021-02-19 京东方科技集团股份有限公司 一种显示面板、显示装置以及制作方法
CN114578463A (zh) * 2020-12-01 2022-06-03 苏州苏大维格科技集团股份有限公司 一种指纹识别微透镜成像组件的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104253238A (zh) * 2013-06-28 2014-12-31 环球展览公司 包含障壁覆盖的微透镜膜的装置和其制造方法
US20190181384A1 (en) * 2017-11-17 2019-06-13 The Regents Of The University Of Michigan Sub-electrode microlens array for organic light emitting devices
CN111353480A (zh) * 2020-04-26 2020-06-30 欧菲微电子技术有限公司 微透镜组件、制备方法、光学指纹模组及电子装置
CN114545648A (zh) * 2020-11-18 2022-05-27 京东方科技集团股份有限公司 一种显示面板及其制作方法
CN114609704A (zh) * 2022-02-28 2022-06-10 京东方科技集团股份有限公司 微透镜阵列及制备方法、压印模板和显示装置
CN115185025A (zh) * 2022-07-26 2022-10-14 京东方科技集团股份有限公司 一种微透镜阵列基板及其制备方法、显示装置

Also Published As

Publication number Publication date
CN115185025A (zh) 2022-10-14

Similar Documents

Publication Publication Date Title
WO2024022078A1 (zh) 一种微透镜阵列基板及其制备方法、显示装置
US20220158137A1 (en) Organic light-emitting display substrate, method for manufacturing same, display panel, and display device
US20210407977A1 (en) Display panel and method for manufacturing the same, display device
US10007033B2 (en) Microlens array, method for manufacturing microlens array, electro-optical device and electronic apparatus
CN110828517A (zh) 显示基板及其制作方法、显示装置
CN107357130B (zh) 掩膜板、透镜阵列及其制备方法、显示面板
US11716873B2 (en) Display panel, manufacturing method thereof, and displaying device
US7733569B2 (en) Image display device
WO2022247180A1 (zh) 显示面板及显示装置
US20230048591A1 (en) Display panel, method for manufacturing the same, and display apparatus
JP2010002925A5 (zh)
US9594206B2 (en) Complex substrate for display apparatus, display apparatus having the same and method of manufacturing the same
JP2010002925A (ja) マイクロレンズアレイ基板とその製造方法、及び液晶パネル、液晶プロジェクタ、表示装置、照明装置
JP4729754B2 (ja) 複数の有機el発光素子を利用した表示装置
WO2023097623A1 (zh) 一种微透镜结构、其制作方法及显示装置
CN114815291A (zh) 一种显示面板、显示装置及显示面板的制作方法
US11994696B2 (en) Method for manufacturing naked-eye 3D device, and naked-eye 3D device
CN116547590A (zh) 一种微透镜结构、其制作方法及相关应用
JP2008216971A (ja) 画像表示デバイス
CN114551763A (zh) 显示基板及显示装置
CN114815299A (zh) 光场显示装置的制作方法以及光场显示装置
WO2021174644A1 (zh) 有机发光二极管显示面板及显示装置
WO2022226726A1 (zh) 光学模组及其制作方法、显示装置
JP4496824B2 (ja) マイクロレンズアレイ基板、tft基板、液晶パネル、液晶プロジェクタ、表示装置、照明装置、及びマイクロレンズアレイ基板の製造方法
WO2024045021A1 (zh) 显示面板及其制备方法、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845291

Country of ref document: EP

Kind code of ref document: A1