WO2024040746A1 - 显示面板及显示装置 - Google Patents

显示面板及显示装置 Download PDF

Info

Publication number
WO2024040746A1
WO2024040746A1 PCT/CN2022/129583 CN2022129583W WO2024040746A1 WO 2024040746 A1 WO2024040746 A1 WO 2024040746A1 CN 2022129583 W CN2022129583 W CN 2022129583W WO 2024040746 A1 WO2024040746 A1 WO 2024040746A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
display panel
concave surface
substrate
substrate layer
Prior art date
Application number
PCT/CN2022/129583
Other languages
English (en)
French (fr)
Inventor
罗成志
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Publication of WO2024040746A1 publication Critical patent/WO2024040746A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136209Light shielding layers, e.g. black matrix, incorporated in the active matrix substrate, e.g. structurally associated with the switching element

Definitions

  • the present application relates to the field of display technology, and in particular, to a display panel and a display device.
  • TFT-LCD Thin Film Transistor Liquid Crystal Display
  • the light efficiency of TFT-LCD refers to the ratio of light intensity before and after the backlight passes through the display panel. Normally, the light efficiency of TFT-LCD is only 3%-10%, which means that more than 90% of the light cannot be utilized. For the non-opening area of the display panel, the light incident from the direction of the backlight will be absorbed by the opaque film, resulting in a loss of light efficiency. Therefore, it is necessary to improve this defect.
  • Embodiments of the present application provide a display panel to solve the technical problem in the prior art that the incident light in the non-opening area of the display panel is absorbed by the opaque film material, resulting in loss of light efficiency.
  • An embodiment of the present application provides a display panel, which includes a non-opening area and a plurality of opening areas.
  • the non-opening area is located between adjacent opening areas.
  • the display panel includes a base, and the base is located away from the opening area.
  • the substrate On one side of the light-emitting surface of the display panel, the substrate includes a first substrate layer, a second substrate layer and a third substrate layer; the second substrate layer is located on the first substrate layer, and the second substrate layer is A first interface is formed between the first substrate layers, the refractive index of the second substrate layer is greater than the refractive index of the first substrate layer; the third substrate layer is located on the second substrate layer, the A second interface is formed between the third substrate layer and the second substrate layer, and the refractive index of the third substrate layer is smaller than the refractive index of the second substrate layer; wherein, the first interface and the second substrate layer At least one of the interfaces is formed with a first concave surface in the non-opening area, and the conca
  • An embodiment of the present application also provides a display device, including a backlight module and a display panel.
  • the display panel is located on the light emitting side of the backlight module.
  • the display panel includes a non-opening area and a plurality of opening areas.
  • the non-opening area The opening area is located between the adjacent opening areas, the display panel includes a substrate, the base is located on a side away from the light exit surface of the display panel, the base includes a first substrate layer, a second substrate layer and A third substrate layer;
  • the second substrate layer is located on the first substrate layer, a first interface is formed between the second substrate layer and the first substrate layer, and the refractive index of the second substrate layer is greater than The refractive index of the first substrate layer;
  • the third substrate layer is located on the second substrate layer, a second interface is formed between the third substrate layer and the second substrate layer, and the third substrate layer
  • the refractive index of the bottom layer is smaller than the refractive index of the second substrate layer; wherein at least one
  • a display panel provided by an embodiment of the present application includes a non-opening area and a plurality of opening areas.
  • the non-opening area is located between adjacent opening areas.
  • the display panel includes a substrate, and the substrate is located on a side away from the light-emitting surface of the display panel.
  • the substrate includes a first substrate layer, a second substrate layer and a third substrate layer; a first interface is formed between the second substrate layer and the first substrate layer, and the refractive index of the second substrate layer is greater than the refractive index of the first substrate layer; A second interface is formed between the three substrate layers and the second substrate layer, and the refractive index of the third substrate layer is smaller than the refractive index of the second substrate layer; this application uses a non-opening area in at least one of the first interface and the second interface.
  • a first concave surface is formed inside, and the concave direction of the first concave surface is toward the side with a larger refractive index on both sides of the first concave surface, so that the first concave surface can be incident to the non-opening area from the side away from the light-emitting surface of the display panel.
  • the light inside is refracted into the opening area, and by changing the propagation direction of the light, the light enters the opening area and exits, thereby improving the light efficiency of the display panel and improving the optical performance of the display panel.
  • FIG. 1 is a top view of a display panel provided by an embodiment of the present application.
  • FIG. 2 is a first structural schematic diagram of a display panel provided by an embodiment of the present application.
  • FIG. 3 is a second structural schematic diagram of a display panel provided by an embodiment of the present application.
  • FIG. 4 is a third structural schematic diagram of a display panel provided by an embodiment of the present application.
  • FIG. 5 is a top view of another display panel provided by an embodiment of the present application.
  • 6a to 6g are schematic diagrams of the basic structure of each component in the manufacturing process flow of the display panel provided by the embodiment of the present application.
  • FIG. 7 is a schematic diagram of the basic structure of a display device provided by an embodiment of the present application.
  • the embodiments of the present application can solve the above defects.
  • the display panel includes a non-opening area A1 and a plurality of opening areas A2.
  • the opening area A1 is located between the adjacent opening areas A2.
  • the display panel includes a substrate 100.
  • the substrate 100 is located on a side away from the light-emitting surface of the display panel.
  • the substrate 100 includes a first substrate layer 101. , the second substrate layer 102 and the third substrate layer 103; the second substrate layer 102 is located on the first substrate layer 101, and a first substrate layer 102 is formed between the second substrate layer 102 and the first substrate layer 101.
  • the refractive index of the second substrate layer 102 is greater than the refractive index of the first substrate layer 101; the third substrate layer 103 is located on the second substrate layer 102, and the third substrate layer 103 and A second interface S2 is formed between the second substrate layers 102, and the refractive index of the third substrate layer 103 is smaller than the refractive index of the second substrate layer 102; wherein, the first interface S1 and the second interface S2 are formed.
  • At least one of the interfaces S2 is formed with a first concave surface 1011 in the non-opening area A1, and the concave direction of the first concave surface 1011 is toward the side with a larger refractive index on both sides of the first concave surface 1011.
  • the fact that the substrate 100 is located on the side away from the light-emitting surface of the display panel means that the substrate 100 is placed close to the backlight module 300 (as shown in Figure 7), and the light emitted from the backlight module 300,
  • the incident light corresponding to the non-opening area A1 is first refracted by the first concave surface 1011, changes the propagation direction, and then emerges from the opening area A2, thereby improving the light efficiency of the display panel and improving the light utilization rate.
  • the plurality of first concave surfaces 1011 provided by the embodiment of the present application are evenly distributed in the entire non-opening area A1, which can greatly improve the light utilization rate.
  • the incident angle a1 is smaller than the exit angle a2, that is, the light will diverge in the first concave surface 1011. Therefore, the light from the non-opening area A1 can be refracted to the opening area. A2, thus improving the light efficiency of the display panel.
  • At least one of the first interface S1 and the second interface S2 is formed with a second concave surface 1021 in the opening area A2, and the concave direction of the second concave surface 1021 is toward the The side of the two sides of the second concave surface 1021 with a smaller refractive index.
  • the incident angle c1 is greater than the exit angle c2, that is, the light will converge in the second concave surface 1021. Therefore, the light efficiency and brightness of the opening area A2 can be improved. If the first concave surface 1011 and the second concave surface 1021 are combined, all the light of the display panel can be utilized, and the overall light efficiency of the display panel can be improved.
  • the cross-sectional shapes of the first concave surface 1011 and the second concave surface 1021 are arc-shaped or trapezoidal.
  • the first concave surface 1011 is a three-dimensional microprism structure, which has the function of diverging light; the second concave surface 1021 is a three-dimensional microprism structure, which has the function of converging light.
  • the height h1 of the first concave surface 1011 and the height h2 of the second concave surface 1021 are both greater than or equal to 0.2 microns and less than or equal to 2 microns; In a direction perpendicular to the light-emitting side of the display panel, the maximum width w1 of the first concave surface 1011 and the maximum width w2 of the second concave surface 1021 are both greater than or equal to 5 microns and less than or equal to 20 microns.
  • the display panel includes an active layer 40 located in the non-opening area A1, the active layer 40 is located on the substrate 100, and the active layer 40 includes a channel area 401 and source contact regions 402 and drain contact regions 403 respectively located on both sides of the channel region 401; wherein the orthographic projection of the channel region 401 on the substrate 100 is located within the first concave surface 1011.
  • conventional display panels generally provide a light-shielding layer to prevent light from irradiating the channel region of the active layer. Since the first concave surface 1011 in this embodiment can diffuse the light from the non-opening area A1 into the opening area A2, this embodiment can avoid the problem by making the orthographic projection of the channel area 401 on the substrate 100 be located in the first concave surface 1011. Light irradiates the channel region 401 of the active layer 40, so the solution of this embodiment also has the effect of being able to omit the light-shielding layer.
  • the display panel further includes a gate insulating layer 41, a gate layer 42, an interlayer insulating layer 43, a source layer 441, a drain layer 442, a planarization layer 45, a bottom electrode 46, a passivation layer layer 47 and the top electrode 48;
  • the gate insulating layer 41 is located on the active layer 40;
  • the gate layer 42 is located on the gate insulating layer 41;
  • the interlayer insulating layer 43 is located on the On the gate layer 42, the interlayer insulating layer 43 includes a first insulating layer 431 and a second insulating layer 432;
  • the source layer 441 and the drain layer 442 are located on the interlayer insulating layer 43, so
  • the source layer 441 is electrically connected to the source contact region 402 through a via hole
  • the drain layer 442 is electrically connected to the drain contact region 403 through a via hole;
  • the planarization layer 45 is located on the source electrode.
  • the bottom electrode 46 is located on the planarization layer 45; the passivation layer 47 is located on the bottom electrode 46; the top electrode 48 is located on the passivation layer 47, the top electrode 48 is electrically connected to the drain layer 442 through a via hole.
  • FIG. 3 is a schematic diagram of the second structure of a display panel according to an embodiment of the present application.
  • the display panel includes a light-shielding layer 20 , the light-shielding layer 20 is located between the first substrate layer 101 and the active layer 40; wherein the orthographic projection of the channel region 401 on the light-shielding layer 20 is located on the light-shielding layer 20, The orthographic projection of the light shielding layer 20 on the substrate 100 is located in the first concave surface 1011 .
  • this embodiment can ensure that the light cannot enter the channel by disposing the light-shielding layer 20 at the position corresponding to the channel area 401.
  • the channel area 401 makes the performance of the active layer 40 more stable.
  • the light that is not blocked by the light-shielding layer 20 in the first concave surface 1011 can still be refracted and enter the opening area A2. Therefore, part of the light effect can also be improved.
  • the first substrate layer 101 is a glass substrate
  • the second substrate layer 102 is a silicon nitride layer
  • the third substrate layer 103 is a silicon oxide layer; wherein, the active layer
  • the light-shielding layer 20 is located on a side surface of the silicon oxide layer away from the silicon nitride layer, and the light-shielding layer 20 is located on a side surface of the glass substrate close to the active layer 40 .
  • the active layer 40 can be prepared directly on the silicon oxide layer, that is, the silicon nitride layer and the silicon oxide layer can be reused as the buffer layer and barrier layer of the display panel. Therefore, there will be no Additional thickness of the display panel.
  • the first substrate layer 101, the second substrate layer 102, and the third substrate layer 103 can also be made of other high-transmittance insulating materials to increase light transmittance and improve light efficiency.
  • the thickness of the silicon oxide layer is greater than the thickness of the silicon nitride layer.
  • the silicon oxide layer thicker than the silicon nitride layer, the light is refracted by the first concave surface 1011 and then passes through the silicon oxide layer with a larger thickness. Therefore, the light reaches other parts of the silicon oxide layer. There is enough distance in front of the film layer to change the propagation direction, so that more light can be refracted into the opening area A2, making the light efficiency higher.
  • FIG. 4 is a third structural schematic diagram of a display panel provided by an embodiment of the present application.
  • first concave surface 1011 formed in the non-opening area A1 of the first interface S1 is used as an example for illustration.
  • the refractive index of the first substrate layer 101 is smaller than the refractive index of the second substrate layer 102
  • the concave direction of the first concave surface 1011 is toward the second substrate layer 102; in Figure 4, only in the opening area A2 of the second interface S2
  • the second concave surface 1021 is formed as an example for illustration. Since the refractive index of the third substrate layer 103 is smaller than the refractive index of the second substrate layer 102 , the concave direction of the second concave surface 1021 faces the third substrate layer 103 .
  • the first substrate layer 101 is a silicon oxide layer
  • the second substrate layer 102 is a silicon nitride layer
  • the third substrate layer 103 is a glass substrate; wherein the glass substrate and A blocking layer 30 is disposed between the active layers 40 , and the light-shielding layer 20 is located on a surface of the glass substrate close to the active layer 40 .
  • the glass substrate is located on the silicon nitride layer, the light diverged through the first concave surface 1011 and then passes through the very thick glass substrate, so that the light has sufficient distance to change before reaching other film layers on the glass substrate. Propagation direction, so that more light is refracted into the opening area A2, and the light efficiency is higher.
  • arranging the silicon oxide layer and the silicon nitride layer on the back of the glass substrate can also prevent the surface unevenness of the silicon oxide layer and the silicon nitride layer from affecting the electrical properties of the thin film transistor on the front of the glass substrate.
  • the barrier layer 30 includes a first barrier layer 301 and a second barrier layer 302 .
  • the display panel includes a black matrix layer 200 , the black matrix layer 200 is located on the substrate 100 , and the black matrix layer 200 completely overlaps the non-opening area A1 .
  • the black matrix layer 200 may be located in the array substrate or in a substrate opposite to the array substrate. Since the black matrix layer 200 completely overlaps the non-opening area A1, the first concave surface 1011 is located in the area blocked by the black matrix layer 200, and the second concave surface 1021 is disposed in the opening area A2 not blocked by the black matrix layer 200.
  • FIG. 5 is a top view of another display panel according to an embodiment of the present application.
  • a plurality of the opening areas A2 are arranged in an array, and the non-opening area A1 includes a first non-opening sub-area A1 .
  • Region A11 and a second non-opening sub-region A12 the first non-opening sub-region A11 is located between the opening regions A2 in two adjacent columns, and the second non-opening sub-region A12 is located in the opening regions in two adjacent rows.
  • the difference between the width x1 of the first non-opening sub-region A11 and the maximum width x2 of the first concave surface 1011 located in the first non-opening sub-region A11 is greater than or equal to 0.5 microns. and less than or equal to 1 micron; in the column direction, the difference between the width y1 of the second non-opening sub-region A12 and the maximum width y2 of the first concave surface 1011 located in the second non-opening sub-region A12 is greater than or equal to 0.5 micron and less than or equal to 1 micron.
  • the maximum width x2 of the first concave surface 1011 located in the first non-opening sub-region A11 is smaller than that located in the second non-opening sub-region A11
  • the maximum width x2 of the first concave surface 1011 located in the first non-opening sub-region A11 is set to be smaller than the maximum width y2 of the first concave surface 1011 located in the second non-opening sub-region A12, which can reduce the size of two adjacent columns.
  • the width between the opening areas A2 improves the resolution of the display panel.
  • the distance z between the orthographic projection of the black matrix layer 200 on the substrate 100 and the adjacent edge of the second concave surface 1021 is greater than or equal to 0.5 microns and less than or equal to 1 micron. .
  • Figures 6a to 6g are schematic diagrams of the basic structure of each component in the display panel preparation process provided by the embodiment of the present application.
  • a second concave surface 1021 is formed on the first substrate layer 101 (ie, the glass substrate), and the second concave surface 1021 is provided corresponding to the opening area of the display panel.
  • the cross-sectional shape of the second concave surface 1021 is preferably arc-shaped, or may be a trapezoid, and the depth of the second concave surface 1021 is 0.2 to 2 microns; in the plane perpendicular to the light-emitting side of the display panel On the top, the orthographic projection shape of the second concave surface 1021 is a circle or a quadrilateral.
  • a second substrate layer 102 ie, a silicon nitride film
  • a first recessed structure is formed on the second substrate layer 102 at a position corresponding to the second concave surface 1021.
  • the entire surface of the component in Figure 6b is dry etched, keeping the etching rates of the first photoresist layer 1 and the second substrate layer 102 consistent, and finally reaching the second substrate layer corresponding to the opening area.
  • the surface of the bottom layer 102 is flat (that is, the etching depth is below the bottom end of the first recessed structure 3), and the surface of the second substrate layer 102 corresponding to the non-opening area forms a first concave surface 1011 (corresponding to the second recessed structure 4).
  • the cross-sectional shape of the first concave surface 1011 is preferably an arc shape, or it can also be a trapezoid, and the depth of the first concave surface 1011 is 0.2 to 2 microns; in the plane perpendicular to the light-emitting side of the display panel On the top, the orthographic projection shape of the first concave surface 1011 is a circle or a quadrilateral.
  • a third substrate layer 103 ie, a silicon oxide film
  • a third recessed structure 5 is formed at the position corresponding to the first concave surface 1011 on the third substrate layer 103 .
  • photoresist is coated on the third substrate layer 103 to form the second photoresist layer 2 to make the upper surface of the third substrate layer 103 flat.
  • the entire surface of the component in Figure 6e is dry etched, keeping the etching rates of the second photoresist layer 2 and the third substrate layer 103 consistent, and finally reaches the upper surface of the third substrate layer 103.
  • the substrate 100 is formed.
  • Figure 6g shows the preparation of other film layers on the side of the silicon oxide layer away from the silicon nitride layer.
  • the silicon oxide layer and the silicon nitride layer can be multiplexed as the buffer layer and the display panel at the same time. barrier layer so no additional thickness is added to the display panel.
  • other film layers can also be prepared on the side of the glass substrate away from the silicon nitride layer (as shown in Figure 4). The beneficial effect of this embodiment is: the light is refracted by the first concave surface 1011 and then passes through the thickness.
  • the glass substrate is very large, so the light has enough distance to change the propagation direction before reaching other film layers, making the light efficiency higher; in addition, the glass substrate has good flatness, which can also avoid the uneven upper surface of the first concave surface 1011. The influence of the electrical properties of the active layer 40.
  • FIG. 7 is a schematic diagram of the basic structure of a display device according to an embodiment of the present application.
  • the display device includes a backlight module 300 and a display panel.
  • the display panel is located on the light emitting side of the backlight module 300.
  • the display device provided by the embodiment of the present application may be: a mobile phone, a tablet computer, a notebook computer, a television, a digital camera, a navigator, and other products or components with display functions.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请提供一种显示面板及显示装置,显示面板包括非开口区和开口区,显示面板包括基底,基底位于远离显示面板的出光面的一侧,基底包括第一衬底层、第二衬底层以及第三衬底层;第二衬底层与第一衬底层之间形成第一界面;第三衬底层与第二衬底层之间形成第二界面。

Description

显示面板及显示装置 技术领域
本申请涉及显示技术领域,尤其涉及一种显示面板及显示装置。
背景技术
近年来,薄膜晶体管液晶显示器(Thin Film Transistor Liquid Crystal Display,TFT-LCD)技术一直在往低功耗、高亮度和提高光利用率的方向发展。其中,提高穿透性能能显著提升TFT-LCD的亮度、减少电力损耗,是世界各家面板厂都在攻克的难关。
TFT-LCD的光效是指背光源透过显示面板前后的光强之比。通常情况下,TFT-LCD的光效只有3%-10%,也就是说超过90%的光是无法得到利用的。对于显示面板的非开口区来说,从背光源方向入射的光线会被不透光膜材吸收,造成光效损失。故,有必要改善这一缺陷。
技术问题
本申请实施例提供一种显示面板,用于解决现有技术的显示面板的非开口区内入射的光线被不透光膜材吸收,造成光效损失的技术问题。
技术解决方案
本申请实施例提供一种显示面板,包括非开口区和多个开口区,所述非开口区位于相邻的所述开口区之间,所述显示面板包括基底,所述基底位于远离所述显示面板的出光面的一侧,所述基底包括第一衬底层、第二衬底层以及第三衬底层;所述第二衬底层位于所述第一衬底层上,所述第二衬底层与所述第一衬底层之间形成第一界面,所述第二衬底层的折射率大于所述第一衬底层的折射率;所述第三衬底层位于所述第二衬底层上,所述第三衬底层与所述第二衬底层之间形成第二界面,所述第三衬底层的折射率小于所述第二衬底层的折射率;其中,所述第一界面和所述第二界面中的至少一个在所述非开口区内形成有第一凹面,所述第一凹面的凹陷方向朝向所述第一凹面的两侧中折射率较大的一侧。
本申请实施例还提供一种显示装置,包括背光模组以及显示面板,所述显示面板位于所述背光模组的出光侧,所述显示面板包括非开口区和多个开口区,所述非开口区位于相邻的所述开口区之间,所述显示面板包括基底,所述基底位于远离所述显示面板的出光面的一侧,所述基底包括第一衬底层、第二衬底层以及第三衬底层;所述第二衬底层位于所述第一衬底层上,所述第二衬底层与所述第一衬底层之间形成第一界面,所述第二衬底层的折射率大于所述第一衬底层的折射率;所述第三衬底层位于所述第二衬底层上,所述第三衬底层与所述第二衬底层之间形成第二界面,所述第三衬底层的折射率小于所述第二衬底层的折射率;其中,所述第一界面和所述第二界面中的至少一个在所述非开口区内形成有第一凹面,所述第一凹面的凹陷方向朝向所述第一凹面的两侧中折射率较大的一侧。
有益效果
本申请实施例提供的一种显示面板,包括非开口区和多个开口区,非开口区位于相邻的开口区之间,显示面板包括基底,基底位于远离显示面板的出光面的一侧,基底包括第一衬底层、第二衬底层以及第三衬底层;第二衬底层与第一衬底层之间形成第一界面,第二衬底层的折射率大于第一衬底层的折射率;第三衬底层与第二衬底层之间形成第二界面,第三衬底层的折射率小于第二衬底层的折射率;本申请通过在第一界面和第二界面中的至少一个的非开口区内形成第一凹面,并且第一凹面的凹陷方向朝向第一凹面的两侧中折射率较大的一侧,使得第一凹面可以将从远离显示面板的出光面的一侧入射至非开口区内的光线折射至开口区内,通过改变光线的传播方向后使光线进入开口区内出射,从而提高了显示面板的光效,提升了显示面板的光学性能。
附图说明
图1是本申请实施例提供的显示面板的俯视图。
图2是本申请实施例提供的显示面板的第一种结构示意图。
图3是本申请实施例提供的显示面板的第二种结构示意图。
图4是本申请实施例提供的显示面板的第三种结构示意图。
图5是本申请实施例提供的另一显示面板的俯视图。
图6a~图6g是本申请实施例提供的显示面板的制备工艺流程中各组件的基本结构示意图。
图7是本申请实施例提供的显示装置的基本结构示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。在附图中,为了清晰及便于理解和描述,附图中绘示的组件的尺寸和厚度并未按照比例。
需要说明的是,对于显示面板的非开口区来说,从背光源方向入射的光线会被不透光膜材吸收,造成光效损失,本申请实施例可以解决上述缺陷。
如图1、图2所示,分别为本申请实施例提供的显示面板的俯视图以及显示面板的第一种结构示意图,所述显示面板包括非开口区A1和多个开口区A2,所述非开口区A1位于相邻的所述开口区A2之间,所述显示面板包括基底100,所述基底100位于远离所述显示面板的出光面的一侧,所述基底100包括第一衬底层101、第二衬底层102以及第三衬底层103;所述第二衬底层102位于所述第一衬底层101上,所述第二衬底层102与所述第一衬底层101之间形成第一界面S1,所述第二衬底层102的折射率大于所述第一衬底层101的折射率;所述第三衬底层103位于所述第二衬底层102上,所述第三衬底层103与所述第二衬底层102之间形成第二界面S2,所述第三衬底层103的折射率小于所述第二衬底层102的折射率;其中,所述第一界面S1和所述第二界面S2中的至少一个在所述非开口区A1内形成有第一凹面1011,所述第一凹面1011的凹陷方向朝向所述第一凹面1011的两侧中折射率较大的一侧。
需要说明的是,所述基底100位于远离所述显示面板的出光面的一侧指的是:所述基底100靠近背光模组300(如图7)设置,从背光模组300出射的光线,对应于非开口区A1内的入射光先经过第一凹面1011折射,改变传播方向后从开口区A2出射,从而提高了显示面板的光效,提高了光利用率。如图1所示,本申请实施例提供的多个第一凹面1011均匀地分布在整个非开口区A1内,可以极大的提高光利用率。
具体的,图2中仅以在第二界面S2的非开口区A1内形成有第一凹面1011为例进行说明,由于第三衬底层103的折射率小于第二衬底层102的折射率,因此第一凹面1011的凹陷方向朝向第二衬底层102。根据公式n1Sinθ1=n2Sinθ2可知,光线由高折射率膜层进入低折射率膜层时出射角增大。因此,光线从第二衬底层102进入第三衬底层103时,入射角a1小于出射角a2,即光线会在第一凹面1011内发散,因此,可将非开口区A1的光线折射至开口区A2内,从而提高了显示面板的光效。
在一种实施例中,所述第一界面S1和所述第二界面S2中的至少一个在所述开口区A2内形成有第二凹面1021,所述第二凹面1021的凹陷方向朝向所述第二凹面1021的两侧中折射率较小的一侧。
具体的,图2中仅以在第一界面S1的开口区A2内形成有第二凹面1021为例进行说明,由于第一衬底层101的折射率小于第二衬底层102的折射率,因此第二凹面1021的凹陷方向朝向第一衬底层101。根据公式n1Sinθ1=n2Sinθ2可知,光线由低折射率膜层进入高折射率膜层时出射角减小。因此,光线从第一衬底层101进入第二衬底层102时,入射角c1大于出射角c2,即光线会在第二凹面1021内汇聚,因此,可以提高开口区A2的光效以及亮度。若将第一凹面1011与第二凹面1021组合,能使显示面板的所有光线都得到利用,可以提高显示面板的整体光效。
在一种实施例中,在所述显示面板的出光侧方向上,所述第一凹面1011和所述第二凹面1021的截面形状为圆弧形或梯形。在本实施例中,第一凹面1011为立体微棱镜结构,具有将光线发散的作用;第二凹面1021为立体微棱镜结构,具有将光线汇聚的作用。
在一种实施例中,在所述显示面板的出光侧方向上,所述第一凹面1011的高度h1和所述第二凹面1021的高度h2均大于或等于0.2微米且小于或等于2微米;在垂直于所述显示面板的出光侧方向上,所述第一凹面1011的最大宽度w1和所述第二凹面1021的最大宽度w2均大于或等于5微米且小于或等于20微米。
在一种实施例中,所述显示面板包括位于所述非开口区A1内的有源层40,所述有源层40位于所述基底100上,所述有源层40包括沟道区401以及分别 位于所述沟道区401两侧的源极接触区402和漏极接触区403;其中,所述沟道区401在所述基底100上的正投影位于所述第一凹面1011内。
可以理解的是,常规的显示面板一般都会设置遮光层以避免光线照射至有源层的沟道区。由于本实施例的第一凹面1011能使非开口区A1的光线扩散至开口区A2内,本实施例通过使沟道区401在基底100上的正投影位于第一凹面1011内,即可以避免光线照射有源层40的沟道区401,因此采用本实施例的方案还具有能省略遮光层的效果。
在一种实施例中,所述显示面板还包括栅极绝缘层41、栅极层42、层间绝缘层43、源极层441、漏极层442、平坦化层45、底部电极46、钝化层47以及顶部电极48;所述栅极绝缘层41位于所述有源层40上;所述栅极层42位于所述栅极绝缘层41上;所述层间绝缘层43位于所述栅极层42上,所述层间绝缘层43包括第一绝缘层431和第二绝缘层432;所述源极层441和所述漏极层442位于所述层间绝缘层43上,所述源极层441通过过孔与所述源极接触区402电连接,所述漏极层442通过过孔与所述漏极接触区403电连接;所述平坦化层45位于所述源极层441和所述漏极层442上;所述底部电极46位于所述平坦化层45上;所述钝化层47位于所述底部电极46上;所述顶部电极48位于所述钝化层47上,所述顶部电极48通过过孔与所述漏极层442电连接。
接下来,请参阅图3,为本申请实施例提供的显示面板的第二种结构示意图,与图2的第一种结构不同的是,在本实施例中,所述显示面板包括遮光层20,所述遮光层20位于所述第一衬底层101和所述有源层40之间;其中,所述沟道区401在所述遮光层20上的正投影位于所述遮光层20上,所述遮光层20在所述基底100上的正投影位于所述第一凹面1011内。
需要说明的是,由于第一凹面1011内入射的光线并不能全部避开沟道区401,因此,本实施例通过在对应沟道区401的位置还是设置遮光层20,可以确保光线无法进入沟道区401,使得有源层40的性能更加稳定,另外第一凹面1011内未被遮光层20遮挡的光线还是可以折射后进入开口区A2内,因此,也可以提升一部分的光效。
在一种实施例中,所述第一衬底层101为玻璃基板,所述第二衬底层102为氮化硅层,所述第三衬底层103为氧化硅层;其中,所述有源层40位于所述氧化硅层远离所述氮化硅层的一侧表面,所述遮光层20位于所述玻璃基板靠近所述有源层40的一侧表面。
可以理解的是,在本实施例中,可以直接在氧化硅层上制备有源层40,即氮化硅层和氧化硅层可以复用为显示面板的缓冲层和阻挡层,因此,不会额外增加显示面板的厚度。在其他实施例中,第一衬底层101、第二衬底层102以及第三衬底层103也可以选用其他高透过率绝缘材料,以提高光线透过率,提高光效。
在一种实施例中,在所述显示面板的出光侧方向上,所述氧化硅层的厚度大于所述氮化硅层的厚度。
可以理解的是,本实施例通过使氧化硅层的厚度大于氮化硅层的厚度,光线经过第一凹面1011折射后再经过厚度较大的氧化硅层,因此光线到达氧化硅层上的其他膜层之前有足够的距离改变传播方向,使更多的光线能折射进入开口区A2内,使光效更高。
接下来,请参阅图4,为本申请实施例提供的显示面板的第三种结构示意图,图4中仅以在第一界面S1的非开口区A1内形成有第一凹面1011为例进行说明,由于第一衬底层101的折射率小于第二衬底层102的折射率,因此第一凹面1011的凹陷方向朝向第二衬底层102;图4中仅以在第二界面S2的开口区A2内形成有第二凹面1021为例进行说明,由于第三衬底层103的折射率小于第二衬底层102的折射率,因此第二凹面1021的凹陷方向朝向第三衬底层103。
可以理解的是,在本实施例中,由于第一衬底层101的折射率小于第二衬底层102的折射率,根据公式n1Sinθ1=n2Sinθ2可知,光线由低折射率膜层进入高折射率膜层时出射角减小。因此,光线从第一衬底层101进入第二衬底层102时,入射角b1大于出射角b2,即光线会在第一凹面1011内发散,因此,可将非开口区A1的光线折射至开口区A2内,从而提高了显示面板的光效。
可以理解的是,在本实施例中,由于第三衬底层103的折射率小于第二衬底层102的折射率,根据公式n1Sinθ1=n2Sinθ2可知,光线由高折射率膜层进 入低折射率膜层时出射角增大。因此,光线从第二衬底层102进入第三衬底层103时,入射角d1小于出射角d2,即光线会在第二凹面1021内汇聚,因此,可以提高开口区A2的光效以及亮度。若将第一凹面1011与第二凹面1021组合,能使显示面板的所有光线都得到利用,可以提高显示面板的整体光效。
在一种实施例中,所述第一衬底层101为氧化硅层,所述第二衬底层102为氮化硅层,所述第三衬底层103为玻璃基板;其中,所述玻璃基板与所述有源层40之间设置有阻挡层30,所述遮光层20位于所述玻璃基板靠近所述有源层40的一侧表面。
可以理解的是,由于玻璃基板位于氮化硅层上,光线经过第一凹面1011的发散后再经过厚度很大的玻璃基板,使得光线在到达玻璃基板上的其他膜层之前有足够的距离改变传播方向,从而使更多的光线折射至开口区A2内,光效更高。另外,将氧化硅层和氮化硅层做在玻璃基板的背面也可以避免氧化硅层和氮化硅层的表面不平整对玻璃基板正面的薄膜晶体管的电性造成影响。
在本实施例中,所述阻挡层30包括第一阻挡层301和第二阻挡层302。
继续参阅图1,在一种实施例中,所述显示面板包括黑矩阵层200,所述黑矩阵层200位于所述基底100上,所述黑矩阵层200与所述非开口区A1完全重叠。
需要说明的是,黑矩阵层200可以位于阵列基板中,也可以位于阵列基板的对向基板中。由于黑矩阵层200与非开口区A1完全重叠,因此,第一凹面1011位于黑矩阵层200遮挡的区域内,第二凹面1021设置在无黑矩阵层200遮挡的开口区A2内。
接下来,请参阅图5,为本申请实施例提供的另一显示面板的俯视图,在本实施例中,多个所述开口区A2阵列排布,所述非开口区A1包括第一非开口子区A11和第二非开口子区A12,所述第一非开口子区A11位于相邻两列的所述开口区A2之间,所述第二非开口子区A12位于相邻两行的所述开口区A2之间;其中,在行方向上,所述第一非开口子区A11的宽度x1与位于所述第一非开口子区A11内的所述第一凹面1011的最大宽度x2之差大于或等于0.5微米且小于或等于1微米;在列方向上,所述第二非开口子区A12的宽 度y1与位于所述第二非开口子区A12内的所述第一凹面1011的最大宽度y2之差大于或等于0.5微米且小于或等于1微米。
在一种实施例中,在垂直于所述显示面板的出光侧方向上,位于所述第一非开口子区A11内的所述第一凹面1011的最大宽度x2小于位于所述第二非开口子区A12内的所述第一凹面1011的最大宽度y2。
需要说明的是,相邻两列的开口区A2之间对应设置数据线或电源线,相应的宽度较小;相邻两行的开口区A2之间对应设置薄膜晶体管电路,相应的宽度较大。因此,本实施例将位于第一非开口子区A11内的第一凹面1011的最大宽度x2设置为小于位于第二非开口子区A12内的第一凹面1011的最大宽度y2,可以缩小相邻两列的开口区A2之间的宽度,提高显示面板的分辨率。
在一种实施例中,所述黑矩阵层200在所述基底100上的正投影与相邻的所述第二凹面1021的边缘之间的间距z大于或等于0.5微米且小于或等于1微米。
接下来,请参阅图6a~图6g,为本申请实施例提供的显示面板的制备工艺流程中各组件的基本结构示意图,首先如图6a所示,通过曝光、显影、刻蚀等工艺步骤在第一衬底层101(即玻璃基板)上形成第二凹面1021,第二凹面1021对应显示面板的开口区设置。其中,在显示面板的出光侧方向上,第二凹面1021的截面形状优选圆弧形,也可以为梯形,第二凹面1021的深度为0.2至2微米;在垂直于显示面板的出光侧的平面上,第二凹面1021的正投影形状为圆形或四边形。
接下来,如图6b所示,在第一衬底层101上沉积第二衬底层102(即氮化硅膜),第二衬底层102上对应第二凹面1021的位置相应会形成第一凹陷结构3,然后在第二衬底层102上涂布光阻,对光阻进行曝光、显影形成第一光阻层1以及位于第一光阻层1上表面的第二凹陷结构4,第二凹陷结构4位于显示面板的非开口区内。
接下来,如图6c所示,将图6b的组件进行整面干刻蚀,保持第一光阻层1和第二衬底层102的刻蚀速率一致,最终达到对应于开口区的第二衬底层102的表面平坦(即刻蚀深度至第一凹陷结构3的底端以下),对应于非开口区的第二衬底层102的表面形成第一凹面1011(与第二凹陷结构4对应)。其中,在显 示面板的出光侧方向上,第一凹面1011的截面形状优选圆弧形,也可以为梯形,第一凹面1011的深度为0.2至2微米;在垂直于显示面板的出光侧的平面上,第一凹面1011的正投影形状为圆形或四边形。
接下来,如图6d所示,在第二衬底层102上沉积第三衬底层103(即氧化硅膜),第三衬底层103上对应第一凹面1011的位置相应会形成第三凹陷结构5。
接下来,如图6e所示,在第三衬底层103上涂布光阻,形成第二光阻层2,使第三衬底层103的上表面平坦。
接下来,如图6f所示,将图6e的组件进行整面干刻蚀,保持第二光阻层2和第三衬底层103的刻蚀速率一致,最终达到第三衬底层103的上表面平坦的目的(即刻蚀深度至第三凹陷结构5的底端以下),即形成基底100。
接下来,如图6g所示,在基底100上进行阵列基板的其他膜层的制备,其制备方法为常规技术,在此不进行详细描述。
需要说明的是,图6g是在氧化硅层远离氮化硅层的一侧进行其他膜层的制备,此实施方式可以将氧化硅层和氮化硅层同时复用为显示面板的缓冲层和阻挡层,因此不会额外增加显示面板的厚度。在其他实施方式中,也可以在玻璃基板远离氮化硅层的一侧进行其他膜层的制备(如图4),此实施方式的有益效果为:光线经过第一凹面1011折射后再经过厚度很大的玻璃基板,因此光线到达其他膜层之前有足够的距离改变传播方向,使光效更高;另外,玻璃基板的平整性较好,也可以避免第一凹面1011的上表面不平整对有源层40电性的影响。
接下来,请参阅图7,为本申请实施例提供的显示装置的基本结构示意图,所述显示装置包括背光模组300以及显示面板,所述显示面板位于所述背光模组300的出光侧,所述显示面板的基本结构和制备工艺请参阅图1至图6g及相关说明,此处不再赘述。本申请实施例提供的显示装置可以为:手机、平板电脑、笔记本电脑、电视机、数码相机、导航仪等具有显示功能的产品或部件。
以上对本申请实施例所提供的一种显示面板及显示装置进行了详细介绍。应理解,本文所述的示例性实施方式应仅被认为是描述性的,用于帮助理解本申请的方法及其核心思想,而并不用于限制本申请。

Claims (20)

  1. 一种显示面板,其包括非开口区和多个开口区,所述非开口区位于相邻的所述开口区之间,所述显示面板包括基底,所述基底位于远离所述显示面板的出光面的一侧,所述基底包括:
    第一衬底层;
    第二衬底层,位于所述第一衬底层上,所述第二衬底层与所述第一衬底层之间形成第一界面,所述第二衬底层的折射率大于所述第一衬底层的折射率;
    第三衬底层,位于所述第二衬底层上,所述第三衬底层与所述第二衬底层之间形成第二界面,所述第三衬底层的折射率小于所述第二衬底层的折射率;
    其中,所述第一界面和所述第二界面中的至少一个在所述非开口区内形成有第一凹面,所述第一凹面的凹陷方向朝向所述第一凹面的两侧中折射率较大的一侧。
  2. 如权利要求1所述的显示面板,其中,所述第一界面和所述第二界面中的至少一个在所述开口区内形成有第二凹面,所述第二凹面的凹陷方向朝向所述第二凹面的两侧中折射率较小的一侧。
  3. 如权利要求2所述的显示面板,其中,所述显示面板包括位于所述非开口区内的有源层,所述有源层位于所述基底上,所述有源层包括沟道区以及分别位于所述沟道区两侧的源极接触区和漏极接触区;
    其中,所述沟道区在所述基底上的正投影位于所述第一凹面内。
  4. 如权利要求3所述的显示面板,其中,所述显示面板包括遮光层,所述遮光层位于所述第一衬底层和所述有源层之间;
    其中,所述沟道区在所述遮光层上的正投影位于所述遮光层上,所述遮光层在所述基底上的正投影位于所述第一凹面内。
  5. 如权利要求4所述的显示面板,其中,所述第一衬底层为玻璃基板,所述第二衬底层为氮化硅层,所述第三衬底层为氧化硅层;
    其中,所述有源层位于所述氧化硅层远离所述氮化硅层的一侧表面,所述遮光层位于所述玻璃基板靠近所述有源层的一侧表面。
  6. 如权利要求5所述的显示面板,其中,在所述显示面板的出光侧方向上,所述氧化硅层的厚度大于所述氮化硅层的厚度。
  7. 如权利要求4所述的显示面板,其中,所述第一衬底层为氧化硅层,所述第二衬底层为氮化硅层,所述第三衬底层为玻璃基板;
    其中,所述玻璃基板与所述有源层之间设置有阻挡层,所述遮光层位于所述玻璃基板靠近所述有源层的一侧表面。
  8. 如权利要求2所述的显示面板,其中,在所述显示面板的出光侧方向上,所述第一凹面和所述第二凹面的截面形状为圆弧形或梯形。
  9. 如权利要求8所述的显示面板,其中,在所述显示面板的出光侧方向上,所述第一凹面和所述第二凹面的高度均大于或等于0.2微米且小于或等于2微米;在垂直于所述显示面板的出光侧方向上,所述第一凹面和所述第二凹面的最大宽度均大于或等于5微米且小于或等于20微米。
  10. 如权利要求2所述的显示面板,其中,所述显示面板包括黑矩阵层,所述黑矩阵层位于所述基底上,所述黑矩阵层与所述非开口区完全重叠。
  11. 如权利要求10所述的显示面板,其中,多个所述开口区阵列排布,所述非开口区包括第一非开口子区和第二非开口子区,所述第一非开口子区位于相邻两列的所述开口区之间,所述第二非开口子区位于相邻两行的所述开口区之间;
    其中,在行方向上,所述第一非开口子区的宽度与位于所述第一非开口子区内的所述第一凹面的最大宽度之差大于或等于0.5微米且小于或等于1微米;在列方向上,所述第二非开口子区的宽度与位于所述第二非开口子区内的所述第一凹面的最大宽度之差大于或等于0.5微米且小于或等于1微米。
  12. 如权利要求11所述的显示面板,其中,在垂直于所述显示面板的出光侧方向上,位于所述第一非开口子区内的所述第一凹面的最大宽度小于位于所述第二非开口子区内的所述第一凹面的最大宽度。
  13. 如权利要求10所述的显示面板,其中,所述黑矩阵层在所述基底上的正投影与相邻的所述第二凹面的边缘之间的间距大于或等于0.5微米且小于或等于1微米。
  14. 一种显示装置,其包括背光模组以及显示面板,所述显示面板位于所述背光模组的出光侧,所述显示面板包括非开口区和多个开口区,所述非开口 区位于相邻的所述开口区之间,所述显示面板包括基底,所述基底位于远离所述显示面板的出光面的一侧,所述基底包括:
    第一衬底层;
    第二衬底层,位于所述第一衬底层上,所述第二衬底层与所述第一衬底层之间形成第一界面,所述第二衬底层的折射率大于所述第一衬底层的折射率;
    第三衬底层,位于所述第二衬底层上,所述第三衬底层与所述第二衬底层之间形成第二界面,所述第三衬底层的折射率小于所述第二衬底层的折射率;
    其中,所述第一界面和所述第二界面中的至少一个在所述非开口区内形成有第一凹面,所述第一凹面的凹陷方向朝向所述第一凹面的两侧中折射率较大的一侧。
  15. 如权利要求14所述的显示装置,其中,所述第一界面和所述第二界面中的至少一个在所述开口区内形成有第二凹面,所述第二凹面的凹陷方向朝向所述第二凹面的两侧中折射率较小的一侧。
  16. 如权利要求15所述的显示装置,其中,所述显示面板包括位于所述非开口区内的有源层,所述有源层位于所述基底上,所述有源层包括沟道区以及分别位于所述沟道区两侧的源极接触区和漏极接触区;
    其中,所述沟道区在所述基底上的正投影位于所述第一凹面内。
  17. 如权利要求16所述的显示装置,其中,所述显示面板包括遮光层,所述遮光层位于所述第一衬底层和所述有源层之间;
    其中,所述沟道区在所述遮光层上的正投影位于所述遮光层上,所述遮光层在所述基底上的正投影位于所述第一凹面内。
  18. 如权利要求17所述的显示装置,其中,所述第一衬底层为氧化硅层,所述第二衬底层为氮化硅层,所述第三衬底层为玻璃基板;
    其中,所述玻璃基板与所述有源层之间设置有阻挡层,所述遮光层位于所述玻璃基板靠近所述有源层的一侧表面。
  19. 如权利要求15所述的显示装置,其中,在所述显示面板的出光侧方向上,所述第一凹面和所述第二凹面的截面形状为圆弧形或梯形。
  20. 如权利要求19所述的显示装置,其中,在所述显示面板的出光侧方向上,所述第一凹面和所述第二凹面的高度均大于或等于0.2微米且小于或等 于2微米;在垂直于所述显示面板的出光侧方向上,所述第一凹面和所述第二凹面的最大宽度均大于或等于5微米且小于或等于20微米。
PCT/CN2022/129583 2022-08-26 2022-11-03 显示面板及显示装置 WO2024040746A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211037704.7A CN115469476A (zh) 2022-08-26 2022-08-26 显示面板及显示装置
CN202211037704.7 2022-08-26

Publications (1)

Publication Number Publication Date
WO2024040746A1 true WO2024040746A1 (zh) 2024-02-29

Family

ID=84368432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129583 WO2024040746A1 (zh) 2022-08-26 2022-11-03 显示面板及显示装置

Country Status (2)

Country Link
CN (1) CN115469476A (zh)
WO (1) WO2024040746A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006259569A (ja) * 2005-03-18 2006-09-28 Sharp Corp 半透過型液晶表示パネルおよび半透過型液晶表示パネルの製造方法
JP2008233729A (ja) * 2007-03-23 2008-10-02 Epson Imaging Devices Corp 液晶表示パネル
JP2013114772A (ja) * 2011-11-25 2013-06-10 Canon Inc 表示装置
JP2016048286A (ja) * 2014-08-27 2016-04-07 株式会社ジャパンディスプレイ 表示装置およびその製造方法
JP2019132880A (ja) * 2018-01-29 2019-08-08 セイコーエプソン株式会社 電気光学装置、電子機器、及び電気光学装置の製造方法
CN114267704A (zh) * 2021-12-14 2022-04-01 深圳市华星光电半导体显示技术有限公司 显示面板以及移动终端
CN216793720U (zh) * 2021-09-30 2022-06-21 京东方科技集团股份有限公司 显示面板及显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006259569A (ja) * 2005-03-18 2006-09-28 Sharp Corp 半透過型液晶表示パネルおよび半透過型液晶表示パネルの製造方法
JP2008233729A (ja) * 2007-03-23 2008-10-02 Epson Imaging Devices Corp 液晶表示パネル
JP2013114772A (ja) * 2011-11-25 2013-06-10 Canon Inc 表示装置
JP2016048286A (ja) * 2014-08-27 2016-04-07 株式会社ジャパンディスプレイ 表示装置およびその製造方法
JP2019132880A (ja) * 2018-01-29 2019-08-08 セイコーエプソン株式会社 電気光学装置、電子機器、及び電気光学装置の製造方法
CN216793720U (zh) * 2021-09-30 2022-06-21 京东方科技集团股份有限公司 显示面板及显示装置
CN114267704A (zh) * 2021-12-14 2022-04-01 深圳市华星光电半导体显示技术有限公司 显示面板以及移动终端

Also Published As

Publication number Publication date
CN115469476A (zh) 2022-12-13

Similar Documents

Publication Publication Date Title
TWI714990B (zh) 顯示裝置
WO2020207255A1 (zh) 阵列基板及其制备方法、液晶显示面板、液晶显示装置
KR101457476B1 (ko) 횡전계방식 액티브매트릭스 액정표시장치와 그 제조방법
WO2016107039A1 (zh) 阵列基板及其制作方法及显示装置
WO2014139244A1 (zh) 彩色滤光阵列基板及其制备方法和显示装置
TWI506350B (zh) 陣列基板以及包含該陣列基板之液晶顯示裝置
WO2020228058A1 (zh) Tft阵列基板及显示面板
TWI594049B (zh) 用於液晶顯示器之邊緣光罩結構
JPH10311982A (ja) 反射型液晶表示装置およびその製造方法
US10818695B2 (en) Anti-reflective substrate and method for preparing the same, array substrate and display device
JP2007133037A (ja) マイクロレンズアレイ付き液晶表示パネルおよびその製造方法
WO2019114336A1 (zh) 显示面板和显示装置
KR20080025544A (ko) 액정표시패널 및 이의 제조 방법
WO2021174976A1 (zh) 显示面板和显示装置
TWI720826B (zh) 電致變色元件、顯示裝置及電致變色元件的製造方法
EP3644120A1 (en) Photomask structure and method for manufacturing array substrate
US20190049803A1 (en) Active switch array substrate, manufacturing method therefor same, and display device using same
WO2024040746A1 (zh) 显示面板及显示装置
TWI375839B (en) Liquid crystal panel and method of making the same
WO2024040751A1 (zh) 显示面板及其制备方法、显示装置
JP2006220907A (ja) 電気光学装置の製造方法
JPH09230379A (ja) 液晶表示装置とその製造方法
TWI690754B (zh) 顯示面板及其製造方法
WO2022000747A1 (zh) 阵列基板制备方法、阵列基板以及显示面板
CN112859420A (zh) 显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17924412

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956283

Country of ref document: EP

Kind code of ref document: A1