JP2016048286A - 表示装置およびその製造方法 - Google Patents

表示装置およびその製造方法 Download PDF

Info

Publication number
JP2016048286A
JP2016048286A JP2014172554A JP2014172554A JP2016048286A JP 2016048286 A JP2016048286 A JP 2016048286A JP 2014172554 A JP2014172554 A JP 2014172554A JP 2014172554 A JP2014172554 A JP 2014172554A JP 2016048286 A JP2016048286 A JP 2016048286A
Authority
JP
Japan
Prior art keywords
semiconductor layer
layer
lens
display device
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014172554A
Other languages
English (en)
Inventor
典弘 植村
Norihiro Uemura
典弘 植村
有親 石田
Arichika Ishida
有親 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Display Inc
Original Assignee
Japan Display Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Display Inc filed Critical Japan Display Inc
Priority to JP2014172554A priority Critical patent/JP2016048286A/ja
Publication of JP2016048286A publication Critical patent/JP2016048286A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Thin Film Transistor (AREA)

Abstract

【課題】一態様における課題は、光照射に起因する薄膜トランジスタの特性劣化を抑制し、安定した表示が可能な表示装置および表示装置の製造方法を提供することにある。【解決手段】実施形態によれば、表示装置は、半導体層SCと、半導体層に接して設けられた絶縁層30と、絶縁層を介して、半導体層の少なくとも一部に重畳して設けられたゲート電極GEと、を有する薄膜トランジスタTRと、半導体層に対して、絶縁層の反対側に設けられたレンズ20と、を備えている。レンズは、このレンズ側から半導体層に向かって入射する光を、半導体層から半導体層の平面方向に外れた位置に集光するように設けられている。【選択図】図4

Description

本発明の実施形態は、薄膜トランジスタを有する表示装置および表示装置の製造方法に関する。
近年、半導体装置として薄膜トランジスタを備えた表示装置が実用化されている。表示装置の一例として、液晶表示装置や有機エレクトロルミネッセンス表示装置等が挙げられる。
一般的な薄膜トランジスタは、アモルファスシリコンやポリシリコンなどからなる半導体層を備えている。また、最近では、酸化インジウムガリウム亜鉛(IGZO)を代表例とする酸化物半導体層を備えた薄膜トランジスタが盛んに検討されている。
このような薄膜トランジスタにおいては、特に半導体層の裏面側から照射された光が半導体層に入射すると、閾値電圧がシフトし、表示性能の劣化を招くことが知られている。特に、トップゲート構造の薄膜トランジスタを表示装置に用いた場合、バックライト光が半導体層に直接照射されるため、問題となる。
このような閾値電圧のシフトを抑制する目的で、半導体層の直下に金属遮光膜を配置し、バックライトからの光を遮光する技術が提案されている。しかしながら、この場合、遮光金属層の影響によりカップリングが発生し、薄膜トランジスタのオン動作に影響を与える。これにより、薄膜トランジスタの線形領域と飽和領域における閾値電圧特性が変わってしまうという問題が生じる。
また、薄膜トランジスタが設けられているガラス基板の一部をレンズ形状に加工したものが提案されている。この場合、ガラス基板に含まれるNaなどのアルカリ金属が拡散し、薄膜トランジスタの信頼性に悪影響を及ぼし、さらにガラス基板の強度が低下し、基板割れを起こす可能性がある。
特開2012−047840号公報 特開2011−221328号公報 特開2003−177211号公報 特開2003−131013号公報
この発明の実施形態の課題は、光照射に起因する薄膜トランジスタの特性劣化を抑制し、安定した表示が可能な表示装置および表示装置の製造方法を提供することにある。
実施形態に係る表示装置は、半導体層と、前記半導体層に接して設けられた絶縁層と、前記絶縁層を介して、前記半導体層の少なくとも一部に重畳して設けられたゲート電極と、を有する薄膜トランジスタと、前記半導体層に対して、前記絶縁層の反対側に設けられたレンズと、を備えている。前記レンズは、前記レンズ側から前記半導体層に向かって入射する光を、前記半導体層から半導体層の平面方向に外れた位置に集光するように設けられている。
図1は、第1の実施形態に係る表示装置の一構成例を概略的に示す図。 図2は、図1に示した表示装置に適用するアレイ基板の一構成例を概略的に示す平面図。 図3は、図2の線A−Aに沿ったアレイ基板の断面図。 図4は、図2の線B−Bに沿ったアレイ基板の断面図。 図5は、レンズの焦点距離を説明するための概略図。 図6は、前記アレイ基板の製造工程を示す断面図。 図7は、前記アレイ基板のエッチング工程の構成例を示す断面図。 図8は、前記アレイ基板の製造工程を示す断面図。 図9は、前記アレイ基板の製造工程を示す断面図。 図10は、前記アレイ基板の製造工程を示す断面図。 図11は、第1の変形例に係る表示装置のアレイ基板の断面図。 図12は、第2の変形例に係る表示装置のアレイ基板の断面図。 図13は、第3の変形例に係る表示装置のアレイ基板の断面図。 図14は、第4の変形例に係る表示装置のアレイ基板の一構成例を外y楽的に示す平面図。 図15は、図14の線C−Cに沿ったアレイ基板の断面図。 図16は、図14の線D−Dに沿ったアレイ基板の断面図。
以下、図面を参照しながら、この発明の実施形態について詳細に説明する。
なお、開示はあくまで一例にすぎず、当業者において、発明の主旨を保っての適宜変更であって容易に想到し得るものについては、当然に本発明の範囲に含有されるものである。また、図面は説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して、詳細な説明を適宜省略することがある。
(第1の実施形態)
図1は、第1の実施形態の表示装置の一構成例を概略的に示す図である。ここでは、薄膜トランジスタを有する表示装置として、液晶表示装置を例に説明する。液晶表示装置1は、例えばスマートフォン、タブレット端末、携帯電話機、ノートブックタイプPC、携帯型ゲーム機、電子辞書、或いはテレビ装置などの各種の電子機器に組み込んで使用することができる。
図1に示すように、液晶表示装置1は、アレイ基板SUB1と、液晶層を挟んでアレイ基板に対向する図示しない対向基板と、を備えている。液晶表示装置1は、光透過性を有する絶縁基板15と、絶縁基板15上に設けられ、画像を表示する表示部(アクティブエリア)ACTと、表示部ACTを駆動する駆動回路GD、SDと、を備えている。表示部ACTは、マトリクス状に配置された複数の表示画素PXを備えている。絶縁基板15の背面側には、後述するバックライト12が対向配置されている。
表示部ACTには、ゲート配線G(G1〜Gn)、ソース配線(信号線)S(S1〜Sm)、電源配線VCOMなどが形成されている。各ゲート配線Gは、表示部ACTの外側に引き出され、ゲート駆動回路GDに接続されている。各ソース配線Sは、表示部ACTの外側に引き出され、ソース駆動回路SDに接続されている。電源配線VCOMは、後述する対向電極と電気的に接続されている。
駆動回路GD、SDは、表示部ACTの外側で絶縁基板15上に一体的に形成され、これらの駆動回路GD、SDにコントローラ11が接続されている。
各表示画素PXは、液晶容量CLC、薄膜トランジスタ(TFT)TR、液晶容量CLCと並列の蓄積容量CSなどを備えている。液晶容量CLCは、薄膜トランジスタTRに接続された画素電極PEと、コモン電位の電源配線VCOMと電気的に接続された対向電極CEと、液晶層とを備えている。
薄膜トランジスタTRは、ゲート配線G及びソース配線Sに電気的に接続されている。ゲート配線Gには、ゲート駆動回路GDから、薄膜トランジスタTRをオンオフ制御するための制御信号が供給される。ソース配線Sには、ソース駆動回路SDから、映像信号が供給される。薄膜トランジスタTRは、ゲート配線Gに供給された制御信号に基づいてオンした際、ソース配線Sに供給された映像信号に応じた画素電位を画素電極PEに書き込む。コモン電位の対向電極CEと画素電位の画素電極PEとの間の電位差により、液晶層に印加される電圧が制御される。
蓄積容量CSは、液晶層に印加される電圧を一定期間保持するものであって、絶縁層を介して対向する一対の電極で構成されている。本実施形態では、蓄積容量CSは、画素電極PEと、絶縁層を介して画素電極PEに対向する対向電極CEと、これらの電極間に設けられた絶縁層と、で構成されている。
ゲート駆動回路GDおよびソース駆動回路SDは、それぞれスイッチング素子として機能する複数の薄膜トランジスタ(TFT)TRを備えている。
図2は、液晶表示装置1に適用可能なアレイ基板の一構成例を概略的に示す平面図、図3は、図2の線A−Aに沿ったアレイ基板および薄膜トランジスタの断面図、図4は、図2の線B−Bに沿ったアレイ基板および薄膜トランジスタの断面図である。
アレイ基板SUB1は、光透過性を有する絶縁基板15を用いて形成されている。絶縁基板15としては、ガラス基板、あるいは、ポリイミド等の樹脂基板により形成されたフレキシブルな絶縁基板を用いることができる。
アレイ基板SUB1は、絶縁基板15の上に、各表示画素PXを構成する薄膜トランジスタTR、ゲート配線G、ソース配線S、画素電極PE、対向電極CE、薄膜トランジスタTRに対向するレンズ、並びに、ゲート駆動回路GDおよびソース駆動回路SDを構成する複数の薄膜トランジスタTRを備えている。
図2ないし図4に示す構成例では、第1絶縁層としての絶縁基板15は、樹脂基板、例えば、ポリイミドによりフレキシブルに形成されている。絶縁基板15の内面15Aは、第2絶縁層(アンダーコート層)16により覆われている。第2絶縁層16は、シリコン酸化物(SiO)層17、シリコン窒化物(SiN)層18、シリコン酸化物(SiO)層19などを順次積層して形成されている。第2絶縁層16は、絶縁基板15と屈折率が相違している。絶縁基板15の屈折率は1.6、シリコン酸化物層17、19の屈折率は1.5、シリコン窒化物層18の屈折率は1.9程度である。
本実施形態において、絶縁基板15および第2絶縁層16により、レンズ(レンズ層)20が形成されている。このレンズ20については後で詳細に説明する。
薄膜トランジスタTRは、第2絶縁層16上に設けられた半導体層SC、ゲート絶縁層30を挟んで半導体層SCの上に設けられたゲート電極GE、半導体層SCおよびゲート電極GEを覆う第3絶縁層(層間絶縁層)32上に設けられたソース電極SEおよびドレイン電極DEを有し、トップゲート型のトランジスタを構成している。
薄膜トランジスタTRを構成する半導体層として、例えば、酸化物半導体層SCを用いている。酸化物半導体層SCは、例えば、インジウム(In)、ガリウム(Ga)、亜鉛(Zn)、スズ(Sn)から選ばれた少なくとも1つを含む酸化物によって形成されている。酸化物半導体層SCを形成する代表的な例としては、例えば、酸化インジウムガリウム亜鉛(InGaZnO)、酸化インジウムガリウム(InGaO)、酸化インジウム亜鉛(InZnO)、酸化亜鉛スズ(ZnSnO)、酸化亜鉛(ZnO)などが挙げられる。
酸化物半導体層SCは、例えば、ほぼ矩形の島状にパターニングされ、比較的高抵抗なチャネル領域SCCと、このチャネル領域SCCよりも低抵抗であってチャネル領域SCCを挟んだ両側にそれぞれ位置するソース領域SCS及びドレイン領域SCDと、を有している。なお、本実施形態において、層とは、膜あるいはフィルムを含む概念として用いている。
酸化物半導体層SCのチャネル領域SCCの上に、ゲート絶縁層30が形成されている。ゲート絶縁層30は、例えば酸化シリコン(SiO)を主成分とする酸化シリコン層を含んでいる。ゲート電極GEは、ゲート絶縁層30上に形成されている。つまり、チャネル領域SCCとゲート電極GEとは、ゲート絶縁層30を介して対向している。
ゲート電極GEは、配線材料によって形成され、例えば、モリブデン、タングステン、アルミニウム、チタンなどの金属材料、これらの金属材料を含む積層膜、あるいは合金などによって形成されている。ゲート電極GEおよびゲート絶縁層30は、例えば、矩形状にパターニングされ、チャネル領域SCCのチャネル長Lとほぼ等しい幅に形成されている。ゲート電極GEは、例えばゲート電極GEと同一層に設けられたゲート配線Gと電気的に接続されている。
酸化物半導体層SCのソース領域SCSおよびドレイン領域SCD、およびゲート電極GEは、第3絶縁層(層間絶縁層)32によって覆われている。また、第3絶縁層32は、ゲート絶縁層30の側面や、第2絶縁層16の表面も覆っている。第3絶縁層32を形成する材料としては、シリコン酸化物(SiOx)、シリコン酸窒化物(SiOxy)、シリコン窒化物(SiN)等が利用可能である。
薄膜トランジスタTRを構成するソース電極SE及びドレイン電極DEは、第3絶縁層32の上に形成されている。ソース電極SEは、第3絶縁層32を貫通するコンタクトホールCH1を介して酸化物半導体層SCのソース領域SCSにコンタクトしている。ソース電極SEは、ソース配線Sに接続される。ドレイン電極DEは、第3絶縁層30を貫通するコンタクトホールCH2を介して酸化物半導体層SCのドレイン領域SCDにコンタクトしている。これらのソース電極SE及びドレイン電極DEは、同一の配線材料によって形成されている。
第3絶縁層32上に第4絶縁層(パッシベーション層)34が形成され、ソース電極SEおよびドレイン電極DEを覆っている。更に、第4絶縁層34上に、対向電極CE、これを覆う第5絶縁層(層間容量層)36、この第5絶縁層36を挟んで対向電極CEに対向する画素電極PE、更に、画素電極PEおよび第5絶縁層を覆う配向膜38が設けられている。
画素電極PEは、第4絶縁層34を貫通するコンタクトホールCH3を介して、薄膜トランジスタTRのドレイン電極DEにコンタクトしている。
次に、アレイ基板SUB1に設けられたレンズ20について詳細に説明する。
図2ないし図4に示すように、絶縁基板15の内面15Aに断面が円弧状の凹部40が形成されている。凹部40は、薄膜トランジスタTRの酸化物半導体層SCのチャネル長と平行な方向に、すなわち、ゲート配線Gと平行な方向に連続して延びている。絶縁基板15上に形成されたシリコン酸化物層17の一部は、凹部40内に埋め込まれ、バックライト12側が凸となる第1レンズ20aを形成している。シリコン酸化物層17上に形成されたシリコン窒化物層18の一部は、第1レンズ20aの凹部に埋め込まれ、バックライト12側が凸となる第2レンズ20bを形成している。更に、シリコン窒化物層18上に積層されたシリコン酸化物層19の一部は、第2レンズ20bの凹部に埋め込まれ、バックライト12側が凸となる第3レンズ20cを形成している。なお、シリコン酸化物層19は、シリコン酸化物層17およびシリコン窒化物層18に比較して充分に厚いため、上面側は、凹部を有することなく、ほぼ平坦に形成されている。
上記の第1、第2、第3レンズ20a、20b、20cを重ねてレンズ20が構成されている。特に、シリコン酸化物層17、19とシリコン窒化物層18との屈折率差を利用し、上記のような加工形状にすることで光学レンズの役割を果たす。レンズ20は、薄膜トランジスタTRのチャネル長方向に平行な軸を有するシリンドリカルレンズを構成している。レンズ20は、少なくとも酸化物半導体層SCのチャネル領域と対向する位置、あるいは、重なる位置、に形成されている。本実施形態では、レンズ20の少なくとも第1レンズ20aは、酸化物半導体層SCの幅よりも充分に大きな幅を有し、酸化物半導体層SC全体に対向している。更に、第1レンズ20aの一側縁は、酸化物半導体層SCの一側縁とほぼ整列して位置している。
更に、レンズ20は、バックライト12から酸化物半導体層SCに向かって入射する平行光を、酸化物半導体層SCから平面方向にずれた位置に集光するように、所望の曲率半径に形成されている。言い換えると、レンズ20は、このレンズ20側から酸化物半導体層SCに入射する平行光の焦点が、酸化物半導体層SCとゲート電極GEとが重畳する領域から外れた位置に結ぶように、形成されている。バックライト12からの平行光が酸化物半導体層SC、少なくともチャネル領域、に照射されないように焦点が調整されたレンズ20が形成されている。
図5に示すように、第2レンズ20bを例にとって説明すると、シリコン酸化物層17の屈折率n1を1.5、シリコン窒化物層18の屈折率n2を1.9、第2レンズ20bの曲率半径を0.2μmとすると、レンズの焦点距離fは、
f=n1・R/(n2−n1)から0.75μmとなる。このような焦点距離fおよび光路を考慮し、バックライト12からの平行光が酸化物半導体層Scに照射されないように、レンズ20を配置および調整している。
次に、本実施形態の表示装置に適用するアレイ基板SUB1の製造方法についてその一例を説明する。
図6(a)に示すように、まず、ガラス基板50を用意し、このガラス基板50上にポリイミドを塗布、焼成して絶縁基板15を形成する。次いで、図6(b)に示すように、例えば、エッチングにより、絶縁基板15の表面に所望形状の凹部40を形成する。
凹部40の形成は、図7(a)に示すように、レンズよりも小さなマスクパターンを用いて絶縁基板15上にレジストパターン52を作成し、このレジストパターンを通して、絶縁基板15の表面を等方性エッチングすることで、断面円弧状の細長い凹部40を加工することができる。
あるいは、図7(b)に示すように、ハーフトーンマスク54やグレイトーンマスクを用い、形状がなまることを考慮し、中心から傾斜が出来るように球面状の凹部を加工するようにしてもよい。
また、フェムト秒レーザー、エキシマーレーザー、電子線描画装置を用いて凹部40を加工することも可能である。更に、微細なレンズ構造を形成する場合には、ナノインプリントリソグラフィーや、極端紫外線(EUV)リソグラフィーを用いても良い。
次いで、図8(a)に示すように、例えば、プラズマCVD法などを用いて、絶縁基板15の内面15A上にシリコン酸化物層(SiO)17を形成する。この際、シリコン酸化物層17の一部は凹部40内に湾曲して成膜され、第1レンズ20aを形成する。
続いて、図8(b)に示すように、シリコン酸化物層17に重ねて、シリコン窒化物層18、シリコン酸化物層19を順に積層形成する。この際、シリコン窒化物層18の一部、およびシリコン酸化物層19の一部は、凹部40内に湾曲して成膜され、それぞれ第2レンズ20b、第3レンズ20cを形成する。これにより、第1ないし第3レンズ20a、20b、20cを重ねて、レンズ20を形成する。
次に、図8(c)に示すように、例えば、スパッタリングにより絶縁層16(シリコン酸化物層19)の表面上に酸化インジウムガリウム亜鉛(InGaZnO)からなる半導体層56を成膜した後、図9(a)に示すように、半導体層56を島状にパターニングして複数の酸化物半導体層SCを形成する。この際、酸化物半導体層SCの一側縁が、レンズ20の一側縁とほぼ重なる位置に酸化物半導体層SCを形成する。
図9(b)に示すように、酸化物半導体層SCに重ねて、絶縁層16(シリコン酸化物層19)の表面上にゲート絶縁層30を成膜する。このゲート絶縁層30は、例えば、プラズマCVD法などを用いて、酸化シリコン(SiO)により形成した。
次いで、ゲート絶縁層30の上にゲート電極GEを形成するためのゲート層を形成する。ゲート層は、スパッタ法などを用いて形成した。図9(c)に示すように、図示しないレジストパターンをマスクとして、ゲート層およびゲート絶縁層30を一括してパターニングし、ゲート絶縁層30、ゲート電極GEおよびゲート配線Gを形成するとともに、酸化物半導体層SCのソース領域SCSおよびドレイン領域SCDとなる領域を露出させる。
これらのゲート絶縁層30およびゲート層のパターニングには、プラズマドライエッチング法の一種である反応性イオンエッチング法(RIE)を用いた。このとき、エッチングガスとしては、還元性のフッ素を少なくとも含むガス、あるいは、還元性のフッ素及び水素を少なくとも含むガスなどが適用可能である。具体的には、少なくともフッ素を含むガスの例としては、六フッ化硫黄(SF6)及び酸素(O2)の混合ガスが挙げられる。
その後、露出させた酸化物半導体層SCを、例えば、シラン(SiH4)、アンモニア(NH3)、水素(H2)等を含む還元ガスに晒す。例えば、シラン(SiH4)ガスを含むプラズマを、露出させた酸化物半導体層SCに印加する。これにより、酸化物半導体層SCは還元ガス中の水素(H2)によって還元され、低抵抗化される。つまり、比較的高抵抗な状態に維持された領域を挟んだ両側に低抵抗な領域が形成される。低抵抗な領域はそれぞれソース領域SCS及びドレイン領域SCDに相当し、これらの間の高抵抗な領域はチャネル領域SCCに相当する。
続いて、図10(a)に示すように、ゲート電極GE、ゲート絶縁層30、ゲート絶縁層30から露出した酸化物半導体層SC、さらには酸化物半導体層SCが形成されていない絶縁層16の上に、層間絶縁層32を成膜する。この層間絶縁層32は、例えば、プラズマCVD法などを用いて、酸化シリコン(SiOx)により形成した。
次いで、層間絶縁層32に、酸化物半導体層SCのソース領域SCSに到達する第1コンタクトホールCH1、およびドレイン領域SCDに到達する第2コンタクトホールCH2をそれぞれ形成する。続いて、第1コンタクトホールCH1からソース領域SCSにコンタクトしたソース電極SE、および、第2コンタクトホールCH2からドレイン領域SCDにコンタクトしたドレイン電極DEを形成する。これらのソース電極SEおよびドレイン電極DEは、スパッタ法などを用いて層間絶縁層32上に金属膜を成膜した後、この金属膜をパターニングすることによって形成した。金属膜は、例えば、モリブデン(Mo)、アルミニウム(Al)、チタン(Ti)などの積層膜を用いることができる。この際、ソース配線Sを一緒に形成する。
図10(b)に示すように、ソース電極SE、ドレイン電極DE、ソース配線S、および層間絶縁層32上に第4絶縁層(パッシベーション層)34を成膜する。続いて、第4絶縁層34上に、対向電極CE、層間容量層36、画素電極PE、配向膜38を順に成膜、パターニングする。その後、ガラス基板50を絶縁基板15から剥離する。
以上の工程により、薄膜トランジスタTRを備えたアレイ基板SUB1が製造される。
以上のように構成された液晶表示装置1によれば、薄膜トランジスタTRの半導体層SCに対向して、ゲート電極と反対側にレンズ20を設け、このレンズ側から半導体層SCに向かう光を、半導体層から平面方向にずれた位置に集光する。これにより、バックライトからの平行光が半導体層SCに照射されないようにすることができる。その結果、光照射に起因する薄膜トランジスタの特性劣化を防止し、安定した表示が可能な表示装置およびその製造方法を提供することができる。
加速試験として、薄膜トランジスタのゲートバイアスストレス試験を実施した。85℃、Vgs=−30V、Vsd=0Vの条件において、10000秒後の閾値電圧のシフト量は、従来構造の表示装置が−10Vであるのに対して、本実施形態の表示装置は、−2Vのシフト量となり、大きく低減できた。
また、本実施形態によれば、レンズ20は、絶縁基板上に設けられた絶縁層によって形成している。そのため、ガラス基板に含まれるNaなどのアルカリ金属が拡散し、薄膜トランジスタの信頼性に悪影響を及ぼすことがなく、更に、絶縁基板の強度が低下することもない。従って、信頼性の高い表示装置が得られる。
第1の実施形態において、薄膜トランジスタTRの半導体層は、酸化物半導体層としたが、これに限定されることなく、半導体層として、アモルファスシリコン、低温ポリシリコン等を用いてもよい。また、第1の実施形態では、フレキシブル絶縁基板および絶縁層の一部をレンズ形状に加工する構成としているが、これに限らず、例えば、ガラス基板に有機膜をコーディングし、このコーティングにレンズを加工する構成としてもよい。
次に、種々の変形例に係る表示装置について説明する。なお、以下に説明する変形例において、前述した第1の実施形態と同一の部分には、同一の参照符号を付してその詳細な説明を省略し、第1の実施形態と異なる部分を中心に詳しく説明する。
(第1の変形例)
レンズ20を形成する第2絶縁層16は、3層の積層構造に限らず、2層あるいは4層以上の積層構造としてもよい。また、積層する絶縁層の組合わせは、種々選択可能である。
図11は、第1の変形例に係るアレイ基板SUB1を示す断面図である。第1の変形例では、レンズ20を形成する第2絶縁層16は、屈折率の異なるシリコン酸化物(SiO)層17、シリコン窒化物(SiN)層18、シリコン酸化物(SiO)層21、シリコン窒化物(SiN)層22、シリコン酸化物(SiO)層19の5層を順に積層して形成している。絶縁基板15の凹部40内に埋め込まれた各絶縁層により、第1、第2、第3、第4、第5レンズ20a、20b、20c、20d、20eがそれぞれ形成され、これらのレンズを積層してレンズ20を形成している。
レンズ20は、薄膜トランジスタTRのチャネル長方向に平行な軸を有するシリンドリカルレンズを構成している。レンズ20は、少なくとも酸化物半導体層SCのチャネル領域と対向する位置、あるいは、重なる位置、に形成されている。レンズ20は、バックライト12から酸化物半導体層SCに向かって入射する平行光を、酸化物半導体層SCから平面方向にずれた位置に集光するように、所望の曲率半径に形成されている。言い換えると、バックライト12からの平行光が酸化物半導体層SC、少なくともチャネル領域、に照射されないように焦点が調整されたレンズ20が形成されている。
(第2の変形例)
アレイ基板のレンズ20は、薄膜トランジスタTRに対して、1つに限らず、複数のレンズを設けてもよい。図12は、第2の変形例に係るアレイ基板SUB1を示す断面図である。第2の変形例によれば、アレイ基板SUB1は、1つの薄膜トランジスタTRに対して、例えば、2つのレンズ20、25を設けている。
絶縁基板15の内面Aに2つの凹部40a、40bが並んで形成されている。各凹部40a、40bは、断面が円弧状に形成され、薄膜トランジスタTRの酸化物半導体層SCのチャネル長と平行な方向に、すなわち、ゲート配線と平行な方向に連続して延びている。また、凹部40a、40bは、酸化物半導体層SCのチャネル長方向と直交する方向、すなわち、酸化物半導体層SCの幅方向、に並んで位置し、互いに、側縁同士が接している。そして、凹部40aと凹部40b間の境界、つまり、互いに接している一側縁が、酸化膜半導体層SCの中心線と対向している。
絶縁基板15の内面15A上に設けられた第2絶縁層16は、屈折率が異なるシリコン窒化物(SiN)層18およびシリコン酸化物(SiO)層19を順に積層して形成されている。絶縁基板15上に形成されたシリコン窒化物層18酸化物層17の一部は、凹部40a、40b内に埋め込まれ、バックライト12側が凸となる第1レンズ20a、25aを形成している。シリコン窒化物層18上に積層されたシリコン酸化物層19の一部は、第1レンズ20a、25aの凹部に埋め込まれ、バックライト12側が凸となる第2レンズ20b、25bを形成している。なお、シリコン酸化物層19は、シリコン窒化物層18に比較して充分に厚いため、上面側は、凹部を有することなく、ほぼ平坦に形成されている。
第1および第2レンズ20a、20bを重ねてレンズ20が構成され、第1および第2レンズ25a、25bを重ねてレンズ25が構成されている。特に、シリコン酸化物層、19とシリコン窒化物層18との屈折率差を利用し、上記のような加工形状にすることで光学レンズの役割を果たす。レンズ20、25は、薄膜トランジスタTRのチャネル長方向に平行な軸を有するシリンドリカルレンズを構成している。レンズ20、25は、少なくとも酸化物半導体層SCのチャネル領域と対向する位置、あるいは、重なる位置、に形成されている。本実施形態では、レンズ20、25の少なくとも第1レンズ20a,25aは、酸化物半導体層SCの幅よりも大きな幅を有し、酸化物半導体層SC全体に対向している。更に、第1レンズ20a、25aの互いに接する一側縁は、酸化物半導体層SCの中心線とほぼ整列して位置している。
レンズ20、25は、バックライト12から酸化物半導体層SCに向かって入射する平行光を、酸化物半導体層SCから平面方向にずれた位置に集光するように、所望の曲率半径に形成されている。すなわち、レンズ20、25は、これらのレンズ20、25側から酸化物半導体層SCに入射する平行光の焦点が、酸化物半導体層SCとゲート電極GEとが重畳する領域から外れた位置に結ぶように、形成されている。
(第3の変形例)
前述した第2の変形例において、第2絶縁層16は、2層の絶縁層の積層構造としたが、これに限らず、3層以上の積層構造としてもよい。図13に示す第3の変形例によれば、レンズ20、25を形成する第2絶縁層16は、屈折率の異なるシリコン酸化物(SiO)層17、シリコン窒化物(SiN)層18、シリコン酸化物(SiO)層19の3層を順に積層して形成している。絶縁基板15の凹部40a、40b内に埋め込まれた各絶縁層により、第1レンズ20a、25a、第2レンズ20b、25b、第3レンズ20c、25cがそれぞれ形成され、これらのレンズを積層して2つのシリンドリカルレンズ20、25を形成している。
(第4の変形例)
図14は、第4の変形例に係る液晶表示装置に適用可能なアレイ基板の一構成例を概略的に示す平面図、図15は、図14の線C−Cに沿ったアレイ基板および薄膜トランジスタの断面図、図16は、図14の線D−Dに沿ったアレイ基板および薄膜トランジスタの断面図である。
アレイ基板SUB1のレンズは、シリンドリカルレンズに限定されることなく、円形、楕円形等の他の形状のレンズを用いることができる。
図14ないし図16に示すように、第4の変形例によれば、レンズ20は、ほぼ楕円形に形成され、1つの薄膜トランジスタTRに対して、1つのレンズ20が設けられている。
絶縁基板15の内面15Aに断面が円弧状で、かつ、楕円形の輪郭を有する凹部40が形成されている。凹部40は、楕円の長軸D1が薄膜トランジスタTRの酸化物半導体層SCのチャネル長Lと平行な方向に、すなわち、ゲート配線Gと平行な方向に延びる向きに形成されている。絶縁基板15上に形成されたシリコン酸化物層17の一部は、凹部40内に埋め込まれ、バックライト12側が凸となる楕円形の第1レンズ20aを形成している。シリコン酸化物層17上に形成されたシリコン窒化物層18の一部は、第1レンズ20aの凹部に埋め込まれ、バックライト12側が凸となる第2レンズ20bを形成している。更に、シリコン窒化物層18上に積層されたシリコン酸化物層19の一部は、第2レンズ20bの凹部に埋め込まれ、バックライト12側が凸となる第3レンズ20cを形成している。なお、シリコン酸化物層19は、シリコン酸化物層17およびシリコン窒化物層18に比較して充分に厚いため、上面側は、凹部を有することなく、ほぼ平坦に形成されている。
第1、第2、第3レンズ20a、20b、20cを重ねてほぼ楕円形のレンズ20が構成されている。レンズ20は、シリコン酸化物層17、19とシリコン窒化物層18との屈折率差を利用し、上記のような加工形状にすることで光学レンズの役割を果たす。レンズ20は、少なくとも酸化物半導体層SCのチャネル領域SCCと対向する位置、あるいは、重なる位置、に形成されている。本変形例では、レンズ20の少なくとも第1レンズ20aは、酸化物半導体層SCの幅よりも充分に大きな幅(短軸D2方向の幅)を有し、チャネル領域SCC全体に対向している。レンズ20の短軸D2方向の一端縁は、酸化物半導体層SCの一側縁とほぼ整列して位置している。
レンズ20は、バックライト12から酸化物半導体層SCに向かって入射する平行光を、酸化物半導体層SCから平面方向にずれた位置に集光するように、所望の曲率半径に形成されている。レンズ20は、このレンズ20側から酸化物半導体層SCに入射する平行光の焦点が、酸化物半導体層SCとゲート電極GEとが重畳する領域から外れた位置に結ぶように、形成されている。これにより、バックライト12からの平行光が酸化物半導体層SC、少なくともチャネル領域SCC、に照射されないように焦点が調整されたレンズ20が形成されている。
以上のように構成された第1ないし第4の変形例においても、バックライト12からの平行光が半導体層SCに照射されないようにすることができ、光照射に起因する薄膜トランジスタの特性劣化を防止し、安定した表示が可能な表示装置を提供することができる。また、絶縁基板上に設けられた絶縁層によってレンズ20、25を形成していることから、薄膜トランジスタの信頼性低下、絶縁基板の強度低下を生じることがなく、信頼性の高い表示装置が得られる。
上述した実施形態および変形例においては、薄膜トランジスタを含む表示装置の開示例として液晶表示装置を示したが、その他の適用例として、有機EL表示装置、その他の自発光型表示装置、或いは電気泳動素子等を有する電子ペーパー型表示装置等、あらゆるフラットパネル型の表示装置が挙げられる。また、中小型の表示装置から大型の表示装置まで、特に限定することなく上記実施形態と同様の構成或いは製造工程を適用可能であることは言うまでもない。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
本発明の実施形態として上述した各構成及び製造工程を基にして、当業者が適宜設計変更して実施し得る全ての構成及び製造工程も、本発明の要旨を包含する限り、本発明の範囲に属する。また、上述した実施形態によりもたらされる他の作用効果について本明細書の記載から明らかなもの、又は当業者において適宜想到し得るものついては、当然に本発明によりもたらされるものと解される。
1…表示装置、15…絶縁基板、SUB1…アレイ基板、ACT…表示部、
G…ゲート配線、S…ソース配線、TR…薄膜トランジスタ、PX…表示画素、
GE…ゲート電極、SC…半導体層、SE…ソース電極、DE…ドレイン電極、
PE…画素電極、CE…対向電極、12…バックライト、16…第2絶縁層、
17…バックライト、20、25…レンズ、20a、25a…第1レンズ、
20b、25b…第2レンズ、20c…第3レンズ、30…ゲート絶縁層、

Claims (9)

  1. 半導体層と、前記半導体層に接して設けられた絶縁層と、前記絶縁層を介して、前記半導体層の少なくとも一部に重畳して設けられたゲート電極と、を有する薄膜トランジスタと、
    前記半導体層に対して、前記絶縁層の反対側に設けられたレンズと、を備え、
    前記レンズは、前記レンズ側から前記半導体層に向かって入射する光を、前記半導体層から前記半導体層の平面方向に外れた位置に集光するように設けられていることを特徴とする表示装置。
  2. 前記レンズは、前記薄膜トランジスタのチャネル長方向に平行な軸を有するシリンドリカルレンズであることを特徴とする請求項1に記載の表示装置。
  3. 前記レンズは、略円形状のレンズで形成され、前記半導体層と前記ゲート電極との重畳領域を包含する位置に設けられていることを特徴とする請求項1に記載の表示装置。
  4. フレキシブルな絶縁基板と、この絶縁基板上に積層された複数の絶縁層と、を備え、前記半導体層は、前記絶縁層上に設けられ、前記レンズは、前記複数の絶縁層により形成されていることを特徴とする請求項1ないし3のいずれか1項に記載の表示装置。
  5. 前記レンズは、前記絶縁基板に形成された凹部と、前記凹部に重ねて積層された前記複数の絶縁層とにより形成されていることを特徴とする請求項4に記載の表示装置。
  6. 前記複数の絶縁層は、順次積層された酸化物層および窒化物層を含んでいることを特徴とする請求項5に記載の表示装置。
  7. 前記半導体層は、インジウム(In)、ガリウム(Ga)、亜鉛(Zn)から選ばれた少なくとも1つを含む酸化物半導体層でなることを特徴とする請求項1ないし6のいずれか1項に記載の表示装置。
  8. 第1絶縁層を成膜し、
    前記第1絶縁層の表面に凹部を形成し、
    前記凹部を埋めるように、前記第1絶縁層と屈折率の異なる第2絶縁層を前記第1絶縁層上に成膜して、前記凹部、第1および第2絶縁層によりレンズを形成し、
    前記第2絶縁層上に薄膜トランジスタの半導体層、ゲート絶縁層、ゲート電極を形成し、
    前記レンズと薄膜トランジスタとを、前記レンズ側から前記半導体層に向かって入射する光を、前記レンズにより前記半導体層から外れた位置に導く位置関係に形成することを特徴とする表示装置の製造方法。
  9. 前記第2絶縁層として、酸化物層および窒化物層を前記凹部に重ねて積層することを特徴とする請求項8に記載の表示装置の製造方法。
JP2014172554A 2014-08-27 2014-08-27 表示装置およびその製造方法 Pending JP2016048286A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014172554A JP2016048286A (ja) 2014-08-27 2014-08-27 表示装置およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014172554A JP2016048286A (ja) 2014-08-27 2014-08-27 表示装置およびその製造方法

Publications (1)

Publication Number Publication Date
JP2016048286A true JP2016048286A (ja) 2016-04-07

Family

ID=55649225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014172554A Pending JP2016048286A (ja) 2014-08-27 2014-08-27 表示装置およびその製造方法

Country Status (1)

Country Link
JP (1) JP2016048286A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180008310A (ko) 2016-07-15 2018-01-24 도쿄엘렉트론가부시키가이샤 플라즈마 에칭 방법, 플라즈마 에칭 장치, 및 기판 탑재대
CN116581130A (zh) * 2023-06-28 2023-08-11 惠科股份有限公司 显示面板及其制备方法
WO2024040746A1 (zh) * 2022-08-26 2024-02-29 武汉华星光电技术有限公司 显示面板及显示装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180008310A (ko) 2016-07-15 2018-01-24 도쿄엘렉트론가부시키가이샤 플라즈마 에칭 방법, 플라즈마 에칭 장치, 및 기판 탑재대
WO2024040746A1 (zh) * 2022-08-26 2024-02-29 武汉华星光电技术有限公司 显示面板及显示装置
CN116581130A (zh) * 2023-06-28 2023-08-11 惠科股份有限公司 显示面板及其制备方法
CN116581130B (zh) * 2023-06-28 2024-04-12 惠科股份有限公司 显示面板及其制备方法

Similar Documents

Publication Publication Date Title
US9761650B2 (en) Thin-film transistor, method for manufacturing the same and display device comprising the same
KR101113394B1 (ko) 액정표시장치의 어레이 기판
US9726940B2 (en) Active matrix substrate manufacturing method, display apparatus manufacturing method, and display apparatus
KR102028974B1 (ko) 박막 트랜지스터 및 이의 제조 방법
US10872984B2 (en) Thin film transistor having channel regions, array substrate, manufacturing method thereof and display device comprising the same
JP2017116622A (ja) 液晶表示装置およびその製造方法
EP3723130A1 (en) Array substrate and manufacturing method therefor, and display apparatus
US9123820B2 (en) Thin film transistor including semiconductor oxide layer having reduced resistance regions
JP2019117892A (ja) アレイ基板、アレイ基板の製造方法、表示装置及びスイッチング素子
KR101987985B1 (ko) 박막 트랜지스터 표시판 및 그 제조 방법
US20160300950A1 (en) Thin film transistor array panel and method for manufacturing the same
JP5003366B2 (ja) 電気光学装置及びその製造方法、並びに電子機器
JP2016048286A (ja) 表示装置およびその製造方法
JP6375165B2 (ja) 表示装置
US11177334B2 (en) Display substrate, display panel and method of fabricating display substrate
JP2008177457A (ja) 半導体装置の製造方法、電気光学装置の製造方法、およびハーフトーンマスク
US11411101B2 (en) Manufacturing method of TFT substrate
TWI553839B (zh) 顯示面板
KR102248240B1 (ko) 표시장치 및 그 제조방법
CN116169148A (zh) 阵列基板及其制作方法、显示装置
US9613860B2 (en) Method of manufacturing thin-film transistor
JP2015170642A (ja) 表示装置
WO2023197363A1 (zh) 阵列基板及其制作方法、显示面板
KR102138037B1 (ko) 박막트랜지스터, 이를 포함하는 표시패널 및 박막트랜지스터 제조방법
CN113219750A (zh) 液晶显示装置