WO2023095213A1 - 部品実装機及び補正値の算出方法 - Google Patents

部品実装機及び補正値の算出方法 Download PDF

Info

Publication number
WO2023095213A1
WO2023095213A1 PCT/JP2021/043018 JP2021043018W WO2023095213A1 WO 2023095213 A1 WO2023095213 A1 WO 2023095213A1 JP 2021043018 W JP2021043018 W JP 2021043018W WO 2023095213 A1 WO2023095213 A1 WO 2023095213A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
mounting
height
nozzle
board
Prior art date
Application number
PCT/JP2021/043018
Other languages
English (en)
French (fr)
Inventor
寿明 水野
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to CN202180103752.9A priority Critical patent/CN118176838A/zh
Priority to PCT/JP2021/043018 priority patent/WO2023095213A1/ja
Publication of WO2023095213A1 publication Critical patent/WO2023095213A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components

Definitions

  • the technology disclosed in this specification relates to a component mounter and a correction value calculation method for correcting the component mounting position of the nozzle of the component mounter.
  • the component mounter of Patent Document 1 measures the actual height in the Z direction for each board on which components are mounted, and corrects the position in the Z direction for raising and lowering the nozzle based on the actual height that has been measured.
  • the nozzle may move up and down while tilting with respect to the Z direction due to dimensional variations in component parts and assembly.
  • the positions in the X and Y directions that is, the component mounting position
  • the component mounting height may vary depending on the components and boards to be mounted. Therefore, when the component mounting height changes, the value of the positional deviation of the component mounting position may differ according to the component mounting height. Therefore, when correcting the component mounting position, it is required to correct with a different correction value depending on the component mounting height.
  • Patent Document 1 can correct the component mounting height, which is the position in the Z direction, it does not correct the component mounting position, which is the position in the X and Y directions, according to the component mounting height. .
  • This specification provides a technique capable of mounting a component at a more accurate position by correcting the component mounting position with a different correction value according to the component mounting height.
  • a component mounter disclosed in this specification includes a nozzle, a head, an XY moving mechanism, a board transfer device, and a control device.
  • the nozzle picks up a component
  • the head has a nozzle elevating mechanism to which the nozzle is detachably attached and which elevates the nozzle in the Z direction.
  • An XY moving mechanism moves the head in the X and Y directions.
  • the board transfer device carries the board into the board mounting position and carries out the board from the board mounting position.
  • a control device controls the nozzle elevating mechanism, the XY moving mechanism, and the substrate transfer device to mount the component sucked by the nozzle on the substrate carried into the substrate mounting position.
  • the control device includes a component mounting position setting section, a component mounting height setting section, a mounting position correcting section, and an XY movement mechanism driving section.
  • the component mounting position setting unit sets, for each component to be mounted on the board, a component mounting position, which is a position in the X direction and the Y direction in which the component is mounted.
  • the component mounting height setting unit sets a component mounting height, which is a position in the Z direction at which the component is mounted, for each component to be mounted on the board.
  • the mounting position correcting unit adjusts the component mounting position set by the component mounting position setting unit to the component mounting height set by the component mounting height setting unit for each component to be mounted on the board. Correction is performed using a first correction value that differs depending on the
  • the XY movement mechanism drive section drives the XY movement mechanism based on the component mounting position corrected by the mounting position correction section.
  • the mounting position correcting section corrects with the first correction value that differs according to the component mounting height of the component set by the component mounting height setting section. Thereby, the component mounting position can be corrected with a different correction value according to the component mounting height.
  • a method of calculating a correction value in this specification includes a first mounting process, a first deviation obtaining process, a second mounting process, a second deviation obtaining process, and a correction value calculating process.
  • the first mounting step the height of the substrate mounting surface of the substrate positioned at the component mounting position of the component mounter is the first height, and the targets in the X direction and the Y direction are set on the substrate mounting surface.
  • the component for measurement sucked by the nozzle is mounted at the component mounting target position, which is the position.
  • the first deviation obtaining step obtains a first deviation, which is a deviation between the actual mounting position of the measurement component and the component mounting target position, by performing the first mounting step a plurality of times.
  • the height of the substrate mounting surface of the substrate positioned at the component mounting position of the component mounter is a second height different from the first height, and the component mounting target position is to mount the measurement component sucked on the nozzle.
  • the second deviation obtaining step obtains a second deviation, which is a deviation between the actual mounting position of the measurement component and the component mounting target position, by performing the second mounting step a plurality of times.
  • the correction value calculating step uses the first deviation and the second deviation to calculate a correction value for correcting the component mounting target position for each height of the board mounting surface of the board.
  • FIG. 2 shows an enlarged view of the area enclosed by dashed line II in FIG. 1.
  • FIG. FIG. 2 shows a flow diagram of processing executed by a control device;
  • FIG. 4 shows a graph of the relationship between mounting height and correction value.
  • FIG. 2 shows an enlarged view similar to FIG. 2 in the first mounting step.
  • FIG. 2 shows an enlarged view similar to FIG. 2 in the second mounting process.
  • the component mounter 100 will be described with reference to the drawings.
  • the component mounter 100 includes a component mounting unit 10 , a board transfer device 30 , a control device 20 and a parts camera 26 .
  • the component mounter 100 is a device that mounts electronic components 2 (hereinafter simply referred to as components 2) on a plurality of circuit boards 4 (hereinafter simply referred to as substrates 4).
  • the component mounting unit 10 includes a nozzle 12, a head 16, and an XY moving mechanism 18.
  • Nozzle 12 has a hollow shape. The nozzle 12 sucks the component 2 onto the lower end of the nozzle 12 by applying a negative pressure to the space inside the nozzle 12 using a compressor (not shown). The sucked component 2 is removed from the lower end of the nozzle 12 by the positive pressure in the space inside the nozzle 12 .
  • a plurality of types of nozzles 12 are used in the mounter 100 . Each nozzle 12 is detachable from the head 16 and can be replaced according to the type of the component 2 .
  • the XY movement mechanism 18 is a robot that moves the head 16 in the X and Y directions (ie, horizontal direction).
  • the XY movement mechanism 18 is composed of guide rails that guide the head 16, actuators that move the head 16 along the guide rails, and the like. That is, the head 16 is attached to the XY moving mechanism 18 so as to be horizontally movable.
  • the head 16 has a nozzle lifting mechanism 14 .
  • the nozzle elevating mechanism 14 of the head 16 can extend and contract in the Z direction (that is, the vertical direction on the paper surface of FIG. 1).
  • the XY moving mechanism 18 moves the head 16 onto a component feeder (not shown).
  • the nozzle 12 is lowered by extending the nozzle lifting mechanism 14 in the Z direction, and the component 2 is picked up by the nozzle 12 .
  • the XY movement mechanism 18 moves the head 16 above the parts camera 26 , and the parts camera 26 photographs the part 2 sucked by the nozzle 12 .
  • the XY moving mechanism 18 moves the head 16 to a predetermined position above the substrate 4 .
  • the part 2 is then removed from the lower end of the nozzle 12 when the nozzle 12 is lowered to the proper height.
  • the component 2 is mounted on the upper surface of the substrate 4 (that is, the substrate mounting surface), as indicated by the dashed line in FIG. After that, the nozzle 12 is lifted by contracting the nozzle lifting mechanism 14 in the Z direction.
  • the substrate transport device 30 includes a belt conveyor 32, a backup plate 34, support pins 36, and clamps 38.
  • the substrate conveying device 30 conveys the substrate 4 in the Y direction (that is, the depth direction of the paper surface of FIG. 1) by the belt conveyor 32 .
  • the substrate 4 is supported from below by the belt conveyor 32, the backup plate 34, and the support pins 36, and is fixed from above by clamps 38 from both sides in the X direction.
  • the board 4 is fixed at the board mounting position.
  • the board conveying device 30 carries out the board 4 with the component 2 mounted thereon by the belt conveyor 32 from the board mounting position. After that, a new board 4 is placed at the board mounting position again.
  • the board transfer device 30 conveys a plurality of boards 4 to the board mounting position by repeatedly sending them out in the Y direction, and the component mounting unit 10 attaches to the board 4 fixed to the board mounting position by the clamp 38. On the other hand, component 2 is mounted.
  • the control device 20 is a computer that includes a CPU 22 and a memory 24.
  • the CPU 22 controls the mounter 100 based on various programs stored in the memory 24 .
  • the memory 24 stores the reference height H1.
  • the reference height H1 is the height at which the clamp 38 contacts the substrate 4 having a standard thickness. That is, it is the height of the component mounting surface of the board 4 having a standard thickness.
  • the reference height H1 is a reference height for raising and lowering the nozzle 12 .
  • the reference height H1 is set, for example, when the mounter 100 is manufactured.
  • the nozzle 12 is designed to rise and fall parallel to the Z direction (ie, vertical).
  • the vertical direction of the nozzle 12 may differ from the Z direction due to variations in dimensions of components of the mounter 100, variations during assembly, inclination of the ground on which the mounter 100 is arranged, and the like. can tilt.
  • the Z direction is indicated by a dashed line
  • the direction in which the nozzle 12 is actually moved up and down is indicated by the elevation direction N1.
  • the elevation direction N1 is inclined by an angle ⁇ with respect to the Z direction. In FIG. 2, the angle ⁇ is enlarged for easy understanding.
  • the component mounter 100 in which the nozzle 12 moves up and down in the up-and-down direction N1, when mounting the component 2 at the reference height H1, the component 2 is mounted at the mounting position P2 as shown in FIG.
  • the mounting position P2 is shifted in the X direction by a distance x1 with respect to the position P1 when the nozzle 12 moves up and down in the Z direction.
  • the substrate 40 on which the component 2 is mounted may have a concave portion 41 .
  • the bottom surface of the recess 41 is lower than the top surface of the substrate 40 . That is, when the component mounter 100 is used to mount the component 2 on the bottom surface of the concave portion 41, the height at which the component 2 is mounted (that is, the board mounting surface) is increased in the Z direction by a distance z1 from the reference height H1. A lower second height H2 results.
  • component 2 is mounted at mounting position P3. As shown in FIG. 2, the mounting position P3 is shifted in the X direction by a distance x2 with respect to the mounting position P2.
  • FIG. 3 The processing executed by the control device 20 of the mounter 100 will be described with reference to FIGS. 3 and 4.
  • FIG. The process of FIG. 3 is performed with the component 2 sucked at the tip of the nozzle 12 and the board 4 fixed at the board mounting position by the clamp 38 .
  • a control device (not shown) transmits in advance the X coordinate Xt and the Y coordinate Yt of the target position for mounting the component 2 to the control device 20, and the control device 20 stores each coordinate (Xt, Yt) of the target position in a memory. 24 is stored. Therefore, the control device 20 acquires the coordinates Xt and Yt of the target position of the component 2 from the memory 24 and sets the acquired coordinates Xt and Yt as the component mounting position (S2).
  • the control device 20 sets the mounting height Zt, which is the height in the Z direction at which the component 2 is mounted. Specifically, similarly to the target position (Xt, Yt) of the component 2, the management device preliminarily determines the height of the mounting surface on which the component 2 is to be mounted (that is, from the reference height H1 to the mounting height (mounting surface)). (for example, the distance z1 in FIG. 2)) is transmitted to the control device 20, and the control device 20 stores the transmitted mounting height Zt in the memory . The control device 20 acquires the mounting height Zt of the component 2 from the memory 24 and sets the acquired mounting height Zt as the component mounting height (S4).
  • the mounting height Zt which is the height in the Z direction at which the component 2 is mounted.
  • the management device similarly to the target position (Xt, Yt) of the component 2, the management device preliminarily determines the height of the mounting surface on which the component 2 is to be mounted (that is, from the reference height H1 to the mounting height (mounting surface
  • control device 20 calculates correction values (Xr, Yr) for correcting the position of the nozzle 12 based on the component mounting height (that is, mounting height Zt) set in S4 (S8). Specifically, the control device 20 determines the correction value by applying the mounting height Zt set in S4 to the graph (function) L1 shown in FIG.
  • the control device 20 stores the graph L1 in FIG. 4 in the memory 24 in advance. Details will be described later with reference to FIGS. 5 and 6, but the graph L1 is obtained by actually performing mounting multiple times using the component mounter 100.
  • FIG. The first mounting position group D1 is obtained by mounting components a plurality of times at the reference height H1 (see FIG. 2) and plotting the positions of the mounted components.
  • the second mounting position group D2 is obtained by mounting the components a plurality of times at the second height H2 (see FIG. 2) and plotting the positions of the mounted components.
  • the first central position E1 is the median value of each coordinate of the first mounting position group D1.
  • the second central position E2 is the median value of each coordinate of the second mounting position group D2.
  • a graph L1 is obtained by connecting the central positions E1 and E2 with straight lines. That is, the graph L1 is obtained by linearly interpolating between each central position E1, E2. Note that the graph L1 (eg, linear regression equation) may be calculated by performing other statistical processing (eg, regression analysis) on the results of multiple iterations.
  • the control device 20 uses the mounting height Zt set in S4 and the graph L1 to determine the correction value Xr in the X direction and the correction value Yr in the Y direction (S6). Next, the controller 20 uses the determined correction values Xr and Yr to correct the coordinates (Xt, Yt) of the component mounting positions set in S2 (S8). Specifically, the control device 20 subtracts the correction value Xr from the X coordinate Xt of the component mounting position, and subtracts the correction value Yr from the Y coordinate Yt of the component mounting position.
  • the control device 20 drives the XY moving mechanism 18 based on the corrected component mounting position (that is, X coordinate Xt-Xr, Y coordinate Yt-Yr) (S10).
  • the head 16 is arranged at the corrected component mounting position.
  • control device 20 drives the nozzle lifting mechanism 14 to lower the nozzle 12 to the component mounting height Zt. After mounting the component 2, the control device 20 moves the nozzle 12 to pick up a new component 2, and repeats the process of FIG.
  • the control device 20 corrects the horizontal position of the nozzle 12 taking into account the horizontal positional deviation of the nozzle 12 that changes according to the component mounting height Zt.
  • the elevation direction N1 (see FIG. 1) of the nozzle 12 is inclined with respect to the Z direction, and the horizontal position of the nozzle 12 changes according to the mounting height. Even if there is, the component 2 can be mounted on the substrate 40 with high accuracy.
  • a method of calculating the graph L1 in FIG. 4 (that is, a method of calculating the correction values Xr and Yr) will be described with reference to FIGS.
  • the measurement component 3 is mounted multiple times on the substrate 40a in a state where the height at which the substrate 40a and the clamp 38 abut becomes the reference height H1.
  • the measurement component 3 is mounted multiple times in a state where the height of the board mounting surface of the board 40a positioned at the component mounting position by the clamp 38 is the reference height H1.
  • the operator sets the component mounting position to the component mounting target position C1 (hereinafter simply referred to as the target position C1) and mounts the measurement component 3 .
  • the target position C1 is the horizontal origin.
  • the control device 20 does not correct the horizontal position of the nozzle 12 .
  • the controller 20 causes the XY moving mechanism 18 to move the nozzle 12 that has picked up the measurement component 3 to the target position C1, and then lowers the nozzle 12 to the reference height H1. Thereby, the measuring component 3 is mounted on the board 40a.
  • the measurement component 3 is mounted at the first mounting position C2.
  • a first deviation d1 occurs between the target position C1 and the first mounting position C2 on the reference height H1.
  • the first deviation d1 between the target position C1 and the first mounting position C2 in the X direction will be described, but a similar deviation also occurs in the Y direction (that is, the front and back direction in FIG. 5).
  • the operator plots the first deviation d1. By performing this work multiple times, the first mounting position group D1 (see FIG. 4) is acquired.
  • the worker places the spacer 42 between the substrate 40a and the clamp 38.
  • the board mounting surface of the board 40a has a second height H2 lower than the reference height H1 by a distance z2 in the Z direction.
  • the measuring component 3 is mounted a plurality of times while the height of the board mounting surface of the board 40a is the second height H2.
  • the operator sets the component mounting position to the target position C1 and mounts the measurement component 3 .
  • the measurement component 3 is mounted at the second mounting position C3.
  • a second deviation d2 occurs between the target position C1 and the second mounting position C3 on the second height H2.
  • the operator plots the second deviation d2.
  • the second mounting position group D2 (see FIG. 4) is acquired by performing this work multiple times.
  • each mounting position group D1, D2 is acquired for each height of the substrate mounting surface.
  • a graph L1 (see FIG. 4) is determined based on the acquired mounting position groups D1 and D2. That is, in the calculation method described above, the first deviation d1 and the second deviation d2 are used to calculate a correction value for correcting the horizontal position of the nozzle 12 for each height of the board mounting surface.
  • the horizontal displacement of the nozzle 12 is caused by variations in dimensions of the components of the mounter 100, variations in assembly, inclination of the ground on which the mounter 100 is placed, and the like. be. Therefore, the positional deviation differs depending on the individual component mounters 100 even if they are similarly designed.
  • the correction value is calculated by plotting the deviations d1 and d2 obtained by comparing the target position C1 and the actually mounted mounting positions C2 and C3. Thereby, a correction value corresponding to each component mounter 100 can be calculated. As a result, by correcting the component mounting position of the component mounter 100 using the correction value calculated in this manner, the accuracy of mounting the component 2 can be improved.
  • the measuring part 3 has dimensions similar to those of the part 2 (see FIG. 1), and has higher dimensional accuracy than the mass-produced part 2.
  • the measuring part 3 is made of ceramic, for example.
  • the measuring component 3 having higher dimensional accuracy than the mass-produced component 2 is used to measure the deviations d1 and d2 between the target position C1 and the respective mounting positions C2 and C3.
  • the deviations d1 and d2 measured in each mounting process do not include errors caused by the dimensional variations of the parts themselves.
  • the positional deviation of the mounter 100 can be measured more accurately.
  • the reference height H1 is an example of the "first height”.
  • the process of S2 is an example of the process executed by the "component mounting position setting unit”.
  • the process of S4 is an example of the process executed by the "component mounting height setting unit”.
  • the process of S8 is an example of the process executed by the "mounting position corrector”.
  • the process of S10 is an example of the process executed by the "XY moving mechanism driving section”. Obtaining the first mounting position group D1 by plotting a plurality of first deviations d1 by the operator is an example of the “first deviation obtaining step”. Obtaining the second mounting position group D2 by the operator plotting a plurality of second deviations d2 is an example of the “second deviation obtaining step”.
  • the control device 20 captures an image of the component 2 sucked by the nozzle 12 using the parts camera 26, and corrects the horizontal position of the nozzle 12 during component mounting using the captured image. You may For example, when a component supplied from a component supply device is picked up by the nozzle 12, the center of the nozzle 12 and the center of the component may be misaligned. If the center of the nozzle 12 deviates from the center of the component, the component mounting position will deviate by the deviation. Therefore, the control device 20 calculates the positional deviation between the center of the nozzle 12 and the center of the sucked component 2 based on the photographed image. Then, in the process of S8 in FIG.
  • the control device 20 may further add a correction value corresponding to the calculated positional deviation of the center of the component 2 with respect to the center of the nozzle 12 to the correction values (Xr, Yr).
  • the calculation of the positional deviation of the center of the component 2 with respect to the center of the nozzle 12 by the control device 20 is an example of the processing executed by the “positional deviation calculation unit”.
  • the corresponding correction value is an example of the "second correction value”.
  • the measuring component 3 may be mounted at a position higher than the reference height H1. In that case, for example, a spacer may be arranged between the substrate 40a and the support pin 36. FIG. As a result, the board mounting surface of the board 40a becomes higher than the reference height H1. In this state, by mounting the measuring component 3 on the substrate mounting surface a plurality of times, the horizontal displacement of the nozzle 12 on the substrate mounting surface higher than the reference height H1 may be measured.
  • the height of the substrate mounting surface higher than the reference height H1 is an example of the "second height".
  • Modification 3 In the correction value calculation method disclosed in the present specification, instead of the measurement component 3, the component 2 that is actually mass-produced is mounted on the substrate 40a a plurality of times. Misalignment may be measured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

部品実装機は、ノズルと、ヘッドと、XY移動機構と、基板搬送装置と、制御装置と、を備える。制御装置は、部品実装位置設定部と、部品実装高さ設定部と、実装位置補正部と、XY移動機構駆動部と、を備える。部品実装位置設定部は、基板に実装する部品毎に、当該部品を実装するX方向及びY方向の位置である部品実装位置を設定する。部品実装高さ設定部は、基板に実装する部品毎に、当該部品を実装するZ方向の位置である部品実装高さを設定する。実装位置補正部は、基板に実装する部品毎に、部品実装位置設定部で設定された当該部品の部品実装位置を、部品実装高さ設定部で設定された当該部品の部品実装高さに応じて異なる第1補正値により補正する。XY移動機構駆動部は、実装位置補正部で補正された部品実装位置に基づいて、XY移動機構を駆動する。

Description

部品実装機及び補正値の算出方法
 本明細書に開示する技術は、部品実装機と、部品実装機のノズルの部品実装位置を補正するための補正値の算出方法と、に関する。
 特許文献1の部品実装機は、部品を実装する基板毎にZ方向の実際の高さを測定し、測定した実際の高さに基づいて、ノズルを昇降させるZ方向の位置を補正する。
特開2008-215904号公報
 部品実装機では、例えば、構成部品、組立時の寸法ばらつきによって、ノズルが、Z方向に対して傾斜して昇降することがある。この場合、ノズルを昇降させるZ方向の位置(すなわち、部品実装高さ)が変化すると、X方向及びY方向の位置(すなわち、部品実装位置)も変化する。さらに、部品実装機では、部品実装高さは、実装される部品、基板に応じて変化し得る。このため、部品実装高さが変化する場合、部品実装位置の位置ずれの値は、部品実装高さに応じて異なり得る。このため、部品実装位置を補正する場合、部品実装高さに応じて、異なる補正値で補正することが求められる。特許文献1の技術では、Z方向の位置である部品実装高さを補正することはできるものの、部品実装高さに応じてX方向及びY方向の位置である部品実装位置を補正するものではない。本明細書では、部品実装高さに応じて、異なる補正値で部品実装位置を補正することによって、より正確な位置に部品を実装することができる技術を提供する。
 本明細書が開示する部品実装機は、ノズルと、ヘッドと、XY移動機構と、基板搬送装置と、制御装置と、を備える。ノズルは、部品を吸着する、ヘッドは、前記ノズルが着脱可能に取付けられると共に前記ノズルをZ方向に昇降させるノズル昇降機構を備える。XY移動機構は、前記ヘッドをX方向及びY方向に移動させる。基板搬送装置は、基板を基板実装位置に搬入すると共に、前記基板実装位置から搬出する。制御装置は、前記ノズル昇降機構と前記XY移動機構と前記基板搬送装置を制御して、前記基板実装位置に搬入された前記基板に前記ノズルに吸着した前記部品を実装する。前記制御装置は、部品実装位置設定部と、部品実装高さ設定部と、実装位置補正部と、XY移動機構駆動部と、を備える。部品実装位置設定部は、前記基板に実装する部品毎に、当該部品を実装するX方向及びY方向の位置である部品実装位置を設定する。部品実装高さ設定部は、前記基板に実装する部品毎に、当該部品を実装するZ方向の位置である部品実装高さを設定する。実装位置補正部は、前記基板に実装する部品毎に、前記部品実装位置設定部で設定された当該部品の部品実装位置を、前記部品実装高さ設定部で設定された当該部品の部品実装高さに応じて異なる第1補正値により補正する。XY移動機構駆動部は、前記実装位置補正部で補正された部品実装位置に基づいて、前記XY移動機構を駆動する。
 上述した構成によると、実装位置補正部が、部品実装高さ設定部で設定された当該部品の部品実装高さに応じて異なる第1補正値により補正する。これにより、部品実装高さに応じて、異なる補正値で部品実装位置を補正することができる。
 さらに、本明細書は、補正値の算出方法も開示する。本明細書における補正値の算出方法は、第1実装工程と、第1偏差取得工程と、第2実装工程と、第2偏差取得工程と、補正値算出工程と、を含む。第1実装工程は、部品実装機の部品実装位置に位置決めされた基板の基板実装面の高さが第1の高さとなる状態で、前記基板実装面に設定されたX方向及びY方向の目標位置である部品実装目標位置にノズルに吸着した測定用部品を実装する。第1偏差取得工程は、前記第1実装工程を複数回実施することで、前記測定用部品の実際の実装位置と、前記部品実装目標位置との偏差である第1の偏差を取得する。第2実装工程は、前記部品実装機の前記部品実装位置に位置決めされた基板の基板実装面の高さが前記第1の高さとは異なる第2の高さとなる状態で、前記部品実装目標位置に前記ノズルに吸着した前記測定用部品を実装する。第2偏差取得工程は、前記第2実装工程を複数回実施することで、前記測定用部品の実際の実装位置と、前記部品実装目標位置との偏差である第2の偏差を取得する。補正値算出工程は、前記第1の偏差と前記第2の偏差とを利用して、前記基板の基板実装面の高さごとに、前記部品実装目標位置を補正する補正値を算出する。
 上述した構成によると、基板の基板実装面の高さごとに、部品実装目標位置を補正する補正値を算出することができる。これにより、基板実装高さに応じて、異なる補正値で部品実装目標位置を補正することができる。
実施例の部品実装機の概略図を示す。 図1の破線IIに囲まれた範囲の拡大図を示す。 制御装置が実行する処理のフロー図を示す。 実装高さと補正値との関係のグラフを示す。 第1実装工程における図2同様の拡大図を示す。 第2実装工程における図2同様の拡大図を示す。
 図面を参照して、部品実装機100について説明する。部品実装機100は、部品実装ユニット10と、基板搬送装置30と、制御装置20と、パーツカメラ26と、を備える。部品実装機100は、複数の回路基板4(以下、単に基板4と称する)に対して、電子部品2(以下、単に部品2と称する)を実装する装置である。
 部品実装ユニット10は、ノズル12と、ヘッド16と、XY移動機構18と、を備える。ノズル12は、中空形状を有する。ノズル12は、コンプレッサ(図示省略)によりノズル12の内部の空間を負圧にすることによって、ノズル12の下端に部品2を吸着する。ノズル12の内部の空間が正圧になることによって、吸着した部品2がノズル12の下端から取り外される。部品実装機100では、複数種類のノズル12が使用される。各ノズル12は、ヘッド16に対して着脱可能となっており、部品2の種類に応じて交換されるようになっている。
 XY移動機構18は、ヘッド16をX方向及びY方向(すなわち、水平方向)に移動させるロボットである。XY移動機構18は、ヘッド16を案内するガイドレールや、ヘッド16をガイドレールに沿って移動させるアクチュエータ等によって構成される。すなわち、ヘッド16は、XY移動機構18に対して、水平方向に移動可能に取付けられている。
 ヘッド16は、ノズル昇降機構14を備える。ヘッド16のノズル昇降機構14は、Z方向(すなわち、図1の紙面上下方向)に伸縮可能である。部品2を基板4に実装する際は、まず、XY移動機構18によってヘッド16が部品フィーダ(図示省略)上に移動する。次いで、ノズル昇降機構14がZ方向に伸びることによってノズル12が降下し、ノズル12に部品2を吸着する。次いで、XY移動機構18によってヘッド16がパーツカメラ26の上方に移動し、パーツカメラ26はノズル12に吸着された部品2を撮影する。パーツカメラ26で撮影した画像に基づいて、部品2がノズル12に正常に吸着されていると判断される場合、XY移動機構18によってヘッド16が基板4の上方の所定の位置に移動する。その後、ノズル12が適正な高さまで降下すると、部品2がノズル12の下端から取り外される。これにより、図1の破線で示されるように、部品2が、基板4の上面(すなわち、基板実装面)に実装される。その後、ノズル昇降機構14がZ方向に縮むことによって、ノズル12が上昇する。
 基板搬送装置30は、ベルトコンベア32と、バックアッププレート34と、支持ピン36と、クランプ38と、を備える。基板搬送装置30は、ベルトコンベア32により、基板4を、Y方向(すなわち、図1の紙面奥方向)に搬送する。基板4は、ベルトコンベア32、バックアッププレート34及び支持ピン36に下方から支持された状態で、X方向の両側からクランプ38によって上方から固定される。これにより、基板4が、基板実装位置に固定される。基板実装位置に固定された基板4に部品2が実装された後、基板搬送装置30は、ベルトコンベア32によって部品2を実装した基板4を基板実装位置から搬出する。その後、再び、新たな基板4が、基板実装位置に配置される。
 このように、基板搬送装置30は、複数個の基板4を、繰り返しY方向に送り出すことで基板実装位置に搬送し、部品実装ユニット10は、基板実装位置にクランプ38によって固定された基板4に対して、部品2を実装する。
 制御装置20は、CPU22と、メモリ24と、を備えるコンピュータである。CPU22は、メモリ24が記憶する様々なプログラムに基づいて、部品実装機100を制御する。メモリ24には、基準高さH1が記憶されている。基準高さH1は、標準的な厚みを有する基板4と、クランプ38が当接する高さである。すなわち、標準的な厚みを有する基板4の部品実装面の高さである。基準高さH1は、ノズル12を昇降させる基準となる高さである。基準高さH1は、例えば、部品実装機100の製造時に設定される。
 図2を参照して、ノズル12の昇降に伴って生じるX方向の位置ずれについて説明する。ノズル12は、Z方向(すなわち、鉛直方向)に対して平行に昇降するように設計される。しかしながら、実際には、部品実装機100の構成部品が有する寸法のばらつき、組立時のばらつき、部品実装機100を配置する地面の傾斜等によって、ノズル12の昇降する方向は、Z方向に対して傾斜し得る。図2では、Z方向を一点鎖線で示し、ノズル12が実際に昇降する方向を昇降方向N1で示す。昇降方向N1は、Z方向に対して角度θだけ傾斜している。図2では、理解しやすいように、角度θを拡大して表現している。
 ノズル12が昇降方向N1で昇降する部品実装機100において、基準高さH1に部品2を実装する場合、図2に示されるように、部品2は、実装位置P2に実装される。その結果、実装位置P2は、ノズル12がZ方向に昇降した場合の位置P1に対して、距離x1だけX方向にずれる。
 ここで、部品2を実装する基板40は、凹部41を備えることがある。凹部41の底面は、基板40の上面よりも低くなる。すなわち、部品実装機100を用いて凹部41の底面に部品2を実装する場合、部品2が実装される高さ(すなわち、基板実装面)は、基準高さH1よりも距離z1だけZ方向に低い第2の高さH2となる。この場合、部品2は、実装位置P3に実装される。図2に示されるように、実装位置P3は、実装位置P2に対して、距離x2だけX方向にずれる。
 このように、ノズル12がZ方向に対して角度θだけ傾斜する昇降方向N1で昇降する場合、部品2が実装されるX方向の位置ずれの大きさは、実装される高さに応じて異なる。図2では、X方向における位置ずれについて説明したが、Y方向(すなわち、図2の紙面手前奥方向)の位置についても、同様にずれ得る。
 図3及び図4を参照して、部品実装機100の制御装置20が実行する処理について説明する。図3の処理は、ノズル12の先端に部品2が吸着され、基板4がクランプ38によって基板実装位置に固定された状態で実行される。図示しない管理装置は、予め部品2を実装する目標位置のX座標Xtと、Y座標Ytを制御装置20に送信しており、制御装置20はこの目標位置の各座標(Xt,Yt)をメモリ24に記憶している。このため、制御装置20は、メモリ24から部品2の目標位置の各座標Xt、Ytを取得し、取得した各座標Xt、Ytを、部品実装位置として設定する(S2)。
 次いで、制御装置20は、部品2を実装するZ方向の高さである実装高さZtを設定する。具体的には、部品2の目標位置(Xt,Yt)と同様、管理装置は、予め部品2を実装する実装面の高さ(すなわち、基準高さH1から実装する高さ(実装面)までのZ方向の距離(例えば、図2の距離z1))を制御装置20に送信し、制御装置20は、送信された実装高さZtをメモリ24に記憶している。制御装置20は、メモリ24から部品2の実装高さZtを取得し、取得した実装高さZtを、部品実装高さとして設定する(S4)。
 さらに、制御装置20は、S4で設定した部品実装高さ(すなわち、実装高さZt)に基づいて、ノズル12の位置を補正する補正値(Xr,Yr)を算出する(S8)。具体的には、制御装置20は、図4に示されるグラフ(関数)L1に、S4で設定された実装高さZtを当てはめることによって、補正値を決定する。
 制御装置20は、図4のグラフL1を、メモリ24に予め記憶している。詳細は図5及び図6を参照して後述するが、グラフL1は、部品実装機100を用いて、実際に実装を複数回実施することによって取得される。第1実装位置群D1は、基準高さH1(図2参照)に部品を複数回実装し、実装された部品の位置をプロットしたものである。第2実装位置群D2は、第2の高さH2(図2参照)に部品を複数回実装し、実装された部品の位置をプロットしたものである。第1中央位置E1は、第1実装位置群D1の各座標の中央値である。同様に、第2中央位置E2は、第2実装位置群D2の各座標の中央値である。各中央位置E1,E2を直線で結ぶことにより、グラフL1が取得される。すなわち、グラフL1は、各中央位置E1,E2の間を線形補間することによって取得される。なお、複数回実施された結果を他の統計的処理(例えば、回帰分析)することによって、グラフL1(例えば、線形回帰式)を算出してもよい。
 制御装置20は、S4で設定された実装高さZtとグラフL1とを利用して、X方向における補正値Xrと、Y方向における補正値Yrと、を決定する(S6)。次いで、制御装置20は、決定した各補正値Xr,Yrを利用して、S2で設定した部品実装位置の各座標(Xt,Yt)を補正する(S8)。具体的には、制御装置20は、部品実装位置のX座標Xtから補正値Xrを減じ、部品実装位置のY座標Ytから補正値Yrを減じる。その後、制御装置20は、補正された部品実装位置(すなわち、X座標Xt-Xr,Y座標Yt-Yr)に基づいて、XY移動機構18を駆動させる(S10)。これにより、ヘッド16は、補正された部品実装位置に配置される。
 その後、制御装置20は、ノズル昇降機構14を駆動させることによって、ノズル12を部品実装高さZtまで降下させる。制御装置20は、部品2を実装した後、ノズル12を移動させ、新たな部品2を吸着し、図3の処理を繰り返す。
 このように、制御装置20は、部品実装高さZtに応じて変化するノズル12の水平方向の位置ずれを加味して、ノズル12の水平方向の位置を補正する。その結果、部品実装機100は、例えば、ノズル12の昇降方向N1(図1参照)がZ方向に対して傾斜し、実装する高さに応じてノズル12の水平方向の位置が変化する場合であっても、部品2を基板40に精度良く実装することができる。
 図5~図6を参照して、図4のグラフL1を算出する方法(すなわち、各補正値Xr,Yrの算出方法)について説明する。図5に示されるように、第1実装工程において、基板40aとクランプ38とが当接する高さが基準高さH1となる状態で、基板40aに対して、測定用部品3が複数回実装される。すなわち、部品実装位置にクランプ38によって位置決めされた基板40aの基板実装面の高さが基準高さH1となる状態で、測定用部品3が複数回実装される。この際、作業者は、部品実装位置を部品実装目標位置C1(以下、単に目標位置C1と称する)に設定して、測定用部品3を実装する。図4に示されるように、目標位置C1は、水平方向の原点である。
 第1実施工程では、制御装置20は、ノズル12の水平方向の位置の補正を行わない。制御装置20は、XY移動機構18によって測定用部品3を吸着したノズル12を目標位置C1に移動させ、その後、ノズル12を基準高さH1まで降下させる。これにより、測定用部品3が基板40aに実装される。
 その結果、図5に示されるように、測定用部品3は、第1実装位置C2に実装される。基準高さH1上において、目標位置C1と第1実装位置C2との間には、第1の偏差d1が生じる。図5では、X方向における目標位置C1と第1実装位置C2との間の第1偏差のd1について説明するが、Y方向(すなわち、図5の手前奥方向)についても、同様に偏差が生じる。作業者は、第1の偏差d1をプロットする。この作業を複数回実施することによって、第1実装位置群D1(図4参照)が取得される。
 次いで、第2実装工程において、作業者は、基板40aとクランプ38との間に、スペーサ42を配置する。これにより、図6に示されるように、基板40aの基板実装面は、基準高さH1よりもZ方向で距離z2だけ低い第2の高さH2となる。第2実装工程では、基板40aの基板実装面の高さが第2の高さH2となる状態で、測定用部品3が複数回実装される。第1実装工程と同様に、第2実装工程においても、作業者は、部品実装位置を目標位置C1に設定して、測定用部品3を実装する。図2を参照して説明したように、特にノズル12の昇降方向N1がZ方向に対して傾斜する場合、ノズル12が昇降する水平方向の位置ずれは、測定用部品3を実装する高さに応じて変化し得る。そのため、図6に示されるように、測定用部品3は、第2実装位置C3に実装される。第2の高さH2上において、目標位置C1と第2実装位置C3との間には、第2の偏差d2が生じる。作業者は、第2の偏差d2をプロットする。この作業を複数回実施することによって、第2実装位置群D2(図4参照)が取得される。
 このように、基板実装面の高さごとに、各実装位置群D1,D2を取得する。取得された各実装位置群D1,D2に基づいて、グラフL1(図4参照)が決定される。すなわち、上述した算出方法では、第1の偏差d1と第2の偏差d2とを利用して、基板実装面の高さごとにノズル12の水平方向の位置を補正する補正値が算出される。先に述べたように、ノズル12が降下する水平方向の位置ずれは、部品実装機100の構成部品の寸法ばらつき、組立時のばらつき、部品実装機100を配置する地面の傾斜等によって生じるものである。このため、当該位置ずれは、同様に設計された部品実装機100であっても、その固体に応じて異なる。上述した算出方法によれば、目標位置C1と、実際に実装した各実装位置C2,C3と、を比較した各偏差d1,d2をプロットすることによって、補正値が算出される。これにより、部品実装機100の各個体に応じた補正値を算出することができる。その結果、このように算出した補正値を利用して当該部品実装機100の部品実装位置を補正することによって、部品2を実装する精度を向上させることができる。
 また、測定用部品3は、部品2(図1参照)と同様の寸法を有するとともに、さらに、量産される部品2よりも高い寸法精度を有する。測定用部品3は、例えば、セラミックで構成される。上述した算出方法では、量産される部品2よりも高い寸法精度を有する測定用部品3を用いて、目標位置C1と各実装位置C2,C3との偏差d1,d2を測定する。これにより、量産される部品2を用いて各偏差d1、d2を測定する方法に比べ、実装する部品自体の寸法ばらつきを低減することができる。その結果、各実装工程において測定された偏差d1、d2には、部品自体の寸法ばらつきに起因する誤差が含まれない。これにより、偏差d1,d2を測定する際、部品実装機100の有する位置ずれを、より正確に測定することができる。
(対応関係)基準高さH1が、「第1の高さ」の一例である。S2の処理が、「部品実装位置設定部」が実行する処理の一例である。S4の処理が、「部品実装高さ設定部」が実行する処理の一例である。S8の処理が、「実装位置補正部」が実行する処理の一例である。S10の処理が、「XY移動機構駆動部」が実行する処理の一例である。作業者が複数個の第1の偏差d1をプロットすることによって、第1実装位置群D1を取得することが、「第1偏差取得工程」の一例である。作業者が複数個の第2の偏差d2をプロットすることによって、第2実装位置群D2を取得することが、「第2偏差取得工程」の一例である。
 以上、本明細書が開示する技術の具体例を詳細に説明したが、これらは例示に過ぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。上記の実施形態の変形例を以下に列挙する。
(変形例1)制御装置20は、パーツカメラ26によって、ノズル12に吸着された部品2の画像を撮影し、その撮影した画像を用いてさらに部品実装時のノズル12の水平方向の位置を補正してもよい。例えば、部品供給装置から供給される部品をノズル12で吸着する際、ノズル12の中心と部品の中心がずれることがある。ノズル12の中心と部品の中心がずれると、そのずれた分だけ部品実装位置がずれることになる。そこで、制御装置20は、撮影された画像に基づいて、ノズル12の中心と、吸着された部品2の中心との位置の位置ずれを算出する。そして、制御装置20は、図3のS8の処理において、算出したノズル12の中心に対する部品2の中心の位置ずれに相当する補正値を、補正値(Xr,Yr)にさらに加えてもよい。本変形例では、制御装置20がノズル12の中心に対する部品2の中心の位置ずれを算出することが、「位置ずれ算出部」が実行する処理の一例であり、部品2の中心の位置ずれに相当する補正値が、「第2補正値」の一例である。
(変形例2)作業者は、補正値を算出する際、基準高さH1で測定用部品3を実装しなくてもよい。変形例では、基準高さH1よりも高い位置に測定用部品3を実装してもよい。その場合、例えば、基板40aと支持ピン36との間にスペーサを配置してもよい。これにより、基板40aの基板実装面が、基準高さH1よりも高くなる。この状態で、測定用部品3を基板実装面に複数回実装することで、基準高さH1よりも高い基板実装面におけるノズル12の水平方向の位置ずれを測定してもよい。本変形例では、基準高さH1よりも高い基板実装面の高さが、「第2の高さ」の一例である。
(変形例3)本明細書が開示する補正値の算出方法では、測定用部品3に代えて、実際に量産される部品2を基板40aに複数回実装することによって、ノズル12の水平方向の位置ずれを測定してもよい。
 本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
2:電子部品、3:測定用部品、4,40,40a:回路基板、10:部品実装ユニット、12:ノズル、14:ノズル昇降機構、16:ヘッド、18:XY移動機構、20:制御装置、22:CPU、24:メモリ、26:パーツカメラ、30:基板搬送装置、32:ベルトコンベア、34:バックアッププレート、36:支持ピン、38:クランプ、41:凹部、42:スペーサ、100:部品実装機、C1:部品実装目標位置、C2:第1実装位置、C3:第2実装位置、H1:基準高さ、H2:第2の高さ、d1:第1の偏差、d2:第2の偏差

Claims (5)

  1.  部品を吸着するノズルと、
     前記ノズルが着脱可能に取付けられると共に前記ノズルをZ方向に昇降させるノズル昇降機構を備えるヘッドと、
     前記ヘッドをX方向及びY方向に移動させるXY移動機構と、
     基板を基板実装位置に搬入すると共に、前記基板実装位置から搬出する基板搬送装置と、
     前記ノズル昇降機構と前記XY移動機構と前記基板搬送装置を制御して、前記基板実装位置に搬入された前記基板に前記ノズルに吸着した前記部品を実装する制御装置と、を備え、
     前記制御装置は、
     前記基板に実装する部品毎に、当該部品を実装するX方向及びY方向の位置である部品実装位置を設定する部品実装位置設定部と、
     前記基板に実装する部品毎に、当該部品を実装するZ方向の位置である部品実装高さを設定する部品実装高さ設定部と、
     前記基板に実装する部品毎に、前記部品実装位置設定部で設定された当該部品の部品実装位置を、前記部品実装高さ設定部で設定された当該部品の部品実装高さに応じて異なる第1補正値により補正する実装位置補正部と、
     前記実装位置補正部で補正された部品実装位置に基づいて、前記XY移動機構を駆動するXY移動機構駆動部と、
     を備える、部品実装機。
  2.  前記ノズルに吸着された前記部品を下方から撮影するパーツカメラをさらに備え、
     前記制御装置は、前記パーツカメラで撮影された画像に基づいて、前記ノズルの中心に対する前記部品の中心の位置の位置ずれを算出する位置ずれ算出部と、をさらに備え、
     前記実装位置補正部は、前記位置ずれ算出部で算出された位置ずれを補正するための第2補正値を用いて、前記第1補正値で補正された前記部品実装位置をさらに補正する、請求項1に記載の部品実装機。
  3.  部品実装機の部品実装位置に位置決めされた基板の基板実装面の高さが第1の高さとなる状態で、前記基板実装面に設定されたX方向及びY方向の目標位置である部品実装目標位置にノズルに吸着した測定用部品を実装する第1実装工程と、
     前記第1実装工程を複数回実施することで、前記測定用部品の実際の実装位置と、前記部品実装目標位置との偏差である第1の偏差を取得する第1偏差取得工程と、
     前記部品実装機の前記部品実装位置に位置決めされた基板の基板実装面の高さが前記第1の高さとは異なる第2の高さとなる状態で、前記部品実装目標位置に前記ノズルに吸着した前記測定用部品を実装する第2実装工程と、
     前記第2実装工程を複数回実施することで、前記測定用部品の実際の実装位置と、前記部品実装目標位置との偏差である第2の偏差を取得する第2偏差取得工程と、
     前記第1の偏差と前記第2の偏差とを利用して、前記基板の基板実装面の高さごとに、前記部品実装目標位置を補正する補正値を算出する補正値算出工程と、
     を含む、補正値の算出方法
  4.  前記第1の高さは、前記基板が基準の高さに位置するときの前記基板実装面の高さであり、
     前記第2の高さは、前記第1の高さよりも低い、請求項3に記載の算出方法。
  5.  前記測定用部品は、量産される部品よりも高い寸法精度を有する、請求項3または4に記載の算出方法。
PCT/JP2021/043018 2021-11-24 2021-11-24 部品実装機及び補正値の算出方法 WO2023095213A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180103752.9A CN118176838A (zh) 2021-11-24 2021-11-24 元件安装机以及校正值的计算方法
PCT/JP2021/043018 WO2023095213A1 (ja) 2021-11-24 2021-11-24 部品実装機及び補正値の算出方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/043018 WO2023095213A1 (ja) 2021-11-24 2021-11-24 部品実装機及び補正値の算出方法

Publications (1)

Publication Number Publication Date
WO2023095213A1 true WO2023095213A1 (ja) 2023-06-01

Family

ID=86539054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043018 WO2023095213A1 (ja) 2021-11-24 2021-11-24 部品実装機及び補正値の算出方法

Country Status (2)

Country Link
CN (1) CN118176838A (ja)
WO (1) WO2023095213A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11340699A (ja) * 1998-05-28 1999-12-10 Sony Corp 部品検査方法及び電子部品装着装置
JP2000068696A (ja) * 1998-08-26 2000-03-03 Yamagata Casio Co Ltd 部品認識装着装置及び部品認識方法
WO2020105138A1 (ja) * 2018-11-21 2020-05-28 株式会社Fuji 部品実装装置
WO2020189108A1 (ja) * 2019-03-15 2020-09-24 パナソニックIpマネジメント株式会社 部品搭載装置および部品搭載方法、実装基板製造システムおよび実装基板製造方法、ならびに搭載済部品検査装置
JP2021015917A (ja) * 2019-07-12 2021-02-12 芝浦メカトロニクス株式会社 実装装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11340699A (ja) * 1998-05-28 1999-12-10 Sony Corp 部品検査方法及び電子部品装着装置
JP2000068696A (ja) * 1998-08-26 2000-03-03 Yamagata Casio Co Ltd 部品認識装着装置及び部品認識方法
WO2020105138A1 (ja) * 2018-11-21 2020-05-28 株式会社Fuji 部品実装装置
WO2020189108A1 (ja) * 2019-03-15 2020-09-24 パナソニックIpマネジメント株式会社 部品搭載装置および部品搭載方法、実装基板製造システムおよび実装基板製造方法、ならびに搭載済部品検査装置
JP2021015917A (ja) * 2019-07-12 2021-02-12 芝浦メカトロニクス株式会社 実装装置

Also Published As

Publication number Publication date
CN118176838A (zh) 2024-06-11

Similar Documents

Publication Publication Date Title
JP4692268B2 (ja) 電子部品実装システムおよび電子部品実装方法
KR20080070829A (ko) 회로 기판에 대한 작업 장치 및 작업 방법
KR20070095351A (ko) 전자 부품 실장 시스템 및 전자 부품 실장 방법
JP2014053493A (ja) 電子部品実装装置および実装位置補正データ作成方法
WO2013084383A1 (ja) 基板作業装置
JP4824641B2 (ja) 部品移載装置
EP2931014A1 (en) Apparatus and method for generating mounting data, and substrate manufacturing system
JP2009016673A5 (ja)
JP4855347B2 (ja) 部品移載装置
JP6249650B2 (ja) ピッチを補正する方法、部品実装装置及び部品実装システム
WO2023095213A1 (ja) 部品実装機及び補正値の算出方法
KR20020073274A (ko) 실장기 및 그 부품 장착 방법
JP6814937B2 (ja) 部品実装システムおよび部品実装方法
WO2019180954A1 (ja) 部品装着装置
JP5047772B2 (ja) 実装基板製造方法
JP6432043B2 (ja) 部品実装装置における高さセンサの測定位置補正方法及び部品実装装置
JP4371832B2 (ja) 電子部品実装装置における移動台の移動制御方法およびその方法に用いられるマトリックス基板
JP7181838B2 (ja) 測定治具及び部品実装装置、並びに測定治具を用いた測定方法
JP3499316B2 (ja) 実装機の校正データ検出方法及び実装機
CN107926139B (zh) 元件安装机及元件安装生产线
JP3247703B2 (ja) プリント基板作業装置およびそれの送り装置誤差検出装置
JP2011171330A (ja) 部品実装装置および部品実装方法
JP2822448B2 (ja) 電子部品の実装方法
JP4622970B2 (ja) 電子部品実装システムおよび電子部品実装方法
WO2022244086A1 (ja) 部品移載装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965587

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023563389

Country of ref document: JP