WO2023093677A1 - 一种脂肪酰基牛磺酸盐的合成工艺 - Google Patents

一种脂肪酰基牛磺酸盐的合成工艺 Download PDF

Info

Publication number
WO2023093677A1
WO2023093677A1 PCT/CN2022/133240 CN2022133240W WO2023093677A1 WO 2023093677 A1 WO2023093677 A1 WO 2023093677A1 CN 2022133240 W CN2022133240 W CN 2022133240W WO 2023093677 A1 WO2023093677 A1 WO 2023093677A1
Authority
WO
WIPO (PCT)
Prior art keywords
sodium
synthesis process
acid
process according
reaction
Prior art date
Application number
PCT/CN2022/133240
Other languages
English (en)
French (fr)
Inventor
黄勇前
徐由江
朱红军
Original Assignee
张家港格瑞特化学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张家港格瑞特化学有限公司 filed Critical 张家港格瑞特化学有限公司
Publication of WO2023093677A1 publication Critical patent/WO2023093677A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/32Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of salts of sulfonic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • B01J23/04Alkali metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • B01J27/1802Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates
    • B01J27/1806Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates with alkaline or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0211Oxygen-containing compounds with a metal-oxygen link
    • B01J31/0212Alkoxylates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/02Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of sulfonic acids or halides thereof
    • C07C303/22Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of sulfonic acids or halides thereof from sulfonic acids, by reactions not involving the formation of sulfo or halosulfonyl groups; from sulfonic halides by reactions not involving the formation of halosulfonyl groups

Definitions

  • the invention belongs to the technical field of organic chemical synthesis, and in particular relates to a synthesis process of fatty acyl taurate.
  • Fatty acyl taurate is a kind of surfactant.
  • the conventional production process is to first react fatty acid and acylating reagent (such as phosgene or phosphorus trichloride) to synthesize fatty acid chloride, and then combine fatty acid chloride and amino acid in alkaline
  • acylating reagent such as phosgene or phosphorus trichloride
  • the fatty acyl taurate is synthesized by condensation reaction under certain conditions, wherein the by-product is sodium chloride, and the product needs to be separated by acidification layering or crystallization to obtain a high-quality product.
  • the whole synthesis process is long, and the by-product sodium chloride is in Under a large number of application conditions, it will cause undesired effects, such as low-temperature turbidity of the application formula.
  • the methylamine in the decomposition product will further undergo amidation reaction with fatty acid:
  • taurine began to be industrially produced, and reached a production capacity of hundreds of thousands of tons.
  • the price of taurine was greatly reduced, making the use of taurine Acid has more advantages with respect to sodium methyl taurate as raw material, and the applicant just discovers this trend, just first systematically tries to utilize taurine to go development, synthetic fatty acyl taurate.
  • taurine because of its small steric hindrance, the selectivity of amidation reaction is better. Under the optimal reaction conditions, taurine does not decompose, the yield is higher, the purity is higher, and the irritation of the product is smaller and milder. .
  • US Patent No. 5,496,959 to Day relates to the preparation of N-acyl taurates by reacting carboxylic acids with "taurine” derivatives (defined as substituted 2-aminoalkanesulfonic acids and their alkali metal salts).
  • taurine defined as substituted 2-aminoalkanesulfonic acids and their alkali metal salts.
  • all embodiments are sodium N-methyl taurate, do not relate to taurate, and, implement with the technology of its embodiment, the conversion rate of product is not high, and impurity is many, color dark smell is heavy, is difficult to It really has commercial value.
  • U.S. Patent No. 2,880,219 to Burnette also teaches the preparation of N-acyl taurides from fatty acids and taurine, a practical practice also employing N-acyl methyl taurates. Use a large excess of fatty acid to reduce the viscosity during the reaction to reduce the decomposition of methyl taurate; but in fact there is not much substantial improvement, and excessive fatty acid will increase the cost of separation, so it has not been realized True commercial value.
  • US Patent No. 3,232,968 to Schenck et al. discloses the preparation of N-acyl taurates using hypophosphorous acid. Virtually all of the examples are sodium N-methyl taurate, no taurine is involved. Although hypophosphite is used as an antioxidant, the color of the final product can only reach a minimum of 10 in 2.5% aqueous solution APHA, and the actual concentrated solution or solid still has a darker color, and the problem of many by-products is still not solved.
  • the U.S. Patent No.5434276 of Walele etc. discloses a kind of method for preparing acyl taurate, and alkali metal borohydride and taurate (actually N-methyl taurine sodium) pretreatment heating earlier, then add pretreatment Fatty acids heated to reaction temperature. All embodiments all adopt sodium N-methyl taurate, and the problem of decomposition by-product cannot be avoided equally.
  • Chinese patent CN111902395A increases the yield of alkyl taurine amide and reduces the risk of browning by increasing the content of N-methyl taurine to more than 75%.
  • the alkali metal salt of fatty acid and N-methyl taurine which still fails to solve the problem of N-methyl taurine decomposition.
  • Chinese patent application CN201510568940.5 discloses a synthetic method of sodium lauroyl methyl taurate, clearly using sodium methyl taurate, while using liquid paraffin as a solvent, and extracting and separating by water and cyclohexane in the later stage. The steps are long, resulting in more discharge of three wastes.
  • JP 2002-234868 records a kind of method that prepares acyl taurine by fatty acid and taurine reaction.
  • excess fatty acid is still used to reduce viscosity, and excessive fatty acid will increase the cost of separation, or make it difficult to directly use in commercial products.
  • Chinese patent CN103857653A uses fatty acid ester and taurine to produce sodium N-acyl methyl taurine, which avoids the problem of methyl taurine decomposition.
  • the reaction temperature it adopts is low, the catalyst efficiency is not strong enough, and the residual fatty acid ester content is relatively high.
  • N-acyl taurate surfactants do not appear in the IECSC inventory of existing chemical substances in China and the "Inventory of Used Cosmetic Raw Materials" in various versions of China.
  • the present invention aims to provide a synthesis process of fatty acyl taurate, which uses taurine and fatty acid or its esters as raw materials to react, by controlling the type of catalyst and solvent and the reaction
  • the temperature can obviously increase the yield of the product, and the obtained fatty acyl taurate has high purity, little irritation, strong foaming ability and light color.
  • the present invention is achieved through the following technical solutions.
  • a kind of synthetic technique of fatty acyl taurate comprises the following steps:
  • the fatty acyl taurate product may be, but not limited to, a solvate, a hydrate, or a pure fatty acyl taurate product.
  • the synthesis process needs to be carried out under the protection of nitrogen.
  • the fatty acid is a C8-C22 fatty acid, including branched chain fatty acid and/or branched chain fatty acid;
  • the C8-C22 fatty acid is selected from the group consisting of lauric acid, coconut oleic acid, caprylic acid, capric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, arachidic acid, behenic acid and isoic acid
  • lauric acid coconut oleic acid
  • caprylic acid capric acid
  • myristic acid palmitic acid
  • stearic acid oleic acid
  • oleic acid linoleic acid
  • arachidic acid behenic acid
  • isoic acid One or several kinds of stearic acid
  • the C8-C22 fatty acid is selected from one or more of coconut oleic acid, lauric acid, myristic acid, and stearic acid;
  • the fatty acid ester is C1-C4 alcohol fatty acid ester.
  • the C1-C4 alcohol fatty acid ester includes, but is not limited to: one or more of methyl ester, ethyl ester, propylene glycol ester, glycerol ester and isopropanol ester.
  • Described solvent is polyhydric alcohol solvent
  • the polyol solvent is a C2-C10 high-boiling polyol
  • the C2-C10 high-boiling polyhydric alcohol is selected from one or more of glycerin, propylene glycol, ethylene glycol, erythritol, xylitol, pentanediol, hexanediol and butanediol;
  • the C2-C10 high-boiling polyhydric alcohol is selected from propylene glycol or/and glycerin;
  • the C2-C10 high-boiling polyhydric alcohol is propylene glycol.
  • the equivalent ratio of the pH regulator to taurine is 0.9-1.2:1, preferably 0.93-1:1.
  • Described pH adjusting agent is alkaline pH adjusting agent; Described alkaline pH adjusting agent includes but not limited to sodium hydroxide, potassium hydroxide, lithium hydroxide, magnesium hydroxide, calcium hydroxide, sodium carbonate, potassium carbonate , sodium bicarbonate, potassium bicarbonate, lithium carbonate, calcium oxide, sodium oxide, zinc oxide, sodium ethoxide, sodium methoxide, potassium ethoxide, potassium methoxide, triethanolamine and triethylamine.
  • the alkaline pH regulator is selected from one or more of sodium hydroxide, potassium hydroxide, sodium carbonate and potassium carbonate.
  • the mass ratio of described taurine and polyol is 1:0.3-6;
  • the mass ratio of described taurine and polyhydric alcohol is 1:0.5-2;
  • the mass ratio of the taurine to the polyol is 1:0.5-1.
  • the heating reaction temperature is 150°C-220°C;
  • the heating reaction temperature is 180°C-210°C.
  • the mass ratio of the basic metal salt catalyst to the auxiliary catalyst is 0.5-6:1, preferably 1-3:1.
  • the basic metal salt catalyst is selected from one of sodium tert-butoxide, potassium tert-butoxide, sodium methylate, sodium ethylate, sodium isopropoxide, potassium methylate, potassium ethylate, potassium isopropoxide and calcium oxide or several.
  • the basic metal salt is selected from one or more of sodium tert-butoxide, sodium methoxide and sodium ethoxide.
  • the auxiliary catalyst is selected from one or more of sodium hypophosphite, sodium borohydride, zinc oxide, copper sulfate, sodium phosphite, hypophosphorous acid, phosphorous acid, boric acid and phenylboronic acid
  • the auxiliary catalyst is selected from sodium hypophosphite or sodium borohydride.
  • the basic metal salt as a catalyst can most effectively improve the conversion rate.
  • adding a mixed catalytic system to the reaction system is more conducive to the reaction.
  • the present invention controls the mass ratio of the basic metal salt catalyst and the auxiliary catalyst during the implementation process, which can significantly improve the conversion rate of the reaction and reduce the color and smell of the product. , and can reduce the amount of catalyst added and reduce the steps of post-treatment.
  • the main active ingredient Consumers are most concerned about the safety of personal care products, and as the main active ingredient, its irritation is not only limited by the main ingredient itself, but also largely related to the content of impurities.
  • the impurities synthesized by the acyl chloride, the residue of the acyl chloride, the residue of phosgene, etc. are small, but have a great impact on irritation.
  • sodium methyl cocoyl taurate directly synthesized from fatty acid and sodium methyl taurate because it contains a relatively large amount of fatty amide, the irritation is significantly increased.
  • Personal care products are products that bring beauty to consumers. Their color and smell are important sensory needs. It is colorless and odorless, making consumers feel that the product is pure and safe.
  • the present invention directly adopts taurine and fatty acid or its esters as raw materials to react, and the yield can be obviously improved by controlling the molar ratio of taurine, fatty acid or its esters, catalyst, pH regulator, solvent type, dosage and reaction temperature , and the obtained fatty acyl taurine has high purity, low irritation, strong foaming ability and light color.
  • Fig. 4 is the GC-MS qualitative diagram of lauroylmethylamide in the fatty acyl methyl taurate prepared in Comparative Example 2.
  • the yield described in the following examples the molar amount of fatty acyl taurate or fatty acyl methyl taurate produced/the average molar amount of fatty acid and taurine input.
  • Embodiment 1 A kind of synthetic technique of fatty acyl taurate
  • step (2) add water 264g, taurine 118.3g and sodium hydroxide 118.3g in the reactor, stir and dissolve, be mixed with 33% sodium taurine solution, add acetone 132g again, stir, be cooled to below 10 °C, Slowly add 196.5 g of lauroyl chloride prepared in step (1) at a uniform speed, and drop 118.3 g of 32% sodium hydroxide aqueous solution at the same time, control the pH of the reaction solution between 9-10, and continue the reaction at 25 ° C for 2 hours after the drop is completed , the pH should still remain between 9-10 at the end, and the white paste reactant was put in the refrigerator overnight, filtered and dried, and dried to obtain 258.6g of white powder after being treated with ethanol, wherein the sodium lauroyl taurate content was 93.2 %.
  • Example 1 uses a one-step method to synthesize fatty acyl taurate (that is, the method claimed in the present invention), and Comparative Document 1 uses a two-step method to synthesize fatty acyl taurate ( That is, the method commonly used in the prior art), the two methods are compared, specifically see the following table 1:
  • Example 1 is environmentally friendly, conforms to the principle of green chemistry, is a new generation of innovative green technology, and produces no waste.
  • the preparation method of Comparative Example 1 will produce a large amount of waste, such as acid chloride evaporation residue, carbon dioxide, hydrogen chloride, crystallization and separation wastewater (containing sodium chloride, fatty acid, amino acid), etc., which will produce toxic or flammable and explosive waste.
  • Example 1 sodium lauroyl taurate
  • the products of Example 1 and Comparative Example 1 were subjected to infrared spectroscopy, as shown in Figure 1 and Figure 2.
  • the peaks in the fingerprint areas of the two are completely consistent, which proves that the products of the two are consistent.
  • Embodiment 2-3 a kind of synthetic technique of fatty acyl taurate
  • Example 2 The reaction conditions of Example 2 are: react at 180° C. for 6 hours to obtain 354.15 g of a white solid product, wherein the content of sodium lauroyl taurate is 89.75%, and the yield is 91.88%.
  • Example 3 The reaction conditions of Example 3 are: react at 200° C. for 6 hours to obtain 367.5 g of a white solid product, wherein the sodium cocoyl taurate content is 89.35%, and the yield is 92.19%.
  • Comparative Example 2 The difference between Comparative Example 2 and Example 2 is that sodium methyl taurate is used instead of taurine and pH regulator to obtain 377.67 g of a burnt yellow solid product, wherein sodium lauroyl methyl taurate is 66.53%, and the yield is 69.67% %.
  • Comparative Example 3 The difference between Comparative Example 3 and Example 3 is that sodium methyl taurate is used instead of taurine and pH regulator to obtain 394.5 g of a burnt yellow solid product, wherein sodium lauroyl methyl taurate is 65.48%, and the yield is 69.71%. %.
  • Example 2 Example 3 Comparative example 2 Comparative example 3
  • Product content 89.75% 89.35% 66.53% 65.48% yield 91.88% 92.19% 69.67% 69.71%
  • Example 2-3 The irritation test was carried out on the products prepared in Example 2-3 and Comparative Example 2-3.
  • the test method was the chicken chorioallantoic membrane method, see Table 5 below for details.
  • Comparative Example 2-3 has higher irritation compared to the product obtained in Example 2-3.
  • Comparative Example 2 The product was analyzed by GC-MS, as shown in Figure 3 and Figure 4. The product was tested by the liquid phase external standard method, and the test results are shown in Table 6 below.
  • Example 2 Example 3 Comparative example 2 Comparative example 3 Lauramide content - - - - Methyl lauryl content - - 10.2% 7.22%
  • taurine instead of methyl taurate to synthesize fatty acyl taurate has the advantages of high yield, high product purity and low irritation.
  • Embodiment 4-5 a kind of synthetic technique of fatty acyl taurate
  • the reaction condition of embodiment 4 is: the mass ratio of taurine and propylene glycol is 1:0.3, reacts at 180 °C for 6 hours, obtains white solid 345.03g, and wherein cocoyl taurine sodium content is 95.74%, and yield is 97.4% %. After testing, the color of 30% aqueous solution is 13 Hazen.
  • reaction conditions of embodiment 5 are: the mass ratio of taurine and solvent propylene glycol is 1:2, reacts at 180 °C for 6 hours, obtains white solid 366.39g, wherein cocoyl taurine sodium content is 89.42%, yield is 96.6%. The color of 30% aqueous solution will be detected as 17 Hazen.
  • comparative example 4 do not use solvent in the reaction system, then raw material taurine can not be dissolved, and reaction cannot carry out, and after heating 2 hours, material scorched black, stinks.
  • Comparative Example 5 The difference between Comparative Example 5 and Example 4 is that the mass ratio of taurine to propylene glycol is 1:7, and 424.33 g of a white solid is obtained, wherein the content of sodium cocoyl taurate is 60.1%, and the yield is 75.2%. After testing, the color of 30% aqueous solution is 13 Hazen.
  • Embodiment 6 a kind of synthetic technique of fatty acyl taurate
  • the mass of the catalyst accounts for 2% of the mass of the taurine, and the mass ratio of the sodium methylate to the sodium hypophosphite is 3:1.
  • Embodiment 7 A kind of synthetic technique of fatty acyl taurate
  • Example 6 The difference from Example 6 is: 0.63 g of sodium tert-butoxide and 0.63 g of sodium hypophosphite. That is, the catalyst mass accounts for 1% of the taurine mass, and the mass ratio of sodium tert-butoxide to sodium hypophosphite is 1:1. Finally, 447.46 g of white solid was obtained, wherein the content of sodium stearyl taurate was 82.95%, and the yield was 87.9%.
  • Example 6 The only difference with the process of Example 6 is: no catalyst is added. Finally, 443.78 g of white solid was obtained, wherein the content of sodium stearyl taurate was 77.21%, and the yield was 81.14%.
  • Example 6 The only difference with the process of Example 6 is: 2.5 g of sodium methoxide, no auxiliary catalyst is added. The mass of catalyst accounts for 2% of the mass of taurine. Finally, 446.33 g of white solid was obtained, wherein the content of sodium stearyl taurate was 80.22%, and the yield was 84.81%.
  • Example 6 The only difference with the process of Example 6 is: no basic metal salt catalyst, 2.5 g of sodium hypophosphite is added. The mass of catalyst accounts for 2% of the mass of taurine. Finally, 447.3 g of white solids were obtained, wherein the content of sodium stearyl taurate was 77.96%, and the yield was 82.48%.
  • Example 6 The only difference with the process of Example 6 is: 2.5g of zinc oxide for the catalyst. The mass of catalyst accounts for 2% of the mass of taurine. Finally, 448.62 g of white solid was obtained, wherein the content of sodium stearyl taurate was 75.95%, and the yield was 80.29%.
  • Comparative Example 11 uses zinc oxide as a catalyst, and the final yield is equivalent to that of no catalyst, and the yield is about 80%. And using basic metal salt as catalyst, the yield can be significantly increased to 84.48%. Furthermore, the yield can be further increased to 88.57% when an appropriate proportion of the basic metal salt and the auxiliary catalyst are used together. Furthermore, when an appropriate proportion of the basic metal salt and the auxiliary catalyst are used in combination, the yield is increased to 87.9% by using 1% taurine mass.
  • basic metal salts are effective catalysts for the one-step synthesis of fatty acyl taurates from taurine and fatty acids. Furthermore, the combination of an appropriate proportion of the basic metal salt and the auxiliary catalyst can further increase the yield or reduce the amount of catalyst used.
  • Embodiment 8 A kind of synthetic technique of fatty acyl taurate
  • Example 8 The only difference with the process of Example 8 is: the reaction temperature is 210°C. Finally, 346.39 g of white solids were obtained, wherein the content of potassium cocoyl taurate was 95.5%, and the yield was 97.3%.
  • the only difference with the process of Example 8 is: the reaction temperature is 120°C. The reaction temperature was too low and the reaction did not proceed.
  • Example 8 The only difference with the process of Example 8 is: the reaction temperature is 230°C. Finally, 345.04 g of burnt yellow solid was obtained, wherein the content of potassium cocoyl taurate was 89.96%, and the yield was 91.1%. Also, Cocamide is found in the product.
  • Embodiment 10 A kind of synthetic technique of fatty acyl taurate
  • the equivalent ratio of described sodium hydroxide equivalent to taurine is 0.93:1.
  • Example 10 The difference with the process of Example 10 is only: the consumption of sodium hydroxide is 34g, and the equivalent ratio with taurine is 0.85:1. Due to the insufficient amount of alkali, the amidation reaction was not complete. Finally, 361.67 g of a light yellow solid was obtained, in which the sodium myristoyl taurate content was 83.23%, and the yield was 84.2%.
  • Example 10 The process difference with Example 10 is only: the consumption of sodium hydroxide is 52g, and the equivalent ratio with taurine is 1.3:1. Finally, 375.47 g of a burnt yellow solid was obtained, the content of sodium myristoyl taurate was 86.65%, and the yield was 91%, and myristamide was found in the product, with a content of 0.89%.
  • Example 10 Example 11 Comparative example 14 Comparative example 15 Sodium myristoyl taurate 93.74% 93.5% 83.23% 86.65% yield 95.2% 96.1% 84.2% 91% Myristamide - - - 0.89%
  • Embodiment 12 A kind of synthetic technique of fatty acyl taurate
  • Embodiment 13 A kind of synthetic technique of fatty acyl taurate
  • Example 12 The difference from Example 12 is only that methyl laurate is replaced by coconut oil 222.7g (0.333mol). Finally, a white solid 373.13 was obtained, wherein the content of sodium cocoyl taurate was 91.31%, and the yield was 95.3%.
  • Comparative example 16 a kind of synthetic technique of fatty acyl taurate
  • Comparative example 17 a kind of synthetic technique of fatty acyl taurate
  • Example 12 Example 13 Comparative example 16 Comparative example 17 Sodium lauroyl taurate 95.94% - 91.83% - Sodium Cocoyl Taurate - 91.31% - 88.89% Methyl laurate 0.59% - 3.02% - coconut oil - 1.56% - 4.14% yield 98.6% 95.3% 95.5% 93.7%
  • Comparative Example 16 and Comparative Example 17 use calcium oxide as a catalyst, and the process yield is relatively low, and there are more fatty acid esters in the product, which reduces the foaming performance.
  • the invention uses sodium methoxide and sodium hypophosphite as a catalyst to improve the foaming performance of the product under the condition of ensuring the product content.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明提供了一种脂肪酰基牛磺酸盐的合成工艺,属于有机化学合成技术领域。其合成工艺包括以下步骤:将脂肪酸或其酯、牛磺酸和溶剂加入反应容器中,搅拌均匀后加入催化剂,搅拌条件下加热反应,反应过程中需要去除产生的水,反应结束,即可得到脂肪酰基牛磺酸盐产物。本发明直接采用牛磺酸和脂肪酸或其酯为原料进行反应,通过控制催化剂和溶剂的种类以及反应温度能够明显提高产物的收率,并且使得到的脂肪酰基牛磺酸盐纯度高、刺激性小、颜色浅、发泡能力强。

Description

一种脂肪酰基牛磺酸盐的合成工艺 技术领域
本发明属于有机化学合成技术领域,具体涉及一种脂肪酰基牛磺酸盐的合成工艺。
背景技术
脂肪酰基牛磺酸盐是一种表面活性剂,常规生产工艺是先将脂肪酸和酰化试剂(如光气或三氯化磷)进行反应合成脂肪酰氯,然后将脂肪酰氯和氨基酸,在碱性条件下进行缩合反应合成脂肪酰基牛磺酸盐,其中副产物为氯化钠,产物需通过酸化分层或结晶分离工艺才能得到高品质产品,整个合成工艺流程长,且副产物氯化钠在大量应用条件下会造成不期望的影响,如导致应用配方低温浑浊等问题。
有鉴于此,有很多专利也尝试采用其他方式来合成无盐型脂肪酰基牛磺酸盐系列表面活性剂。但值得注意的是,过往专利中所提及的N-烷酰基牛磺酸盐或者N-酰基牛磺酸盐,其实多数是N-酰基甲基牛磺酸盐。
申请人在实施过程中发现,由于甲基牛磺酸盐为仲胺,而牛磺酸为伯胺,位阻更小,更易于反应,因而具有更好的转化率。
申请人在实施过程中还发现,甲基牛磺酸盐在高温下,非常容易发生如下分解反应:
Figure PCTCN2022133240-appb-000001
而分解产物中的甲胺会进一步和脂肪酸发生酰胺化反应:
RCOOH+CH 3NH 2→RCONHCH3+H 2O
由于甲胺或脂肪酰甲胺具有非常强烈的刺激性,所以使用脂肪酸或脂肪酸酯和甲基牛磺酸/甲基牛磺酸盐反应所得到产物会含有副产物,因此产物往往需要经过二次提纯采用能应用在商品化产品中。
直到2000年以后,随着牛磺酸做为食品添加剂用量的迅速增大,牛磺酸开始工业化生产,并达到了几十万吨的产能规模,牛磺酸的价格大大降低,使得使用牛磺酸做为原料相对于甲基牛磺酸钠有更多的优势,而本申请人正是发现这个趋势,才首先系统地尝试利用牛磺酸去开发、合成脂肪酰牛磺酸盐。
申请人惊喜地发现,使用牛磺酸替代甲基牛磺酸,有如下显著优势:
而牛磺酸盐因其位阻小,酰胺化反应选择性更好,在优选的反应条件下,牛磺酸不分解,收率更高,纯度更高,产物的刺激性更小,更温和。
Day的美国专利No.5,496,959涉及通过羧酸与“牛磺酸盐”衍生物(定义为取代的2-氨基烷烃磺酸及其碱金属盐)反应制备N-酰基牛磺酸盐。实际所有的实施例都是N-甲基牛磺酸钠,没有涉及到牛磺酸盐,而且,以其实施例的工艺实施,产品的转化率不高,杂质多、颜色深气味重,难以真正具备商品化的价值。
Burnette的美国专利No.2,880,219也教导了由脂肪酸和牛磺酸制备N-酰基牛磺酸盐(taurides),其实际的实施也是采用N-酰基甲基牛磺酸盐。采用极大过量的脂肪酸来降低反应过程中的粘度,以降低甲基牛磺酸盐的分解;但实际上并没有太多实质的改善,而且过量的脂肪酸会增加分离成本,所以也未能实现真正的商品化价值。
Schenck等的美国专利No.3,232,968公开了使用次磷酸制备N-酰基牛磺酸盐的方法。实际所有的实施例都是N-甲基牛磺酸钠,没有涉及到牛磺酸盐。虽然使用次磷酸盐作为抗氧化剂,但最终产品颜色也只能达到2.5%水溶液APHA最低到10,实际浓溶液或固体依然有较深颜色,而且,依旧没有解决副产物多的问题。
Walele等的美国专利NO.5434276公开了一种制备酰基牛磺酸盐的方法,碱金属硼氢化物和牛磺酸盐(实际是N-甲基牛磺酸钠)先预处理加热,再加入预热到反应温度的脂肪酸。全部实施例均采用N-甲基牛磺酸钠,同样也未能避免分解副产物的问题。
中国专利CN111902395A通过将N-甲基牛磺酸盐的含量提高到75%以上,提高烷基牛磺酸酰胺的产率和降低其褐变风险。但是该申请中明确记载的是脂肪酸和N-甲基牛磺酸的碱金属盐,依旧未能解决N-甲基牛磺酸分解的问题。
中国专利申请CN201510568940.5中公开了一种月桂酰基甲基牛磺酸钠的合成方法,明确采用甲基牛磺酸钠,同时采用液体石蜡做溶剂,后期通过水和环己烷萃取分离,工艺步骤长,产生较多三废排放。
也有一些现有技术采用牛磺酸盐生产N-酰基牛磺酸,如JP 2002-234868记载了一种通过脂肪酸与牛磺酸反应制备酰基牛磺酸盐的方法。从实施例可以看到,依然是使用过量脂肪酸降低粘度,过量的脂肪酸,会增加分离成本,或使得难以在商品化产品中直接使用。
中国专利CN103857653A采用脂肪酸酯和牛磺酸盐生产N-酰基甲基牛磺酸钠,规避了甲基牛磺酸分解的问题。但其采用的反应温度较低,催化剂效率不够强,残留的脂肪酸酯含量较高。
经长期研究申请人发现,至今世界上找不到一家工业化生产N-酰基牛磺酸盐表面活性剂的供应商,而只能购买试剂级的样品。同样地,N-酰基牛磺酸盐表面活性剂也未出现在中国现有化学物质名录IECSC以及中国各个版本的《已使用化妆品原料目录》中。
因此,需要开发一种直接以牛磺酸和脂肪酸或其酯为原料,且工艺收率高,产物颜色浅、副产物少、刺激性小的脂肪酰基牛磺酸盐的合成工艺。
发明内容
基于现有技术中存在的问题,本发明旨在提供一种脂肪酰基牛磺酸盐的合成工艺,即采用牛磺酸和脂肪酸或其酯为原料进行反应,通过控制催化剂和溶剂的种类以及反应温度能够明显提高产物的收率,并且使得到的脂肪酰基牛磺酸盐纯度高、刺激性小、发泡能力强、颜色浅。
本发明通过下述技术方案实现的。
一种脂肪酰基牛磺酸盐的合成工艺,包括以下步骤:
将脂肪酸或其酯、牛磺酸和溶剂加入反应容器中,搅拌均匀后加入pH调节剂,搅拌条件下加热反应,反应过程中需要去除产生的水,反应结束,即可得到脂肪酰基牛磺酸盐产物。
其中,所述的脂肪酰基牛磺酸盐产物可以但不局限于脂肪酰基牛磺酸盐产物的溶剂化物、水合物或脂肪酰基牛磺酸盐纯净物。
在另一些优选实施方案中,所述的合成工艺需要在氮气的保护下进行。
其中,所述的脂肪酸为C8-C22脂肪酸,包含支链脂肪酸和/或支链脂肪酸;
优选地,所述的C8-C22脂肪酸选自月桂酸、椰子油酸、辛酸、癸酸、肉豆蔻酸、棕榈酸、硬脂酸、油酸、亚油酸、花生酸、山嵛酸和异硬脂酸中的一种或几种;
再优选地,所述的C8-C22脂肪酸选自椰子油酸、月桂酸、肉豆蔻酸、硬脂酸中的一种或几种;
其中,所述的脂肪酸酯为C1-C4醇脂肪酸酯。优选地,所述的C1-C4醇脂肪酸酯包括但不限于:甲酯、乙酯、丙二醇酯、甘油酯和异丙醇酯中的一种或几种。
所述的溶剂为多元醇溶剂;
优选地,所述的多元醇溶剂为C2-C10高沸点多元醇;
再优选地,所述的C2-C10高沸点多元醇选自甘油、丙二醇、乙二醇、赤藓醇、木糖醇、戊二醇、己二醇和丁二醇中的一种或几种;
进一步优选地,所述的C2-C10高沸点多元醇选自丙二醇或/和甘油;
再进一步优选地,所述的C2-C10高沸点多元醇为丙二醇。
所述的pH调节剂的当量与牛磺酸的当量比在0.9-1.2:1,优选0.93-1:1。
所述的pH调节剂为碱性pH调节剂;所述的碱性pH调节剂包括但不限于氢氧化钠、氢氧化钾、氢氧化锂、氢氧化镁、氢氧化钙、碳酸钠、碳酸钾、碳酸氢钠、碳酸氢钾、碳酸锂、氧化钙、氧化钠、氧化锌、乙醇钠、甲醇钠、乙醇钾、甲醇钾、三乙醇胺和三乙胺中的一种或几种。
优选地,所述的碱性pH调节剂选自氢氧化钠、氢氧化钾、碳酸钠和碳酸钾中的一种或几种。
所述牛磺酸和多元醇的质量比为1:0.3-6;
优选地,所述的牛磺酸和多元醇的质量比为1:0.5-2;
再优选地,所述的牛磺酸和多元醇的质量比为1:0.5-1。
所述的加热反应温度为150℃-220℃;
优选地,所述的加热反应温度为180℃-210℃。
在一些优选实施方案中,所述的合成工艺反应过程中还需要向反应体系中添加碱性金属盐催化剂和辅助催化剂;
所述的碱性金属盐催化剂与辅助催化剂的质量比为0.5-6:1,优选为1-3:1。
其中,所述的碱性金属盐催化剂选自叔丁醇钠、叔丁醇钾、甲醇钠、乙醇钠、异丙醇钠、甲醇钾、乙醇钾、异丙醇钾和氧化钙中的一种或几种。
优选地,所述的碱性金属盐选自叔丁醇钠、甲醇钠和乙醇钠中的一种或几种。
所述的辅助催化剂选自次磷酸钠、硼氢化钠、氧化锌、硫酸铜、亚磷酸钠、次磷酸、亚磷酸、硼酸和苯硼酸中的一种或几种
优选地,所述的辅助催化剂选自次磷酸钠或硼氢化钠。
在实施过程中意外地发现相较于常规的次磷酸钠或亚磷酸钠等催化剂,碱性金属盐做为催化剂能够最有效地提高转化率。同时发现,向反应体系中加入混合催化体系更有利于反应的进行,本发明在实施过程中控制碱性金属盐催化剂和辅助催化剂的质量比,能够明显提高反应的转化率,降低产物色泽和气味,并且可以减少催化剂的加入量,减少后处理的步骤。
与现有技术相比,本发明的有益效果在于:
消费者最关注个人护理品的安全性,而作为主表活,其刺激性大小除受主体成分本身限制外,很大程度上和杂质含量关系很大。如在酰氯法合成的酰基氨基酸盐中,酰氯合成的杂质,酰氯的残留,光气的残留等,虽微量,但对刺激性影响很大。又或如脂肪酸和甲基牛磺酸钠直接合成的甲基椰油酰基牛磺酸钠,由于其中含有较大量的脂肪酰甲胺,导致刺激性显 著加大。
个人护理品是为消费者带来美好的产品,其颜色、气味,都是重要的感官需求。无色、无异味,使消费者感觉产品纯净,安全。
本发明直接采用牛磺酸和脂肪酸或其酯为原料进行反应,通过控制牛磺酸和脂肪酸或其酯的摩尔比、催化剂、pH调节剂和溶剂的种类、用量以及反应温度能够明显提高收率,并且使得到的脂肪酰基牛磺酸盐纯度高、刺激性小、发泡能力强、色泽浅。
附图说明
图1实施例1制备的月桂酰牛磺酸钠溴化钾压片红外谱图;
图2对比例1制备的月桂酰牛磺酸钠溴化钾压片红外谱图;
图3对比例2制备的脂肪酰基甲基牛磺酸盐的GC图;
图4对比例2制备的脂肪酰基甲基牛磺酸盐中月桂酰甲胺的GC-MS定性图。
附图标记:A为样品RT=16.189min的质谱图;B为月桂酰甲胺的标准质谱图。
具体实施方式
下面结合具体实施例,对本发明作进一步详细的阐述,下述实施例不用于限制本发明,仅用于说明本发明。以下实施例中所使用的实验方法如无特殊说明,实施例中未注明具体条件的实验方法,通常按照常规条件,下述实施例中所使用的材料、试剂等,如无特殊说明,均可从商业途径得到。
下面结合实施例对本发明作进一步阐述,但这些实施例不对本发明构成任何限制。
1、实施例中所用试剂的购买方式以及型号
Figure PCTCN2022133240-appb-000002
Figure PCTCN2022133240-appb-000003
2、本发明实施例中所使用的检测方法
Figure PCTCN2022133240-appb-000004
3、以下实施例中所述的收率=产生的脂肪酰牛磺酸盐或脂肪酰甲基牛磺酸盐的摩尔量/脂肪酸和牛磺酸投入的平均摩尔量。
实施例1一种脂肪酰基牛磺酸盐的合成工艺
包括以下步骤:
向1000mL带搅拌的三口烧瓶中,投入月桂酸200.32g(1mol)、牛磺酸125.15g(1mol)和丙二醇62.6g,搅拌混合均匀,加入氢氧化钠38.2g;通入氮气,在反应过程中保持氮气保护;搅拌下,加热到反应温度,脱除反应过程中产生的水,保温反应至结束,脱除溶剂并回收,出料,得白色固体335.41g,其中,月桂酰牛磺酸钠含量87.3%,收率88.5%。
对比例1一种脂肪酰基牛磺酸盐的合成工艺
包括以下步骤:
(1)在装有温度计、回流冷凝管、导气管﹑搅拌的500mL四口烧瓶中,加入月桂酸200.32g(lmol),N,N-二甲基甲酰胺1.5g(0.02mol),升温至60℃,控制反应温度为75℃,在8小 时内,通入光气110g(1.11mol),反应完毕,真空蒸馏,收集140-160℃(1333Pa)馏分,得月桂酰氯196.5g,收率为90%;
(2)向反应器中加入水264g、牛磺酸118.3g和氢氧化钠118.3g,搅拌溶解,配制成33%牛磺酸钠溶液,再加入丙酮132g,搅拌均匀,冷却至10℃以下,慢慢匀速加入步骤(1)中制备的月桂酰氯196.5g,同时滴入32%氢氧化钠水溶液118.3g,控制反应液的pH在9-10之间,滴完后于25℃继续反应2小时,结束时pH应仍保持在9-10之间,得白色糊状反应物放冰箱中过夜,滤干,用乙醇处理后烘干得白色粉末258.6g,其中,月桂酰牛磺酸钠含量93.2%。
实施例1与对比例1的的区别在于,实施例1采用一步法合成脂肪酰基牛磺酸盐(即本发明请求保护的方法),对比文件1采用两步法合成脂肪酰基牛磺酸盐(即现有技术常用的方法),将两种方法进行比较,具体见下表1:
表1
Figure PCTCN2022133240-appb-000005
根据上表1的检测数据可以看出,实施例1的制备方法绿色环保,符合绿色化学原则,是新一代创新绿色工艺,无废弃物产生。对比例1的制备方法会产生大量废弃物,如酰氯蒸发残渣、二氧化碳、氯化氢、结晶分离废水(含氯化钠、脂肪酸、氨基酸)等,会产生有毒或易燃易爆废弃物。
同时,为了进一步证实实施例1制备的产物为月桂酰牛磺酸钠,将实施例1和对比例1的产物做红外光谱,如图1和图2。两者指纹区峰完全符合,证明两者产物一致。
实施例2-3一种脂肪酰基牛磺酸盐的合成工艺
包括以下步骤:
向1000mL带搅拌的三口烧瓶中,投入脂肪酸、牛磺酸和溶剂,搅拌混合均匀,加入pH调节剂和催化剂;通入氮气,在反应过程中保持氮气保护;搅拌下,加热到反应温度,脱除反应过程中产生的水,保温反应至结束,脱除溶剂并回收,出料。具体添加量见下表2。
表2
Figure PCTCN2022133240-appb-000006
实施例2的反应条件为:在180℃反应6小时,得到白色固体产物354.15g,其中月桂酰牛磺酸钠含量89.75%,收率为91.88%。
实施例3的反应条件为:在200℃反应6小时,得到白色固体产物367.5g,其中椰油酰牛磺酸钠含量89.35%,收率92.19%。
对比例2-3一种脂肪酰基牛磺酸盐的合成工艺
包括以下步骤:
向1000mL带搅拌的三口烧瓶中,投入脂肪酸、甲基牛磺酸钠和溶剂,搅拌混合均匀,加入pH调节剂和催化剂;通入氮气,在反应过程中保持氮气保护;搅拌下,加热到反应温度,脱除反应过程中产生的水,保温反应至结束,脱除溶剂并回收,出料。具体添加量见下表3。
表3
Figure PCTCN2022133240-appb-000007
对比例2与实施例2的区别在于:采用甲基牛磺酸钠替代牛磺酸和pH调节剂,得到焦黄色固体产物377.67g,其中月桂酰甲基牛磺酸钠66.53%,收率69.67%。
对比例3与实施例3的区别在于:采用甲基牛磺酸钠替代牛磺酸和pH调节剂,得到焦黄色固体产物394.5g,其中月桂酰甲基牛磺酸钠65.48%,收率69.71%。
对实施例2-3以及对比例2-3制备得到的产物进行收率以及含量测试,具体见下表4。
表4
  实施例2 实施例3 对比例2 对比例3
产物含量 89.75% 89.35% 66.53% 65.48%
收率 91.88% 92.19% 69.67% 69.71%
对实施例2-3以及对比例2-3制备得到的产物进行刺激性测试,测试方法为鸡胚绒毛尿囊膜法,具体见下表5。
表5
  实施例2 实施例3 对比例2 对比例3
出血时间 41.5 39.5 9.8 8.5
溶血时间 301 301 116.5 136.2
凝血时间 301 301 301 301
IS值 4.33 4.36 9.16 8.72
经检测可以看出对比例2-3得到的产物相对于实施例2-3得到的产物具有较高的刺激性,为进一步探究对比例2-3产物刺激性强的原因,针对对比例2的产物做了GC-MS分析,如图3和图4。并采用液相外标法对产物进行了测试,检测结果见下表6。
表6
  实施例2 实施例3 对比例2 对比例3
月桂酰胺含量 - - - -
月桂酰甲胺含量 - - 10.2% 7.22%
由上表6的测试结果可以看出对比例2-3的产物中分别含有10.2%和7.22%的月桂酰甲胺,月桂酰甲胺是一种渗透性很强的强极性胺,具有较强的刺激性;而实施例2-3得到的产物中不含有月桂酰胺,由此可以得出即便同样是用一步法合成脂肪酰基牛磺酸盐,但是使用甲基牛磺酸钠为原料,得到的产物有较强的刺激性。
而使用牛磺酸替代甲基牛磺酸盐合成脂肪酰基牛磺酸盐,具有收率高,产物纯度高,刺激性小的优点。
实施例4-5一种脂肪酰基牛磺酸盐的合成工艺
包括以下步骤:
在一个1000mL带搅拌的三口烧瓶中,投入脂肪酸、牛磺酸和溶剂,搅拌混合均匀,加 入pH调节剂和催化剂;通入氮气,在反应过程中保持氮气保护;搅拌下,加热到反应温度,脱除反应过程中产生的水,保温反应至结束,脱除溶剂并回收,出料。具体添加量见下表7。
表7
Figure PCTCN2022133240-appb-000008
实施例4的反应条件为:牛磺酸与丙二醇的质量比为1:0.3,在180℃反应6小时,得到白色固体345.03g,其中椰油酰牛磺酸钠含量95.74%,收率为97.4%。经检测30%水溶液色泽为13Hazen。
实施例5反应条件为:牛磺酸与溶剂丙二醇的质量比为1:2,在180℃反应6小时,得到白色固体366.39g,其中椰油酰牛磺酸钠含量为89.42%,收率为96.6%。将检测30%水溶液色泽为17Hazen。
对比例4-5一种脂肪酰基牛磺酸盐的合成工艺
包括以下步骤:
在一个1000mL带搅拌的三口烧瓶中,投入脂肪酸、牛磺酸和溶剂,搅拌混合均匀,加入pH调节剂和催化剂;通入氮气,在反应过程中保持氮气保护;搅拌下,加热到反应温度,脱除反应过程中产生的水,保温反应至结束,脱除溶剂并回收,出料。具体添加量见下表8。
表8
Figure PCTCN2022133240-appb-000009
对比例4与实施例4的区别在于:反应体系中未使用溶剂,则原料牛磺酸不能溶解,反 应无法进行,加热2小时后,物料已经焦黑,发臭。
对比例5与实施例4的区别在于:牛磺酸与丙二醇的质量比为1:7,得到白色固体424.33g,其中椰油酰牛磺酸钠含量为60.1%%,收率为75.2%。经检测30%水溶液色泽为13Hazen。
经过以上实验可以看出,当无溶剂或溶剂量不足时,牛磺酸不能溶解,导致传质传热困难,反应无法进行。而当溶剂超量时,酯化副反应占比增加,产物纯度下降,最终收率显著下降。
实施例6一种脂肪酰基牛磺酸盐的合成工艺
包括以下步骤:
向1000mL带搅拌的三口烧瓶中,加入硬脂酸300.3g(1.1mol)、牛磺酸125.15g(1mol)和甘油87.6g,搅拌混合均匀,加入氢氧化钠40g,甲醇钠1.88g和次磷酸钠0.63g,通入氮气,在反应过程中保持氮气保护;搅拌下,加热到210℃,脱除反应过程中产生的水,保温反应至结束,脱除溶剂并回收。最终得到白色固体447.59g,其中硬脂酰牛磺酸钠含量83.56%,收率88.57%。
其中,所述的催化剂质量占牛磺酸质量的2%,所述的甲醇钠和次磷酸钠的质量比为3:1。
实施例7一种脂肪酰基牛磺酸盐的合成工艺
与实施例6的区别在于:叔丁醇钠0.63g,次磷酸钠0.63g。即催化剂质量占牛磺酸质量的1%,叔丁醇钠和次磷酸钠的质量比为1:1。最终得到白色固体447.46g,其中硬脂酰牛磺酸钠含量82.95%,收率87.9%。
对比例6
与实施例6的工艺区别仅在于:未添加催化剂。最终得到白色固体443.78g,其中硬脂酰牛磺酸钠含量77.21%,收率81.14%。
对比例7
与实施例6的工艺区别仅在于:甲醇钠2.5g,未添加辅助催化剂。催化剂质量占牛磺酸质量的2%。最终得到白色固体446.33g,其中硬脂酰牛磺酸钠含量80.22%,收率84.81%。
对比例8
与实施例6的工艺区别仅在于:未添加碱性金属盐催化剂,次磷酸钠2.5g。催化剂质量占牛磺酸质量的2%。最终得到白色固体447.3g,其中硬脂酰牛磺酸钠含量77.96%,收率82.48%。
对比例9
与实施例6的工艺区别仅在于:叔丁醇钠0.63g,次磷酸钠1.88g。催化剂质量占牛磺酸 质量的2%,叔丁醇钠和次磷酸钠的质量比为1:4。最终得到白色固体445.54g,其中硬脂酰牛磺酸钠含量80.1%,收率84.76%。
对比例10
与实施例6的工艺区别仅在于:叔丁醇钠2.09g,次磷酸钠0.41g。催化剂质量占牛磺酸质量的2%,叔丁醇钠和次磷酸钠的质量比为5:1。最终得到白色固体447.62g,其中硬脂酰牛磺酸钠含量80.5%,收率85.12%。
对比例11
与实施例6的工艺区别仅在于:催化剂用氧化锌2.5g。催化剂质量占牛磺酸质量的2%。最终得到白色固体448.62g,其中硬脂酰牛磺酸钠含量75.95%,收率80.29%。
根据上述实施例6和对比例6-11比较可以看出:对比例11采用氧化锌做催化剂,最终收率和无催化剂相当,收率在80%左右。而采用碱性金属盐做催化剂,收率能显著提高到84.48%。更进一步的,合适比例的碱性金属盐和辅助催化剂搭配使用时,能将收率进一步提高到88.57%。更进一步地,合适比例的碱性金属盐和辅助催化剂搭配使用时,使用1%牛磺酸质量的用量,就将收率提高到了87.9%。
综上所述,碱性金属盐是有效的催化牛磺酸和脂肪酸一步合成脂肪酰牛磺酸盐的催化剂。更进一步地,合适比例的碱性金属盐和辅助催化剂搭配,能进一步提高收率,或者减少催化剂用量。
实施例8一种脂肪酰基牛磺酸盐的合成工艺
包括以下步骤:
向1000mL带搅拌的三口烧瓶中,加入椰子油酸210g(1mol)、牛磺酸125.15g(1mol)和丙二醇62.6g,搅拌混合均匀,加入氢氧化钾53.3g,加入甲醇钠1.9g、次磷酸钠1.9g。通入氮气,在反应过程中保持氮气保护;搅拌下,加热到150℃,脱除反应过程中产生的水,保温反应至结束,脱除溶剂并回收。最终得到白色固体345.95g,其中椰油酰牛磺酸钾含量90.24%,收率91.6%。
实施例9
与实施例8的工艺区别仅在于:反应温度210℃。最终得到白色固体346.39g,其中椰油酰牛磺酸钾含量95.5%,收率97.3%。
对比例12
与实施例8的工艺区别仅在于:反应温度120℃。反应温度太低,反应未进行。
对比例13
与实施例8的工艺区别仅在于:反应温度230℃。最终得到焦黄色固体345.04g,其中椰油酰牛磺酸钾含量89.96%,收率91.1%。而且,产物中发现椰油酸酰胺。
为了进一步证明实施例8-9的效果,申请人还测试了实施例8-9以及对比例13产物的30%水溶液色泽。
表9
  实施例8 实施例9 对比例12 对比例13
反应温度,℃ 150 210 120 230
30%水溶液色泽 7Hazen 25Hazen - 103Hazen
根据上表9的数据可以看出:对比例12采用低于150℃的反应温度时,反应无法进行,对比例13采用高于210℃的反应温度,结果产生了较多杂质,检出了脂肪酰胺,并且产物颜色较深。
实施例10一种脂肪酰基牛磺酸盐的合成工艺
包括以下步骤:
向1000mL带搅拌的三口烧瓶中,投入肉豆蔻酸228.37g(1mol)、牛磺酸125.15g(1mol)和丙二醇37.5g,搅拌混合均匀,加入氢氧化钾37.2g,甲醇钠1.25g和次磷酸钠1.25g。通入氮气,在反应过程中保持氮气保护;搅拌下,加热到190℃,脱除反应过程中产生的水,保温反应至结束,脱除溶剂并回收。最终得到白色固体363.26g,其中肉豆蔻酰牛磺酸钠含量93.74%,收率95.2%。
所述的氢氧化钠当量与牛磺酸的当量比为0.93:1。
实施例11
与实施例10的工艺区别仅在于:氢氧化钠的用量为44g,与牛磺酸的当量比为1.1:1。最终得到白色固体367.41g,其中肉豆蔻酰牛磺酸钠含量93.5%,收率96.1%。
对比例14
与实施例10的工艺区别仅在于:氢氧化钠的用量为34g,与牛磺酸的当量比为0.85:1。由于碱量不够,酰胺化反应不彻底。最终得到淡黄色固体361.67g,其中肉豆蔻酰牛磺酸钠含量83.23%,收率84.2%。
对比例15
与实施例10的工艺区别仅在于:氢氧化钠的用量为52g,与牛磺酸的当量比为1.3:1。最终得到焦黄色固体375.47g,其中肉豆蔻酰牛磺酸钠含量86.65%,收率91%,且产物中发现了肉豆蔻酰胺,含量0.89%。
针对实施例10-11以及对比例14-15的产物进行了检测,检测结果见下表10。
表10
  实施例10 实施例11 对比例14 对比例15
肉豆蔻酰牛磺酸钠 93.74% 93.5% 83.23% 86.65%
收率 95.2% 96.1% 84.2% 91%
肉豆蔻酰胺 - - - 0.89%
根据上表10的检测数据可以看出:对比例14中pH调节剂和牛磺酸当量比小于0.9,结果脂肪酰牛磺酸钠收率很低;而对比例15中pH调节剂和牛磺酸当量比超过1.2,同样使得脂肪酰牛磺酸钠收率下降,且造成了部分牛磺酸的分解,产生了脂肪酰胺,增加刺激性。同时,过量的pH调节剂残留在产物中,使得产物呈较强碱性,增加了应用过程的pH调节剂用量。
实施例12一种脂肪酰基牛磺酸盐的合成工艺
包括以下步骤:
向1000mL带搅拌的三口烧瓶中,投入月桂酸甲酯214.35g(1mol)、牛磺酸125.15g(1mol)和甘油37.5g,搅拌混合均匀,加入氢氧化钠37.2g,甲醇钠1.25g和次磷酸钠1.25g。通入氮气,在反应过程中保持氮气保护;搅拌下,加热到190℃,脱除反应过程中产生的水,保温反应至结束,脱除溶剂并回收。最终得到白色固体367.45g,其中月桂酰牛磺酸钠含量95.94%,收率98.6%。
实施例13一种脂肪酰基牛磺酸盐的合成工艺
与实施例12的区别仅在于将月桂酸甲酯替换成椰子油222.7g(0.333mol)。最终得到白色固体373.13,其中椰油酰牛磺酸钠含量91.31%,收率95.3%。
对比例16一种脂肪酰基牛磺酸盐的合成工艺
包括以下步骤:
向1000mL带搅拌的三口烧瓶中,投入月桂酸甲酯214.35g(1mol)、牛磺酸125.15g(1mol)和甘油37.5g,搅拌混合均匀,加入氢氧化钠37.2g,氧化钙2.5g。通入氮气,在反应过程中保持氮气保护;搅拌下,加热到140℃,脱除反应过程中产生的水,保温反应至结束,脱除溶剂并回收。其中月桂酰牛磺酸钠含量86.83%,收率95.5%。
该合成方法参考现有技术(CN103857653A)中公开的制备方法实施。
对比例17一种脂肪酰基牛磺酸盐的合成工艺
与对比例16的区别仅在于,将月桂酸甲酯替换成椰子油222.7g(0.333mol),最终得到 白色糊状物366.94g,其中椰油酰牛磺酸钠含量83.89%,收率93.7%。
针对实施例12-13以及对比例16-17的产物进行了检测,检测结果如下表11。
表11
  实施例12 实施例13 对比例16 对比例17
月桂酰牛磺酸钠 95.94% - 91.83% -
椰油酰牛磺酸钠 - 91.31% - 88.89%
月桂酸甲酯 0.59% - 3.02% -
椰子油 - 1.56% - 4.14%
收率 98.6% 95.3% 95.5% 93.7%
为了进一步比较,针对实施例12-13以及对比例16-17的产物进行了发泡性能测试,检测结果如下表12。
表12
  实施例12 实施例13 对比例16 对比例17
发泡量,mL 1240 970 860 780
根据上表12的检测数据可以看出,对比例16和对比例17使用氧化钙做催化剂,工艺收率相对偏低,且产物中存在较多的脂肪酸酯,降低了发泡性能,而本发明采用甲醇钠和次磷酸钠作为催化剂在保证产物含量的条件下提高了产物的发泡性能。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (23)

  1. 一种脂肪酰基牛磺酸盐的合成工艺,其特征在于:包括以下步骤:
    将脂肪酸或其酯、牛磺酸和溶剂加入反应容器中,搅拌均匀后加入pH调节剂,搅拌条件下加热反应,反应过程中需要除去产生的水,反应结束,即可得到脂肪酰基牛磺酸盐产物。
  2. 根据权利要求1所述的合成工艺,其特征在于:所述的合成工艺,反应过程中还需向反应体系添加催化剂,所述的催化剂为碱性金属盐催化剂和/或辅助催化剂。
  3. 根据权利要求1所述的合成工艺,其特征在于:所述的脂肪酸为C8-C22脂肪酸;所述的脂肪酸酯为C1-C4醇脂肪酸酯。
  4. 根据权利要求3所述的合成工艺,其特征在于:所述的C8-C22脂肪酸选自月桂酸、椰子油酸、辛酸、癸酸、肉豆蔻酸、棕榈酸、硬脂酸、油酸、亚油酸和异硬脂酸中的一种或几种;所述的C1-C4醇脂肪酸酯选自甲酯、乙酯、丙二醇酯、甘油酯和异丙醇酯中的一种或几种。
  5. 根据权利要求4所述的合成工艺,其特征在于:所述的C8-C22脂肪酸为椰子油酸或月桂酸。
  6. 根据权利要求1所述的合成工艺,其特征在于:所述的溶剂为多元醇溶剂。
  7. 根据权利要求6所述的合成工艺,其特征在于:所述的多元醇溶剂为C2-C10高沸点多元醇。
  8. 根据权利要求7所述的合成工艺,其特征在于:所述的C2-C10高沸点多元醇选自甘油、丙二醇、乙二醇、赤藓醇、木糖醇、戊二醇、己二醇和丁二醇中的一种或几种。
  9. 根据权利要求8所述的合成工艺,其特征在于:所述的C2-C10高沸点多元醇选自丙二醇或/和甘油。
  10. 根据权利要求1所述的合成工艺,其特征在于:所述的pH调节剂为碱性pH调节剂;所述的碱性pH调节剂选自但不限于氢氧化钠、氢氧化钾、氢氧化锂、氢氧化镁、氢氧化钙、碳酸钠、碳酸钾、碳酸氢钠、碳酸氢钾、碳酸锂、氧化钙、氧化钠、氧化锌、乙醇钠、甲醇钠、乙醇钾、甲醇钾、三乙醇胺和三乙胺中的一种或几种。
  11. 根据权利要求10所述的合成工艺,其特征在于:所述的碱性pH调节剂为氢氧化钠、氢氧化钾、碳酸钠和碳酸钾中的一种或几种。
  12. 根据权利要求10所述的合成工艺,其特征在于,所述的碱性pH调节剂的当量与牛磺酸的当量比为0.9-1.2:1。
  13. 根据权利要求12所述的合成工艺,其特征在于,所述的碱性pH调节剂的当量与牛磺酸的当量比为0.93-1.0:1。
  14. 根据权利要求2所述的合成工艺,其特征在于:所述的碱性金属盐催化剂选自叔丁醇钠、叔丁醇钾、甲醇钠、乙醇钠、异丙醇钠、甲醇钾、乙醇钾、异丙醇钾和氧化钙中的一种或几种。
  15. 根据权利要求14所述的合成工艺,其特征在于:所述的碱性金属盐催化剂选自叔丁醇钠、甲醇钠和乙醇钠中的一种或几种。
  16. 根据权利要求2所述的合成工艺,其特征在于:所述的辅助催化剂选自次磷酸钠、硼氢化钠、氧化锌、硫酸铜、亚磷酸钠、次磷酸、亚磷酸、硼酸和苯硼酸中的一种或几种。
  17. 根据权利要求16所述的合成工艺,其特征在于:所述的辅助催化剂为次磷酸钠或硼氢化钠。
  18. 根据权利要求2所述的合成工艺,其特征在于:所述的碱性金属盐催化剂与辅助催化剂的质量比为0.5-6:1。
  19. 根据权利要求18所述的合成工艺,其特征在于:所述的碱性金属盐催化剂与辅助催化剂的质量比为1-3:1。
  20. 根据权利要求1所述的合成工艺,其特征在于:所述牛磺酸和多元醇的质量比为1:0.3-6。
  21. 根据权利要求1所述的合成工艺,其特征在于:所述的加热反应温度为150℃-220℃。
  22. 根据权利要求21所述的合成工艺,其特征在于:所述的加热反应温度为180℃-210℃。
  23. 根据权利要求1所述的合成工艺,其特征在于:所述的脂肪酰基牛磺酸盐产物可以但不局限于脂肪酰基牛磺酸盐产物的溶剂化物、水合物或脂肪酰基牛磺酸盐纯净物。
PCT/CN2022/133240 2021-11-25 2022-11-21 一种脂肪酰基牛磺酸盐的合成工艺 WO2023093677A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111415592.X 2021-11-25
CN202111415592.XA CN114181118B (zh) 2021-11-25 2021-11-25 一种脂肪酰基牛磺酸盐的合成工艺

Publications (1)

Publication Number Publication Date
WO2023093677A1 true WO2023093677A1 (zh) 2023-06-01

Family

ID=80602621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133240 WO2023093677A1 (zh) 2021-11-25 2022-11-21 一种脂肪酰基牛磺酸盐的合成工艺

Country Status (2)

Country Link
CN (1) CN114181118B (zh)
WO (1) WO2023093677A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114181118B (zh) * 2021-11-25 2022-10-14 张家港格瑞特化学有限公司 一种脂肪酰基牛磺酸盐的合成工艺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995007882A1 (en) * 1993-09-14 1995-03-23 The Procter & Gamble Company Synthesis of amido acids from carboxylic acid esters and amino acid salts
JP2002234868A (ja) * 2001-02-08 2002-08-23 Rekkutekku Laboratories Kk アシルタウリン塩の製造方法
JP2005008603A (ja) * 2003-06-23 2005-01-13 Daiee Kaseihin Kk N−アシルタウリン化合物の製造方法
US20130030198A1 (en) * 2011-07-28 2013-01-31 Conopco, Inc., D/B/A Unilever General method for preparing fatty acyl amido based surfactants
US20130030203A1 (en) * 2011-07-28 2013-01-31 Conopco, Inc., D/B/A Unilever General method for preparing fatty acyl amido based surfactants
CN111718274A (zh) * 2020-06-18 2020-09-29 广州宏度精细化工有限公司 油脂酰氨基酸盐的制备方法
US20210163405A1 (en) * 2018-04-24 2021-06-03 Conopco, Inc., D/B/A Unilever Enhanced conversion of taurine to alkyl taurate amide using phosphoric acid catalysts
CN114181118A (zh) * 2021-11-25 2022-03-15 张家港格瑞特化学有限公司 一种脂肪酰基牛磺酸盐的合成工艺

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102875422B (zh) * 2012-10-22 2014-03-26 湖北远大富驰医药化工股份有限公司 N-酰基-n-甲基牛磺酸的新合成方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995007882A1 (en) * 1993-09-14 1995-03-23 The Procter & Gamble Company Synthesis of amido acids from carboxylic acid esters and amino acid salts
JP2002234868A (ja) * 2001-02-08 2002-08-23 Rekkutekku Laboratories Kk アシルタウリン塩の製造方法
JP2005008603A (ja) * 2003-06-23 2005-01-13 Daiee Kaseihin Kk N−アシルタウリン化合物の製造方法
US20130030198A1 (en) * 2011-07-28 2013-01-31 Conopco, Inc., D/B/A Unilever General method for preparing fatty acyl amido based surfactants
US20130030203A1 (en) * 2011-07-28 2013-01-31 Conopco, Inc., D/B/A Unilever General method for preparing fatty acyl amido based surfactants
US20210163405A1 (en) * 2018-04-24 2021-06-03 Conopco, Inc., D/B/A Unilever Enhanced conversion of taurine to alkyl taurate amide using phosphoric acid catalysts
CN111718274A (zh) * 2020-06-18 2020-09-29 广州宏度精细化工有限公司 油脂酰氨基酸盐的制备方法
CN114181118A (zh) * 2021-11-25 2022-03-15 张家港格瑞特化学有限公司 一种脂肪酰基牛磺酸盐的合成工艺

Also Published As

Publication number Publication date
CN114181118B (zh) 2022-10-14
CN114181118A (zh) 2022-03-15

Similar Documents

Publication Publication Date Title
EP2888226B2 (en) Method to produce n-acyl amino acid surfactants using n-acyl amino acid surfactants or the corresponding anhydrides as catalysts
JPH0778032B2 (ja) フェルラ酸の製造方法
WO2023093677A1 (zh) 一种脂肪酰基牛磺酸盐的合成工艺
CN103274959B (zh) 一种凉味剂n,2,3-三甲基-2-异丙基丁酰胺的合成方法
CN102388017B (zh) 一种壬二酸的氨基酸衍生物的合成方法
CN103739500A (zh) 一种盐酸西那卡塞的合成与精制方法
CN109956976A (zh) 一种二氟双草酸磷酸锂的制备方法
CN107652180A (zh) 三丁酸甘油酯的生产方法
CN104860872A (zh) 一种双-(3r,4r)-1-苄基-n,4-二甲基哌啶-3-胺l-二对甲基苯甲酰酒石酸盐的合成方法
CN106220524A (zh) 一种工业上提高n,2,3‑三甲基‑2‑异丙基丁酰胺生产效率的方法
CN103145796A (zh) 一种纽甜合成工艺
CN112812031B (zh) 一种n-酰基氨基酸型表面活性剂的制备方法
CN101967081B (zh) 一种生产抗氧剂1010产生的含水甲醇溶液的回收工艺
CN104741032A (zh) 一种制备脂肪酰基蛋氨酸钠和包含这种表面活性剂的组合物的方法
CN108129303A (zh) 一种r-(+)-2-(4-羟基苯氧基)丙酸甲酯的制备方法
CN103588842A (zh) 一种倍他米松或泼尼松龙中间体的合成方法
CN117263807B (zh) 一种双烷基二甲基氯化铵及其制备方法
CN115193475B (zh) 一种脂肪酰磺酸盐表面活性剂合成用催化剂的制备与应用
CN103896784B (zh) 一种芬戈莫德中间体硝基还原为氨基的方法
CN103804265A (zh) 一种舒必利或其光学异构体的合成及后处理方法
CN104496841A (zh) 一种米拉贝隆中间体的合成方法
CN104741031B (zh) 一种脂肪酰基肌氨酸钠和包含这种表面活性剂的组合物的制备方法
CN100500643C (zh) 3,4,5-三苄氧基苯胺的化学合成方法
US20220289664A1 (en) Synthesis method of hydroxybenzylamine
US4078085A (en) 3-Aminomethyl-4-homoisotwistane and its salt and process for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897760

Country of ref document: EP

Kind code of ref document: A1