WO2023093645A1 - 无线感知方法、装置和网络侧设备 - Google Patents

无线感知方法、装置和网络侧设备 Download PDF

Info

Publication number
WO2023093645A1
WO2023093645A1 PCT/CN2022/132925 CN2022132925W WO2023093645A1 WO 2023093645 A1 WO2023093645 A1 WO 2023093645A1 CN 2022132925 W CN2022132925 W CN 2022132925W WO 2023093645 A1 WO2023093645 A1 WO 2023093645A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
target
sensing signal
sensing
wireless sensing
Prior art date
Application number
PCT/CN2022/132925
Other languages
English (en)
French (fr)
Inventor
李健之
姜大洁
姚健
吴建明
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023093645A1 publication Critical patent/WO2023093645A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/22Scatter propagation systems, e.g. ionospheric, tropospheric or meteor scatter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application belongs to the technical field of communication, and specifically relates to a wireless sensing method, device and network side equipment.
  • sensing and communication systems are usually designed separately and occupy different frequency bands.
  • IIC Integrated Sensing And Communication
  • a sensing device using a conventional radio architecture includes a power-hungry radio frequency link, which includes oscillators, mixers, and digital-to-analog converters, etc., this results in a large size of the sensing device , and the service life of the battery is short, which limits the layout of the sensing devices in the ISAC, thereby limiting the sensing performance of the ISAC system.
  • Embodiments of the present application provide a wireless sensing method, device, and network side equipment, which can use a first device in an ISAC system to backscatter target sensing signals, so as to improve the sensing performance of the ISAC system.
  • a wireless sensing method comprising:
  • the first device backscatters a target sensing signal to a wireless sensing signal receiving end, wherein the target sensing signal comes from a wireless sensing signal sending end, and the wireless sensing signal sending end includes a first terminal or a first network side device, the The receiving end of the wireless sensing signal includes a second network side device.
  • a wireless sensing device which is applied to a first device, and the device includes:
  • a backscattering module configured to backscatter a target sensing signal to a wireless sensing signal receiving end, wherein the target sensing signal comes from a wireless sensing signal sending end, and the wireless sensing signal sending end includes a first terminal or a first network side device, wherein the receiving end of the wireless sensing signal includes a second network side device.
  • a wireless sensing method comprising:
  • the receiving end of the wireless sensing signal acquires second information, the second information includes: sensing requirement information, and/or configuration information related to the target sensing signal corresponding to the sensing requirement information, and the receiving end of the wireless sensing signal includes a second Network side equipment;
  • the wireless sensing signal receiving end measures the target sensing signal sent by the wireless sensing signal sending end and at least partly backscattered by the first device according to the configuration information related to the target sensing signal, so as to obtain the target measurement quantity, the
  • the wireless sensing signal sending end includes a first terminal or a first network side device;
  • the wireless sensing signal receiving end determines a target sensing result according to the target measurement quantity, or sends the target measurement quantity.
  • a wireless sensing device which is applied to a wireless sensing signal receiving end, where the wireless sensing signal receiving end includes a second network side device, and the device includes:
  • the first acquisition module is configured to acquire second information, the second information includes: perception requirement information, and/or configuration information related to the target perception signal corresponding to the perception requirement information, and the wireless perception signal receiving end includes the second network side device;
  • the measurement module is configured to measure the target sensing signal sent by the wireless sensing signal sending end and at least partly backscattered by the first device according to the configuration information related to the target sensing signal, so as to obtain the target measurement quantity, the wireless sensing signal
  • the signal sending end includes a first terminal or a first network side device
  • An execution module configured to determine a target perception result according to the target measurement, or send the target measurement.
  • a wireless sensing method comprising:
  • the second device obtains the perceived demand information
  • the second device sends second information to at least one of the wireless sensing signal sending end and the wireless sensing signal receiving end, where the second information includes: the sensing need information, and/or, the sensing need information Corresponding target sensing signal-related configuration information, the wireless sensing signal sending end includes a first network-side device or a first terminal, and the wireless sensing signal receiving end includes a second network-side device;
  • the second device acquires at least one of a target measurement amount and a target sensing result, where the target measurement amount is sent by the wireless sensing signal receiving end to the wireless sensing signal sending end and at least partially passed through the second A device measures the target perception signal backscattered to obtain a measurement quantity, and the target perception result is determined based on the target measurement quantity.
  • a wireless sensing device which is applied to a second device, and the device includes:
  • the second acquisition module is used to acquire perceived demand information
  • the first sending module is configured to send second information to at least one of the wireless sensing signal sending end and the wireless sensing signal receiving end, the second information including: the sensing demand information, and/or, related to the sensing Target sensing signal-related configuration information corresponding to the demand information, the wireless sensing signal sending end includes a first network-side device or a first terminal, and the wireless sensing signal receiving end includes a second network-side device;
  • a third acquiring module configured to acquire at least one of a target measurement quantity and a target perception result, wherein the target measurement quantity is at least partially sent by the wireless sensing signal receiving end to the wireless sensing signal sending end
  • the target perception signal backscattered by the first device is measured to obtain a measurement quantity, and the target perception result is determined based on the target measurement quantity.
  • a wireless sensing system including: a first device, a wireless sensing signal sending end, and a wireless sensing signal receiving end;
  • the wireless sensing signal sending end includes a first network-side device or a first terminal, and the wireless sensing signal receiving end includes a second network-side device;
  • At least one of the wireless sensing signal sending end and the wireless sensing signal receiving end is used to obtain second information, where the second information includes: the sensing demand information, and/or, the sensing demand information Corresponding target perception signal-related configuration information;
  • the wireless sensing signal sending end is configured to determine the configuration information related to the target sensing signal according to the sensing requirement information, and send the target sensing signal according to the sensing signal related configuration information, or the wireless sensing signal sending end is used to sending a target sensing signal according to the acquired configuration information related to the sensing signal;
  • the first device is configured to backscatter the target sensing signal sent by the wireless sensing signal sending end;
  • the wireless sensing signal receiving end is configured to measure the target sensing signal sent by the wireless sensing signal sending end and at least partly backscattered by the first device, so as to obtain a target measurement amount.
  • a network-side device in an eighth aspect, includes a processor and a memory, the memory stores programs or instructions that can run on the processor, and the programs or instructions are executed by the processor When implementing the steps of the method described in the third aspect or the fifth aspect.
  • a ninth aspect provides a network-side device, including a processor and a communication interface, where, when the network-side device is a wireless sensing signal receiving end, the communication interface is used to acquire second information, and the first The second information includes: sensing requirement information, and/or configuration information related to target sensing signals corresponding to the sensing requirement information; The target sensing signal sent and at least partly backscattered by the first device is measured to obtain the target measurement value, and the wireless sensing signal sending end includes the first terminal or the first network side device; the processor is configured to The target measurement quantity is used to determine a target perception result, or the communication interface is used to send the target measurement quantity;
  • the communication interface is used to acquire sensing demand information, and send second information to at least one of a wireless sensing signal sending end and a wireless sensing signal receiving end, the The second information includes: the sensing requirement information, and/or, sensing signal-related configuration information corresponding to the sensing requirement information, the sending end of the wireless sensing signal includes a first network-side device or a first terminal, and the wireless The receiving end of the sensing signal includes a second network-side device; the communication interface is also used to obtain at least one of a target measurement amount and a target sensing result, wherein the target measurement amount is obtained by the wireless sensing signal receiving end through the The target sensing signal sent by the wireless sensing signal transmitter and at least partly backscattered by the first device is measured to obtain a measurement amount, and the target sensing result is determined based on the target measurement amount.
  • a tenth aspect provides a wireless sensing system, including: a terminal and a network side device, the network side device can be used to execute the steps of the wireless sensing method as described in the third aspect and the fifth aspect.
  • a readable storage medium where programs or instructions are stored on the readable storage medium, and when the programs or instructions are executed by a processor, the steps of the method as described in the first aspect are implemented, or The steps of the method described in the third aspect, or implementing the steps of the method described in the fifth aspect.
  • a chip in a twelfth aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the above described in the first aspect method, or implement the method as described in the third aspect, or implement the method as described in the fifth aspect.
  • a computer program product is provided, the computer program product is stored in a storage medium, and the computer program product is executed by at least one processor to implement the first aspect or the third aspect or the fifth aspect Steps of the wireless sensing method.
  • a communication device configured to execute the method as described in the first aspect or the third aspect or the fifth aspect.
  • the first device backscatters the target sensing signal to the wireless sensing signal receiving end, wherein the target sensing signal comes from the wireless sensing signal sending end, and the wireless sensing signal sending end includes the first terminal or the second A network-side device, wherein the wireless sensing signal receiving end includes a second network-side device.
  • the backscattering function of the first device using the backscattering function of the first device, at least part of the target sensing signal sent by the wireless sensing signal sending end is backscattered to the wireless sensing signal receiving end, which can avoid setting the wireless sensing signal sending end at the position of the first device and the receiving end, in view of the fact that the first device with the backscatter function may not have a power-consuming radio frequency link, and thus has the characteristics of small size and low power consumption, compared with the wireless sensing signal sending end and receiving end, it is more It is convenient to be deployed in the ISAC system to improve the perceived performance of the ISAC system.
  • FIG. 1 is a schematic structural diagram of a wireless communication system to which an embodiment of the present application can be applied;
  • FIG. 2 is a flow chart of the first wireless sensing method provided by the embodiment of the present application.
  • Figure 3a is one of the schematic diagrams of a wireless sensing system applying the wireless sensing method provided by the embodiment of the present application;
  • Fig. 3b is the second schematic diagram of a wireless sensing system applying the wireless sensing method provided by the embodiment of the present application;
  • Fig. 3c is the third schematic diagram of a wireless sensing system applying the wireless sensing method provided by the embodiment of the present application.
  • FIG. 4 is a flowchart of a second wireless sensing method provided by an embodiment of the present application.
  • FIG. 5 is a flowchart of a third wireless sensing method provided by an embodiment of the present application.
  • FIG. 6 is one of the schematic diagrams of information interaction in a wireless sensing method provided in an embodiment of the present application.
  • FIG. 7 is the second schematic diagram of information interaction in a wireless sensing method provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a first wireless sensing device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a second wireless sensing device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a third wireless sensing device provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a network-side device provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of another network-side device provided by an embodiment of the present application.
  • first, second and the like in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific sequence or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the application are capable of operation in sequences other than those illustrated or described herein and that "first" and “second” distinguish objects. It is usually one category, and the number of objects is not limited. For example, there may be one or more first objects.
  • “and/or” in the description and claims means at least one of the connected objects, and the character “/” generally means that the related objects are an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-Carrier Frequency Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used for the above-mentioned system and radio technology, and can also be used for other systems and radio technologies.
  • NR New Radio
  • the following description describes the New Radio (NR) system for illustrative purposes, and uses NR terminology in most of the following descriptions, but these techniques can also be applied to applications other than NR system applications, such as the 6th generation (6 th Generation, 6G) communication system.
  • 6G 6th Generation
  • Fig. 1 shows a block diagram of a wireless communication system to which the embodiment of the present application is applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12 .
  • the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, a super mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), augmented reality (augmented reality, AR) / virtual reality (virtual reality, VR) equipment, robot, wearable device (Wearable Device) , Vehicle User Equipment (VUE), Pedestrian User Equipment (PUE), smart home (home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.), game consoles, personal computers (personal computer, PC), teller machine or self-service machine and other terminal side devices, wearable devices include: smart watches, smart bracelet
  • the network side device 12 may include an access network device or a core network device, wherein the access network device may also be called a radio access network device, a radio access network (Radio Access Network, RAN), a radio access network function, or a wireless access network unit.
  • RAN Radio Access Network
  • the access network equipment may include a base station, a wireless local area network (Wireless Local Area Network, WLAN) access point or a wireless fidelity (Wireless Fidelity, WiFi) node, etc.
  • the base station may be called a node B, an evolved node B (eNB), an access network Access Point, Base Transceiver Station (BTS), Radio Base Station, Radio Transceiver, Basic Service Set (BSS), Extended Service Set (ESS), Home Node B, Home Evolution Type B node, Transmitting Receiving Point (Transmitting Receiving Point, TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms.
  • eNB evolved node B
  • BTS Base Transceiver Station
  • BSS Basic Service Set
  • ESS Extended Service Set
  • TRP Transmitting Receiving Point
  • TRP Transmitting Receiving Point
  • Core network equipment may include but not limited to at least one of the following: core network nodes, core network functions, mobility management entities (Mobility Management Entity, MME), access mobility management functions (Access and Mobility Management Function, AMF), session management functions (Session Management Function, SMF), User Plane Function (UPF), Policy Control Function (Policy Control Function, PCF), Policy and Charging Rules Function (PCRF), edge application service Discovery function (Edge Application Server Discovery Function, EASDF), unified data management (Unified Data Management, UDM), unified data storage (Unified Data Repository, UDR), home subscriber server (Home Subscriber Server, HSS), centralized network configuration ( Centralized network configuration, CNC), network storage function (Network Repository Function, NRF), network exposure function (Network Exposure Function, NEF), local NEF (Local NEF, L-NEF), binding support function (B
  • radar and communication systems may be co-located, or even physically integrated, they transmit two different signals in the time/frequency domain. They cooperate to share the same resources to minimize interference with each other when working simultaneously.
  • Corresponding measures include beamforming, cooperative spectrum sharing, primary and secondary spectrum sharing, and dynamic coexistence.
  • effective interference cancellation usually has strict requirements on node mobility and information exchange between nodes, so the improvement of spectrum efficiency is actually relatively limited. Since interference in a coexistence system is caused by transmitting two separate signals, it is natural to ask whether we can simultaneously use one transmitted signal for both communication and radar sensing.
  • Radar systems often use specially designed waveforms, such as short pulses and chirps, that enable high power radiation and simplify receiver processing.
  • waveforms are not necessary for radar detection, a good example is passive radar or passive sensing where different radio signals are used as sensing signals.
  • Wireless sensing can broadly refer to retrieving information from received radio signals, rather than communication data modulated onto the signal at the transmitter.
  • the target signal reflection delay, angle of arrival (AOA), angle of departure (AOD), Doppler and other dynamics can be analyzed by common signal processing methods. Parameters are estimated; for the perception of the physical characteristics of the target, it can be realized by measuring the inherent mode signals of equipment, objects, and living things. The two perception methods can be called perception parameter estimation and pattern recognition respectively.
  • wireless sensing refers to more general sensing techniques and applications that use radio signals.
  • PMNs Perceptive Mobile Networks
  • PMN can evolve from the current 5G mobile network and is expected to become a ubiquitous wireless sensor network while providing stable and high-quality mobile communication services. It can be built on the existing mobile network infrastructure without major changes to the network structure and equipment. It will unleash the maximum capacity of the mobile network and avoid the high cost of infrastructure to build a new wide-area wireless sensor network separately. With increased coverage, integrated communication and sensing capabilities are expected to enable many new applications.
  • the perceived mobile network is capable of providing both communication and wireless sensing services, and has the potential to become a ubiquitous wireless sensing solution due to its large broadband coverage and robust infrastructure.
  • Perceived mobility networks can be widely used in communications and sensing in transportation, communications, energy, precision agriculture, and security, where existing solutions are either not feasible or inefficient. It can also provide complementary sensing capabilities to existing sensor networks, with unique day and night operation and the ability to see through fog, foliage and even solid objects.
  • the wireless sensory signal receivers can determine the sensory measurement according to the received sensory signals sent by the wireless sensory signal transmitters.
  • Quantities and sensing results while the wireless sensing signal transmitting end and the wireless sensing signal receiving end include power-consuming radio frequency links, which include oscillators, mixers, and digital-to-analog converters, etc., which leads to a larger size of the sensing device , and the service life of the battery is short, which limits the layout of the sensing devices in the ISAC, which in turn makes the sensing performance of the ISAC system low.
  • At least part of the signal sent by the wireless sensing signal transmitter can be backscattered through the first device with low energy consumption and small size, so as to provide a new sensing path and even provide new sensing assistance information to improve the perception performance of the ISAC system.
  • the low-power, low-complexity backscatter communications (Backscatter Communications, BSC) technology is a technology that simply relies on passive reflection and modulation of incident radio frequency (Radio Frequency, RF) waves, Driven by advances in consumer electronics, 5G communication technology, and cloud computing-supported big data analysis technologies in recent years, the rapid growth of the Internet of Things has attracted great attention from both industry and academia.
  • RF Radio Frequency
  • One of the main open challenges facing IoT is the limited lifetime of the network due to the large number of IoT devices powered by batteries with limited capacity.
  • the BSC technique has emerged as a promising technique in addressing this challenge.
  • RFID Radio Frequency Identification
  • Passive RFID tags can report to readers interrogating in the near field (usually a few centimeters to one meter) ID.
  • the Internet of Things mainly consisted of RFID devices for logistics and inventory management.
  • the 6G Internet of Things is expected to connect tens of billions of devices, complete more complex and multi-functional tasks, and have a global impact. This requires the communication capability and range (tens of meters) between IoT nodes to be far beyond the original RFID, that is, it only supports burst and low-rate transmission within a few meters (only a pre-written ID sequence of several bytes is transmitted) .
  • the traditional RFID communication distance is on the order of m, while the communication distance of the next-generation BSC is generally expected to reach the order of km; the traditional RFID uses binary modulation, and the communication rate is generally not greater than 640Kbps; the next-generation BSC can use high-order modulation, and the communication rate can at least Up to 10Mbps, even 2Gbps.
  • advanced communication technologies such as small cell network, full-duplex, multi-antenna communication, mass access and wireless power transfer, as well as miniature radios (such as button-sized radios) and low-power electronic device manufacturing , so that the above objectives can be achieved.
  • miniature radios such as button-sized radios
  • the integration of synaesthesia can give birth to a series of new 6G applications.
  • the integration of synaesthesia based on low-power communication devices will also become an important application scenario of 6G.
  • wireless perception based on radio frequency identification (Radio Frequency Identification, RFID) and backscatter communications (Backscatter Communications) technology compared with the wireless perception of device decoupling (Device-free) in related technologies, in While realizing the basic perception function, it can also obtain additional perception target information, which is expected to further enhance the performance of perception/synaesthesia integration.
  • RFID and backscatter have the advantages of low cost, low power consumption, and large-scale deployment
  • sensing and synaesthesia integration based on RFID/backscatter are expected to be widely used in 6G.
  • a roadside unit Roadside Unit, RSU
  • RSU roadside Unit
  • the RFID or backscatter tag tag
  • the tag can additionally provide auxiliary information such as the vehicle ID and the current state of the vehicle.
  • the RSU By receiving the reflected signal of the tag, the RSU can realize high-precision vehicle positioning, speed measurement, and trajectory tracking, and can also accurately identify and distinguish different vehicles on the road, expanding the perception capability.
  • key technologies in RFID-based wireless sensing such as tag-based synaesthesia integration waveform design, frame structure design, sensing scheme and algorithm design are all problems that need to be studied and solved.
  • An embodiment of the present application provides a wireless sensing solution based on the backscatter function of the first device, so that the first device can be applied to wireless sensing.
  • the first kind of wireless sensing method provided by the embodiment of the present application its executive body can be the first device, and the first device has backscattering function, for example: the first device can include radio frequency identification (Radio Frequency Identification , RFID) tag and backscattering Backscatter tag etc. have backscattering function (or be referred to as backscattering function) equipment, do not exhaustively here, and for the convenience of explanation, in the following embodiment, take the first equipment as tag
  • the first device may include a tag or a tag array composed of multiple tags.
  • the first device may also include other devices with backscattering functions, or even Other sensor devices and the like may be included, which are not specifically limited here.
  • the first wireless sensing method may include the following steps:
  • Step 201 the first device backscatters the target sensing signal to the wireless sensing signal receiving end, wherein the target sensing signal comes from the wireless sensing signal sending end, and the wireless sensing signal sending end includes the first terminal or the first network side device , the receiving end of the wireless sensing signal includes a second network side device.
  • the first device may have an antenna, and the signal collection range of the antenna is greater than or equal to the first distance between the first device and the wireless sensing signal receiving end, and greater than or equal to the distance between the first device and the wireless sensing signal transmitting end The second distance, so that the antenna of the first device can be used to collect the target sensing signal from the wireless sensing signal sending end, and the backscattered target sensing signal can be received by the wireless sensing signal receiving end, and the wireless sensing signal receiving end can receive The signal quality or signal strength of the target sensing signal meets the sensing condition corresponding to the sensing requirement, that is, the first device is located within the coverage of the wireless sensing signal sending end and the wireless sensing signal receiving end, and the first device By adjusting the matching impedance of the antenna and other processes, the wireless sensing signal collected by the backscatter antenna is realized.
  • the above-mentioned first device has a backscatter function, that is, the first device is a low-power consumption and low-complexity device that supports backscatter communication, and the device that supports backscatter communication can be modulated and backscatter (in the following embodiments may be simply referred to as "reflection") to send information from wireless signals received from the environment, without the need for traditional communication modules such as power-consuming transceivers and amplifiers, which can achieve extremely low power consumption and Low cost communication.
  • a device supporting backscatter communication may choose to harvest the energy of surrounding wireless signals or other energy for its communication, thereby enabling even zero-power consumption communication.
  • the transmitting end of the wireless sensing signal may be a first network-side device (such as a base station or a Transmit Receive Point (TRP)) or a first terminal, and the receiving end of the wireless sensing signal may be a second network-side device ( For example: base station or TRP).
  • first network-side device such as a base station or a Transmit Receive Point (TRP)
  • TRP Transmit Receive Point
  • second network-side device For example: base station or TRP
  • the receiving end of the wireless sensing signal can be a base station
  • the sending end of the wireless sensing signal can be a base station or a terminal, that is, the base station A sends the sensing signal, some or all of the signal is backscattered by the tag, and the base station B receives the sensing signal.
  • the user equipment User Equipment, UE
  • the base station receives the sensing signal.
  • the receiving end of the wireless sensing signal may also be a terminal, or the same network-side device or the same terminal as the sending end of the wireless sensing signal, as shown in Figure 3b and Figure 3c, for example, as shown in Figure 3b
  • the receiving end of the wireless sensing signal and the sending end of the wireless sensing signal are the same device (base station or terminal), that is, the base station sends the sensing signal, part or all of the signal is backscattered by the tag, and the base station receives the sensing signal; or, the UE Sensing signals are sent, part or all of which are backscattered by tags, and the UE receives the sensing signals.
  • the receiving end of the wireless sensing signal can be a UE
  • the sending end of the wireless sensing signal can be a base station or a terminal, that is, UE A sends the sensing signal, part or all of the signal is backscattered by the tag, and UE B receives the sensing signal. signal; or, the base station sends a sensing signal, part or all of the signal is backscattered by the tag, and the UE receives the sensing signal.
  • the base station receives the sensing signal sent by the terminal or another base station and at least partly backscattered by the first device to obtain the sensing measurement.
  • the method further includes:
  • the first device receives first indication information from the wireless sensing signal sending end, where the first indication information is used to indicate first information that the first device needs to feed back to the wireless sensing signal receiving end;
  • the first device backscatters the target sensing signal to the wireless sensing signal receiving end, including:
  • the first device modulates the first information on the target sensing signal, so that a wireless sensing signal receiving end receives the modulated target sensing signal.
  • the above-mentioned first indication information is used to instruct the first device to modulate the specified first information in the target sensing signal
  • the target sensing signal may be understood as: a sensing signal used for sensing measurement.
  • the first indication information and the target sensing signal may be signals sent by the wireless sensing signal sending end at different times, for example: after the first device acquires the first indication information, And determine the first information according to the first indication information. After a period of time (time gap), the first device modulates the previously determined first information onto the sensing signal and backscatters the sensing signal, and the wireless sensing signal receiving end receives the modulated sensing signal. Wherein, the first device modulates the first information on the sensing signal, which can be understood as: the first device adjusts the amplitude, phase, or frequency of the sensing signal in the environment where the first device is located by adjusting the matching impedance and other processes. and so on, so as to modulate the sensing signal, and make the sensing signal carry the first information.
  • the first indication information and the target perception signal may be located in different information domains of the same signal, for example: the header area of a certain signal may carry the first indication information, the Other regions of the signal can be viewed as perceptual signals for perceptual measurements.
  • the first device may demodulate the received signal to obtain the first indication information therefrom, and prepare the first information that needs to be modulated into the backscattered sensing signal according to the indication of the first indication information , at this time, the first device may provide additional first information, for example: location information of the first device, information of target sensing objects attached to the first device, etc., so that the first information may be used to assist the wireless sensing process, Even the first information of the first device can be directly used as the sensing result, which improves the sensing performance of the wireless sensing process.
  • additional first information for example: location information of the first device, information of target sensing objects attached to the first device, etc.
  • the target sensing signal sent by the wireless sensing signal sending end may be an unmodulated continuous wave (Continuous Wave, CW) signal
  • the first device modulates the first information on the target Sensitive signals, including:
  • the first device modulates the first information onto the CW signal.
  • the first indication information may indicate which first information the first device needs to modulate in the backscattered target perception signal, for example: the first information includes the second measurement quantity collected by the first device , or other relevant information pre-stored in the tag may also be controlled, for example: the tag modulates the first information into the CW signal.
  • the first device may modulate the first information in the backscattered target sensing signal, so as to provide the sensing process with information other than the sensing measurement, thereby improving the sensing performance of the sensing system.
  • the target sensing signal received by the first device may also be of other signal types, and the manner in which the first device backscatters the target sensing signal and the backscattering
  • the manner in which the first information is carried in the target perception signal can be adjusted adaptively, and is not specifically limited here.
  • the first device may not acquire the first indication information, but directly backscatter the sensing signal. At this time, the sensing signal backscattered by the first device may not carry the first indication information added by the first device. a message.
  • the sensing signal sent by the wireless sensing signal transmitter is a preset sensing signal sequence with known or predetermined signal configuration information such as waveform, bit sequence, and frequency range.
  • the preset sensing signal sequence is backscattered by the first device to the wireless sensing signal receiving end, and the wireless sensing signal receiving end can perform target signal processing based on the target sensing signal sequence and the preset sensing signal sequence to obtain the target measurement quantity.
  • Target signal processing includes, but is not limited to, operations such as matched filtering, cross-correlation, and sliding correlation.
  • the result of target signal processing is to obtain target measurement quantities.
  • the sensing signal sent by the wireless sensing signal sending end may also be the sensing signal sent at least two intervals, which is not specifically limited here.
  • the sensing signal receiving end receives at least part of the target sensing signal backscattered by the first device, at least one of processing such as measurement and demodulation may be performed on the target sensing signal to obtain the target measurement amount.
  • the target sensing result required by the target sensing demand information is determined based on the target measurement quantity.
  • the node that determines the target sensing result based on the target measurement quantity may be a base station, UE, core network or application server, which will not be described in detail here. limited.
  • the receiving end of the wireless sensing signal can calculate the target sensing result based on the obtained target measurement, and then directly or indirectly send the target sensing result to the initiator of the sensing service, or the sensing signal receiving end can send the target measurement to the At least one of other base stations, UEs, core networks or application servers, after calculating the target sensing result through at least one of other base stations, UEs, core networks or application servers, and sending it to the initiator of the sensing service.
  • the tag has the characteristics of low power consumption, low cost, and small size, and is very suitable for large-scale deployment in the environment. Therefore, compared with the above-mentioned several sensing methods, it can greatly increase the sensing range (increase the sensing physical distance, physical Angle range, increasing the density of the sensory network), improving sensory performance (improving sensory resolution, reducing sensory error, improving sensory signal-to-noise ratio, etc.);
  • Tags can be deployed both in the environment and on the perceived target. No matter where it is deployed, it can provide additional sensing information (environmental information, sensing target object information) for the sensing party, assisting device-free (device decoupling) sensing to improve sensing performance, and at the same time, compared with device-based (device-based ) perception has lower power consumption and less signaling overhead;
  • the tag is artificially designed, and its own backscattering characteristics are more stable than the reflection characteristics of device-free sensing objects. It is relatively less susceptible to interference from perception distance and perception (observation) direction, and is easier to be perceived. party detection, which improves the perceptual robustness;
  • the tag deployment method is flexible. By cleverly deploying several tags or tag arrays on some paths where the sensory signal is difficult to propagate, it is expected to play a certain role in sensory blindness supplementation;
  • the storage information on the tag can be used as a priori information stored in the core network perception at the beginning of deployment
  • the network function unit Send Network Function, SNF
  • SNF Sesing Network Function
  • the prior information stored in the tag can be read by the base station or terminal connected to the tag, so it can provide a richer and more flexible sensing solution for the network , to achieve more perception functions;
  • the above-mentioned target sensing signal can be a sensing signal in a specific sensing service, such as: weather monitoring, reconstruction of three-dimensional maps, traffic/crowd sensing, air quality detection such as PM2.5 monitoring, Perception services such as factory pollutant detection, farm livestock monitoring, or human action/posture recognition.
  • a specific sensing service such as: weather monitoring, reconstruction of three-dimensional maps, traffic/crowd sensing, air quality detection such as PM2.5 monitoring, Perception services such as factory pollutant detection, farm livestock monitoring, or human action/posture recognition.
  • the initiator of the sensing service may be a third-party application, a core network (or a network management system, or a base station) or a UE.
  • the sensing method provided in the embodiment of the present application may include the following steps:
  • the application server receives the perception requirement of the third-party application, for example: the perception requirement is a three-dimensional map of the perception target area (the accuracy/resolution of the map is 5m), and the target area can be a specified area, such as a certain building
  • the surrounding area may also be the surrounding area of the target UE, and the sensing requirement may include information of the target area, such as information such as the longitude and latitude (range) of the area.
  • Step 2) The application server (including: the server in the network, such as IP Multimedia System (IP Multimedia Subsystem, IMS), or including the server outside the network) sends the perception demand to the core network (such as access and mobility management function (Access and Mobility Management) Function, AMF)) or the sensing network function/sensing network element of the core network, such as: Sensing Network Function (Sensing Network Function, SNF). Or, the application server sends the perception requirement to the AMF, and the AMF forwards the requirement to the perception network function/perception network element.
  • the core network such as access and mobility management function (Access and Mobility Management) Function, AMF)
  • AMF Access and Mobility Management Function
  • SNF Sensing Network Function
  • Step 3) The core network network function or network element (such as the sensing network function/sensing network element) determines the associated base station, UE and tag according to the sensing requirement, and sends the sensing requirement information and/or sensing signal related configuration information to the associated base station A or UE, or can also send the sensing demand information and/or sensing signal-related configuration information to the wireless sensing signal receiving base station (that is, the base station or base station B as shown in Figure 3a, for the convenience of description, hereinafter collectively referred to as base station B ).
  • the wireless sensing signal receiving base station that is, the base station or base station B as shown in Figure 3a, for the convenience of description, hereinafter collectively referred to as base station B ).
  • the core network network function or network element determines the associated base station according to the sensing demand, and sends the sensing demand and/or the sensing signal related configuration corresponding to the sensing demand to the associated base station.
  • Step 4) The core network (or sensing network element) or the wireless sensing signal transmitter (ie, base station A or UE as shown in Figure 3a), sends the sensing signal-related configuration information (including time-frequency information, sequence information, etc.) or sensing requirements sent to base station B.
  • the sensing signal-related configuration information including time-frequency information, sequence information, etc.
  • Step 5 The core network (or sensory network element) or the wireless sensory signal transmitter (ie base station A or UE as shown in Figure 3a) will need the type of measurement quantity related to the sensory signal measured by UE B (such as: AOA, AOD , time delay, signal receiving power, radar spectrum information, etc.) to base station B (receiving base station); it should be noted that, when the type of measurement is determined by base station B according to the sensing requirements, the core network (or sensing network element ) or the base station A or the UE does not need separate signaling to indicate the type of the measurement amount (for example: the base station B determines the type of the measurement amount according to the mapping table from the sensing requirement to the type of measurement amount).
  • the base station B determines the type of the measurement amount according to the mapping table from the sensing requirement to the type of measurement amount.
  • Step 6) The base station A or the UE sends the sensing signal, wherein the base station A or the UE may send the sensing signal in a beam sweeping manner.
  • Step 7) The base station B receives at least part of the sensing signal after tag backscattering, so as to obtain the target measurement quantity.
  • Step 8) Determine the target perception result according to the target measurement quantity.
  • At least one of the core network, the application server, the base station, or the UE may determine the target perception result according to the target measurement quantity.
  • Mode 1 If the conversion of the target measurement quantity to the target perception result is in the core network or application server, then the above step 8) may include the following specific process:
  • Step 81a) Base station B sends the target measurement quantity to the core network (or sensing network element), or base station B sends the target measurement quantity to base station A or UE, and base station A or UE sends the target measurement quantity to the core network (or sensing network element). network element);
  • Step 82a) The core network (or sensing network element) sends the target measurement quantity to the application server, and the application server determines the target sensing result according to the target measurement quantity, or the core network (or sensing network element) determines the target sensing result according to the target measurement quantity, And send the target perception result to the application server;
  • Step 83a) The application server sends the target perception result to the third-party application.
  • step 8) may include the following specific process:
  • Step 81b Base station B determines the target sensing result according to the target measurement quantity, and sends the target sensing result to the core network (or sensing network element);
  • Step 82b) The core network (or sensing network element) sends the target sensing result to the application server;
  • Step 83b) The application server sends the target perception result to the third-party application.
  • step 8) may include the following specific process:
  • Base station B sends the target measurement quantity to the UE (it may be the UE sending the target sensing signal, or a pre-designated UE), or, base station B sends the target measurement quantity to the core network network function or network element (such as sensing network function/aware network element), and the core network network function or network element (such as a sensory network function/aware network element) sends the measured quantity to the UE;
  • the core network network function or network element such as sensing network function/aware network element
  • the core network network function or network element such as a sensory network function/aware network element
  • Step 82c) The UE determines the target sensing result according to the target measurement quantity, and sends the target sensing result to the core network (or sensing network element).
  • Step 83c) The core network (or sensing network element) sends the target sensing result to the application server;
  • Step 84c) The application server sends the target perception result to the third-party application.
  • the difference between the sensing method provided in the embodiment of the present application and the first specific embodiment is that:
  • the core network network function or network element obtains the configuration information related to the sensing requirement and/or sensing signal from the core network AMF, or the AMF receives the configuration information related to the sensing requirement or sensing signal sent by the network management system, and Forwarding to the sensing network element, or, the AMF receives the sensing demand or sensing signal-related configuration information sent by the base station that initiates the sensing service, and forwards it to the sensing network element (of course, the sensing demand of the wireless sensing signal sending end (base station A or UE) or Sensing signal-related configuration information may not be sent to the core network, but directly sent to the wireless sensing signal receiving end (base station B));
  • the node that completes the target measurement quantity to the target sensing result can directly or indirectly send the target sensing result to the initiator of the sensing service.
  • the initiator of the perception service can obtain the target perception result in the following ways:
  • Base station B sends the target measurement quantity to the core network (AMF or perception network element); or, base station B sends the target measurement quantity to base station A or UE, and base station A or UE sends the target measurement quantity to the core network (AMF or perception network element). Yuan);
  • the core network converts the target measurement into the target perception result
  • the core network sends the target perception result to the network management system; or the core network sends the target measurement quantity to the network management system, and the network management system converts the target measurement quantity into the target perception result;
  • the core network sends the target sensing result to the base station.
  • the initiator of the sensing service can obtain the target sensing result in the following ways:
  • Base station B determines the target sensing result according to the target measurement quantity, and sends the target sensing result to the core network (AMF or sensing network element);
  • AMF core network
  • the core network sends the target sensing results to the network management system
  • the core network sends the target sensing result to the base station.
  • the initiator of the sensing service can obtain the target sensing result in the following ways:
  • Base station B sends the target measurement quantity to the UE (it may be the UE sending the target sensing signal, or a pre-designated UE), or, base station B sends the target measurement quantity to the core network network function or network element (such as the perception network function/ sensing network element), the core network network function or network element (such as sensing network function/sensing network element) sends the target measurement quantity to the UE;
  • the core network network function or network element such as the perception network function/ sensing network element
  • the core network network function or network element such as sensing network function/sensing network element
  • the UE determines the target sensing result according to the target measurement quantity, and sends the target sensing result to the core network (AMF or sensing network element);
  • AMF sensing network element
  • the core network sends the target perception result to the network management system
  • the core network sends the target sensing result to the base station.
  • the core network may not participate in the entire sensing process. Completed by UE or base station.
  • the sensing service is initiated by a UE (the UE that sends the target sensing signal, the UE served by the base station sending the target sensing signal, or other UEs, for the sake of illustration, it is collectively referred to as the sensing service initiating UE in this embodiment), this application
  • the sensing method provided in the embodiment is that:
  • the sensing service is initiated by the UE sending a sensing request (including sensing demand information) and/or sensing signal-related configuration information to the AMF through Non Access Stratum (NAS) signaling, and then passing the sensing demand information and/or sensing
  • the signal-related configuration information is forwarded to the sensing network element;
  • the node that completes the target measurement quantity to the target sensing result can directly or indirectly send the target sensing result to the initiator of the sensing service.
  • the initiator of the perception service can obtain the target perception result in the following ways:
  • Base station B sends the target measurement quantity to the core network (AMF or sensing network element), or base station B sends the target measurement quantity to the sensing signal sending end (base station A or UE), and base station A or UE sends the target measurement quantity to the core network network (AMF or perception network element);
  • AMF sensing network element
  • base station B sends the target measurement quantity to the sensing signal sending end (base station A or UE)
  • base station A or UE sends the target measurement quantity to the core network network (AMF or perception network element);
  • the core network converts the target measurement into the target perception result
  • the core network (via NAS signaling) sends the target sensing result to the sensing service initiation UE; or, the core network (AMF or sensing network element) sends the target sensing result to the base station associated with the sensing service initiation UE , and the associated base station sends the target sensing result to the UE that initiates the sensing service.
  • the initiator of the sensing service can obtain the target sensing result in the following ways:
  • Base station B converts the target measurement quantity into a target sensing result, and sends the target sensing result to the core network (AMF or sensing network element);
  • AMF sensing network element
  • the core network sends the sensing result to the sensing service initiating UE (through NAS signaling); or, the core network (AMF or sensing network element) sends the sensing result to the base station associated with the sensing service initiating UE, and the association The base station then sends the sensing result to the UE that initiates the sensing service.
  • the initiator of the sensing service can obtain the target sensing result in the following ways:
  • Base station B sends the target measurement quantity to the UE, or base station B sends the target measurement quantity to the core network (AMF or perception network element), and the core network (AMF or perception network element) (through NAS signaling) then sends the target measurement quantity Send to the UE, or base station B sends the target measurement quantity to the core network (AMF or perception network element), the core network (AMF or perception network element) sends the target measurement quantity to the UE associated base station, and the associated base station then sends the target measurement quantity send to UE;
  • the UE determines the target perception result according to the target measurement quantity.
  • the core network may not participate in the entire sensing process, for example: the sensing service is initiated by the UE, and the conversion from the target measurement quantity to the target sensing result is performed at the UE or The base station is complete.
  • the above-mentioned process of determining the target perception result (for example: three-dimensional map) according to the target measurement quantity (for example: angle information, signal received power information, etc.) may be performed in UE or base station A or base station B, or The core network or application server is completed, and the relevant information of base station A or UE such as antenna position, synchronization information (SFN start time), AI related information (such as AI training data), etc. can also be sent to the target perception The node for the result transformation to assist in the transformation process.
  • the billing function is completed in the core network or application server.
  • the network function or network element of the core network (such as the sensing network function/sensing network element) is collectively referred to as the second device.
  • the second device may be a sensing network function/a sensing network element in a core network, or may be a sensing network function/a sensing network element in an access network, which is not specifically limited here.
  • the second device being an SNF as an example, it satisfies at least one of the following characteristics:
  • the SNF can be associated with the target UE (including the UE shown in Figure 3a), or the serving base station of the target UE, or the target tag (that is, the tag participating in the sensing process), or the serving base station of the target tag, or the target area
  • the base station performs target information interaction to obtain target sensing results or target measurement quantities (uplink measurement quantities or downlink measurement quantities), where the target information includes processing perception requests, interaction sensing capabilities, interaction sensing assistance data, interaction sensing measurement quantities, or perception result;
  • the SNF can determine the sensing type to be used according to possible types of sensing clients, required sensing quality of service (Quality of Service, QoS), UE sensing capabilities, base station sensing capabilities, etc.
  • QoS Quality of Service
  • UE sensing capabilities UE sensing capabilities
  • base station sensing capabilities etc.
  • the above sensing methods are as shown in Figure 3a to Figure 3c corresponds to the 3 perception types;
  • SNF can store and manage (including adding, deleting, and updating) the prior information or capability information of the tag associated with the target tag area (for the sake of illustration, the prior information or capability information of the tag is collectively referred to as It is the first information), and the first information includes at least one of the following: tag ID list (not limited to the product electronic code EPC code of RFID, it can also be the ID of a new device), the number of tags in the associated area , tag position information list (two-dimensional or three-dimensional, including tag and reference system origin Cartesian coordinates or polar coordinates), tag perception distance list, tag working bandwidth list, tag each channel working frequency (ie sub-carrier frequency within the bandwidth) list, tag Modulation method list, supported reading and writing frequencies, signal-to-noise ratio of tag reflection signal, number of transmitting antennas for a single tag, number of receiving antennas for a single tag, antenna arrangement information for a single tag (antenna spacing for a single tag, antenna formation, etc.), tag array Arrangement information (here refer to
  • At least one item of the tag prior information or capability information is reported by the target tag to a network side device such as a base station or SNF, for example: through a reader of the tag (such as a base station accessed by a tag) ) to read and report the first information.
  • a network side device such as a base station or SNF
  • the first information includes at least one of the following: the identity of the first device, the state indication information of the first device participating in awareness (may be: a participation awareness flag (indicating whether it is currently possible or agreed to participate in Sensing), the sensing time period of the first device (indicating the start and end time/duration that can participate in sensing), the sensing service occupancy flag (or the status indication information of the same meaning, indicating whether the sensing service is currently being carried out, etc.), all The incident angle and reflection angle range of the first device ((the incident angle range refers to the incident angle range of the sensing signal that enables the tag to work normally; the reflection angle range refers to the reflection angle range of the tag reflection signal)), the first device in the associated area
  • the number of devices, the location information of the first device two-dimensional or three-dimensional, including the tag and the origin of the reference system in Cartesian coordinates or polar coordinates
  • the sensing distance of the first device the working distance of the first device Bandwidth, the working frequency of each channel of the first device (that
  • the SNF can judge the relationship between the base station and the tag in the perception area according to the base station location information it has obtained or obtained from the AMF, and the stored first information of the tag associated with the target tag area.
  • the association criterion is to ensure that The signal-to-noise ratio of the sensing signal reflected by the tag received by the base station meets the requirements (for example: meeting the QoS requirements, meeting the sensing conditions corresponding to the sensing demand information, etc.), and the sensing distance is greater than or equal to the distance between the base station and the tag.
  • the first device participating in sensing needs to access the wireless sensing signal sending end and the wireless sensing signal receiving end, and the perceived signal strength between the first device and the wireless sensing signal sending end, and the second The signal strength between a device and the receiving end of the wireless sensing signal meets the sensing condition corresponding to the sensing requirement information.
  • the first device is a tag
  • the wireless sensing signal sending end and receiving end are respectively base stations
  • the SNF or the core network AMF obtains target sensing demand information, it can and the capability information and location information of the base station to determine the tag participating in the sensing, the base station A that sends the target sensing signal, and the base station B that receives the target sensing signal.
  • determine the tag in the target sensing area corresponding to the sensing requirement as the tag participating in sensing, and base station that the tag participating in sensing accesses, and the capability information and/or location information of the base station that the tag participating in sensing accesses etc. Determine base station A and base station B.
  • Another example from the base stations that meet the sensing conditions corresponding to the sensing requirements, determine base station A and base station B, and determine the tags that access base station A and base station B as the tags that participate in sensing. In this example, first determine the wireless sensing signal transmission The end and the wireless sensing signal receiving end determine the first device according to the base station accessed by the tag.
  • the SNF can act as a tag reader (reader) by scheduling the associated base station of the target tag (the associated base station of the tag may include at least one of the serving base station of the tag and the base station associated with the area where the tag is located). For example: the base station can adjust the beam, read information from a storage area of a certain tag, or perform polling information reading from storage areas of multiple tags in a certain area. After the base station reads the relevant information, it can report the SNF. To update the prior information stored and managed by SNF, it can also be used as necessary or auxiliary information for perceiving services.
  • the SNF can act as a tag writer (writer) by scheduling the base station associated with the target tag. For example, the base station can adjust the beam, write information to a certain tag storage area, or perform polling information writing to multiple tag storage areas in a certain area.
  • writer a tag writer
  • the SNF can select the tag by scheduling the associated base station of the target tag. It can indicate the selection operation of the base station on the tag during the sensing process. For example: the base station can adjust the beam and select tags that meet the sensing conditions corresponding to the sensing needs, so that the tags that meet the sensing needs and sensing conditions enter the corresponding active state, while other tags that do not meet the sensing needs and sensing conditions are in an inactive state .
  • the SNF can take an inventory of the tags by scheduling the associated base stations of the target tags. For example: the base station can adjust the beam, and scan all the tags that meet the selection conditions in a cycle, and the tags will return their EPC codes (EPC code: the code used to identify the object to which the tag is attached)
  • EPC code the code used to identify the object to which the tag is attached
  • the SNF can provide power for the target tag by scheduling the base station associated with the target tag.
  • the second device is located on the core network or the base station side. If the second device is located on the base station side, all processes of the sensing service can be completed on the access network (Radio Access Network, RAN) side (for example: triggering the sensing service for the base station, or The situation where the UE triggers the sensing service).
  • RAN Radio Access Network
  • the second device may be a separate functional/physical entity, or deployed in a general server of the core network as one of the functions of the core network, or deployed at the base station side as one of the functions of the base station.
  • the second device can directly interact with the application server (such as the operator's application server) for sensing requests (including sensing demand information) and sensing results; or, the second device can interact with the AMF for sensing requests and sensing results, and the AMF can directly or indirectly (Through the Gateway Mobile Location Center (GMLC) and the Network Exposure Function (NEF)) and the application server (such as a third-party application server) to interact with the perception request and the perception result.
  • the application server such as the operator's application server
  • the AMF can directly or indirectly (Through the Gateway Mobile Location Center (GMLC) and the Network Exposure Function (NEF)
  • GMLC Gateway Mobile Location Center
  • NEF Network Exposure Function
  • the second device is a sensory network element
  • multiple sensory network elements may correspond to one AMF, or a single sensory network element may also be connected to multiple AMFs.
  • the AMF acquires the sensing demand information, it can determine at least one of the corresponding sensing network elements from the sensing demand information to participate in the sensing.
  • the second device of the perception process corresponding to the requirement information.
  • the factors considered by the AMF to determine the sensing network element participating in the sensing process include at least one of the following: the consideration factors for the AMF to select the sensing network element include at least one of the following: requested QoS (such as sensing accuracy, response time, and sensing QoS level), Access type (3GPP access/non-3GPP access), target UE's access network AN type (i.e. 5G NR or eLTE) and serving AN node (i.e. gNodeB or NG-eNodeB), RAN configuration information, and perceived network element capabilities , Perceived network element load, Perceived network element location, Indication of single event reporting or multiple event reporting, Event reporting duration, Network slicing information, etc.
  • requested QoS such as sensing accuracy, response time, and sensing QoS level
  • Access type 3GPP access/non-3GPP access
  • target UE's access network AN type i.e. 5G NR or eLTE
  • the sensing demand is a three-dimensional map of the sensing target area
  • the sensing demand is a three-dimensional map of the sensing target area
  • the core network or sensing network element
  • application server or other nodes (such as AMF) can complete the supervision process.
  • the core network network function or network element (such as the sensing network function/sensing network element), the way to determine the target UE may include at least one of the following:
  • the capability information of the UE meets the perception requirement
  • the location information of the UE (the location or area of the UE) satisfies the sensing requirement
  • the UE accesses the receiving base station associated with the sensing demand information, that is, the UE accesses the network-side device that meets the sensing demand (in the following embodiments, the network-side device is a base station as an example for illustration), also That is to say, the base station associated with the sensing requirement information is determined first, and then the UE is determined.
  • the core network network function or network element (such as the sensing network function/sensing network element), the method of determining the associated base station may include at least one of the following:
  • the base stations participating in the sensing include the base stations accessed by the terminals that meet the sensing requirements;
  • the base station reporting capability-related information to the core network, that is, the capability information of the base station participating in the sensing meets the sensing requirement;
  • the fifth information of the base station for example: the location and area of the base station, that is, the location information of the base station participating in the sensing meets the sensing requirement.
  • the core network network function or network element (such as the sensing network function/sensing network element), the way to determine the target tag may include at least one of the following:
  • the tag participating in the sensing accesses the terminal or network side device that meets the sensing requirements;
  • the capability-related information reported by the tag to the core network that is, the capability information of the tag participating in the perception meets the perception requirement
  • the first information of the tag including: tag position/area information, tag incident angle and reflection angle range information, state indication information participating in sensing, etc.
  • tag position/area information including: tag position/area information, tag incident angle and reflection angle range information, state indication information participating in sensing, etc.
  • the node that obtains the information of the sensing demand can determine the corresponding configuration information related to the sensing signal.
  • the node may be at least one of a base station, a core network, a UE, and a second device:
  • base station A (corresponding to the transmission mode of the sensing signal sent by the base station A) or the UE (corresponding to the transmission mode of the sensing signal sent by the UE) uses its own sensing capabilities (capabilities related to sending the sensing signal, for example, the ability to send the sensing signal
  • the maximum bandwidth, the maximum transmission power of the sensing signal, etc.) are reported to the core network (AMF or sensing network element); and/or, the base station B reports its own sensing capabilities (capabilities related to receiving sensing signals, such as the maximum Bandwidth, the measurement amount of the supported sensing signal, etc.) to the core network (AMF or sensing network element); and/or, base station A or UE or base station B asks the sensing capabilities of the tag participating in sensing (receiving and backscatter sensing Signal-related capabilities, such as working bandwidth and frequency points, the maximum read-write frequency that can be supported, etc., these information are stored on the tag), so as to report the tag's perception capability to the core network (AM
  • Base station A/or base station B (corresponding to the sensing signal transmission mode of base station A sending sensing signals) or UE and/or base station B (corresponding to the sensing signal transmission mode of UE sending sensing signals) determines the relevant configuration of sensing signals according to sensing demand information information;
  • Method 3 The core network determines a part of the configuration information related to the sensing signal, base station A and/or base station B (corresponding to the sensing signal transmission mode of the sensing signal sent by the base station A) or UE and/or base station B (corresponding to the sensing signal transmission mode of the sensing signal sent by the UE) way) to determine another part of perceptual signal-related configuration information.
  • Method 4 The core network recommends sensing to base station A and/or base station B (corresponding to the sensing signal transmission mode of base station A sending sensing signals) or UE and/or base station B (corresponding to the sensing signal transmission mode of UE sending sensing signals) according to sensing requirements
  • base station A and/or base station B, or UE and/or base station B finally decide to sense the signal-related configuration information.
  • Base station A and/or base station B (corresponding to the sensing signal transmission method for sending sensing signals from base station A) or UE and/or base station B (corresponding to the sensing signal transmission mode for sending sensing signals from UE) recommend sensing to the core network according to sensing requirements Signal-related configuration information, the core network finally decides to sense the signal-related configuration information.
  • the sensing signal-related configuration information includes at least one of the following:
  • Waveforms such as: Orthogonal frequency division multiplex (OFDM), SC-FDMA, Orthogonal Time Frequency Space (OTFS), Frequency Modulated Continuous Wave (FMCW), pulse signal, etc.;
  • OFDM Orthogonal frequency division multiplex
  • SC-FDMA Orthogonal Time Frequency Space
  • OTFS Orthogonal Time Frequency Space
  • FMCW Frequency Modulated Continuous Wave
  • pulse signal etc.
  • Subcarrier spacing for example: the subcarrier spacing of OFDM system is 30KHz;
  • Guard interval that is, the time interval from the moment when the signal ends to the moment when the latest echo signal of the signal is received; this parameter is proportional to the maximum perception distance; for example, it can be calculated by 2dmax/c, and dmax is the maximum perception Distance (belonging to perception requirements); another example: for spontaneous and self-received perception signals, dmax represents the maximum distance from the perception signal transceiver point to the signal emission point, and c represents the speed of light; in some cases, the OFDM signal cyclic prefix CP can play a role The role of the minimum guard interval;
  • this parameter is inversely proportional to the distance resolution, which can be obtained by c/2/delta_d, where delta_d represents the distance resolution (belonging to perception requirements), and c represents the speed of light;
  • this parameter is inversely proportional to the rate resolution (belonging to perception requirements), this parameter is the time span of the perception signal, mainly to calculate the Doppler frequency offset; this parameter can be passed through c/2/delta_v/fc Calculated; where, delta_v represents the velocity resolution; fc represents the carrier frequency of the perceived signal;
  • this parameter can be calculated by c/2/fc/v_range; among them, v_range represents the maximum speed minus the minimum speed (belonging to the perception demand), this parameter is the time interval between two adjacent perception signals;
  • Send signal power for example: take a value every 2dBm from -20dBm to 23dBm;
  • Signal format which identifies the format of the sensing signal, for example: Sounding Reference Signal (Sounding Reference Signal, SRS), Demodulation Reference Signal (Demodulation Reference Signal, DMRS), Positioning Reference Signal (Positioning Reference Signal, PRS), etc., or other predetermined Defined signals, and related sequence formats and other information;
  • Signal direction for example: the direction of the perceived signal or beam information
  • Time resources for example: the time slot index where the sensing signal is located or the symbol index of the time slot; where the time resources are divided into two types, one is a one-time time resource, for example, one symbol sends an omnidirectional first signal; one One is a non-disposable time resource, such as multiple groups of periodic time resources or discontinuous time resources (which may include start time and end time), each group of periodic time resources sends sensing signals in the same direction, different groups of time resources Different beam directions on periodic time resources;
  • Frequency resources including the center frequency point, bandwidth, resource block (Resource Block, RB) or subcarrier, reference frequency position (Point A), starting bandwidth position, etc. of the perceived signal;
  • Quasi co-location (Quasi co-location, QCL) relationship for example: the sensing signal includes multiple resources, each resource corresponds to a synchronization signal block (Synchronization Signal and PBCH block, SSB) QCL, the type of QCL includes Type A, B, C or D;
  • a synchronization signal block Synchronization Signal and PBCH block, SSB
  • the identification information of the first device that is, the backscatter tag ID participating in wireless sensing, and the tag ID is not limited to the EPC of RFID, and may also be the ID of a new device;
  • Information related to the target sensing signal configuration of the first device such as: tag operating bandwidth, operating frequency, number of channels, and subcarrier frequencies corresponding to each channel;
  • the initial phase of the target perception signal for example: for example, the initial phase of the signal on each channel;
  • the antenna information of the first device for example: the number of transmitting antennas, the number of receiving antennas, and the array layout of transmitting and receiving antennas (including antenna formation, antenna spacing), etc.;
  • the antenna information of the wireless sensing signal sending end includes: the number of antennas used by the base station to send the sensing signal, specific antenna index (index), antenna position coordinates (two-dimensional coordinates, three-dimensional coordinates, Cartesian coordinates or polar coordinates, the coordinate system It should belong to the same coordinate system as the tag participating in the perception);
  • Each antenna transmits the time stamp information of the target perception signal, that is, the absolute or relative time of each signal transmission;
  • the time interval for sending signals between different antennas For example, if multiple antennas of the base station use Time Division Multiplexing (TDM) or TDM+Frequency Division Multiplexing (FDM) to send sensing signals, different configurations are required.
  • TDM Time Division Multiplexing
  • FDM Frequency Division Multiplexing
  • the amplitude modulation capability of the first device that is, the amplitude information of the supported adjustable reflected signal, continuous amplitude modulation or discrete amplitude modulation, and the corresponding number of states of continuous or discrete features;
  • phase modulation capability of the first device that is, the phase information of the supported adjustable reflected signal, continuous phase modulation or discrete phase modulation, and the corresponding number of states of continuous or discrete features
  • the frequency modulation capability of the first device that is, the supported frequency information of the adjustable reflected signal, continuous frequency modulation or discrete frequency modulation and the corresponding state quantity of continuous or discrete features
  • the encryption algorithm type of the first device for example: CRC16, CRC24, etc.;
  • the channel coding of the first device such as the type of forward error correction coding (Forward Error Correction, FEC), and its corresponding coding rate;
  • FEC Forward Error Correction
  • the signal modulation methods related to the first device include: double sideband amplitude keying (DSB-ASK), single sideband amplitude keying (SSB-ASK), reverse phase amplitude keying (Phase-reversal ASK, PR -ASK), frequency shift keying (Frequency Shift Keying, FSK), binary phase shift keying (Binary Phase Shift Keying, BPSK), quadrature phase shift keying (Quadrature Phase Shift Keying, QPSK), quadrature amplitude modulation ( QuadratureAmplitudeModulation, QAM) method, etc.;
  • the data encoding method and frame format related to the first device may be binary encoding, Manchester (Manchester) code, FMO code, delay modulation code (Miller code), non-return-to-zero (Non- Return-to-zero, NRZ) code, bipolar non-return-to-zero code BNRZ code, non-return-to-zero inverse code NRZ-I code, pulse width code, etc. currently used and possible future backscatter communication digital codes; and
  • the frame format to be determined includes a preamble or a frame-sync, and the like.
  • the target measurement quantity includes:
  • a first measurement quantity, the first measurement quantity is a measurement quantity related to the first device, which includes at least one of the following:
  • Received Signal Strength Indicator Received Signal Strength Indicator
  • RSSI Received Signal Strength Indicator
  • received power of the reflected signal backscattered by the first device the phase of the reflected signal, and the time stamp information of the reflected signal (by tag or time information inserted when each tag in the tag array transmits a signal)
  • the backscatter path channel matrix H of the first device the backscatter path channel state information CSI of the first device
  • the backscatter path channel state information CSI of the first device Multipath parameters in the multipath channel (including the number of multipaths, the power of each path, time delay, angle information, etc.), the Doppler frequency and Doppler spread of the reflected signal, the reflected signal
  • the angle of departure of the tag/tag array that is, the angle of departure of the transmitted signal of the tag/tag array
  • the angle of arrival of the reflected signal that is, the angle at which the base station receives the reflected signal of the tag/tag array
  • the phase difference between the first devices for example:
  • the above-mentioned target measurement quantity may also include a second measurement quantity
  • the second measurement quantity may include at least one of the following: at least one of the following:
  • the characteristic information of the target object is information that can reflect the attribute or state of the target object, which can be at least one of the following: the position of the target object, the speed of the target object, the acceleration of the target object, the material of the target object, the target object The shape of the target object, the category of the target object, the radar cross section (Radar Cross Section, RCS) of the target object, etc.
  • the relevant information of the target event is the information related to the target event, that is, the information that can be detected/perceived when the target event occurs, which can be at least one of the following: fall detection, intrusion detection, motion recognition, breathing monitoring, heart rate monitoring, etc.
  • the relevant information of the target environment may be at least one of the following: humidity, brightness, temperature and humidity, atmospheric pressure, air quality, weather conditions, topography, building/vegetation distribution, population statistics, crowd density, vehicle density, etc.
  • the first device may also have an information collection function.
  • the first device may also be used to collect the above second measurement quantity.
  • the first device also has an information collection function, and the method further includes:
  • the first device acquires a second measurement quantity corresponding to the sensing target, wherein the first information includes the second measurement quantity.
  • the sensing target may be the sensing target in the wireless sensing method provided in the embodiment of the present application, for example: when the sensing demand information is the position of the sensing target object, the sensing target is the target object, and the The second measurement quantity corresponding to the target may be orientation information, position information, etc. of the target object collected by the first device through a position sensor or the like.
  • the information collection capability of the first device can be used to collect the sensing measurement, and the collected sensing measurement can be modulated in the target sensing signal backscattered by the first device for wireless
  • the sensing signal end obtains the above-mentioned second measurement quantity according to the received target sensing signal, so that the first device can be used to provide additional measurement quantities for wireless sensing, and compared with the device-based (device-based) sensing method, through Signaling is used to transmit measurement quantities, which has lower power consumption and less signaling overhead.
  • the target measurement amount is a measurement amount for each antenna or a measurement amount for each sensing resource; for example, the above target measurement amount is each antenna (port ), or the above-mentioned target measurement quantity is the measurement quantity on each sensing resource, such as the measurement quantity of each resource block (Resource Block, RB), subcarrier or RB group.
  • the above target measurement amount is each antenna (port )
  • the above-mentioned target measurement quantity is the measurement quantity on each sensing resource, such as the measurement quantity of each resource block (Resource Block, RB), subcarrier or RB group.
  • the relevant information stored in the tag itself can be used as the main/auxiliary information for perception, and can be transmitted to the function or entity that realizes the transformation from target measurement to target perception results during the perception process, so that the realization of target measurement to target perception
  • the function or entity of the result conversion can determine the target perception result according to the relevant information stored in the tag and/or the measured perception measurement, wherein the relevant information stored in the above tag can be modulated into the received CW signal and reversed by the tag
  • the way of scattering the modulated CW signal is directly or indirectly transmitted to the node (such as: core network (or perception network element), application server, base station or UE) that determines the target perception result according to the target measurement quantity, in addition
  • the core network or the SNF may also schedule the base station or the UE to read the relevant information pre-stored in the first device, for example: send the second indication information to the base station or the UE, and the second indication information is used to instruct the base station or the UE to read Obtain relevant information pre-stored in the first device
  • UE B obtains the pre-stored relevant information of the tag as follows:
  • the core network or SNF determines the tag-based sensing method according to the sensing requirements, it also needs to judge whether it is necessary to select, inventory, access (read and write information) and other operations on the tags participating in the sensing;
  • the core network or SNF sends the tag operation command (selection, inventory, access, etc.) to the base station A (when the base station A sends the sensing signal transmission mode of the target sensing signal) or UE (when the UE sends the target sensing signal Perception signal transmission mode);
  • the above-mentioned operation command on the tag may be included in the perception requirement information;
  • Base station A or UE performs sensing signal related configuration according to the sensing requirement information of the operation command carrying the tag, and sends the target sensing signal according to the sensing signal related configuration;
  • the tag After the tag receives the target perception signal, it demodulates the operation command to the tag, and prepares the first information that needs to be backscattered;
  • the sensing signal sent by base station A contains an unmodulated continuous wave CW signal, and the tag modulates the first information to be backscattered onto the CW signal for reception by base station B, and demodulates the received CW signal to obtain The above first information; or, the sensing signal sent by the UE includes an unmodulated continuous wave CW signal, and the tag modulates the first information to be backscattered onto the CW signal for the UE to receive, and performs the received CW signal demodulation, the above first information can be obtained.
  • the base station B may demodulate the target sensing signal to obtain the above-mentioned first information.
  • the base station B may forward the acquired first information and the measured target measurement quantity and other information to the core network, UE or other base station, or the base station B may determine the target sensing result according to the first information and the measured target measurement amount, and forward the target sensing result to the target sensing
  • the initiator of the sensing service corresponding to the demand information, its process is the same as that in the above embodiment where at least one of the core network, the application server, the base station or the UE determines the target sensing result according to the target measurement amount, the target measurement amount
  • the transmission methods are the same, and will not be repeated here.
  • the target measurements may include:
  • the target measurement quantity includes the demodulated tag backscattered information (that is, the first information that the tag modulates onto the target perception signal, such as: tag ID, tag's own position coordinate information, etc.). It can also be the information of the demodulated tag backscatter, plus the wireless perception measurement quantity (tag-based measurement quantity) that depends on the tag participation, and the wireless perception measurement quantity (tag-free measurement quantity) that does not depend on the tag participation At least one of:
  • the tag-based measurement quantity is the measurement quantity after the tag processes the signal, for example: the RSSI/received power and phase of the multiple reflected signals of the tag array to the perceived signal, the reflected signal is modulated by the tag, and can be performed through different tag IDs distinguish;
  • the tag-free measurement quantity is a measurement quantity that can be obtained without tag assistance, for example: the base station antenna array obtains the azimuth angle of the tag relative to the base station based on the phase of the reflected signal from the sensing target tag without any processing on the incident sensing signal , where the phase of the tag reflection signal is a tag-free measurement.
  • the target perception result may include a perception result obtained based on the demodulated tag backscattered information (that is, the first information carried in the backscattered target perception signal), or the solution The tuned tag backscattered information is directly used as the perception result.
  • the target perception result may also include a perception result obtained based on at least one of the two measurement quantities of tag-based and tag-free, or the target perception result may also be a combination of the above three types of perception results Perceived results.
  • the first information includes the a priori information, for the convenience of description, collectively referred to as the first information in the following embodiments
  • the core network or perception network element
  • a base station or a tag participating in sensing
  • the first information may include at least one of the following: tag ID list, status indication information of participation awareness (which may be: participation awareness flag bit (indicating whether it is currently possible or agreed to participate in awareness), awareness time period (indicating participation awareness Start and end time/duration), sensing business occupation flag (or equivalent status indication information, indicating whether the sensing business is currently in progress, etc.), tag incidence angle and reflection angle range (incident angle range refers to enabling the tag to work normally The incident angle range of the perceived signal; the reflection angle range refers to the reflection angle range of the tag reflection signal), the number of tags in the associated area, and the list of tag position information (two-dimensional or three-dimensional, including the Cartesian or polar coordinates of the tag and the origin of the reference system) , tag perception distance list, tag communication bandwidth list, tag each channel operating frequency (that is, the subcarrier frequency within the bandwidth) list, tag modulation mode list, supported read and write frequencies, tag array form list (including the number of array elements of a single tag array ( 1 tag is used as 1 array element, the
  • the core network or sensing network element directly invokes the first information stored by itself, and uses it in the conversion process as one of the basis for generating the sensing result one;
  • the core network (or sensing network element) requires the base station to report the first information for use in the conversion process as one of the basis for generating the sensing result;
  • the core network instructs base station A or base station B to perform operations such as selecting, inventorying, accessing (reading and writing information) on the tag, and base station A or base station B reads the corresponding
  • the first information is sent to the core network (or sensing network element) as one of the basis for generating the sensing result.
  • the core network sends the first information necessary for sensing to base station B as one of the bases for base station B to generate the sensing result , or the core network (or sensing network element) sends the first information necessary for sensing to base station A, and base station A sends the first information to base station B as one of the bases for base station B to generate a sensing result, or , the core network (or sensing network element) sends the sensing first information to base station A and base station B at the same time, as one of the bases for base station B to generate the sensing result;
  • the base station directly invokes the first information stored by itself and uses it in the conversion process as one of the basis for generating the sensing result;
  • the core network instructs the base station B to perform operations such as selecting, inventorying, and accessing (reading and writing information) on the tag, and after the base station B reads the corresponding first information, Take it as one of the basis for generating the sensing result, or, the core network (or sensing network element) instructs the base station A to select, inventory, access (read and write information) and other operations on the tag, and the base station A reads the corresponding first information Then send it to base station B as one of the bases for base station B to generate the sensing result.
  • the core network sends the first information necessary for sensing to the UE through non-access stratum NAS signaling; or the core network (or the sensing network element) sends the tag prior information necessary for sensing to the associated base station of the UE, and the associated base station then sends the first information to the UE, and the UE uses the received first information as the basis for generating the sensing result one of the bases;
  • the base station sends the first information to the UE, and the UE uses the received first information as one of the basis for generating a sensing result;
  • the core network instructs the UE to perform operations such as selecting, inventorying, and accessing (reading and writing information) on the tag, and the UE reads the corresponding first information as a generated perception
  • the core network instructs the base station B to select, inventory, access (read and write information) and other operations on the tag, and the base station B reads the corresponding first information and sends it to the UE
  • the core network instructs the base station B to select, inventory, access (read and write information) and other operations on the tag
  • the base station B reads the corresponding first information and sends it to the UE
  • the core network instructs the base station B to select, inventory, access (read and write information) and other operations on the tag
  • the base station B reads the corresponding first information and sends
  • the core network or sensing network element
  • the core network sends the tag prior information necessary for sensing to the UE associated base station, and the associated base station then sends the tag prior information to the UE, and the
  • the core network or sensory network element
  • the core network or sensory network element
  • Base Station Base Station, BS
  • the core network or sensory network element
  • obtain the current information of the tag according to the communication result and update the prior information of the tag in the core network (or sensing network element) accordingly.
  • the method also includes:
  • the first device cooperates with the wireless sensing signal sending end and the wireless sensing signal receiving end to perform reference measurement, wherein the reference measurement is used to obtain a reference measurement quantity or a reference measurement result, and the target sensing result is based on the The target measurement quantity, and the reference measurement quantity or reference measurement result are determined.
  • reference measurements are required.
  • the determination of the final sensing result needs to be determined based on the direct sensing result obtained after the sensing service is executed and the sensing result of the reference measurement. For example, to detect, locate, and image an object in an area with tags, it is necessary to perform reference measurement when the object is not in the area, and the corresponding measurement is the reflected signal RSSI and phase of the tag; after the object enters the tag area, then Perform a measurement to complete the perception process; another example, to sense the weather (such as humidity and rainfall) distributed in tag areas, it is necessary to carry out reference measurements in a certain humidity or no rainfall period.
  • weather such as humidity and rainfall
  • the three-party application can also be the core network (or sensory network element), or the base station, or the UE, and the measurement environment may be different.
  • the above-mentioned reference measurement quantity or reference measurement result can be stored in the core network (or perception network element) or on the tag participating in the perception, and can also be stored in the base station, so that the node that completes the target measurement quantity to the target measurement result, The reference measurement quantity or the reference measurement result can be obtained.
  • the reference measurement can be performed first, and then the sensing service can be performed to correct according to the reference measurement quantity or reference measurement results.
  • the target measurement quantity or the error of the target measurement result, or the sensing service may be performed first, and then the reference measurement is performed, and finally, the target measurement quantity, the reference measurement quantity or the reference measurement result are combined to determine the target perception result.
  • the accuracy of the perception result can be improved by using the reference measurement, so as to reduce the perception error.
  • the sensing signal in the above process may be sent by multiple base stations or UEs, and/or the receiving end of the sensing signal may also be multiple base stations, and/or, the number of tags participating in sensing may also be one or Multiple; at this time, the core network needs to determine the set of base stations and UEs that send sensing signals, the set of tags that participate in sensing, and the set of UEs that receive sensing signals. Relevant information is sent to corresponding multiple base stations and UEs, and measurement quantities related to sensing signals that need to be measured by receiving base stations and related information of tags involved in sensing are sent to corresponding multiple receiving base stations.
  • multiple transmitting base stations and UEs need to exchange sensing signal-related configuration information (for example, a base station acting as a coordinator or a UE sends sensing signal-related configuration information and tag-related information participating in sensing to other transmitting base stations and UEs, and sends The measurement quantity related to the sensing signal and the tag related information participating in the sensing are sent to other receiving base stations).
  • the message interaction between the core network network function or network element (such as the sensory network function/sensory network element) and the UE in the above process may be through the base station, or the message is transparent to the base station, such as NAS signaling.
  • the base station in the above process can be a TRP, for example: base station A is TRP A, and base station B is TRP B. At this time, TRP A and B can belong to the same or different base stations.
  • the method before the first device backscatters the target sensing signal to the wireless sensing signal receiving end, the method further includes:
  • the first device acquires a second sensing request message
  • the first device outputs a second sensing response message, where the second sensing response message indicates that the first device agrees to participate in a sensing process corresponding to the second sensing request message and/or provide first information.
  • the acquisition of the second sensing request message by the first device may be that the first device receives the second sensing request message from the base station/core network, and the first device outputs a second sensing response message, which may be It is understood that: the first device generates the second sensory response message for the base station or other access devices to read; or modulates the second sensory response message on the received wireless signal for the base station or other
  • the access device receives.
  • the base station/core network initially selects the tags participating in the sensing according to the sensing demand information, and sends a second sensing request message to the selected tag to read the status indication information of the sensing participation from the tag. If the tag is instructed to agree to participate sensing process, it can be determined as the first device participating in the sensing process, and if the instruction tag does not agree to participate in the sensing process, another tag can be selected again.
  • the first device may receive the second sensing request message from the base station/core network, and feed back a second sensing response message to the base station/core network to inform the base station/core network whether the first device agrees to participate in the sensing process , or agree to provide the first information.
  • the tag may choose to agree or refuse to participate in the sensing process and/or provide relevant prior information stored on the tag.
  • the first device may choose to agree or refuse to participate in the sensing process and/or provide relevant prior information stored on the tag in other ways.
  • the tag indicates the consent/rejection of participating in the sensing and/or provides relevant prior information stored on the tag through the state indication information of the participating sensing;
  • the base station/core network determines the tag participating in the sensing service (corresponding to the above step 3)
  • the base station performs operations such as selecting, inventorying, and accessing (reading and writing information) on the tag. relevant prior information stored on the tag; or,
  • Whether the tag can participate in relevant perception services is agreed in advance, and is stored in relevant storage nodes of the core network (for example: unified data repository (Unified Data Repository, UDR)), core network network functions or network elements (such as perception network function/awareness Network element) After receiving the perception requirement and screening the tags participating in the perception service (corresponding to the above step 3)), access the storage node that stores whether the associated tag can participate in the relevant perception service, and obtain whether the tag can participate in the relevant perception service and/or provide storage Information about prior information on the tag.
  • relevant storage nodes of the core network for example: unified data repository (Unified Data Repository, UDR)
  • core network network functions or network elements such as perception network function/awareness Network element
  • the UE can also choose to agree or refuse to participate in the sensing process.
  • the method can be:
  • the UE After the core network network function or network element (such as the sensing network function/sensing network element) sends the sensing demand to the UE, the UE agrees or refuses, and selects the UE participating in the sensing service from the UEs that agree to provide the sensing demand (corresponding to the above step 3)) ;or,
  • the base station/core network screens the UEs participating in the sensing service (corresponding to the above step 3)), send a participation sensing request message to the associated UE, and the UE agrees or refuses; or,
  • Whether the UE can participate in the relevant sensing service is agreed in advance, stored in the relevant storage node of the core network such as UDR, and the core network network function or network element (such as the sensing network function/sensing network element) receives the sensing demand and screens the participation in the sensing service After the UE (corresponding to the above step 3)), access the storage node that stores whether the associated UE can participate in the relevant sensing service, and obtain information on whether the UE can participate in the relevant sensing service.
  • the first device backscatters the target sensing signal to the wireless sensing signal receiving end, wherein the target sensing signal comes from the wireless sensing signal sending end, and the wireless sensing signal sending end includes the first terminal or the second A network-side device, wherein the wireless sensing signal receiving end includes a second network-side device.
  • the wireless sensing signal sending end includes the first terminal or the second A network-side device
  • the wireless sensing signal receiving end includes a second network-side device.
  • the first device with the backscattering function may not have a power-consuming radio frequency link, so it has the characteristics of small size and low power consumption. Compared with the wireless sensing signal sending end and receiving end, it is more convenient for layout In the ISAC system, to improve the perception performance of the ISAC system.
  • FIG 4 is a flow chart of the second wireless sensing method provided by the embodiment of the present application.
  • the difference between the wireless sensing method shown in Figure 4 and the wireless sensing method shown in Figure 2 is that: as shown in Figure 4
  • the executive body of the wireless sensing method is the receiving end of the wireless sensing signal, and the receiving end of the wireless sensing signal may be a second network side device (for example: base station B or TRP B as shown in 3a), and the wireless sensing method as shown in Figure 2
  • the subject of execution is the first device, as shown in Figure 4, the wireless sensing method performed by the receiving end of the wireless sensing signal may include the following steps:
  • Step 401 the wireless sensing signal receiving end acquires second information, where the second information includes: sensing requirement information, and/or target sensing signal-related configuration information corresponding to the sensing requirement information.
  • Step 402 The wireless sensing signal receiving end measures the target sensing signal sent by the wireless sensing signal sending end and at least partly backscattered by the first device according to the configuration information related to the target sensing signal, so as to obtain the target measurement quantity , the wireless sensing signal sending end includes a first terminal or a first network side device (for example: UE or base station A as shown in 3a).
  • a first network side device for example: UE or base station A as shown in 3a.
  • Step 403 the wireless sensing signal receiving end determines a target sensing result according to the target measurement quantity, or sends the target measurement quantity.
  • the acquisition process of the above-mentioned sensing demand information and/or sensing signal-related configuration information, the transmission process of the target sensing signal, and the conversion process from the target measurement quantity to the target sensing result are the same as those in the method embodiment shown in Figure 2 , not specifically limited here.
  • the wireless sensing signal receiving end performs, according to the configuration information related to the target sensing signal, the target sensing signal sent by the wireless sensing signal sending end and at least partially backscattered by the first device.
  • Measure to obtain target measurements including:
  • the wireless sensing signal receiving end receives the target sensing signal sequence from the wireless sensing signal sending end and at least partially backscattered by the first device;
  • the wireless sensing signal receiving end performs target signal processing based on the target sensing signal sequence and the preset sensing signal sequence to obtain target measurement quantities, wherein the sensing signal-related configuration information includes the information sent by the wireless sensing signal sending end Signal configuration information of the preset sensing signal sequence.
  • the sensing signal sent by the wireless sensing signal sending end is a preset sensing signal sequence predetermined by at least one of signal parameters such as waveform, bit sequence, and frequency range.
  • the first device can directly transmit the wireless sensing signal
  • the preset sensing signal sequence sent by the signal sending end is backscattered to the wireless sensing signal receiving end, so that the wireless sensing signal receiving end can perform matching filtering, cross-correlation, At least one item in the target signal processing such as sliding correlation, so that the target measurement quantity can be determined according to the result of the target signal processing.
  • the sensing signal sent by the wireless sensing signal transmitting end and at least partly backscattered by the first device may be a conventional sensing signal.
  • the wireless sensing signal receiving end can perform measurement to obtain the target measurement quantities such as receiving frequency, receiving time, and receiving power, and determine the target perception result according to the target measurement quantity.
  • the backscattering function of the first device can be used to expand the transmission path of the sensing signal , to improve the sensing range and sensing accuracy of the wireless sensing system.
  • the wireless sensing signal sending end may send first indication information and the target sensing signal, where the first indication information is used to instruct the first device to modulate the first information on the target sensing signal
  • the wireless sensing signal receiving end may demodulate the received target sensing signal to obtain the first information carried by the target sensing signal, that is, the target measurement quantity may include the first information.
  • the wireless sensing signal receiving end may demodulate the target sensing signal to obtain the first information pre-stored by the first device and modulated on the sensing signal, so that the wireless sensing signal receiving end can use the
  • the first information is used as one of the target measurement quantities, that is, the first information is used as one of the basis for determining the target perception result (other basis can be other perception measurement quantities obtained by measuring the target perception signal, and other pre-acquired information, such as : antenna information, capability information, etc. of the wireless sensing signal transmitting end), or directly take the first information as the target sensing result, which can improve the comprehensiveness of the sensing measurement quantity in the wireless sensing method, so as to improve the sensing performance of the wireless sensing system.
  • the wireless sensing signal receiving end may also directly measure at least part of the target sensing signal that has been backscattered by the first device according to the configuration information related to the sensing signal, so as to obtain the target measurement quantity. This is not specifically limited.
  • the second wireless sensing method also includes:
  • the wireless sensing signal receiving end sends the second information to the wireless sensing signal sending end.
  • the second information obtained by the wireless sensing signal sending end may be forwarded by the wireless sensing signal receiving end.
  • the UE sends the sensing requirement information shown and/or the configuration information related to the wireless sensing signal corresponding to the sensing requirement information.
  • the wireless sensing signal sending end may also forward the second information to the wireless sensing signal receiving end.
  • the target measurement quantity includes:
  • the target perception signal-related configuration information includes at least one of the following:
  • the target measurement quantity includes at least one of the following:
  • a first measurement quantity, the first measurement quantity is a measurement quantity related to the first device, which includes at least one of the following:
  • the shown second wireless sensing method further includes:
  • the wireless sensing signal receiving end receives a target operation command
  • the wireless sensing signal receiving end reads the first information of the first device according to the target operation command, and sends the first information to the second device, wherein the target sensing result is the second a perception result determined by the device according to the target measurement result and the first information;
  • the first information includes at least one of the following items: the identity of the first device, the state indication information of the first device participating in sensing, the sensing time period of the first device, the sensing service occupation flag, the The incident angle and reflection angle range of the first device, the number of first devices in the associated area, the location information of the first device, the sensing distance of the first device, the working bandwidth of the first device, The working frequency of each channel of the first device, the modulation mode of the first device, the read and write frequencies supported by the first device, the array form information of the first device, and the signal-to-noise signal of the reflected signal of the first device ratio, the number of transmitting antennas of a single first device, the number of receiving antennas of a single first device, the antenna arrangement information of a single first device, the arrangement information of an array including at least two first devices, the The error statistical distribution parameters of the phase of the reflected signal, the energy supply mode of the first device, the power information of the active first device, the energy storage capacity of the first device, the
  • This embodiment is similar to the process in which the SNF can also schedule the base station to read the relevant information pre-stored in the first device in the method embodiment shown in FIG. 2 , which is not specifically limited here.
  • the second wireless sensing method also includes:
  • the wireless sensing signal receiving end sends a first sensing response message in response to receiving the sensing requirement information or the first sensing request message, wherein the first sensing response message indicates that the wireless sensing signal receiving end agrees to participate in the A sensing process corresponding to the sensing requirement information or the first sensing request message.
  • This implementation manner is similar to that in the method embodiment shown in FIG. 2 , where the base station chooses to agree or refuse to participate in the sensing process, and will not be elaborated here.
  • the second wireless sensing method also includes:
  • the wireless sensing signal receiving end cooperates with the wireless sensing signal sending end and the first device to perform reference measurement, so as to obtain a reference measurement amount;
  • the wireless sensing signal receiving end determines a reference sensing result according to the reference measurement quantity, or sends the reference measurement quantity.
  • the second wireless sensing method provided by the embodiment of the present application corresponds to the method embodiment shown in FIG. 2 , and can achieve similar beneficial effects. To avoid repetition, details are not repeated here.
  • Figure 5 is a flowchart of the third wireless sensing method provided by the embodiment of the present application.
  • the difference between the method embodiment shown in Figure 5 and the method embodiment shown in Figure 2 is that, as shown in Figure 5
  • the execution subject of the method embodiment is the second device, and the execution subject of the method embodiment shown in FIG. 2 is the first device.
  • the wireless sensing method performed by the second device may include the following steps:
  • Step 501 the second device acquires perception demand information.
  • the second device sends second information to at least one of the wireless sensing signal sending end and the wireless sensing signal receiving end, where the second information includes: the sensing demand information, and/or, is related to the For the target sensing signal-related configuration information corresponding to the sensing demand information, the wireless sensing signal sending end includes the first network-side device or the first terminal, and the wireless sensing signal receiving end includes the second network-side device.
  • Step 503. The second device acquires at least one of a target measurement amount and a target sensing result, wherein the target measurement amount is sent by the wireless sensing signal receiving end to the wireless sensing signal sending end and at least Part of the target perception signal backscattered by the first device is measured to obtain a measurement quantity, and the target perception result is determined based on the target measurement quantity.
  • the acquisition process of the above-mentioned sensing demand information and/or sensing signal-related configuration information, the transmission process of the target sensing signal, and the conversion process from the target measurement quantity to the target sensing result are the same as those in the method embodiment shown in Figure 2 , not specifically limited here.
  • the second device includes at least one of the following:
  • Sensing network elements or sensing network functional entities in the core network are Sensing network elements or sensing network functional entities in the core network
  • the sensing network element or sensing network functional entity in the access network is the sensing network element or sensing network functional entity in the access network.
  • the third wireless sensing method further includes:
  • the second device determines at least one of the wireless sensing signal sending end, the wireless sensing signal receiving end, and the first device according to the sensing requirement information.
  • the core network network function or network element determines at least one of the associated base station, associated UE, and tag participating in sensing according to the sensing requirements. Items are similar and will not be repeated here.
  • the second device determines the wireless sensing signal sending end, the wireless sensing signal receiving end, and the first device according to the sensing demand information, including:
  • the second device acquires third information, where the third information includes: fourth information of each terminal connected in communication, fifth information of each network side device connected in communication, and first information of each first device connected in communication Information, wherein the fourth information includes at least one of capability information and location information of the corresponding terminal, and the fifth information includes at least one of capability information and location information of the corresponding network side device;
  • the second device determines, according to the third information and the sensing requirement information, that the sensing type is that the network side device receives a target sensing signal sent by a terminal or another network side device and backscattered by the first device;
  • the second device determines the wireless sensing signal sending end and the wireless sensing signal receiving end matching the sensing type according to at least one of the fourth information and the fifth information;
  • the second device determines the first device according to the first information
  • the first information includes at least one of the following items: the identity of the first device, the state indication information of the first device participating in sensing, the sensing time period of the first device, the sensing service occupation flag, the The incident angle and reflection angle range of the first device, the number of first devices in the associated area, the location information of the first device, the sensing distance of the first device, the working bandwidth of the first device, The working frequency of each channel of the first device, the modulation mode of the first device, the read and write frequencies supported by the first device, the array form information of the first device, and the signal-to-noise signal of the reflected signal of the first device ratio, the number of transmitting antennas of a single first device, the number of receiving antennas of a single first device, the antenna arrangement information of a single first device, the arrangement information of an array including at least two first devices, the The error statistical distribution parameters of the phase of the reflected signal, the energy supply mode of the first device, the power information of the active first device, the energy storage capacity of the first device, the
  • the base station and/or the UE report their respective capability information, and/or the base station reads and reports the relevant information stored in the tag, so that the core network or the sensing network element and/or UE and/or tag capability information to select the first device participating in the sensing process, the wireless sensing signal sending end and the wireless sensing signal receiving end are similar, and will not be repeated here.
  • the terminals in the wireless sensing signal sending end and the wireless sensing signal receiving end meet at least one of the following conditions:
  • the capability information of the terminal satisfies the perception requirement
  • the location information of the terminal satisfies the perception requirement
  • the network-side device in the wireless sensing signal sending end satisfies at least one of the following conditions:
  • the capability information of the network side device satisfies the perception requirement
  • the location information of the network side device satisfies the perception requirement
  • a network-side device accessed by a terminal that satisfies the perception requirement
  • the first device meets at least one of the following conditions:
  • the prior information of the first device satisfies the perception requirement
  • the capability information of the first device satisfies the perception requirement
  • the target measurement quantity includes:
  • the second device acquires at least one of a target measurement quantity and a target perception result, including:
  • the second device acquires the target measurement quantity, and determines a target perception result according to the target measurement quantity; or,
  • the second device acquires the target measurement quantity and first information of the first device, and determines a target perception result according to the target measurement quantity and the first information; or,
  • the second device receives an object perception result from any of the following:
  • the second device acquires the first information in the following manner:
  • the second device receives the first information from the wireless sensing signal receiving end, wherein the sensing demand information sent by the second device to the wireless sensing signal sending end includes a target operation command, or, The target sensing signal-related configuration information sent by the second device to the wireless sensing signal transmitter is determined based on the sensing requirement information including the target operation command, where the target operation command is used to control the first device to The backscattered target perception signal carries the first information;
  • the second device sends second indication information to the network-side device or terminal accessed by the first device, and receives the first information from the network-side device or terminal accessed by the first device, wherein, The second indication information is used to instruct a network-side device or terminal accessed by the first device to read the first information;
  • the second device acquires the pre-stored first information.
  • the way for the second device to obtain the first information of the first device may be: the serving base station or associated base station of the tag reads the EPC code or tagID of the selected tag participating in the sensing process, and obtains the The prior information of the selected target tag is determined from a large number of pre-stored prior information of tags, or the prior information of the selected tag is read through the serving base station or associated base station of the tag.
  • the embodiment of the present application is similar to the process of determining the target perception result by the core network, the base station, and the UE according to the target measurement quantity, or the target measurement quantity and the first information in the method embodiment shown in FIG. 2 , and will not be repeated here. .
  • the third wireless sensing method further includes at least one of the following:
  • the second device invokes an associated network-side device of the first device, and performs a second process on the first device through the associated network-side device, wherein the second process includes at least one of the following: reading The first information, writing the first information, taking inventory of the first information, providing electric energy for the first device, and controlling the first device that meets the sensing condition corresponding to the sensing demand information to be active State and control A first device that does not meet the sensing condition is in an inactive state, and the first device is located within the read-write range of the associated network side device;
  • the second device performs first processing on the pre-stored first information, where the first processing includes: at least one of updating, deleting, and adding.
  • the associated network-side device of the above-mentioned first device can be understood as: the first device is located within the coverage of its associated network-side device (such as a base station), and the perceived signal strength transmitted between the two meets the perceived requirement Corresponding sensory conditions.
  • the third wireless sensing method further includes:
  • the second device acquires a reference measurement or a reference measurement
  • the reference measurement quantity is a measurement quantity obtained by the wireless sensing signal receiving end, the wireless sensing signal sending end, and the first device by performing a reference sensing process, and the target sensing result is based on the target measurement quantity, and the reference measurement quantity or a reference measurement result corresponding to the reference measurement quantity is determined.
  • the acquisition of a reference measurement quantity or a reference measurement result by the second device includes:
  • the second device acquires a pre-stored reference measurement quantity or reference measurement result, or the second device receives a reference measurement quantity or reference measurement result from at least one of the following:
  • the acquisition of perceived demand information by the second device includes:
  • the second device acquires the sensing demand information sent or forwarded by the network element of the target core network, wherein the network element of the target core network includes: an application server, an AMF network element with an access and mobility management function, or a network management system.
  • the third wireless sensing method further includes:
  • the second device acquires target capability information, where the target capability information includes at least one of capability information of the wireless sensing signal sending end, capability information of the wireless sensing signal receiving end, and capability information of the first device ;
  • the second device determines target sensing signal-related configuration information according to the target capability information and the sensing requirement information
  • the second device sends first recommendation information to the wireless sensing signal sender according to the sensing requirement information, and receives configuration information related to the target sensing signal from the wireless sensing signal sender;
  • the second device receives second recommendation information from the wireless sensing signal transmitter, and determines configuration information related to the target sensing signal according to the second recommendation information and the sensing requirement information;
  • the second device receives first configuration information from the wireless sensing signal sending end, and determines second configuration information according to the sensing requirement information, where the configuration information related to the target sensing signal includes the first configuration information and The second configuration information.
  • the above-mentioned second device sends the first recommendation information to the wireless sensing signal sending end according to the sensing demand information, and receives the sensing signal-related configuration information from the wireless sensing signal sending end
  • the process is the same as the core network in the method embodiment shown in Figure 2 recommends to base station A (corresponding to the transmission mode of the sensing signal sent by the base station A) or UE (corresponding to the transmission mode of the sensing signal sent by the UE) according to the sensing requirements
  • the configuration information related to the sensing signal is similar to the configuration information related to the sensing signal that the base station A or the UE finally determines, and is not specifically limited here.
  • the second device receives second recommendation information from the wireless sensing signal sending end, and determines the configuration information related to the sensing signal according to the second recommendation information and the sensing requirement information , and the base station A (corresponding to the sensing signal transmission mode of the sensing signal sent by the base station A) or the UE (corresponding to the sensing signal transmission mode of the UE sending the sensing signal) in the method embodiment as shown in FIG. 2 recommends the sensing signal to the core network according to the sensing requirement
  • the related configuration information is similar to the configuration information related to the core network finally deciding to sense the signal, and no specific limitation is made here.
  • the target perception signal-related configuration information includes at least one of the following:
  • the target measurement quantity includes at least one of the following:
  • a first measurement quantity, the first measurement quantity is a measurement quantity related to the first device, which includes at least one of the following:
  • the target measurement quantity further includes a second measurement quantity collected by the first device, wherein the first device also has an information collection function.
  • the above-mentioned second measurement quantity can be modulated on the target sensing signal after backscattering by the first device, so that the wireless sensing signal receiving end can demodulate the received target sensing signal, so as to obtain the above-mentioned second measurement volume.
  • the wireless sensing signal receiving end may also acquire the second measurement quantity read from the first device, which is not specifically limited here.
  • the target measurement quantity has a one-to-one correspondence with sensing antennas or sensing resources.
  • the second device sends second information to at least one of the wireless sensing signal sending end and the wireless sensing signal receiving end, including:
  • the second device sends second information to the wireless sensing signal sending end, where the wireless sensing signal sending end is configured to forward the second information to the wireless sensing signal receiving end;
  • the second device sends second information to the wireless sensing signal receiving end, where the wireless sensing signal receiving end is configured to forward the second information to the wireless sensing signal sending end;
  • the second device sends second information to the wireless sensing signal sending end, and sends measurement requirement information to the wireless sensing signal receiving end, where the measurement requirement information indicates that the wireless sensing signal receiving end needs to measure A measurement related to the target perception signal.
  • the second device acquires at least one of a target measurement quantity and a target perception result, including at least one of the following:
  • the second device receives the target measurement amount from the wireless sensing signal receiving end or the wireless sensing signal sending end, and sends the target measurement amount to a target core network element, wherein the target sensing result is determined by the The target core network network element is determined based on the target measurement quantity;
  • the second device receives a target measurement quantity from the wireless sensing signal receiving end or the wireless sensing signal sending end, and determines a target sensing result according to the target measurement quantity;
  • the second device receives a target sensing result from the wireless sensing signal sending end, the wireless sensing signal receiving end, or a network side device connected to the wireless sensing signal sending end, where the target sensing result is determined by the wireless sensing signal sending end.
  • the wireless sensing signal sending end, the wireless sensing signal receiving end, or the network-side device connected to the wireless sensing signal sending end is determined based on the target measurement quantity.
  • the third wireless sensing method provided by the embodiment of the present application corresponds to the method embodiments shown in FIG. 2 and FIG. 4 , and can achieve similar beneficial effects. To avoid repetition, details are not repeated here.
  • the wireless sensing method includes the following interactive process :
  • the AMF and/or SNF obtains the capability information of UE and gNB;
  • the gNB and/or the UE obtains the sensing service request (including the second information) from the SNF;
  • the gNB sends the configuration information related to the sensing signal to the UE;
  • the UE sends a target sensing signal (for example: a reference signal);
  • tag can be one or at least two tags
  • the gNB processes the target perception signal of tag backscattering to obtain the target measurement quantity
  • the gNB sends a measurement report (including the target measurement amount) to the SNF;
  • the SNF calculates the target perception result according to the target measurement.
  • the wireless sensing method includes the following Interaction process:
  • AMF and/or SNF acquires the capability information of gNB (including gNB A and gNB B);
  • gNB A and/or gNB B obtains the perception service request (including the second information) from the SNF;
  • gNB A sends configuration information related to sensing signals to gNB B;
  • gNB A sends a target perception signal (for example: reference signal);
  • tag can be one or at least two tags
  • gNB B processes the target perception signal of tag backscattering to obtain the target measurement quantity
  • gNB B sends a measurement report (including the target measurement amount) to the SNF;
  • the SNF calculates the target perception result according to the target measurement.
  • the embodiment of the present application also provides a wireless sensing system, including: a first device, a wireless sensing signal sending end and a wireless sensing signal receiving end;
  • the wireless sensing signal sending end includes a first network-side device or a first terminal, and the wireless sensing signal receiving end includes a second network-side device;
  • At least one of the wireless sensing signal sending end and the wireless sensing signal receiving end is used to obtain second information, where the second information includes: the sensing demand information, and/or, the sensing demand information Corresponding target perception signal-related configuration information;
  • the wireless sensing signal sending end is configured to determine the configuration information related to the target sensing signal according to the sensing requirement information, and send the target sensing signal according to the sensing signal related configuration information, or the wireless sensing signal sending end is used to sending a target sensing signal according to the acquired configuration information related to the sensing signal;
  • the first device is configured to backscatter the target sensing signal sent by the wireless sensing signal sending end;
  • the wireless sensing signal receiving end is configured to measure the target sensing signal sent by the wireless sensing signal sending end and at least partly backscattered by the first device, so as to obtain a target measurement amount.
  • the above-mentioned first device in the embodiment of the present application can execute various processes in the method embodiment shown in FIG. 2, and the above-mentioned wireless sensing signal receiving end can execute various processes in the method embodiment shown in FIG. repeat.
  • the wireless sensing system further includes: a second device;
  • the second device is communicatively connected to the wireless sensing signal sending end, the wireless sensing signal receiving end, and the first device;
  • the second device is further configured to acquire perception requirement information, and send the perception requirement information to at least one of the wireless perception signal transmitter and the wireless perception signal receiver, or, according to the perception requirement information Determine the configuration information related to the sensing signal, and send the configuration information related to the sensing signal to at least one of the sending end of the wireless sensing signal and the receiving end of the wireless sensing signal.
  • the above-mentioned second device may execute each process in the method embodiment shown in FIG. 5 , which will not be repeated here.
  • the sensing signal sent by the wireless sensing signal sending end is a preset sensing signal sequence
  • the wireless sensing signal receiving end is specifically configured to receive a signal from the wireless sensing signal sending end and at least partly passed through the first device. backscattered target sensing signal sequence, and perform target signal processing based on the target sensing signal sequence and the preset sensing signal sequence to obtain target measurement quantities, wherein the sensing signal-related configuration information includes the preset Signal configuration information for the perceived signal sequence.
  • the wireless sensing signal sending end is further configured to send first indication information to the first device, where the first indication information is used to indicate that the first device needs to feed back to the wireless sensing signal receiving end
  • the first device is specifically configured to modulate the first information on the target sensing signal, so that the wireless sensing signal receiving end receives the modulated target sensing signal.
  • the second device includes at least one of the following:
  • Sensing network elements or sensing network functional entities in the core network are Sensing network elements or sensing network functional entities in the core network
  • the sensing network element or sensing network functional entity in the access network is the sensing network element or sensing network functional entity in the access network.
  • the first device includes at least one of a Backscatter tag and a Radio Frequency Identification (RFID) tag.
  • RFID Radio Frequency Identification
  • the first node is configured to determine the target sensing result according to the fifth information, where the first node includes: the wireless sensing signal sending end, the wireless sensing signal receiving end, the second device, and the At least one of the network-side devices accessed by the first terminal, the fifth information includes the target measurement quantity, or includes the target measurement quantity and the first target measurement quantity; or,
  • the wireless sensing system further includes a target core network element, the first node is configured to send the fifth information to the target core network element, and the target core network element is configured to transmit the fifth information to the target core network element according to the fifth information.
  • the information determines the target perception outcome.
  • the second node is configured to send a reference measurement quantity or a reference measurement result to the first node or a target core network element;
  • the first node or the target core network element is configured to determine a target sensing result according to the reference measurement quantity or reference measurement result and the fifth information
  • the second node includes: the wireless sensing signal sending end, At least one of the wireless sensing signal receiving end, the second device, the access network side device of the first terminal, the first device, and the network side device or terminal accessed by the first device .
  • the second node is further configured to send the prior information of the first device to the first node or a target core network element;
  • the first node or the target core network element is used to determine the target perception result according to the following information:
  • the target core network element includes: an application server, an AMF network element with an access and mobility management function, or a network management system.
  • the terminals in the wireless sensing signal sending end and the wireless sensing signal receiving end meet at least one of the following conditions:
  • the capability information of the terminal satisfies the perception requirement
  • the location information of the terminal satisfies the perception requirement
  • the network-side device in the wireless sensing signal sending end satisfies at least one of the following conditions:
  • the capability information of the network side device satisfies the perception requirement
  • the location information of the network side device satisfies the perception requirement
  • a network-side device accessed by a terminal that satisfies the perception requirement
  • the first device meets at least one of the following conditions:
  • the prior information of the first device satisfies the perception requirement
  • the capability information of the first device satisfies the perception requirement
  • the first device is attached to the sensing target corresponding to the sensing demand information, or the first device is located in the target sensing area corresponding to the sensing demand information.
  • the wireless sensing system provided by the embodiment of the present application can execute the various processes in the method embodiments shown in FIG. 2 , FIG. 4 and FIG. 5 , and can achieve the same beneficial effects. I will avoid repetition and will not repeat them here.
  • the wireless sensing method provided in the embodiment of the present application may be executed by a wireless sensing device.
  • the wireless sensing device provided in the embodiment of the present application is described by taking the wireless sensing device executing the wireless sensing method as an example.
  • the first wireless sensing device 800 may be applied to a first device.
  • the first wireless sensing device 800 may include the following modules:
  • the backscattering module 801 is configured to backscatter the target sensing signal to the wireless sensing signal receiving end, wherein the target sensing signal comes from the wireless sensing signal sending end, and the wireless sensing signal sending end includes the first terminal or the first network A side device, wherein the receiving end of the wireless sensing signal includes a second network side device.
  • the first wireless sensing device 800 also includes:
  • the first receiving module is configured to receive first indication information from the wireless sensing signal sending end, where the first indication information is used to indicate that the first device needs to feed back the first information to the wireless sensing signal receiving end information;
  • the backscatter module 801 is specifically used for:
  • the first information is modulated on the target sensing signal, so that the wireless sensing signal receiving end receives the modulated target sensing signal.
  • the first device includes at least one of a Backscatter tag and a Radio Frequency Identification (RFID) tag.
  • RFID Radio Frequency Identification
  • the first information includes at least one of the following:
  • the first wireless sensing device 800 also includes:
  • a fourth acquiring module configured to acquire a second sensing request message
  • An output module configured to output a second sensing response message, wherein the second sensing response message indicates that the first device agrees to participate in the sensing process corresponding to the second sensing request message and/or provide first information.
  • the first device also has an information collection function
  • the first wireless sensing device 800 also includes:
  • a collection module configured to collect a second measurement quantity corresponding to the perception target, wherein the first information includes the second measurement quantity.
  • the first wireless sensing device 800 also includes:
  • a first reference measurement module configured to cooperate with the wireless sensing signal sending end and the wireless sensing signal receiving end to perform reference measurement, wherein the reference measurement is used to obtain a reference measurement quantity or a reference measurement result, and the target sensing result Determine based on the target measurement quantity and the reference measurement quantity or reference measurement result.
  • the first type of wireless sensing device 800 provided in the embodiment of the present application can execute various processes performed by the first device in the method embodiment shown in FIG. 2 , and can achieve the same beneficial effect. .
  • the second wireless sensing device provided by the embodiment of the present application can be applied to a wireless sensing signal receiving end, and the wireless sensing signal receiving end includes a second network side device, as shown in Figure 9, the first
  • the two wireless sensing devices 900 may include the following modules:
  • the first acquiring module 901 is configured to acquire second information, where the second information includes: perception requirement information, and/or configuration information related to perception signals corresponding to the perception requirement information;
  • the measurement module 902 is configured to measure the target sensing signal sent by the wireless sensing signal sending end and at least partly backscattered by the first device according to the configuration information related to the target sensing signal, so as to obtain the target measurement quantity, the wireless sensing signal
  • the sensing signal sending end includes a first terminal or a first network side device;
  • An execution module 903 configured to determine a target perception result according to the target measurement, or send the target measurement.
  • the measurement module 902 includes:
  • the receiving unit is configured to receive the target sensing signal sequence from the wireless sensing signal transmitting end and at least partly backscattered by the first device;
  • a signal processing unit configured to perform target signal processing based on the target sensing signal sequence and the preset sensing signal sequence to obtain a target measurement quantity, wherein the sensing signal-related configuration information includes The signal configuration information of the preset sensing signal sequence.
  • the second wireless sensing device 900 also includes:
  • the second sending module is configured to send the second information to the wireless sensing signal sending end.
  • the target measurement quantity includes:
  • the target perception signal-related configuration information includes at least one of the following:
  • the target measurement quantity includes at least one of the following:
  • a first measurement quantity, the first measurement quantity is a measurement quantity related to the first device, which includes at least one of the following:
  • the second wireless sensing device 900 also includes:
  • the second receiving module is used to receive the target operation command
  • a reading module configured to read the first information of the first device according to the target operation command, and send the first information to the second device, wherein the target perception result is the second device a perception result determined based on the target measurement result and the first information;
  • the first information includes at least one of the following items: the identity of the first device, the state indication information of the first device participating in sensing, the sensing time period of the first device, the sensing service occupation flag, the The incident angle and reflection angle range of the first device, the number of first devices in the associated area, the location information of the first device, the sensing distance of the first device, the working bandwidth of the first device, The working frequency of each channel of the first device, the modulation mode of the first device, the read and write frequencies supported by the first device, the array form information of the first device, and the signal-to-noise signal of the reflected signal of the first device ratio, the number of transmitting antennas of a single first device, the number of receiving antennas of a single first device, the antenna arrangement information of a single first device, the arrangement information of an array including at least two first devices, the The error statistical distribution parameters of the phase of the reflected signal, the energy supply mode of the first device, the power information of the active first device, the energy storage capacity of the first device, the
  • the second wireless sensing device 900 also includes:
  • a response module configured to send a first sensing response message in response to receiving the sensing requirement information or the first sensing request message, wherein the first sensing response message indicates that the receiving end of the wireless sensing signal agrees to participate in the sensing The sensing process corresponding to the requirement information or the first sensing request message.
  • the second wireless sensing device 900 also includes:
  • a second reference measurement module configured to cooperate with the wireless sensing signal sending end and the first device to perform reference measurement, so as to obtain a reference measurement quantity
  • the first determining module is configured to determine a reference sensing result according to the reference measurement quantity, or send the reference measurement quantity.
  • the second type of wireless sensing device 900 provided in the embodiment of the present application can perform various processes performed by the receiving end of the wireless sensing signal in the method embodiment shown in FIG. 4 , and can achieve the same beneficial effect. To avoid repetition, the Let me repeat.
  • the first type of wireless sensing device 800 or the second type of wireless sensing device 900 in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or a component of the electronic device, such as an integrated circuit or a chip.
  • the electronic device may be a terminal, or other devices other than the terminal.
  • the terminal may include, but not limited to, the types of terminal 11 listed above, and other devices may be servers, Network Attached Storage (NAS), etc., which are not specifically limited in this embodiment of the present application.
  • NAS Network Attached Storage
  • the third wireless sensing device 1000 may be applied to the second device.
  • the third wireless sensing device 1000 may include the following modules:
  • the second acquiring module 1001 is configured to acquire perceived demand information
  • the first sending module 1002 is configured to send second information to at least one of a wireless sensing signal sending end and a wireless sensing signal receiving end, where the second information includes: the sensing demand information, and/or is related to the Target sensing signal-related configuration information corresponding to the sensing demand information, the wireless sensing signal sending end includes a first network-side device or a first terminal, and the wireless sensing signal receiving end includes a second network-side device;
  • the third acquiring module 1003 is configured to acquire at least one of a target measurement amount and a target perception result, wherein the target measurement amount is sent by the wireless sensing signal receiving end to the wireless sensing signal sending end and at least Part of the target perception signal backscattered by the first device is measured to obtain a measurement quantity, and the target perception result is determined based on the target measurement quantity.
  • the second device includes at least one of the following:
  • Sensing network elements or sensing network functional entities in the core network are Sensing network elements or sensing network functional entities in the core network
  • the sensing network element or sensing network functional entity in the access network is the sensing network element or sensing network functional entity in the access network.
  • the third wireless sensing device 1000 also includes:
  • the second determining module is configured to determine at least one of the wireless sensing signal sending end, the wireless sensing signal receiving end, and the first device according to the sensing demand information.
  • the second determination module includes:
  • An acquiring unit configured to acquire third information, wherein the third information includes: fourth information of each terminal connected in communication, fifth information of each network side device connected in communication, and first information of each first device connected in communication Information, wherein the fourth information includes at least one of capability information and location information of the corresponding terminal, and the fifth information includes at least one of capability information and location information of the corresponding network side device;
  • the second determining unit is configured to determine, according to the third information and the sensing requirement information, that the sensing type is a target sensing signal sent by a network-side device receiving a terminal or another network-side device and backscattered by the first device;
  • a third determining unit configured to determine the wireless sensing signal transmitter and the wireless sensing signal receiving end matching the sensing type according to at least one of the fourth information and the fifth information;
  • a fourth determining unit configured to determine the first device according to the first information
  • the first information includes at least one of the following items: the identity of the first device, the state indication information of the first device participating in sensing, the sensing time period of the first device, the sensing service occupation flag, the The incident angle and reflection angle range of the first device, the number of first devices in the associated area, the location information of the first device, the sensing distance of the first device, the working bandwidth of the first device, The working frequency of each channel of the first device, the modulation mode of the first device, the read and write frequencies supported by the first device, the array form information of the first device, and the signal-to-noise signal of the reflected signal of the first device ratio, the number of transmitting antennas of a single first device, the number of receiving antennas of a single first device, the antenna arrangement information of a single first device, the arrangement information of an array including at least two first devices, the The error statistical distribution parameters of the phase of the reflected signal, the energy supply mode of the first device, the power information of the active first device, the energy storage capacity of the first device, the
  • the terminals in the wireless sensing signal sending end and the wireless sensing signal receiving end meet at least one of the following conditions:
  • the capability information of the terminal satisfies the perception requirement
  • the location information of the terminal satisfies the perception requirement
  • the network-side device in the wireless sensing signal sending end satisfies at least one of the following conditions:
  • the capability information of the network side device satisfies the perception requirement
  • the location information of the network side device satisfies the perception requirement
  • a network-side device accessed by a terminal that satisfies the perception requirement
  • the first device meets at least one of the following conditions:
  • the prior information of the first device satisfies the perception requirement
  • the capability information of the first device satisfies the perception requirement
  • the target measurement quantity includes:
  • the third acquiring module 1003 is specifically used for:
  • the second device acquires the first information in the following manner:
  • the second device receives the first information from the wireless sensing signal receiving end, wherein the sensing demand information sent by the second device to the wireless sensing signal sending end includes a target operation command, or, The target sensing signal-related configuration information sent by the second device to the wireless sensing signal transmitter is determined based on the sensing requirement information including the target operation command, where the target operation command is used to control the first device to The backscattered target perception signal carries the first information;
  • the second device sends second indication information to the network-side device or terminal accessed by the first device, and receives the first information from the network-side device or terminal accessed by the first device, wherein, The second indication information is used to instruct a network-side device or terminal accessed by the first device to read the first information;
  • the second device acquires the pre-stored first information.
  • the third wireless sensing device 1000 also includes at least one of the following:
  • a calling module configured to call an associated network-side device of the first device, and perform a second process on the first device through the associated network-side device, wherein the second process includes at least one of the following: reading The first information, writing the first information, taking inventory of the first information, providing electric energy for the first device, and controlling the first device that meets the sensing condition corresponding to the sensing demand information to be active State and control A first device that does not meet the sensing condition is in an inactive state, and the first device is located within the read-write range of the associated network side device;
  • a processing module configured to perform first processing on the pre-stored first information, wherein the first processing includes: at least one of updating, deleting and adding.
  • the third wireless sensing device 1000 also includes:
  • the fifth obtaining module is used to obtain a reference measurement quantity or a reference measurement result
  • the reference measurement quantity is a measurement quantity obtained by the wireless sensing signal receiving end, the wireless sensing signal sending end, and the first device by performing a reference sensing process, and the target sensing result is based on the target measurement quantity, and the reference measurement quantity or a reference measurement result corresponding to the reference measurement quantity is determined.
  • the fifth acquisition module is specifically used for:
  • the second acquiring module 1001 is specifically used for:
  • the network element of the target core network includes: an application server, an AMF network element with an access and mobility management function, or a network management system.
  • the third wireless sensing device 1000 also includes:
  • a sixth acquiring module configured to acquire target capability information, where the target capability information includes at least one of the capability information of the wireless sensing signal transmitter, the capability information of the wireless sensing signal receiving end, and the capability information of the first device one item;
  • a third determining module configured to determine configuration information related to target sensing signals according to the target capability information and the sensing demand information
  • a transmission module configured to send first recommendation information to the wireless sensing signal sending end according to the sensing demand information, and receive configuration information related to the target sensing signal from the wireless sensing signal sending end;
  • a fourth determining module configured to receive second recommendation information from the wireless sensing signal transmitter, and determine configuration information related to the target sensing signal according to the second recommendation information and the sensing requirement information;
  • a fifth determining module configured to receive first configuration information from the wireless sensing signal transmitter, and determine second configuration information according to the sensing requirement information, wherein the configuration information related to the target sensing signal includes the first configuration information and the second configuration information.
  • the target perception signal-related configuration information includes at least one of the following:
  • the target measurement quantity includes at least one of the following:
  • a first measurement quantity, the first measurement quantity is a measurement quantity related to the first device, which includes at least one of the following:
  • the target measurement quantity further includes a second measurement quantity collected by the first device, wherein the first device also has an information collection capability.
  • the target measurement quantity has a one-to-one correspondence with sensing antennas or sensing resources.
  • the first sending module 1002 is specifically used for:
  • the third obtaining module 1003 includes at least one of the following:
  • the first transmission unit is configured to receive the target measurement amount from the wireless sensing signal receiving end or the wireless sensing signal sending end, and send the target measurement amount to a target core network element, wherein the target sensing result is determined by The target core network element is determined based on the target measurement quantity;
  • the second transmission unit is configured to receive the target measurement quantity from the wireless sensing signal receiving end or the wireless sensing signal transmitting end, and determine a target sensing result according to the target measurement quantity;
  • a third transmission unit configured to receive a target sensing result from the wireless sensing signal sending end, the wireless sensing signal receiving end, or a network side device accessed by the wireless sensing signal sending end, wherein the target sensing result Determined based on the target measurement quantity by the wireless sensing signal sending end, the wireless sensing signal receiving end, or the network-side device accessed by the wireless sensing signal sending end.
  • the third type of wireless sensing device 1000 provided in the embodiment of the present application can execute various processes performed by the second device in the method embodiment shown in FIG. 5 , and can achieve the same beneficial effect. To avoid repetition, details are not repeated here. .
  • this embodiment of the present application also provides a communication device 1100, including a processor 1101 and a memory 1102, and the memory 1102 stores programs or instructions that can run on the processor 1101, such as , when the communication device 1100 is a backscatter communication device, when the program or instruction is executed by the processor 101, each step of the method embodiment shown in FIG. 2 can be implemented, and the same technical effect can be achieved.
  • the communication device 1100 is a network-side device, when the program or instruction is executed by the processor 1101, each step of the method embodiment shown in FIG. 4 or FIG. 5 can be implemented, and the same technical effect can be achieved. To avoid repetition, here No longer.
  • the embodiment of the present application also provides a network side device, including a processor and a communication interface:
  • the communication interface is used to obtain second information, the second information includes: sensing demand information, and/or, a target corresponding to the sensing demand information Sensing signal-related configuration information; the communication interface is further configured to, according to the target sensing signal-related configuration information, measure the target sensing signal sent by the wireless sensing signal sending end and at least partly backscattered by the first device, to obtain Target measurement, the wireless sensing signal sending end includes a first terminal or a first network side device; the processor is used to determine a target sensing result according to the target measurement, or the communication interface is used to send the target measurement;
  • the communication interface is used to acquire sensing demand information, and send second information to at least one of a wireless sensing signal sending end and a wireless sensing signal receiving end, the The second information includes: the sensing requirement information, and/or, sensing signal-related configuration information corresponding to the sensing requirement information, the sending end of the wireless sensing signal includes a first network-side device or a first terminal, and the wireless The receiving end of the sensing signal includes a second network-side device; the communication interface is also used to obtain at least one of a target measurement amount and a target sensing result, wherein the target measurement amount is obtained by the wireless sensing signal receiving end through the The target sensing signal sent by the wireless sensing signal transmitter and at least partly backscattered by the first device is measured to obtain a measurement amount, and the target sensing result is determined based on the target measurement amount.
  • the network-side device embodiment corresponds to the embodiment shown in FIG. 4 or FIG. 5 , and each implementation process and implementation mode of the above-mentioned method embodiments can be applied to the network-side device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a network side device.
  • the network side device 1200 includes: an antenna 1201 , a radio frequency device 1202 , a baseband device 1203 , a processor 1204 and a memory 1205 .
  • the antenna 1201 is connected to the radio frequency device 1202 .
  • the radio frequency device 1202 receives information through the antenna 1201, and sends the received information to the baseband device 1203 for processing.
  • the baseband device 1203 processes the information to be sent and sends it to the radio frequency device 1202
  • the radio frequency device 1202 processes the received information and sends it out through the antenna 1201 .
  • the method performed by the network side device in the above embodiments may be implemented in the baseband device 1203, where the baseband device 1203 includes a baseband processor.
  • the baseband device 1203 may include, for example, at least one baseband board, on which a plurality of chips are arranged, as shown in FIG.
  • the program executes the network device operations shown in the above method embodiments.
  • the network side device may also include a network interface 1206, such as a common public radio interface (common public radio interface, CPRI).
  • a network interface 1206 such as a common public radio interface (common public radio interface, CPRI).
  • the network-side device 1200 in this embodiment of the present invention further includes: instructions or programs stored in the memory 1205 and operable on the processor 1204, and the processor 1204 calls the instructions or programs in the memory 1205 to execute FIG. 9 or FIG. 10 (The second device is located in the access network)
  • the embodiment of the present application also provides a core network network side device.
  • the network side device 1300 includes: a processor 1301 , a network interface 1302 and a memory 1303 .
  • the network interface 1302 is, for example, a common public radio interface CPRI.
  • the network-side device 1300 in the embodiment of the present invention further includes: instructions or programs stored in the memory 1303 and operable on the processor 1301, and the processor 1301 invokes the instructions or programs in the memory 1303 to execute FIG. 10 (second The method performed by each module shown in the device located in the core network) and achieve the same technical effect, in order to avoid repetition, so it is not repeated here.
  • the embodiment of the present application also provides a readable storage medium, on which a program or instruction is stored, and when the program or instruction is executed by a processor, each of the method embodiments shown in FIG. 2 , FIG. 4 or FIG. 5 is implemented. process, and can achieve the same technical effect, in order to avoid repetition, it will not be repeated here.
  • the processor is the processor in the terminal described in the foregoing embodiments.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk, and the like.
  • the embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions, as shown in Figure 2, Figure 4 or
  • the various processes of the method embodiment in FIG. 5 can achieve the same technical effect, and will not be repeated here to avoid repetition.
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • the embodiment of the present application further provides a computer program product, the computer program product is stored in a storage medium, and the computer program product is executed by at least one processor to implement the method embodiment shown in FIG. 2 , FIG. 4 or FIG. 5
  • the computer program product is executed by at least one processor to implement the method embodiment shown in FIG. 2 , FIG. 4 or FIG. 5
  • the embodiment of the present application also provides a wireless sensing system, including: a terminal and a network side device, and the network side device can be used to execute the steps of the wireless sensing method as shown in FIG. 4 or FIG. 5 .
  • the term “comprising”, “comprising” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase “comprising a " does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.
  • the scope of the methods and devices in the embodiments of the present application is not limited to performing functions in the order shown or discussed, and may also include performing functions in a substantially simultaneous manner or in reverse order according to the functions involved. Functions are performed, for example, the described methods may be performed in an order different from that described, and various steps may also be added, omitted, or combined. Additionally, features described with reference to certain examples may be combined in other examples.
  • the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of computer software products, which are stored in a storage medium (such as ROM/RAM, magnetic disk, etc.) , CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of the present application.

Abstract

本申请公开了一种无线感知方法、装置和网络侧设备,属于通信领域,本申请实施例的无线感知方法包括:第一设备向无线感知信号接收端反向散射目标感知信号,其中,所述目标感知信号来自无线感知信号发送端,所述无线感知信号发送端包括第一终端或第一网络侧设备,所述无线感知信号接收端包括第二网络侧设备。

Description

无线感知方法、装置和网络侧设备
相关申请的交叉引用
本申请主张在2021年11月25日在中国提交的中国专利申请No.202111416113.6的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种无线感知方法、装置和网络侧设备。
背景技术
在相关技术中,传感和通信系统通常是单独设计的,并占用不同的频段。由于毫米波和大规模多输入多输出技术(Multi Input Multi Output,MIMO)技术的广泛部署,未来无线通信系统中的通信信号往往在时域和角度域都具有高分辨率,这使得利用通信信号实现高精度传感成为可能。因此,最好是联合设计传感和通信系统,使它们能够共享同一频段和硬件,以提高频率效率并降低硬件成本。这促使了对通信和感知一体化(Integrated Sensing And Communication,ISAC)的研究。
但是,在ISAC场景中,由于采用传统的无线电体系结构的感知设备包括耗电的射频链路,其包含振荡器、混频器和数字-模拟转换器等,这导致了感知设备的尺寸较大,且电池使用寿命较短,限制了ISAC中的感知设备的布局,进而使得ISAC系统的感知性能受限。
发明内容
本申请实施例提供一种无线感知方法、装置和网络侧设备,能够在ISAC系统中采用第一设备来反向散射目标感知信号,以提升ISAC系统的感知性能。
第一方面,提供了一种无线感知方法,所述方法包括:
第一设备向无线感知信号接收端反向散射目标感知信号,其中,所述目标感知信号来自无线感知信号发送端,所述无线感知信号发送端包括第一终端或第一网络侧设备,所述无线感知信号接收端包括第二网络侧设备。
第二方面,提供了一种无线感知装置,应用于第一设备,所述装置包括:
反向散射模块,用于向无线感知信号接收端反向散射目标感知信号,其中,所述目标感知信号来自无线感知信号发送端,所述无线感知信号发送端包括第一终端或第一网络侧设备,所述无线感知信号接收端包括第二网络侧设备。
第三方面,提供了一种无线感知方法,所述方法包括:
无线感知信号接收端获取第二信息,所述第二信息包括:感知需求信息,和/或,与所述感知需求信息对应的目标感知信号相关配置信息,所述无线感知信号接收端包括第二网络侧设备;
所述无线感知信号接收端根据所述目标感知信号相关配置信息,对无线感知信号发送端发送的且至少部分经第一设备反向散射的目标感知信号进行测量,以获取目标测量量,所述无线感知信号发送端包括第一终端或第一网络侧设备;
所述无线感知信号接收端根据所述目标测量量确定目标感知结果,或者发送所述目标测量量。
第四方面,提供了一种无线感知装置,应用于无线感知信号接收端,所述无线感知信号接收端包括第二网络侧设备,所述装置包括:
第一获取模块,用于获取第二信息,所述第二信息包括:感知需求信息,和/或,与所述感知需求信息对应的目标感知信号相关配置信息,所述无线感知信号接收端包括第二网络侧设备;
测量模块,用于根据所述目标感知信号相关配置信息,对无线感知信号发送端发送的且至少部分经第一设备反向散射的目标感知信号进行测量,以获取目标测量量,所述无线感知信号发送端包括第一终端或第一网络侧设备;
执行模块,用于根据所述目标测量量确定目标感知结果,或者发送所述目标测量量。
第五方面,提供了一种无线感知方法,所述方法包括:
第二设备获取感知需求信息;
所述第二设备向无线感知信号发送端和无线感知信号接收端中的至少一者发送第二信息,所述第二信息包括:所述感知需求信息,和/或,与所述感知需求信息对应的目标感知信号相关配置信息,所述无线感知信号发送端包括第一网络侧设备或第一终端,所述无线感知信号接收端包括第二网络侧设备;
所述第二设备获取目标测量量和目标感知结果中的至少一项,其中,所述目标测量量为所述无线感知信号接收端通过对所述无线感知信号发送端发送的且至少部分经第一设备反向散射的目标感知信号进行测量,所得到的测量量,所述目标感知结果基于所述目标测量量确定。
第六方面,提供了一种无线感知装置,应用于第二设备,所述装置包括:
第二获取模块,用于获取感知需求信息;
第一发送模块,用于向无线感知信号发送端和无线感知信号接收端中的至少一者发送第二信息,所述第二信息包括:所述感知需求信息,和/或,与所述感知需求信息对应的目标感知信号相关配置信息,所述无线感知信号发送端包括第一网络侧设备或第一终端,所述无线感知信号接收端包括第二网络侧设备;
第三获取模块,用于获取目标测量量和目标感知结果中的至少一项,其中,所述目标 测量量为所述无线感知信号接收端通过对所述无线感知信号发送端发送的且至少部分经第一设备反向散射的目标感知信号进行测量,所得到的测量量,所述目标感知结果基于所述目标测量量确定。
第七方面,提供了一种无线感知系统,包括:第一设备、无线感知信号发送端和无线感知信号接收端;
所述无线感知信号发送端包括第一网络侧设备或第一终端,所述无线感知信号接收端包括第二网络侧设备;
所述无线感知信号发送端和所述无线感知信号接收端中的至少一者用于获取第二信息,所述第二信息包括:所述感知需求信息,和/或,与所述感知需求信息对应的目标感知信号相关配置信息;
所述无线感知信号发送端用于根据所述感知需求信息确定所述目标感知信号相关配置信息,并根据所述感知信号相关配置信息发送目标感知信号,或者,所述无线感知信号发送端用于根据获取的所述感知信号相关配置信息发送目标感知信号;
所述第一设备,用于反向散射所述无线感知信号发送端发送的所述目标感知信号;
所述无线感知信号接收端,用于对所述无线感知信号发送端发送的且至少部分经所述第一设备反向散射的目标感知信号进行测量,以得到目标测量量。
第八方面,提供了一种网络侧设备,该网络侧设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第三方面或第五方面所述的方法的步骤。
第九方面,提供了一种网络侧设备,包括处理器及通信接口,其中,在所述网络侧设备为无线感知信号接收端的情况下,所述通信接口用于获取第二信息,所述第二信息包括:感知需求信息,和/或,与所述感知需求信息对应的目标感知信号相关配置信息;所述通信接口还用于根据所述目标感知信号相关配置信息,对无线感知信号发送端发送的且至少部分经第一设备反向散射的目标感知信号进行测量,以获取目标测量量,所述无线感知信号发送端包括第一终端或第一网络侧设备;所述处理器用于根据所述目标测量量确定目标感知结果,或者,所述通信接口用于发送所述目标测量量;
或者,
在所述网络侧设备为第二设备的情况下,所述通信接口用于获取感知需求信息,并向无线感知信号发送端和无线感知信号接收端中的至少一者发送第二信息,所述第二信息包括:所述感知需求信息,和/或,与所述感知需求信息对应的感知信号相关配置信息,所述无线感知信号发送端包括第一网络侧设备或第一终端,所述无线感知信号接收端包括第二网络侧设备;所述通信接口还用于获取目标测量量和目标感知结果中的至少一项,其中,所述目标测量量为所述无线感知信号接收端通过对所述无线感知信号发送端发送的且至少部分经第一设备反向散射的目标感知信号进行测量,所得到的测量量,所述目标感知结果基于所述目标测量量确定。
第十方面,提供了一种无线感知系统,包括:终端及网络侧设备,所述网络侧设备可用于执行如第三方面和第五方面所述的无线感知方法的步骤。
第十一方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第三方面所述的方法的步骤,或者实现如第五方面所述的方法的步骤。
第十二方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法,或实现如第三方面所述的方法,或实现如第五方面所述的方法。
第十三方面,提供了一种计算机程序产品,所述计算机程序产品被存储在存储介质中,所述计算机程序产品被至少一个处理器执行以实现如第一方面或第三方面或第五方面所述的无线感知方法的步骤。
第十四方面,提供了一种通信设备,所述通信设备被配置成用于执行如第一方面或第三方面或第五方面所述的方法。
在本申请实施例中,第一设备向无线感知信号接收端反向散射目标感知信号,其中,所述目标感知信号来自无线感知信号发送端,所述无线感知信号发送端包括第一终端或第一网络侧设备,所述无线感知信号接收端包括第二网络侧设备。这样,利用第一设备的反向散射功能,将无线感知信号发送端发送的目标感知信号至少部分反向散射至无线感知信号接收端,可以避免在第一设备的位置处设置无线感知信号发送端和接收端,鉴于具有反向散射功能的第一设备可以不具有耗电的射频链路,因而具有尺寸小、耗电量小等特征,相较于无线感知信号发送端和接收端,其更加便于布局在ISAC系统中,以提升ISAC系统的感知性能。
附图说明
图1是本申请实施例能够应用的一种无线通信系统的结构示意图;
图2是本申请实施例提供的第一种无线感知方法的流程图;
图3a是应用本申请实施例提供的无线感知方法的无线感知系统的示意图之一;
图3b是应用本申请实施例提供的无线感知方法的无线感知系统的示意图之二;
图3c是应用本申请实施例提供的无线感知方法的无线感知系统的示意图之三;
图4是本申请实施例提供的第二种无线感知方法的流程图;
图5是本申请实施例提供的第三种无线感知方法的流程图;
图6是本申请实施例提供的一种无线感知方法中的信息交互示意图之一;
图7是本申请实施例提供的一种无线感知方法中的信息交互示意图之二;
图8是本申请实施例提供的第一种无线感知装置的结构示意图;
图9是本申请实施例提供的第二种无线感知装置的结构示意图;
图10是本申请实施例提供的第三种无线感知装置的结构示意图;
图11是本申请实施例提供的一种通信设备的结构示意图;
图12是本申请实施例提供的一种网络侧设备的结构示意图;
图13是本申请实施例提供的另一种网络侧设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-Carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6 th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能 手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点或无线保真(Wireless Fidelity,WiFi)节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM),统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF),网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application Function,AF)等。需要说明的是,在本申请实施例中仅以NR系统中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。
第一方面,近几十年来,无线通信和雷达传感(Communication&Sensing,C&S)一直在并行发展,但交集有限。它们在信号处理算法、设备以及一定程度上的系统架构方面都有很多共性。近年来,这两个系统在共存、合作和联合设计上受到了越来越多研究人员的关注。
早期人们对通信系统和雷达系统共存的问题进行了广泛的研究,研究侧重是开发有效的干扰管理技术,使两个单独部署的系统能够在相互不干扰的情况下平稳运行。虽然雷达和通信系统可能在同一位置,甚至物理上集成,但它们在时间/频率域传输的是不同的两种信号。它们通过合作共享相同的资源,以最大限度地减少同时工作时对彼此之间的干扰。相应的措施包括波束赋形、合作频谱共享、主次频谱共享、动态共存等。然而有效的干扰消除通常对节点的移动性和节点之间的信息交换有着严格的要求,因此频谱效率的提高实际比较有限。由于共存系统中的干扰是由发射两个独立的信号引起的,因此很自然地会问,我们是否可以同时使用一个发射信号同时进行通信和雷达传感。雷达系统通常使用特别设 计的波形,如短脉冲和啁啾,能够实现高功率辐射和简化接收机处理。然而这些波形对雷达探测来说不是必需的,无源雷达或无源传感以不同的无线电信号作为感知信号就是一个很好的例子。
机器学习,特别是深度学习技术进一步促进了非专用无线电信号用于雷达传感的潜力。有了这些技术,传统雷达正朝着更通用的无线感知方向发展。这里的无线感知可以广泛地指从接收到的无线电信号中检索信息,而不是在发射机上调制到信号的通信数据。对于感知目标位置相关的无线感知,可以通过常用的信号处理方法,对目标信号反射时延、到达角(Angle of Arrival,AOA)、离开角(Angle of Departure,AOD)、多普勒等动力学参数进行估计;对于感知目标物理特征,可以通过测量设备、对象、活物的固有模式信号来实现。两种感知方式可以分别称为感知参数估计以及模式识别。在这个意义上,无线感知是指使用无线电信号的更通用的传感技术和应用。
通信感知一体化(Integrated Sensing and Communication,ISAC)有潜力将无线感知集成到大规模移动网络中,在这里称为感知移动网络(Perceptive Mobile Networks,PMNs)。PMN可以从目前的5G移动网络演变而来,有望成为一个无处不在的无线传感网络,同时提供稳定高质量的移动通信服务。它可以建立在现有移动网络基础设施之上,而不需要对网络结构和设备进行重大改变。它将释放移动网络的最大能力,并避免花费高昂基础设施成本去额外单独建设新的广域无线传感网络。随着覆盖范围的扩大,综合通信和传感能力有望实现许多新的应用。感知移动网络能够同时提供通信和无线感知服务,并且由于其较大的宽带覆盖范围和强大的基础设施,有可能成为一种无处不在的无线传感解决方案。其联合协调的通信和传感能力将提高我们社会的生产力,并有助于催生出大量现有传感器网络无法有效实现的新应用。利用移动信号进行被动传感的一些早期工作已经证明了它的潜力。例如基于全球移动通信系统(Global System for Mobile Communications,GSM)的无线电信号的交通监控、天气预报和降雨遥感。感知移动网络可以广泛应用于交通、通信、能源、精准农业和安全领域的通信和传感,而现有的解决方案要么不可行,要么效率低下。它还可以为现有的传感器网络提供互补的传感能力,具有独特的昼夜操作功能,能够穿透雾、树叶甚至固体物体。一些常见的感知业务如下表1所示:
表1
Figure PCTCN2022132925-appb-000001
Figure PCTCN2022132925-appb-000002
但是,相关技术中的ISAC系统中,需要布局大量的无线感知信号发送端和无线感知信号接收端,以使无线感知信号接收端根据接收到的无线感知信号发送端发送的感知信号来确定感知测量量以及感知结果,而无线感知信号发送端和无线感知信号接收端包括耗电的射频链路,其包含振荡器、混频器和数字-模拟转换器等,这导致了感知设备的尺寸较大,且电池使用寿命较短,限制了ISAC中的感知设备的布局,进而使得ISAC系统的感知性能较低。
本申请实施例提出的无线感知方法中,可以通过能耗少、尺寸小的第一设备来反向散射无线感知信号发送端发送的至少部分信号,以提供新的感知路径甚至提供新的感知辅助信息,以提升ISAC系统的感知性能。
第二方面,在相关技术中,低功耗、低复杂度的反向散射通信(Backscatter Communications,BSC)技术是一种简单地依靠被动反射和调制入射射频(Radio Frequency,RF)波的技术,近年来在消费电子、5G通信技术和云计算支持的大数据分析技术的进步推动下,物联网的快速增长引起了业界和学术界的极大关注。物联网面临的主要开放挑战之一是,由于大量物联网设备由容量有限的电池供电,网络生命周期有限。而BSC技术在应对这一挑战方面已成为一种有前途的技术。
具体的,传统无线电体系结构存在耗电的射频链路,其包含振荡器、混频器和数字-模拟转换器,这导致了设备尺寸较大,同时大大限制了物联网设备的电池寿命。相比之下,对于一个反向散射节点来说,其没有有源射频组件,因此硬件以具有极低的功耗(例如10μW),便于在各种灵活的场合进行大规模部署,甚至在体内植入。
在过去的20年里,点对点BSC技术已经被广泛应用于射频识别(Radio Frequency Identification,RFID)的应用中,无源RFID标签可以向近场(通常是几厘米~一米)询问的阅读器报告ID。在早期阶段,物联网主要由用于物流和库存管理的RFID设备组成。然而,未来6G物联网预计将连接数百亿设备,完成更复杂、更多功能的任务,并产生全球范围的影响。这要求物联网节点之间的通信能力和范围(数十米)远超出原始RFID,即仅支持在数米范围内突发和低速率传输(仅传输预先写入的若干字节的ID序列)。传统的RFID通信距离在m量级,而下一代BSC通信距离一般有望达到km量级;传统的RFID采用二进制调制,通信速率一般不大于640Kbps;下一代BSC可采用高阶调制,通信速率至少能达到10Mbps,甚至是2Gbps。基于现有的BSC理论,利用先进的通信技术如小蜂窝网络、全双工、多天线通信、大规模访问和无线功率传输,以及微型无线电(如按钮大小的无线 电)和低功耗电子设备制造,使得上述目标得以实现。总结来说,物联网的不断发展为BSC技术提供了许多极具前景的应用场景,使得BSC成为近年来比较火热的研究方向。
通感一体化能够催生出一系列6G新应用,除了表1所列的几种典型感知用例,基于低功耗通信设备的通感一体化也将成为6G的一个重要应用场景。本申请实施例中,基于射频识别(Radio Frequency Identification,RFID)以及反向散射通信(Backscatter Communications)技术的无线感知,相比于相关技术中的设备解耦(Device-free)的无线感知,在实现基本的感知功能同时,还能够获取额外的感知目标信息,从而有望进一步增强感知/通感一体化性能。由于RFID和backscatter具有低成本、低功耗、利于大规模部署的优势,基于RFID/backscatter的感知以及通感一体化有望在6G中获得广泛应用。例如,在车联网中具有感知功能的路边单元(Roadside Unit,RSU)可通过自发自收通感一体化信号,与道路行驶车辆通信,同时完成车辆定位、测速、轨迹追踪。当车辆上安装了RFID或者backscatter标签(tag),tag能够额外提供车辆ID、车辆当前状态等辅助信息。RSU通过接收tag的反射信号,在实现高精度的车辆定位、测速、轨迹追踪同时,还能够精确识别、区分道路上的不同车辆,拓展了感知能力。但是,基于RFID的无线感知中的关键技术,如基于tag的通感一体化波形设计、帧结构设计、感知方案与算法设计都是需要研究和解决的问题。
本申请实施例提供一种基于第一设备反向散射功能的无线感知方案,以使第一设备能够应用于无线感知。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的无线感知方法、装置、网络侧设备和终端进行详细地说明。
请参阅图2,本申请实施例提供的第一种无线感知方法,其执行主体可以是第一设备,该第一设备具有反向散射功能,例如:第一设备可以包括射频识别(Radio Frequency Identification,RFID)tag和反向散射Backscatter tag等具有反向散射功能(或称之为后向散射功能)的设备,在此不作穷举,且为了便于说明,以下实施例中以第一设备为tag为例进行举例说明,且所述第一设备可以包括一个tag或者包括多个tag组成的tag阵列,当然,除了tag之外,第一设备还可以包括其它具有反向散射功能的设备,甚至还可以包括其它传感器件等,在此不作具体限定。
如图2所示,该第一种无线感知方法可以包括以下步骤:
步骤201、第一设备向无线感知信号接收端反向散射目标感知信号,其中,所述目标感知信号来自无线感知信号发送端,所述无线感知信号发送端包括第一终端或第一网络侧设备,所述无线感知信号接收端包括第二网络侧设备。
在实施中,第一设备可以具有天线,且该天线的信号采集范围大于等于第一设备与无线感知信号接收端之间的第一距离,且大于等于第一设备与无线感知信号发送端之间的第二距离,从而能够实现利用第一设备的天线来采集来自无线感知信号发送端的目标感知信号,且反向散射的目标感知信号能够被无线感知信号接收端接收,且无线感知信号接收端 接收该目标感知信号的信号质量或信号强度等满足感知需求对应的感知条件,即所述第一设备位于所述无线感知信号发送端和所述无线感知信号接收端的覆盖范围内,所述第一设备通过调节天线的匹配阻抗等过程,以实现反向散射天线采集到的无线感知信号。
在具体实施中,上述第一设备具有反向散射功能,即第一设备是一种低功耗且低复杂程度,且支持反向散射通信的设备,该支持反向散射通信的设备可以通过调制和反向散射(以下实施例中可以简称为“反射”)从环境中接收到的无线信号来发送信息,而不需要耗电的收发器、放大器等传统通信模块,可以实现极低功耗和低成本通信。可选地,支持反向散射通信的设备可选择采集周围无线信号的能量或其他能量用于其通信,从而实现甚至零功耗通信。
另外,上述无线感知信号发送端可以是第一网络侧设备(例如:基站或发送接收点(Transmit Receive Point,TRP))或者第一终端,上述无线感知信号接收端可以是第二网络侧设备(例如:基站或TRP)。
例如:如图3a所示,无线感知信号接收端可以是基站,且无线感知信号发送端可以是基站或终端,即基站A发感知信号,部分或全部信号经过tag反向散射,基站B接收感知信号;或者用户设备(User Equipment,UE)发送感知信号,部分或全部信号经过tag反向散射,基站接收感知信号。
当然,在实际应用中,无线感知信号接收端也可能是终端,或者与无线感知信号发送端是同一网络侧设备或同一终端,例如:如图3b和图3c所示,其中,图3b所示实施例中,无线感知信号接收端与无线感知信号发送端为同一设备(基站或终端),即基站发送感知信号,部分或全部信号经过tag反向散射,所述基站接收感知信号;或者,UE发送感知信号,部分或全部信号经过tag反向散射,所述UE接收感知信号。图3c所示实施例中,无线感知信号接收端可以是UE,且无线感知信号发送端可以是基站或终端,即UE A发感知信号,部分或全部信号经过tag反向散射,UE B接收感知信号;或者,基站发送感知信号,部分或全部信号经过tag反向散射,UE接收感知信号。
本申请实施例主要针对如图3a所示应用场景进行说明,即基站接收终端或另一基站发送,且至少部分经第一设备反向散射的感知信号,以获取感知测量量。
可选地,在所述第一设备向无线感知信号接收端反向散射目标感知信号之前,所述方法还包括:
所述第一设备接收来自所述无线感知信号发送端的第一指示信息,其中,所述第一指示信息用于指示所述第一设备需要向所述无线感知信号接收端反馈的第一信息;
所述第一设备向无线感知信号接收端反向散射目标感知信号,包括:
所述第一设备将所述第一信息调制在所述目标感知信号上,以供无线感知信号接收端接收调制后的所述目标感知信号。
在具体实施中,上述第一指示信息用于指示第一设备在目标感知信号中调制指定的第一信息,所述目标感知信号可以理解为:用于感知测量的感知信号。
在一种可选的实施方式中,所述第一指示信息和所述目标感知信号可以是无线感知信号发送端在不同时间发送的信号,例如:第一设备先获取到第一指示信息后,并根据第一指示信息确定第一信息。经过一段时间(time gap)后,第一设备将先前确定的第一信息调制到感知信号上并反向散射该感知信号,无线感知信号接收端接收调制后的感知信号。其中,第一设备将第一信息调制到感知信号上,可以理解为:第一设备通过调节匹配阻抗等过程,对所述第一设备所处环境中的感知信号的幅度,或者相位,或者频率等产生影响,以实现调制该感知信号,并使该感知信号承载所述第一信息。
在另一种可选的实施方式中,所述第一指示信息和所述目标感知信号可以位于同一段信号的不同信息域,例如:某一信号的头部区域可以携带第一指示信息,该信号的其他区域可以看做是用于感知测量的感知信号。
在实施中,所述第一设备可以解调接收到的信号,以从中获取第一指示信息,并按照该第一指示信息的指示来准备需要调制到反向散射的感知信号中的第一信息,此时,第一设备可以提供额外的第一信息,例如:第一设备的位置信息、第一设备附属的目标感知对象的信息等,这样,可以利用第一信息为无线感知过程提供辅助,甚至可以直接将第一设备的第一信息作为感知结果,提升了无线感知过程的感知性能。
可选地,所述无线感知信号发送端发送的所述目标感知信号可以是未经调制的连续波(Continuous Wave,CW)信号,所述第一设备将所述第一信息调制在所述目标感知信号上,包括:
所述第一设备将所述第一信息调制到所述CW信号上。
其中,所述第一指示信息可以指示所述第一设备需要在反向散射的目标感知信号中调制哪些第一信息,例如:所述第一信息包括上述第一设备收集到的第二测量量,或者还可以把控其他预先存储在tag的相关信息,例如:tag将第一信息调制到所述CW信号中。
本实施方式中,第一设备可以在反向散射的目标感知信号中调制第一信息,以为感知过程提供除了感知测量量以外的其他信息,从而有利于提升感知系统的感知性能。
需要说明的是,在实际应用中,所述第一设备接收的目标感知信号还可以是其他信号类型,且所述第一设备反向散射所述目标感知信号的方式,以及在反向散射的所述目标感知信号内携带第一信息的方式可以适应性调整,在此不作具体限定。
当然,在其他实施例中,第一设备也可以不获取第一指示信息,而直接反向散射感知信号,此时,第一设备反向散射的感知信号中可以不携带第一设备添加的第一信息。
例如:无线感知信号发送端发送的感知信号是波形、比特序列以及频率范围等信号配置信息已知的或预先确定的预设感知信号序列。该预设感知信号序列被第一设备反向散射至无线感知信号接收端,无线感知信号接收端可以基于所述目标感知信号序列和预设感知信号序列进行目标信号处理,以得到目标测量量。目标信号处理包括但不局限于匹配滤波、互相关、滑动相关等操作,目标信号处理的结果是得到目标测量量。
需要说明的是,在实际应用中,无线感知信号发送端发送的感知信号还可以是至少两个间隔发送的感知信号,在此不作具体限定。
需要说明的是,在感知信号接收端接收至少部分经第一设备反向散射的目标感知信号时,可以对目标感知信号进行测量、解调等处理中的至少一项,以获取目标测量量。所述目标感知需求信息所需求的目标感知结果基于所述目标测量量确定,当然,基于所述目标测量量确定目标感知结果的节点可以是基站、UE、核心网或应用服务器,在此不作具体限定。例如:无线感知信号接收端可以根据获取的目标测量量计算出目标感知结果,再直接或间接地将目标感知结果发送给感知业务的发起方,或者,感知信号接收端可以将目标测量量发送给其他基站、UE、核心网或应用服务器中的至少一项,以通过其他基站、UE、核心网或应用服务器中的至少一项计算出目标感知结果后,发送给感知业务的发起方。
值得注意的是,相比于只有基站和用户移动终端参与的感知方式(即基站自发自收感知信号、基站A发基站B收感知信号、基站和终端之间发送和接收感知信号、终端自发自收感知信号、终端A发终端B收感知信号),tag的加入有以下几个方面好处:
(1)tag具有低功耗、低成本、小体积的特点,十分适合大规模部署在环境中,因此相对于上述几种感知方式,能够大幅度增大感知范围(增大感知物理距离、物理角度范围、增大感知网络密度)、提高感知性能(提高感知分辨率,降低感知误差,提高感知信噪比等);
(2)tag既可以部署在环境中,也可以部署在感知目标上。无论部署在哪里,都能够为感知方提供额外的感知信息(环境信息、感知目标物体信息),辅助device-free(设备解耦)类感知提升感知性能,同时又相对于device-based(基于设备)感知具有更低的功耗以及更少的信令开销;
(3)tag经过人为设计,其本身的反向散射特性相对于device-free类感知物体的反射特性要更稳定,相对更不容易受到感知距离、感知(观测)方向的干扰,更容易被感知方探测到,提高了感知鲁棒性;
(4)tag部署方式灵活,通过在一些感知信号难以传播的路径上巧妙部署若干个tag或者tag阵列,还有望能起到一定的感知补盲作用;
(5)tag上的存储信息(例如tag ID、tag位置坐标、tag数量、tag通信能力、tag所属目标的物理信息等)可作为一种先验信息在部署之初就存储在核心网的感知网络功能单元(Sensing Network Function,SNF)或者类似网络功能单元中,或者tag存储的先验信息可供tag接入的基站或终端读取,因此,能够为网络提供更丰富、更灵活的感知方案,实现更多感知功能;
(6)tag本身的成本相对于基站和终端要低很多,未来新一代的反向散射tag其本身就具备较强的通信功能,因此基于tag的感知天然成为通感一体化的一种经济、高效、低复杂度的实现方式。
需要说明的是,在应用中,上述目标感知信号可以是某一具体的感知业务中的感知信 号,例如:天气监测,重构三维地图,交通/人群感知,空气质量检测例如PM2.5监测、工厂污染物检测,农场家畜监测,或人的动作/姿势识别等感知业务。
该感知业务的发起方可以是第三方应用、核心网(或者网管系统,或者基站)或者UE。
具体实施方式一
对于如图3a所示的无线感知系统,若由第三方应用发起感知业务,则本申请实施例提供的感知方法可以包括以下步骤:
步骤1)应用服务器收到第三方应用的感知需求,例如:感知需求是感知目标区域的三维地图(地图的精度/分辨率是5m),该目标区域可以是指定的区域,如某个建筑物周边,也可以是目标UE的周边区域,感知需求可以包括目标区域的信息,如区域经纬度(范围)等信息。
步骤2)应用服务器(包括:网内服务器,如IP多媒体系统(IP Multimedia Subsystem,IMS),或者包括网外服务器)将感知需求发送给核心网(例如接入和移动管理功能(Access and Mobility Management Function,AMF))或核心网的感知网络功能/感知网元,如:感知网络功能(Sensing Network Function,SNF)。或者,应用服务器将感知需求发送AMF,AMF将该需求转发给感知网络功能/感知网元。
步骤3)核心网网络功能或网元(如感知网络功能/感知网元)根据感知需求确定关联的基站、UE和tag,并把感知需求信息和/或感知信号相关配置信息发给关联的基站A或者UE,或者还可以把感知需求信息和/或感知信号相关配置信息发给无线感知信号接收基站(即如图3a所示的基站或基站B,为了便于说明,以下统一称之为基站B)。需要说明的是,对于基站发送感知信号的情况,或者基站调度UE A发送感知信号的情况,或基站参与决定UE A发送感知信号的配置的情况,或基站负将目标测量量到感知结果的转换的情况下,核心网网络功能或网元(如感知网络功能/感知网元)根据感知需求确定关联基站,并将感知需求和/或与该感知需求对应的感知信号相关配置发给关联基站。
步骤4)核心网(或感知网元)或无线感知信号发送端(即如图3a所示的基站A或UE),将感知信号相关配置信息(包括时频信息,序列信息等)或感知需求发送给基站B。
步骤5)核心网(或感知网元)或无线感知信号发送端(即如图3a所示的基站A或UE)将需要UE B测量的感知信号相关的测量量的种类(如:AOA、AOD、时延、信号接收功率、雷达谱信息等)发送给基站B(接收基站);需要说明的是,在测量量的种类由基站B根据感知需求确定的情况下,核心网(或感知网元)或基站A或UE不需要单独信令指示上述测量量的种类(例如:基站B根据感知需求到测量量种类的映射表来确定上述测量量的种类)。
步骤6)基站A或者UE发送感知信号,其中,基站A或者UE可以以波束扫描(beam sweeping)的方式发送感知信号。
步骤7)基站B接收至少部分经过tag反向散射后的感知信号,以得到目标测量量。
步骤8)根据所述目标测量量确定目标感知结果。
在实施中,可以由核心网、应用服务器、基站或者UE中的至少一个来根据所述目标测量量确定目标感知结果。
方式一:若所述目标测量量到所述目标感知结果的转换在核心网或应用服务器,则上述步骤8)可以包括以下具体过程:
步骤81a)基站B把目标测量量发送给核心网(或感知网元),或者,基站B把目标测量量发送给基站A或UE,基站A或UE把目标测量量发送给核心网(或感知网元);
步骤82a)核心网(或感知网元)将目标测量量发送给应用服务器,应用服务器根据目标测量量确定目标感知结果,或者,核心网(或感知网元)根据目标测量量确定目标感知结果,并把目标感知结果发送给应用服务器;
步骤83a)应用服务器将目标感知结果发送给第三方应用。
方式二:若所述目标测量量到所述目标感知结果的转换在基站,则上述步骤8)可以包括以下具体过程:
步骤81b)基站B根据目标测量量确定目标感知结果,并把目标感知结果发送给核心网(或感知网元);
步骤82b)核心网(或感知网元)将目标感知结果发送给应用服务器;
步骤83b)应用服务器将目标感知结果发送给第三方应用。
方式三:若所述目标测量量到所述目标感知结果的转换在UE,则上述步骤8)可以包括以下具体过程:
步骤81c)基站B将目标测量量发送给UE(可以是发送目标感知信号的UE,或者是预先指定的UE),或者,基站B将目标测量量发送给核心网网络功能或网元(如感知网络功能/感知网元),核心网网络功能或网元(如感知网络功能/感知网元)将测量量发送给UE;
步骤82c)UE根据目标测量量确定目标感知结果,并把目标感知结果发送给核心网(或感知网元)。
步骤83c)核心网(或感知网元)将目标感知结果发送给应用服务器;
步骤84c)应用服务器将目标感知结果发送给第三方应用。
具体实施方式二
在感知业务由核心网(或者网管系统,或者基站)发起的情况下,本申请实施例提供的感知方法与具体实施方式一的区别在于:
核心网网络功能或网元(如感知网络功能/感知网元)从核心网AMF获取感知需求和/或感知信号相关配置,或者,AMF接收网管系统发送的感知需求或感知信号相关配置信息,并转发给感知网元,或者,AMF接收发起感知业务的基站发送的感知需求或感知信号相关配置信息,并转发给感知网元(当然,无线感知信号发送端(基站A或者UE)的感知需求或感知信号相关配置信息,可以不发给核心网,而直接发给无线感知信号接收端 (基站B));
在无线感知信号接收端获取到目标测量量后,完成目标测量量到目标感知结果的节点,可以将目标感知结果直接或间接的发送给感知业务的发起方。
例如:若目标测量量到目标感知结果的转换在核心网完成,则感知业务的发起方可以通过以下方式获取目标感知结果:
基站B把目标测量量发送给核心网(AMF或感知网元);或者,基站B把目标测量量发送给基站A或UE,基站A或UE把目标测量量发送给核心网(AMF或感知网元);
核心网(AMF或感知网元)把目标测量量转换为目标感知结果;
如果核心网的感知需求来自网管系统,则核心网把目标感知结果发送给网管系统;或者核心网把目标测量量发给网管系统,网管系统把目标测量量转换为目标感知结果;
如果核心网的目标感知需求来自基站,则核心网把目标感知结果发送给基站。
再例如:若目标测量量到目标感知结果的转换在基站完成,则感知业务的发起方可以通过以下方式获取目标感知结果:
基站B根据目标测量量确定目标感知结果,并把目标感知结果发送给核心网(AMF或感知网元);
如果核心网的感知需求来自网管系统,则核心网把目标感知结果发送给网管系统;
如果核心网的感知需求来自基站,则核心网把目标感知结果发送给基站。
再例如:若目标测量量到目标感知结果的转换在UE完成,则感知业务的发起方可以通过以下方式获取目标感知结果:
基站B将目标测量量发送给UE(可以是发送目标感知信号的UE,或者是预先指定的UE),或者,基站B将目标测量量发送给核心网网络功能或网元(如感知网络功能/感知网元),核心网网络功能或网元(如感知网络功能/感知网元)将目标测量量发送给UE;
UE根据目标测量量确定目标感知结果,并把目标感知结果发送给核心网(AMF或感知网元);
如果感知需求来自网管系统,则核心网把目标感知结果发送给网管系统;
如果感知需求来自基站,则核心网把目标感知结果发送给基站。
需要说明的是,在感知网络功能/感知网元部署在基站的情况下,核心网可以不参与整个感知过程,例如:由基站或UE发起感知业务,且目标测量量到目标感知结果的转换在UE或基站完成。
具体实施方式三
在感知业务由UE(发送目标感知信号的UE、发送目标感知信号的基站服务的UE或者其他UE,为了便于说明,本实施方式中统一称之为感知业务发起UE)发起的情况下,本申请实施例提供的感知方法与具体实施方式一的区别在于:
感知业务发起UE通过非接入层(Non Access Stratum,NAS)信令发送感知请求(包括感知需求信息)和/或感知信号相关配置信息给AMF,然后通过AMF,将感知需求信息 和/或感知信号相关配置信息转发给感知网元;
在无线感知信号接收端获取到目标测量量后,完成目标测量量到目标感知结果的节点,可以将目标感知结果直接或间接的发送给感知业务的发起方。
例如:若目标测量量到目标感知结果的转换在核心网完成,则感知业务的发起方可以通过以下方式获取目标感知结果:
基站B把目标测量量发送给核心网(AMF或感知网元),或者,基站B把目标测量量发送给感知信号发送端(基站A或UE),基站A或UE把目标测量量发送给核心网(AMF或感知网元);
核心网(AMF或感知网元)把目标测量量转换为目标感知结果;
核心网(AMF或感知网元)(通过NAS信令)把目标感知结果发送给感知业务发起UE;或者,核心网(AMF或感知网元)将目标感知结果发送给感知业务发起UE关联的基站,关联基站再把目标感知结果发送给感知业务发起UE。
再例如:若目标测量量到目标感知结果的转换在基站完成,则感知业务的发起方可以通过以下方式获取目标感知结果:
基站B把目标测量量转换为目标感知结果,并把目标感知结果发送给核心网(AMF或感知网元);
核心网(AMF或感知网元)(通过NAS信令)把感知结果发送给感知业务发起UE;或者,核心网(AMF或感知网元)将感知结果发送给感知业务发起UE关联的基站,关联基站再把感知结果发送给感知业务发起UE。
再例如:若目标测量量到目标感知结果的转换在UE(可以是上述感知业务发起UE)完成,则感知业务的发起方可以通过以下方式获取目标感知结果:
基站B将目标测量量发送给UE,或者,基站B将目标测量量发送给核心网(AMF或感知网元),核心网(AMF或感知网元)(通过NAS信令)再把目标测量量发送给UE,或者,基站B将目标测量量发送给核心网(AMF或感知网元),核心网(AMF或感知网元)将目标测量量发送给UE关联基站,关联基站再把目标测量量发送给UE;
UE根据目标测量量确定目标感知结果。
需要说明的是,在感知网络功能/感知网元部署在基站的情况下,核心网可以不参与整个感知过程,例如:由UE发起感知业务,且目标测量量到目标感知结果的转换在UE或基站完成。
需要说明的是,在实施中,上述根据目标测量量(例如:角度信息、信号接收功率信息等)确定目标感知结果(例如:三维地图)的过程,可以在UE或基站A或者基站B,或者核心网或应用服务器完成,且基站A或UE的相关信息例如天线位置,同步信息(SFN起始时间),AI相关信息(如AI训练数据)等也可以发送给完成上述目标测量量到目标感知结果转换的节点,以辅助完成转换过程。另外,计费功能在核心网或应用服务器完成。
为了便于说明,以下实施例中将核心网网络功能或网元(如感知网络功能/感知网元), 统一称之为第二设备。且第二设备可以是核心网中的感知网络功能/感知网元,或者可以是接入网中的感知网络功能/感知网元,在此不作具体限定。
以所述第二设备为SNF为例,其满足以下特征中的至少一项:
1)SNF能够与目标UE(包括如图3a中所示的UE),或者目标UE的服务基站,或者目标tag(即参与感知过程的tag),或者目标tag的服务基站,或者目标区域关联的基站进行目标信息交互,以获得目标感知结果或目标测量量(上行测量量或下行测量量),其中,所述目标信息包括处理感知请求,交互感知能力,交互感知辅助数据,交互感知测量量或感知结果;
2)SNF能够根据可能的感知客户端的类型、所需的感知服务质量(Quality of Service,QoS)、UE感知能力、基站感知能力等因素来决定使用的感知类型,上述感知方式即如图3a至图3c分别对应的3中感知类型;
3)SNF能够存储和管理(包括新增、删除、更新)与目标tag区域关联的tag的先验信息或能力信息(为了便于说明,以下实施例中将tag的先验信息或能力信息统一称之为第一信息),所述第一信息包含以下至少一项:tag ID列表(不局限于RFID的产品电子代码EPC码,也可以是一种新设备的ID)、所关联区域tag个数、tag位置信息列表(二维或者三维,包含tag以及参考系原点笛卡尔坐标或者极坐标)、tag感知距离列表、tag工作带宽列表、tag各个channel工作频率(即带宽内子载波频率)列表、tag调制方式列表、支持的读写频率、tag反射信号信噪比、单个tag发射天线数、单个tag接收天线数、单个tag的天线排布信息(单个tag的天线间距、天线阵型等)、tag阵列排布信息(这里指多个tag形成的tag阵列,1个tag作为1个阵元,包括tag间距,tag阵列阵型等)、tag反射信号相位的误差统计分布参数、tag供能方式(包括无源、半无源、有源)、有源tag电量信息、储能能力(即tag最大储能容量)、tag调幅能力(即支持的可调节反射信号的幅度信息,连续调幅或离散调幅及对应的连续或离散特征的状态数量)、tag调相能力(即支持的可调节反射信号的相位信息,连续调相或离散调相及对应的连续或离散特征的状态数量)、tag调频能力(即支持的可调节反射信号的频率信息,连续调频或离散调频及对应的连续或离散特征的状态数量)、tag加密算法类型(例如循环冗余校验(Cyclic Redundancy Check,CRC)16或CRC 24等)、信道编码(如:前向纠错码(Forward Erro Correction,FEC))的种类和对应的编码码率等等。
值得注意的是,所述tag先验信息或能力信息的至少一项是所述目标tag上报给网络侧设备如基站或者SNF的,例如:通过所述tag的阅读器(如tag接入的基站)读取并上报所述第一信息。
可选的,所述第一信息包括以下至少一项:所述第一设备的标识、所述第一设备参与感知的状态指示信息(可以是:参与感知标志位(指示当前是否可以或同意参与感知)、所述第一设备的感知时间段(指示可参与感知的起止时间/时长)、感知业务占用标志位(或者同等意思的状态指示信息,指示当前是否正在进行感知业务)等)、所述第一设备的入 射角和反射角范围((入射角范围指的是使tag能够正常工作的感知信号入射角范围;反射角范围指tag反射信号的反射角范围))、所关联区域中第一设备的个数、所述第一设备的位置信息(二维或者三维,包含tag以及参考系原点笛卡尔坐标或者极坐标)、所述第一设备的感知距离、所述第一设备的工作带宽、所述第一设备的各个信道的工作频率(即带宽内子载波频率)、所述第一设备的调制方式、所述第一设备支持的读写频率、第一设备阵列形式信息(包括单个tag阵列的阵元数(1个tag作为1个阵元、单个tag天线数、单个tag的天线排布信息))、所述第一设备的反射信号的信噪比、单个第一设备的发射天线数、单个第一设备的接收天线数、单个第一设备的天线排布信息、包括至少两个第一设备的阵列的排布信息、所述第一设备的反射信号相位的误差统计分布参数、所述第一设备的供能方式、有源的第一设备的电量信息、所述第一设备的储能能力(tag是否有源或者有源tag的电量信息)、所述第一设备的调幅能力、所述第一设备的调相能力、所述第一设备的调频能力、所述第一设备的加密算法类型,以及所述第一设备的信道编码的前向纠错码FEC的种类和对应的编码码率。
4)SNF能够根据自身掌握的,或者从AMF获取的基站位置信息,以及存储的目标tag区域关联的tag的第一信息,判断感知区域内基站与tag之间的关联关系,关联准则是能够确保基站接收到的由tag反射的感知信号的信噪比满足要求(例如:满足QoS要求、满足感知需求信息对应的感知条件等),且感知距离满足大于等于基站与tag间的距离。
在实施中,参与感知的第一设备需要接入所述无线感知信号发送端和所述无线感知信号接收端,且第一设备与无线感知信号发送端之间的感知信号强度,以及所述第一设备与无线感知信号接收端之间的信号强度满足感知需求信息对应的感知条件。例如:假设所述第一设备为tag,所述无线感知信号发送端和接收端分别为基站,则SNF或核心网AMF在获取到目标感知需求信息时,能够根据感知需求和预先获取的各个tag和基站的能力信息和位置信息等,确定参与感知的tag、发送目标感知信号的基站A和接收目标感知信号的基站B。
例如:将感知需求对应的目标感知区域中的tag确定为参与感知的tag,并根据该参与感知的tag所接入的基站,以及参与感知的tag所接入基站的能力信息和/或位置信息等,确定基站A和基站B,本示例中,先确定第一设备,再根据第一设备接入的基站确定无线感知信号发送端和无线感知信号接收端。
再例如:从满足感知需求对应的感知条件的基站中,确定基站A和基站B,并将接入基站A和基站B的tag确定为参与感知的tag,本示例中,先确定无线感知信号发送端和无线感知信号接收端,再根据tag接入的基站确定第一设备。
5)SNF可通过调度目标tag的关联基站(tag的关联基站可以包括该tag的服务基站和该tag所在区域关联的基站中的至少一个),作为tag的阅读器(reader)。例如:基站可调整波束,对某个tag的存储区进行信息读取,或者对某个区域内的多个tag的存储区进行轮询信息读取。基站读取相关信息后,可上报SNF。以更新SNF所存储和管理的先验 信息,也可作为感知服务的必要或辅助信息使用。
6)SNF可通过调度目标tag的关联基站,作为tag的写入器(writer)。例如:基站可调整波束,对某个tag的存储区进行信息写入,或者对某个区域内的多个tag的存储区进行轮询信息写入。
7)SNF可通过调度目标tag的关联基站,对tag进行选择。可指示在感知过程中基站对tag的选择操作。例如:基站可调整波束,选择符合与感知需求对应的感知条件的tag,使得符合感知需求、感知条件的tag进入相应的活动状态,而其他不符合感知需求和感知条件的tag处在非活动状态。
8)SNF可通过调度目标tag的关联基站,对tag进行盘存。例如:基站可调整波束,将所有符合选择条件的tag循环扫描一遍,tag将分别返回其EPC码(EPC码:用于识别标签附着对象的代码)
9)SNF可通过调度目标tag的关联基站,为目标tag提供电能。
10)第二设备位于核心网或基站侧,若第二设备位于基站侧,则感知业务的所有流程可以在接入网(Radio Access Network,RAN)侧完成(例如:针对基站触发感知业务,或者UE触发感知业务的情况)。
11)第二设备可以是单独的功能/物理实体,或者部署在核心网的通用服务器中作为核心网功能之一,或者部署在基站侧作为基站的功能之一。
12)第二设备可以直接与应用服务器(例如运营商的应用服务器)交互感知请求(包括感知需求信息)和感知结果;或者,第二设备与AMF交互感知请求和感知结果,AMF可以直接或间接(通过网关移动位置中心(Gateway Mobile Location Center,GMLC)和网络开放功能(Network Exposure Function,NEF))与应用服务器(例如第三方的应用服务器)交互感知请求和感知结果。
13)管理感知所需资源的整体协调和调度,如基站和/或UE的感知资源。
14)计算或验证目标感知结果,以及估计感知精度。
15)支持立即感知请求。
16)支持延迟感知请求。
17)支持周期性或事件触发的感知请求。
18)支持取消周期性或触发性的感知行为。
19)在第二设备为感知网元的情况下,多个感知网元可以对应到一个AMF,或者,单个感知网元也可以连接到多个AMF。其中,在多个感知网元可以对应到一个AMF的情况下,AMF在获取到感知需求信息时,能够根据该感知需求信息从其对应的多个感知网元中确定至少一个作为参与所述感知需求信息对应的感知过程的第二设备。
其中,AMF确定参与感知过程的感知网元的考虑因素包括以下至少一项:AMF选择感知网元的考虑因素包括以下至少之一:请求的QoS(如感知精度、响应时间、感知QoS等级)、接入类型(3GPP接入/非3GPP接入)、目标UE的接入网AN类型(即5G NR或 eLTE)以及服务AN节点(即gNodeB或NG-eNodeB)、RAN配置信息、感知网元能力、感知网元负载、感知网元位置、单次事件上报还是多次事件上报的指示、事件上报持续时间、网络切片信息等。
20)基于与感知需求信息对应的目标区域(例如:感知需求为感知目标区域的三维地图),通过与核心网内其他网元/功能交互,获取可能需要交互信息的基站信息。
需要说明的是,对于整个感知过程,可以由核心网(或感知网元)或者应用服务器或者其他节点(例如AMF)来完成监管流程。
可选地,上述步骤3)中,核心网网络功能或网元(如感知网络功能/感知网元),确定目标UE的方式可以包括以下至少一项:
根据UE向核心网能力上报中相关信息,即UE的能力信息满足所述感知需求;
根据UE的第四信息,例如:UE的位置信息(UE的位置或所处的区域)满足所述感知需求;
根据UE是否接入与所述感知需求信息相关联的接收基站,即UE接入满足所述感知需求的网络侧设备(以下实施例中,以网络侧设备是基站为例进行举例说明),也就是说,先确定与所述感知需求信息相关联的基站,再确定UE。
相对应的,上述步骤3)中,核心网网络功能或网元(如感知网络功能/感知网元),确定关联基站的方式可以包括以下至少一项:
根据是否为相关联的UE的接入基站(即先确定UE再确定基站),即参与感知的基站包括满足所述感知需求的终端接入的基站;
根据基站向核心网上报能力相关信息,即参与感知的基站的能力信息满足所述感知需求;
根据基站的第五信息,例如:基站位置、所处区域,即参与感知的基站的位置信息满足所述感知需求。
相对应的,上述步骤3)中,核心网网络功能或网元(如感知网络功能/感知网元),确定目标tag的方式可以包括以下至少一项:
根据是否接入相关联的基站或UE(先确定基站或UE再确定tag),即参与感知的tag接入满足所述感知需求的终端或网络侧设备;
根据tag向核心网上报的能力相关信息,即参与感知的tag的能力信息满足所述感知需求;
根据tag的第一信息(包括:tag位置/所处区域信息、tag入射角和反射角范围信息、参与感知的状态指示信息等),即参与感知的tag的先验信息满足所述感知需求。
另外,在实施中,感知需求与该感知需求对应的感知信号相关配置之间可以具有关联关系,这样,获取到感知需求信息的节点可以根据感知需求与感知信号相关配置之间的关联关系确定所述感知信号相关配置信息。
当然,还可以采用其他方式来根据感知需求信息确定对应的感知信号相关配置信息 (例如根据感知分辨率需求确定感知信号的带宽大小等),且根据感知需求信息确定对应的感知信号相关配置信息的节点可以是基站、核心网、UE、第二设备中的至少一项:
方式一:基站A(对应基站A发送感知信号的感知信号传输方式)或UE(对应UE发送感知信号的感知信号传输方式)将自己的感知能力(发送感知信号相关的能力,例如发送感知信号的最大带宽,感知信号的最大发射功率等)上报给核心网(AMF或感知网元);和/或,基站B将自己的感知能力(接收感知信号相关的能力,例如能接收的感知信号的最大带宽,支持的感知信号的测量量等)上报给核心网(AMF或感知网元);和/或,基站A或UE或基站B通过询问参与感知的tag的感知能力(接收和反向散射感知信号相关能力,如工作带宽和频点、所能支持的最大读写频率等,这些信息存储在tag上),以将tag的感知能力上报给核心网(AMF或感知网元);然后核心网根据感知需求信息以及上述基站和/或UE和/或tag的能力信息确定感知信号相关配置信息。
方式二:基站A/或基站B(对应基站A发送感知信号的感知信号传输方式)或UE和/或基站B(对应UE发送感知信号的感知信号传输方式)根据感知需求信息确定感知信号相关配置信息;
方式三:核心网确定一部分感知信号相关配置信息,基站A和/或基站B(对应基站A发送感知信号的感知信号传输方式)或UE和/或基站B(对应UE发送感知信号的感知信号传输方式)确定另一部分感知信号相关配置信息。
方式四:核心网根据感知需求向基站A和/或基站B(对应基站A发送感知信号的感知信号传输方式)或UE和/或基站B(对应UE发送感知信号的感知信号传输方式)推荐感知信号相关配置信息,基站A和/或基站B,或者UE和/或基站B最终决定感知信号相关配置信息。
方式五:基站A和/或基站B(对应基站A发送感知信号的感知信号传输方式)或UE和/或基站B(对应UE发送感知信号的感知信号传输方式)根据感知需求向核心网推荐感知信号相关配置信息,核心网最终决定感知信号相关配置信息。
可选地,所述感知信号相关配置信息包括以下至少一项:
波形,例如:正交频分复用(Orthogonal frequency division multiplex,OFDM)、SC-FDMA、正交时频空(Orthogonal Time Frequency Space,OTFS)、调频连续波(Frequency Modulated Continuous Wave,FMCW)、脉冲信号等;
子载波间隔,例如:OFDM系统的子载波间隔30KHz;
保护间隔,即从信号结束发送时刻到该信号的最迟回波信号被接收的时刻之间的时间间隔;该参数正比于最大感知距离;例如:可以通过2dmax/c计算得到,dmax是最大感知距离(属于感知需求);再例如:对于自发自收的感知信号,dmax表示感知信号收发点到信号发射点的最大距离,c表示光速;在某些情况下,OFDM信号循环前缀CP可以起到最小保护间隔的作用;
带宽,该参数反比于距离分辨率,可以通过c/2/delta_d得到,其中delta_d表示距离 分辨率(属于感知需求),c表示光速;
突发(burst)持续时间,该参数反比于速率分辨率(属于感知需求),该参数是感知信号的时间跨度,主要为了计算多普勒频偏;该参数可通过c/2/delta_v/fc计算得到;其中,delta_v表示速度分辨率;fc表示感知信号的载频;
时域间隔,该参数可通过c/2/fc/v_range计算得到;其中,v_range表示最大速率减去最小速度(属于感知需求),该参数是相邻的两个感知信号之间的时间间隔;
发送信号功率,例如:从-20dBm到23dBm每隔2dBm取一个值;
信号格式,其标识感知信号的格式,例如:探测参考信号(Sounding Reference Signal,SRS)、解调参考信号(Demodulation Reference Signal,DMRS)、定位参考信号(Positioning Reference Signal,PRS)等,或者其他预定义的信号,以及相关的序列格式等信息;
信号方向,例如:感知信号的方向或者波束信息;
时间资源,例如:感知信号所在的时隙索引或者时隙的符号索引;其中,时间资源分为两种,一种是一次性的时间资源,例如一个符号发送一个全向的第一信号;一种是非一次性的时间资源,例如多组周期性的时间资源或者不连续的时间资源(可包含开始时间和结束时间),每一组周期性的时间资源发送同一方向的感知信号,不同组的周期性时间资源上的波束方向不同;
频率资源,包括感知信号的中心频点、带宽、资源块(Resource Block,RB)或者子载波、参考频率位置(Point A)、起始带宽位置等;
准共址(Quasi co-location,QCL)关系,例如:感知信号包括多个资源,每个资源对应一个同步信号块(Synchronization Signal and PBCH block,SSB)QCL,QCL的类型包括Type A,B,C或者D;
所述第一设备的标识信息,即参与无线感知的反向散射tag ID,且该tag ID不局限于RFID的EPC,也可以是一种新设备的ID;
所述第一设备的与目标感知信号配置相关的信息,例如:tag工作带宽、工作频率、信道(channel)数以及各信道对应的子载波频率等;
所述目标感知信号的初始相位,例如:例如各个信道上的信号初始相位;
所述第一设备的天线信息,例如:发射天线数、接收天线数,以及发射和接收天线阵列布局(包括天线阵型、天线间距)等;
所述无线感知信号发送端的天线信息,其包括:基站发送感知信号的天线数、具体的天线索引(index)、天线位置坐标(二维坐标、三维坐标、笛卡尔坐标或者极坐标,该坐标系应与参与感知的tag同属一个坐标系);
每根天线发送所述目标感知信号的时间戳信息,即每次发送信号的绝对或者相对时间;
不同天线间发送信号的时间间隔,例如:若基站多天线采用时分复用(Time Division Multiplexing,TDM),或者TDM+频分复用(Frequency Division Multiplex,FDM)方式进行感知信号发送,则需配置不同天线间发送信号的时间间隔;
所述第一设备的调幅能力,即支持的可调节反射信号的幅度信息,连续调幅或离散调幅及对应的连续或离散特征的状态数量;
所述第一设备的调相能力,即支持的可调节反射信号的相位信息,连续调相或离散调相及对应的连续或离散特征的状态数量;
所述第一设备的调频能力,即支持的可调节反射信号的频率信息,连续调频或离散调频及对应的连续或离散特征的状态数量;
所述第一设备的加密算法类型,例如:CRC16、CRC24等;
所述第一设备的信道编码如前向纠错编码(Forward Erro Correction,FEC)的种类,及其对应的编码码率;
与所述第一设备相关的信号调制方式,包括:双边带幅度键控(DSB-ASK)、单边带幅度键控(SSB-ASK)、反转相位幅度键控(Phase-reversal ASK,PR-ASK)、频移键控(Frequency Shift Keying,FSK)、二进制相移键控(Binary Phase Shift Keying,BPSK)、正交相移键控(Quadrature Phase Shift Keying,QPSK)、正交幅度调制(QuadratureAmplitudeModulation,QAM)方式等等;
与所述第一设备相关的数据编码方式以及帧格式,例如:需要确定的编码方式可能为二进制编码、曼彻斯特(Manchester)码、FM0码、延迟调制码(Miller码)、不归零(Non-return-to-zero,NRZ)码、双极性不归零码BNRZ码、非归零反相编码NRZ-I码、脉冲宽度编码等目前采用以及未来可能采用的反向散射通信数字编码;且需要确定的帧格式包括引导头(preamble)或帧同步(frame-sync)等。
可选地,所述目标测量量包括:
第一测量量,所述第一测量量为与所述第一设备相关的测量量,其包括以下至少一项:
经所述第一设备反向散射的反射信号的接收信号强度指示(Received Signal Strength Indicator,RSSI)和/或接收功率、所述反射信号的相位、所述反射信号的时间戳信息(由tag或者tag阵列中各个tag发射信号时插入的时间信息)、所述第一设备的反向散射路径信道矩阵H、所述第一设备的反向散射路径信道状态信息CSI、所述第一设备的反向散射路径多径信道中多径数参数(包括多径数目、每条径的功率、时延、角度信息等)、所述反射信号的多普勒频率和多普勒扩展、所述反射信号的离开角(即tag/tag阵列的发射信号离开角)、所述反射信号的到达角(即基站接收tag/tag阵列反射信号的角)、所述第一设备间相位差(例如:tag阵列内不同tag间的相位差)、所述第一设备间时延差(例如:tag阵列内不同tag间的时延差)、所述第一设备的天线间相位差(即同一tag的不同天线间相位差)、所述第一设备的天线间时延差(即同一tag的不同天线间时延差)和所述第一设备的唯一标识信息(该唯一标识信息用于区分每一个第一设备,或者是区分感知区域的每一个第一设备,比如:tag ID或者tag反向散射的唯一波形序列)。
需要说明的是,在实施中,上述目标测量量还可以包括第二测量量,该第二测量量可以包括以下至少一项:包括以下至少一项:
目标物体的特征信息;
目标事件的相关信息;
目标环境的相关信息。
其中,目标物体的特征信息是能够反映目标物体的属性或所处状态的信息,可以为以下至少一项:目标物体的位置、目标物体的速度、目标物体的加速度、目标物体的材料、目标物体的形状、目标物体的类别、目标物体的雷达散射截面积(Radar Cross Section,RCS)等。目标事件的相关信息是与目标事件有关的信息,即在目标事件发生时能够检测/感知到的信息,可以为以下至少一项:跌倒检测、入侵检测、动作识别、呼吸监测、心率监测等。目标环境的相关信息可以为以下至少一项:湿度、亮度、温度湿度、大气压强、空气质量、天气情况、地形地貌、建筑/植被分布、人数统计、人群密度、车辆密度等。
在应用中,所述第一设备还可以具有信息采集功能,例如:所述第一设备还包括传感器,则该第一设备也可以用于采集以上第二测量量。
可选地,所述第一设备还具有信息采集功能,所述方法还包括:
所述第一设备采集得到与感知目标对应的第二测量量,其中,所述第一信息包括所述第二测量量。
其中,所述感知目标可以是本申请实施例提供的无线感知方法中的感知目标,例如:在感知需求信息为感知目标对象的位置时,所述感知目标即为目标对象,且所述与感知目标对应的第二测量量,可以是所述第一设备通过位置传感器等采集到的所述目标对象的朝向信息、位置信息等。
本实施方式中,可以利用第一设备的信息采集能力去采集感知测量量,且采集到的上述感知测量量可以调制在由所示第一设备反向散射后的目标感知信号中,以供无线感知信号端根据接收到的目标感知信号获取上述第二测量量,这样,可以利用第一设备为无线感知提供额外的测量量,且相较于device-based(基于设备)的感知方式中,通过信令来传输测量量的方式,具有更低的功耗以及更少的信令开销。
在一些实施例中,所述目标测量量为针对每个天线的测量量或者针对每个感知资源的测量量;例如,上述目标测量量为感知信号发送端或感知信号接收端的每个天线(端口)的测量量,或者,上述目标测量量为每个感知资源上的测量量,如每个资源块(Resource Block,RB)、子载波或RB组的测量量。
值得提出的是,tag本身存储的相关信息可以作为感知主要/辅助信息,在感知过程中可以传递至实现目标测量量到目标感知结果转换的功能或实体,以使该实现目标测量量到目标感知结果转换的功能或实体可以根据tag存储的相关信息和/或测量到的感知测量量确定目标感知结果,其中,上述tag存储的相关信息可以调制到接收到的CW信号中,并通过tag反向散射该调制后的CW信号的方式,直接或间接的传输至根据目标测量量确定目标感知结果的节点(如:核心网(或感知网元)、应用服务器、基站或者UE),除此之 外,核心网或SNF还可以调度基站或UE读取第一设备中预先存储的相关信息,例如:向基站或UE发送第二指示信息,所述第二指示信息用于指示所述基站或UE读取第一设备中预先存储的相关信息。
例如:UE B获取tag预先存储的相关信息的过程为:
核心网或SNF根据感知需求确定基于tag的感知方式后,还需要判断是否需要对参与感知的tag进行选择、盘存、访问(读写信息)等操作;
核心网或SNF将对tag的操作命令(选择、盘存、访问等)下发给基站A(当是基站A发送目标感知信号的感知信号传输方式时)或者UE(当是UE发送目标感知信号的感知信号传输方式时);可选的,上述对tag的操作命令可以包含在感知需求信息中;
基站A或者UE,根据携带有tag的操作命令的感知需求信息进行感知信号相关配置,并按照该感知信号相关配置发送目标感知信号;
tag在接收到目标感知信号后,解调对tag的操作命令,并准备需要反向散射的第一信息;
基站A发送的感知信号包含未经调制的连续波CW信号,tag将要反向散射的第一信息调制到CW信号上,以供基站B接收,并对接收的CW信号进行解调,便可以得到上述第一信息;或者,UE发送的感知信号包含未经调制的连续波CW信号,tag将要反向散射的第一信息调制到CW信号上,以以供UE接收,并对接收的CW信号进行解调,便可以得到上述第一信息。
在实施中,基站B在接收到所述tag反向散射的目标感知信号(即经调制的连续波CW信号)后,可以对所述目标感知信号进行解调,以获取上述第一信息。
进一步地,根据实现目标测量量到目标感知结果转换的功能或实体的不同,所述基站B可以将获取到的第一信息以及测量到的目标测量量等信息,转发至核心网、UE或其他基站,或者,所述基站B可以根据第一信息以及测量到的目标测量量等信息确定目标感知结果,并通过核心网、UE和其他基站中的至少一项,将目标感知结果转发至目标感知需求信息对应的感知业务的发起方,其过程与上述由核心网、应用服务器、基站或者UE中的至少一个来根据所述目标测量量确定目标感知结果所示实施例中,所述目标测量量的传输方式相同,在此不再赘述。
可选地,所述目标测量量可以包括:
解调的所述第一设备反向散射的信息;和/或,
依赖所述第一设备参与的无线感知测量量,或不依赖所述第一设备参与的无线感知测量量。
其中,所述目标测量量包括解调的tag反向散射的信息(即tag调制到目标感知信号上的第一信息,例如:tag ID、tag自身位置坐标信息等)。也可以为解调的tag反向散射的 信息,加上依赖tag参与的无线感知测量量(tag-based测量量)、不依赖tag参与的无线感知测量量(tag-free测量量)两者中的至少一种:
所述tag-based测量量为tag对信号进行处理后的测量量,例如:tag阵列对感知信号的多个反射信号的RSSI/接收功率以及相位,反射信号经过tag调制,可通过不同tag ID进行区分;
所述tag-free测量量为不通过tag协助也能获得的测量量,例如:基站天线阵列基于来自感知目标tag的、不对入射感知信号做任何处理的反射信号相位,获取tag相对基站的方位角,这里的tag反射信号的相位为tag-free测量量。
与上述目标测量量相似的,所述目标感知结果可以包括基于解调的tag反向散射的信息(即在反向散射的目标感知信号中携带的第一信息)得到的感知结果,或者将解调的tag反向散射的信息直接作为感知结果。此外,所述目标感知结果也可能包括基于tag-based、tag-free两种测量量中至少一种得到的感知结果,或者,所述目标感知结果也可能为上述三类感知结果得到的一个综合感知结果。
在应用中,tag的一些先验信息(所述第一信息包括所述先验信息,为了便于说明,以下实施例中统一称之为第一信息),可能会存储在核心网(或感知网元),或者基站,或者参与感知的tag中,需要在感知过程中调用或者传递。所述第一信息可以包括以下至少一项:tag ID列表、参与感知的状态指示信息(可以是:参与感知标志位(指示当前是否可以或同意参与感知)、感知时间段(指示可参与感知的起止时间/时长)、感知业务占用标志位(或者同等意思的状态指示信息,指示当前是否正在进行感知业务)等)、tag入射角和反射角范围(入射角范围指的是使tag能够正常工作的感知信号入射角范围;反射角范围指tag反射信号的反射角范围)、所关联区域tag个数、tag位置信息列表(二维或者三维,包含tag以及参考系原点笛卡尔坐标或者极坐标)、tag感知距离列表、tag通信带宽列表、tag各个channel工作频率(即带宽内子载波频率)列表、tag调制方式列表、支持的读写频率、tag阵列形式列表(包括单个tag阵列的阵元数(1个tag作为1个阵元、单个tag天线数、单个tag的天线排布信息))、tag反射信号相位的误差统计分布参数、tag是否有源、有源tag电量信息等。
实施例一
在所述目标测量量到目标感知结果的转换在核心网或应用服务器完成的情况下:
若所述第一信息存储在核心网(或感知网元),核心网(或感知网元)直接调用自身储存的所述第一信息,并在转换过程中使用,作为生成感知结果的依据之一;
若所述第一信息存储在基站,核心网(或感知网元)要求基站上报所述第一信息,供其在转换过程中使用,作为生成感知结果的依据之一;
若所述第一信息存储在tag上,核心网(或感知网元)指示基站A或基站B对tag进行选择、盘存、访问(读写信息)等操作,基站A或基站B读取相应所述第一信息后发送给核心网(或感知网元),作为其生成感知结果依据之一。
实施例二
在所述目标测量量到目标感知结果的转换在基站完成的情况下:
若所述第一信息存储在核心网(或感知网元),核心网(或感知网元)将感知所必要的所述第一信息发送给基站B,作为基站B生成感知结果的依据之一,或者核心网(或感知网元)将感知所必要的所述第一信息发送给基站A,基站A把所述第一信息发送给基站B,作为基站B生成感知结果的依据之一,或者,核心网(或感知网元)将感知所述第一信息同时发送给基站A和基站B,作为基站B生成感知结果依据之一;
若所述第一信息存储在基站,基站直接调用自身储存的所述第一信息,并在转换过程中使用,作为生成感知结果的依据之一;
若所述第一信息存储在tag上,核心网(或感知网元)指示基站B对tag进行选择、盘存、访问(读写信息)等操作,基站B读取相应所述第一信息后,将其作为生成感知结果依据之一,或者,核心网(或感知网元)指示基站A对tag进行选择、盘存、访问(读写信息)等操作,基站A读取相应的所述第一信息后发送给基站B,作为基站B生成感知结果依据之一。
实施例三
在所述目标测量量到目标感知结果的转换在UE(可以是发送目标感知信号的UE)完成的情况下:
若所述第一信息存储在核心网(或感知网元),核心网(或感知网元)将感知所必要的所述第一信息通过非接入层NAS信令发送给UE;或者核心网(或感知网元)将感知所必要的tag先验信息发送给UE的关联基站,关联基站再把所述第一信息发送给UE,UE将收到的所述第一信息作为生成感知结果的依据之一;
若所述第一信息存储在基站,基站把所述第一信息发送给UE,UE将收到的所述第一信息作为生成感知结果的依据之一;
若所述第一信息存储在tag上,核心网(或感知网元)指示UE对tag进行选择、盘存、访问(读写信息)等操作,UE读取相应所述第一信息后作为生成感知结果的依据之一,或者,核心网(或感知网元)指示基站B对tag进行选择、盘存、访问(读写信息)等操作,基站B读取相应所述第一信息后发送给UE,作为UE生成感知结果依据之一,或者,核心网(或感知网元)指示基站B对tag进行选择、盘存、访问(读写信息)等操作,基站B读取相应所述第一信息后发送给核心网(或感知网元),核心网(或感知网元)将感知所必要的tag先验信息发送给UE关联基站,关联基站再把tag先验信息发送给UE,UE将收到的tag的先验信息作为生成感知结果依据之一。
需要说明的是,当tag的相关信息更新时(比如tag移动(位置坐标改变)、网络中新增tag、tag注销(失效)等等),也可通过上述过程实现核心网(或感知网元)-基站(Base Station,BS)-tag之间的通信,并根据通信结果获取tag的当前信息,并据此更新核心网(或感知网元)中tag先验信息。
作为一种可选的实施方式,所述方法还包括:
所述第一设备配合所述无线感知信号发送端以及所述无线感知信号接收端进行参考测量,其中,所述参考测量用于获取参考测量量或参考测量结果,所述目标感知结果基于所述目标测量量,以及所述参考测量量或参考测量结果确定。
对于某些基于tag的感知业务,需要进行参考测量。最终感知结果的确定,需要基于感知业务执行完后得到的直接感知结果以及参考测量的感知结果共同确定。例如,对于某个分布有tag的区域内的物体进行检测、定位、成像等,需要在物体不在区域时进行参考测量,相应测量量为tag的反射信号RSSI、相位;物体进入tag区域后,再进行一次测量,完成感知流程;再比如,对于分布有tag区域的天气(如湿度、降雨)进行感知,需要在某个湿度或无降雨时段内的进行参考测量。
需要说明的是,上述进行参考测量,以获取参考测量量或参考测量结果的过程,与上述获取目标测量量或目标测量结果的过程相似,不同之处在于参考测量的感知发起方不一定是第三方应用,也可以是核心网(或感知网元),或者基站,或者UE,且测量环境可能不同。
在实施中,上述参考测量量或参考测量结果可存储在核心网(或感知网元)或者参与感知的tag上,也可存储在基站上,以使完成目标测量量到目标测量结果的节点,能够获取该参考测量量或参考测量结果,另外,参考测量和感知业务执行的时间先后没有严格要求,例如:可以先执行参考测量,然后执行感知业务,以根据参考测量量或参考测量结果来修正目标测量量或目标测量结果的误差,或者,也可以先执行感知业务,然后执行参考测量,最终,综合目标测量量,以及参考测量量或参考测量结果,来确定目标感知结果。
本实施方式中,可以通过参考测量来提升感知结果的精确度,以减少感知误差。
在一些实施例中,以上流程中的感知信号可以由多个基站或UE发送,和/或,感知信号接收端也可以是多个基站,和/或,参与感知的tag数目也可以是一个或者多个;此时,核心网需要决定发送感知信号的基站、UE集合,参与感知tag集合,以及接收感知信号的UE集合,并把多个基站、UE的感知信号相关配置信息、参与感知的tag相关信息分别发给对应的多个基站、UE,并把需要接收基站测量的感知信号相关的测量量、参与感知的tag相关信息分别发给对应的多个接收基站。
可选的,多个发送基站、UE之间需要交互感知信号相关配置信息(例如充当协调者的基站或者UE把感知信号相关配置信息、参与感知的tag相关信息发给其他发送基站、UE,把感知信号相关的测量量、参与感知的tag相关信息发给其他接收基站)。其中,上述流程中核心网网络功能或网元(如感知网络功能/感知网元)与UE之间的消息交互可以是通过基站,或者,该消息对基站是透明的,例如NAS信令。
需要说明的是,上述流程中的基站可以是TRP,例如:基站A为TRP A,基站B为TRP B,此时,TRP A和B可以属于相同的或者不同的基站。
作为一种可选的实施方式,在所述第一设备向无线感知信号接收端反向散射目标感知 信号之前,所述方法还包括:
所述第一设备获取第二感知请求消息;
所述第一设备输出第二感知响应消息,其中,所述第二感知响应消息表示所述第一设备同意参与所述第二感知请求消息对应的感知过程和/或提供第一信息。
在一些实施例中,所述第一设备获取第二感知请求消息,可以是所述第一设备接收来自基站/核心网的第二感知请求消息,上述第一设备输出第二感知响应消息,可以理解为:所述第一设备生成第二感知响应消息,以供基站或其他接入设备读取;或者,是将所述第二感知响应消息调制在接收的无线信号上,以供基站或其他接入设备接收。例如:基站/核心网根据感知需求信息,初步的选择参与感知的tag,并向选中的tag发送第二感知请求消息,以从该tag中读取参与感知的状态指示信息,若指示tag同意参与感知过程,则可以将其确定为参与感知过程的第一设备,若指示tag不同意参与感知过程,则可以重新选取其他tag。
所述第一设备可以接收来自基站/核心网的所述第二感知请求消息,并向该基站/核心网反馈第二感知响应消息,以告知基站/核心网该第一设备是否同意参与感知过程,或者是否同意提供第一信息。
本实施方式中,tag在反射感知信号过程中,可以选择同意或拒绝参与感知过程和/或提供存储在tag上的有关先验信息。
当然,在实施中,第一设备还可以通过其他方式实现选择同意或拒绝参与感知过程和/或提供存储在tag上的有关先验信息。
例如:基站/核心网确定参与感知服务的tag时(对应上述步骤3)),tag通过参与感知的状态指示信息,指示同意/拒绝参与感知和/或提供存储在tag上的有关先验信息;或者,
基站/核心网确定参与感知服务的tag后(对应上述步骤3)),基站对tag进行选择、盘存、访问(读写信息)等操作,tag通过参与感知的状态指示信息,指示同意/拒绝提供存储在tag上的有关先验信息;或者,
tag是否可以参与相关感知服务是事先约定好的,存储在核心网相关存储节点(例如:统一数据存储库(Unified Data Repository,UDR)),核心网网络功能或网元(如感知网络功能/感知网元)收到感知需求并筛选参与感知服务的tag后(对应上述步骤3)),访问存储关联tag是否可以参与相关感知服务的存储节点,获取tag是否可以参与相关感知服务和/或提供存储在tag上的有关先验信息的信息。
与上述tag选择同意或拒绝参与感知过程相似的,UE也可以选择同意或拒绝参与感知过程,方法可以是:
核心网网络功能或网元(如感知网络功能/感知网元)向UE发送感知需求后,UE同意或拒绝,在同意提供感知需求的UE中筛选参与感知服务的UE(对应上述步骤3));或者,
基站/核心网筛选参与感知服务的UE后(对应上述步骤3)),向关联UE发送参与感 知请求消息,UE同意或拒绝;或者,
UE是否可以参与相关感知服务是事先约定好的,存储在核心网相关存储节点例如UDR,核心网网络功能或网元(如感知网络功能/感知网元)收到感知需求并筛选参与感知服务的UE后(对应上述步骤3)),访问存储关联UE是否可以参与相关感知服务的存储节点,获取UE是否可以参与相关感知服务的信息。
在本申请实施例中,第一设备向无线感知信号接收端反向散射目标感知信号,其中,所述目标感知信号来自无线感知信号发送端,所述无线感知信号发送端包括第一终端或第一网络侧设备,所述无线感知信号接收端包括第二网络侧设备。这样,利用第一设备的反向散射功能,将无线感知信号发送端发送的目标感知信号至少部分反向散射至无线感知信号接收端,可以通过第一设备的反向散射功能为无线感知提供额外的感知路径。此外,具有反向散射功能的第一设备可以不具有耗电的射频链路,因而具有尺寸小、耗电量小等特征,相较于无线感知信号发送端和接收端,其更加便于布局在ISAC系统中,以提升ISAC系统的感知性能。
请参阅图4,是本申请实施例提供的第二种无线感知方法的流程图,如图4所示无线感知方法与如图2所示无线感知方法的不同之处在于:如图4所示无线感知方法的执行主体是无线感知信号接收端,该无线感知信号接收端可以是第二网络侧设备(例如:如3a中所示基站B或TRP B),而如图2所示无线感知方法的执行主体是第一设备,如图4所示,该无线感知信号接收端执行的无线感知方法可以包括以下步骤:
步骤401、无线感知信号接收端获取第二信息,所述第二信息包括:感知需求信息,和/或,与所述感知需求信息对应的目标感知信号相关配置信息。
步骤402、所述无线感知信号接收端根据所述目标感知信号相关配置信息,对无线感知信号发送端发送的且至少部分经第一设备反向散射的目标感知信号进行测量,以获取目标测量量,所述无线感知信号发送端包括第一终端或第一网络侧设备(例如:如3a中所示UE或基站A)。
步骤403、所述无线感知信号接收端根据所述目标测量量确定目标感知结果,或者发送所述目标测量量。
本申请实施例中的上述感知需求信息和/或感知信号相关配置信息的获取流程、目标感知信号的传输过程、目标测量量到目标感知结果的转换过程,与如图2所示方法实施例相同,在此不作具体限定。
在一种可选的实施方式中,所述无线感知信号接收端根据所述目标感知信号相关配置信息,对无线感知信号发送端发送的且至少部分经第一设备反向散射的目标感知信号进行测量,以获取目标测量量,包括:
所述无线感知信号接收端接收来自无线感知信号发送端的且至少部分经第一设备反向散射的目标感知信号序列;
所述无线感知信号接收端基于所述目标感知信号序列与预设感知信号序列进行目标 信号处理,以得到目标测量量,其中,所述感知信号相关配置信息包括所述无线感知信号发送端发送的所述预设感知信号序列的信号配置信息。
本实施方式中,无线感知信号发送端发送的感知信号是波形、比特序列、频率范围等信号参数中的至少一项预先确定的预设感知信号序列,此时,第一设备可以直接将无线感知信号发送端发送的该预设感知信号序列反向散射至无线感知信号接收端,以使无线感知信号接收端能够对接收到的目标感知信号序列与预设感知信号序列进行匹配滤波、互相关、滑动相关等目标信号处理中的至少一项,从而根据目标信号处理的结果便可以确定目标测量量。
当然,在实施中,无线感知信号发送端发送的且至少部分经第一设备反向散射的感知信号可以是常规的感知信号,此时,无线感知信号接收端能够根据对接收到的感知信号进行测量,以得到接收频率、接收时间、接收功率等目标测量量,并根据该目标测量量确定目标感知结果,本实施方式中,可以利用第一设备的反向散射功能,拓展感知信号的传输路径,以提升无线感知系统的感知范围和感知精确度。
在另一种可选的实施方式中,无线感知信号发送端可以发送第一指示信息和目标感知信号,其中,所述第一指示信息用于指示第一设备在目标感知信号上调制第一信息,相应的,无线感知信号接收端可以对接收的目标感知信号进行解调,以获取所述目标感知信号携带的第一信息,即所述目标测量量可以包括第一信息。
本实施方式中,上述无线感知信号接收端可以对所述目标感知信号进行解调,以获取第一设备预先存储的且调制在感知信号上的第一信息,以供无线感知信号接收端利用该第一信息作为目标测量量之一,即将第一信息作为确定目标感知结果的依据之一(其他依据可以是对目标感知信号进行测量所得到的其他感知测量量,以及预先获取的其他信息,如:无线感知信号发送端的天线信息、能力信息等),或者直接将该第一信息作为目标感知结果,能够提升无线感知方法中的感知测量量的全面性,以提升无线感知系统的感知性能。
当然,在实施中,无线感知信号接收端也可以直接根据所述感知信号相关配置信息对至少部分经第一设备反向散射的所述目标感知信号进行测量,以得到所述目标测量量,在此不作具体限定。
可选地,在所述无线感知信号接收端根据所述目标感知信号相关配置信息,对无线感知信号发送端发送的且至少部分经第一设备反向散射的目标感知信号进行测量,以获取目标测量量之前,所述第二种无线感知方法还包括:
所述无线感知信号接收端向所述无线感知信号发送端发送所述第二信息。
本实施方式中,无线感知信号发送端获取的第二信息可以由无线感知信号接收端转发,例如:如图3a所示,基站B从核心网或(感知网元)接收感知需求信息,并向UE发送所示感知需求信息和/或与该感知需求信息对应的无线感知信号相关配置信息,当然,在其他实施方式中,也可以由无线感知信号发送端将第二信息转发给无线感知信号接收端。
可选地,所述目标测量量包括:
解调的所述第一设备反向散射的信息;和/或,
依赖所述第一设备参与的无线感知测量量,或不依赖所述第一设备参与的无线感知测量量。
可选地,所述目标感知信号相关配置信息包括以下至少一项:
波形、子载波间隔、保护间隔、带宽、突发(burst)持续时间、时域间隔、发送信号功率、信号格式、信号方向、时间资源、频率资源、准共址QCL关系、所述第一设备的标识信息、所述第一设备的与目标感知信号配置相关的信息、所述目标感知信号的初始相位、所述第一设备的天线信息、所述无线感知信号发送端的天线信息、每根天线发送所述目标感知信号的时间戳信息、不同天线间发送信号的时间间隔、所述第一设备的调幅能力、所述第一设备的调相能力、所述第一设备的调频能力、所述第一设备的加密算法类型、所述第一设备的信道编码种类对应的编码码率、与所述第一设备相关的信号调制方式、与所述第一设备相关的数据编码方式,以及与所述第一设备相关的帧格式。
可选地,所述目标测量量包括以下至少一项:
第一测量量,所述第一测量量为与所述第一设备相关的测量量,其包括以下至少一项:
经所述第一设备反向散射的反射信号的接收信号强度指示RSSI和/或接收功率、所述反射信号的相位、所述反射信号的时间戳信息、所述第一设备的反向散射路径信道矩阵、所述第一设备的反向散射路径信道状态信息、所述第一设备的反向散射路径多径信道中多径数参数、所述反射信号的多普勒频率和多普勒扩展、所述反射信号的离开角、所述反射信号的到达角、所述第一设备间相位差、所述第一设备间时延差、所述第一设备的天线间相位差、所述第一设备的天线间时延差和所述第一设备的标识信息。
可选地,所示第二种无线感知方法还包括:
所述无线感知信号接收端接收目标操作命令;
所述无线感知信号接收端根据所述目标操作命令,读取所述第一设备的第一信息,并向第二设备发送所述第一信息,其中,所述目标感知结果为所述第二设备根据所述目标测量结果和所述第一信息确定的感知结果;
其中,所述第一信息包括以下至少一项:所述第一设备的标识、所述第一设备参与感知的状态指示信息、所述第一设备的感知时间段、感知业务占用标志位、所述第一设备的入射角和反射角范围、所关联区域中第一设备的个数、所述第一设备的位置信息、所述第一设备的感知距离、所述第一设备的工作带宽、所述第一设备的各个信道的工作频率、所述第一设备的调制方式、所述第一设备支持的读写频率、第一设备阵列形式信息、所述第一设备的反射信号的信噪比、单个第一设备的发射天线数、单个第一设备的接收天线数、单个第一设备的天线排布信息、包括至少两个第一设备的阵列的排布信息、所述第一设备的反射信号相位的误差统计分布参数、所述第一设备的供能方式、有源的第一设备的电量信息、所述第一设备的储能能力、所述第一设备的调幅能力、所述第一设备的调相能力、所述第一设备的调频能力、所述第一设备的加密算法类型,以及所述第一设备的信道编码 的前向纠错码FEC的种类和对应的编码码率。
本实施方式与如图2所示方法实施例中,由SNF还可以调度基站读取第一设备中预先存储的相关信息的过程相似,在此不再具体限定。
可选地,在所述无线感知信号接收端根据所述感知信号相关配置信息,对无线感知信号发送端发送的且至少部分经第一设备反向散射的目标感知信号进行测量,以获取目标测量量之前,所述第二种无线感知方法还包括:
所述无线感知信号接收端响应于接收到所述感知需求信息或第一感知请求消息,发送第一感知响应消息,其中,所述第一感知响应消息表示所述无线感知信号接收端同意参与所述感知需求信息或所述第一感知请求消息对应的感知过程。
本实施方式,与如图2所示方法实施例中,基站选择同意或拒绝参与感知过程相似,在此不做过多阐述。
可选地,在所述无线感知信号接收端根据所述感知信号相关配置信息,对无线感知信号发送端发送的且至少部分经第一设备反向散射的目标感知信号进行测量,以获取目标测量量之前,所述第二种无线感知方法还包括:
所述无线感知信号接收端配合所述无线感知信号发送端和所述第一设备进行参考测量,以获取参考测量量;
所述无线感知信号接收端根据所述参考测量量确定参考感知结果,或者发送所述参考测量量。
本实施方式,与如图2所示方法实施例中的参考感知过程相似,在此不做过多阐述。
本申请实施例提供的第二种无线感知方法,与如图2所示方法实施例相对应,且能够取得相似的有益效果,为避免重复,在此不再赘述。
请参阅图5,是本申请实施例提供的第三种无线感知方法的流程图,如图5所示方法实施例与如图2所示方法实施例的不同之处在于,如图5所示方法实施例的执行主体是第二设备,而如图2所示方法实施例的执行主体是第一设备,如图5所示,该第二设备执行的无线感知方法可以包括以下步骤:
步骤501、第二设备获取感知需求信息。
步骤502、所述第二设备向无线感知信号发送端和无线感知信号接收端中的至少一者发送第二信息,所述第二信息包括:所述感知需求信息,和/或,与所述感知需求信息对应的目标感知信号相关配置信息,所述无线感知信号发送端包括第一网络侧设备或第一终端,所述无线感知信号接收端包括第二网络侧设备。
步骤503、所述第二设备获取目标测量量和目标感知结果中的至少一项,其中,所述目标测量量为所述无线感知信号接收端通过对所述无线感知信号发送端发送的且至少部分经第一设备反向散射的目标感知信号进行测量,所得到的测量量,所述目标感知结果基于所述目标测量量确定。
本申请实施例中的上述感知需求信息和/或感知信号相关配置信息的获取流程、目标 感知信号的传输过程、目标测量量到目标感知结果的转换过程,与如图2所示方法实施例相同,在此不作具体限定。
可选地,所述第二设备包括以下至少一项:
核心网中的感知网元或感知网络功能实体;
接入网中的感知网元或感知网络功能实体。
可选地,在所述第二设备向无线感知信号发送端和无线感知信号接收端中的至少一者发送第二信息之前,所述第三种无线感知方法还包括:
所述第二设备根据所述感知需求信息,确定所述无线感知信号发送端、所述无线感知信号接收端和所述第一设备中的至少一项。
本实施方式中,与如图2所示方法实施例中,核心网网络功能或网元(如感知网络功能/感知网元)根据感知需求确定参与感知的关联基站、关联UE以及tag中至少一项的过程相似,在此不再赘述。
可选地,所述第二设备根据所述感知需求信息,确定所述无线感知信号发送端、所述无线感知信号接收端和所述第一设备,包括:
所述第二设备获取第三信息,其中,所述第三信息包括:通信连接的各个终端的第四信息、通信连接的各个网络侧设备的第五信息、通信连接的各个第一设备的第一信息,其中,所述第四信息包括对应终端的能力信息和位置信息中的至少一项,所述第五信息包括对应网络侧设备的能力信息和位置信息中的至少一项;
所述第二设备根据所述第三信息和所述感知需求信息,确定感知类型为网络侧设备接收终端或另一网络侧设备发送的且经第一设备反向散射的目标感知信号;
所述第二设备根据所述第四信息和第五信息中的至少一项,确定与所述感知类型相匹配的所述无线感知信号发送端和所述无线感知信号接收端;
所述第二设备根据所述第一信息,确定所述第一设备;
其中,所述第一信息包括以下至少一项:所述第一设备的标识、所述第一设备参与感知的状态指示信息、所述第一设备的感知时间段、感知业务占用标志位、所述第一设备的入射角和反射角范围、所关联区域中第一设备的个数、所述第一设备的位置信息、所述第一设备的感知距离、所述第一设备的工作带宽、所述第一设备的各个信道的工作频率、所述第一设备的调制方式、所述第一设备支持的读写频率、第一设备阵列形式信息、所述第一设备的反射信号的信噪比、单个第一设备的发射天线数、单个第一设备的接收天线数、单个第一设备的天线排布信息、包括至少两个第一设备的阵列的排布信息、所述第一设备的反射信号相位的误差统计分布参数、所述第一设备的供能方式、有源的第一设备的电量信息、所述第一设备的储能能力、所述第一设备的调幅能力、所述第一设备的调相能力、所述第一设备的调频能力、所述第一设备的加密算法类型,以及所述第一设备的信道编码的前向纠错码FEC的种类和对应的编码码率。
本实施方式与如图2所示方法实施例中,基站和/或UE上报各自的能力信息,和/或 基站读取并上报tag存储的相关信息等,以使核心网或感知网元根据基站和/或UE和/或tag的能力信息等来选择参与感知过程的第一设备、无线感知信号发送端和无线感知信号接收端的过程相似,在此不再赘述。
可选地,所述无线感知信号发送端和所述无线感知信号接收端中的终端满足以下条件中的至少一项:
所述终端的能力信息满足所述感知需求;
所述终端的位置信息满足所述感知需求;
接入满足所述感知需求的网络侧设备;
和/或,
所述无线感知信号发送端中的网络侧设备满足以下条件中的至少一项、:
所述网络侧设备的能力信息满足所述感知需求;
所述网络侧设备的位置信息满足所述感知需求;
为满足所述感知需求的终端接入的网络侧设备;
和/或,
所述第一设备满足以下条件中的至少一项:
所述第一设备的先验信息满足所述感知需求;
所述第一设备的能力信息满足所述感知需求;
接入满足所述感知需求的终端或网络侧设备。
可选地,所述目标测量量包括:
解调的所述第一设备反向散射的信息;和/或,
依赖所述第一设备参与的无线感知测量量,或不依赖所述第一设备参与的无线感知测量量。
可选地,所述第二设备获取目标测量量和目标感知结果中的至少一项,包括:
所述第二设备获取所述目标测量量,并根据所述目标测量量确定目标感知结果;或者,
所述第二设备获取所述目标测量量,以及获取所述第一设备的第一信息,并根据所述目标测量量和所述第一信息,确定目标感知结果;或者,
所述第二设备接收来自如下任一项的目标感知结果:
所述无线感知信号发送端、所述无线感知信号接收端、所述无线感知信号发送端接入的网络侧设备和目标核心网网元。
可选地,所述第二设备通过以下方式获取所述第一信息:
所述第二设备接收来自所述无线感知信号接收端的所述第一信息,其中,所述第二设备向所述无线感知信号发送端发送的所述感知需求信息中包含目标操作命令,或者,所述第二设备向所述无线感知信号发送端发送的目标感知信号相关配置信息基于所述包含所述目标操作命令的感知需求信息确定,所述目标操作命令用于控制所述第一设备在反向散射的目标感知信号中携带所述第一信息;
或者,
所述第二设备向所述第一设备接入的网络侧设备或终端发送第二指示信息,并接收来自所述第一设备接入的网络侧设备或终端的所述第一信息,其中,所述第二指示信息用于指示所述第一设备接入的网络侧设备或终端读取所述第一信息;
或者,
所述第二设备获取预先存储的所述第一信息。
在实施中,第二设备获取所述第一设备的第一信息的方式可以是:通过tag的服务基站或关联基站读取选中的参与感知过程的tag的EPC码,或tagID,并据此从预先存储的大量tag的先验信息中确定选中的目标tag的先验信息,或者是,通过tag的服务基站或关联基站读取选中的tag的先验信息。
本申请实施例与如图2所示方法实施例中,由核心网、基站、UE来根据目标测量量,或者目标测量量和第一信息来确定目标感知结果的过程相似,在此不再赘述。
可选地,所述第三种无线感知方法还包括以下至少一项:
所述第二设备调用所述第一设备的关联网络侧设备,通过所述关联网络侧设备对所述第一设备进行第二处理,其中,所述第二处理包括以下至少一项:读取所述第一信息、写入所述第一信息、对所述第一信息进行盘存、为所述第一设备提供电能、控制满足与所述感知需求信息对应的感知条件的第一设备处于活动状态以及控制不满足所述感知条件的第一设备处于非活动状态,所述第一设备位于所述关联网络侧设备的读写范围内;
所述第二设备对预先存储所述第一信息进行第一处理,其中,所述第一处理包括:更新、删除和新增中的至少一项。
本实施方式中,上述第一设备的关联网络侧设备可以理解为:第一设备位于其关联的网络侧设备(如基站)的覆盖范围内,且两者之间传输的感知信号强度满足感知需求对应的感知条件。
可选地,所述第三种无线感知方法还包括:
所述第二设备获取参考测量量或参考测量结果;
其中,所述参考测量量为所述无线感知信号接收端、所述无线感知信号发送端和所述第一设备通过执行参考感知过程所得到的测量量,所述目标感知结果基于所述目标测量量,以及所述参考测量量或与所述参考测量量对应的参考测量结果确定。
可选地,所述第二设备获取参考测量量或参考测量结果,包括:
所述第二设备获取预先存储的参考测量量或参考测量结果,或者,所述第二设备接收来自以下至少一项的参考测量量或参考测量结果:
所述无线感知信号发送端、所述无线感知信号接收端、所述第一设备、所述无线感知信号发送端接入的网络侧设备、所述第一设备接入的网络侧设备或终端,以及目标核心网网元。
可选地,所述第二设备获取感知需求信息,包括:
所述第二设备获取由目标核心网网元发送或转发的感知需求信息,其中,所述目标核心网网元包括:应用服务器、接入和移动管理功能AMF网元或网管系统。
可选地,在所述第二设备向所述无线感知信号发送端和所述无线感知信号接收端中的至少一者发送第二信息之前,所述第三种无线感知方法还包括:
所述第二设备获取目标能力信息,所述目标能力信息包括所述无线感知信号发送端的能力信息、所述无线感知信号接收端的能力信息,以及所述第一设备的能力信息中的至少一项;
所述第二设备根据所述目标能力信息和所述感知需求信息,确定目标感知信号相关配置信息;
或者,
所述第二设备根据所述感知需求信息,向所述无线感知信号发送端发送第一推荐信息,并接收来自所述无线感知信号发送端的所述目标感知信号相关配置信息;
或者,
所述第二设备接收来自所述无线感知信号发送端的第二推荐信息,并根据所述第二推荐信息和所述感知需求信息确定所述目标感知信号相关配置信息;
或者,
所述第二设备接收来自所述无线感知信号发送端的第一配置信息,并根据所述感知需求信息确定第二配置信息,其中,所述目标感知信号相关配置信息包括所述第一配置信息和所述第二配置信息。
在一些实施方式中,上述所述第二设备根据所述感知需求信息,向所述无线感知信号发送端发送第一推荐信息,并接收来自所述无线感知信号发送端的所述感知信号相关配置信息的过程,与如图2所示方法实施例中的核心网根据感知需求向基站A(对应基站A发送感知信号的感知信号传输方式)或UE(对应UE发送感知信号的感知信号传输方式)推荐感知信号相关配置信息,基站A或UE最终决定感知信号相关配置信息相似,在此不作具体限定。
在另一些实施方式中,所述第二设备接收来自所述无线感知信号发送端的第二推荐信息,并根据所述第二推荐信息和所述感知需求信息确定所述感知信号相关配置信息的过程,与如图2所示方法实施例中的基站A(对应基站A发送感知信号的感知信号传输方式)或UE(对应UE发送感知信号的感知信号传输方式)根据感知需求向核心网推荐感知信号相关配置信息,核心网最终决定感知信号相关配置信息相似,在此不作具体限定。
可选地,所述目标感知信号相关配置信息包括以下至少一项:
波形、子载波间隔、保护间隔、带宽、突发(burst)持续时间、时域间隔、发送信号功率、信号格式、信号方向、时间资源、频率资源、准共址QCL关系、所述第一设备的标识信息、所述第一设备的与目标感知信号配置相关的信息、所述目标感知信号的初始相位、所述第一设备的天线信息、所述无线感知信号发送端的天线信息、每根天线发送所述 目标感知信号的时间戳信息、不同天线间发送信号的时间间隔、所述第一设备的调幅能力、所述第一设备的调相能力、所述第一设备的调频能力、所述第一设备的加密算法类型、所述第一设备的信道编码种类对应的编码码率、与所述第一设备相关的信号调制方式、与所述第一设备相关的数据编码方式,以及与所述第一设备相关的帧格式。
可选地,所述目标测量量包括以下至少一项:
第一测量量,所述第一测量量为与所述第一设备相关的测量量,其包括以下至少一项:
经所述第一设备反向散射的反射信号的接收信号强度指示RSSI和/或接收功率、所述反射信号的相位、所述反射信号的时间戳信息、所述第一设备的反向散射路径信道矩阵、所述第一设备的反向散射路径信道状态信息、所述第一设备的反向散射路径多径信道中多径数参数、所述反射信号的多普勒频率和多普勒扩展、所述反射信号的离开角、所述反射信号的到达角、所述第一设备间相位差、所述第一设备间时延差、所述第一设备的天线间相位差、所述第一设备的天线间时延差和所述第一设备的标识信息。
可选地,所述目标测量量还包括由所述第一设备采集到的第二测量量,其中,所述第一设备还具有信息采集功能。
在实施中,上述第二测量量可以调制在所述第一设备反向散射后的目标感知信号上,以供无线感知信号接收端对接收到的目标感知信号进行解调,从而得到上述第二测量量。
当然,在实施中,无线感知信号接收端还可以获取从所述第一设备读取的第二测量量,在此不作具体限定。
可选地,所述目标测量量与感知天线或感知资源一一对应。
可选地,所述第二设备向所述无线感知信号发送端和所述无线感知信号接收端中的至少一者发送第二信息,包括:
所述第二设备向所述无线感知信号发送端发送第二信息,其中,所述无线感知信号发送端用于向所述无线感知信号接收端转发所述第二信息;
或者,
所述第二设备向所述无线感知信号接收端发送第二信息,其中,所述无线感知信号接收端用于向所述无线感知信号发送端转发所述第二信息;
或者,
所述第二设备向所述无线感知信号发送端发送第二信息,并向所述无线感知信号接收端发送测量需求信息,其中,所述测量需求信息表示所述无线感知信号接收端需要测量的与所述目标感知信号相关的测量量。
可选地,所述第二设备获取目标测量量和目标感知结果中的至少一项,包括如下至少一项:
所述第二设备接收来自所述无线感知信号接收端或者所述无线感知信号发送端的目标测量量,并向目标核心网网元发送所述目标测量量,其中,所述目标感知结果由所述目标核心网网元基于所述目标测量量确定;
所述第二设备接收来自所述无线感知信号接收端或者所述无线感知信号发送端的目标测量量,并根据所述目标测量量确定目标感知结果;
所述第二设备接收来自所述无线感知信号发送端、所述无线感知信号接收端或所述无线感知信号发送端接入的网络侧设备的目标感知结果,其中,所述目标感知结果由所述无线感知信号发送端、所述无线感知信号接收端或所述无线感知信号发送端接入的网络侧设备基于所述目标测量量确定。
本申请实施例提供的第三种无线感知方法,与如图2和图4所示方法实施例相对应,且能够取得相似的有益效果,为避免重复,在此不再赘述。
为了便于说明本申请实施例提供的无线感知方法,以如图6和图7所示信息交互示意图为例,对本申请实施例提供的无线感知方法进行举例说明:
实施例一
如图6所示实施例中,假设gNB接收UE发送的且至少部分经tag反向散射的目标感知信号,且由SNF完成目标测量量到目标感知结果的转换,该无线感知方法包括以下交互过程:
1、AMF和/或SNF获取UE和gNB的能力信息;
2、gNB和/或UE从SNF获取感知服务请求(包括第二信息);
3、gNB向UE发送感知信号相关配置信息;
4a、UE发送目标感知信号(例如:参考信号);
4b、tag(可以是一个或至少两个tag)反向散射目标感知信号;
5、gNB处理tag反向散射的目标感知信号,以得到目标测量量;
6、gNB向SNF发送测量报告(包括目标测量量);
7、SNF根据目标测量量计算目标感知结果。
实施例二
如图7所示实施例中,假设gNB B接收gNB A发送的且至少部分经tag反向散射的目标感知信号,且由SNF完成目标测量量到目标感知结果的转换,该无线感知方法包括以下交互过程:
1、AMF和/或SNF获取gNB(包括gNB A和gNB B)的能力信息;
2、gNB A和/或gNB B从SNF获取感知服务请求(包括第二信息);
3、gNB A向gNB B发送感知信号相关配置信息;
4a、gNB A发送目标感知信号(例如:参考信号);
4b、tag(可以是一个或至少两个tag)反向散射目标感知信号;
5、gNB B处理tag反向散射的目标感知信号,以得到目标测量量;
6、gNB B向SNF发送测量报告(包括目标测量量);
7、SNF根据目标测量量计算目标感知结果。
本申请实施例还提供一种无线感知系统,包括:第一设备、无线感知信号发送端和无 线感知信号接收端;
所述无线感知信号发送端包括第一网络侧设备或第一终端,所述无线感知信号接收端包括第二网络侧设备;
所述无线感知信号发送端和所述无线感知信号接收端中的至少一者用于获取第二信息,所述第二信息包括:所述感知需求信息,和/或,与所述感知需求信息对应的目标感知信号相关配置信息;
所述无线感知信号发送端用于根据所述感知需求信息确定所述目标感知信号相关配置信息,并根据所述感知信号相关配置信息发送目标感知信号,或者,所述无线感知信号发送端用于根据获取的所述感知信号相关配置信息发送目标感知信号;
所述第一设备,用于反向散射所述无线感知信号发送端发送的所述目标感知信号;
所述无线感知信号接收端,用于对所述无线感知信号发送端发送的且至少部分经所述第一设备反向散射的目标感知信号进行测量,以得到目标测量量。
本申请实施例中的上述第一设备可以执行如图2所示方法实施例中的各个过程,上述无线感知信号接收端可以执行如图4所示方法实施例中的各个过程,在此不再赘述。
可选的,所述无线感知系统还包括:第二设备;
所述第二设备分别与所述无线感知信号发送端、所述无线感知信号接收端和所述第一设备通信连接;
所述第二设备还用于获取感知需求信息,并向所述无线感知信号发送端和所述无线感知信号接收端中的至少一者发送所述感知需求信息,或者,根据所述感知需求信息确定所述感知信号相关配置信息,并向所述无线感知信号发送端和所述无线感知信号接收端中的至少一者发送所述感知信号相关配置信息。
本实施方式中,上述第二设备可以执行如图5所示方法实施例中的各个过程,在此不再赘述。
可选的,所述无线感知信号发送端发送的感知信号为预设感知信号序列,所述无线感知信号接收端具体用于接收来自所述无线感知信号发送端的且至少部分经所述第一设备反向散射的目标感知信号序列,并基于所述目标感知信号序列与所述预设感知信号序列进行目标信号处理,以得到目标测量量,其中,所述感知信号相关配置信息包括所述预设感知信号序列的信号配置信息。
可选的,所述无线感知信号发送端还用于向所述第一设备发送第一指示信息,所述第一指示信息用于指示所述第一设备需要向所述无线感知信号接收端反馈的第一信息,所述第一设备具体用于将所述第一信息调制在所述目标感知信号上,以供所述无线感知信号接收端接收调制后的所述目标感知信号。
可选的,所述第二设备包括以下至少一项:
核心网中的感知网元或感知网络功能实体;
接入网中的感知网元或感知网络功能实体。
可选的,所述第一设备包括反向散射Backscatter标签和射频识别RFID标签中的至少一项。
可选的,第一节点用于根据第五信息确定目标感知结果,其中,所述第一节点包括:所述无线感知信号发送端、所述无线感知信号接收端、所述第二设备和所述第一终端接入的网络侧设备中的至少一个,所述第五信息包括所述目标测量量,或者包括所述目标测量量和第一目标测量量;或者,
所述无线感知系统还包括目标核心网网元,所述第一节点用于向所述目标核心网网元发送所述第五信息,且所述目标核心网网元用于根据所述第五信息确定目标感知结果。
可选的,第二节点用于向所述第一节点或目标核心网网元发送参考测量量或参考测量结果;
所述第一节点或目标核心网网元用于根据所述参考测量量或参考测量结果,以及所述第五信息确定目标感知结果,所述第二节点包括:所述无线感知信号发送端、所述无线感知信号接收端、所述第二设备、所述第一终端的接入网络侧设备、所述第一设备,以及所述第一设备接入的网络侧设备或终端中的至少一个。
可选的,所述第二节点还用于向所述第一节点或目标核心网网元发送所述第一设备的先验信息;
所述第一节点或目标核心网网元用于根据如下信息确定目标感知结果:
所述参考测量量或参考测量结果;
所述第五信息;
所述第一设备的先验信息。
可选的,所述目标核心网网元包括:应用服务器、接入和移动管理功能AMF网元或网管系统。
可选的,所述无线感知信号发送端和所述无线感知信号接收端中的终端满足以下条件中的至少一项:
所述终端的能力信息满足所述感知需求;
所述终端的位置信息满足所述感知需求;
接入满足所述感知需求的网络侧设备;
和/或,
所述无线感知信号发送端中的网络侧设备满足以下条件中的至少一项、:
所述网络侧设备的能力信息满足所述感知需求;
所述网络侧设备的位置信息满足所述感知需求;
为满足所述感知需求的终端接入的网络侧设备;
和/或,
所述第一设备满足以下条件中的至少一项:
所述第一设备的先验信息满足所述感知需求;
所述第一设备的能力信息满足所述感知需求;
接入满足所述感知需求的终端或网络侧设备。
可选的,所述第一设备附着于所述感知需求信息对应的感知目标上,或者所述第一设备位于所述感知需求信息对应的目标感知区域内。
本申请实施例提供的无线感知系统,能够执行如图2、图4和图5所示方法实施例中的各个过程,且能够取得相同的有益效果,我避免重复,在此不再赘述。
本申请实施例提供的无线感知方法,执行主体可以为无线感知装置。本申请实施例中以无线感知装置执行无线感知方法为例,说明本申请实施例提供的无线感知装置。
如图8所示,本申请实施例提供的第一种无线感知装置,可以应用于第一设备,如图8所示,该第一种无线感知装置800可以包括以下模块:
反向散射模块801,用于向无线感知信号接收端反向散射目标感知信号,其中,所述目标感知信号来自无线感知信号发送端,所述无线感知信号发送端包括第一终端或第一网络侧设备,所述无线感知信号接收端包括第二网络侧设备。
可选的,第一种无线感知装置800还包括:
第一接收模块,用于接收来自所述无线感知信号发送端的第一指示信息,其中,所述第一指示信息用于指示所述第一设备需要向所述无线感知信号接收端反馈的第一信息;
反向散射模块801具体用于:
将所述第一信息调制在所述目标感知信号上,以供无线感知信号接收端接收调制后的所述目标感知信号。
可选的,所述第一设备包括反向散射Backscatter标签和射频识别RFID标签中的至少一项。
可选的,所述第一信息包括以下至少一项:
所述第一设备的标识、所述第一设备参与感知的状态指示信息、所述第一设备的感知时间段、感知业务占用标志位、所述第一设备的入射角和反射角范围、所关联区域中第一设备的个数、所述第一设备的位置信息、所述第一设备的感知距离、所述第一设备的工作带宽、所述第一设备的各个信道的工作频率、所述第一设备的调制方式、所述第一设备支持的读写频率、第一设备阵列形式信息、所述第一设备的反射信号的信噪比、单个第一设备的发射天线数、单个第一设备的接收天线数、单个第一设备的天线排布信息、包括至少两个第一设备的阵列的排布信息、所述第一设备的反射信号相位的误差统计分布参数、所述第一设备的供能方式、有源的第一设备的电量信息、所述第一设备的储能能力、所述第一设备的调幅能力、所述第一设备的调相能力、所述第一设备的调频能力、所述第一设备的加密算法类型,以及所述第一设备的信道编码的前向纠错码FEC的种类和对应的编码码率。
可选的,第一种无线感知装置800还包括:
第四获取模块,用于获取第二感知请求消息;
输出模块,用于输出第二感知响应消息,其中,所述第二感知响应消息表示所述第一设备同意参与所述第二感知请求消息对应的感知过程和/或提供第一信息。
可选的,所述第一设备还具有信息采集功能,第一种无线感知装置800还包括:
采集模块,用于采集得到与感知目标对应的第二测量量,其中,所述第一信息包括所述第二测量量。
可选的,第一种无线感知装置800还包括:
第一参考测量模块,用于配合所述无线感知信号发送端以及所述无线感知信号接收端进行参考测量,其中,所述参考测量用于获取参考测量量或参考测量结果,所述目标感知结果基于所述目标测量量,以及所述参考测量量或参考测量结果确定。
本申请实施例提供的第一种无线感知装置800能够执行如图2所示方法实施例中,第一设备执行的各个过程,且能够取得相同的有益效果,为避免重复,在此不再赘述。
如图9所示,本申请实施例提供的第二种无线感知装置,可以应用于无线感知信号接收端,所述无线感知信号接收端包括第二网络侧设备,如图9所示,该第二种无线感知装置900可以包括以下模块:
第一获取模块901,用于获取第二信息,所述第二信息包括:感知需求信息,和/或,与所述感知需求信息对应的感知信号相关配置信息;
测量模块902,用于根据所述目标感知信号相关配置信息,对无线感知信号发送端发送的且至少部分经第一设备反向散射的目标感知信号进行测量,以获取目标测量量,所述无线感知信号发送端包括第一终端或第一网络侧设备;
执行模块903,用于根据所述目标测量量确定目标感知结果,或者发送所述目标测量量。
可选的,测量模块902,包括:
接收单元,用于接收来自无线感知信号发送端的且至少部分经第一设备反向散射的目标感知信号序列;
信号处理单元,用于基于所述目标感知信号序列与所述预设感知信号序列进行目标信号处理,以得到目标测量量,其中,所述感知信号相关配置信息包括所述无线感知信号发送端发送的所述预设感知信号序列的信号配置信息。
可选的,第二种无线感知装置900还包括:
第二发送模块,用于向所述无线感知信号发送端发送所述第二信息。
可选的,所述目标测量量包括:
解调的所述第一设备反向散射的信息;和,或,
依赖所述第一设备参与的无线感知测量量,或不依赖所述第一设备参与的无线感知测量量。
可选的,所述目标感知信号相关配置信息包括以下至少一项:
波形、子载波间隔、保护间隔、带宽、突发(burst)持续时间、时域间隔、发送信号 功率、信号格式、信号方向、时间资源、频率资源、准共址QCL关系、所述第一设备的标识信息、所述第一设备的与目标感知信号配置相关的信息、所述目标感知信号的初始相位、所述第一设备的天线信息、所述无线感知信号发送端的天线信息、每根天线发送所述目标感知信号的时间戳信息、不同天线间发送信号的时间间隔、所述第一设备的调幅能力、所述第一设备的调相能力、所述第一设备的调频能力、所述第一设备的加密算法类型、所述第一设备的信道编码种类对应的编码码率、与所述第一设备相关的信号调制方式、与所述第一设备相关的数据编码方式,以及与所述第一设备相关的帧格式。
可选的,所述目标测量量包括以下至少一项:
第一测量量,所述第一测量量为与所述第一设备相关的测量量,其包括以下至少一项:
经所述第一设备反向散射的反射信号的接收信号强度指示RSSI和/或接收功率、所述反射信号的相位、所述反射信号的时间戳信息、所述第一设备的反向散射路径信道矩阵、所述第一设备的反向散射路径信道状态信息、所述第一设备的反向散射路径多径信道中多径数参数、所述反射信号的多普勒频率和多普勒扩展、所述反射信号的离开角、所述反射信号的到达角、所述第一设备间相位差、所述第一设备间时延差、所述第一设备的天线间相位差、所述第一设备的天线间时延差和所述第一设备的标识信息。
可选的,第二种无线感知装置900还包括:
第二接收模块,用于接收目标操作命令;
读取模块,用于根据所述目标操作命令,读取所述第一设备的第一信息,并向第二设备发送所述第一信息,其中,所述目标感知结果为所述第二设备根据所述目标测量结果和所述第一信息确定的感知结果;
其中,所述第一信息包括以下至少一项:所述第一设备的标识、所述第一设备参与感知的状态指示信息、所述第一设备的感知时间段、感知业务占用标志位、所述第一设备的入射角和反射角范围、所关联区域中第一设备的个数、所述第一设备的位置信息、所述第一设备的感知距离、所述第一设备的工作带宽、所述第一设备的各个信道的工作频率、所述第一设备的调制方式、所述第一设备支持的读写频率、第一设备阵列形式信息、所述第一设备的反射信号的信噪比、单个第一设备的发射天线数、单个第一设备的接收天线数、单个第一设备的天线排布信息、包括至少两个第一设备的阵列的排布信息、所述第一设备的反射信号相位的误差统计分布参数、所述第一设备的供能方式、有源的第一设备的电量信息、所述第一设备的储能能力、所述第一设备的调幅能力、所述第一设备的调相能力、所述第一设备的调频能力、所述第一设备的加密算法类型,以及所述第一设备的信道编码的前向纠错码FEC的种类和对应的编码码率。
可选的,第二种无线感知装置900还包括:
响应模块,用于响应于接收到所述感知需求信息或第一感知请求消息,发送第一感知响应消息,其中,所述第一感知响应消息表示所述无线感知信号接收端同意参与所述感知需求信息或所述第一感知请求消息对应的感知过程。
可选的,第二种无线感知装置900还包括:
第二参考测量模块,用于配合所述无线感知信号发送端和所述第一设备进行参考测量,以获取参考测量量;
第一确定模块,用于根据所述参考测量量确定参考感知结果,或者发送所述参考测量量。
本申请实施例提供的第二种无线感知装置900能够执行如图4所示方法实施例中,无线感知信号接收端执行的各个过程,且能够取得相同的有益效果,为避免重复,在此不再赘述。
本申请实施例中的第一种无线感知装置800或第二种无线感知装置900可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
如图10所示,本申请实施例提供的第三种无线感知装置,可以应用于第二设备,如图10所示,该第三种无线感知装置1000可以包括以下模块:
第二获取模块1001,用于获取感知需求信息;
第一发送模块1002,用于向无线感知信号发送端和无线感知信号接收端中的至少一者发送第二信息,所述第二信息包括:所述感知需求信息,和/或,与所述感知需求信息对应的目标感知信号相关配置信息,所述无线感知信号发送端包括第一网络侧设备或第一终端,所述无线感知信号接收端包括第二网络侧设备;
第三获取模块1003,用于获取目标测量量和目标感知结果中的至少一项,其中,所述目标测量量为所述无线感知信号接收端通过对所述无线感知信号发送端发送的且至少部分经第一设备反向散射的目标感知信号进行测量,所得到的测量量,所述目标感知结果基于所述目标测量量确定。
可选的,所述第二设备包括以下至少一项:
核心网中的感知网元或感知网络功能实体;
接入网中的感知网元或感知网络功能实体。
可选的,第三种无线感知装置1000还包括:
第二确定模块,用于根据所述感知需求信息,确定所述无线感知信号发送端、所述无线感知信号接收端和所述第一设备中的至少一项。
可选的,所述第二确定模块,包括:
获取单元,用于获取第三信息,其中,所述第三信息包括:通信连接的各个终端的第四信息、通信连接的各个网络侧设备的第五信息、通信连接的各个第一设备的第一信息,其中,所述第四信息包括对应终端的能力信息和位置信息中的至少一项,所述第五信息包括对应网络侧设备的能力信息和位置信息中的至少一项;
第二确定单元,用于根据所述第三信息和所述感知需求信息,确定感知类型为网络侧设备接收终端或另一网络侧设备发送的且经第一设备反向散射的目标感知信号;
第三确定单元,用于根据所述第四信息和第五信息中的至少一项,确定与所述感知类型相匹配的所述无线感知信号发送端和所述无线感知信号接收端;
第四确定单元,用于根据所述第一信息,确定所述第一设备;
其中,所述第一信息包括以下至少一项:所述第一设备的标识、所述第一设备参与感知的状态指示信息、所述第一设备的感知时间段、感知业务占用标志位、所述第一设备的入射角和反射角范围、所关联区域中第一设备的个数、所述第一设备的位置信息、所述第一设备的感知距离、所述第一设备的工作带宽、所述第一设备的各个信道的工作频率、所述第一设备的调制方式、所述第一设备支持的读写频率、第一设备阵列形式信息、所述第一设备的反射信号的信噪比、单个第一设备的发射天线数、单个第一设备的接收天线数、单个第一设备的天线排布信息、包括至少两个第一设备的阵列的排布信息、所述第一设备的反射信号相位的误差统计分布参数、所述第一设备的供能方式、有源的第一设备的电量信息、所述第一设备的储能能力、所述第一设备的调幅能力、所述第一设备的调相能力、所述第一设备的调频能力、所述第一设备的加密算法类型,以及所述第一设备的信道编码的前向纠错码FEC的种类和对应的编码码率。
可选的,所述无线感知信号发送端和所述无线感知信号接收端中的终端满足以下条件中的至少一项:
所述终端的能力信息满足所述感知需求;
所述终端的位置信息满足所述感知需求;
接入满足所述感知需求的网络侧设备;
和/或,
所述无线感知信号发送端中的网络侧设备满足以下条件中的至少一项、:
所述网络侧设备的能力信息满足所述感知需求;
所述网络侧设备的位置信息满足所述感知需求;
为满足所述感知需求的终端接入的网络侧设备;
和/或,
所述第一设备满足以下条件中的至少一项:
所述第一设备的先验信息满足所述感知需求;
所述第一设备的能力信息满足所述感知需求;
接入满足所述感知需求的终端或网络侧设备。
可选的,所述目标测量量包括:
解调的所述第一设备反向散射的信息;和,或,
依赖所述第一设备参与的无线感知测量量,或不依赖所述第一设备参与的无线感知测量量。
可选的,第三获取模块1003,具体用于:
获取所述目标测量量,并根据所述目标测量量确定目标感知结果;或者,
获取所述目标测量量,以及获取所述第一设备的第一信息,并根据所述目标测量量和所述第一信息,确定目标感知结果;或者,
接收来自如下任一项的目标感知结果:
所述无线感知信号发送端、所述无线感知信号接收端、所述无线感知信号发送端接入的网络侧设备和目标核心网网元。
可选的,所述第二设备通过以下方式获取所述第一信息:
所述第二设备接收来自所述无线感知信号接收端的所述第一信息,其中,所述第二设备向所述无线感知信号发送端发送的所述感知需求信息中包含目标操作命令,或者,所述第二设备向所述无线感知信号发送端发送的目标感知信号相关配置信息基于所述包含所述目标操作命令的感知需求信息确定,所述目标操作命令用于控制所述第一设备在反向散射的目标感知信号中携带所述第一信息;
或者,
所述第二设备向所述第一设备接入的网络侧设备或终端发送第二指示信息,并接收来自所述第一设备接入的网络侧设备或终端的所述第一信息,其中,所述第二指示信息用于指示所述第一设备接入的网络侧设备或终端读取所述第一信息;
或者,
所述第二设备获取预先存储的所述第一信息。
可选的,第三种无线感知装置1000还包括以下至少一项:
调用模块,用于调用所述第一设备的关联网络侧设备,通过所述关联网络侧设备对所述第一设备进行第二处理,其中,所述第二处理包括以下至少一项:读取所述第一信息、写入所述第一信息、对所述第一信息进行盘存、为所述第一设备提供电能、控制满足与所述感知需求信息对应的感知条件的第一设备处于活动状态以及控制不满足所述感知条件的第一设备处于非活动状态,所述第一设备位于所述关联网络侧设备的读写范围内;
处理模块,用于对预先存储所述第一信息进行第一处理,其中,所述第一处理包括:更新、删除和新增中的至少一项。
可选的,第三种无线感知装置1000还包括:
第五获取模块,用于获取参考测量量或参考测量结果;
其中,所述参考测量量为所述无线感知信号接收端、所述无线感知信号发送端和所述第一设备通过执行参考感知过程所得到的测量量,所述目标感知结果基于所述目标测量量,以及所述参考测量量或与所述参考测量量对应的参考测量结果确定。
可选的,所述第五获取模块具体用于:
获取预先存储的参考测量量或参考测量结果,或者,接收来自以下至少一项的参考测量量或参考测量结果:
所述无线感知信号发送端、所述无线感知信号接收端、所述第一设备、所述无线感知信号发送端接入的网络侧设备、所述第一设备接入的网络侧设备或终端,以及目标核心网网元。
可选的,第二获取模块1001具体用于:
获取由目标核心网网元发送或转发的感知需求信息,其中,所述目标核心网网元包括:应用服务器、接入和移动管理功能AMF网元或网管系统。
可选的,第三种无线感知装置1000还包括:
第六获取模块,用于获取目标能力信息,所述目标能力信息包括所述无线感知信号发送端的能力信息、所述无线感知信号接收端的能力信息,以及所述第一设备的能力信息中的至少一项;
第三确定模块,用于根据所述目标能力信息和所述感知需求信息,确定目标感知信号相关配置信息;
或者,
传输模块,用于根据所述感知需求信息,向所述无线感知信号发送端发送第一推荐信息,并接收来自所述无线感知信号发送端的所述目标感知信号相关配置信息;
或者,
第四确定模块,用于接收来自所述无线感知信号发送端的第二推荐信息,并根据所述第二推荐信息和所述感知需求信息确定所述目标感知信号相关配置信息;
或者,
第五确定模块,用于接收来自所述无线感知信号发送端的第一配置信息,并根据所述感知需求信息确定第二配置信息,其中,所述目标感知信号相关配置信息包括所述第一配置信息和所述第二配置信息。
可选的,所述目标感知信号相关配置信息包括以下至少一项:
波形、子载波间隔、保护间隔、带宽、突发(burst)持续时间、时域间隔、发送信号功率、信号格式、信号方向、时间资源、频率资源、准共址QCL关系、所述第一设备的标识信息、所述第一设备的与目标感知信号配置相关的信息、所述目标感知信号的初始相位、所述第一设备的天线信息、所述无线感知信号发送端的天线信息、每根天线发送所述目标感知信号的时间戳信息、不同天线间发送信号的时间间隔、所述第一设备的调幅能力、所述第一设备的调相能力、所述第一设备的调频能力、所述第一设备的加密算法类型、所述第一设备的信道编码种类对应的编码码率、与所述第一设备相关的信号调制方式、与所述第一设备相关的数据编码方式,以及与所述第一设备相关的帧格式。
可选的,所述目标测量量包括以下至少一项:
第一测量量,所述第一测量量为与所述第一设备相关的测量量,其包括以下至少一项:
经所述第一设备反向散射的反射信号的接收信号强度指示RSSI和/或接收功率、所述反射信号的相位、所述反射信号的时间戳信息、所述第一设备的反向散射路径信道矩阵、 所述第一设备的反向散射路径信道状态信息、所述第一设备的反向散射路径多径信道中多径数参数、所述反射信号的多普勒频率和多普勒扩展、所述反射信号的离开角、所述反射信号的到达角、所述第一设备间相位差、所述第一设备间时延差、所述第一设备的天线间相位差、所述第一设备的天线间时延差和所述第一设备的标识信息。
可选的,所述目标测量量还包括由所述第一设备收集到的第二测量量,其中,所述第一设备还具有信息收集能力。
可选的,所述目标测量量与感知天线或感知资源一一对应。
可选的,第一发送模块1002,具体用于:
向所述无线感知信号发送端发送第二信息,其中,所述无线感知信号发送端用于向所述无线感知信号接收端转发所述第二信息;
或者,
向所述无线感知信号接收端发送第二信息,其中,所述无线感知信号接收端用于向所述无线感知信号发送端转发所述第二信息;
或者,
向所述无线感知信号发送端发送第二信息,并向所述无线感知信号接收端发送测量需求信息,其中,所述测量需求信息表示所述无线感知信号接收端需要测量的与所述目标感知信号相关的测量量。
可选的,第三获取模块1003,包括如下至少一项:
第一传输单元,用于接收来自所述无线感知信号接收端或者所述无线感知信号发送端的目标测量量,并向目标核心网网元发送所述目标测量量,其中,所述目标感知结果由所述目标核心网网元基于所述目标测量量确定;
第二传输单元,用于接收来自所述无线感知信号接收端或者所述无线感知信号发送端的目标测量量,并根据所述目标测量量确定目标感知结果;
第三传输单元,用于接收来自所述无线感知信号发送端、所述无线感知信号接收端或所述无线感知信号发送端接入的网络侧设备的目标感知结果,其中,所述目标感知结果由所述无线感知信号发送端、所述无线感知信号接收端或所述无线感知信号发送端接入的网络侧设备基于所述目标测量量确定。
本申请实施例提供的第三种无线感知装置1000能够执行如图5所示方法实施例中,第二设备执行的各个过程,且能够取得相同的有益效果,为避免重复,在此不再赘述。
可选的,如图11所示,本申请实施例还提供一种通信设备1100,包括处理器1101和存储器1102,存储器1102上存储有可在所述处理器1101上运行的程序或指令,例如,在该通信设备1100为反向散射通信设备时,该程序或指令被处理器101执行时实现如图2所示方法实施例的各个步骤,且能达到相同的技术效果。或者,该通信设备1100为网络侧设备时,该程序或指令被处理器1101执行时实现图4或图5所示方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口:
在所述网络侧设备为无线感知信号接收端的情况下,所述通信接口用于获取第二信息,所述第二信息包括:感知需求信息,和/或,与所述感知需求信息对应的目标感知信号相关配置信息;所述通信接口还用于根据所述目标感知信号相关配置信息,对无线感知信号发送端发送的且至少部分经第一设备反向散射的目标感知信号进行测量,以获取目标测量量,所述无线感知信号发送端包括第一终端或第一网络侧设备;所述处理器用于根据所述目标测量量确定目标感知结果,或者,所述通信接口用于发送所述目标测量量;
或者,
在所述网络侧设备为第二设备的情况下,所述通信接口用于获取感知需求信息,并向无线感知信号发送端和无线感知信号接收端中的至少一者发送第二信息,所述第二信息包括:所述感知需求信息,和/或,与所述感知需求信息对应的感知信号相关配置信息,所述无线感知信号发送端包括第一网络侧设备或第一终端,所述无线感知信号接收端包括第二网络侧设备;所述通信接口还用于获取目标测量量和目标感知结果中的至少一项,其中,所述目标测量量为所述无线感知信号接收端通过对所述无线感知信号发送端发送的且至少部分经第一设备反向散射的目标感知信号进行测量,所得到的测量量,所述目标感知结果基于所述目标测量量确定。
该网络侧设备实施例与如图4或图5实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图12所示,该网络侧设备1200包括:天线1201、射频装置1202、基带装置1203、处理器1204和存储器1205。天线1201与射频装置1202连接。在上行方向上,射频装置1202通过天线1201接收信息,将接收的信息发送给基带装置1203进行处理。在下行方向上,基带装置1203对要发送的信息进行处理,并发送给射频装置1202,射频装置1202对收到的信息进行处理后经过天线1201发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置1203中实现,该基带装置1203包括基带处理器。
基带装置1203例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图12所示,其中一个芯片例如为基带处理器,通过总线接口与存储器1205连接,以调用存储器1205中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口1206,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本发明实施例的网络侧设备1200还包括:存储在存储器1205上并可在处理器1204上运行的指令或程序,处理器1204调用存储器1205中的指令或程序执行图9或图10(第二设备位于接入网)所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供了一种核心网网络侧设备。如图13所示,该网络侧设备1300包括:处理器1301、网络接口1302和存储器1303。其中,网络接口1302例如为通用公共无线接口CPRI。
具体地,本发明实施例的网络侧设备1300还包括:存储在存储器1303上并可在处理器1301上运行的指令或程序,处理器1301调用存储器1303中的指令或程序执行图10(第二设备位于核心网)所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现如图2、图4或图5方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如图2、图4或图5方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序产品,所述计算机程序产品被存储在存储介质中,所述计算机程序产品被至少一个处理器执行以实现如图2、图4或图5方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种无线感知系统,包括:终端和网络侧设备,所述网络侧设备可用于执行如图4或图5所述的无线感知方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡 献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (37)

  1. 一种无线感知方法,所述方法包括:
    第一设备向无线感知信号接收端反向散射目标感知信号,其中,所述目标感知信号来自无线感知信号发送端,所述无线感知信号发送端包括第一终端或第一网络侧设备,所述无线感知信号接收端包括第二网络侧设备。
  2. 根据权利要求1所述的方法,其中,在所述第一设备向无线感知信号接收端反向散射目标感知信号之前,所述方法还包括:
    所述第一设备接收来自所述无线感知信号发送端的第一指示信息,其中,所述第一指示信息用于指示所述第一设备需要向所述无线感知信号接收端反馈的第一信息;
    所述第一设备向无线感知信号接收端反向散射目标感知信号,包括:
    所述第一设备将所述第一信息调制在所述目标感知信号上,以供无线感知信号接收端接收调制后的所述目标感知信号。
  3. 根据权利要求2所述的方法,其中,所述第一信息包括以下至少一项:
    所述第一设备的标识、所述第一设备参与感知的状态指示信息、所述第一设备的感知时间段、感知业务占用标志位、所述第一设备的入射角和反射角范围、所关联区域中第一设备的个数、所述第一设备的位置信息、所述第一设备的感知距离、所述第一设备的工作带宽、所述第一设备的各个信道的工作频率、所述第一设备的调制方式、所述第一设备支持的读写频率、第一设备阵列形式信息、所述第一设备的反射信号的信噪比、单个第一设备的发射天线数、单个第一设备的接收天线数、单个第一设备的天线排布信息、包括至少两个第一设备的阵列的排布信息、所述第一设备的反射信号相位的误差统计分布参数、所述第一设备的供能方式、有源的第一设备的电量信息、所述第一设备的储能能力、所述第一设备的调幅能力、所述第一设备的调相能力、所述第一设备的调频能力、所述第一设备的加密算法类型,以及所述第一设备的信道编码的前向纠错码FEC的种类和对应的编码码率。
  4. 根据权利要求1至3中任一项所述的方法,其中,在所述第一设备向无线感知信号接收端反向散射目标感知信号之前,所述方法还包括:
    所述第一设备获取第二感知请求消息;
    所述第一设备输出第二感知响应消息,其中,所述第二感知响应消息表示所述第一设备同意参与所述第二感知请求消息对应的感知过程和/或提供第一信息。
  5. 一种无线感知装置,应用于第一设备,所述装置包括:
    反向散射模块,用于向无线感知信号接收端反向散射目标感知信号,其中,所述目标感知信号来自无线感知信号发送端,所述无线感知信号发送端包括第一终端或第一网络侧设备,所述无线感知信号接收端包括第二网络侧设备。
  6. 一种无线感知方法,所述方法包括:
    无线感知信号接收端获取第二信息,所述第二信息包括:感知需求信息,和/或,与所述感知需求信息对应的目标感知信号相关配置信息,所述无线感知信号接收端包括第二网络侧设备;
    所述无线感知信号接收端根据所述目标感知信号相关配置信息,对无线感知信号发送端发送的且至少部分经第一设备反向散射的目标感知信号进行测量,以获取目标测量量,所述无线感知信号发送端包括第一终端或第一网络侧设备;
    所述无线感知信号接收端根据所述目标测量量确定目标感知结果,或者发送所述目标测量量。
  7. 根据权利要求6所述的方法,其中,所述无线感知信号接收端根据所述目标感知信号相关配置信息,对无线感知信号发送端发送的且至少部分经第一设备反向散射的目标感知信号进行测量,以获取目标测量量,包括:
    所述无线感知信号接收端接收来自无线感知信号发送端的且至少部分经第一设备反向散射的目标感知信号序列;
    所述无线感知信号接收端基于所述目标感知信号序列与预设感知信号序列进行目标信号处理,以得到目标测量量,其中,所述感知信号相关配置信息包括所述无线感知信号发送端发送的所述预设感知信号序列的信号配置信息。
  8. 根据权利要求6或7所述的方法,其中,在所述无线感知信号接收端根据所述目标感知信号相关配置信息,对无线感知信号发送端发送的且至少部分经第一设备反向散射的目标感知信号进行测量,以获取目标测量量之前,所述方法还包括:
    所述无线感知信号接收端向所述无线感知信号发送端发送所述第二信息。
  9. 根据权利要求6所述的方法,其中,所述目标测量量包括:
    解调的所述第一设备反向散射的信息;和/或,
    依赖所述第一设备参与的无线感知测量量,或不依赖所述第一设备参与的无线感知测量量。
  10. 根据权利要求6至9中任一项所述的方法,其中,所述目标感知信号相关配置信息包括以下至少一项:
    波形、子载波间隔、保护间隔、带宽、突发burst持续时间、时域间隔、发送信号功率、信号格式、信号方向、时间资源、频率资源、准共址QCL关系、所述第一设备的标识信息、所述第一设备的与目标感知信号配置相关的信息、所述目标感知信号的初始相位、所述第一设备的天线信息、所述无线感知信号发送端的天线信息、每根天线发送所述目标感知信号的时间戳信息、不同天线间发送信号的时间间隔、所述第一设备的调幅能力、所述第一设备的调相能力、所述第一设备的调频能力、所述第一设备的加密算法类型、所述第一设备的信道编码种类对应的编码码率、与所述第一设备相关的信号调制方式、与所述第一设备相关的数据编码方式,以及与所述第一设备相关的帧格式。
  11. 根据权利要求6至10中任一项所述的方法,其中,所述目标测量量包括以下至少 一项:
    第一测量量,所述第一测量量为与所述第一设备相关的测量量,其包括以下至少一项:
    经所述第一设备反向散射的反射信号的接收信号强度指示RSSI和/或接收功率、所述反射信号的相位、所述反射信号的时间戳信息、所述第一设备的反向散射路径信道矩阵、所述第一设备的反向散射路径信道状态信息、所述第一设备的反向散射路径多径信道中多径数参数、所述反射信号的多普勒频率和多普勒扩展、所述反射信号的离开角、所述反射信号的到达角、所述第一设备间相位差、所述第一设备间时延差、所述第一设备的天线间相位差、所述第一设备的天线间时延差和所述第一设备的标识信息。
  12. 根据权利要求6或7所述的方法,所述方法还包括:
    所述无线感知信号接收端接收目标操作命令;
    所述无线感知信号接收端根据所述目标操作命令,读取所述第一设备的第一信息,并向第二设备发送所述第一信息,其中,所述目标感知结果为所述第二设备根据所述目标测量结果和所述第一信息确定的感知结果;
    所述第一信息包括以下至少一项:所述第一设备的标识、所述第一设备参与感知的状态指示信息、所述第一设备的感知时间段、感知业务占用标志位、所述第一设备的入射角和反射角范围、所关联区域中第一设备的个数、所述第一设备的位置信息、所述第一设备的感知距离、所述第一设备的工作带宽、所述第一设备的各个信道的工作频率、所述第一设备的调制方式、所述第一设备支持的读写频率、第一设备阵列形式信息、所述第一设备的反射信号的信噪比、单个第一设备的发射天线数、单个第一设备的接收天线数、单个第一设备的天线排布信息、包括至少两个第一设备的阵列的排布信息、所述第一设备的反射信号相位的误差统计分布参数、所述第一设备的供能方式、有源的第一设备的电量信息、所述第一设备的储能能力、所述第一设备的调幅能力、所述第一设备的调相能力、所述第一设备的调频能力、所述第一设备的加密算法类型,以及所述第一设备的信道编码的前向纠错码FEC的种类和对应的编码码率。
  13. 一种无线感知装置,应用于无线感知信号接收端,所述无线感知信号接收端包括第二网络侧设备,所述装置包括:
    第一获取模块,用于获取第二信息,所述第二信息包括:感知需求信息,和/或,与所述感知需求信息对应的目标感知信号相关配置信息,所述无线感知信号接收端包括第二网络侧设备;
    测量模块,用于根据所述目标感知信号相关配置信息,对无线感知信号发送端发送的且至少部分经第一设备反向散射的目标感知信号进行测量,以获取目标测量量,所述无线感知信号发送端包括第一终端或第一网络侧设备;
    执行模块,用于根据所述目标测量量确定目标感知结果,或者发送所述目标测量量。
  14. 一种无线感知方法,所述方法包括:
    第二设备获取感知需求信息;
    所述第二设备向无线感知信号发送端和无线感知信号接收端中的至少一者发送第二信息,所述第二信息包括:所述感知需求信息,和/或,与所述感知需求信息对应的目标感知信号相关配置信息,所述无线感知信号发送端包括第一网络侧设备或第一终端,所述无线感知信号接收端包括第二网络侧设备;
    所述第二设备获取目标测量量和目标感知结果中的至少一项,其中,所述目标测量量为所述无线感知信号接收端通过对所述无线感知信号发送端发送的且至少部分经第一设备反向散射的目标感知信号进行测量,所得到的测量量,所述目标感知结果基于所述目标测量量确定。
  15. 根据权利要求14所述的方法,其中,在所述第二设备向无线感知信号发送端和无线感知信号接收端中的至少一者发送第二信息之前,所述方法还包括:
    所述第二设备根据所述感知需求信息,确定所述无线感知信号发送端、所述无线感知信号接收端和所述第一设备中的至少一项。
  16. 根据权利要求15所述的方法,其中,所述第二设备根据所述感知需求信息,确定所述无线感知信号发送端、所述无线感知信号接收端和所述第一设备,包括:
    所述第二设备获取第三信息,其中,所述第三信息包括:通信连接的各个终端的第四信息、通信连接的各个网络侧设备的第五信息、通信连接的各个第一设备的第一信息,其中,所述第四信息包括对应终端的能力信息和位置信息中的至少一项,所述第五信息包括对应网络侧设备的能力信息和位置信息中的至少一项;
    所述第二设备根据所述第三信息和所述感知需求信息,确定感知类型为网络侧设备接收终端或另一网络侧设备发送的且经第一设备反向散射的目标感知信号;
    所述第二设备根据所述第四信息和第五信息中的至少一项,确定与所述感知类型相匹配的所述无线感知信号发送端和所述无线感知信号接收端;
    所述第二设备根据所述第一信息,确定所述第一设备;
    其中,所述第一信息包括以下至少一项:所述第一设备的标识、所述第一设备参与感知的状态指示信息、所述第一设备的感知时间段、感知业务占用标志位、所述第一设备的入射角和反射角范围、所关联区域中第一设备的个数、所述第一设备的位置信息、所述第一设备的感知距离、所述第一设备的工作带宽、所述第一设备的各个信道的工作频率、所述第一设备的调制方式、所述第一设备支持的读写频率、第一设备阵列形式信息、所述第一设备的反射信号的信噪比、单个第一设备的发射天线数、单个第一设备的接收天线数、单个第一设备的天线排布信息、包括至少两个第一设备的阵列的排布信息、所述第一设备的反射信号相位的误差统计分布参数、所述第一设备的供能方式、有源的第一设备的电量信息、所述第一设备的储能能力、所述第一设备的调幅能力、所述第一设备的调相能力、所述第一设备的调频能力、所述第一设备的加密算法类型,以及所述第一设备的信道编码的前向纠错码FEC的种类和对应的编码码率。
  17. 根据权利要求14至16中任一项所述的方法,其中,所述第二设备获取目标测量 量和目标感知结果中的至少一项,包括:
    所述第二设备获取所述目标测量量,并根据所述目标测量量确定目标感知结果;或者,
    所述第二设备获取所述目标测量量,以及获取所述第一设备的第一信息,并根据所述目标测量量和所述第一信息,确定目标感知结果;或者,
    所述第二设备接收来自如下一项的目标感知结果:
    所述无线感知信号发送端、所述无线感知信号接收端、所述无线感知信号发送端接入的网络侧设备和目标核心网网元。
  18. 根据权利要求17所述的方法,其中,所述第二设备通过以下方式获取所述第一信息:
    所述第二设备接收来自所述无线感知信号接收端的所述第一信息,其中,所述第二设备向所述无线感知信号发送端发送的所述感知需求信息中包含目标操作命令,或者,所述第二设备向所述无线感知信号发送端发送的目标感知信号相关配置信息基于所述包含所述目标操作命令的感知需求信息确定,所述目标操作命令用于控制所述第一设备在反向散射的目标感知信号中携带所述第一信息;
    或者,
    所述第二设备向所述第一设备接入的网络侧设备或终端发送第二指示信息,并接收来自所述第一设备接入的网络侧设备或终端的所述第一信息,其中,所述第二指示信息用于指示所述第一设备接入的网络侧设备或终端读取所述第一信息;
    或者,
    所述第二设备获取预先存储的所述第一信息。
  19. 根据权利要求17或18所述的方法,所述方法还包括以下至少一项:
    所述第二设备调用所述第一设备的关联网络侧设备,通过所述关联网络侧设备对所述第一设备进行第二处理,其中,所述第二处理包括以下至少一项:读取所述第一信息、写入所述第一信息、对所述第一信息进行盘存、为所述第一设备提供电能、控制满足与所述感知需求信息对应的感知条件的第一设备处于活动状态以及控制不满足所述感知条件的第一设备处于非活动状态,所述第一设备位于所述关联网络侧设备的读写范围内;
    所述第二设备对预先存储所述第一信息进行第一处理,其中,所述第一处理包括:更新、删除和新增中的至少一项。
  20. 根据权利要求14至19中任一项所述的方法,其中,在所述第二设备向所述无线感知信号发送端和所述无线感知信号接收端中的至少一者发送第二信息之前,所述方法还包括:
    所述第二设备获取目标能力信息,所述目标能力信息包括所述无线感知信号发送端的能力信息、所述无线感知信号接收端的能力信息,以及所述第一设备的能力信息中的至少一项;
    所述第二设备根据所述目标能力信息和所述感知需求信息,确定目标感知信号相关配 置信息;
    或者,
    所述第二设备根据所述感知需求信息,向所述无线感知信号发送端发送第一推荐信息,并接收来自所述无线感知信号发送端的所述目标感知信号相关配置信息;
    或者,
    所述第二设备接收来自所述无线感知信号发送端的第二推荐信息,并根据所述第二推荐信息和所述感知需求信息确定所述目标感知信号相关配置信息;
    或者,
    所述第二设备接收来自所述无线感知信号发送端的第一配置信息,并根据所述感知需求信息确定第二配置信息,其中,所述目标感知信号相关配置信息包括所述第一配置信息和所述第二配置信息。
  21. 根据权利要求20所述的方法,其中,所述目标感知信号相关配置信息包括以下至少一项:
    波形、子载波间隔、保护间隔、带宽、突发burst持续时间、时域间隔、发送信号功率、信号格式、信号方向、时间资源、频率资源、准共址QCL关系、所述第一设备的标识信息、所述第一设备的与目标感知信号配置相关的信息、所述目标感知信号的初始相位、所述第一设备的天线信息、所述无线感知信号发送端的天线信息、每根天线发送所述目标感知信号的时间戳信息、不同天线间发送信号的时间间隔、所述第一设备的调幅能力、所述第一设备的调相能力、所述第一设备的调频能力、所述第一设备的加密算法类型、所述第一设备的信道编码种类对应的编码码率、与所述第一设备相关的信号调制方式、与所述第一设备相关的数据编码方式,以及与所述第一设备相关的帧格式。
  22. 根据权利要求14至19中任一项所述的方法,其中,所述目标测量量包括以下至少一项:
    第一测量量,所述第一测量量为与所述第一设备相关的测量量,其包括以下至少一项:
    经所述第一设备反向散射的反射信号的接收信号强度指示RSSI和/或接收功率、所述反射信号的相位、所述反射信号的时间戳信息、所述第一设备的反向散射路径信道矩阵、所述第一设备的反向散射路径信道状态信息、所述第一设备的反向散射路径多径信道中多径数参数、所述反射信号的多普勒频率和多普勒扩展、所述反射信号的离开角、所述反射信号的到达角、所述第一设备间相位差、所述第一设备间时延差、所述第一设备的天线间相位差、所述第一设备的天线间时延差和所述第一设备的标识信息。
  23. 根据权利要求14至22中任一项所述的方法,其中,所述第二设备获取目标测量量和目标感知结果中的至少一项,包括如下至少一项:
    所述第二设备接收来自所述无线感知信号接收端或者所述无线感知信号发送端的目标测量量,并向目标核心网网元发送所述目标测量量,其中,所述目标感知结果由所述目标核心网网元基于所述目标测量量确定;
    所述第二设备接收来自所述无线感知信号接收端发送或者所述无线感知信号发送端的目标测量量,并根据所述目标测量量确定目标感知结果;
    所述第二设备接收来自所述无线感知信号发送端、所述无线感知信号接收端或所述无线感知信号发送端接入的网络侧设备的目标感知结果,其中,所述目标感知结果由所述无线感知信号发送端、所述无线感知信号接收端或所述无线感知信号发送端接入的网络侧设备基于所述目标测量量确定。
  24. 一种无线感知装置,应用于第二设备,所述装置包括:
    第二获取模块,用于获取感知需求信息;
    第一发送模块,用于向无线感知信号发送端和无线感知信号接收端中的至少一者发送第二信息,所述第二信息包括:所述感知需求信息,和/或,与所述感知需求信息对应的目标感知信号相关配置信息,所述无线感知信号发送端包括第一网络侧设备或第一终端,所述无线感知信号接收端包括第二网络侧设备;
    第三获取模块,用于获取目标测量量和目标感知结果中的至少一项,其中,所述目标测量量为所述无线感知信号接收端通过对所述无线感知信号发送端发送的且至少部分经第一设备反向散射的目标感知信号进行测量,所得到的测量量,所述目标感知结果基于所述目标测量量确定。
  25. 一种无线感知系统,包括:第一设备、无线感知信号发送端和无线感知信号接收端;
    所述无线感知信号发送端包括第一网络侧设备或第一终端,所述无线感知信号接收端包括第二网络侧设备;
    所述无线感知信号发送端和所述无线感知信号接收端中的至少一者用于获取第二信息,所述第二信息包括:所述感知需求信息,和/或,与所述感知需求信息对应的目标感知信号相关配置信息;
    所述无线感知信号发送端用于根据所述感知需求信息确定所述目标感知信号相关配置信息,并根据所述感知信号相关配置信息发送目标感知信号,或者,所述无线感知信号发送端用于根据获取的所述感知信号相关配置信息发送目标感知信号;
    所述第一设备,用于反向散射所述无线感知信号发送端发送的所述目标感知信号;
    所述无线感知信号接收端,用于对所述无线感知信号发送端发送的且至少部分经所述第一设备反向散射的目标感知信号进行测量,以得到目标测量量。
  26. 根据权利要求25所述的系统,还包括:第二设备;
    所述第二设备分别与所述无线感知信号发送端、所述无线感知信号接收端和所述第一设备通信连接;
    所述第二设备还用于获取感知需求信息,并向所述无线感知信号发送端和所述无线感知信号接收端中的至少一者发送所述感知需求信息,或者,根据所述感知需求信息确定所述感知信号相关配置信息,并向所述无线感知信号发送端和所述无线感知信号接收端中的 至少一者发送所述感知信号相关配置信息。
  27. 根据权利要求25或26所述的系统,其中,所述无线感知信号发送端发送的感知信号为预设感知信号序列,所述无线感知信号接收端具体用于接收来自所述无线感知信号发送端的且至少部分经所述第一设备反向散射的目标感知信号序列,并基于所述目标感知信号序列与预设感知信号序列进行目标信号处理,以得到目标测量量,其中,所述感知信号相关配置信息包括所述预设感知信号序列的信号配置信息。
  28. 根据权利要求25或26所述的系统,其中,所述无线感知信号发送端还用于向所述第一设备发送第一指示信息,所述第一指示信息用于指示所述第一设备需要向所述无线感知信号接收端反馈的第一信息,所述第一设备具体用于将所述第一信息调制在所述目标感知信号上,以供所述无线感知信号接收端接收调制后的所述目标感知信号。
  29. 根据权利要求26所述的系统,其中,第一节点用于根据第五信息确定目标感知结果,其中,所述第一节点包括:所述无线感知信号发送端、所述无线感知信号接收端、所述第二设备和所述第一终端接入的网络侧设备中的至少一个,所述第五信息包括所述目标测量量,或者包括所述目标测量量和第一目标测量量;或者,
    所述无线感知系统还包括目标核心网网元,所述第一节点用于向所述目标核心网网元发送所述第五信息,且所述目标核心网网元用于根据所述第五信息确定目标感知结果。
  30. 根据权利要求29所述的系统,其中,第二节点用于向所述第一节点或目标核心网网元发送参考测量量或参考测量结果;
    所述第一节点或目标核心网网元用于根据所述参考测量量或参考测量结果,以及所述第五信息确定目标感知结果,所述第二节点包括:所述无线感知信号发送端、所述无线感知信号接收端、所述第二设备、所述第一终端的接入网络侧设备、所述第一设备,以及所述第一设备接入的网络侧设备或终端中的至少一个。
  31. 根据权利要求30所述的系统,其中,所述第二节点还用于向所述第一节点或目标核心网网元发送所述第一设备的先验信息;
    所述第一节点或目标核心网网元用于根据如下信息确定目标感知结果:
    所述参考测量量或参考测量结果;
    所述第五信息;
    所述第一设备的先验信息。
  32. 根据权利要求25至31中任一项所述的系统,其中,所述第一设备附着于所述感知需求信息对应的感知目标上,或者所述第一设备位于所述感知需求信息对应的目标感知区域内。
  33. 一种网络侧设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求6至12中任一项所述的无线感知方法的步骤,或者实现如权利要求14至23中任一项所述的无线感知方法的步骤。
  34. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至4中任一项所述的无线感知方法的步骤,或者实现如权利要求6至12中任一项所述的无线感知方法的步骤,或者实现如权利要求14至23中任一项所述的无线感知方法的步骤。
  35. 一种芯片,包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至4中任一项所述的方法,或者实现如权利要求6至12中任一项所述的方法,或者实现如权利要求14至23中任一项所述的方法。
  36. 一种计算机程序产品,所述程序产品被存储在非易失的存储介质中,所述程序产品被至少一个处理器执行以实现如权利要求1至4中任一项所述的方法,或者实现如权利要求6至12中任一项所述的方法,或者实现如权利要求14至23中任一项所述的方法。
  37. 一种通信设备,所述通信设备被配置成用于执行如权利要求1至4中任一项所述的方法,或者如权利要求6至12中任一项所述的方法,或者如权利要求14至23中任一项所述的方法。
PCT/CN2022/132925 2021-11-25 2022-11-18 无线感知方法、装置和网络侧设备 WO2023093645A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111416113.6A CN116170092A (zh) 2021-11-25 2021-11-25 无线感知方法、装置和网络侧设备
CN202111416113.6 2021-11-25

Publications (1)

Publication Number Publication Date
WO2023093645A1 true WO2023093645A1 (zh) 2023-06-01

Family

ID=86410141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132925 WO2023093645A1 (zh) 2021-11-25 2022-11-18 无线感知方法、装置和网络侧设备

Country Status (2)

Country Link
CN (1) CN116170092A (zh)
WO (1) WO2023093645A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117014801B (zh) * 2023-08-24 2024-03-19 北京物资学院 无线蜂窝系统中感知性能优化方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160191120A1 (en) * 2014-12-31 2016-06-30 Freelinc Technologies Inc. Spatially aware wireless network
CN111787499A (zh) * 2020-06-28 2020-10-16 中国海洋大学 复用基站蜂窝信号的用户识别和计数方法
CN112804662A (zh) * 2021-03-18 2021-05-14 成都极米科技股份有限公司 提供无线感知业务的方法、装置、终端设备及存储介质
CN112867008A (zh) * 2021-01-14 2021-05-28 浙江大学 一种基于帧的时隙aloha协议的射频识别系统防重放方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160191120A1 (en) * 2014-12-31 2016-06-30 Freelinc Technologies Inc. Spatially aware wireless network
CN111787499A (zh) * 2020-06-28 2020-10-16 中国海洋大学 复用基站蜂窝信号的用户识别和计数方法
CN112867008A (zh) * 2021-01-14 2021-05-28 浙江大学 一种基于帧的时隙aloha协议的射频识别系统防重放方法
CN112804662A (zh) * 2021-03-18 2021-05-14 成都极米科技股份有限公司 提供无线感知业务的方法、装置、终端设备及存储介质

Also Published As

Publication number Publication date
CN116170092A (zh) 2023-05-26

Similar Documents

Publication Publication Date Title
US20220022056A1 (en) Using base stations for air-interface-based environment sensing without user equipment assistance
WO2023093645A1 (zh) 无线感知方法、装置和网络侧设备
WO2023093646A1 (zh) 无线感知方法、装置、网络侧设备和终端
WO2023093644A1 (zh) 无线感知方法、装置、网络侧设备和终端
US20240154708A1 (en) Sensing method, apparatus, and network device
WO2023274029A1 (zh) 通信感知方法、装置及网络设备
US20240155394A1 (en) Sensing method and apparatus, terminal, and network device
WO2023122975A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023231846A1 (zh) 感知方式切换处理方法、装置、通信设备及可读存储介质
WO2023231867A1 (zh) 感知方式切换方法、装置及通信设备
WO2024051619A1 (zh) 切换处理方法、装置及设备
WO2023231868A1 (zh) 感知方式切换方法、装置、通信设备及存储介质
CN117715127A (zh) 感知方式切换方法、装置及设备
WO2023185921A1 (zh) 信息指示方法、指示获取方法、装置、设备和存储介质
WO2023231842A1 (zh) 感知方式切换方法、装置、终端及网络侧设备
CN117715128A (zh) 感知方式切换方法、装置及设备
US20240155388A1 (en) Sensing method and apparatus, and network device
WO2023185910A1 (zh) 信息指示方法、接收方法、装置、设备和存储介质
CN117544993A (zh) 信号确定方法、装置及通信设备
US20230378807A1 (en) Device triggering backscatter communications
WO2023231840A1 (zh) 测量处理方法、装置、通信设备及可读存储介质
WO2023036235A1 (zh) 感知通道的建立方法、装置、通信设备、存储介质及系统
CN117544992A (zh) 信号确定方法、装置及通信设备
CN117729589A (zh) 条件切换处理方法、装置及设备
CN117998390A (zh) 波束处理方法、装置、通信设备及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897728

Country of ref document: EP

Kind code of ref document: A1