WO2023093159A1 - 锡基硫化物钠离子电池负极片的制备方法及其应用 - Google Patents

锡基硫化物钠离子电池负极片的制备方法及其应用 Download PDF

Info

Publication number
WO2023093159A1
WO2023093159A1 PCT/CN2022/114921 CN2022114921W WO2023093159A1 WO 2023093159 A1 WO2023093159 A1 WO 2023093159A1 CN 2022114921 W CN2022114921 W CN 2022114921W WO 2023093159 A1 WO2023093159 A1 WO 2023093159A1
Authority
WO
WIPO (PCT)
Prior art keywords
tin
preparation
negative electrode
ion battery
alloy
Prior art date
Application number
PCT/CN2022/114921
Other languages
English (en)
French (fr)
Inventor
余海军
谢英豪
李爱霞
张学梅
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2023093159A1 publication Critical patent/WO2023093159A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of negative electrode materials for sodium ion batteries, and in particular relates to a preparation method and application of tin-based sulfide sodium ion battery negative electrodes.
  • Non-carbon materials exhibit high storage capacity for both lithium and sodium, but have not yet achieved large-scale application even in highly commercialized lithium-ion batteries due to problems such as low conductivity, large volume change, and easy pulverization. The problem exists in sodium-ion batteries as well.
  • aluminum foil can be used for the current collectors of the positive and negative electrodes, unlike lithium-ion batteries with aluminum foil for the positive electrode and copper foil for the negative electrode, so the cost of sodium-ion batteries is lower than that of lithium-ion batteries.
  • the related technology discloses a copper/copper oxide/tin dioxide/carbon negative electrode of a three-dimensional sea urchin/porous composite structure lithium ion battery, which is composed of three-dimensional nanoporous copper, copper oxide film, tin dioxide and carbon, and the copper oxide film is composed of three-dimensional A continuous film formed by partial oxidation of the surface of nanoporous copper.
  • the copper oxide film wraps the three-dimensional nanoporous copper, tin dioxide is wrapped by carbon, and the carbon-wrapped tin dioxide forms a sea urchin structure on the outer surface of the three-dimensional nanoporous copper wrapped by the copper oxide film. carbon-coated tin dioxide layer.
  • the present invention aims to solve at least one of the technical problems in the above-mentioned prior art. For this reason, the present invention proposes a preparation method and application of a tin-based sulfide sodium ion battery negative electrode sheet.
  • the negative electrode sheet current collector can be copper or aluminum, and no coating is required to avoid powder removal of the material.
  • a kind of preparation method of tin-based sulfide sodium-ion battery negative plate comprising the following steps:
  • the alloy foil is heated and reacted with oxidizing gas, washed to obtain nanoporous metal foil, the alloy foil is copper-tin alloy or aluminum-tin alloy, and the oxidizing gas is chlorine gas or a mixture of chlorine gas and inert gas; reaction process In the process, tin and chlorine gas form tin tetrachloride, aluminum is oxidized to form a dense oxide film, and copper does not react with chlorine gas, thereby realizing the de-alloying of tin.
  • step S1 the content of tin atoms in the alloy foil is 15-50%.
  • step S1 the volume fraction of chlorine in the oxidizing gas is 10-100%.
  • the inert gas is nitrogen or argon.
  • step S1 the temperature of the reaction is 70-80°C.
  • step S1 the alloy foil is produced by co-melting.
  • the organic sulfide is n-dodecyl mercaptan, tert-dodecyl mercaptan, thiourea, phenylthiourea, diphenyl disulfide or cysteine at least one of the
  • the organic solvent is at least one of sixteen-carbon, eighteen-carbon, twenty-carbon or twenty-two-carbon unsaturated fatty acids or unsaturated fatty amines.
  • step S2 the molar ratio of the organic sulfide to tin tetrachloride is (2-4):1.
  • the reaction temperature is 220-290°C. Further, the reaction time is 10-30 minutes.
  • the inert gas is nitrogen or argon.
  • step S2 after the reaction is finished, it also includes the step of washing the negative electrode sheet of the tin-based sodium sulfide sodium ion battery, and the washing is first washed with water, and then washed with n-hexane , cyclohexane, methylcyclohexane, toluene, tetrahydrofuran, cycloheptane, isopropanol, n-propanol or ethanol.
  • step S2 the tin tetrachloride is tin tetrachloride produced by the reaction described in step S1.
  • the invention also provides the application of the preparation method in sodium ion batteries.
  • the present invention utilizes the high reactivity of tin and chlorine gas and the characteristic that the produced tin tetrachloride is liquid, reacts the fabricated alloy foil with chlorine gas, the aluminum in the alloy foil is oxidized to form a dense oxide film, and the copper does not react with chlorine gas , so as to realize the dealloying of tin and obtain nanoporous metal foil.
  • the metal foil Since aluminum reacts in hot water, the metal foil is placed in an organic solvent, and tin disulfide is prepared by solvothermal method, and the tin disulfide is inlaid with the nanopores of the metal foil as a template, avoiding the subsequent coating of negative electrode materials Process, and the embedded structure is tight, there will be no powder removal phenomenon, and the whole reaction will not produce moisture, which further improves the crystallinity of tin disulfide and improves its cycle performance when used as a negative electrode material.
  • Fig. 1 is the SEM image of the surface of the aluminum foil with tin removed in Example 1 of the present invention
  • Fig. 2 is an SEM image of the surface of the tin-based sulfide sodium ion battery negative electrode sheet prepared in Example 1 of the present invention.
  • a tin-based sulfide sodium ion battery negative electrode sheet is prepared, including nanoporous aluminum foil and tin disulfide embedded on the aluminum foil.
  • the specific preparation process is:
  • the aluminum-tin alloy is made into the required specifications of the metal foil of the negative electrode collector of the sodium ion battery, and the content of tin atoms in the alloy foil accounts for 15%;
  • step (3) After the reaction in step (2), take out the aluminum foil, wash it with deionized water, dry it, and put it in 20 mL of oleylamine with a mass of 0.61 g;
  • step (2) (4) the tin tetrachloride that step (2) generates gets 0.8g and joins in oleylamine, and adds 1.58g n-dodecanethiol;
  • reaction temperature is controlled to be 290° C., and the reaction time is 20 minutes;
  • step (5) After the reaction in step (5), the aluminum foil was taken out, washed with deionized water, then washed with n-hexane, and dried to obtain the tin-based sulfide sodium ion battery negative electrode sheet, with a mass of 1.13 g.
  • a tin-based sulfide sodium ion battery negative electrode sheet is prepared, including nanoporous aluminum foil and tin disulfide embedded on the aluminum foil.
  • the specific preparation process is:
  • the aluminum-tin alloy is made into the required specifications of the metal foil of the negative electrode collector of the sodium ion battery, and the content of tin atoms in the alloy foil accounts for 20%;
  • step (3) After the reaction in step (2), the aluminum foil was taken out, washed with deionized water, dried, and the mass was 0.606 g, and placed in 30 mL of oleylamine;
  • reaction temperature is 260 °C, and reaction time is 30 minutes;
  • step (5) After the reaction in step (5), the aluminum foil was taken out, washed with deionized water, and then washed with ethanol, and dried to obtain the tin-based sulfide sodium ion battery negative electrode sheet, with a mass of 1.38 g.
  • a tin-based sulfide sodium ion battery negative electrode sheet is prepared, which includes nanoporous copper foil and tin disulfide embedded on the copper foil.
  • the specific preparation process is:
  • the copper-tin alloy is made into the required specifications of the metal foil of the negative electrode collector of the sodium ion battery, and the content of tin atoms in the alloy foil accounts for 30%;
  • step (3) After the reaction in step (2), the copper foil was taken out, washed with deionized water, dried, and the mass was 1.57 g, and placed in 40 mL of oleylamine;
  • reaction temperature is controlled to be 220° C., and the reaction time is 30 minutes;
  • step (5) After the reaction in step (5), the copper foil was taken out, washed with deionized water, then n-propanol, and dried to obtain the tin-based sulfide sodium ion battery negative electrode sheet, with a mass of 2.77 g.
  • the tin-based sulfide sodium-ion battery negative electrodes prepared in Examples 1-3 were assembled into sodium-ion half-cells respectively, and their cycle performance was tested at a high current density of 200mA/g. The results are shown in the table below.
  • Example 1 721.6 683.5
  • Example 2 742.8 699.7
  • Example 3 694.2 657.3

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种锡基硫化物钠离子电池负极片的制备方法及其应用。制备方法包括将合金箔与氧化气体加热反应,得到纳米多孔的金属箔,合金箔为铜锡合金或铝锡合金,氧化气体为氯气或氯气与惰性气体的混合气,将金属箔置于有机溶剂中,再向有机溶剂中加入四氯化锡和有机硫化物,在惰性气氛下加热反应,即得锡基硫化物钠离子电池负极片。通过将合金箔与氯气反应,合金箔中的铝被氧化形成致密氧化膜,铜不与氯气反应,实现锡的去合金化,得到纳米多孔的金属箔,利用溶剂热法制得二硫化锡,且二硫化锡以金属箔的纳米孔为模板进行镶嵌,避免了后续负极材料的涂布过程,且嵌入结构紧密,不会产生脱粉的现象,提升了其作为负极材料使用时的循环性能。

Description

锡基硫化物钠离子电池负极片的制备方法及其应用 技术领域
本发明属于钠离子电池负极材料技术领域,具体涉及一种锡基硫化物钠离子电池负极片的制备方法及其应用。
背景技术
在二十世纪七、八十年代,钠离子电池与锂离子电池的研究几乎处于同一水平,然而石墨负极在锂离子电池中的成功应用直接促进了其商业化进程,钠离子电池却至今仍未实现产业化突破,瓶颈之一是缺少合适的实用化负极材料。近几年钠离子电池的研究相继取得重要的进展,其中负极材料的研究主要集中于碳材料以及一些非碳材料(金属及氧化物材料、合金材料及磷等)。非碳材料对锂和钠都表现出高的存储容量,但是由于导电率低、体积变化大和易粉化等问题,即便在商业化程度很高的锂离子电池中仍未获得大规模应用,上述问题在钠离子电池中同样存在。
基于钠离子电池的特点,其正负极的集流体均可使用铝箔,而不像锂离子电池正极为铝箔、负极为铜箔,故此钠离子电池的成本要低于锂离子电池。
钠离子电池正负极片的制作与锂离子电池相同,都需要在有机溶剂下进行涂布,在使用过程中还可能造成脱粉的现象。
相关技术公开了一种三维海胆/多孔复合结构锂离子电池铜/氧化铜/二氧化锡/碳负极,由三维纳米多孔铜、氧化铜膜、二氧化锡和碳组成,氧化铜膜是由三维纳米多孔铜表面部分氧化形成的连续膜,氧化铜膜将三维纳米多孔铜包裹,二氧化锡被碳包裹,碳包裹的二氧化锡在氧化铜膜包裹的三维纳米多孔铜外表面形成具有海胆结构的碳包裹的二氧化锡层。其简化了锂离子电池负极的生产工艺,避免活性组分在锂离子电池充放电过程中脱落,有效提高锂离子电池负极的循环性能和倍率性能。然而,此法仅能应用于锂离子电池铜箔上,对于铝箔则无法适用。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种锡基硫化物钠离子电池负极片的制备方法及其应用,该负极片集流体可以为铜,也可以为铝,且无需涂布,避免了材料的脱粉。
根据本发明的一个方面,提出了一种锡基硫化物钠离子电池负极片的制备方法,包 括以下步骤:
S1:将合金箔与氧化气体加热反应,洗涤,得到纳米多孔的金属箔,所述合金箔为铜锡合金或铝锡合金,所述氧化气体为氯气或氯气与惰性气体的混合气;反应过程中,锡与氯气生成四氯化锡,铝被氧化形成致密氧化膜,铜不与氯气反应,从而实现锡的去合金化。
S2:将所述金属箔置于有机溶剂中,再向所述有机溶剂中加入四氯化锡和有机硫化物,在惰性气氛下加热反应,即得所述锡基硫化物钠离子电池负极片。
在本发明的一些实施方式中,步骤S1中,所述合金箔中锡原子的含量占比为15-50%。
在本发明的一些实施方式中,步骤S1中,所述氧化气体中氯气的体积分数为10-100%。进一步地,所述惰性气体为氮气或氩气。
在本发明的一些实施方式中,步骤S1中,所述反应的温度为70-80℃。
在本发明的一些实施方式中,步骤S1中,所述合金箔为共熔融制得。
在本发明的一些实施方式中,步骤S2中,所述有机硫化物为正十二硫醇、叔十二硫醇、硫脲、苯基硫脲、二苯基二硫醚或半胱氨酸中的至少一种。
在本发明的一些实施方式中,步骤S2中,所述有机溶剂为十六碳、十八碳、二十碳或二十二碳的不饱和脂肪酸或不饱和脂肪胺中的至少一种。
在本发明的一些实施方式中,步骤S2中,所述有机硫化物与四氯化锡的摩尔比为(2-4):1。
在本发明的一些实施方式中,步骤S2中,所述反应的温度为220-290℃。进一步地,所述反应的时间为10-30分钟。所述惰性气体为氮气或氩气。
在本发明的一些实施方式中,步骤S2中,所述反应结束后,还包括将所述锡基硫化物钠离子电池负极片进行洗涤的步骤,所述洗涤是先用水洗,再用正己烷、环己烷、甲基环己烷、甲苯、四氢呋喃、环庚烷、异丙醇、正丙醇或乙醇中的至少一种洗涤。
在本发明的一些实施方式中,步骤S2中,所述四氯化锡为步骤S1所述反应生成的四氯化锡。
本发明还提供所述的制备方法在钠离子电池中的应用。
根据本发明的一种优选的实施方式,至少具有以下有益效果:
1、本发明利用锡与氯气的高反应活性且生成的四氯化锡为液体的特点,将打造好的合金箔与氯气反应,合金箔中铝被氧化形成致密氧化膜,铜不与氯气反应,从而实现锡的去合金化,得到纳米多孔的金属箔。
2、由于铝在热水反应,将金属箔置于有机溶剂中,利用溶剂热法制得二硫化锡,且二硫化锡以金属箔的纳米孔为模板进行镶嵌,避免了后续负极材料的涂布过程,且嵌入结构紧密,不会产生脱粉的现象,整个反应没有产生水分,进一步提高了二硫化锡的结晶度,提升了其作为负极材料使用时的循环性能。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为本发明实施例1中去除锡的铝箔片表面SEM图;
图2为本发明实施例1制备的锡基硫化物钠离子电池负极片表面SEM图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
本实施例制备了一种锡基硫化物钠离子电池负极片,包括纳米多孔的铝箔以及镶嵌在铝箔上的二硫化锡。具体制备过程为:
(1)将铝锡合金制成钠离子电池负极集流体金属箔所需规格,合金箔中锡原子的含量占比为15%;
(2)将1.2g合金箔置于密闭的玻璃塔内,并向玻璃塔内通入干燥的氧化气体,氧化气体为氯气和氮气的混合气,氯气的体积分数为90%,控制塔内反应温度为70-80℃,反应过程中,锡与氯气生成四氯化锡,铝被氧化形成致密氧化膜,从而实现锡的去合金化,得到纳米多孔的铝箔;
(3)步骤(2)反应结束后,取出铝箔用去离子水洗涤、干燥后,质量为0.61g,置于20mL油胺中;
(4)将步骤(2)生成的四氯化锡取0.8g加入到油胺中,并加入1.58g正十二硫醇;
(5)在氮气氛围下,进行加热,并控制反应温度为290℃,反应时间为20分钟;
(6)步骤(5)反应结束后,取出铝箔,并用去离子水洗涤后,再用正己烷洗涤,干燥后即得锡基硫化物钠离子电池负极片,质量为1.13g。
实施例2
本实施例制备了一种锡基硫化物钠离子电池负极片,包括纳米多孔的铝箔以及镶嵌 在铝箔上的二硫化锡。具体制备过程为:
(1)将铝锡合金制成钠离子电池负极集流体金属箔所需规格,合金箔中锡原子的含量占比为20%;
(2)将1.36g合金箔置于密闭的玻璃塔内,并向玻璃塔内通入干燥的氧化气体,氧化气体为氯气和氩气的混合气,氯气的体积分数为80%,控制塔内反应温度为70-80℃,反应过程中,锡与氯气生成四氯化锡,铝被氧化形成致密氧化膜,从而实现锡的去合金化,得到纳米多孔的铝箔;
(3)步骤(2)反应结束后,取出铝箔用去离子水洗涤、干燥后,质量为0.606g,置于30mL油胺中;
(4)将步骤(2)生成的四氯化锡1.2g加入到油胺中,并加入12.5g硫脲;
(5)在氮气氛围下,进行加热,并控制反应温度为260℃,反应时间为30分钟;
(6)步骤(5)反应结束后,取出铝箔,并用去离子水洗涤后,再用乙醇洗涤,干燥后即得锡基硫化物钠离子电池负极片,质量为1.38g。
实施例3
本实施例制备了一种锡基硫化物钠离子电池负极片,包括纳米多孔的铜箔以及镶嵌在铜箔上的二硫化锡。具体制备过程为:
(1)将铜锡合金制成钠离子电池负极集流体金属箔所需规格,合金箔中锡原子的含量占比为30%;
(2)将2.8g合金箔置于密闭的玻璃塔内,并向玻璃塔内通入干燥的氧化气体,氧化气体为氯气,控制塔内反应温度为70-80℃,得到纳米多孔的铜箔;
(3)步骤(2)反应结束后,取出铜箔用去离子水洗涤、干燥后,质量为1.57g,置于40mL油胺中;
(4)将步骤(2)生成的四氯化锡1.8g加入到油胺中,并加入1.8g硫脲;
(5)在氩气氛围下,进行加热,并控制反应温度为220℃,反应时间为30分钟;
(6)步骤(5)反应结束后,取出铜箔,并用去离子水洗涤后,再用正丙醇洗涤,干燥后即得锡基硫化物钠离子电池负极片,质量为2.77g。
试验例
取实施例1-3制得的锡基硫化物钠离子电池负极片,分别组装成钠离子半电池,在200mA/g高电流密度下,测试其循环性能,结果如下表所示。
  首次放电克容量mAh/g 100圈循环后克容量mAh/g
实施例1 721.6 683.5
实施例2 742.8 699.7
实施例3 694.2 657.3
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种锡基硫化物钠离子电池负极片的制备方法,其特征在于,包括以下步骤:
    S1:将合金箔与氧化气体加热反应,洗涤,得到纳米多孔的金属箔,所述合金箔为铜锡合金或铝锡合金,所述氧化气体为氯气或氯气与惰性气体的混合气;
    S2:将所述金属箔置于有机溶剂中,再向所述有机溶剂中加入四氯化锡和有机硫化物,在惰性气氛下加热反应,即得所述锡基硫化物钠离子电池负极片。
  2. 根据权利要求1所述的制备方法,其特征在于,步骤S1中,所述合金箔中锡原子的含量占比为15-50%。
  3. 根据权利要求1所述的制备方法,其特征在于,步骤S1中,所述氧化气体中氯气的体积分数为10-100%。
  4. 根据权利要求1所述的制备方法,其特征在于,步骤S1中,所述反应的温度为70-80应。
  5. 根据权利要求1所述的制备方法,其特征在于,步骤S2中,所述有机硫化物为正十二硫醇、叔十二硫醇、硫脲、苯基硫脲、二苯基二硫醚或半胱氨酸中的至少一种。
  6. 根据权利要求1所述的制备方法,其特征在于,步骤S2中,所述有机溶剂为十六碳、十八碳、二十碳或二十二碳的不饱和脂肪酸或不饱和脂肪胺中的至少一种。
  7. 根据权利要求1所述的制备方法,其特征在于,步骤S2中,所述有机硫化物与四氯化锡的摩尔比为(2-4):1。
  8. 根据权利要求1所述的制备方法,其特征在于,步骤S2中,所述反应的温度为220-290℃。
  9. 根据权利要求1所述的制备方法,其特征在于,步骤S2中,所述反应结束后,还包括将所述锡基硫化物钠离子电池负极片进行洗涤的步骤,所述洗涤是先用水洗,再用正己烷、环己烷、甲基环己烷、甲苯、四氢呋喃、环庚烷、异丙醇、正丙醇或乙醇中的至少一种洗涤。
  10. 权利要求1-9中任一项所述的制备方法在钠离子电池中的应用。
PCT/CN2022/114921 2021-11-26 2022-08-25 锡基硫化物钠离子电池负极片的制备方法及其应用 WO2023093159A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111421182.6A CN114242957A (zh) 2021-11-26 2021-11-26 锡基硫化物钠离子电池负极片的制备方法及其应用
CN202111421182.6 2021-11-26

Publications (1)

Publication Number Publication Date
WO2023093159A1 true WO2023093159A1 (zh) 2023-06-01

Family

ID=80751431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114921 WO2023093159A1 (zh) 2021-11-26 2022-08-25 锡基硫化物钠离子电池负极片的制备方法及其应用

Country Status (2)

Country Link
CN (1) CN114242957A (zh)
WO (1) WO2023093159A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117253967A (zh) * 2023-10-26 2023-12-19 济南中瑞泰新材料科技有限公司 一种熔融联合机械辊压制备二硫化锡/锂复合负极的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114242957A (zh) * 2021-11-26 2022-03-25 广东邦普循环科技有限公司 锡基硫化物钠离子电池负极片的制备方法及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130052475A1 (en) * 2011-08-23 2013-02-28 Korea Institute Of Science And Technology Method of fabricating porous film structure using dry processes and porous film structures fabricated by the same
CN103682368A (zh) * 2012-09-20 2014-03-26 中国科学院金属研究所 一种快充的柔性锂离子电池及其电极的制备方法
US20170198380A1 (en) * 2016-01-13 2017-07-13 Wisconsin Alumni Research Foundation Synthesis of metal-oxygen based materials with controlled porosity by oxidative dealloying
US20190040497A1 (en) * 2017-08-02 2019-02-07 Georgia Tech Research Corporation Method of synthesizing a material exhibiting desired microstructure characteristics based on chemical dealloying one or more group i or group ii elements from an alloy and method of synthesizing nanocomposites
CN110707286A (zh) * 2019-10-30 2020-01-17 上海理工大学 一种高能量密度锂离子电池一体化电极及其制备方法
CN114242957A (zh) * 2021-11-26 2022-03-25 广东邦普循环科技有限公司 锡基硫化物钠离子电池负极片的制备方法及其应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106848254B (zh) * 2017-03-20 2020-09-01 上海中聚佳华电池科技有限公司 一种钠离子电池负极材料及其制备方法、钠离子电池
CN109301203B (zh) * 2018-09-21 2020-01-10 四川大学 三维海胆/多孔复合结构锂离子电池铜/氧化铜/二氧化锡/碳负极及其制备方法
CN109524622B (zh) * 2018-11-13 2020-02-11 四川大学 基于铜锡合金的三维氧化亚铜-纳米多孔铜锂离子电池负极的一步制备法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130052475A1 (en) * 2011-08-23 2013-02-28 Korea Institute Of Science And Technology Method of fabricating porous film structure using dry processes and porous film structures fabricated by the same
CN103682368A (zh) * 2012-09-20 2014-03-26 中国科学院金属研究所 一种快充的柔性锂离子电池及其电极的制备方法
US20170198380A1 (en) * 2016-01-13 2017-07-13 Wisconsin Alumni Research Foundation Synthesis of metal-oxygen based materials with controlled porosity by oxidative dealloying
US20190040497A1 (en) * 2017-08-02 2019-02-07 Georgia Tech Research Corporation Method of synthesizing a material exhibiting desired microstructure characteristics based on chemical dealloying one or more group i or group ii elements from an alloy and method of synthesizing nanocomposites
CN110707286A (zh) * 2019-10-30 2020-01-17 上海理工大学 一种高能量密度锂离子电池一体化电极及其制备方法
CN114242957A (zh) * 2021-11-26 2022-03-25 广东邦普循环科技有限公司 锡基硫化物钠离子电池负极片的制备方法及其应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117253967A (zh) * 2023-10-26 2023-12-19 济南中瑞泰新材料科技有限公司 一种熔融联合机械辊压制备二硫化锡/锂复合负极的方法
CN117253967B (zh) * 2023-10-26 2024-05-03 济南中瑞泰新材料科技有限公司 一种熔融联合机械辊压制备二硫化锡/锂复合负极的方法

Also Published As

Publication number Publication date
CN114242957A (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
WO2023093159A1 (zh) 锡基硫化物钠离子电池负极片的制备方法及其应用
CN107425185B (zh) 一种碳纳米管负载的碳化钼材料的制备方法及其在锂硫电池正极材料中的应用
CN111517374B (zh) 一种Fe7S8/C复合材料的制备方法
CN110148719B (zh) 用于锂硫电池的改性薄壁多级孔碳的制备方法及其应用
CN108232115B (zh) 锂硫电池正极材料及其制备方法和锂硫电池
CN110931767B (zh) 一种碳包覆FeCo合金修饰SnO2钠离子电池负极材料及其制法
CN109950480B (zh) 一种锂离子电池负极材料碳包覆硫化锡纳米带的制备方法
CN112928260B (zh) 一种二硫化钼/铁硫化物/氮掺杂碳复合材料及其制备和应用
CN104638242A (zh) 原位聚合包覆合成锂离子电池正极材料磷酸铁锂的方法
WO2017185479A1 (zh) 核壳结构的材料、其制备方法及应用
CN103050729A (zh) 一种锂硫电池
JP2023528650A (ja) ハイブリットキャパシタの正極、その調製方法および使用
WO2017139982A1 (zh) 一种硼氮共掺杂三维结构锂硫电池正极材料的制备方法
CN113871598A (zh) 一种mof复合材料及其制备方法与应用
WO2023273265A1 (zh) 一种预锂化石墨烯及其制备方法和应用
CN107658461A (zh) 一种以有机铁化合物为原料制备氟化铁/碳复合材料的方法
CN114464780A (zh) 纳米核壳镶嵌的纳米片状离子电池负极复合材料及其制备方法与应用
CN108807904B (zh) 一种锂电池用改性磷酸铁锂正极材料的制备方法
CN111384365A (zh) 碳包覆多层NiO空心球复合材料的制备方法
CN113422065A (zh) 一种涂层铝箔及其制备方法和应用
CN110364720B (zh) 正极活性材料、正极极片及其制备方法
WO2023226550A1 (zh) 高导电性磷酸铁锂的制备方法及其应用
WO2017139994A1 (zh) 三维硫掺杂石墨烯/硫复合材料电极片的制备方法
WO2017139996A1 (zh) 一种三维碳纳米管/氮掺杂石墨烯/硫电极片的制备方法
CN110247041A (zh) 一种ZnNiO/C复合纳米材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897253

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE