WO2023093058A1 - 充电场站的充电方法、充电装置及电子设备 - Google Patents

充电场站的充电方法、充电装置及电子设备 Download PDF

Info

Publication number
WO2023093058A1
WO2023093058A1 PCT/CN2022/103460 CN2022103460W WO2023093058A1 WO 2023093058 A1 WO2023093058 A1 WO 2023093058A1 CN 2022103460 W CN2022103460 W CN 2022103460W WO 2023093058 A1 WO2023093058 A1 WO 2023093058A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
area
terminal
power
period
Prior art date
Application number
PCT/CN2022/103460
Other languages
English (en)
French (fr)
Inventor
吕鑫
林全喜
胡雯婧
廖梦雄
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Priority to EP22897154.5A priority Critical patent/EP4420924A1/en
Publication of WO2023093058A1 publication Critical patent/WO2023093058A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Definitions

  • the present application relates to the field of energy technology, and more specifically, relates to a charging method, a charging device and an electronic device for a charging station in the field of energy technology.
  • the comprehensive utilization rate of the charging station is one of the main indicators to measure the charging station.
  • the comprehensive utilization rate is generally determined by the power utilization rate and time utilization rate of the charging station (the total time that the charging station charges the electric vehicle within 24 hours/24 hours).
  • the application provides a charging method, a charging device and electronic equipment for a charging station, which realizes time-division multiplexing charging of the power of the charging station by dividing the charging area and time period, thereby improving the time utilization rate of the charging station, and further improving The comprehensive time utilization rate of the charging station is improved.
  • the present application provides a charging method for a charging station.
  • the charging station may include multiple charging areas, and the charging method may include: dividing a natural day into multiple time periods.
  • the first charging area among the multiple charging areas that is, the multiple charging areas include the first charging area
  • the charging station is at the first
  • there is no adjustable power in the time period the charging power of each electric vehicle on the charging station is redistributed according to the actual power used in the first charging area in the first time period and the preset power distribution ratio of multiple charging areas.
  • the charging station may also include a rectifier module and a charging device.
  • the rectification module is connected with the AC power supply, and the rectification module can convert the AC power transmitted by the AC power supply into DC power.
  • the charging device can communicate with the rectification module and each of the plurality of charging regions for controlling the rectification module and the plurality of charging regions.
  • Each charging area is connected to the rectifier module through a DC bus.
  • each charging area includes a plurality of charging piles (that is, a plurality of DC/DC converters), and each charging pile in each charging area can charge the electric vehicle through its own charging gun.
  • the above adjustable power may be used to indicate the available power in the output power of the charging station other than meeting the charging requirements of one or more electric vehicles being charged at the charging station.
  • the charging demand can be used to indicate that one or more electric vehicles being charged at the charging station are within the expected parking time (determined by the parking start time of the electric vehicle in the charging area where it is located and the time when the electric vehicle is expected to leave the charging area where it is located, Such as 9h)
  • the expected charging capacity that needs to be achieved for example, the state of charge is 90% or 95%, etc.).
  • This application realizes the time-division multiplexing charging of the output power of the charging station through the integrated charging area and time period, which improves the time utilization rate of the charging station, and further improves the comprehensive time utilization rate of the charging station.
  • the multiple charging areas may include not only the first charging area but also the second charging area.
  • the charging pattern or charging rate of the first charging zone is different from the charging pattern or charging rate of the second charging zone.
  • the charging mode of the first charging area is a slow charging mode.
  • the slow charging mode can be used to indicate that the first charging area can charge the first electric vehicle to the expected charging capacity within the preset first charging period, and the first electric vehicle can include electric vehicles newly entering the first charging area and/or Electric cars being charged in the first charging zone.
  • the charging mode of the second charging area may be a fast charging mode.
  • the fast charging mode can be used to indicate that the second charging area can charge the second electric vehicle to the expected charging capacity within the preset second charging period, and the second electric vehicle can include electric vehicles newly entering the second charging area and/or An electric car being charged in the second charging zone.
  • the first charging duration may be greater than the second charging duration. That is to say, the charging time required for the same electric vehicle to be charged to the expected charging capacity in the first charging area is longer than the charging time required to be charged to the expected charging capacity in the second charging area.
  • the charging rate of the first charging area may determine the charging time for electric vehicles on the first charging area to charge to the area's charging capacity.
  • the charging rate of the second charging area can determine the charging time for electric vehicles on the second charging area to charge to the area's charging capacity.
  • the charging rate of the first charging area may be lower than the charging rate of the second charging area. That is to say, for the same electric vehicle, the charging time for selecting the first charging area to charge to the expected charging capacity is longer than the charging time for selecting the second charging area to charge to the expected charging capacity.
  • the charging power of each electric vehicle on the charging station can be redistributed according to the actual power used in the first charging area in the first period and the preset power distribution ratio of multiple charging areas, which can be divided into the following two types: Cases:
  • the charging power of each charging gun in the first charging area in the first period can be reduced according to the charging demand of electric vehicles newly entering the first charging area in the first period, and the charging power of each charging gun in the first period can be reduced according to the charging power of the reduced charging gun in the first period Charge the electric vehicles that newly enter the first charging area and the electric vehicles that are being charged in the first charging area.
  • the actual power used by each charging gun in the second charging area in the first period can be reduced according to the charging demand of electric vehicles newly entering the first charging area in the first period, so as to improve the actual use of the first charging area in the first period power;
  • the actual power used in the first time period is charging the electric vehicle being charged in the second charging area.
  • the charging power of each electric vehicle on the charging station can be redistributed according to the actual power used in the first period of time in the second charging area and the preset power distribution ratio of multiple charging areas. Similarly, it can also be divided into the following two cases:
  • the actual power used by each charging gun in the first charging area is reduced in the first period, so as to improve the actual use of the second charging area in the first period power;
  • the actual power used in the first time period is charging the electric vehicle being charged in the first charging area.
  • the charging method of the charging station may further include: in the first period, when the charging station has adjustable power, the charging mode of each charging area and the preset charging mode may be The corresponding charging strategy charges the first electric vehicle and the second electric vehicle.
  • the charging strategy is related to the charging mode. That is to say, for the first charging area, since the charging mode of the first charging area is the slow charging mode, when there is adjustable power at the charging station, it is necessary to charge the first electric vehicle according to the charging strategy corresponding to the slow charging mode. Similarly, for the second charging area, since the charging mode of the second charging area is the fast charging mode, when there is adjustable power at the charging station, it is necessary to charge the second electric vehicle according to the charging strategy corresponding to the fast charging mode.
  • the adjustable power of the charging station includes two aspects: the charging station has idle power and the second charging area has an electric vehicle newly entering the second charging area ready to charge within the first period of time, and the charging station does not have idle power. .
  • the idle power can be used to indicate the unused power in the output power of the charging station except for meeting the charging requirements of the first electric vehicle and the second electric vehicle, and the idle power is a part of the adjustable power.
  • the charging station when there is idle power in the charging station, it can be based on the idle power of the charging station and the corresponding charging modes of the charging areas where the first electric vehicle and the second electric vehicle are respectively located.
  • the charging strategy charges the first electric vehicle and the second electric vehicle.
  • the second charging area when the second charging area has an electric vehicle newly entering the second charging area ready to charge within the first time period and there is no idle power at the charging station, when the first electric vehicle is Under the condition that the expected charging duration of the first charging area is less than the expected parking duration of the first electric vehicle in the first charging area, stop charging the first electric vehicle according to the maximum suspendable duration of the first electric vehicle, and start charging the first electric vehicle that enters the first charging area.
  • the electric vehicles in the second charging area are charged, and then the first electric vehicle is continuously charged.
  • the charging process of the first electric vehicle can be called intermittent charging.
  • the maximum suspendable duration of the first electric vehicle can be obtained from the expected parking duration of the first electric vehicle in the first charging area and the expected charging duration of the first electric vehicle in the first charging area.
  • the above breakpoint refill can be implemented in the following two ways:
  • Method 1 Stop charging the first electric vehicle and charge the second electric vehicle within the maximum suspendable duration of the first electric vehicle, and the second electric vehicle is within the maximum suspendable duration of the first electric vehicle At a certain moment, the expected charging capacity of the second electric vehicle has been reached (such as 95% or 100%, that is, the second electric vehicle has completed charging), then the first electric vehicle can be charged immediately when the second electric vehicle completes charging. Continue charging until the first electric vehicle is charged to the expected charging capacity (eg 90%, ie the first electric vehicle is fully charged).
  • the expected charging capacity of the second electric vehicle eg 90%, ie the first electric vehicle is fully charged.
  • Method 2 Stop charging the first electric vehicle and charge the second electric vehicle within the maximum suspendable duration of the first electric vehicle. But the second electric vehicle has not reached the expected charging capacity of the second electric vehicle (such as 95% or 100% etc., that is, the charging of the second electric vehicle has not been completed) within the maximum suspendable duration of the first electric vehicle, then, the second electric vehicle The electric vehicle also needs to stop charging, and continue to charge the first electric vehicle until the first electric vehicle is charged to the expected charging capacity (such as 90%, that is, the first electric vehicle is fully charged).
  • the expected charging capacity such as 90%, that is, the first electric vehicle is fully charged.
  • the power for charging the second electric vehicle during the process of stopping the charging of the first electric vehicle also belongs to a part of the adjustable power. That is to say, the adjustable power may include the above idle power (unused power among the adjustable powers) and scheduled power (used but adjustable power among the adjustable powers).
  • the first electric vehicle under the condition that there is no idle power in the charging station, the first electric vehicle is recharged at breakpoints through the first charging area of the slow charging mode, which not only realizes the charging of the second electric vehicle, but also ensures the first The electric vehicle finishes charging before it is expected to leave the first charging area (that is, it does not affect the charging process of the first electric vehicle), which realizes time-division multiplexing of charging station power.
  • the preset power distribution ratio of the first charging area and the preset power distribution ratio of the second charging area may both be [0,1].
  • the sum of the preset power distribution ratio of the first charging area and the preset power distribution ratio of the second charging area may be 1.
  • the charging method of the charging station can charge the electric vehicle by dividing the charging area and the time period, and combining the charging strategy corresponding to the charging mode of the charging area.
  • the application can also charge different electric vehicles located in different charging areas by recharging at breakpoints, which improves the time utilization rate of the charging station, and further improves the comprehensive utilization rate of the charging station.
  • the present application provides a charging device for a charging station.
  • the charging station may include multiple charging areas, and the charging device may include:
  • the division module can be used to divide a natural day into multiple periods.
  • the charging module can be used when a first charging area among the multiple charging areas (that is, the multiple charging areas include the first charging area) has a newly entered electric vehicle ready to charge within the first time period among the multiple time periods, and When the charging station does not have adjustable power in the first period, it redistributes each electric vehicle on the charging station according to the actual power used in the first charging area in the first period and the preset power distribution ratio of multiple charging areas charging power.
  • the charging station may also include a rectifier module and a charging device.
  • the rectification module is connected with the AC power supply, and the rectification module can convert the AC power transmitted by the AC power supply into DC power.
  • the charging device can communicate with the rectification module and each of the plurality of charging regions for controlling the rectification module and the plurality of charging regions.
  • Each charging area is connected to the rectifier module through a DC bus.
  • each charging area includes a plurality of charging piles (that is, a plurality of DC/DC converters), and each charging pile in each charging area can charge the electric vehicle through its own charging gun.
  • the above adjustable power may be used to indicate the available power in the output power of the charging station other than meeting the charging requirements of one or more electric vehicles being charged at the charging station.
  • the charging demand can be used to indicate that one or more electric vehicles being charged at the charging station are within the expected parking time (determined by the parking start time of the electric vehicle in the charging area where it is located and the time when the electric vehicle is expected to leave the charging area where it is located, Such as 9h)
  • the expected charging capacity that needs to be achieved for example, the state of charge is 90% or 95%, etc.).
  • This application realizes the time-division multiplexing charging of the output power of the charging station through the integrated charging area and time period, which improves the time utilization rate of the charging station, and further improves the comprehensive time utilization rate of the charging station.
  • the multiple charging areas may include a first charging area and a second charging area.
  • the charging pattern or charging rate of the first charging zone is different from the charging pattern or charging rate of the second charging zone.
  • the charging mode of the first charging area is a slow charging mode.
  • the slow charging mode can be used to indicate that the first charging area can charge the first electric vehicle to the expected charging capacity within the preset first charging period, and the first electric vehicle can include electric vehicles newly entering the first charging area and/or Electric cars being charged in the first charging zone.
  • the charging mode of the second charging area may be a fast charging mode.
  • the fast charging mode can be used to indicate that the second charging area can charge the second electric vehicle to the expected charging capacity within the preset second charging period, and the second electric vehicle can include electric vehicles newly entering the second charging area and/or An electric car being charged in the second charging zone.
  • the first charging duration may be greater than the second charging duration. That is to say, the charging time required for the same electric vehicle to be charged to the expected charging capacity in the first charging area is longer than the charging time required to be charged to the expected charging capacity in the second charging area.
  • the charging rate of the first charging area may determine the charging time for electric vehicles on the first charging area to charge to the area's charging capacity.
  • the charging rate of the second charging area can determine the charging time for electric vehicles on the second charging area to charge to the area's charging capacity.
  • the charging rate of the first charging area may be lower than the charging rate of the second charging area. That is to say, for the same electric vehicle, the charging time for selecting the first charging area to charge to the expected charging capacity is longer than the charging time for selecting the second charging area to charge to the expected charging capacity.
  • the charging module can be used for:
  • the first charging When there are electric vehicles newly entering the first charging area in the first charging area to be charged within the first period and the charging station cannot meet the charging demand of the electric vehicles newly entering the first charging area during the first period, the first charging When the actual power used by the area in the first period is greater than or equal to the power allocated to the first charging area according to the preset power allocation ratio of the first charging area in the first period:
  • the charging power of each charging gun in the first charging area in the first period can be reduced according to the charging demand of electric vehicles newly entering the first charging area in the first period, and the charging power of each charging gun in the first period can be reduced according to the charging power of the reduced charging gun in the first period Charge the electric vehicles that newly enter the first charging area and the electric vehicles that are being charged in the first charging area.
  • the charging module can be used for:
  • the first charging When there are electric vehicles newly entering the first charging area in the first charging area to be charged within the first period and the charging station cannot meet the charging demand of the electric vehicles newly entering the first charging area during the first period, the first charging When the actual power used by the area in the first period is less than the power allocated to the first charging area according to the preset power allocation ratio of the first charging area in the first period:
  • the actual power used by each charging gun in the second charging area in the first period can be reduced according to the charging demand of electric vehicles newly entering the first charging area in the first period, so as to improve the actual use of the first charging area in the first period power;
  • the actual power used in the first time period is charging the electric vehicle being charged in the second charging area.
  • the charging module can be used for:
  • the first charging When there are electric vehicles newly entering the first charging area in the first charging area to be charged within the first period and the charging station cannot meet the charging demand of the electric vehicles newly entering the first charging area during the first period, the first charging When the actual power used by the area in the first period is less than the power allocated to the first charging area according to the preset power allocation ratio of the first charging area in the first period:
  • the actual power used by each charging gun in the second charging area in the first period can be reduced according to the charging demand of electric vehicles newly entering the first charging area in the first period, so as to improve the actual use of the first charging area in the first period power;
  • the actual power used in the first time period is charging the electric vehicle being charged in the second charging area.
  • the charging module can be used for:
  • the second charging In the case where the actual power used by the area in the first period is less than the power allocated to the second charging area according to the preset power allocation ratio of the second charging area in the first period:
  • the actual power used by each charging gun in the first charging area is reduced in the first period, so as to improve the actual use of the second charging area in the first period power;
  • the actual power used in the first time period is charging the electric vehicle being charged in the first charging area.
  • the charging module can also be used to: in the first period, when there is adjustable power in the charging station, the charging strategy corresponding to the charging mode of each charging area and the preset charging mode can be used for the first electric power car and second electric car charging.
  • the charging strategy is related to the charging mode. That is to say, for the first charging area, since the charging mode of the first charging area is the slow charging mode, when there is adjustable power at the charging station, it is necessary to charge the first electric vehicle according to the charging strategy corresponding to the slow charging mode. Similarly, for the second charging area, since the charging mode of the second charging area is the fast charging mode, when there is adjustable power at the charging station, it is necessary to charge the second electric vehicle according to the charging strategy corresponding to the fast charging mode.
  • the adjustable power of the charging station includes two aspects: the charging station has idle power and the second charging area has an electric vehicle newly entering the second charging area ready to charge within the first period of time, and the charging station does not have idle power. .
  • the charging module in the first period of time, when there is idle power in the charging station, can The corresponding charging strategy charges the first electric vehicle and the second electric vehicle.
  • the idle power can be used to indicate the unused power in the output power of the charging station except for meeting the charging requirements of the first electric vehicle and the second electric vehicle, and the idle power is part of the above-mentioned adjustable power.
  • the charging module may stop charging the first electric vehicle according to the maximum pauseable duration of the first electric vehicle, and start charging the first electric vehicle.
  • the electric vehicles newly entering the second charging area are charged, and then the first electric vehicles are continuously charged.
  • the charging process to the first electric vehicle can be referred to as breakpoint refilling.
  • the maximum suspendable duration of the first electric vehicle can be obtained from the expected parking duration of the first electric vehicle in the first charging area and the expected charging duration of the first electric vehicle in the first charging area.
  • the charging module can realize the intermittent charging of the first electric vehicle in the following two ways:
  • Method 1 within the maximum pauseable duration of the first electric vehicle, the charging module can control to stop charging the first electric vehicle, and control to charge the second electric vehicle, and the second electric vehicle is within the maximum duration of the first electric vehicle.
  • a certain moment within the pauseable duration has reached the expected charging capacity of the second electric vehicle (such as 95% or 100%, that is, the second electric vehicle has completed charging), then, the second electric vehicle can be charged immediately when the second electric vehicle completes charging. Controlling to continue charging the first electric vehicle until the first electric vehicle is charged to the expected charging capacity (such as 90%, ie the first electric vehicle is fully charged).
  • Method 2 within the maximum suspendable duration of the first electric vehicle, the charging module can control to stop charging the first electric vehicle, and control to charge the second electric vehicle.
  • the second electric vehicle has not reached the expected charging capacity of the second electric vehicle (such as 95% or 100%, etc., that is, the second electric vehicle has not completed charging) within the maximum suspendable duration of the first electric vehicle, then the charging module It is also necessary to control the second electric vehicle to stop charging, and to control the first electric vehicle to continue charging until the first electric vehicle is charged to the expected charging capacity (such as 90%, that is, the first electric vehicle is fully charged).
  • the power for charging the second electric vehicle (which may be referred to as dispatched power) while the charging module stops charging the first electric vehicle also belongs to a part of the adjustable power. That is to say, the adjustable power may include the above idle power (unused power among the adjustable powers) and scheduled power (used but adjustable power among the adjustable powers).
  • the charging module recharges the first electric vehicle at breakpoints through the first charging area of the slow charging mode, which not only realizes the charging of the second electric vehicle, but also ensures The charging of the first electric vehicle is completed before it is expected to leave the first charging area (that is, the charging process of the first electric vehicle is not affected), which realizes time-division multiplexing of charging station power.
  • the preset power distribution ratio of the first charging area and the preset power distribution ratio of the second charging area may both be [0,1].
  • the sum of the preset power distribution ratio of the first charging area and the preset power distribution ratio of the second charging area may be 1.
  • the charging device of the charging station provided by the present application can charge electric vehicles by dividing the charging area and time period, and combining the charging strategy corresponding to the charging mode of the charging area.
  • the application can also charge different electric vehicles located in different charging areas by recharging at breakpoints, which improves the time utilization rate of the charging station, and further improves the comprehensive utilization rate of the charging station.
  • an electronic device which may include:
  • processors one or more processors
  • memory for storing one or more programs
  • the present application provides a computer-readable storage medium, on which a computer program is stored.
  • the computer program is executed, the charging method provided by the above first aspect and its possible implementation manners can be realized.
  • the present application provides a computer program.
  • the computer program is executed by a computer, the charging method provided in the above-mentioned first aspect and its possible implementation manners can be implemented.
  • FIG. 1 is a schematic structural diagram of a charging station in an embodiment of the present application
  • Fig. 2 is a schematic flowchart of a charging method of a charging station in an embodiment of the present application
  • FIG. 3 is a schematic diagram of divisions and time periods in the embodiment of the present application.
  • Fig. 4 is a schematic flowchart of a charging method of a charging station in an embodiment of the present application
  • Fig. 5 is a schematic flowchart of a charging method of a charging station in an embodiment of the present application
  • Fig. 6 is a schematic diagram of recharging at the interruption point of the embodiment of the present application.
  • FIG. 7 is a schematic diagram of divisions and periods in the embodiment of the present application.
  • FIG. 8 is a schematic diagram of divisions and periods in the embodiment of the present application.
  • FIG. 9 is a schematic diagram of divisions and periods in the embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a charging device of a charging station in an embodiment of the present application.
  • At least one (item) means one or more, and “multiple” means two or more.
  • “And/or” is used to describe the association relationship of associated objects, indicating that there can be three types of relationships, for example, “A and/or B” can mean: only A exists, only B exists, and A and B exist at the same time , where A and B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship.
  • At least one of the following” or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • At least one item (piece) of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c ", where a, b, c can be single or multiple.
  • the charging station can be equipped with multiple charging piles, and each charging pile can be equipped with one or more charging guns to charge electric vehicles through the charging guns.
  • the comprehensive utilization rate of the charging station is one of the main indicators to measure the charging station.
  • the comprehensive utilization rate is generally determined by the power utilization rate and time utilization rate of the charging station (the total time that the charging station charges the electric vehicle within 24 hours/24 hours).
  • the present application provides a charging method for the charging station.
  • the charging station 1 includes multiple charging areas (as shown in FIG. device 12.
  • the rectification module 11 is connected with the AC power supply S, and the rectification module 11 can convert alternating current (alternating current, AC) transmitted by the AC power supply S into direct current (direct current, DC).
  • the charging device 12 can communicate with the rectifying module 11 , the A charging area and the B charging area (as shown by the dotted line in FIG. 2 ), for controlling the rectifying module 11 , the A charging area and the B charging area.
  • the A charging area and the B charging area are respectively connected to the rectifier module 11 through a DC bus (as shown by the solid line in Fig. 2 ).
  • both the A charging area and the B charging area include a plurality of charging piles (that is, the DC/DC converter A1, the DC/DC converter A2, ..., the DC/DC converter AN in the A charging area, and the B charging area DC/DC converter B1, DC/DC converter B2, ..., DC/DC converter BM), each charging pile can pass its own charging gun (that is, charging gun CA1, charging gun CA2, ..., charging gun in Figure 2
  • the charging gun CAN (the power of each charging gun can be 90kW to 240kW), and the charging gun CB1, charging gun CB2, ..., charging gun CBM (the power of each charging gun can be 15kW to 30kW)) for electric vehicles that need to be charged Automobile (being electric vehicle EVA1 in Fig. 2, electric vehicle EVA2, ..., electric vehicle EVAN, and electric vehicle EVB1, electric vehicle EVB2, ..., electric vehicle EVBM) charge.
  • control process 100 as shown in FIG. 2 can be realized through the following steps:
  • Step S101 Divide a natural day into multiple time periods.
  • a natural day (that is, 24 hours in a day) can be divided into a T1 time period and a T2 time period, and the T1 time period and the T2 time period do not overlap.
  • the duration of the T1 period and the duration of the T2 period may both be [0, 24h], and the sum of the duration of the T1 period and the duration of the T2 period may be 24h.
  • the T1 time period may be from 9:00 to 18:00, the duration of the T1 time period is 9 hours, and the T1 time period may be called a daytime time period.
  • the T2 time period may be from 18:00 to 9:00 the next day, the duration of the T2 time period is 15 hours, and the T2 time period may be called an evening time period.
  • T1 time period and T2 time period that is, two time periods
  • 3 or 4 or more time periods which is not done in the embodiment of this application. limited. If the natural day is divided into 3 or 4 or more time periods, the sum of the duration of the multiple time periods can be 24 hours.
  • Step S102 When one of the multiple charging areas (that is, the A charging area or the B charging area) has a new electric vehicle entering in the first time period (which can be the T1 time period or the T2 time period) among the multiple time periods (It can be for the electric vehicles that newly enter the A charging area or the electric vehicles that newly enter the B charging area) to prepare for charging, and the charging station does not have adjustable power in the first period, then it can The actual power used for a period of time and the preset power distribution ratio of multiple charging areas redistribute the charging power of each electric vehicle on the charging station.
  • the first time period which can be the T1 time period or the T2 time period
  • the multiple time periods It can be for the electric vehicles that newly enter the A charging area or the electric vehicles that newly enter the B charging area
  • the adjustable power can be used to indicate the usable power in the output power of the charging station other than meeting the charging demand of one or more electric vehicles being charged at the charging station.
  • the charging demand can be used to indicate that one or more electric vehicles being charged at the charging station are within the expected parking time (determined by the parking start time of the electric vehicle in the charging area where it is located and the time when the electric vehicle is expected to leave the charging area where it is located, Such as 9h)
  • the expected charging capacity that needs to be achieved for example, the state of charge is 90% or 95%, etc.).
  • the embodiment of the present application can realize the time-division multiplexing charging of the output power of the charging station through the integrated method of dividing the charging area and dividing the time period, which improves the time utilization rate of the charging station and further improves the comprehensive time utilization rate of the charging station. .
  • the preset power distribution ratio of the A charging area during the T1 period/T2 period may be [0,1].
  • the preset power distribution ratio of the B charging area during the T1 period/T2 period may also be [0 ,1].
  • the sum of the preset power distribution ratio of the A charging area during the T1 period and the preset power distribution ratio of the B charging area during the T1 period is 1.
  • the sum of the preset power distribution ratio of the A charging area during the T2 period and the preset power distribution ratio of the B charging area during the T2 period is 1.
  • p11 can be set to 20%
  • p12 can be set to 80%.
  • p21 can be set to 90% and p22 can be set to 10%.
  • the charging mode of the A charging area is different from that of the B charging area.
  • the charging rate of the A charging area is different from the charging rate of the B charging area.
  • the charging mode of the A charging area may be a slow charging mode.
  • the slow charging mode can be used to indicate that the A charging area can charge the first electric vehicle to the expected charging capacity (for example, the state of charge is 90% or 95%) within the preset first charging time period (such as 6h). For example, an electric vehicle is charged through the A charging area, and within 6 hours, the state of charge of the electric vehicle can reach 90%.
  • the first electric vehicle may include an electric vehicle newly entering the A charging area and/or an electric vehicle being charged in the A charging area.
  • the charging mode of the B charging area may be a fast charging mode.
  • the fast charging mode can be used to indicate that the B charging area can charge the second electric vehicle to the expected charging capacity (for example, the state of charge is 90% or 95%) within the preset second charging time period (such as 2 hours). For example, an electric vehicle is charged through the B charging area, and within 2 hours, the state of charge of the electric vehicle can reach 90%.
  • the second electric vehicle may include an electric vehicle newly entering the B charging area and/or an electric vehicle being charged in the B charging area.
  • the preset first charging duration may be longer than the preset second charging duration. That is to say, the charging time required for the same electric vehicle to charge to the expected charging capacity in A charging area is longer than the charging time required to charge to the expected charging capacity in B charging area.
  • the charging rate of the A charging area may determine the charging time for the first electric vehicle in the A charging area to charge to the area's charging capacity.
  • the charging rate of the B charging area can determine the charging time for the second electric vehicle on the B charging area to charge to the area's charging capacity.
  • the charging rate of the A charging area may be smaller than that of the B charging area. That is to say, for the same electric vehicle, the charging time of choosing A charging area to charge to the expected charging capacity is longer than the charging time of selecting B charging area to charge to the expected charging capacity.
  • step S102 can be implemented in the following two aspects:
  • the charging power of each charging gun in the A charging area in the T1 period/T2 period can be reduced according to the charging demand of the electric vehicle newly entering the A charging area in the T1 period/T2 period, and according to the reduced charging gun in the T1 period/T2 period
  • the charging power of the time period is used to charge the electric vehicle newly entering the A charging area and the electric vehicle being charged in the A charging area (ie, the first electric vehicle).
  • the power allocation ratio of the A charging area in the T1 period is 20%, then the power allocated to the A charging area according to 20% is 400kW.
  • the power allocation ratio of the B charging area in the T1 period is 80%, then the power allocated to the B charging area according to 80% is 1600kW.
  • the actual power used in charging area A is 1000kW (that is, 50% of the output power of the charging station, exceeding 400kW)
  • the actual used power in charging area B is 1000kW (less than 1600kW)
  • the charging power of each charging gun in the A charging area in the T1 period can be reduced according to the charging demand of the electric vehicle newly entering the A charging area in the T1 period, and the newly entered A can be charged according to the reduced charging power of the charging gun in the T1 period
  • the electric vehicles in the area and the electric vehicles that are being charged in the A charging area are charged.
  • Step S102B1 The actual power used by each charging gun in the B charging area during the T1/T2 period can be reduced according to the charging demand of the electric vehicle newly entering the A charging area during the T1/T2 period, so as to improve the A charging area during the T1 period.
  • the actual power used during the /T2 period can be reduced according to the charging demand of the electric vehicle newly entering the A charging area during the T1/T2 period, so as to improve the A charging area during the T1 period.
  • Step S102B2 Charge the electric vehicles newly entering the A charging area and the electric vehicles being charged in the A charging area according to the actual power usage of the A charging area in the T1 period/T2 period after the increase, and charge the electric vehicles in the B charging area according to the reduced B charging area
  • the actual power used by the gun during the T1 period/T2 period is to charge the electric vehicle being charged in the B charging area.
  • the output power of the charging station is 2000kW.
  • the power allocation ratio of the A charging area in the T1 period is 20%, then the power allocated to the A charging area according to 20% is 400kW.
  • the power allocation ratio of the B charging area in the T1 period is 80%, then the power allocated to the B charging area according to 80% is 1600kW.
  • the actual power used in charging area A is 200kW (that is, 10% of the output power of the charging station, which is less than 400kW)
  • the actual used power in charging area B is 1800kW (more than 1600kW)
  • the actual power used by each charging gun in the B charging area during the T1 period can be reduced according to the charging demand of the electric vehicle that newly enters the A charging area during the T1 period, so as to increase the actual used power of the A charging area during the T1 period. It should be noted that the actual power used in the A charging area can be increased to a maximum of 400kW.
  • the electric vehicles newly entering the A charging area and the electric vehicles being charged in the A charging area are charged, and according to the reduced actual power of the charging gun in the B charging area during the T1 period Use power to charge electric vehicles that are charging in the B charging zone.
  • step S102 can also be implemented through the following two situations:
  • the charging power of each charging gun in the B charging area in the T1 period/T2 period can be reduced according to the charging demand of the electric vehicle newly entering the B charging area in the T1 period/T2 period, and according to the reduced charging gun in the T1 period/T2 period
  • the charging power of the time period is used to charge the electric vehicle that newly enters the B charging area and the electric vehicle that is being charged in the B charging area (ie, the second electric vehicle).
  • the power allocation ratio of the A charging area in the T2 period is 20%, then the power allocated to the A charging area according to 20% is 400kW.
  • the power allocation ratio of the B charging area in the T2 period is 80%, then the power allocated to the B charging area according to 80% is 1600kW.
  • the actual power used in the B charging area is 1800kW (that is, 90% of the output power of the charging station, which exceeds 1600kW)
  • the actual used power in the A charging area is 200kW (less than 400kW)
  • the charging power of each charging gun in the B charging area in the T2 period can be reduced according to the charging demand of the electric vehicle newly entering the B charging area in the T2 period, and the newly entered B can be charged according to the reduced charging power of the charging gun in the T2 period
  • the electric vehicles in the area and the electric vehicles that are being charged in the B charging area are charged.
  • the actual power used by each charging gun in the A charging area in the T1 period/T2 period can be reduced to improve the B charging area in the T1 period or T2 period. the actual power used.
  • the electric vehicles that newly enter the B charging area and the electric vehicles that are charging in the B charging area are charged, and according to the reduced charging gun in the A charging area.
  • the actual power used in the period/T2 period is for charging the electric vehicles that are being charged in the A charging area.
  • the output power of the charging station is 2000kW.
  • the power allocation ratio of the A charging area in the T2 period is 20%, then the power allocated to the A charging area according to 20% is 400kW.
  • the power allocation ratio of the B charging area in the T2 period is 80%, then the power allocated to the B charging area according to 80% is 1600kW.
  • the actual power used in charging area B is 1200kW (that is, 60% of the output power of the charging station, which is less than 1600kW)
  • the actual used power in charging area A is 800kW (more than 400kW)
  • the actual power used by each charging gun in the A charging area during the T2 period can be reduced to increase the actual power used in the B charging area during the T2 period.
  • the charging method provided by the embodiment of the present application may also include the following process: in the T1 period/T2 period, when there is adjustable power at the charging station, the charging mode of each charging area may be The charging strategy corresponding to the preset charging mode charges the first electric vehicle and the second electric vehicle.
  • the charging strategy is related to the charging mode. That is to say, for the A charging area, since the charging mode of the A charging area is the slow charging mode, when there is adjustable power at the charging station, it is necessary to charge the first electric vehicle according to the charging strategy corresponding to the slow charging mode. Similarly, for the B charging area, since the charging mode of the B charging area is the fast charging mode, when there is adjustable power at the charging station, it is necessary to charge the second electric vehicle according to the charging strategy corresponding to the fast charging mode.
  • Electric vehicle (EV) 1 and electric vehicle EV2 can be charged through the following steps:
  • Step S102A1 As shown in Figure 5, when there is idle power in the charging station, the charging strategy for electric vehicles EV1 and Electric car EV2 charging.
  • the idle power is used to indicate the unused power in the output power of the charging station except for meeting the charging requirements of the electric vehicles EV1 and EV2, and the idle power is part of the above-mentioned adjustable power.
  • Step S102A2 As shown in Figure 5, when there is an electric vehicle that newly enters the B charging area in the B charging area during the T1 period/T2 period and there is no idle power at the charging station, when the electric vehicle EV1 is in the A charging area When the expected charging time is less than the expected parking time of electric vehicle EV1 in charging area A, it is possible to stop charging electric vehicle EV1 according to the maximum suspendable duration of electric vehicle EV1, start charging electric vehicle EV2, and then charge electric vehicle EV1 Continue charging.
  • the charging process of the electric vehicle EV1 can be called breakpoint recharging.
  • the maximum suspendable duration of electric vehicle EV1 (can be expressed by T max , such as 3h) can be determined by the expected parking time of electric vehicle EV1 in A charging area (can be expressed by T stop , such as 9h) and the electric vehicle EV1 in A charging area
  • the expected charging time of the area (which can be represented by T charge , such as 6h) is obtained. That is to say, the expected parking time T stop of the electric vehicle EV1 in the A charging area can be divided into the expected charging time T charge of the electric vehicle EV1 in the A charging area and the maximum suspendable time T max of the electric vehicle EV1.
  • the electric vehicle EV1 is charged through the A charging area of the slow charging mode (that is, the first method in Figure 6), and the expected parking time of the electric vehicle EV1 in the A charging area is 9h, then from the electric vehicle EV1 Charging starts at the parking start time in charging area A. After the expected charging time of 6 hours, the expected charging capacity of the electric vehicle EV1 can reach 90%. The electric vehicle EV1 stops charging when it is charged to 90%, so the charging stop duration of the electric vehicle EV1 (that is, the time period between the charging completion time and the time when the electric vehicle EV1 is expected to leave the charging area A) can be 3 hours.
  • the expected parking time of the electric vehicle EV1 in the A charging area is 9h, then from the time of the electric vehicle EV1 in the A charging area Start charging from the parking start time, after charging for 2 hours, stop charging for 3 hours (that is, the maximum pause time, charging the electric vehicle EV2 during this process), after that, continue to charge the electric vehicle EV1 for 4 hours, so that the electric vehicle EV1 can be charged to 90 %. It can be found that the expected charging time of the electric vehicle EV1 (ie 6h) is divided into two time periods of 2h before stopping charging and 4h of continuing charging, which can also charge the electric vehicle EV1 to 90%.
  • Method 1 Stop charging the electric vehicle EV1 and charge the electric vehicle EV2 within the maximum suspendable duration of the electric vehicle EV1 (ie 3h), and the electric vehicle EV2 will be charged at a certain moment within 3h (such as 2.5h, It can also include the moment of 3h) has reached the expected charging capacity of the electric vehicle EV2 (such as 95% or 100%, that is, the electric vehicle EV2 has completed charging), then, the electric vehicle EV1 can be charged immediately when the electric vehicle EV2 completes charging. Continue to charge until the electric vehicle EV1 is charged to the expected charging capacity (such as 90%, that is, the electric vehicle EV1 is fully charged).
  • the expected charging capacity such as 90%, that is, the electric vehicle EV1 is fully charged.
  • Method 2 Stop charging the electric vehicle EV1 and charge the electric vehicle EV2 within the maximum suspendable duration of the electric vehicle EV1 (ie 3 hours). However, the electric vehicle EV2 has not reached the expected charging capacity of the electric vehicle EV2 within 3 hours (such as 95% or 100%, that is, the charging of the electric vehicle EV2 has not been completed), then the electric vehicle EV2 also needs to stop charging, and charge the electric vehicle EV1 Continue to charge until the electric vehicle EV1 is charged to the expected charging capacity (such as 90%, that is, the electric vehicle EV1 is fully charged).
  • the expected charging capacity such as 90%, that is, the electric vehicle EV1 is fully charged.
  • the power for charging the electric vehicle EV2 during the process of stopping the charging of the electric vehicle EV1 also belongs to a part of the adjustable power. That is to say, the adjustable power may include the above idle power (unused power among the adjustable powers) and scheduled power (used but adjustable power among the adjustable powers).
  • the electric vehicle EV1 under the condition that there is no idle power in the charging station, the electric vehicle EV1 is recharged at breakpoints through the A charging area of the slow charging mode, which not only realizes the charging of the electric vehicle EV2, but also ensures the charging of the electric vehicle EV1.
  • the charging is completed before the expected departure from the A charging area (that is, the charging process of the electric vehicle EV1 is not affected), and the time-division multiplexing of the charging station power is realized.
  • the total charging fee of the electric vehicle can be obtained according to the charging area where the electric vehicle is located and the actual charging time of the electric vehicle.
  • different charging mechanisms may be set for the A charging area in the slow charging mode and the B charging area in the fast charging mode.
  • a charging area can focus on parking, supplemented by charging.
  • the total charging cost of electric vehicles can include charging costs (determined by the charging unit price in A charging area and the actual charging time of electric vehicles in A charging area) and parking fees (that is, the fees corresponding to the actual parking time).
  • charging area B can focus on charging, supplemented by parking.
  • the total charging cost of an electric vehicle can include the charging fee (determined by the charging unit price in the B charging area and the actual charging time of the electric vehicle in the B charging area) and the overtime fee (that is, the time when the electric vehicle actually leaves the charging station and the time when the charging is completed The cost corresponding to the length of time between the time)
  • the charging method of the charging station can charge electric vehicles by dividing the charging area and time period, and combining the charging strategy corresponding to the charging mode of the charging area.
  • the application can also charge different electric vehicles located in different charging areas by recharging at breakpoints, which improves the time utilization rate of the charging station, and further improves the comprehensive utilization rate of the charging station.
  • the charging station may include A charging area (charging mode is slow charging mode) and B charging area (charging mode is fast charging mode). Since the users inside the residential area mostly use the charging stations at night, and the users outside the residential area mostly use the charging stations during the day, so the A charging area of the slow charging mode is set in the residential area, and the charging area of the fast charging mode is set in the residential area.
  • the B charging area is set outside the community.
  • the T1 period can be from 8:00 to 20:00, the duration of the T1 period is 12 hours, and the T1 period can be called the daytime period.
  • the T2 time period can be from 20:00 to 8:00 the next day, the duration of the T2 time period is also 12h, and the T2 time period can be called the evening time period.
  • the preset power distribution ratio of the A charging area during the T1 period can be set to 20%, and the preset power distribution ratio of the B charging area during the T1 period can be set to 80%.
  • the preset power distribution ratio of the A charging area during the T2 period can be set to 90%, and the preset power distribution ratio of the B charging area during the T2 period can be set to 10%.
  • the available power in charging area B may include 80% of the output power and idle power of the charging station (ie (1-80%-10%) the output power of the charging station is also the adjustable power) total two parts), that is, the maximum usable power of B charging area can be the output power of 90% of the charging station.
  • the available power may include idle power, that is, the idle power is part of the aforementioned adjustable power.
  • the charging station may also include A charging area (charging mode is slow charging mode) and B charging area (charging mode is fast charging mode) .
  • the T1 time period may be from 8:00 to 19:00, the duration of the T1 time period is 11 hours, and the T1 time period may be called a daytime time period.
  • the T2 time period may be from 19:00 to 8:00 the next day, and the duration of the T2 time period is also 13 hours, and the T2 time period may be called an evening time period.
  • the preset power distribution ratio of the A charging area during the T1 period can be set to 0% (that is, the A charging area is disabled during the T1 period when the adjustable power of the charging station is insufficient), and the B The preset power distribution ratio of the charging area in the T1 period is set to 100%. That is to say, when the adjustable power of the charging station is insufficient, the charging station only supports fast charging of electric vehicles through charging area B during daytime, and does not support slow charging of electric vehicles through charging area A.
  • the preset power distribution ratio of A charging area during the T2 period can be set to 100%, and the preset power distribution ratio of the B charging area during the T2 period can be set to 0% (that is, the adjustable power at the charging station Insufficient B charging area is disabled during T2 period). That is to say, when the adjustable power of the charging station is insufficient, the charging station only supports slow charging of electric vehicles through charging area A at night, and does not support fast charging of electric vehicles through charging area B.
  • the charging station may also include A charging area (charging mode is slow charging mode) and B charging area (charging mode is fast charging mode) , and the A charging area is located inside the industrial park, and the B charging area is located outside the industrial park.
  • natural days can be regarded as a time period (that is to say, natural days are not divided into time periods), that is, T1 time period, the duration of T1 time period is 24h, and A charging area is in T1
  • the preset power distribution ratio of the period and the preset power distribution ratio of the B charging area in the T1 period can be set according to the charging demand of the industrial park.
  • the charging method of the charging station provided by the embodiment of the present application can also be used in other scenarios, and the embodiment of the present application does not limit the application scenarios of the charging station.
  • the embodiment of the present application also provides a charging device for a charging station.
  • a charging station For the introduction of the charging station, reference may be made to the foregoing, and the embodiment of the present application will not repeat it here.
  • the charging device 12 may include a dividing module 121 and a charging module 122 , and the dividing module 121 and the charging module 122 are connected.
  • the division module 121 can be used to divide a natural day into multiple periods.
  • a natural day (that is, 24 hours in a day) can be divided into a T1 time period and a T2 time period, and the T1 time period and the T2 time period do not overlap.
  • the duration of the T1 period and the duration of the T2 period may both be [0, 24h], and the sum of the duration of the T1 period and the duration of the T2 period may be 24h.
  • the T1 time period may be from 9:00 to 18:00, the duration of the T1 time period is 9 hours, and the T1 time period may be called a daytime time period.
  • the T2 time period may be from 18:00 to 9:00 the next day, the duration of the T2 time period is 15 hours, and the T2 time period may be called an evening time period.
  • the natural day in addition to dividing the natural day into two time periods T1 and T2, it is also possible to divide the natural day into three or four time periods, which is not limited in this embodiment of the present application. If the natural day is divided into 3 or 4 or more time periods, the sum of the duration of the multiple time periods can be 24 hours.
  • the charging module 122 may be used when one of the multiple charging areas (that is, the A charging area or the B charging area) is within the first period of the multiple periods (which may be the T1 period or the T2 period) When there are new electric vehicles (electric vehicles newly entering the charging area A or electric vehicles newly entering the charging area B) ready to be charged, and the charging station does not have adjustable power in the first period, it can be charged according to the first The actual power used in the first time period of a charging area and the preset power distribution ratio of multiple charging areas redistribute the charging power of each electric vehicle on the charging station.
  • the adjustable power can be used to indicate the usable power in the output power of the charging station other than meeting the charging demand of one or more electric vehicles being charged at the charging station.
  • the charging demand can be used to indicate that one or more electric vehicles being charged at the charging station are within the expected parking time (determined by the parking start time of the electric vehicle in the charging area where it is located and the time when the electric vehicle is expected to leave the charging area where it is located, Such as 9h)
  • the expected charging capacity that needs to be achieved for example, the state of charge is 90% or 95%, etc.).
  • the embodiment of the present application implements time-division multiplexed charging of the output power of the charging station through the integration of charging areas and time periods, which improves the time utilization rate of the charging station and further improves the comprehensive time utilization rate of the charging station.
  • the preset power distribution ratio of the A charging area during the T1 period/T2 period may be [0,1].
  • the preset power distribution ratio of the B charging area during the T1 period/T2 period may also be [0 ,1].
  • the sum of the preset power distribution ratio of the A charging area during the T1 period and the preset power distribution ratio of the B charging area during the T1 period is 1.
  • the sum of the preset power distribution ratio of the A charging area during the T2 period and the preset power distribution ratio of the B charging area during the T2 period is 1.
  • p11 can be set to 20%
  • p12 can be set to 80%.
  • p21 can be set to 90% and p22 can be set to 10%.
  • the plurality of areas may include an A charging area (ie, a first charging area) and a B charging area (ie, a second charging area).
  • the charging mode of the A charging area is different from that of the B charging area.
  • the charging rate of the A charging area is different from the charging rate of the B charging area.
  • the charging mode of the A charging area may be a slow charging mode.
  • the slow charging mode can be used to indicate that the A charging area can charge the first electric vehicle to the expected charging capacity (for example, the state of charge is 90% or 95%) within the preset first charging time period (such as 6h). For example, an electric vehicle is charged through the A charging area, and within 6 hours, the state of charge of the electric vehicle can reach 90%.
  • the first electric vehicle may include an electric vehicle newly entering the A charging area and/or an electric vehicle being charged in the A charging area.
  • the charging mode of the B charging area may be a fast charging mode.
  • the fast charging mode can be used to indicate that the B charging area can charge the second electric vehicle to the expected charging capacity (for example, the state of charge is 90% or 95%) within the preset second charging time period (such as 2 hours). For example, an electric vehicle is charged through the B charging area, and within 2 hours, the state of charge of the electric vehicle can reach 90%.
  • the second electric vehicle may include an electric vehicle newly entering the B charging area and/or an electric vehicle being charged in the B charging area.
  • the preset first charging duration may be longer than the preset second charging duration. That is to say, the charging time required for the same electric vehicle to charge to the expected charging capacity in A charging area is longer than the charging time required to charge to the expected charging capacity in B charging area.
  • the charging rate of the A charging area may determine the charging time for the first electric vehicle in the A charging area to charge to the area's charging capacity.
  • the charging rate of the B charging area can determine the charging time for the second electric vehicle on the B charging area to charge to the area's charging capacity.
  • the charging rate of the A charging area may be smaller than that of the B charging area. That is to say, for the same electric vehicle, the charging time of choosing A charging area to charge to the expected charging capacity is longer than the charging time of selecting B charging area to charge to the expected charging capacity.
  • the charging module 122 can be used for:
  • the charging in A When there are new electric vehicles entering the A charging area in the A charging area that are ready to charge during the T1/T2 time period and the charging site station cannot meet the charging needs of the newly entering A charging area during the T1/T2 time period, the charging in A When the actual power used by the area in the T1 period/T2 period is greater than or equal to the power allocated to the A charging area according to the preset power allocation ratio of the A charging area in the T1 period/T2 period:
  • the charging power of each charging gun in the A charging area in the T1 period/T2 period can be reduced according to the charging demand of the electric vehicle newly entering the A charging area in the T1 period/T2 period, and according to the reduced charging gun in the T1 period/T2 period
  • the charging power of the time period is used to charge the electric vehicle newly entering the A charging area and the electric vehicle being charged in the A charging area (ie, the first electric vehicle).
  • the power allocation ratio of the A charging area in the T1 period is 20%, then the power allocated to the A charging area according to 20% is 400kW.
  • the power allocation ratio of the B charging area in the T1 period is 80%, then the power allocated to the B charging area according to 80% is 1600kW.
  • the charging module 122 can reduce the charging power of each charging gun in the A charging area in the T1 time period according to the charging demand of the electric vehicle newly entering the A charging area in the T1 time period, and according to the reduced charging power of the charging gun in the T1 time period for the new The electric vehicles entering the A charging area and the electric vehicles being charged in the A charging area are charged.
  • the charging module 122 can also be used for:
  • the charging in A When there are new electric vehicles entering the A charging area in the A charging area that are ready to charge during the T1/T2 time period and the charging site station cannot meet the charging needs of the newly entering A charging area during the T1/T2 time period, the charging in A When the actual power used by the area in the T1 period/T2 period is less than the power allocated to the A charging area according to the preset power allocation ratio of the A charging area in the T1 period/T2 period:
  • the charging module 122 can reduce the actual power used by each charging gun in the B charging area in the T1/T2 time period according to the charging demand of the electric vehicle newly entering the A charging area in the T1 time period/T2 time period, so as to improve the charging time of the A charging area in the T1 time period.
  • the actual power used during the /T2 period can reduce the actual power used by each charging gun in the B charging area in the T1/T2 time period according to the charging demand of the electric vehicle newly entering the A charging area in the T1 time period/T2 time period, so as to improve the charging time of the A charging area in the T1 time period.
  • the actual power used during the /T2 period can reduce the actual power used by each charging gun in the B charging area in the T1/T2 time period according to the charging demand of the electric vehicle newly entering the A charging area in the T1 time period/T2 time period, so as to improve the charging time of the A charging area in the T1 time period.
  • the actual power used during the /T2 period can reduce the
  • the charging module 122 charges the electric vehicles newly entering the A charging area and the electric vehicles being charged in the A charging area according to the actual power usage of the A charging area in the T1 period/T2 period after the increase, and charges the electric vehicles in the B charging area according to the reduced B charging area.
  • the actual power used by the gun during the T1 period/T2 period is to charge the electric vehicle being charged in the B charging area.
  • the output power of the charging station is 2000kW.
  • the power allocation ratio of charging area A in T1 period is 20%, then the power allocated to charging area A according to 20% is 400kW.
  • the power allocation ratio of the B charging area in the T1 period is 80%, then the power allocated to the B charging area according to 80% is 1600kW.
  • the charging module 122 can reduce the actual power used by each charging gun in the B charging area in the T1 time period according to the charging demand of the electric vehicle newly entering the A charging area in the T1 time period, so as to increase the A charging area's actual use power in the T1 time period. It should be noted that the actual power used in the A charging area can be increased to a maximum of 400kW.
  • the charging module 122 charges the electric vehicles that newly enter the A charging area and the electric vehicles that are charging in the A charging area according to the increased actual power used in the A charging area during the T1 period, and according to the reduced charging gun in the B charging area.
  • the actual power used in the time period is for charging the electric vehicles that are being charged in the B charging area.
  • the charging module 122 can be used for:
  • the charging module 122 can reduce the charging power of each charging gun in the B charging area in the T1 period/T2 period according to the charging demand of the electric vehicle newly entering the B charging area in the T1 period/T2 period, and according to the reduced charging gun in T1
  • the charging power of the period/T2 period is used to charge the electric vehicle newly entering the B charging area and the electric vehicle being charged in the B charging area (ie, the second electric vehicle).
  • the power allocation ratio of the A charging area in the T2 period is 20%, then the power allocated to the A charging area according to 20% is 400kW.
  • the power allocation ratio of the B charging area in the T2 period is 80%, then the power allocated to the B charging area according to 80% is 1600kW.
  • the charging module 122 can reduce the charging power of each charging gun in the B charging area in the T2 time period according to the charging demand of the electric vehicle newly entering the B charging area in the T2 time period, and according to the reduced charging power of the charging gun in the T2 time period for the new The electric vehicles entering the B charging area and the electric vehicles being charged in the B charging area are charged.
  • the charging module 122 can also be used for:
  • the charging module 122 can reduce the actual power used by each charging gun in the A charging area in the T1/T2 time period according to the charging demand of the electric vehicle newly entering the B charging area in the T1 period/T2 period, so as to improve the B charging area in the T1 period. Or the actual power used in the T2 period.
  • the charging module 122 can charge the electric vehicles that newly enter the B charging area and the electric vehicles that are charging in the B charging area according to the actual power usage of the B charging area in the T1 period/T2 period after the increase, and according to the reduced A charging area.
  • the actual power used by the charging gun during the T1 period/T2 period is used to charge the electric vehicles being charged in the A charging area.
  • the output power of the charging station is 2000kW.
  • the power allocation ratio of the A charging area in the T2 period is 20%, then the power allocated to the A charging area according to 20% is 400kW.
  • the power allocation ratio of the B charging area in the T2 period is 80%, then the power allocated to the B charging area according to 80% is 1600kW.
  • the charging module 122 can reduce the actual power used by each charging gun in the A charging area in the T2 time period according to the charging demand of the electric vehicle newly entering the B charging area in the T2 time period, so as to increase the actual power used in the B charging area in the T2 time period.
  • the charging module 122 charges the electric vehicles that newly enter the B charging area and the electric vehicles that are being charged in the B charging area according to the increased actual power used in the B charging area during the T2 period, and according to the reduced charging gun in the A charging area.
  • the actual power used in the time period is for charging the electric vehicles that are being charged in the A charging area.
  • the charging module 122 can also be used to: in the T1 period/T2 period, when the charging station has adjustable power, the charging strategy corresponding to the charging mode of each charging area and the preset charging mode can be: The first electric vehicle and the second electric vehicle are charged.
  • the charging module 122 may set a charging policy corresponding to a charging mode. That is to say, for the charging area A, since the charging mode of the charging area A is the slow charging mode, when there is adjustable power in the charging station, the charging module 122 can set the charging strategy corresponding to the slow charging mode to charge the electric vehicle. Similarly, for the B charging area, since the charging mode of the B charging area is the fast charging mode, when there is adjustable power at the charging station, the charging module 122 can set a charging strategy corresponding to the fast charging mode to charge the electric vehicle.
  • the charging module 122 can be divided into the following two situations for electric vehicles: EV1 and electric vehicle EV2 charging.
  • Case 1 When there is idle power in the charging station, the charging module 122 can charge the electric vehicle EV1 and the electric vehicle EV2 according to the charging strategy corresponding to the idle power of the charging station and the charging mode of the charging area where the electric vehicle EV1 and electric vehicle EV2 are located. Charge.
  • the idle power is used to indicate the unused power in the output power of the charging station except for meeting the charging requirements of the electric vehicles EV1 and EV2, and the idle power is part of the above-mentioned adjustable power.
  • the maximum suspendable duration of electric vehicle EV1 (can be expressed by T max , such as 3h) can be determined by the expected parking time of electric vehicle EV1 in A charging area (can be expressed by T stop , such as 9h) and the electric vehicle EV1 in A charging area
  • the expected charging time of the area (which can be represented by T charge , such as 6h) is obtained. That is to say, the expected parking time T stop of the electric vehicle EV1 in the A charging area can be divided into the expected charging time T charge of the electric vehicle EV1 in the A charging area and the maximum suspendable time T max of the electric vehicle EV1.
  • the charging module 122 charges the electric vehicle EV1 through the A charging area of the slow charging mode (i.e., method 1 in FIG. 6 ), and the expected parking time of the electric vehicle EV1 in the A charging area is 9h, then from the electric The car EV1 starts charging at the parking start time in the A charging area. After the expected charging time of 6 hours, the expected charging capacity of the electric car EV1 can reach 90%. The electric vehicle EV1 stops charging when it is charged to 90%, so the charging stop duration of the electric vehicle EV1 (that is, the time period between the charging completion time and the time when the electric vehicle EV1 is expected to leave the charging area A) can be 3 hours.
  • the charging module 122 charges the electric vehicle EV1 by way of breakpoint recharging (that is, the second way in Fig. 6 ), similarly, the expected parking time of the electric vehicle EV1 in the A charging area is 9h, then from the electric vehicle EV1 in A Charging begins at the parking start time in the charging area. After charging for 2 hours, stop charging for 3 hours (that is, the maximum pause time, during which the electric vehicle EV2 is charged). After that, continue to charge the electric vehicle EV1 for 4 hours, so that the electric vehicle EV1 Charge to 90%. It can be found that the expected charging time of the electric vehicle EV1 (ie 6h) is divided into two time periods of 2h before stopping charging and 4h of continuing charging, which can also charge the electric vehicle EV1 to 90%.
  • the charging of the electric vehicle EV1 and the electric vehicle EV2 by the above-mentioned control charging module 122 through the breakpoint continuous charging method can be realized in the following two ways:
  • the charging module 122 charges the electric vehicle EV2 within the maximum suspendable duration of the electric vehicle EV1 (that is, 3h), and the electric vehicle EV2 is charged at a certain moment within 3h (such as 2.5h, which can also include the moment of 3h) ) has reached the expected charging capacity of the electric vehicle EV2 (such as 95% or 100%, that is, the electric vehicle EV2 is fully charged), then the charging module 122 can immediately continue to charge the electric vehicle EV1 when the electric vehicle EV2 completes charging , until the electric vehicle EV1 is charged to the expected charging capacity (such as 90%, that is, the electric vehicle EV1 is fully charged).
  • the expected charging capacity of the electric vehicle EV2 such as 95% or 100%, that is, the electric vehicle EV2 is fully charged
  • Method 2 The charging module 122 charges the electric vehicle EV2 within the maximum suspendable duration of the electric vehicle EV1 (ie 3 hours). However, the electric vehicle EV2 has not reached the expected charging capacity of the electric vehicle EV2 within 3 hours (such as 95% or 100%, that is, the electric vehicle EV2 has not completed the charging), so the electric vehicle EV2 also needs to stop charging, and the charging module 122 pairs The electric vehicle EV1 continues charging until the electric vehicle EV1 is charged to the expected charging capacity (such as 90%, that is, the electric vehicle EV1 is fully charged).
  • the expected charging capacity such as 90%, that is, the electric vehicle EV1 is fully charged.
  • the power for charging the electric vehicle EV2 during the process of stopping the charging of the electric vehicle EV1 also belongs to a part of the adjustable power. That is to say, the adjustable power may include the above idle power (unused power among the adjustable powers) and scheduled power (used but adjustable power among the adjustable powers).
  • the charging module 1 can recharge the electric vehicle EV1 through the A charging area of the slow charging mode, which not only realizes the charging of the electric vehicle EV2, but also ensures It ensures that the electric vehicle EV1 completes charging before it is expected to leave the A charging area (that is, it does not affect the charging process of the electric vehicle EV1), and realizes the time-division multiplexing of the power of the charging station.
  • the charging module 122 can obtain the charging information of the electric vehicle according to the charging area where the electric vehicle is located and the actual charging time of the electric vehicle. Total cost.
  • different charging mechanisms may be set for the A charging area in the slow charging mode and the B charging area in the fast charging mode.
  • the charging module 122 may set the A charging area to focus on parking and supplement it on charging. Then, the total charging cost of an electric vehicle can include the charging fee (determined by the charging unit price in A charging area and the actual charging time of the electric vehicle in A charging area) and parking fee (that is, the fee corresponding to the actual parking time)
  • the charging module 122 may set the charging area B to focus on charging and supplement it on parking. Then, the total charging cost of an electric vehicle can include the charging fee (determined by the charging unit price in the B charging area and the actual charging time of the electric vehicle in the B charging area) and the overtime fee (that is, the time when the electric vehicle actually leaves the charging station and the time when the charging is completed The fee corresponding to the length of time between the time).
  • the charging device of the charging station provided by the present application can charge electric vehicles by dividing the charging area and time period, and combining the charging strategy corresponding to the charging mode of the charging area.
  • the application can also charge different electric vehicles located in different charging areas by recharging at breakpoints, which improves the time utilization rate of the charging station, and further improves the comprehensive utilization rate of the charging station.
  • the embodiment of the present application also provides an electronic device, which may include:
  • processors one or more processors
  • memory for storing one or more programs
  • the embodiment of the present application also provides a computer-readable storage medium, where a computer program is stored on the computer-readable storage medium, and when the computer program is executed, the computer-readable storage medium can implement the charging method provided in the above-mentioned embodiments.
  • the embodiment of the present application also provides a computer program, and when the computer program is executed by a computer, the computer program can implement the charging method provided in the foregoing embodiments.
  • the charging device, electronic equipment, computer-readable storage medium and computer program provided in the embodiments of the present application are all used to implement the charging method provided above. Therefore, the beneficial effects that it can achieve can refer to the above-mentioned The beneficial effects of the corresponding charging method will not be repeated here.
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions are realized in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read only memory (Read Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other various media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请提供了一种充电场站的充电方法、充电装置及电子设备,通过分充电区域和分时段实现充电场站的功率分时复用充电,提高了充电场站的时间利用率,进而提高了充电场站的综合时间利用率。本申请可以将自然日分为多个时段。当多个充电区域中的第一充电区域在多个时段中的第一时段内有新进入的终端准备充电时,且充电场站在第一时段不存在可调配功率时,可以根据第一充电区域的在第一时段的实际使用功率和多个充电区域的预设功率分配比重新分配充电场站上每个终端的充电功率。

Description

充电场站的充电方法、充电装置及电子设备
本申请要求于2021年11月29日提交中国专利局、申请号为202111430164.4、申请名称为“充电场站的充电方法、充电装置及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及能源技术领域,并且更具体地,涉及能源技术领域中的一种充电场站的充电方法、充电装置及电子设备。
背景技术
目前,随着电动汽车技术的飞速发展,为电动汽车(即一种终端)充电的充电场站逐渐增多。充电场站的综合利用率是衡量充电场站的主要指标之一。综合利用率一般由充电场站的功率利用率和时间利用率(充电场站在24小时内为电动汽车进行充电的总时长/24小时)决定。
对于居民小区、工业园区等场景,充电场站的使用时间相对集中,且用户没有及时将充电完成的电动汽车挪走,使得电动汽车的实际停车时长大于实际充电时长,时间利用率低,进而导致综合利用率较低。
因此,亟需一种能够提高充电场站的综合利用率的技术方案。
发明内容
本申请提供了一种充电场站的充电方法、充电装置及电子设备,通过分充电区域和分时段实现充电场站的功率分时复用充电,提高了充电场站的时间利用率,进而提高了充电场站的综合时间利用率。
第一方面,本申请提供了一种充电场站的充电方法,充电场站可以包括多个充电区域,充电方法可以包括:将自然日分为多个时段。当多个充电区域中的第一充电区域(即多个充电区域包括第一充电区域)在多个时段中的第一时段内有新进入的电动汽车准备充电时,且充电场站在第一时段不存在可调配功率时,则根据第一充电区域的在第一时段的实际使用功率和多个充电区域的预设功率分配比重新分配充电场站上每个电动汽车的充电 功率。
其中,充电场站除了包括多个充电区域,充电场站还可以包括整流模块和充电装置。
其中,整流模块与交流电源连接,整流模块可以将交流电源传输的交流电变换为直流电。充电装置可以与整流模块、多个充电区域中的每个充电区域进行通信,用于控制整流模块和多个充电区域。每个充电区域与整流模块之间分别通过直流母线连接。且每个充电区域分别包括多个充电桩(即多个DC/DC变换器),每个充电区域的每个充电桩可以通过自身的充电枪为电动汽车充电。
可选地,上述可调配功率可以用于指示充电场站的输出功率中除满足正在充电场站充电的一台或多台电动汽车的充电需求以外的可使用功率。充电需求可以用于指示正在充电场站充电的一台或多台电动汽车在预期停车时长内(由电动汽车在所在的充电区域的停车开始时间和电动汽车预期离开所在的充电区域的时间决定,如9h)需要达到的预期充电电量(例如荷电状态为90%或者95%等)。
本申请通过分充电区域和分时段综合的方式,实现充电场站输出功率的分时复用充电,提高了充电场站的时间利用率,进而提高了充电场站的综合时间利用率。
在一种可能的实现方式中,多个充电区域除了可以包括第一充电区域,还可以包括第二充电区域。第一充电区域的充电模式或充电速率与第二充电区域的充电模式或充电速率不同。
进一步地,第一充电区域的充电模式为慢充模式。慢充模式可以用于指示第一充电区域能够在预设的第一充电时长内将第一电动汽车充电至预期充电电量,第一电动汽车可以包括新进入第一充电区域的电动汽车和/或正在第一充电区域充电的电动汽车。
第二充电区域的充电模式可以为快充模式。快充模式可以用于指示第二充电区域能够在预设的第二充电时长内将第二电动汽车充电至预期充电电量,第二电动汽车可以包括新进入第二充电区域的电动汽车和/或正在第二充电区域充电的电动汽车。
可选地,第一充电时长可以大于第二充电时长。也就是说,同一电动汽车在第一充电区域充电至预期充电电量需要的充电时长比在第二充电区域充电至预期充电电量需要的充电时长长。
示例性的,第一充电区域的充电速率可以决定第一充电区域上的电动汽车充电至区域充电电量的充电时间。类似地,第二充电区域的充电速率可以决定第二充电区域上的电动汽车充电至区域充电电量的充电时间。
可选地,第一充电区域的充电速率可以小于第二充电区域的充电速率。也就是说,同一台电动汽车,选择第一充电区域充电至预期充电电量的充电时长要大于选择第二充电区域充电至预期充电电量的充电时长。
在一种可能的实现方式中,针对第一充电区域,当第一充电区域在多个时段中的第一时段内有新进入的电动汽车准备充电时,且充电场站在第一时段不存在可调配功率时,可以根据第一充电区域的在第一时段的实际使用功率和多个充电区域的预设功率分配比重新分配充电场站上每个电动汽车的充电功率,可以分为以下两种情况:
情况一:当第一充电区域在第一时段内有新进入第一充电区域的电动汽车准备充电且充电场站在第一时段无法满足新进入第一充电区域的电动汽车的充电需求时,在第一充电区域在第一时段的实际使用功率大于或者等于根据第一充电区域在第一时段的预设功率分配比给第一充电区域分配的功率情况下:
可以根据新进入第一充电区域的电动汽车在第一时段的充电需求降低第一充电区域中每个充电枪在第一时段的充电功率,并根据降低后的充电枪在第一时段的充电功率为新进入第一充电区域的电动汽车和正在第一充电区域充电的电动汽车充电。
情况二:当第一充电区域在第一时段内有新进入第一充电区域的电动汽车准备充电且充电场站在第一时段无法满足新进入第一充电区域的电动汽车的充电需求时,在第一充电区域在第一时段的实际使用功率小于根据第一充电区域在第一时段的预设功率分配比给第一充电区域分配的功率情况下:
可以根据新进入第一充电区域的电动汽车在第一时段的充电需求降低第二充电区域中每个充电枪在第一时段的实际使用功率,以提高第一充电区域在第一时段的实际使用功率;
根据提高后的第一充电区域在第一时段的实际使用功率为新进入第一充电区域的电动汽车和正在第一充电区域充电的电动汽车充电,并根据降低后的第二充电区域中充电枪在第一时段的实际使用功率为正在第二充电区域充电的电动汽车充电。
在另一种可能的实现方式中,针对第二充电区域,当第二充电区域在第一时段内有新进入第二充电区域的电动汽车准备充电时,且充电场站在第一时段不存在可调配功率时,则可以根据第二充电区域的在第一时段的实际使用功率和多个充电区域的预设功率分配比重新分配充电场站上每个电动汽车的充电功率。类似地,也可以分为以下两种情况:
情况一:当第二充电区域在第一时段内有新进入第二充电区域的电动汽车准备充电且充电场站在第一时段无法满足新进入第二电区域的电动汽车的充电需求时,在第二充电区域在第一时段的实际使用功率大于或者等于根据第二充电区域在第一时段预设的功率分配比给第二充电区域分配的功率的情况下:
根据新进入第二充电区域的电动汽车在第一时段的充电需求降低第二充电区域中每个充电枪在第一时段的充电功率,并根据降低后的充电枪在第一时段的充电功率为新进入第二充电区域的电动汽车和正在第二充电区域充电的电动汽车充电。
情况二:当第二充电区域在第一时段内有新进入第二充电区域的电动汽车准备充电且充电场站在第一时段无法满足新进入第二充电区域的电动汽车的充电需求时,在第二充电区域在第一时段的实际使用功率小于根据第二充电区域在第一时段预设的功率分配比给第二充电区域分配的功率的情况下:
根据新进入第二充电区域的电动汽车在所第一时段的充电需求降低第一充电区域中每个充电枪在第一时段的实际使用功率,以提高第二充电区域在第一时段的实际使用功率;
根据提高后的第二充电区域在第一时段的实际使用功率为新进入第二充电区域的电动汽车和正在第二充电区域充电的电动汽车充电,并根据降低后的第一充电区域中充电枪在第一时段的实际使用功率为正在第一充电区域充电的电动汽车充电。
在一种可能的实现方式中,充电场站的充电方法还可以包括:在第一时段中,当充电场站存在可调配功率时,可以按照每个充电区域的充电模式和预设的充电模式对应的充电策略为第一电动汽车和第二电动汽车充电。
需要说明的是,充电策略与充电模式相关。也就是说,针对第一充电区域,由于第一充电区域的充电模式为慢充模式,那么在充电场站存在可调配功率时,需要按照慢充模式对应的充电策略为第一电动汽车充电。类似地,针对第二充电区域,由于第二充电区域的充电模式为快充模式,那么在充电场站存在可调配功率时,需要按照快充模式对应的充电策略为第二电动汽车充电。
示例性的,充电场站存在可调配功率包括充电场站存在空闲功率以及第二充电区域在第一时段内有新进入第二充电区域的电动汽车准备充电且充电场站不存在空闲功率两方面。
其中,空闲功率可以用于指示充电场站的输出功率中除满足第一电动汽车和第二电动汽车的充电需求以外的未使用功率,且空闲功率属于可调配功率的一部分。
于是,在一示例中,在第一时段中,当充电场站存在空闲功率时,可以根据充电场站的空闲功率以及第一电动汽车和第二电动汽车各自所在的充电区域的充电模式对应的充电策略为第一电动汽车和第二电动汽车充电。
在另一示例中,在第一时段中,当第二充电区域在第一时段内有新进入第二充电区域的电动汽车准备充电且充电场站不存在空闲功率时,在第一电动汽车在第一充电区域的预期充电时长小于第一电动汽车在第一充电区域的预期停车时长条件下,根据第一电动汽车的最大可暂停时长停止对第一电动汽车进行充电,并开始对新进入第二充电区域的电动汽车进行充电,之后对第一电动汽车进行继续充电。此处对第一电动汽车的充电过程可以叫作断点续充。
其中,第一电动汽车的最大可暂停时长可以由第一电动汽车在第一充电区域的预期停车时长和第一电动汽车在第一充电区域的预期充电时长获取。
可选地,上述断点续充可以通过以下两种方式实现:
方式一:在第一电动汽车的最大可暂停时长内,停止对第一电动汽车进行充电,并对第二电动汽车进行充电,且第二电动汽车在第一电动汽车的最大可暂停时长内的某个时刻已经达到了第二电动汽车的预期充电电量(如95%或者100%等,即第二电动汽车完成充电),那么,可以在第二电动汽车完成充电的时刻立即对第一电动汽车进行继续充电,直至第一电动汽车充电至预期充电电量(如90%等,即第一电动汽车完成充电)。
方式二:在第一电动汽车的最大可暂停时长内,停止对第一电动汽车进行充电,并对第二电动汽车进行充电。但是第二电动汽车在第一电动汽车的最大可暂停时长内未达到了第二电动汽车的预期充电电量(如95%或者100%等,即第二电动汽车未完成充电),那么,第二电动汽车也需要停止充电,并对第一电动汽车进行继续充电,直至第一电动汽车充电至预期充电电量(如90%等,即第一电动汽车完成充电)。
可以理解的,停止对第一电动汽车进行充电的过程中对第二电动汽车进行充电的功率(可以称为调度功率)也属于可调配功率的一部分。也就是说,可调配功率可以包括上文的空闲功率(可调配功率中未使用的功率)和调度功率(可调配功率中已使用但可调配功率)两部分。
本申请在充电场站不存在空闲功率的条件下,通过慢充模式的第一充电区域对第一电动汽车进行断点续充,不仅实现了第二电动汽车的充电,同时也保证了第一电动汽车在预期离开第一充电区域前完成充电(即不影响第一电动汽车的充电过程),实现了充电场站功率的分时复用。
可选地,第一充电区域的预设功率分配比和第二充电区域的预设功率分配比可以均为[0,1]。
可选地,第一充电区域的预设功率分配比与第二充电区域的预设功率分配比之和可以为1。
综上,本申请提供的充电场站的充电方法能够通过分充电区域和分时段的方式,并结合充电区域的充电模式对应的充电策略为电动汽车进行充电。同时,本申请还可以通过断点续充的方式为位于不同充电区域的不同电动汽车充电,提高了充电场站的时间利用率,进而提高了充电场站的综合利用率。
第二方面,本申请提供了一种充电场站的充电装置,充电场站可以包括多个充电区域,充电装置可以包括:
划分模块,可以用于将自然日分为多个时段。
充电模块,可以用于当多个充电区域中的第一充电区域(即多个充电区域包括第一充电区域)在多个时段中的第一时段内有新进入的电动汽车准备充电时,且充电场站在第一时段不存在可调配功率时,则根据第一充电区域的在第一时段的实际使用功率和多个充电区域的预设功率分配比重新分配充电场站上每个电动汽车的充电功率。
其中,充电场站除了包括多个充电区域,充电场站还可以包括整流模块和充电装置。
其中,整流模块与交流电源连接,整流模块可以将交流电源传输的交流电变换为直流电。充电装置可以与整流模块、多个充电区域中的每个充电区域进行通信,用于控制整流模块和多个充电区域。每个充电区域与整流模块之间分别通过直流母线连接。且每个充电区域分别包括多个充电桩(即多个DC/DC变换器),每个充电区域的每个充电桩可以通过自身的充电枪为电动汽车充电。
可选地,上述可调配功率可以用于指示充电场站的输出功率中除满足正在充电场站充电的一台或多台电动汽车的充电需求以外的可使用功率。充电需求可以用于指示正在充电场站充电的一台或多台电动汽车在预期停车时长内(由电动汽车在所在的充电区域的停车开始时间和电动汽车预期离开所在的充电区域的时间决定,如9h)需要达到的预期充电电量(例如荷电状态为90%或者95%等)。
本申请通过分充电区域和分时段综合的方式,实现充电场站输出功率的分时复用充电,提高了充电场站的时间利用率,进而提高了充电场站的综合时间利用率。
在一种可能的实现方式中,多个充电区域可以包括第一充电区域和第二充电区域。第一充电区域的充电模式或充电速率与第二充电区域的充电模式或充电速率不同。
进一步地,第一充电区域的充电模式为慢充模式。慢充模式可以用于指示第一充电区域能够在预设的第一充电时长内将第一电动汽车充电至预期充电电量,第一电动汽车可以包括新进入第一充电区域的电动汽车和/或正在第一充电区域充电的电动汽车。
第二充电区域的充电模式可以为快充模式。快充模式可以用于指示第二充电区域能够在预设的第二充电时长内将第二电动汽车充电至预期充电电量,第二电动汽车可以包括新进入第二充电区域的电动汽车和/或正在第二充电区域充电的电动汽车。
可选地,第一充电时长可以大于第二充电时长。也就是说,同一电动汽车在第一充电区域充电至预期充电电量需要的充电时长比在第二充电区域充电至预期充电电量需要的充电时长长。
示例性的,第一充电区域的充电速率可以决定第一充电区域上的电动汽车充电至区域充电电量的充电时间。类似地,第二充电区域的充电速率可以决定第二充电区域上的电动汽车充电至区域充电电量的充电时间。
可选地,第一充电区域的充电速率可以小于第二充电区域的充电速率。也就是说,同 一台电动汽车,选择第一充电区域充电至预期充电电量的充电时长要大于选择第二充电区域充电至预期充电电量的充电时长。
在一种可能的实现方式中,针对第一充电区域,充电模块可以用于:
当第一充电区域在第一时段内有新进入第一充电区域的电动汽车准备充电且充电场站在第一时段无法满足新进入第一充电区域的电动汽车的充电需求时,在第一充电区域在第一时段的实际使用功率大于或者等于根据第一充电区域在第一时段的预设功率分配比给第一充电区域分配的功率情况下:
可以根据新进入第一充电区域的电动汽车在第一时段的充电需求降低第一充电区域中每个充电枪在第一时段的充电功率,并根据降低后的充电枪在第一时段的充电功率为新进入第一充电区域的电动汽车和正在第一充电区域充电的电动汽车充电。
在另一种可能的实现方式中,针对第一充电区域,充电模块可以用于:
当第一充电区域在第一时段内有新进入第一充电区域的电动汽车准备充电且充电场站在第一时段无法满足新进入第一充电区域的电动汽车的充电需求时,在第一充电区域在第一时段的实际使用功率小于根据第一充电区域在第一时段的预设功率分配比给第一充电区域分配的功率情况下:
可以根据新进入第一充电区域的电动汽车在第一时段的充电需求降低第二充电区域中每个充电枪在第一时段的实际使用功率,以提高第一充电区域在第一时段的实际使用功率;
根据提高后的第一充电区域在第一时段的实际使用功率为新进入第一充电区域的电动汽车和正在第一充电区域充电的电动汽车充电,并根据降低后的第二充电区域中充电枪在第一时段的实际使用功率为正在第二充电区域充电的电动汽车充电。
在一种可能的实现方式中,针对第二充电区域,充电模块可以用于:
当第一充电区域在第一时段内有新进入第一充电区域的电动汽车准备充电且充电场站在第一时段无法满足新进入第一充电区域的电动汽车的充电需求时,在第一充电区域在第一时段的实际使用功率小于根据第一充电区域在第一时段的预设功率分配比给第一充电区域分配的功率情况下:
可以根据新进入第一充电区域的电动汽车在第一时段的充电需求降低第二充电区域中每个充电枪在第一时段的实际使用功率,以提高第一充电区域在第一时段的实际使用功率;
根据提高后的第一充电区域在第一时段的实际使用功率为新进入第一充电区域的电动汽车和正在第一充电区域充电的电动汽车充电,并根据降低后的第二充电区域中充电枪在第一时段的实际使用功率为正在第二充电区域充电的电动汽车充电。
在另一种可能的实现方式中,针对第二充电区域,充电模块可以用于:
当第二充电区域在第一时段内有新进入第二充电区域的电动汽车准备充电且充电场站在第一时段无法满足新进入第二充电区域的电动汽车的充电需求时,在第二充电区域在第一时段的实际使用功率小于根据第二充电区域在第一时段预设的功率分配比给第二充电区域分配的功率的情况下:
根据新进入第二充电区域的电动汽车在所第一时段的充电需求降低第一充电区域中每个充电枪在第一时段的实际使用功率,以提高第二充电区域在第一时段的实际使用功率;
根据提高后的第二充电区域在第一时段的实际使用功率为新进入第二充电区域的电动汽车和正在第二充电区域充电的电动汽车充电,并根据降低后的第一充电区域中充电枪在第一时段的实际使用功率为正在第一充电区域充电的电动汽车充电。
可选地,充电模块还可以用于:在第一时段中,当充电场站存在可调配功率时,可以按照每个充电区域的充电模式和预设的充电模式对应的充电策略为第一电动汽车和第二电动汽车充电。
需要说明的是,充电策略与充电模式相关。也就是说,针对第一充电区域,由于第一充电区域的充电模式为慢充模式,那么在充电场站存在可调配功率时,需要按照慢充模式对应的充电策略为第一电动汽车充电。类似地,针对第二充电区域,由于第二充电区域的充电模式为快充模式,那么在充电场站存在可调配功率时,需要按照快充模式对应的充电策略为第二电动汽车充电。
示例性的,充电场站存在可调配功率包括充电场站存在空闲功率以及第二充电区域在第一时段内有新进入第二充电区域的电动汽车准备充电且充电场站不存在空闲功率两方面。
于是,在一示例中,在第一时段中,当充电场站存在空闲功率时,充电模块可以根据充电场站的空闲功率以及第一电动汽车和第二电动汽车各自所在的充电区域的充电模式对应的充电策略为第一电动汽车和第二电动汽车充电。
其中,空闲功率可以用于指示充电场站的输出功率中除满足第一电动汽车和第二电动汽车的充电需求以外的未使用功率,且空闲功率属于上述可调配功率的一部分。
在另一示例中,在第一时段中,当第二充电区域在第一时段内有新进入第二充电区域的电动汽车准备充电且充电场站不存在空闲功率时,在第一电动汽车在第一充电区域的预期充电时长小于第一电动汽车在第一充电区域的预期停车时长条件下,充电模块可以根据第一电动汽车的最大可暂停时长停止对第一电动汽车进行充电,并开始对新进入第二充电区域的电动汽车进行充电,之后对第一电动汽车进行继续充电。此处对第一电动汽车的充 电过程可以叫作断点续充。
其中,第一电动汽车的最大可暂停时长可以由第一电动汽车在第一充电区域的预期停车时长和第一电动汽车在第一充电区域的预期充电时长获取。
可选地,充电模块可以通过以下两种方式实现第一电动汽车的断点续充充电:
方式一:在第一电动汽车的最大可暂停时长内,充电模块可以控制停止对第一电动汽车进行充电,并控制对第二电动汽车进行充电,且第二电动汽车在第一电动汽车的最大可暂停时长内的某个时刻已经达到了第二电动汽车的预期充电电量(如95%或者100%等,即第二电动汽车完成充电),那么,可以在第二电动汽车完成充电的时刻立即控制对第一电动汽车进行继续充电,直至第一电动汽车充电至预期充电电量(如90%等,即第一电动汽车完成充电)。
方式二:在第一电动汽车的最大可暂停时长内,充电模块可以控制停止对第一电动汽车进行充电,并控制对第二电动汽车进行充电。但是第二电动汽车在第一电动汽车的最大可暂停时长内未达到了第二电动汽车的预期充电电量(如95%或者100%等,即第二电动汽车未完成充电),那么,充电模块也需要控制第二电动汽车停止充电,并控制对第一电动汽车进行继续充电,直至第一电动汽车充电至预期充电电量(如90%等,即第一电动汽车完成充电)。
可以理解的,充电模块停止对第一电动汽车进行充电的过程中对第二电动汽车进行充电的功率(可以称为调度功率)也属于可调配功率的一部分。也就是说,可调配功率可以包括上文的空闲功率(可调配功率中未使用的功率)和调度功率(可调配功率中已使用但可调配功率)两部分。
本申请在充电场站不存在空闲功率的条件下,充电模块通过慢充模式的第一充电区域对第一电动汽车进行断点续充,不仅实现了第二电动汽车的充电,同时也保证了第一电动汽车在预期离开第一充电区域前完成充电(即不影响第一电动汽车的充电过程),实现了充电场站功率的分时复用。
可选地,第一充电区域的预设功率分配比和第二充电区域的预设功率分配比可以均为[0,1]。
可选地,第一充电区域的预设功率分配比与第二充电区域的预设功率分配比之和可以为1。
综上所述,本申请提供的充电场站的充电装置能够通过分充电区域和分时段的方式,并结合充电区域的充电模式对应的充电策略为电动汽车进行充电。同时,本申请还可以通过断点续充的方式为位于不同充电区域的不同电动汽车充电,提高了充电场站的时间利用率,进而提高了充电场站的综合利用率。
第三方面,本申请提供了一种电子设备,可以包括:
一个或多个处理器;
存储器,用于存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行时,实现上述第一方面及其可能的实现方式提供的充电方法。
第四方面,本申请提供了一种计算机可读存储介质,计算机可读存储介质上存有计算机程序。计算机程序被执行时,可以实现上述第一方面及其可能的实现方式提供的充电方法。
第五方面,本申请提供了一种计算机程序,当所述计算机程序被计算机执行时,可以实现上述第一方面及其可能的实现方式提供的充电方法。
应当理解的是,本申请的第二方面至第五方面与本申请的第一方面的技术方案一致,各方面及对应的可行实施方式所取得的有益效果相似,不再赘述。
附图说明
为了更清楚地说明本申请或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图进行简单介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例中充电场站的示意性结构图;
图2为本申请实施例中充电场站的充电方法的示意性流程图;
图3为本申请实施例中分区分时段示意图;
图4为本申请实施例中充电场站的充电方法的示意性流程图;
图5为本申请实施例中充电场站的充电方法的示意性流程图;
图6为本申请实施例中断点续充的示意图;
图7为本申请实施例中分区分时段示意图;
图8为本申请实施例中分区分时段示意图;
图9为本申请实施例中分区分时段示意图;
图10为本申请实施例中充电场站的充电装置的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申 请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书实施例和权利要求书及附图中的术语“第一”、“第二”等仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元。方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
应当理解,在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
目前,随着电动汽车技术的飞速发展,为电动汽车充电的充电场站逐渐增多。充电场站可以设有多个充电桩,每个充电桩可以设置一个或多个充电枪,通过充电枪为电动汽车充电。
充电场站的综合利用率是衡量充电场站的主要指标之一。综合利用率一般由充电场站的功率利用率和时间利用率(充电场站在24小时内为电动汽车进行充电的总时长/24小时)决定。
对于居民小区、工业园区等场景,充电场站的使用时间相对集中,且用户没有及时将充电完成的电动汽车挪走,使得电动汽车的实际停车时长大于实际充电时长,时间利用率低,进而导致综合利用率较低。
为了提高充电场站的综合利用率,本申请提供了一种充电场站的充电方法。如图1所示,充电场站1包括多个充电区域(如图1所示的A充电区域(即第一充电区域)和B充电区域(即第二充电区域))、整流模块11和充电装置12。
其中,整流模块11与交流电源S连接,整流模块11可以将交流电源S传输的交流电(alternating current,AC)变换为直流电(direct current,DC)。充电装置12可以与整流模块11、A充电区域和B充电区域进行通信(如图2中的虚线所示),用于控制整流模块11、A充电区域和B充电区域。A充电区域和B充电区域与整流模块11之间分别通过 直流母线连接(如图2中的实线所示)。且A充电区域和B充电区域都包括多个充电桩(即A充电区域中的DC/DC变换器A1、DC/DC变换器A2、…、DC/DC变换器AN,以及B充电区域中的DC/DC变换器B1、DC/DC变换器B2、…、DC/DC变换器BM),每个充电桩可以通过自身的充电枪(即图2中的充电枪CA1、充电枪CA2、…、充电枪CAN(每个充电枪的功率可以为90kW至240kW),以及充电枪CB1、充电枪CB2、…、充电枪CBM(每个充电枪的功率可以为15kW至30kW))为需要充电的电动汽车(即图2中的电动汽车EVA1、电动汽车EVA2、…、电动汽车EVAN,以及电动汽车EVB1、电动汽车EVB2、…、电动汽车EVBM)充电。
需要说明的是,本申请实施例以A充电区域和B充电区域共两个充电区域为例进行说明。当然,充电场站中充电区域的数量可以根据充电场站的使用状态调整,本申请实施例对充电区域的数量不做限定。于是,控制过程100如图2所示,可以通过以下步骤实现:
步骤S101:将自然日分为多个时段。
参考图3,可以将自然日(即日内的24小时)分为T1时段和T2时段,T1时段和T2时段不重合。
其中,T1时段的时长和T2时段的时长可以均为[0,24h],且T1时段的时长和T2时段的时长之和可以为24h。例如,T1时段可以为9:00至18:00,T1时段的时长为9h,T1时段可叫作白天时段。那么,T2时段可以为18:00至次日9:00,T2时段的时长为15h,T2时段可以叫作晚上时段。
需要说明的是,除了可以将自然日分为T1时段和T2时段(即两个时段),也可以将自然日分为3个或者4个等更多个时段,本申请实施例对此不做限定。如果将自然日分为3个或者4个等更多个时段,多个时段的时长之和可以为24h。
步骤S102:当多个充电区域中的一个充电区域(即可以为A充电区域或者B充电区域)在多个时段中的第一时段(可以为T1时段或者T2时段)内有新进入的电动汽车(可以为新进入A充电区域的电动汽车或者新进入B充电区域的电动汽车)准备充电时,且充电场站在第一时段不存在可调配功率时,则可以根据第一充电区域的在第一时段的实际使用功率和多个充电区域的预设功率分配比重新分配充电场站上每个电动汽车的充电功率。
其中,可调配功率可以用于指示充电场站的输出功率中除满足正在充电场站充电的一台或多台电动汽车的充电需求以外的可使用功率。充电需求可以用于指示正在充电场站充电的一台或多台电动汽车在预期停车时长内(由电动汽车在所在的充电区域的停车开始时间和电动汽车预期离开所在的充电区域的时间决定,如9h)需要达到的预期充电电量(例如荷电状态为90%或者95%等)。
本申请实施例可以通过分充电区域和分时段综合的方式,实现充电场站输出功率的分时复用充电,提高了充电场站的时间利用率,进而提高了充电场站的综合时间利用率。
可选地,A充电区域在T1时段/T2时段的预设功率分配比可以为[0,1],类似地,B充电区域在T1时段/T2时段的预设功率分配比也可以为[0,1]。
可选地,A充电区域在T1时段的预设功率分配比与B充电区域在T1时段的预设功率分配比之和为1。类似地,A充电区域在T2时段的预设功率分配比与B充电区域在T2时段的功率分配比预设之和为1。
例如,继续参考图3,A充电区域在T1时段的预设功率分配比可以用p11(p11∈[0,1])表示,B充电区域在T1时段的预设功率分配比可以用p12(p12∈[0,1])表示,满足p11+p12=1。p11可以设为20%,p12可以设为80%。
还例如,仍参考图3,A充电区域在T2时段的预设功率分配比可以用p21(p1∈[0,1])表示,B充电区域在T2时段的预设功率分配比可以用p22(p22∈[0,1])表示,满足p21+p22=1。p21可以设为90%,p22可以设为10%。
可选地,A充电区域的充电模式与B充电区域的充电模式不同。或者可以说,A充电区域的充电速率与B充电区域的充电速率不同。
进一步地,A充电区域的充电模式可以为慢充模式。慢充模式可以用于指示A充电区域能够在预设的第一充电时长(如6h)内将第一电动汽车充电至预期充电电量(例如荷电状态为90%或者95%等)。例如,电动汽车通过A充电区域进行充电,在6h内,电动汽车的荷电状态可以达到90%。
其中,第一电动汽车可以包括新进入A充电区域的电动汽车和/或正在A充电区域充电的电动汽车。
类似地,B充电区域的充电模式可以为快充模式。快充模式可以用于指示B充电区域能够在预设的第二充电时长(如2h)内将第二电动汽车充电至预期充电电量(例如荷电状态为90%或者95%等)。例如,电动汽车通过B充电区域进行充电,在2h内,电动汽车的荷电状态可以达到90%。
其中,第二电动汽车可以包括新进入B充电区域的电动汽车和/或正在B充电区域充电的电动汽车。
需要说明的是,预设的第一充电时长可以大于预设的第二充电时长。也就是说,同一电动汽车在A充电区域充电至预期充电电量需要的充电时长比在B充电区域充电至预期充电电量需要的充电时长长。
示例性的,A充电区域的充电速率可以决定A充电区域上的第一电动汽车充电至区域充电电量的充电时间。类似地,B充电区域的充电速率可以决定B充电区域上的第二电动 汽车充电至区域充电电量的充电时间。
可选地,A充电区域的充电速率可以小于B充电区域的充电速率。也就是说,同一台电动汽车,选择A充电区域充电至预期充电电量的充电时长要大于选择B充电区域充电至预期充电电量的充电时长。
在一种可能的实现方式中,针对A充电区域,上述步骤S102可以分为以下两个方面实现:
情况一:当A充电区域在T1时段/T2时段内有新进入A充电区域的电动汽车准备充电且充电场站在T1时段/T2时段无法满足新进入A充电区域的电动汽车的充电需求时,在A充电区域在T1时段/T2时段的实际使用功率大于或者等于根据A充电区域在T1时段/T2时段的预设功率分配比给A充电区域分配的功率情况下:
可以根据新进入A充电区域的电动汽车在T1时段/T2时段的充电需求降低A充电区域中每个充电枪在T1时段/T2时段的充电功率,并根据降低后的充电枪在T1时段/T2时段的充电功率为新进入A充电区域的电动汽车和正在A充电区域充电的电动汽车(即第一电动汽车)充电。
例如,假设充电场站的输出功率为2000kW。A充电区域在T1时段的功率分配比为20%,那么根据20%给A充电区域分配的功率为400kW。B充电区域在T1时段的功率分配比为80%,那么根据80%给B充电区域分配的功率为1600kW。
于是,当A充电区域的实际使用功率为1000kW(即充电场站的输出功率的50%,超过了400kW),此时,B充电区域的实际使用功率为1000kW(少于1600kW))时,那么可以根据新进入A充电区域的电动汽车在T1时段的充电需求降低A充电区域中每个充电枪在T1时段的充电功率,并根据降低后的充电枪在T1时段的充电功率为新进入A充电区域的电动汽车和正在A充电区域充电的电动汽车充电。
情况二:当A充电区域在T1时段/T2时段内有新进入A充电区域的电动汽车准备充电且充电场站在T1时段/T2时段无法满足新进入A充电区域的电动汽车的充电需求时,在A充电区域在T1时段/T2时段的实际使用功率小于根据A充电区域在T1时段/T2时段的预设功率分配比给A充电区域分配的功率情况下,如图4所示,可以通过以下步骤实现:
步骤S102B1:可以根据新进入A充电区域的电动汽车在T1时段/T2时段的充电需求降低B充电区域中每个充电枪在T1时段/T2时段的实际使用功率,以提高A充电区域在T1时段/T2时段的实际使用功率。
步骤S102B2:根据提高后的A充电区域在T1时段/T2时段的实际使用功率为新进入A充电区域的电动汽车和正在A充电区域充电的电动汽车充电,并根据降低后的B充电区域中充电枪在T1时段/T2时段的实际使用功率为正在B充电区域充电的电动汽车充电。
例如,仍假设充电场站的输出功率为2000kW。A充电区域在T1时段的功率分配比为20%,那么根据20%给A充电区域分配的功率为400kW。B充电区域在T1时段的功率分配比为80%,那么根据80%给B充电区域分配的功率为1600kW。
于是,当A充电区域的实际使用功率为200kW(即充电场站的输出功率的10%,少于400kW),此时,B充电区域的实际使用功率为1800kW(超过了1600kW))时,那么可以根据新进入A充电区域的电动汽车在T1时段的充电需求降低B充电区域中每个充电枪在T1时段的实际使用功率,以提高A充电区域在T1时段的实际使用功率。需要说明的是,A充电区域的实际使用功率最大可提高至400kW。
根据提高后的A充电区域在T1时段的实际使用功率为新进入A充电区域的电动汽车和正在A充电区域充电的电动汽车充电,并根据降低后的B充电区域中充电枪在T1时段的实际使用功率为正在B充电区域充电的电动汽车充电。
在另一种可能的实现方式中,针对B充电区域,上述步骤S102还可以通过以下两种情况实现:
情况一:当B充电区域在T1时段/T2时段内有新进入B充电区域的电动汽车准备充电且充电场站在T1时段/T2时段无法满足新进入B充电区域的电动汽车的充电需求时,在B充电区域在T1时段/T2时段的实际使用功率大于或者等于根据B充电区域在T1时段/T2时段的预设功率分配比给B充电区域分配的功率情况下:
可以根据新进入B充电区域的电动汽车在T1时段/T2时段的充电需求降低B充电区域中每个充电枪在T1时段/T2时段的充电功率,并根据降低后的充电枪在T1时段/T2时段的充电功率为新进入B充电区域的电动汽车和正在B充电区域充电的电动汽车(即第二电动汽车)充电。
例如,假设充电场站的输出功率为2000kW。A充电区域在T2时段的功率分配比为20%,那么根据20%给A充电区域分配的功率为400kW。B充电区域在T2时段的功率分配比为80%,那么根据80%给B充电区域分配的功率为1600kW。
于是,当B充电区域的实际使用功率为1800kW(即充电场站的输出功率的90%,超过了1600kW),此时,A充电区域的实际使用功率为200kW(少于400kW))时,那么可以根据新进入B充电区域的电动汽车在T2时段的充电需求降低B充电区域中每个充电枪在T2时段的充电功率,并根据降低后的充电枪在T2时段的充电功率为新进入B充电区域的电动汽车和正在B充电区域充电的电动汽车充电。
情况二:当B充电区域在T1时段/T2时段内有新进入B充电区域的电动汽车准备充电且充电场站在T1时段/T2时段无法满足新进入B充电区域的电动汽车的充电需求时,在B充电区域在T1时段/T2时段的实际使用功率小于根据B充电区域在T1时段/T2时段 的预设功率分配比给B充电区域分配的功率情况下:
可以根据新进入B充电区域的电动汽车在T1时段/T2时段的充电需求降低A充电区域中每个充电枪在T1时段/T2时段的实际使用功率,以提高B充电区域在T1时段或T2时段的实际使用功率。
根据提高后的B充电区域在T1时段/T2时段的实际使用功率为新进入B充电区域的电动汽车和正在B充电区域充电的电动汽车充电,并根据降低后的A充电区域中充电枪在T1时段/T2时段的实际使用功率为正在A充电区域充电的电动汽车充电。
例如,仍假设充电场站的输出功率为2000kW。A充电区域在T2时段的功率分配比为20%,那么根据20%给A充电区域分配的功率为400kW。B充电区域在T2时段的功率分配比为80%,那么根据80%给B充电区域分配的功率为1600kW。
于是,当B充电区域的实际使用功率为1200kW(即充电场站的输出功率的60%,少于1600kW),此时,A充电区域的实际使用功率为800kW(超过了400kW))时,那么可以根据新进入B充电区域的电动汽车在T2时段的充电需求降低A充电区域中每个充电枪在T2时段的实际使用功率,以提高B充电区域在T2时段的实际使用功率。
根据提高后的B充电区域在T2时段的实际使用功率为新进入B充电区域的电动汽车和正在B充电区域充电的电动汽车充电,并根据降低后的A充电区域中充电枪在T2时段的实际使用功率为正在A充电区域充电的电动汽车充电。
在一种可能的实现方式中,本申请实施例提供的充电方法还可以包括以下过程:在T1时段/T2时段中,在充电场站存在可调配功率时,可以按照每个充电区域的充电模式和预设的充电模式对应的充电策略为第一电动汽车和第二电动汽车充电。
可选地,充电策略与充电模式相关。也就是说,针对A充电区域,由于A充电区域的充电模式为慢充模式,那么在充电场站存在可调配功率时,需要按照慢充模式对应的充电策略为第一电动汽车充电。类似地,针对B充电区域,由于B充电区域的充电模式为快充模式,那么在充电场站存在可调配功率时,需要按照快充模式对应的充电策略为第二电动汽车充电。
在一种可能的实现方式中,若有两台电动汽车(即电动汽车(electric vehicle,EV)1和电动汽车EV2)需要通过充电场站充电,那么,在充电场站存在可调配功率时,可以通过以下步骤为电动汽车EV1和电动汽车EV2充电:
步骤S102A1:如图5所示,当充电场站存在空闲功率时,可以根据充电场站的空闲功率以及电动汽车EV1和电动汽车EV2所在的充电区域的充电模式对应的充电策略为电动汽车EV1和电动汽车EV2充电。
其中,空闲功率用于指示充电场站的输出功率中除满足电动汽车EV1和电动汽车EV2 的充电需求以外的未使用功率,空闲功率属于上述可调配功率的一部分。
步骤S102A2:如图5所示,当B充电区域在T1时段/T2时段内有新进入B充电区域的电动汽车准备充电且充电场站不存在空闲功率时,在电动汽车EV1在A充电区域的预期充电时长小于电动汽车EV1在A充电区域的预期停车时长条件下,可以根据电动汽车EV1的最大可暂停时长停止对电动汽车EV1进行充电,并开始对电动汽车EV2进行充电,之后对电动汽车EV1进行继续充电。此处对电动汽车EV1的充电过程可以叫作断点续充。
其中,电动汽车EV1的最大可暂停时长(可以用T max表示,如3h)可以由电动汽车EV1在A充电区域的预期停车时长(可以用T stop表示,如9h)和电动汽车EV1在A充电区域的预期充电时长(可以用T charge表示,如6h)获取。也就是说,电动汽车EV1在A充电区域的预期停车时长T stop可以分为电动汽车EV1在A充电区域的预期充电时长T charge和电动汽车EV1的最大可暂停时长T max
如图6所示,如果通过慢充模式的A充电区域为电动汽车EV1进行充电(即图6中的方式一),电动汽车EV1在A充电区域的预期停车时长为9h,那么从电动汽车EV1在A充电区域的停车开始时间起开始充电,经过预期充电时长6h后,电动汽车EV1的预期充电电量可以可到90%等。电动汽车EV1充电至90%时停止充电,那么电动汽车EV1的停止充电时长(即充电完成时间至电动汽车EV1预期离开A充电区域的时间之间的时长)可以为3h。
如果通过断点续充的方式(即图6中的方式二)为电动汽车EV1进行充电,同样,电动汽车EV1在A充电区域的预期停车时长为9h,那么从电动汽车EV1在A充电区域的停车开始时间起开始充电,充电2h后,停止充电3h(即最大可暂停时长,在这个过程中对电动汽车EV2充电),之后,继续对电动汽车EV1进行充电4h,使电动汽车EV1充电至90%。可以发现,电动汽车EV1的预期充电时长(即6h)分为停止充电前的2h和继续充电的4h这两个时间段,同样可以使电动汽车EV1充电至90%。
进一步地,上述断点续充过程可以通过以下两种方式实现:
方式一:在电动汽车EV1的最大可暂停时长(即3h)内,停止对电动汽车EV1进行充电,并对电动汽车EV2进行充电,且电动汽车EV2在3h内的某个时刻(如2.5h,也可以包括3h这个时刻)已经达到了电动汽车EV2的预期充电电量(如95%或者100%等,即电动汽车EV2完成充电),那么,可以在电动汽车EV2完成充电的时刻立即对电动汽车EV1进行继续充电,直至电动汽车EV1充电至预期充电电量(如90%等,即电动汽车EV1完成充电)。
方式二:在电动汽车EV1的最大可暂停时长(即3h)内,停止对电动汽车EV1进行充电,并对电动汽车EV2进行充电。但是电动汽车EV2在3h内未达到了电动汽车EV2 的预期充电电量(如95%或者100%等,即电动汽车EV2未完成充电),那么,电动汽车EV2也需要停止充电,并对电动汽车EV1进行继续充电,直至电动汽车EV1充电至预期充电电量(如90%等,即电动汽车EV1完成充电)。
可以理解的,停止对电动汽车EV1进行充电的过程中对电动汽车EV2进行充电的功率(可以称为调度功率)也属于可调配功率的一部分。也就是说,可调配功率可以包括上文的空闲功率(可调配功率中未使用的功率)和调度功率(可调配功率中已使用但可调配功率)两部分。
本申请实施例在充电场站不存在空闲功率的条件下,通过慢充模式的A充电区域对电动汽车EV1进行断点续充,不仅实现了电动汽车EV2的充电,同时也保证了电动汽车EV1在预期离开A充电区域前完成充电(即不影响电动汽车EV1的充电过程),实现了充电场站功率的分时复用。
在一种可能的实现方式中,电动汽车(包括电动汽车EV1和/或电动汽车EV2)完成充电后,可以根据电动汽车所在的充电区域和电动汽车的实际充电时长获取电动汽车的充电总费用。
可选地,慢充模式的A充电区域和快充模式的B充电区域可以设置不同的计费机制。
例如,A充电区域可以以停车为主,并以充电为辅。那么,电动汽车的充电总费用可以包括充电费用(由A充电区域的充电单价和电动汽车在A充电区域的实际充电时长决定)和停车费(即实际停车时长对应的费用)。
还例如,B充电区域可以以充电为主,并以停车为辅。那么,电动汽车的充电总费用可以包括充电费用(由B充电区域的充电单价和电动汽车在B充电区域的实际充电时长决定)和超时费(即电动汽车实际离开充电场站的时间与充电完成时间之间时长对应的费用)
综上所述,本申请提供的充电场站的充电方法能够通过分充电区域和分时段的方式,并结合充电区域的充电模式对应的充电策略为电动汽车进行充电。同时,本申请还可以通过断点续充的方式为位于不同充电区域的不同电动汽车充电,提高了充电场站的时间利用率,进而提高了充电场站的综合利用率。
在第一个示例中,若充电场站位于居民小区,如图7所示,充电场站可以包括A充电区域(充电模式为慢充模式)和B充电区域(充电模式为快充模式)。由于居民小区内部的用户使用充电场站大都集中在晚上,居民小区外部的用户使用充电场站大都集中在白天,所以,将慢充模式的A充电区域设置于小区内,并将快充模式的B充电区域设置于小区外。同时,根据居民小区的作息时间,T1时段可以为8:00至20:00,T1时段的时长为12h,T1时段可叫作白天时段。那么,T2时段可以为20:00至次日8:00,T2时段的 时长也为12h,T2时段可以叫作晚上时段。
进一步地,继续参考图7,可以将A充电区域在T1时段的预设功率分配比设为20%,并将B充电区域在T1时段的预设功率分配比设为80%。
类似地,可以将A充电区域在T2时段的预设功率分配比设为90%,并将B充电区域在T2时段的预设功率分配比设为10%。
更进一步地,在T1时段,若A充电区域的实际使用功率为10%的充电电站的输出功率,那么,B充电区域的可使用功率可以包括80%的充电电站的输出功率和空闲功率(即(1-80%-10%)的充电电站的输出功率,也为可调配功率)共两部分),也就是B充电区域的最大可使用功率可以为90%的充电电站的输出功率。可以看出,可使用功率可以包括空闲功率,也就是空闲功率属于上述可调配功率的一部分。
需要说明的是,第一个示例中位于居民小区的充电场站的充电方法中其他过程与上文相同,可参考上文介绍,本申请实施例在此不做赘述。
在第二个示例中,若充电场站位于居民小区,如图8所示,充电场站也可以包括A充电区域(充电模式为慢充模式)和B充电区域(充电模式为快充模式)。T1时段可以为8:00至19:00,T1时段的时长为11h,T1时段可叫作白天时段。那么,T2时段可以为19:00至次日8:00,T2时段的时长也为13h,T2时段可以叫作晚上时段。
进一步地,继续参考图8,可以将A充电区域在T1时段的预设功率分配比设为0%(即在充电场站的可调配功率不足时在T1时段禁用A充电区域),并将B充电区域在T1时段的预设功率分配比设为100%。也就是说,在充电场站的可调配功率不足时,充电场站在白天时段只支持电动汽车通过B充电区域进行快速充电,不支持电动汽车通过A充电区域进行慢速充电。
类似地,可以将A充电区域在T2时段的预设功率分配比设为100%,并将B充电区域在T2时段的预设功率分配比设为0%(即在充电场站的可调配功率不足时在T2时段禁用B充电区域)。也就是说,在充电场站的可调配功率不足时,充电场站在晚上时段只支持电动汽车通过A充电区域进行慢速充电,不支持电动汽车通过B充电区域进行快速充电。
需要说明的是,第二个示例中位于居民小区的充电场站的充电方法中其他过程与上文相同,可参考上文介绍,本申请实施例在此不做赘述。
在第三个示例中,若充电场站位于工业园区,如图9所示,充电场站也可以包括A充电区域(充电模式为慢充模式)和B充电区域(充电模式为快充模式),且A充电区域位于工业园区内部,B充电区域位于工业园区外部。但是,由于工业园区使用充电场站大都集中在白天,所以可以将自然日作为一个时段(也就是说不给自然日分时段),即T1 时段,T1时段的时长为24h,A充电区域在T1时段的预设功率分配比和B充电区域在T1时段的预设功率分配比可以根据工业园区的充电需求设置。
同样说明的是,第三个示例中位于工业园区的充电场站的充电方法中其他过程与上文相同,可参考上文介绍,本申请实施例在此不做赘述。
当然,除了以上列举的三个示例,本申请实施例提供的充电场站的充电方法还可以用于其他场景,本申请实施例对充电场站的应用场景不做限定。
本申请实施例还提供了一种充电场站的充电装置。充电场站的介绍可以参考前文,本申请实施例在此不做赘述。
如图10所示,充电装置12可以包括划分模块121和充电模块122,划分模块121和充电模块122连接。
可选地,划分模块121可以用于将自然日分为多个时段。
参考图3,可以将自然日(即日内的24小时)分为T1时段和T2时段,T1时段和T2时段不重合。
其中,T1时段的时长和T2时段的时长可以均为[0,24h],且T1时段的时长和T2时段的时长之和可以为24h。例如,T1时段可以为9:00至18:00,T1时段的时长为9h,T1时段可叫作白天时段。那么,T2时段可以为18:00至次日9:00,T2时段的时长为15h,T2时段可以叫作晚上时段。
需要说明的是,除了可以将自然日分为T1和T2共两个时段,也可以将自然日分为3个或者4个等更多个时段,本申请实施例对此不做限定。如果将自然日分为3个或者4个等更多个时段,多个时段的时长之和可以为24h。
进一步地,充电模块122可以用于当多个充电区域中的一个充电区域(即可以为A充电区域或者B充电区域)在多个时段中的第一时段(可以为T1时段或者T2时段)内有新进入的电动汽车(可以为新进入A充电区域的电动汽车或者新进入B充电区域的电动汽车)准备充电时,且充电场站在第一时段不存在可调配功率时,则可以根据第一充电区域的在第一时段的实际使用功率和多个充电区域的预设功率分配比重新分配充电场站上每个电动汽车的充电功率。
其中,可调配功率可以用于指示充电场站的输出功率中除满足正在充电场站充电的一台或多台电动汽车的充电需求以外的可使用功率。充电需求可以用于指示正在充电场站充电的一台或多台电动汽车在预期停车时长内(由电动汽车在所在的充电区域的停车开始时间和电动汽车预期离开所在的充电区域的时间决定,如9h)需要达到的预期充电电量(例如荷电状态为90%或者95%等)。
本申请实施例通过分充电区域和分时段综合的方式,实现充电场站输出功率的分时复 用充电,提高了充电场站的时间利用率,进而提高了充电场站的综合时间利用率。
可选地,A充电区域在T1时段/T2时段的预设功率分配比可以为[0,1],类似地,B充电区域在T1时段/T2时段的预设功率分配比也可以为[0,1]。
可选地,A充电区域在T1时段的预设功率分配比与B充电区域在T1时段的预设功率分配比之和为1。类似地,A充电区域在T2时段的预设功率分配比与B充电区域在T2时段的功率分配比预设之和为1。
例如,继续参考图3,A充电区域在T1时段的预设功率分配比可以用p11(p11∈[0,1])表示,B充电区域在T1时段的预设功率分配比可以用p12(p12∈[0,1])表示,满足p11+p12=1。p11可以设为20%,p12可以设为80%。
还例如,仍参考图3,A充电区域在T2时段的预设功率分配比可以用p21(p1∈[0,1])表示,B充电区域在T2时段的预设功率分配比可以用p22(p22∈[0,1])表示,满足p21+p22=1。p21可以设为90%,p22可以设为10%。
可选地,多个区域可以包括A充电区域(即第一充电区域)和B充电区域(即第二充电区域)。A充电区域的充电模式与B充电区域的充电模式不同。或者可以说,A充电区域的充电速率与B充电区域的充电速率不同。
进一步地,A充电区域的充电模式可以为慢充模式。慢充模式可以用于指示A充电区域能够在预设的第一充电时长(如6h)内将第一电动汽车充电至预期充电电量(例如荷电状态为90%或者95%等)。例如,电动汽车通过A充电区域进行充电,在6h内,电动汽车的荷电状态可以达到90%。
其中,第一电动汽车可以包括新进入A充电区域的电动汽车和/或正在A充电区域充电的电动汽车。
类似地,B充电区域的充电模式可以为快充模式。快充模式可以用于指示B充电区域能够在预设的第二充电时长(如2h)内将第二电动汽车充电至预期充电电量(例如荷电状态为90%或者95%等)。例如,电动汽车通过B充电区域进行充电,在2h内,电动汽车的荷电状态可以达到90%。
其中,第二电动汽车可以包括新进入B充电区域的电动汽车和/或正在B充电区域充电的电动汽车。
需要说明的是,预设的第一充电时长可以大于预设的第二充电时长。也就是说,同一电动汽车在A充电区域充电至预期充电电量需要的充电时长比在B充电区域充电至预期充电电量需要的充电时长长。
示例性的,A充电区域的充电速率可以决定A充电区域上的第一电动汽车充电至区域充电电量的充电时间。类似地,B充电区域的充电速率可以决定B充电区域上的第二电动 汽车充电至区域充电电量的充电时间。
可选地,A充电区域的充电速率可以小于B充电区域的充电速率。也就是说,同一台电动汽车,选择A充电区域充电至预期充电电量的充电时长要大于选择B充电区域充电至预期充电电量的充电时长。
在一种可能的实现方式中,针对第一充电区域,充电模块122可以用于:
当A充电区域在T1时段/T2时段内有新进入A充电区域的电动汽车准备充电且充电场站在T1时段/T2时段无法满足新进入A充电区域的电动汽车的充电需求时,在A充电区域在T1时段/T2时段的实际使用功率大于或者等于根据A充电区域在T1时段/T2时段的预设功率分配比给A充电区域分配的功率情况下:
可以根据新进入A充电区域的电动汽车在T1时段/T2时段的充电需求降低A充电区域中每个充电枪在T1时段/T2时段的充电功率,并根据降低后的充电枪在T1时段/T2时段的充电功率为新进入A充电区域的电动汽车和正在A充电区域充电的电动汽车(即第一电动汽车)充电。
例如,假设充电场站的输出功率为2000kW。A充电区域在T1时段的功率分配比为20%,那么根据20%给A充电区域分配的功率为400kW。B充电区域在T1时段的功率分配比为80%,那么根据80%给B充电区域分配的功率为1600kW。
于是,当A充电区域的实际使用功率为1000kW(即充电场站的输出功率的50%,超过了400kW),此时,B充电区域的实际使用功率为1000kW(少于1600kW))时,那么充电模块122可以根据新进入A充电区域的电动汽车在T1时段的充电需求降低A充电区域中每个充电枪在T1时段的充电功率,并根据降低后的充电枪在T1时段的充电功率为新进入A充电区域的电动汽车和正在A充电区域充电的电动汽车充电。
在另一种可能的实现方式中,针对第一充电区域,充电模块122还可以用于:
当A充电区域在T1时段/T2时段内有新进入A充电区域的电动汽车准备充电且充电场站在T1时段/T2时段无法满足新进入A充电区域的电动汽车的充电需求时,在A充电区域在T1时段/T2时段的实际使用功率小于根据A充电区域在T1时段/T2时段的预设功率分配比给A充电区域分配的功率情况下:
充电模块122可以根据新进入A充电区域的电动汽车在T1时段/T2时段的充电需求降低B充电区域中每个充电枪在T1时段/T2时段的实际使用功率,以提高A充电区域在T1时段/T2时段的实际使用功率。
充电模块122根据提高后的A充电区域在T1时段/T2时段的实际使用功率为新进入A充电区域的电动汽车和正在A充电区域充电的电动汽车充电,并根据降低后的B充电区域中充电枪在T1时段/T2时段的实际使用功率为正在B充电区域充电的电动汽车充电。
例如,仍假设充电场站的输出功率为2000kW。A充电区域在T1时段的功率分配比为20%,那么根据20%给A充电区域分配的功率为400kW。B充电区域在T1时段的功率分配比为80%,那么根据80%给B充电区域分配的功率为1600kW。
于是,当A充电区域的实际使用功率为200kW(即充电场站的输出功率的10%,少于400kW),此时,B充电区域的实际使用功率为1800kW(超过了1600kW))时,那么充电模块122可以根据新进入A充电区域的电动汽车在T1时段的充电需求降低B充电区域中每个充电枪在T1时段的实际使用功率,以提高A充电区域在T1时段的实际使用功率。需要说明的是,A充电区域的实际使用功率最大可提高至400kW。
充电模块122根据提高后的A充电区域在T1时段的实际使用功率为新进入A充电区域的电动汽车和正在A充电区域充电的电动汽车充电,并根据降低后的B充电区域中充电枪在T1时段的实际使用功率为正在B充电区域充电的电动汽车充电。
在一种可能的实现方式中,针对B充电区域,充电模块122可以用于:
当B充电区域在T1时段/T2时段内有新进入B充电区域的电动汽车准备充电且充电场站在T1时段/T2时段无法满足新进入B充电区域的电动汽车的充电需求时,在B充电区域在T1时段/T2时段的实际使用功率大于或者等于根据B充电区域在T1时段/T2时段的预设功率分配比给B充电区域分配的功率情况下:
充电模块122可以根据新进入B充电区域的电动汽车在T1时段/T2时段的充电需求降低B充电区域中每个充电枪在T1时段/T2时段的充电功率,并根据降低后的充电枪在T1时段/T2时段的充电功率为新进入B充电区域的电动汽车和正在B充电区域充电的电动汽车(即第二电动汽车)充电。
例如,假设充电场站的输出功率为2000kW。A充电区域在T2时段的功率分配比为20%,那么根据20%给A充电区域分配的功率为400kW。B充电区域在T2时段的功率分配比为80%,那么根据80%给B充电区域分配的功率为1600kW。
于是,当B充电区域的实际使用功率为1800kW(即充电场站的输出功率的90%,超过了1600kW),此时,A充电区域的实际使用功率为200kW(少于400kW))时,那么充电模块122可以根据新进入B充电区域的电动汽车在T2时段的充电需求降低B充电区域中每个充电枪在T2时段的充电功率,并根据降低后的充电枪在T2时段的充电功率为新进入B充电区域的电动汽车和正在B充电区域充电的电动汽车充电。
在另一种可能的实现方式中,针对B充电区域,充电模块122还可以用于:
当B充电区域在T1时段/T2时段内有新进入B充电区域的电动汽车准备充电且充电场站在T1时段/T2时段无法满足新进入B充电区域的电动汽车的充电需求时,在B充电区域在T1时段/T2时段的实际使用功率小于根据B充电区域在T1时段/T2时段的预设功 率分配比给B充电区域分配的功率情况下:
充电模块122可以根据新进入B充电区域的电动汽车在T1时段/T2时段的充电需求降低A充电区域中每个充电枪在T1时段/T2时段的实际使用功率,以提高B充电区域在T1时段或T2时段的实际使用功率。
充电模块122可以根据提高后的B充电区域在T1时段/T2时段的实际使用功率为新进入B充电区域的电动汽车和正在B充电区域充电的电动汽车充电,并根据降低后的A充电区域中充电枪在T1时段/T2时段的实际使用功率为正在A充电区域充电的电动汽车充电。
例如,仍假设充电场站的输出功率为2000kW。A充电区域在T2时段的功率分配比为20%,那么根据20%给A充电区域分配的功率为400kW。B充电区域在T2时段的功率分配比为80%,那么根据80%给B充电区域分配的功率为1600kW。
于是,当B充电区域的实际使用功率为1200kW(即充电场站的输出功率的60%,少于1600kW),此时,A充电区域的实际使用功率为800kW(超过了400kW))时,那么充电模块122可以根据新进入B充电区域的电动汽车在T2时段的充电需求降低A充电区域中每个充电枪在T2时段的实际使用功率,以提高B充电区域在T2时段的实际使用功率。
充电模块122根据提高后的B充电区域在T2时段的实际使用功率为新进入B充电区域的电动汽车和正在B充电区域充电的电动汽车充电,并根据降低后的A充电区域中充电枪在T2时段的实际使用功率为正在A充电区域充电的电动汽车充电。
可选地,充电模块122还可以用于:在T1时段/T2时段中,当充电场站存在可调配功率时,可以按照每个充电区域的充电模式和预设的充电模式对应的充电策略为第一电动汽车和第二电动汽车充电。
在一种可能的实现方式中,充电模块122可以设定充电模式对应的充电策略。也就是说,针对A充电区域,由于A充电区域的充电模式为慢充模式,那么在充电场站存在可调配功率时,充电模块122可以设置慢充模式对应的充电策略为电动汽车充电。类似地,针对B充电区域,由于B充电区域的充电模式为快充模式,那么在充电场站存在可调配功率时,充电模块122可以设置快充模式对应的充电策略为电动汽车充电。
进一步地,若有两台电动汽车(即电动汽车EV1和电动汽车EV2)需要通过充电场站充电,那么,在充电场站存在可调配功率时,充电模块122可以分以下两种情况为电动汽车EV1和电动汽车EV2充电。
情况一:当充电场站存在空闲功率时,充电模块122可以根据充电场站的空闲功率以及电动汽车EV1和电动汽车EV2所在的充电区域的充电模式对应的充电策略为电动汽车 EV1和电动汽车EV2充电。
其中,空闲功率用于指示充电场站的输出功率中除满足电动汽车EV1和电动汽车EV2的充电需求以外的未使用功率,空闲功率属于上述可调配功率的一部分。
情况二:当B充电区域在T1时段/T2时段内有新进入B充电区域的电动汽车准备充电且充电场站不存在空闲功率时,在电动汽车EV2位于B充电区域且电动汽车EV1在A充电区域的预期充电时长小于电动汽车EV1在A充电区域的预期停车时长条件下,充电模块122可以根据电动汽车EV1的最大可暂停时长停止对电动汽车EV1进行充电,并开始对电动汽车EV2进行充电,之后对电动汽车EV1进行继续充电。此处对电动汽车EV1的充电过程可以叫作断点续充。
其中,电动汽车EV1的最大可暂停时长(可以用T max表示,如3h)可以由电动汽车EV1在A充电区域的预期停车时长(可以用T stop表示,如9h)和电动汽车EV1在A充电区域的预期充电时长(可以用T charge表示,如6h)获取。也就是说,电动汽车EV1在A充电区域的预期停车时长T stop可以分为电动汽车EV1在A充电区域的预期充电时长T charge和电动汽车EV1的最大可暂停时长T max
继续参考图6,如果充电模块122通过慢充模式的A充电区域为电动汽车EV1进行充电(即图6中的方式一),电动汽车EV1在A充电区域的预期停车时长为9h,那么从电动汽车EV1在A充电区域的停车开始时间起开始充电,经过预期充电时长6h后,电动汽车EV1的预期充电电量可以可到90%等。电动汽车EV1充电至90%时停止充电,那么电动汽车EV1的停止充电时长(即充电完成时间至电动汽车EV1预期离开A充电区域的时间之间的时长)可以为3h。
如果充电模块122通过断点续充的方式(即图6中的方式二)为电动汽车EV1进行充电,同样,电动汽车EV1在A充电区域的预期停车时长为9h,那么从电动汽车EV1在A充电区域的停车开始时间起开始充电,充电2h后,停止充电3h(即最大可暂停时长,在这个过程中对电动汽车EV2充电),之后,继续对电动汽车EV1进行充电4h,使电动汽车EV1充电至90%。可以发现,电动汽车EV1的预期充电时长(即6h)分为停止充电前的2h和继续充电的4h这两个时间段,同样可以使电动汽车EV1充电至90%。
进一步地,上述控制充电模块122通过断点续充的方式为电动汽车EV1和电动汽车EV2进行充电可以按照以下两种方式实现:
方式一:在电动汽车EV1的最大可暂停时长(即3h)内,充电模块122对电动汽车EV2进行充电,且电动汽车EV2在3h内的某个时刻(如2.5h,也可以包括3h这个时刻)已经达到了电动汽车EV2的预期充电电量(如95%或者100%等,即电动汽车EV2完成充电),那么,充电模块122可以在电动汽车EV2完成充电的时刻立即对电动汽车EV1 进行继续充电,直至电动汽车EV1充电至预期充电电量(如90%等,即电动汽车EV1完成充电)。
方式二:在电动汽车EV1的最大可暂停时长(即3h)内,充电模块122对电动汽车EV2进行充电。但是电动汽车EV2在3h内未达到了电动汽车EV2的预期充电电量(如95%或者100%等,即电动汽车EV2未完成充电),那么,电动汽车EV2也需要停止充电,且充电模块122对电动汽车EV1进行继续充电,直至电动汽车EV1充电至预期充电电量(如90%等,即电动汽车EV1完成充电)。
可以理解的,停止对电动汽车EV1进行充电的过程中对电动汽车EV2进行充电的功率(可以称为调度功率)也属于可调配功率的一部分。也就是说,可调配功率可以包括上文的空闲功率(可调配功率中未使用的功率)和调度功率(可调配功率中已使用但可调配功率)两部分。
本申请实施例在充电场站不存在空闲功率的条件下,充电模块1可以通过慢充模式的A充电区域对电动汽车EV1进行断点续充,不仅实现了电动汽车EV2的充电,同时也保证了电动汽车EV1在预期离开A充电区域前完成充电(即不影响电动汽车EV1的充电过程),实现了充电场站功率的分时复用。
在一种可能的实现方式中,电动汽车(包括电动汽车EV1和/或电动汽车EV2)完成充电后,充电模块122可以根据电动汽车所在的充电区域和电动汽车的实际充电时长获取电动汽车的充电总费用。
可选地,慢充模式的A充电区域和快充模式的B充电区域可以设置不同的计费机制。
例如,充电模块122可以设置A充电区域以停车为主,并以充电为辅。那么,电动汽车的充电总费用可以包括充电费用(由A充电区域的充电单价和电动汽车在A充电区域的实际充电时长决定)和停车费(即实际停车时长对应的费用)
还例如,充电模块122可以设置B充电区域以充电为主,并以停车为辅。那么,电动汽车的充电总费用可以包括充电费用(由B充电区域的充电单价和电动汽车在B充电区域的实际充电时长决定)和超时费(即电动汽车实际离开充电场站的时间与充电完成时间之间时长对应的费用)。
综上所述,本申请提供的充电场站的充电装置能够通过分充电区域和分时段的方式,并结合充电区域的充电模式对应的充电策略为电动汽车进行充电。同时,本申请还可以通过断点续充的方式为位于不同充电区域的不同电动汽车充电,提高了充电场站的时间利用率,进而提高了充电场站的综合利用率。
本申请实施例还提供了一种电子设备,可以包括:
一个或多个处理器;
存储器,用于存储一个或多个程序;
当一个或多个程序被一个或多个处理器执行时,可以实现上述实施例提供的充电方法。
本申请实施例还提供了一种计算机可读存储介质,计算机可读存储介质上存有计算机程序,计算机程序被执行时,计算机可读存储介质可以实现上述实施例提供的充电方法。
本申请实施例还提供了一种计算机程序,当计算机程序被计算机执行时,计算机程序可以实现上述实施例提供的充电方法。
其中,本申请实施例提供的充电装置、电子设备、计算机可读存储介质和计算机程序均用于执行上文所提供的充电方法,因此,其所能达到的有益效果可参考上文所提供的对应的充电方法中的有益效果,此处不再赘述。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储 在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (24)

  1. 一种充电场站的充电方法,所述充电场站包括多个充电区域,其特征在于,所述充电方法包括:
    将自然日分为多个时段;
    当所述多个充电区域中的第一充电区域在所述多个时段中的第一时段内有新进入的终端准备充电时,且所述充电场站在所述第一时段不存在可调配功率时,则根据所述第一充电区域的在所述第一时段的实际使用功率和所述多个充电区域的预设功率分配比重新分配所述充电场站上每个终端的充电功率;
    所述可调配功率用于指示所述充电场站的输出功率中除满足正在所述充电场站充电的终端的充电需求以外的可使用功率,所述充电需求用于指示所述正在所述充电场站充电的终端在预期停车时长内需要达到的预期充电电量。
  2. 根据权利要求1所述的充电方法,其特征在于,所述多个充电区域还包括第二充电区域;
    所述第一充电区域的充电模式或充电速率与所述第二充电区域的充电模式或充电速率不同。
  3. 根据权利要求2所述的充电方法,其特征在于,所述第一充电区域的充电模式为慢充模式,所述慢充模式用于指示所述第一充电区域能够在预设的第一充电时长内将第一终端充电至所述预期充电电量,所述第一终端包括新进入第一充电区域的终端和/或正在第一充电区域充电的终端;
    所述第二充电区域的充电模式为快充模式,所述快充模式用于指示所述第二充电区域能够在预设的第二充电时长内将第二终端充电至所述预期充电电量,所述第二终端用于指示新进入第二充电区域的终端和/或正在第二充电区域充电的终端;
    所述第一充电时长大于所述第二充电时长。
  4. 根据权利要求3所述的充电方法,其特征在于,所述根据所述第一充电区域的在所述第一时段的实际使用功率和所述多个充电区域的预设功率分配比重新分配所述充电场站上每个终端的充电功率,包括:
    当所述第一充电区域在所述第一时段内有所述新进入第一充电区域的终端准备充电且所述充电场站在所述第一时段无法满足所述新进入第一充电区域的终端的充电需求时,在所述第一充电区域在所述第一时段的实际使用功率大于或者等于根据所述第一充电区域在所述第一时段的预设功率分配比给所述第一充电区域分配的功率情况下:
    根据所述新进入第一充电区域的终端在所述第一时段的充电需求降低所述第一充电 区域中每个充电枪在所述第一时段的充电功率,并根据降低后的充电枪在所述第一时段的充电功率为所述新进入第一充电区域的终端和所述正在第一充电区域充电的终端充电。
  5. 根据权利要求3所述的充电方法,其特征在于,所述根据所述第一充电区域的在所述第一时段的实际使用功率和所述多个充电区域的预设功率分配比重新分配所述充电场站上每个终端的充电功率,包括:
    当所述第一充电区域在所述第一时段内有所述新进入第一充电区域的终端准备充电且所述充电场站在所述第一时段无法满足所述新进入第一充电区域的终端的充电需求时,在所述第一充电区域在所述第一时段的实际使用功率小于根据所述第一充电区域在所述第一时段预设的功率分配比给所述第一充电区域分配的功率的情况下:
    根据所述新进入第一充电区域的终端在所述第一时段的充电需求降低所述第二充电区域中每个充电枪在所述第一时段的实际使用功率,以提高所述第一充电区域在所述第一时段的实际使用功率;
    根据提高后的所述第一充电区域在所述第一时段的实际使用功率为所述新进入第一充电区域的终端和所述正在第一充电区域充电的终端充电,并根据降低后的所述第二充电区域中充电枪在所述第一时段的实际使用功率为所述正在第二充电区域充电的终端充电。
  6. 根据权利要求3所述的充电方法,其特征在于,所述充电方法还包括:
    当所述第二充电区域在所述第一时段内有所述新进入第二充电区域的终端准备充电时,且所述充电场站在所述第一时段不存在可调配功率时,则根据所述第二充电区域的在所述第一时段的实际使用功率和所述多个充电区域的预设功率分配比重新分配所述充电场站上每个终端的充电功率。
  7. 根据权利要求6所述的充电方法,其特征在于,所述根据所述第二充电区域的在所述第一时段的实际使用功率和所述多个充电区域的预设功率分配比重新分配所述充电场站上每个终端的充电功率,包括:
    当所述第二充电区域在所述第一时段内有所述新进入第二充电区域的终端准备充电且所述充电场站在所述第一时段无法满足所述新进入第二电区域的终端的充电需求时,在所述第二充电区域在所述第一时段的实际使用功率大于或者等于根据所述第二充电区域在所述第一时段预设的功率分配比给所述第二充电区域分配的功率的情况下:
    根据所述新进入第二充电区域的终端在所述第一时段的充电需求降低所述第二充电区域中每个充电枪在所述第一时段的充电功率,并根据降低后的充电枪在所述第一时段的充电功率为所述新进入第二充电区域的终端和所述正在第二充电区域充电的终端充电。
  8. 根据权利要求6所述的充电方法,其特征在于,所述根据所述第二充电区域的在所述第一时段的实际使用功率和所述多个充电区域的预设功率分配比重新分配所述充电场 站上每个终端的充电功率,包括:
    当所述第二充电区域在所述第一时段内有所述新进入第二充电区域的终端准备充电且所述充电场站在所述第一时段无法满足所述新进入第二充电区域的终端的充电需求时,在所述第二充电区域在所述第一时段的实际使用功率小于根据所述第二充电区域在所述第一时段预设的功率分配比给所述第二充电区域分配的功率的情况下:
    根据所述新进入第二充电区域的终端在所第一时段的充电需求降低所述第一充电区域中每个充电枪在所述第一时段的实际使用功率,以提高所述第二充电区域在所述第一时段的实际使用功率;
    根据提高后的所述第二充电区域在所述第一时段的实际使用功率为所述新进入第二充电区域的终端和所述正在第二充电区域充电的终端充电,并根据降低后的所述第一充电区域中充电枪在所述第一时段的实际使用功率为所述正在第一充电区域充电的终端充电。
  9. 根据权利要求3至8中任一项所述的充电方法,其特征在于,所述充电方法还包括:
    在所述第一时段中,当所述充电场站存在可调配功率时,按照所述每个充电区域的充电模式和预设的所述充电模式对应的充电策略为所述第一终端和所述第二终端充电。
  10. 根据权利要求9所述的充电方法,其特征在于,所述按照所述每个充电区域的充电模式和预设的所述充电模式对应的充电策略为所述第一终端和所述第二终端充电,包括:
    在所述第一时段中,当所述充电场站存在空闲功率时,根据所述充电场站的空闲功率以及所述第一终端和所述第二终端各自所在的充电区域的所述充电模式对应的充电策略为所述第一终端和所述第二终端充电;所述空闲功率用于指示所述充电场站的输出功率中除满足所述第一终端和所述第二终端的充电需求以外的未使用功率,且所述空闲功率属于所述可调配功率的一部分;
    在所述第一时段中,当所述第二充电区域在所述第一时段内有所述新进入第二充电区域的终端准备充电且所述充电场站不存在空闲功率时,在所述第一终端在所述第一充电区域的预期充电时长小于所述第一终端在所述第一充电区域的预期停车时长条件下,根据所述第一终端的最大可暂停时长停止对所述第一终端进行充电,并开始对所述新进入第二充电区域的终端进行充电,之后对所述第一终端进行继续充电;所述第一终端的最大可暂停时长由所述第一终端在所述第一充电区域的预期停车时长和所述第一终端在所述第一充电区域的预期充电时长获取。
  11. 根据权利要求2至10中任一项所述的充电方法,其特征在于,所述第一充电区域的预设功率分配比与所述第二充电区域的预设功率分配比之和为1。
  12. 一种充电场站的充电装置,所述充电场站包括多个充电区域,其特征在于,所述 充电装置包括:
    划分模块,用于将自然日分为多个时段;
    充电模块,用于当所述多个充电区域中的第一充电区域在所述多个时段中的第一时段内有新进入的终端准备充电时,且所述充电场站在所述第一时段不存在可调配功率时,则根据所述第一充电区域的在所述第一时段的实际使用功率和所述多个充电区域的预设功率分配比重新分配所述充电场站上每个终端的充电功率;
    所述可调配功率用于指示所述充电场站的输出功率中除满足正在所述充电场站充电的终端的充电需求以外的可使用功率,所述充电需求用于指示所述正在所述充电场站充电的终端在预期离开所在的充电区域的时间内需要达到的预期充电电量。
  13. 根据权利要求12所述的充电装置,其特征在于,所述多个充电区域还包括第二充电区域;
    所述第一充电区域的充电模式或充电速率与所述第二充电区域的充电模式或充电速率不同。
  14. 根据权利要求13所述的充电装置,其特征在于,所述第一充电区域的充电模式为慢充模式,所述慢充模式用于指示所述第一充电区域能够在预设的第一充电时长内将第一终端充电至所述预期充电电量,所述第一终端包括新进入第一充电区域的终端和/或正在第一充电区域充电的终端;
    所述第二充电区域的充电模式为快充模式,所述快充模式用于指示所述第二充电区域能够在预设的第二充电时长内将第二终端充电至所述预期充电电量,所述第二终端用于指示新进入第二充电区域的终端和/或正在第二充电区域充电的终端;
    所述第一充电时长大于所述第二充电时长。
  15. 根据权利要求14所述的充电装置,其特征在于,所述充电模块用于:
    当所述第一充电区域在所述第一时段的实际使用功率大于或者等于根据所述第一充电区域在所述第一时段的预设功率分配比给所述第一充电区域分配的功率时:
    根据所述新进入第一充电区域的终端在所述第一时段的充电需求降低所述第一充电区域中每个充电枪在所述第一时段的充电功率,并根据降低后的充电枪在所述第一时段的充电功率为所述新进入第一充电区域的终端和所述正在第一充电区域充电的终端充电。
  16. 根据权利要求14所述的充电装置,其特征在于,所述充电模块用于:
    当所述新进入第一充电区域的终端在所述第一时段需要通过所述第一充电区域进行充电,且所述充电场站在所述第一时段无法满足所述新进入第一充电区域的终端的充电需求时,在所述第一充电区域在所述第一时段的实际使用功率小于根据所述第一充电区域在所述第一时段预设的功率分配比给所述第一充电区域分配的功率的情况下:
    根据所述新进入第一充电区域的终端在所述第一时段的充电需求降低所述第二充电区域中每个充电枪在所述第一时段的实际使用功率,以提高所述第一充电区域在所述第一时段的实际使用功率;
    根据提高后的所述第一充电区域在所述第一时段的实际使用功率为所述新进入第一充电区域的终端和所述正在第一充电区域充电的终端充电,并根据降低后的所述第二充电区域中充电枪在所述第一时段的实际使用功率为所述正在第二充电区域充电的终端充电。
  17. 根据权利要求14所述的充电装置,其特征在于,所述充电模块还用于:
    当所述第二充电区域在所述第一时段内有新进入的终端准备充电时,且所述充电场站在所述第一时段不存在可调配功率时,则根据所述第二充电区域的在所述第一时段的实际使用功率和所述多个充电区域的预设功率分配比重新分配所述充电场站上每个终端的充电功率。
  18. 根据权利要求17所述的充电装置,其特征在于,所述充电模块用于:
    当所述新进入第二充电区域的终端在所述第一时段需要通过所述第二充电区域充电,且所述充电场站在所述第一时段无法满足所述新进入第二充电区域的终端的充电需求时:
    在所述第二充电区域在所述第一时段的实际使用功率大于或者等于根据所述第二充电区域在所述第一时段预设的功率分配比给所述第二充电区域分配的功率的情况下:
    根据所述新进入第二充电区域的终端在所述第一时段的充电需求降低所述第二充电区域中每个充电枪在所述第一时段的充电功率,并根据降低后的充电枪在所述第一时段的充电功率为所述新进入第二充电区域的终端和所述正在第二充电区域充电的终端充电。
  19. 根据权利要求17所述的充电装置,其特征在于,所述充电模块用于:
    当所述新进入第二充区域的终端在所述第一时段中需要通过所述第二充电区域进行充电,且所述充电场站在所述第一时段无法满足所述新进入第二充电区域的终端的充电需求时,在所述第二充电区域在所述第一时段的实际使用功率小于根据所述第二充电区域在所述第一时段预设的功率分配比给所述第二充电区域分配的功率的情况下:
    根据所述新进入第二充电区域的终端在所第一时段的充电需求降低所述第一充电区域中每个充电枪在所述第一时段的实际使用功率,以提高所述第二充电区域在所述第一时段的实际使用功率;
    根据提高后的所述第二充电区域在所述第一时段的实际使用功率为所述新进入第二充电区域的终端和所述正在第二充电区域充电的终端充电,并根据降低后的所述第一充电区域中充电枪在所述第一时段的实际使用功率为所述正在第一充电区域充电的终端充电。
  20. 根据权利要求13至19中任一项所述的充电装置,其特征在于,所述充电模块还用于:
    在所述第一时段中,当所述充电场站存在可调配功率时,按照所述每个充电区域的充电模式和预设的所述充电模式对应的充电策略为所述第一终端和所述第二终端充电。
  21. 根据权利要求20所述的充电装置,其特征在于,所述充电模块用于:
    在所述第一时段中,当所述充电场站存在空闲功率时,根据所述充电场站的空闲功率以及所述第一终端和所述第二终端各自所在的充电区域的所述充电模式对应的充电策略为所述第一终端和所述第二终端充电;所述空闲功率用于指示所述充电场站的输出功率中除满足所述第一终端和所述第二终端的充电需求以外的未使用功率,且所述空闲功率属于所述可调配功率的一部分;
    在所述第一时段中,当所述第二充电区域在所述第一时段内有所述新进入第二充电区域的终端准备充电且所述充电场站不存在空闲功率时,在所述第一终端在所述第一充电区域的预期充电时长小于所述第一终端在所述第一充电区域的预期停车时长条件下,根据所述第一终端的最大可暂停时长停止对所述第一终端进行充电,并开始对所述新进入第二充电区域的终端进行充电,之后对所述第一终端进行继续充电;所述第一终端的最大可暂停时长由所述第一终端在所述第一充电区域的预期停车时长和所述第一终端在所述第一充电区域的预期充电时长获取。
  22. 一种电子设备,其特征在于,包括:
    一个或多个处理器;
    存储器,用于存储一个或多个程序;
    当所述一个或多个程序被所述一个或多个处理器执行时,实现如权利要求1至11中任一项所述的充电方法。
  23. 一种计算机可读存储介质,其特征在于,其上存有计算机程序,所述计算机程序被执行时,实现如权利要求1至11中任一项所述的充电方法。
  24. 一种计算机程序,其特征在于,当所述计算机程序被计算机执行时,实现权利要求1至11中任一项所述的充电方法。
PCT/CN2022/103460 2021-11-29 2022-07-01 充电场站的充电方法、充电装置及电子设备 WO2023093058A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22897154.5A EP4420924A1 (en) 2021-11-29 2022-07-01 Charging method and charging apparatus of charging station, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111430164.4A CN114056166B (zh) 2021-11-29 2021-11-29 充电场站的充电方法、充电装置及电子设备
CN202111430164.4 2021-11-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/677,522 Continuation US20240317101A1 (en) 2021-11-29 2024-05-29 Charging method and charging apparatus for charging station, and electronic device

Publications (1)

Publication Number Publication Date
WO2023093058A1 true WO2023093058A1 (zh) 2023-06-01

Family

ID=80277150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103460 WO2023093058A1 (zh) 2021-11-29 2022-07-01 充电场站的充电方法、充电装置及电子设备

Country Status (3)

Country Link
EP (1) EP4420924A1 (zh)
CN (1) CN114056166B (zh)
WO (1) WO2023093058A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117301932A (zh) * 2023-09-04 2023-12-29 深圳唯创知音电子有限公司 多枪头充电桩的充电控制方法、装置、系统及介质
CN117689188A (zh) * 2024-02-04 2024-03-12 江西驴充充物联网科技有限公司 基于大数据的用户充电策略优化系统及方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114056166B (zh) * 2021-11-29 2023-11-17 华为数字能源技术有限公司 充电场站的充电方法、充电装置及电子设备
CN115716426B (zh) * 2022-11-21 2024-02-02 湖南艾特新能源科技有限公司 新能源汽车充电桩联网管理系统及人工智能管理平台
CN118263981A (zh) * 2024-04-16 2024-06-28 广东创新科技职业学院 充换电站光伏蓄电系统智能监控方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104333077A (zh) * 2014-11-12 2015-02-04 青岛海汇德电气有限公司 电动汽车充电机分时复用的充电方法及充电系统
CN107719180A (zh) * 2017-11-24 2018-02-23 三峡大学 基于电动汽车柔性充电的混合型停车场多源互补充电方法
CN109353245A (zh) * 2018-10-29 2019-02-19 河南英开电气股份有限公司 一种电动汽车充电集群功率自动分配方法
CN109398133A (zh) * 2018-10-29 2019-03-01 河南英开电气股份有限公司 一种电动汽车充电集群及其功率自动分配系统
US20210086647A1 (en) * 2019-09-20 2021-03-25 AMPLY Power, Inc. Real-time electric vehicle fleet management
CN113022360A (zh) * 2021-03-16 2021-06-25 开迈斯新能源科技有限公司 充电场站的能源分配方法及装置
CN114056166A (zh) * 2021-11-29 2022-02-18 华为数字能源技术有限公司 充电场站的充电方法、充电装置及电子设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3024115A4 (en) * 2013-07-16 2017-03-08 Nec Corporation Rapid charging method for storage cell, rapid charging system, and program
CN106684968B (zh) * 2016-12-05 2019-12-06 浙江科技学院 一种充电调度系统及其控制方法
US10549645B2 (en) * 2017-02-06 2020-02-04 GM Global Technology Operations LLC Smart-charging apparatus for use with electric-vehicle-sharing stations
DE102017110148A1 (de) * 2017-05-10 2018-11-15 Vector Informatik Gmbh Verfahren zum Aufladen einer Batterie sowie stationäre Ladeeinrichtung
CN107872084B (zh) * 2017-10-31 2020-06-02 蔚来汽车有限公司 充电设备输出功率调整方法
CN109606180B (zh) * 2019-01-18 2021-12-14 广东天创同工大数据应用有限公司 一种智能动态调配功率充电的方法
CN111137168B (zh) * 2019-12-30 2021-08-24 浙江吉智新能源汽车科技有限公司 一种换电站电池充电方法及系统
US20210316631A1 (en) * 2020-04-09 2021-10-14 Revitalize Charging Solutions, Inc. Systems and Methods for Charging Electric Vehicles

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104333077A (zh) * 2014-11-12 2015-02-04 青岛海汇德电气有限公司 电动汽车充电机分时复用的充电方法及充电系统
CN107719180A (zh) * 2017-11-24 2018-02-23 三峡大学 基于电动汽车柔性充电的混合型停车场多源互补充电方法
CN109353245A (zh) * 2018-10-29 2019-02-19 河南英开电气股份有限公司 一种电动汽车充电集群功率自动分配方法
CN109398133A (zh) * 2018-10-29 2019-03-01 河南英开电气股份有限公司 一种电动汽车充电集群及其功率自动分配系统
US20210086647A1 (en) * 2019-09-20 2021-03-25 AMPLY Power, Inc. Real-time electric vehicle fleet management
CN113022360A (zh) * 2021-03-16 2021-06-25 开迈斯新能源科技有限公司 充电场站的能源分配方法及装置
CN114056166A (zh) * 2021-11-29 2022-02-18 华为数字能源技术有限公司 充电场站的充电方法、充电装置及电子设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117301932A (zh) * 2023-09-04 2023-12-29 深圳唯创知音电子有限公司 多枪头充电桩的充电控制方法、装置、系统及介质
CN117689188A (zh) * 2024-02-04 2024-03-12 江西驴充充物联网科技有限公司 基于大数据的用户充电策略优化系统及方法
CN117689188B (zh) * 2024-02-04 2024-04-26 江西驴充充物联网科技有限公司 基于大数据的用户充电策略优化系统及方法

Also Published As

Publication number Publication date
EP4420924A1 (en) 2024-08-28
CN114056166A (zh) 2022-02-18
CN114056166B (zh) 2023-11-17

Similar Documents

Publication Publication Date Title
WO2023093058A1 (zh) 充电场站的充电方法、充电装置及电子设备
CN109398133B (zh) 一种电动汽车充电集群及其功率自动分配系统
CN107346908B (zh) 一种智能调配功率的充电桩及其控制方法
JP2020048406A (ja) 分散電力変換器アービトレーションを有する電気自動車のための充電器
US10001798B2 (en) Determining power to be supplied based on reservation information of a vehicle
US20130257146A1 (en) Electric vehicle supply equipment for electric vehicles
JP5874268B2 (ja) 充電装置及び充電方法
WO2013065419A1 (ja) 充電制御装置、電池管理装置、充電制御方法および記録媒体
KR20220116405A (ko) 건물 및 계통의 충방전 우선순위를 고려하는 v2x­ess 연계 시스템 및 방법
CN107769235B (zh) 一种基于混合储能与电动汽车的微网能量管理方法
KR101782555B1 (ko) 전기 자동차의 배터리 충전을 관리하기 위한 시스템 및 그 방법
CN110015090B (zh) 一种电动汽车充电站调度系统及有序充电控制方法
WO2017148408A1 (zh) 一种储能式充电系统
CN111016721B (zh) 一种满足台区三相平衡的电动汽车本地有序充电策略
CN106114270B (zh) 一种充电系统及充电控制方法
CN107294119A (zh) 电动车与微网系统的电能交互方法、装置、系统和服务器
CN112257886A (zh) 一种小区充电桩的预约系统及方法
CN115782667A (zh) 充电堆用电容量分配方法和系统
CN109532557A (zh) 一种电动汽车充电系统以及控制方法
CN115360736A (zh) 储能系统及储能控制方法
CN113022360B (zh) 充电场站的能源分配方法及装置
CN111523708B (zh) 一种基于价格型需求响应的能量优化管理方法
CN112072700A (zh) 一种电动汽车v2x的能量转换系统
CN113442773B (zh) 一种动态分配电动汽车有序充电时间段的系统及使用方法
CN116278907A (zh) 一种基于充电站变压器功率高效充电的分配方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897154

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022897154

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022897154

Country of ref document: EP

Effective date: 20240522

NENP Non-entry into the national phase

Ref country code: DE