WO2023093028A1 - 一种b/n类有机电致发光材料及其制备方法与应用 - Google Patents

一种b/n类有机电致发光材料及其制备方法与应用 Download PDF

Info

Publication number
WO2023093028A1
WO2023093028A1 PCT/CN2022/101011 CN2022101011W WO2023093028A1 WO 2023093028 A1 WO2023093028 A1 WO 2023093028A1 CN 2022101011 W CN2022101011 W CN 2022101011W WO 2023093028 A1 WO2023093028 A1 WO 2023093028A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic electroluminescent
dbtn
preparation
tert
electroluminescent material
Prior art date
Application number
PCT/CN2022/101011
Other languages
English (en)
French (fr)
Inventor
张晓宏
范孝春
王凯
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2023093028A1 publication Critical patent/WO2023093028A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • C09K2211/107Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms with other heteroatoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the invention belongs to the technical field of organic luminescent dyes, in particular to a B/N type organic electroluminescent material and its preparation method and application.
  • Organic luminescent dyes have a wide range of applications in electronic devices.
  • OLED organic electroluminescent device
  • the carrier electrons and holes are respectively injected, and the electrons and holes are respectively passed through the electron transport layer ( ETL) and hole transport layer (HTL) reach the emissive layer (EML) containing organic luminescent dyes, in the emissive layer (EML), electrons and holes recombine to generate excitons that emit photons in the process of fluorescence or phosphorescence device.
  • OLED technology has the advantages of wide viewing angle, ultra-thin, fast response, high luminous efficiency, and flexible display. At the same time, it is also an ideal planar light source due to its characteristics of large-area film formation and low power consumption. The field of energy-saving and environment-friendly lighting has broad application prospects.
  • thermally activated delayed mechanism fluorescence (TADF) materials have been widely developed and applied in electronic devices due to the effective utilization of triplet excitons.
  • this type of dye can simultaneously utilize the singlet excitons with a generation probability of 25% and the triplet excitons with a generation probability of 75% to obtain high luminous efficiency.
  • TADF materials as luminescent dyes in OLED devices can achieve high efficiency, the color purity is very poor in most cases, which cannot meet the technical requirements for high color purity of ultra-high-definition full-color display technology (Rec.2020 standard). New material systems with high efficiency and high color purity need to be developed urgently.
  • the present invention provides a B/N type organic electroluminescent material and its preparation method and application.
  • a novel B/N type organic electroluminescent material includes DBTN-1 and/or DBTN-2, wherein the structural formulas of DBTN-1 and DBTN-2 are:
  • a preparation method of a novel B/N type organic electroluminescence material comprising the following steps:
  • the base is one or more of potassium tert-butoxide, sodium tert-butoxide and cesium carbonate.
  • the organic solvent is one or more of dimethylformamide, toluene and m-xylene.
  • step (1) in step (1), the molar ratio of the base to 3,6-di-tert-butylcarbazole is 1.5-2.5:1.
  • step (2) the metal catalyst and The molar ratio is 1:10-12.
  • the metal catalyst is palladium chloride, palladium acetate, tridibenzylideneacetone dipalladium and ligand 2-dicyclohexylphosphino-2',4 One or more of ',6'-triisopropylbiphenyl.
  • the lithium reagent in step (3), is one or more of tert-butyllithium, n-butyllithium and sec-butyllithium.
  • the ultra-dry reagent is one or more of tert-butylbenzene, o-xylene and m-trimethylbenzene.
  • step (3) the lithium reagent and The molar ratio is 5-6:1.
  • the B/N type organic electroluminescent material obtained by the reaction is a mixture of DBTN-1 and DBTN-2, and the two are further separated by silica gel chromatography , to obtain purified DBTN-1 and DBTN-2.
  • An organic electroluminescent device comprising the B/N type organic electroluminescent material.
  • novel B/N type organic electroluminescent materials DBTN-1 and DBTN-2 provided by the present invention exhibit narrow half-width luminescent spectra, extremely high fluorescence quantum yields and efficient thermal activation delays in solution/doped films Fluorescent properties, so can be used in organic electroluminescent devices.
  • organic electroluminescence devices composed of DBTN-1 and DBTN-2 as doped fluorescent materials can realize ultra-pure green photoluminescence with high efficiency, high color purity, and low efficiency roll-off. Therefore, the novel DBTN-1 and DBTN-2 of the present invention can be used as constituents of ultra-pure green organic electroluminescent devices with high efficiency and high color purity.
  • Fig. 1 is the sectional structure schematic diagram that novel B/N type organic electroluminescence material DBTN-1 and DBTN-2 of the present invention are applied to organic electroluminescence device, wherein, 1, glass substrate; 2, hole transport layer; 3 , electron blocking layer; 4, light emitting layer; 5, electron transport layer; 6, cathode layer;
  • Fig. 2 is the temperature-varying transient attenuation curve of the 2wt% DBTN-2 doped SF3-TRZ film in Test Example 1.
  • Embodiment 1 the synthesis of DBTN-1 and DBTN-2
  • the fluorescent doping material DBTN-2 obtained in Example 1 was doped in toluene solution and 2-(9,9'-spiro[fluorene]-3-yl)-4,6-diphenyl with a concentration of 2.5 wt%. Based on 1,3,5-triazine (SF3-TRZ) film, the photophysical properties were characterized, and the results are shown in Table 1:
  • ⁇ abs , ⁇ em , Stokes shift, FWHM, Es, E T , ⁇ E ST , PLQY respectively represent the peak position of absorption spectrum, peak position of emission spectrum, Stokes shift, half width of emission spectrum, and the lowest excited singlet state , the lowest excited triplet state, the energy level difference between the lowest excited singlet state and the lowest excited triplet state, and the fluorescence quantum yield.
  • ITO indium tin oxide
  • the aforementioned glass substrate was put into a vacuum evaporation chamber, and the pressure was reduced to 1 ⁇ 10 -4 Pa. Then, on the glass substrate 1 shown in FIG. 1, a hole transport layer 2, an electron blocking layer 3, a light emitting layer 4, and an electron transport layer 5 are sequentially formed as organic compound layers, and then a cathode layer 6 is formed.
  • Each organic material is formed into a film by thermal resistance heating.
  • the heating compound is vacuum evaporated at a film forming rate of 0.1-0.2nm/s.
  • a metal mask is arranged so as to be perpendicular to the ITO stripes to form a film cathode 6 .
  • the cathode layer 6 has a two-layer structure formed by vacuum-depositing lithium fluoride and aluminum to film thicknesses of 1 nm and 100 nm, respectively.
  • Each film thickness was measured with a stylus film thickness measuring device (DEKTAK).
  • the device was sealed in a nitrogen atmosphere glove box with water and oxygen concentration of 1 ppm or less.
  • a glass sealing cap and the above-mentioned film-forming substrate epoxy ultraviolet curable resin manufactured by Nagase ChemteX Corporation were used.
  • a direct current was applied to the prepared organic electroluminescent device, the luminance performance was evaluated by using a Spectrascan PR655 luminance meter, and the current-voltage characteristic was measured by a Keithley 2400 digital source meter controlled by a computer.
  • the luminescence characteristics the electroluminescent spectrum, half-peak width, CIE color coordinate value, maximum luminance (cd/m 2 ), external quantum efficiency (%), and power efficiency (lm/W) were measured under the change with the applied DC voltage.
  • the measured values of the fabricated device are 520nm spectral peak, 29nm half-peak width, (0.19, 0.74) CIE color coordinates, 35.2% maximum external quantum efficiency, 132.9cd/A maximum current efficiency, and 132.9cd/A maximum power efficiency. It is 130.4lm/W.
  • the novel high-efficiency, high-color-purity narrow-band organic electroluminescent materials DBTN-1 and DBTN-2 provided by the present invention can be applied to high-efficiency, high-color-purity ultra-pure green organic electroluminescent devices.
  • the DBTN-1 and DBTN-2 involved in the present invention exhibit extremely high fluorescence quantum yield and efficient heat-activated delayed fluorescence narrow-band green light emission properties in dilute solutions and doped films.
  • organic electroluminescent devices prepared with the above-mentioned fluorescent dyes have the advantages of ultra-pure green light emission with high efficiency and high color purity, and can be applied to ultra-high-definition display technology and other applications.
  • the new high-efficiency, high-color-purity narrow-band organic electroluminescent material of the present invention can also be applied to various host-guest organic electroluminescent devices such as fluorescent light-emitting materials and phosphorescent light-emitting materials, except for flat panel displays and other applications. , and can also be applied to energy-saving lighting purposes, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明提供了一种B/N类有机电致发光材料及其制备方法与应用,本发明还涉及所述有机电致发光器件本身。本发明所涉及的新型B/N类有机电致发光材料DBTN-1和DBTN-2在溶液中和掺杂薄膜状态下表现具有极高的荧光量子产率及高效的热激活延迟荧光的窄谱带绿光发光性质。特别是以上述荧光染料制备成的有机电致发光器件具有高效率以及高色纯度的超纯绿光发光的优点,可应用于面向超高清显示技术等用途。

Description

一种B/N类有机电致发光材料及其制备方法与应用 技术领域
本发明属于有机发光染料技术领域,尤其是一种B/N类有机电致发光材料及其制备方法与应用。
背景技术
有机发光染料在电子器件中具有广泛的应用价值。例如在有机电致发光器件(OLED)中,通过在阴极(Al)和阳极(ITO)两端接上电压,分别注入载流子电子和空穴,其中电子和空穴分别经电子传输层(ETL)和空穴传输层(HTL)到达含有有机发光染料的发光层(EML),在发光层(EML)中,电子和空穴发生复合,产生激子以荧光或磷光过程向外发射光子的器件。OLED技术具有宽视角、超薄、响应快、发光效率高、可实现柔性显示等优点,同时由于具有可大面积成膜、功耗低等特性,其还是一种理想的平面光源,在未来的节能环保型照明领域具有广阔的应用前景。
近年来,热活化延迟机制荧光(TADF)材料由于可以有效利用三重态激子被广泛开发并应用于电子器件中。特别是OLED领域,这类染料可以同时利用电致激发生成概率25%的单重态激子和生成概率为75%的三重态激子从而获得高的发光效率。截止目前,在OLED器件中引入TADF材料作为发光染料虽然可以实现高效率,但多数情况下色纯度很差,无法满足超高清全彩显示技术高色纯度的技术需求(Rec.2020标准),具有高效率、高色纯度的新型材料体系亟待开发。近年来,虽然具有多重共振效应(MR)的新型TADF材料被报道可以实现高色纯度发光,(Adv.Mater.,28,2777-2781(2016);Nat.Photonics(2019)DOI:10.1038/s41566-019-0476-5;Angew.Chem.Int.Ed.,57,11316-11320(2018);Adv.Opt.Mater.,1801536 (2019);ACS Appl.Mater.Interfaces 11,13472-13480(2019)),但对于绿光OLED器件而言,目前报道的最高质量的绿光OLED器件CIE仅为(0.16,0.71)(Angew.Chem.Int.Ed.,60,23142-23147),仍远低于Rec.2020绿光标准(CIE为(0.20,0.80),其中CIE y代表发光中绿光占比,越高绿色越纯)。因此,对面向超高清显示技术的超纯绿光OLED器件而言,发展新型的高效、高色纯度发光材料是必须的。
发明内容
为解决上述技术问题,本发明提供了一种B/N类有机电致发光材料及其制备方法与应用。
一种新型的B/N类有机电致发光材料,所述B/N类有机电致发光材料包括DBTN-1和/或DBTN-2,其中DBTN-1和DBTN-2结构式为:
Figure PCTCN2022101011-appb-000001
一种新型的B/N类有机电致发光材料的制备方法,包括以下步骤:
(1)在有机溶剂中,将2-氟-6-溴氯苯、3,6-二叔丁基咔唑与碱混合进行碳氮偶联反应生成
Figure PCTCN2022101011-appb-000002
(2)将步骤(1)中所述
Figure PCTCN2022101011-appb-000003
和4-叔丁基苯胺在金属催化剂和 碱的作用下,发生碳氮偶联反应得到
Figure PCTCN2022101011-appb-000004
(3)在锂试剂和超干试剂中,将
Figure PCTCN2022101011-appb-000005
与BBr 3进行合环反应,得到所述B/N类有机电致发光材料。
在本发明的一个实施例中,步骤(1)或步骤(2)中,所述碱为叔丁醇钾、叔丁醇钠和碳酸铯中的一种或多种。
在本发明的一个实施例中,步骤(1)中,所述有机溶剂为二甲基甲酰胺、甲苯和间二甲苯中的一种或多种。
在本发明的一个实施例中,步骤(1)中,所述碱与3,6-二叔丁基咔唑的摩尔比1.5-2.5:1。
在本发明的一个实施例中,步骤(2)中,所述金属催化剂与
Figure PCTCN2022101011-appb-000006
的摩尔比为1:10-12。
在本发明的一个实施例中,步骤(2)中,所述金属催化剂为氯化钯、醋酸钯、三二亚苄基丙酮二钯和配体2-二环己基膦基-2′,4′,6′-三异丙基联苯中的一种或多种。
在本发明的一个实施例中,步骤(3)中,所述锂试剂为叔丁基锂、正丁基锂和仲丁基锂中的一种或多种。
在本发明的一个实施例中,步骤(3)中,所述超干试剂为叔丁基苯、邻二甲苯和间三甲苯中的一种或多种。
在本发明的一个实施例中,步骤(3)中,所述锂试剂与
Figure PCTCN2022101011-appb-000007
的摩尔比为5-6:1。
在本发明的一个实施例中,步骤(3)中,反应得到的所述B/N类有机电致发光材料为DBTN-1和DBTN-2的混合物,通过硅胶色谱方法进一步将两者进行分离,得到纯化的DBTN-1和DBTN-2。
一种有机电致发光器件,所述有机电致发光器件包括所述的B/N类有机电致发光材料。
本发明的上述技术方案相比现有技术具有以下优点:
本发明提供的新型B/N类有机电致发光材料DBTN-1和DBTN-2在溶液/掺杂薄膜中表现出窄半峰宽发光光谱和极高的荧光量子产率及高效的热激活延迟荧光的性质,因此可用于有机电致发光器件中。特别是以DBTN-1和DBTN-2作为掺杂荧光材料构成的有机电致发光器件可实现高效、高色纯度、低效率滚降的超纯绿光电致发光等特点。因此,本发明的新型DBTN-1和DBTN-2可用作高效、高色纯度的超纯绿光有机电致发光器件的构成成分。
附图说明
为了使本发明的内容更容易被清楚的理解,下面根据本发明的具体实施例并结合附图,对本发明作进一步详细的说明,其中
图1是本发明的新型B/N类有机电致发光材料DBTN-1和DBTN-2应用于有机电致发光器件的剖面结构示意图,其中,1、玻璃基板;2、空穴传输层;3、电子阻挡层;4、发光层;5、电子传输层;6、阴极层;
图2是试验例1中2wt%的DBTN-2掺杂SF3-TRZ的薄膜的变温瞬态衰减曲线。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
实施例1:DBTN-1与DBTN-2的合成
Figure PCTCN2022101011-appb-000008
1,中间体1的合成:
在氮气保护下,往250mL两口烧瓶中依次加入3,6-二叔丁基咔唑5.6g(20mmol),2-氟-6-溴氯苯4.2g(20mmol),碳酸铯9.8g(30mmol)以及200mL超干N,N-二甲基甲酰胺溶剂。氮气置换后,将所得反应液加热至150℃并搅拌反应24小时。待反应冷却至室温,缓慢倒入500mL去离子水中,搅拌并过滤得到白色滤饼。以PE:DCM(6:1)作为洗脱剂,通过硅胶柱色谱进一步纯化,得到纯白色固体9.0g,产率为96%。
产物表征: 1H NMR(600MHz,CDCl 3-d)δ8.16(dd,J=3.5,1.8Hz,2H),7.80(dt,J=8.1,1.2Hz,1H),7.45(ddt,J=8.2,6.1,1.7Hz,3H),7.31(t,J=8.0Hz,1H),7.00(dd,J=8.5,2.0Hz,2H),1.47(d,J=2.6Hz,18H). 13C NMR(151MHz,CDCl 3-d)δ143.13,139.11,137.28,134.52,133.58,129.69,128.31,124.53,123.70,123.37,116.37,109.38,34.75,32.02.MS(MALDI-TOF).Calcd for C 26H 27BrClN:468.86;Found:468.69.
2,中间体2的合成:
在氮气保护下,往250mL两口反应瓶中依次加入5.2g中间体1(11mmol),4-叔丁基苯胺746mg(5mmol),三二亚苄基丙酮二钯458mg(0.5mmol),四氟硼酸三叔丁基膦290mg(1mmol),叔丁醇钠2.0g(30mmol)以及150mL超干甲苯溶剂。将反应液置换三次氮气后,加热至回流温度并搅拌反应24小时。待反应冷却至室温,用二氯甲烷和去离子水进行萃取,收集下层有机相,无水硫酸钠干燥,用旋转蒸发仪进行真空浓缩。以PE:EA(4:1)作为洗脱剂,通过硅胶柱色谱进一步纯化,得到白色固体3.8g,产率82%。
产物表征: 1H NMR(600MHz,CDCl 3-d)δ8.13(t,J=1.7Hz,4H),7.44–7.38(m,8H),7.31(ddt,J=16.5,7.0,2.2Hz,4H),7.00(d,J=8.6Hz,4H),6.92(dd,J=8.6,1.5Hz,2H),1.45(d,J=1.5Hz,36H),1.33(s,9H). 13C NMR(151MHz,CDCl 3-d)δ146.39,145.60,144.57,142.76,139.22,137.62,131.17,128.20,127.71,126.65,126.09,123.55,123.26,121.13,116.27,109.43,34.72,34.28,32.02,31.44.MS(MALDI-TOF).Calcd for C 62H 67Cl 2N 3:925.14;Found:925.03.
3,化合物DBTN-2和化合物DBTN-1的合成:在氮气保护下,往100mL两口反应瓶中依次加入1.9g中间体2(2mmol)和60mL超干叔丁基苯溶剂。氮气置换后,将所得反应液降温冷却至-40℃,缓慢滴加3.1mL(5mmol)叔丁基锂的正戊烷溶液(1.6mol/L)。在60℃下搅拌反应6小时后,再次将反应液降温冷却至-40℃,逐滴加入0.5mL三溴化硼(5mmol),并缓慢升至室温搅拌反应6小时。接着,在冰水浴条件下,缓慢加入0.8mLN,N-二异丙基乙胺,然后将反应液加热至120℃继续反应12小时。待反应冷却至室温,缓慢加入甲醇淬灭,然后用大量二氯甲烷和去离子水进行萃取,收集下层有机相,无水硫酸钠干燥,用旋转蒸发仪进行真空浓缩。以PE作为洗脱剂,通过硅胶柱色谱进一步纯化,分别得到化合物DBTN-2和化合物DBTN-1,其中化合物DBTN-2橘色固体80mg,产率为5%;得到化合物DBTN-1橘色固体10mg,产率为1%。
化合物DBTN-2的表征: 1H NMR(600MHz,CDCl 3-d)δ9.17(dd,J=8.5,1.6Hz,1H),9.07(d,J=1.8Hz,1H),8.88(d,J=1.8Hz,1H),8.84(d,J=2.4Hz, 1H),8.60(dd,J=8.6,2.2Hz,1H),8.57-8.52(m,2H),8.48(d,J=1.8Hz,1H),8.38(d,J=8.6Hz,1H),8.29(d,J=2.0Hz,2H),8.26(dd,J=8.1,2.0Hz,1H),8.21-8.17(m,1H),7.94(d,J=8.3Hz,1H),7.76-7.65(m,3H),7.56(dd,J=8.9,2.5Hz,1H),1.70(s,18H),1.54(s,18H),1.52(s,9H). 13C NMR(151MHz,CDCl 3-d)δ148.34,147.54,146.11,145.90,145.42,145.11,144.96,144.89,142.15,141.46,141.23,138.54,138.29,131.59,130.60,129.78,129.60,127.55,126.92,124.54,124.35,124.09,123.58,122.64,120.51,120.19,117.40,117.18,115.51,114.73,113.78,108.76,108.32,35.29,35.24,34.83,34.78,34.62,32.32,32.25,31.86,31.81,31.50.MS(MALDI-TOF).Calcd for C 62H 63B 2N 3:871.83;Found:871.48.
化合物DBTN-1的表征: 1H NMR(600MHz,CDCl 3-d)δ8.33(d,J=2.4Hz,1H),7.94-7.90(m,1H),7.61(d,J=7.7Hz,1H),7.48(dd,J=13.6,7.1Hz,2H),7.28-7.17(m,3H),7.04(dd,J=6.4,1.3Hz,1H),1.35(s,9H). 13C NMR(151MHz,CDCl 3-d)δ151.22,150.94,150.93,148.05,146.77,146.39,144.83,144.04,136.87,133.91,133.78,130.88,130.82,130.51,130.34,130.25,127.90,127.00,124.22,122.55,122.52,121.61,121.14,118.87,116.15,115.57,111.96,35.99,34.93,31.34,31.32,31.28,31.08.MS(MALDI-TOF).Calcd for C 62H 63B 2N 3:871.83;Found:871.54.
实施例2
1,中间体1的合成:
在氮气保护下,往250mL两口烧瓶中依次加入3,6-二叔丁基咔唑5.6g(20mmol),2-氟-6-溴氯苯4.2g(20mmol),叔丁醇钾(30mmol)以及200mL超干N,N-二甲基甲酰胺溶剂。氮气置换后,将所得反应液加热至150℃并搅拌反应24小时。待反应冷却至室温,缓慢倒入500mL去离子水中,搅拌并过滤得到白色滤饼。以PE:DCM(6:1)作为洗脱剂,通过硅胶柱色谱进一步纯化,得到纯白色固体9.6g。
2,中间体2的合成:
在氮气保护下,往250mL两口反应瓶中依次加入5.2g中间体1(11 mmol),4-叔丁基苯胺746mg(5mmol),醋酸钯(0.5mmol),四氟硼酸三叔丁基膦290mg(1mmol),叔丁醇钠2.0g(30mmol)以及150mL超干甲苯溶剂。将反应液置换三次氮气后,加热至回流温度并搅拌反应24小时。待反应冷却至室温,用二氯甲烷和去离子水进行萃取,收集下层有机相,无水硫酸钠干燥,用旋转蒸发仪进行真空浓缩。以PE:EA(4:1)作为洗脱剂,通过硅胶柱色谱进一步纯化,得到白色固体4.2g。
3,化合物DBTN-2和化合物DBTN-1的合成:在氮气保护下,往100mL两口反应瓶中依次加入1.9g中间体2(2mmol)和60mL超干叔丁基苯溶剂。氮气置换后,将所得反应液降温冷却至-40℃,缓慢滴加3.1mL(5mmol)正丁基锂的正戊烷溶液(1.6mol/L)。在60℃下搅拌反应6小时后,再次将反应液降温冷却至-40℃,逐滴加入0.5mL三溴化硼(5mmol),并缓慢升至室温搅拌反应6小时。接着,在冰水浴条件下,缓慢加入0.8mLN,N-二异丙基乙胺,然后将反应液加热至120℃继续反应12小时。待反应冷却至室温,缓慢加入甲醇淬灭,然后用大量二氯甲烷和去离子水进行萃取,收集下层有机相,无水硫酸钠干燥,用旋转蒸发仪进行真空浓缩。以PE作为洗脱剂,通过硅胶柱色谱进一步纯化,分别得到化合物DBTN-2和化合物DBTN-1,其中化合物DBTN-2橘色固体75mg;得到化合物DBTN-1橘色固体8.5mg。
实施例3
1,中间体1的合成:
在氮气保护下,往250mL两口烧瓶中依次加入3,6-二叔丁基咔唑5.6g(20mmol),2-氟-6-溴氯苯4.2g(20mmol),叔丁醇钠(30mmol)以及200mL超干间二甲苯溶剂。氮气置换后,将所得反应液加热至150℃并搅拌反应24小时。待反应冷却至室温,缓慢倒入500mL去离子水中,搅拌并过滤得到白色滤饼。以PE:DCM(6:1)作为洗脱剂,通过硅胶柱色谱进一步纯化,得到纯白色固体8.5g。
2,中间体2的合成:
在氮气保护下,往250mL两口反应瓶中依次加入5.2g中间体1(11mmol),4-叔丁基苯胺746mg(5mmol),氯化钯(0.5mmol),四氟硼酸三叔 丁基膦290mg(1mmol),叔丁醇钠2.0g(30mmol)以及150mL超干甲苯溶剂。将反应液置换三次氮气后,加热至回流温度并搅拌反应24小时。待反应冷却至室温,用二氯甲烷和去离子水进行萃取,收集下层有机相,无水硫酸钠干燥,用旋转蒸发仪进行真空浓缩。以PE:EA(4:1)作为洗脱剂,通过硅胶柱色谱进一步纯化,得到白色固体4.0g。
3,化合物DBTN-2和化合物DBTN-1的合成:在氮气保护下,往100mL两口反应瓶中依次加入1.9g中间体2(2mmol)和60mL超干邻二甲苯溶剂。氮气置换后,将所得反应液降温冷却至-40℃,缓慢滴加3.1mL(5mmol)仲丁基锂的正戊烷溶液(1.6mol/L)。在60℃下搅拌反应6小时后,再次将反应液降温冷却至-40℃,逐滴加入0.5mL三溴化硼(5mmol),并缓慢升至室温搅拌反应6小时。接着,在冰水浴条件下,缓慢加入0.8mLN,N-二异丙基乙胺,然后将反应液加热至120℃继续反应12小时。待反应冷却至室温,缓慢加入甲醇淬灭,然后用大量二氯甲烷和去离子水进行萃取,收集下层有机相,无水硫酸钠干燥,用旋转蒸发仪进行真空浓缩。以PE作为洗脱剂,通过硅胶柱色谱进一步纯化,分别得到化合物DBTN-2和化合物DBTN-1,其中化合物DBTN-2橘色固体85mg;得到化合物DBTN-1橘色固体8.5mg。
试验例1
将实施例1得到的荧光掺杂材料DBTN-2在甲苯溶液和以2.5wt%浓度掺杂在2-(9,9'-螺环[芴]-3-基)-4,6-二苯基-1,3,5-三嗪(SF3-TRZ)薄膜中进行光物理性质表征,结果如表1所示:
表1
Figure PCTCN2022101011-appb-000009
其中λ abs、λ em、Stokes shift、FWHM、Es、E T、ΔE ST、PLQY分别代表吸收光谱峰位置、发光光谱峰位置、斯托克斯位移、发光光谱半峰宽、最低激发单重态、最低激发三重态、最低激发单重态与最低激发三重态的能级差以 及荧光量子产率。由上述结果可以产出,材料在稀溶液和掺杂薄膜条件下的发光光谱处于绿光区域,具有极小的斯托克斯位移、发光谱带很窄,发光效率极高。
进一步的对2wt%的DBTN-2掺杂SF3-TRZ的薄膜进行变温瞬态衰减曲线测试,结果见图2,由图可以看出,其包含明显的瞬时荧光和延迟荧光组分,且延迟荧光组分强度随着环境温度的提升表现出明显的增强,证明了DBTN-2具有显著的热活化延迟荧光特性,可以高效利用三重态激子。
试验例2
以实施例1荧光掺杂材料的有机电致发光器件的制作与性能评价。
使用3mm宽的氧化铟锡(ITO)膜图案的成条纹状的、带有ITO透明电极的玻璃板作为基板。用ITO清洁剂将玻璃基板洗涤后,通过臭氧紫外线进行表面处理15min。将基板放入真空蒸镀腔内用真空蒸镀法进行各层的真空蒸镀,制作剖面图如图1所示的发光面积10mm 2的有机电致发光器件。
首先,将前述玻璃基板放入真空蒸镀腔内,降压至1×10 -4Pa。然后在图1中所示的玻璃基板1上,作为有机化合物层依次成膜成空穴传输层2、电子阻挡层3、发光层4和电子传输层5,然后成膜阴极层6。以35nm厚的膜厚真空蒸镀的4,4'-环己基二[N,N-二(4-甲基苯基)苯胺](TAPC)作为空穴传输层2,以10nm厚的膜厚真空蒸镀的三(4-咔唑基-9-基苯基)胺(TCTA)为电子阻挡层3,以20nm厚的膜厚真空蒸镀比例为97.5:2.5(质量%)的SF3-TRZ与本发明实施实例1中合成的TADF发光材料DBTN-2作为发光层4,以40nm厚的膜厚真空蒸镀的3,3'-[5'-[3-(3-吡啶基)苯基][1,1':3',1”-三联苯]-3,3”-二基]二吡啶(TmPyPb)作为电子传输层5。其中各个有机材料通过热电阻加热方式成膜。加热化合物以0.1-0.2nm/s的成膜速率真空蒸镀。最后以与ITO条纹正交的方式配置金属掩膜,构成膜阴极6。阴极层6是分别以1nm和100nm的膜厚真空蒸镀氟化锂和铝而形成的两层结构。各个膜厚用触针式膜厚测定器(DEKTAK)测定。进而,将器件密封在水和氧分浓度1ppm以下的氮气氛手套箱内。密封使用玻璃质的密封盖和前述成膜基板环氧性紫外线固化树脂(Nagase ChemteX Corporation制造)。
对所制备的有机电致发光器件施加直流电流,使用SpectrascanPR655亮度计来评价发光性能,使用电脑控制的Keithley 2400数字源表测量电流-电压特性。作为发光特性,测定在随外加直流电压变化下的电致光谱、半峰宽、CIE色坐标值、最大亮度(cd/m 2)、外量子效率(%)、功率效率(l m/W)。所制作的器件的测定值为光谱峰值为520nm,半峰宽为29nm,CIE色坐标值为(0.19,0.74),最大外量子效率为35.2%、最大电流效率为132.9cd/A,最大功率效率为130.4lm/W。
综上所述,本发明提供的新型高效、高色纯度的窄谱带有机电致发光材料DBTN-1和DBTN-2可应用于高效、高色纯度超纯绿光有机电致发光器件中。本发明所涉及的DBTN-1和DBTN-2在稀溶液与掺杂薄膜中表现出具有极高的荧光量子产率及高效的热激活延迟荧光的窄谱带绿光发光性质。特别是以上述荧光染料制备成的有机电致发光器件具有高效率以及高色纯度的超纯绿光发光的优点,可应用于面向超高清显示技术等用途。由此延伸,本发明的新型高效、高色纯度的窄谱带有机电致发光材料还可应用于荧光发光材料、磷光发光材料等各种主客体有机电致发光器件,除了平板显示器等用途外,还可应用于节能照明用途等。
显然,上述实施例仅仅是为清楚地说明所作的举例,并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

  1. 一种B/N类有机电致发光材料,其特征在于,所述B/N类有机电致发光材料包括DBTN-1和/或DBTN-2,其中DBTN-1和DBTN-2结构式为:
    Figure PCTCN2022101011-appb-100001
  2. 一种如权利要求1所述的新型的B/N类有机电致发光材料的制备方法,其特征在于,包括以下步骤:
    (1)在有机溶剂中,将2-氟-6-溴氯苯、3,6-二叔丁基咔唑与碱混合进行碳氮偶联反应生成
    Figure PCTCN2022101011-appb-100002
    (2)将步骤(1)中所述
    Figure PCTCN2022101011-appb-100003
    和4-叔丁基苯胺在金属催化剂和碱的作用下,发生碳氮偶联反应得到
    Figure PCTCN2022101011-appb-100004
    (3)在锂试剂和超干试剂中,将
    Figure PCTCN2022101011-appb-100005
    与BBr 3进行 合环反应,得到所述B/N类有机电致发光材料。
  3. 根据权利要求2所述的制备方法,其特征在于,步骤(1)或步骤(2)中,所述碱为叔丁醇钾、叔丁醇钠和碳酸铯中的一种或多种。
  4. 根据权利要求2所述的制备方法,其特征在于,步骤(1)中,所述有机溶剂为二甲基甲酰胺、甲苯和间二甲苯中的一种或多种。
  5. 根据权利要求2所述的制备方法,其特征在于,步骤(2)中,所述金属催化剂与
    Figure PCTCN2022101011-appb-100006
    的摩尔比为1:10-12。
  6. 根据权利要求2所述的制备方法,其特征在于,步骤(2)中,所述金属催化剂为氯化钯、醋酸钯、三二亚苄基丙酮二钯和配体2-二环己基膦基-2′,4′,6′-三异丙基联苯中的一种或多种。
  7. 根据权利要求2所述的制备方法,其特征在于,步骤(3)中,所述锂试剂为叔丁基锂、正丁基锂和仲丁基锂中的一种或多种。
  8. 根据权利要求2所述的制备方法,其特征在于,步骤(3)中,所述超干试剂为叔丁基苯、邻二甲苯和间三甲苯中的一种或多种。
  9. 根据权利要求2所述的制备方法,其特征在于,步骤(3)中,所述锂试剂与
    Figure PCTCN2022101011-appb-100007
    的摩尔比为5-6:1。
  10. 一种有机电致发光器件,其特征在于,所述有机电致发光器件包括权利要求1中所述的B/N类有机电致发光材料。
PCT/CN2022/101011 2021-11-29 2022-06-24 一种b/n类有机电致发光材料及其制备方法与应用 WO2023093028A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111439232.3 2021-11-29
CN202111439232.3A CN114149458B (zh) 2021-11-29 2021-11-29 一种b/n类有机电致发光材料及其制备方法与应用

Publications (1)

Publication Number Publication Date
WO2023093028A1 true WO2023093028A1 (zh) 2023-06-01

Family

ID=80454900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/101011 WO2023093028A1 (zh) 2021-11-29 2022-06-24 一种b/n类有机电致发光材料及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN114149458B (zh)
WO (1) WO2023093028A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114149458B (zh) * 2021-11-29 2023-01-06 苏州大学 一种b/n类有机电致发光材料及其制备方法与应用
CN114773366B (zh) * 2022-03-22 2023-11-28 苏州大学 一种羰基稠合的硼氮衍生物及其制备方法和应用
CN115433217B (zh) * 2022-08-12 2023-08-25 苏州大学 一种咔唑稠合的硼氮衍生物及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111377955A (zh) * 2018-12-29 2020-07-07 江苏三月光电科技有限公司 一种含硼化合物及其制备方法和其应用
CN112279872A (zh) * 2019-07-23 2021-01-29 北京鼎材科技有限公司 一种化合物及其应用、包含其的有机电致发光器件
CN112341482A (zh) * 2019-12-27 2021-02-09 广东聚华印刷显示技术有限公司 有机化合物、高聚物、混合物、组合物及电子器件
US20210159411A1 (en) * 2019-11-25 2021-05-27 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
CN113072568A (zh) * 2020-01-04 2021-07-06 江苏三月光电科技有限公司 一种含有双硼的有机电致发光材料及其应用
CN114149458A (zh) * 2021-11-29 2022-03-08 苏州大学 一种b/n类有机电致发光材料及其制备方法与应用
WO2022078429A1 (zh) * 2020-10-14 2022-04-21 浙江光昊光电科技有限公司 一种发光器件以及其在显示中的应用

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007070282A (ja) * 2005-09-06 2007-03-22 Chemiprokasei Kaisha Ltd 新規なトリアリールホウ素誘導体およびそれを含む有機エレクトロルミネッセンス素子
KR102399932B1 (ko) * 2017-07-26 2022-05-20 삼성디스플레이 주식회사 열 활성 지연 형광용 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20210002265A (ko) * 2019-06-28 2021-01-08 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 다환 화합물
CN110407862A (zh) * 2019-07-30 2019-11-05 武汉华星光电半导体显示技术有限公司 热活化延迟荧光分子材料及其合成方法、电致发光器件
CN110627822A (zh) * 2019-10-08 2019-12-31 吉林大学 一种绿光窄光谱三配位硼发光化合物、发光组合物及其应用
CN111153919B (zh) * 2020-01-08 2021-02-09 清华大学 一种发光材料及其应用以及包含其的有机电致发光器件
CN111864098B (zh) * 2020-08-14 2022-07-12 昆山工研院新型平板显示技术中心有限公司 一种有机电致发光器件及显示装置
CN112480154B (zh) * 2020-11-26 2023-01-24 深圳大学 一种手性热活化延迟荧光材料及其圆偏振电致发光器件
CN112679534B (zh) * 2020-12-31 2023-09-26 武汉尚赛光电科技有限公司 一种杂环有机电致发光材料及其制备方法、应用和器件
CN112745342A (zh) * 2020-12-31 2021-05-04 武汉尚赛光电科技有限公司 一种稠杂环化合物及其有机电致发光器件
CN113072571B (zh) * 2021-03-04 2022-07-22 北京大学深圳研究生院 一种七元环热激活延迟荧光材料及其制备方法、有机发光器件
CN112979687B (zh) * 2021-03-01 2023-07-18 深圳大学 一种热活化延迟荧光材料及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111377955A (zh) * 2018-12-29 2020-07-07 江苏三月光电科技有限公司 一种含硼化合物及其制备方法和其应用
CN112279872A (zh) * 2019-07-23 2021-01-29 北京鼎材科技有限公司 一种化合物及其应用、包含其的有机电致发光器件
US20210159411A1 (en) * 2019-11-25 2021-05-27 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
CN112341482A (zh) * 2019-12-27 2021-02-09 广东聚华印刷显示技术有限公司 有机化合物、高聚物、混合物、组合物及电子器件
CN113072568A (zh) * 2020-01-04 2021-07-06 江苏三月光电科技有限公司 一种含有双硼的有机电致发光材料及其应用
WO2022078429A1 (zh) * 2020-10-14 2022-04-21 浙江光昊光电科技有限公司 一种发光器件以及其在显示中的应用
CN114149458A (zh) * 2021-11-29 2022-03-08 苏州大学 一种b/n类有机电致发光材料及其制备方法与应用

Also Published As

Publication number Publication date
CN114149458B (zh) 2023-01-06
CN114149458A (zh) 2022-03-08

Similar Documents

Publication Publication Date Title
TWI713574B (zh) 用於電子裝置之材料
WO2023093028A1 (zh) 一种b/n类有机电致发光材料及其制备方法与应用
JP5364089B2 (ja) 正孔輸送ユニットと電子輸送ユニットとを含む有機光電素子用材料及びこれを含む有機光電素子
Tan et al. A novel bipolar D–π–A type phenanthroimidazole/carbazole hybrid material for high efficiency nondoped deep-blue organic light-emitting diodes with NTSC CIE y and low efficiency roll-off
EP1816134B1 (en) Metal complex compound and organic electroluminescent device using same
KR20100129101A (ko) 유기 전계발광 장치용 물질
JP2015111679A (ja) トリアジン誘導体を含む有機エレクトロルミネセンス素子
TWI388648B (zh) 發光材料以及包括此發光材料之有機發光二極體
TW201210992A (en) Compounds for electronic devices
CN111303150B (zh) 高效窄半峰宽的聚集态发光材料
CN112707894A (zh) 一种苊并咪唑类化合物及其在有机电致发光器件中的应用
EP1992631A1 (en) Metal complex compound and organic electroluminescent device using same
CN107556292A (zh) 吖啶‑咔唑给体衍生物及其制备方法以及基于其的有机电致发光器件
CN109776535B (zh) 具有平面结构的橙光-红光材料、制备方法及其在有机电致发光器件中的应用
CN107954996B (zh) 噻蒽-s,s-四氧化物衍生物及制备方法及在有机电致发光器件的应用
CN114349798A (zh) 一种金属配合物与应用及消费型产品
TWI820057B (zh) 用於有機電致發光裝置的材料
KR20220062819A (ko) 보론 화합물 및 이를 포함하는 유기 발광 소자
CN110938065A (zh) 一种杂环修饰的咔唑-三嗪衍生物、制备方法及其应用
CN112239470A (zh) 蒽类衍生物、其制备和应用
CN116217605B (zh) 多环化合物及其发光器件
CN110734432A (zh) 一种含氮杂环取代三嗪衍生物、制备方法及其应用
CN111978300B (zh) 一种基于咔唑和苯甲腈的磷光发光主体材料及其应用
CN113278018B (zh) 基于吡啶的热活化延迟荧光材料及其应用
CN114573597B (zh) 一种具有多个大位阻基团围绕的含氮杂环化合物、发光材料及有机发光元件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897124

Country of ref document: EP

Kind code of ref document: A1