WO2023092668A1 - 显示装置 - Google Patents

显示装置 Download PDF

Info

Publication number
WO2023092668A1
WO2023092668A1 PCT/CN2021/136633 CN2021136633W WO2023092668A1 WO 2023092668 A1 WO2023092668 A1 WO 2023092668A1 CN 2021136633 W CN2021136633 W CN 2021136633W WO 2023092668 A1 WO2023092668 A1 WO 2023092668A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
display device
prism structure
prism
sub
Prior art date
Application number
PCT/CN2021/136633
Other languages
English (en)
French (fr)
Inventor
孙承啸
周淼
陈黎暄
陈珍霞
兰松
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to EP21827380.3A priority Critical patent/EP4439160A1/en
Priority to JP2021576415A priority patent/JP7526214B2/ja
Priority to US17/620,671 priority patent/US20240045270A1/en
Publication of WO2023092668A1 publication Critical patent/WO2023092668A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • G02B5/045Prism arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133536Reflective polarizers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0053Prismatic sheet or layer; Brightness enhancement element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/28Adhesive materials or arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials

Definitions

  • the present invention relates to the field of display technology, in particular to a display device.
  • Quantum Dot quantum dot
  • the existing quantum dot wide viewing angle display technology is to bond the quantum dot composite film with the prism, and use the characteristics of quantum dots to emit light with a large viewing angle to improve the brightness of the liquid crystal display panel.
  • Due to the large viewing angle diffusion of this solution there are still more light emitted in the super large viewing angle (>60°) area, resulting in insufficient frontal brightness of the LCD panel, and serious light leakage and obvious contrast in the dark state with large viewing angles. On the low side.
  • the existing display devices have the problems of insufficient official brightness and light leakage in the dark state of large viewing angles due to the fact that there are still more light emitted at large viewing angles. Therefore, it is necessary to provide a display device to improve this defect.
  • the embodiment of the present application provides a display device, which is used to solve the problems of lack of official brightness and light leakage in a dark state with a large viewing angle caused by the fact that there are still many light rays emitted at a large viewing angle in the existing display panel.
  • An embodiment of the present application provides a display device, including:
  • a liquid crystal display panel is arranged on the light emitting side of the backlight module.
  • the quantum dot composite film is arranged between the liquid crystal display panel and the backlight module, and the quantum dot composite film includes:
  • a plurality of first prism structures are arranged on the light emitting surface of the quantum dot film layer.
  • the cross section of the first prism structure is triangular or trapezoidal.
  • the plurality of first prism structures are distributed continuously or at intervals along the first direction on the light-emitting surface of the quantum dot film layer.
  • the quantum dot composite film further includes a reflective polarizer, and the reflective polarizer is disposed on a side of the first prism structure away from the quantum dot film layer.
  • the quantum dot composite film further includes a first optical film layer, and the first optical film layer is disposed on a side of the first prism structure away from the quantum dot film layer;
  • the surface of the first optical film layer away from the quantum dot film layer has a plurality of second prism structures.
  • the plurality of second prism structures are distributed continuously or at intervals along the second direction on the side of the first optical film layer away from the quantum dot film layer, and the first direction and The second directions are parallel or cross.
  • the distance between adjacent second prism structures is greater than 0 and less than or equal to 100 ⁇ m.
  • the cross section of the second prism structure is triangular or trapezoidal.
  • the base angles of the second prism structures are the same, and the base angles of the second prism structures are greater than or equal to 20° and less than or equal to 80°.
  • the second prism structure includes a plurality of first sub-prism structures and a plurality of second sub-prism structures, and the second sub-prism structures are interspersed between the first sub-prism structures or arranged on one side of the first sub-prism structure;
  • the bottom angle of the first sub-prism structure is different from the bottom angle of the second sub-prism structure; and/or, the cross-sectional shape of the first sub-prism structure is different from the cross-sectional shape of the second sub-prism structure different.
  • the bottom angle of the first sub-prism structure is larger than the bottom angle of the second sub-prism structure.
  • the base angle of the first sub-prism structure is greater than 45° and less than or equal to 80°
  • the base angle of the second sub-prism structure is greater than or equal to 10° and less than or equal to 45°.
  • the reflective polarizer is disposed on a side of the first optical film layer away from the quantum dot film layer.
  • the material of the first prism structure includes transparent polymer and inorganic particles.
  • the transparent polymer includes at least one of polymethyl methacrylate, polycarbonate, polyester resin or epoxy resin, and the inorganic particles include at least one of TiO2, BaSO4, ZrO2 kind.
  • the refractive index of the first prism structure is greater than or equal to 1.3 and less than or equal to 1.7.
  • the quantum dot film layer includes a composite film substrate and a plurality of quantum dots distributed in the composite film substrate;
  • the material of the composite film substrate includes a transparent polymer.
  • the material of the transparent polymer includes at least one of polymethyl methacrylate, polycarbonate, polyester resin or epoxy resin, and the quantum dot includes a luminescent core and includes the luminescent Inorganic protective shell of the core;
  • the material of the inorganic protective shell layer includes at least one of CdS, ZnSe, ZnCdS2, ZnS and ZnO.
  • the quantum dots include red light quantum dots and green light quantum dots
  • the material of the luminescent core of the red light quantum dots includes at least one of CdSe, Cd2SeTe and InAs
  • the material of the luminescent core of the green light quantum dots includes at least one of ZnCdSe2, InP, and Cd2SSe.
  • the quantum dot composite film is attached to the side of the liquid crystal display panel facing the backlight module; or, the quantum dot composite film is attached to the side of the backlight module facing the side of the LCD panel.
  • the embodiments of the present application provide a display device, the display device includes the quantum dot composite film, a liquid crystal display panel, and a backlight module, the quantum dot composite film includes a quantum dot film layer, The light-emitting surface of the quantum dot film layer is provided with a plurality of first prism structures, and the angle at which the light is emitted from the light-emitting surface of the quantum dot film layer is reduced by using the refraction effect of the first prism structure on the light, thereby improving the front view of the display device. Brightness, and improve or avoid the problem of light leakage of the display device in a dark state with a large viewing angle, so as to improve the contrast of the display device.
  • FIG. 1 is a schematic structural diagram of a first embodiment of a display device provided by an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a second embodiment of a display device provided by an embodiment of the present application.
  • Figures 3a to 3d are schematic cross-sectional structure diagrams of the first embodiment of the quantum dot composite film provided by the embodiment of the present application;
  • FIG. 4 is a schematic three-dimensional structure diagram of the first embodiment of the quantum dot composite film provided in the embodiment of the present application.
  • 5a to 5c are schematic diagrams of the arrangement direction of the first prism structure provided by the embodiment of the present application.
  • Fig. 6 is a histogram of the simulation results of the large viewing angle deviation of the first prism structure with different bottom angles provided by the embodiment of the present application;
  • Fig. 7 is a schematic diagram of the light incident-exit relationship of the first prism structure with different base angles provided by the embodiment of the present application;
  • FIG. 8 is a schematic structural diagram of a third embodiment of a display device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a fourth embodiment of a display device provided by an embodiment of the present application.
  • Figure 10 is a schematic diagram of the comparison of the outgoing light patterns of the experimental group and the control group at the point provided by the embodiment of the present application;
  • Figures 11a to 11d are schematic cross-sectional structure diagrams of the second embodiment of the quantum dot composite film provided by the embodiment of the present application.
  • Fig. 12 is the corresponding outgoing light type diagram of each experimental group in Table 3 provided by the embodiment of the present application.
  • Fig. 13a to Fig. 13d are schematic cross-sectional structure diagrams of the third embodiment of the quantum dot composite film provided by the embodiment of the present application.
  • Figure 14 is a schematic diagram of the comparison of the outgoing light patterns of the double prism structure provided by the embodiment of the present application.
  • Fig. 15 is a schematic diagram of a three-dimensional structure of the second embodiment of the quantum dot composite film provided in the embodiment of the present application;
  • Fig. 16 is a schematic diagram of another three-dimensional structure of the second embodiment of the quantum dot composite film provided by the embodiment of the present application.
  • Figure 17 is a comparison diagram of the outgoing light patterns of each experimental group provided in the embodiment of the present application.
  • Figure 18 is a histogram of the Gamma shift value of 4 groups of experimental groups in Table 5 provided by the embodiment of the application at 102 gray scales and 20° viewing angle;
  • FIG. 19 is a schematic structural diagram of a fifth embodiment of a display device provided by an embodiment of the present application.
  • FIG. 20 is a schematic structural diagram of a sixth embodiment of a display device provided by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a first embodiment of the display device provided by the embodiment of the present application.
  • the display device 100 includes a liquid crystal display panel 20 and a backlight module. 30 and the quantum dot composite film 10, the liquid crystal display panel 20 is arranged on the light emitting side of the backlight module 30, and the quantum dot composite film 10 is arranged on the liquid crystal display panel 20 and the backlight module 30 between.
  • the display device 100 may be a mobile terminal, such as a smart phone, a tablet computer, a notebook computer, etc., and the display device 100 may also be a wearable terminal, such as a smart watch, a smart bracelet, smart glasses, an augmented reality equipment, etc., the display device 100 may also be a fixed terminal, such as a desktop computer, a television, and the like.
  • the types of the liquid crystal display panel 20 include but not limited to VA type, IPS type, and TN type.
  • the quantum dot composite film 10 includes a quantum dot film layer 11 and a plurality of first prism structures 12 , and the first prism structures 12 are arranged on the light-emitting surface of the quantum dot film layer 11 .
  • the quantum dot film layer 11 includes a composite film substrate and a plurality of quantum dots uniformly dispersed in the composite film substrate.
  • the material of the composite film substrate includes a transparent polymer material, and the transparent polymer material includes one or more of polyester resin (PET), polymethyl methacrylate (PMMA) and polycarbonate (PC) .
  • the quantum dots include a luminescent core and an inorganic protective shell wrapping the luminescent core.
  • the multiple quantum dots include red light quantum dots and green light quantum dots, the red light material of the luminescent core of the red light quantum dots includes one or more of CdSe, Cd2SeTe and InAs, and the green light material of the luminescent core of the green light quantum dots includes One or more of ZnCdSe2, InP, Cd2SSe.
  • the material of the inorganic protective shell layer includes one or more combinations of materials such as CdS, ZnSe, ZnCdS2, ZnS, ZnO, etc.
  • the material of the inorganic protective shell layer can also include high-stability composite quantum dots and perovskite quantum dots, etc.
  • High stability composite quantum dots include hydrogel state quantum dot structure or CdSe-SiO2 and so on.
  • the material of the first prism structure 12 includes transparent polymer and inorganic particles, and the inorganic particles are uniformly dispersed in the transparent polymer.
  • the material of transparent polymer can comprise polymethyl methacrylate (PMMA), polycarbonate (PC), polyester resin (PET) or epoxy resin (PC) at least one or more composition, inorganic particle
  • PMMA polymethyl methacrylate
  • PC polycarbonate
  • PET polyester resin
  • PC epoxy resin
  • the material can include at least one or a combination of TiO2, BaSO4, ZrO2.
  • the transparent polymer material mixed with inorganic particles can be directly coated on the light-emitting surface of the quantum dot film layer 11, and then the transparent polymer material is embossed to form an uneven surface. After the printed transparent polymer material is cured, the first prism structure 12 can be formed on the surface of the quantum dot film layer 11 .
  • the quantum dot composite film 10 further includes a reflective polarizer 13 , and the reflective polarizer 13 is disposed on a side of the first prism structure 12 away from the quantum dot film layer 11 .
  • the reflective polarizer 13 is bonded to the surface of the first prism structure 12 facing away from the quantum dot film layer 11 through the first transparent adhesive layer 14, so The side of the quantum dot film layer 11 in the quantum dot composite film 10 away from the first prism structure 12 is attached to the side of the backlight module 30 facing the liquid crystal display panel 20 .
  • the thickness of the first transparent adhesive layer 14 is 4 ⁇ m.
  • the thickness of the first transparent adhesive layer 14 is not limited to 4 ⁇ m, but can also be 2 ⁇ m, 3 ⁇ m or 5 ⁇ m, etc., and only needs to be greater than or equal to 2 ⁇ m and less than or equal to 5 ⁇ m.
  • the quantum dot composite film 10 is pasted on the backlight module 30 , and the frame area between the liquid crystal display panel 20 and the backlight module 30 is pasted by a frame glue 40 Therefore, there is no need to attach the reflective polarizer 13 to the liquid crystal display panel 20, and by attaching the quantum dot composite film 10 to the backlight module 30, the light efficiency of the backlight module can be effectively improved, thereby improving the display The brightness of the device.
  • FIG. 2 which is a schematic structural diagram of a second display device provided in an embodiment of the present application
  • the reflective polarizer 13 is bonded to the first transparent adhesive layer 14
  • a prism structure 12 is away from the surface of one side of the quantum dot film layer 11, and the side surface of the reflective polarizer 13 away from the first prism structure 12 is bonded to the liquid crystal display through a second transparent adhesive layer 15
  • the panel 20 faces a side surface of the backlight module 30 .
  • the frame area of the liquid crystal display panel 20 and the backlight module 30 is bonded through the sealant 40 , without affecting the liquid crystal display panel 20 and the quantum dot composite film 10 through the second While pasting the transparent adhesive layer 15, the quantum dot composite film 10 can also be pasted on the bottom of the liquid crystal display panel 20, thereby simplifying the structure of the backlight module 30 and improving the viewing angle of the display device.
  • the thickness of the second transparent adhesive layer 15 is 10 ⁇ m.
  • the thickness of the second transparent adhesive layer 15 is not limited to 10 ⁇ m, but can also be 5 ⁇ m, 8 ⁇ m, 15 ⁇ m, 18 ⁇ m or 20 ⁇ m, etc., and it only needs to be greater than or equal to 5 ⁇ m and less than or equal to 20 ⁇ m.
  • both the first transparent adhesive layer 14 and the second transparent adhesive layer 15 can be any one of ultraviolet photosensitive adhesive, pressure sensitive adhesive or epoxy thermal adhesive.
  • at least one of the first transparent adhesive layer 14 and the second transparent adhesive layer 15 can also be replaced by a haze adhesive layer, and the haze adhesive layer can be added with TiO2, BaSO4, ZrO2 and other diffusion particles.
  • the cross-section of the first prism structure 12 is triangular or trapezoidal, and a plurality of the first prism structures 12 are distributed continuously or at intervals on the light-emitting surface of the quantum dot film layer 11 .
  • Figures 3a to 3d are schematic cross-sectional structure diagrams of the first embodiment of the quantum dot composite film provided by the embodiment of the present application, and the cross section is parallel to the short side of the quantum dot composite film 10
  • the plane of the direction y and the thickness direction z, the section of the first prism structure 12 in Fig. 3 a is an isosceles triangle
  • the height h1 of the first prism structure 12 on the thickness direction z of the quantum dot composite film 10 is 20 ⁇ m
  • the first prism The base angle ⁇ 1 of the structure 12 is 30°.
  • the cross-section of the first prism structure 12 in Fig. 3 b is an isosceles triangle, the height h1 of the first prism structure 12 on the thickness direction a3 of the quantum dot composite film 10 is 25 ⁇ m, and the base angle ⁇ 1 of the first prism structure 12 is 45 ° .
  • the first prism structures 12 in FIG. 3 a and FIG. 3 b are distributed continuously on the light-emitting surface of the quantum dot film layer 11 , and the bottom corners of adjacent first prism structures 12 are connected to each other.
  • the cross-section of the first prism structure 12 in Fig. 3c is an isosceles triangle, the height h1 of the first prism structure 12 on the thickness direction a3 of the quantum dot composite film 10 is 30 ⁇ m, and the base angle ⁇ 1 of the first prism structure 12 is 70° .
  • the plurality of first prism structures 12 in 3c are distributed at intervals on the light emitting surface of the quantum dot film layer 11, and the distance d1 between any two adjacent first prism structures 12 is 30 ⁇ m.
  • the cross-section of the first prism structure 12 in Fig. 3 d is an isosceles trapezoid
  • the height h1 of the first prism structure 12 on the thickness direction z of the quantum dot composite film 10 is 30 ⁇ m
  • the base angle ⁇ 1 of the first prism structure 12 is 60 ° .
  • a plurality of first prism structures 12 are distributed in relation on the light-emitting surface of the quantum dot composite film 10 .
  • the cross-sectional shape of the first prism structure 12 is not limited to the isosceles triangle or isosceles trapezoid in the above-mentioned embodiments, but may also be a right triangle, other non-isosceles triangles, a right trapezoid or other non-isosceles trapezoids. wait.
  • the distance between any two adjacent first prism structures 12 is not limited to the above-mentioned 30 ⁇ m, but can also be 10 ⁇ m , 50 ⁇ m, 70 ⁇ m, or 100 ⁇ m, etc., it only needs to be greater than 0 ⁇ m and less than or equal to 100 ⁇ m.
  • the base angle ⁇ 1 of the first prism structure 12 is not limited to 30°, 45°, 60° or 70° in the above embodiments, but can also be 20° or 80°, and it only needs to be greater than or equal to 20° and Less than or equal to 80°.
  • Figure 4 is a schematic diagram of the three-dimensional structure of the first embodiment of the quantum dot composite film provided in the embodiment of the present application, the length direction of the first prism structure 12 is in line with the long side of the quantum dot composite film 10 The direction x is parallel, the width direction of the first prism structure 12 is parallel to the short side direction y of the quantum dot composite film 10, and a plurality of the first prism structures 12 are continuously distributed along the short side direction y of the quantum dot composite film 10 .
  • Figures 5a to 5c are schematic diagrams of the arrangement direction of the first prism structure provided by the embodiment of the present application.
  • the side direction x is parallel.
  • the longitudinal direction of the first prism structure 12 is perpendicular to the long-side direction x of the quantum dot composite film 10, and in Fig.
  • the angle can be acute or obtuse.
  • first prism structure 12 As an isosceles triangle as an example, several first prism structures 12 are designed as shown in Table 1, and the height h1 of the first prism structure 12 is uniformly 35 ⁇ m. Through optical simulation analysis, each face-up brightness and 1/2 brightness viewing angle performance, the results are shown in Table 1:
  • the front view brightness of the display device gradually increases.
  • the base angle (Taper) of the first prism structure 12 gradually increases, the front view brightness of the display device gradually increases.
  • the front view brightness of the display device is increased by about 5%, and the 1/2 brightness viewing angle remains basically unchanged.
  • the front-view brightness of the display device increases gradually, and the magnitude is relatively large.
  • the front-view brightness of the display device is increased by about 14% compared with the control group, and the 1/2 brightness viewing angle is slightly reduced, but it is still maintained at a single The edge is more than 60°.
  • FIG. 6 is a histogram of the simulation results of the large viewing angle deflection of the first prism structure with different base angles provided by the embodiment of the present application.
  • the base angle ⁇ 1 of the first prism structure 12 is increased to 60°, The 30° and 60° viewing angle point y offsets are significantly reduced; when the base angle ⁇ 1 of the first prism structure 12 is increased to 70°, the 30° and 60° viewing angle points x and y are significantly improved.
  • Figure 7 is a schematic diagram of the light incident-exit relationship of the first prism structure with different base angles provided by the embodiment of the present application, because when the base angle ⁇ 1 of the first prism structure 12 is increased to 70°, the first prism Structure 12 refracts light from a small viewing angle (0 to 30°) to exit at a large viewing angle, refracts light at a medium viewing angle (30 to 50°) to exiting at a small viewing angle, and fully reflects light at a large viewing angle (above 50°) back to the quantum dot film layer 11 and carry out secondary exit, after the light of each viewing angle is averaged, the difference of R, G, and B light types is reduced, so that the color shift phenomenon is improved.
  • FIG. 8 is a schematic structural diagram of a third embodiment of a display device provided in an embodiment of the present application.
  • the structure of the display device shown in FIG. 8 is roughly the same as that of the display device shown in FIG. Same, the difference is that the quantum dot composite film 10 in the display device shown in Figure 8 does not include a reflective polarizer 13, but includes a first optical film layer 16, and the first optical film layer 16 is arranged on The side of the first prism structure 12 facing away from the quantum dot film layer 11 has a plurality of second prism structures 160 on the surface of the first optical film layer 16 facing away from the quantum dot film layer 11 .
  • the first optical film layer 16 can be pasted on the side of the first prism structure 12 away from the quantum dot film layer 11 through the first transparent adhesive layer 14, and the quantum dot film layer 11 can be connected with the backlight module.
  • the group 30 is bonded to one side of the liquid crystal display panel 20 .
  • FIG. 9 is a schematic structural diagram of a fourth embodiment of a display device provided in an embodiment of the present application.
  • the structure of the display device shown in FIG. 9 is roughly the same as that of the display device shown in FIG. Same, the difference is that the quantum dot film layer 11 in the display device shown in FIG.
  • One side surface of the liquid crystal display panel 20 can be attached to the bottom surface of the liquid crystal display panel 20 through the second transparent adhesive layer 15 .
  • the first prism structure 12 can form multiple air gaps between the quantum dot film layer 11 and the first optical film layer 16 .
  • the first light-receiving refraction occurs during the process of passing through the air gap and entering the first optical film layer 16, so that the light rays enter the first optical film layer.
  • the angle between the layer 16 and the thickness direction z of the quantum dot composite film 10 is reduced.
  • the quantum dot composite layer 10 of the experimental group includes a quantum dot film layer 11, a first prism structure 12 and a first optical film layer 16.
  • the quantum dot composite layer 10 of the control group only includes the quantum dot film layer 11 and the first optical film layer 16 .
  • Figure 10 is a schematic diagram of the comparison of the outgoing light patterns of the experimental group and the control group provided in the embodiment of the present application.
  • the viewing angle is between 0 and 60°
  • the brightness of the experimental group and the control group are almost the same;
  • the viewing angle When it is greater than 60° the curvature of the brightness curve of the experimental group is significantly greater than that of the control group, and the brightness of the experimental group is significantly lower than that of the control group.
  • Table 2 is the optical specification data table of the experimental group and the control group provided in the embodiment of the present application. Compared with the control group, the front view brightness of the experimental group has increased by 41.8%, and the dark state brightness has decreased by 21.0%. The contrast ratio has been improved by 79%.
  • adding a first prism structure 12 between the quantum dot film layer 11 and the first optical film layer 16 can effectively improve the front-view brightness of the display device and improve the light leakage of the display device in a dark state with a large viewing angle. to improve the contrast of the display device.
  • the cross-section of the second prism structures 160 is triangular or trapezoidal, the base angles of each of the second prism structures 160 are the same, and the base angles of the second prism structures 160 are greater than or equal to 20° and less than or equal to 80°. °.
  • Fig. 11a to Fig. 11d are schematic cross-sectional structure diagrams of the second embodiment of the quantum dot composite film provided by the embodiment of the present application.
  • the cross-sections of the first prism structure 12 and the second prism structure 160 are all isosceles triangles, the plurality of first prism structures 12 are continuously distributed on the light-emitting surface of the quantum dot film layer 11, and the plurality of second prism structures 160 are in the The surface of the first optical film layer 16 is distributed continuously.
  • the height h1 of the first prism structure 12 is 20 ⁇ m
  • the base angle ⁇ 1 of the first prism structure 12 is 30°
  • the height h2 of the second prism structure 160 is 20 ⁇ m
  • the base angle ⁇ 2 of the second prism structure 160 is 30°.
  • the cross sections of the first prism structure 12 and the second prism structure 160 are isosceles triangles, a plurality of first prism structures 12 are distributed at intervals on the light-emitting surface of the quantum dot film layer 11, and a plurality of second prism structures 160 are in the The surface of the first optical film layer 16 is distributed at intervals.
  • the height h1 of the first prism structure 12 is 25 ⁇ m
  • the base angle ⁇ 1 of the first prism structure 12 is 60°
  • the distance d1 between any adjacent first prism structures 12 is 30 ⁇ m
  • the height h2 of the second prism structure 160 is 25 ⁇ m
  • the base angle ⁇ 2 of the second prism structure 160 is 45°
  • the distance d2 between any adjacent second prism structures 160 is 50 ⁇ m.
  • the cross-sections of the first prism structure 12 and the second prism structure 160 are isosceles triangles, and the plurality of first prism structures 12 are continuously distributed on the light-emitting surface of the quantum dot film layer 11, and the plurality of second prism structures 160 are in the The surface of the first optical film layer 16 is distributed continuously.
  • the height h1 of the first prism structure 12 is 30 ⁇ m
  • the base angle ⁇ 1 of the first prism structure 12 is 45°
  • the height h2 of the second prism structure 160 is 30 ⁇ m
  • the base angle ⁇ 2 of the second prism structure 160 is 60°.
  • the cross section of the first prism structure 12 is an isosceles triangle
  • the cross section of the second prism structure 160 is an isosceles trapezoid
  • a plurality of first prism structures 12 are distributed at intervals on the light emitting surface of the quantum dot film layer 11
  • a plurality of first prism structures The two prism structures 160 are continuously distributed on the surface of the first optical film layer 16 .
  • the height h1 of the first prism structure 12 is 30 ⁇ m
  • the base angle ⁇ 1 of the first prism structure 12 is 70°
  • the distance between any adjacent first prism structures 12 is 25 ⁇ m
  • the height h2 of the second prism structure 160 is 30 ⁇ m
  • the base angle ⁇ 2 of the second prism structure 160 is 45°.
  • the height h1 of the first prism structure 12 may also be 10 ⁇ m or 50 ⁇ m, etc., and it only needs to be greater than or equal to 10 ⁇ m and less than or equal to 50 ⁇ m.
  • the height h2 of the second prism structure 160 may also be 10 ⁇ m or 50 ⁇ m, and it only needs to be greater than or equal to 10 ⁇ m and less than or equal to 50 ⁇ m.
  • the distance d2 between any two adjacent second prism structures 160 is not limited to 25 ⁇ m or 50 ⁇ m in the above embodiment, but can also be 10 ⁇ m, 30 ⁇ m, 70 ⁇ m or 100 ⁇ m, etc., only It needs to be greater than 0 ⁇ m and less than or equal to 100 ⁇ m.
  • the base angle ⁇ 2 of the second prism structure 160 may also be 20°, 50° or 80°, etc., and it only needs to be greater than or equal to 20° and less than or equal to 80°.
  • test group first prism structure second prism structure Face brightness 1/2 brightness viewing angle
  • Figure 12 is the corresponding outgoing light pattern diagram for each experimental group in Table 3 provided by the embodiment of the present application, as shown in Figure 12 and Experimental Groups 1 to 3 in Table 3, with the first prism
  • the bottom angle ⁇ 1 of the structure 12 gradually increases, the front view brightness of the display device gradually increases, and the 1/2 brightness viewing angle remains basically unchanged. It can be seen that by changing the design of the first prism structure 12 on the light-emitting surface of the quantum dot film layer 11, the energy efficiency of the display device can be increased by about 10%, and the viewing angle of 1/2 brightness can be kept basically unchanged.
  • the first prism structure 12 in the quantum dot composite film 10 mainly affects the energy efficiency of the display device
  • the second prism structure 160 of the first optical film layer 16 mainly affects the viewing angle of the display device.
  • the second prism structure 160 adopts a double Taper structure design, that is, the second prism structure 160 includes a first sub-prism structure 161 and a second sub-prism structure 162, and the second sub-prism structure 162 is interspersed. Between a plurality of the first sub-prism structures 161 or arranged on one side of the first sub-prism structures 161, the base angle ⁇ 21 of the first sub-prism structures 161 is different from that of the second sub-prism structures 162 The base angle ⁇ 22 is different.
  • the cross-sectional shapes of the first sub-prism structure 161 and the second sub-prism structure 162 are the same, and the height of the first sub-prism structure 161 and the second sub-prism structure 162 in the thickness direction z of the quantum dot composite film 10 is The same, and the number of the first sub-prism structures 161 and the second sub-prism structures 162 is the same.
  • Figures 13a to 13d are schematic cross-sectional structure diagrams of the third embodiment of the quantum dot composite film provided by the embodiment of the present application, the first sub-prism structure 161 and the second sub-prism structure in Figure 13a
  • the cross-sections of 162 are all isosceles triangles, and the height is 20 ⁇ m.
  • the base angle ⁇ 21 of the first sub-prism structure 161 is 70°, and the base angle ⁇ 22 of the second sub-prism structure 162 is 45°.
  • the first sub-prism structure 161 and The ratio of the number of the second sub-prism structures 162 is 1:1.
  • the numbers of the first sub-prism structures 161 and the second sub-prism structures 162 are different.
  • the cross-sections of the first sub-prism structure 161 and the second sub-prism structure 162 are both isosceles triangles with a height of 20 ⁇ m, the base angle ⁇ 21 of the first sub-prism structure 161 is 60°, and the second sub-prism structure
  • the base angle ⁇ 22 of the prism structure 162 is 45°, the ratio of the number of the first sub-prism structure 161 to the second sub-prism structure 162 is 2:1, two adjacent second sub-prism structures 162 are provided with two adjacent first sub-prism structures 161.
  • the ratio of the number of the first sub-prism structures 161 to the second sub-prism structures 162 is not limited to 2:1 in the above embodiment, but can also be 3:1, 1:2 or 1:3.
  • the cross sections of the first sub-prism structure 161 and the second sub-prism structure 162 are isosceles trapezoidal, and the height is 30 ⁇ m, the base angle ⁇ 21 of the first sub-prism structure 161 is 60°, the second sub-prism structure The base angle ⁇ 22 of the prism structure 162 is 30°, and the ratio of the number of the first sub-prism structures 161 to the second sub-prism structures 162 is 1:1.
  • cross-sectional shapes of the first sub-prism structure 161 and the second sub-prism structure 162 are different.
  • the cross-sectional shape of the first sub-prism structure 161 is an isosceles triangle
  • the cross-sectional shape of the second sub-prism structure 162 is an isosceles trapezoid
  • the heights of the first sub-prism structure 161 and the second sub-prism structure 162 are equal.
  • the base angle ⁇ 21 of the first sub-prism structure 161 is 70°
  • the base angle ⁇ 22 of the second sub-prism structure 162 is 70°
  • the ratio of the quantity of the first sub-prism structure 161 to the second sub-prism structure 162 is 1: 1.
  • the cross-sectional shape of the first sub-prism structure 161 may also be an isosceles trapezoid, and the cross-sectional shape of the second sub-prism structure 162 may also be an isosceles triangle.
  • the bottom angle of the first sub-prism structure 161 may also be 45°, 50° or 80°, etc., and it only needs to be greater than or equal to 45° and less than or equal to 80°.
  • the base angle of the second sub-prism structure 162 can also be 10°, 20° or 40°, etc., and it only needs to be greater than or equal to 10° and less than or equal to 45°.
  • the height of the first sub-prism structure 161 may be the same as that of the second sub-prism structure 162 , and may also be larger or smaller than the height of the second sub-prism structure 162 .
  • the cross-sectional shapes of the prism structures 162 are the same, but the base angles are different.
  • FIG. 14 is a schematic diagram of the comparison of the outgoing light patterns of the double prism structure provided by the embodiment of the present application. Combining FIG. 14 and Table 4, it can be seen that in the experimental group, the first sub-prism structure 161 and the second sub-prism structure 162 have different bottom angles, The outgoing light pattern of the outgoing light can be changed in steps, reducing the amount of light exiting from a large angle (40° to 60°), thereby reducing the brightness of a specific viewing angle, reducing the problem of light leakage at a large viewing angle, and improving the energy efficiency of the display device , and at the same time, it can also reduce the amount of gamma shift (Gamma Shift) of different gray scales under large viewing angles, thereby improving the situation of gamma shift under different gray scales.
  • Gamma Shift gamma shift
  • FIG. 15 is a schematic diagram of a three-dimensional structure of the second embodiment of the quantum dot composite film provided in the embodiment of the present application, and a plurality of first prism structures 12 are continuous along the first direction a1 distribution, a plurality of second prism structures 160 are continuously distributed along the second direction a2, the first direction a1 is parallel to the second direction a2, and both are parallel to the long side direction x of the quantum dot composite film 10, and perpendicular to the The short side direction y of the quantum dot composite film 10 .
  • FIG. 16 is a schematic diagram of another three-dimensional structure of the second embodiment of the quantum dot composite film provided by the embodiment of the present application, and the first prism structures 12 are continuously distributed along the first direction a1 , the second prism structure 160 is continuously distributed along the second direction a2, the first direction a1 is perpendicular to the second direction a2, the first direction a1 is parallel to the long side direction x of the quantum dot composite film 10, and the second direction a2 is parallel to the quantum dot composite film 10
  • the longitudinal direction x of the dot composite film 10 is vertical.
  • the first direction a1 and the second direction a2 may not be perpendicular, but may intersect to form a certain angle, such as 10°, 20°, 45°, 60°, 70° or 80°.
  • the base angle ⁇ 21 of the first sub-prism structure 161 may be 70°
  • the base angle ⁇ 22 of the second sub-prism structure 162 may be 30°.
  • the refractive index of the first prism structure 12 in the 4 groups of control experiment groups is respectively Not the same, respectively 1.43, 1.50, 1.57 and 1.64.
  • table 5 is the optical specification data table of each experimental group, when the angle of the base angle of the first prism structure 12 and the angle of the base angle of the second prism structure 160 keeps constant, along with the first prism structure 12 As the refractive index increases, the viewing angle improvement range gradually decreases.
  • FIG. 17 is a comparison diagram of the outgoing light patterns of the various experimental groups provided by the embodiment of the present application. Since the two-layer prism structure of the first prism structure 12 and the second prism structure 160 stacked is designed, 4 There are two inflection points in the light types of the outgoing rays of each experimental group. As the viewing angle increases, the curvature of the luminance curves of each experimental group suddenly increases when the inflection point is passed. In the four experimental groups, as the refractive index of the first prism structure 12 increases, the inflection point moves toward a lower angle.
  • Figure 18 is a histogram of the Gamma shift values of the 4 groups of experimental groups in Table 5 provided by the embodiment of the present application at 102 gray scales and a viewing angle of 20°, along with the refractive index of the first prism structure 12 Under this condition, the Gamma shift value decreases accordingly, and the No. 3 and No. 4 experimental groups can improve the Gamma shift index to within the specification (that is, below 3%). In practical applications, materials with different refractive indices can be selected for the first prism structure 12 according to different optical specifications.
  • the refractive index of the first prism structure 12 is 1.4.
  • the refractive index of the first prism structure 12 is not limited to 1.4 in the above embodiment, but can also be 1.3, 1.5, 1.6 or 1.7, etc., and only needs to be greater than or equal to 1.3 and less than or equal to 1.7.
  • FIG. 19 is a schematic structural diagram of the fifth embodiment of the display device provided by the embodiment of the present application.
  • the structure of the display device shown in FIG. 19 is roughly the same as that of the display device shown in FIG.
  • the quantum dot composite film 10 in the display device shown in FIG. 19 also includes a reflective polarizer 13, and the reflective polarizer 13 is arranged on the first optical film layer 16 away from the quantum dot film layer. 11 side.
  • the reflective polarizer 13 is attached to the surface of the first optical film layer 16 facing away from the quantum dot film layer 11 through the second transparent adhesive layer 15 .
  • FIG. 20 is a schematic structural diagram of the sixth embodiment of the display device provided by the embodiment of the present application.
  • the structure of the display device shown in FIG. 20 is roughly the same as that of the display device shown in FIG. The same, except that the quantum dot composite film 10 in the display device shown in FIG.
  • the surface of the sheet 13 facing away from the first optical film layer 16 is attached to the surface of the liquid crystal display panel 20 close to the backlight module 30 through a haze adhesive layer 18 .
  • the use of the haze adhesive layer 18 can improve display defects caused by interference phenomena such as rainbow patterns or moiré patterns caused by lamination of different material film layers.
  • the embodiments of the present application provide a display device, the display device includes a quantum dot composite film, a liquid crystal display panel, and a backlight module, the quantum dot composite film includes a quantum dot film layer, the The light emitting surface of the quantum dot film layer is provided with a plurality of first prism structures, through the adjustment of the light emitting angle by the first prism structure, more light is emitted from a smaller angle, thereby improving the front view brightness of the display device, and Improve or avoid the problem of light leakage of the display device in a dark state with a large viewing angle, thereby improving the contrast of the display device.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)

Abstract

一种显示装置(100),包括量子点复合膜(10)、液晶显示面板(20)以及背光模组(30),量子点复合膜(10)包括量子点膜层(11),量子点膜层(11)的出光面设有多个第一棱镜结构(12),利用第一棱镜结构(12)减小光线从量子点膜层(11)出射的角度,从而提高显示装置(100)的正视亮度,并改善或避免显示装置(100)在大视角暗态情况下漏光的问题。

Description

显示装置 技术领域
本发明涉及显示技术领域,尤其涉及一种显示装置。
背景技术
目前由于量子点材料(Quantum Dot,QD)本身所具有的高色纯度、光谱连续可调等优异性质,使其成为21世纪最为优秀的发光材料,可以在显示色域上大幅度提高现有液晶显示(liquid crystal display,LCD)面板的色彩表现,因此近年来其显示应用被广泛研究。
技术问题
现有量子点广视角显示技术是将量子点复合膜与棱镜贴合,利用量子点发光极大视角的特点,提升液晶显示面板的亮度。但是,此方案由于视角扩散过大,在超大视角(>60°)区域仍有较多的光线出射,导致液晶显示面板的正视亮度不足,并且在暗态大视角的情况下漏光严重,对比度明显偏低。
综上所述,现有显示装置存在大视角仍有较多光线出射导致的正式亮度不足以及大视角暗态漏光的问题。故,有必要提供一种显示装置来改善这一缺陷。
技术解决方案
本申请实施例提供一种显示装置,用于解决现有显示面板存在的大视角仍有较多光线出射导致的正式亮度不足以及大视角暗态漏光的问题。
本申请实施例提供一种显示装置,包括:
背光模组;
液晶显示面板,设置于所述背光模组的出光侧;以及
量子点复合膜,设置于所述液晶显示面板与所述背光模组之间,所述量子点复合膜包括:
量子点膜层;以及
多个第一棱镜结构,设置于所述量子点膜层的出光面。
根据本申请一实施例,所述第一棱镜结构的截面呈三角形或梯形。
根据本申请一实施例,多个所述第一棱镜结构在所述量子点膜层的所述出 光面沿第一方向呈连续分布或间隔分布。
根据本申请一实施例,所述量子点复合膜还包括反射型偏光片,所述反射型偏光片设置于所述第一棱镜结构背离所述量子点膜层的一侧。
根据本申请一实施例,所述量子点复合膜还包括第一光学膜层,所述第一光学膜层设置于所述第一棱镜结构背离所述量子点膜层的一侧;
其中,所述第一光学膜层背离所述量子点膜层的一侧表面具有多个第二棱镜结构。
根据本申请一实施例,多个所述第二棱镜结构在所述第一光学膜层背离所述量子点膜层的一侧沿第二方向呈连续分布或间隔分布,所述第一方向与所述第二方向平行或交叉。
根据本申请一实施例,相邻所述第二棱镜结构之间的距离大于0且小于或等于100μm。
根据本申请一实施例,所述第二棱镜结构的截面呈三角形或梯形。
根据本申请一实施例,各个所述第二棱镜结构的底角相同,所述第二棱镜结构的底角大于或等于20°且小于或等于80°。
根据本申请一实施例,所述第二棱镜结构包括多个第一子棱镜结构和多个第二子棱镜结构,所述第二子棱镜结构穿插设置于所述第一子棱镜结构之间或设置于所述第一子棱镜结构的一侧;
其中,所述第一子棱镜结构的底角与所述第二子棱镜结构的底角不同;和/或,所述第一子棱镜结构的截面形状与所述第二子棱镜结构的截面形状不同。
根据本申请一实施例,所述第一子棱镜结构的底角大于所述第二子棱镜结构的底角。
根据本申请一实施例,所述第一子棱镜结构的底角大于45°且小于或等于80°,所述第二子棱镜结构的底角大于或等于10°且小于或等于45°。
根据本申请一实施例,所述反射型偏光片设置于所述第一光学膜层背离所述量子点膜层的一侧。
根据本申请一实施例,所述第一棱镜结构的材料包括透明聚合物以及无机粒子。
根据本申请一实施例,所述透明聚合物包括聚甲基丙烯酸甲酯、聚碳酸酯、 涤纶树脂或环氧树脂中的至少一种,所述无机粒子包括TiO2、BaSO4、ZrO2中的至少一种。
根据本申请一实施例,所述第一棱镜结构的折射率大于或等于1.3且小于或等于1.7。
根据本申请一实施例,所述量子点膜层包括复合膜基材以及分布于所述复合膜基材中的多个量子点;
其中,所述复合膜基材的材料包括透明聚合物。
根据本申请一实施例,所述透明聚合物的材料包括聚甲基丙烯酸甲酯、聚碳酸酯、涤纶树脂或环氧树脂中的至少一种,所述量子点包括发光核以及包括所述发光核的无机保护壳层;
其中,所述无机保护壳层的材料包括CdS、ZnSe、ZnCdS2、ZnS以及ZnO中的至少一种。
根据本申请一实施例,所述量子点包括红光量子点和绿光量子点;
其中,所述红光量子点的所述发光核的材料包括CdSe、Cd2SeTe及InAs中的至少一种,所述绿光量子点的所述发光核的材料包括ZnCdSe2、InP、Cd2SSe中的至少一种。
根据本申请一实施例,所述量子点复合膜贴合于所述液晶显示面板朝向所述背光模组的一侧;或,所述量子点复合膜贴合于所述背光模组朝向所述液晶显示面板的一侧。
有益效果
本揭示实施例的有益效果:本申请实施例提供一种显示装置,所述显示装置包括所述量子点复合膜、液晶显示面板以及背光模组,所述量子点复合膜包括量子点膜层,所述量子点膜层的出光面设置有多个第一棱镜结构,利用第一棱镜结构对光线的折射作用,减小光线从量子点膜层的出光面出射的角度,从而提高显示装置的正视亮度,并改善或避免显示装置在大视角暗态情况下漏光的问题,以此提升显示装置的对比度。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是揭示的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的显示装置的第一实施例的结构示意图;
图2为本申请实施例提供的显示装置的第二实施例的结构示意图;
图3a至图3d为本申请实施例提供的量子点复合膜的第一实施例的截面结构示意图;
图4为本申请实施例提供的量子点复合膜的第一实施例的立体结构示意图;
图5a至图5c为本申请实施例提供的第一棱镜结构的排列方向示意图;
图6为本申请实施例提供的不同底角的第一棱镜结构的大视角色偏仿真结果柱形图;
图7为本申请实施例提供的不同底角的第一棱镜结构光线入射-出射关系示意图;
图8为本申请实施例提供的显示装置的第三实施例的结构示意图;
图9为本申请实施例提供的显示装置的第四实施例的结构示意图;
图10为本申请实施例提供点的实验组和对照组出射光型比对示意图;
图11a至图11d为本申请实施例提供的量子点复合膜的第二实施例的截面结构示意图;
图12为本申请实施例提供的表3中各实验组对应出射光型图;
图13a至图13d为本申请实施例提供的量子点复合膜的第三实施例的截面结构示意图;
图14为本申请实施例提供的双棱镜结构的出射光型对比示意图;
图15为本申请实施例提供的量子点复合膜的第二实施例的一种立体结构示意图;
图16为本申请实施例提供的量子点复合膜的第二实施例的另一种立体结构示意图;
图17为本申请实施例提供的各个实验组的出射光型比对图;
图18为本申请实施例提供的表5中4组实验组在102灰阶、20°视角下的 Gamma shift数值的柱形图;
图19为本申请实施例提供的显示装置的第五实施例的结构示意图;
图20为本申请实施例提供的显示装置的第六实施例的结构示意图。
本发明的实施方式
以下各实施例的说明是参考附加的图示,用以例示本揭示可用以实施的特定实施例。本揭示所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本揭示,而非用以限制本揭示。在图中,结构相似的单元是用以相同标号表示。
下面结合附图和具体实施例对本揭示做进一步的说明:
本申请实施例提供一种显示装置,如图1所示,图1为本申请实施例提供的显示装置的第一实施例的结构示意图,所述显示装置100包括液晶显示面板20、背光模组30以及所述量子点复合膜10,所述液晶显示面板20设置于所述背光模组30的出光侧,所述量子点复合膜10设置于所述液晶显示面板20与所述背光模组30之间。
在本申请实施例中,显示装置100可以是移动终端,例如智能手机、平板电脑、笔记本电脑等,显示装置100也可以是可穿戴式终端,例如智能手表、智能手环、智能眼镜、增强现实设备等,显示装置100还可以是固定终端,例如台式电脑、电视等。
在本申请实施例中,液晶显示面板20的类型包括但不限于VA型、IPS型以及TN型等。
如图1所示,所述量子点复合膜10包括量子点膜层11以及多个第一棱镜结构12,第一棱镜结构12设置于所述量子点膜层11的出光面上。
量子点膜层11包括复合膜基材以及均匀分散于所述复合膜基材中的多个量子点。所述复合膜基材的材料包括透明聚合物材料,所述透明聚合物材料包括涤纶树脂(PET)、聚甲基丙烯酸甲酯(PMMA)以及聚碳酸酯(PC)中的一种或多种。
所述量子点包括发光核以及包裹所述发光核的无机保护壳层。多个所述量 子点包括红光量子点以及绿光量子点,红光量子点的发光核的红光材料包括CdSe、Cd2SeTe及InAs中的一种或多种,绿光量子点的发光核的绿光材料包括ZnCdSe2、InP、Cd2SSe中的一种或多种。
无机保护壳层的材料包括CdS、ZnSe、ZnCdS2、ZnS、ZnO等材料中的一种或多种的组合,无机保护壳层的材料还可以包括高稳定性复合量子点以及钙钛矿量子点等,高稳定性复合量子点包括水凝胶状态量子点结构或CdSe-SiO2等。
第一棱镜结构12的材料包括透明聚合物以及无机粒子,无机粒子均匀的分散于透明聚合物中。透明聚合物的材料可以包括聚甲基丙烯酸甲酯(PMMA)、聚碳酸酯(PC)、涤纶树脂(PET)或环氧树脂(PC)中的至少一种或多种的组合物,无机粒子的材料可以包括TiO2、BaSO4、ZrO2中的至少一种或多种的组合物。
在本申请实施例中,可以通过将混合有无机粒子的透明聚合物材料直接涂布于量子点膜层11的出光面上,再对透明聚合物材料进行压印以形成不平坦表面,待压印后的透明聚合物材料固化后,即可在量子点膜层11表面形成所述第一棱镜结构12。
进一步的,所述量子点复合膜10还包括反射型偏光片13,所述反射型偏光片13设置于所述第一棱镜结构12背离所述量子点膜层11的一侧。
在一实施例中,如图1所示,所述反射型偏光片13通过第一透明胶层14贴合于所述第一棱镜结构12背离所述量子点膜层11的一侧表面,所述量子点复合膜10中的量子点膜层11背离所述第一棱镜结构12的一侧贴合与所述背光模组30朝向所述液晶显示面板20的一侧。
具体的,所述第一透明胶层14的厚度为4μm。在实际应用中,所述第一透明胶层14的厚度不仅限于4μm,也可以为2μm、3μm或者5μm等,仅需要大于或等于2μm且小于或等于5μm即可。
在图1所示的实施例中,所述量子点复合膜10贴合于所述背光模组30上,所述液晶显示面板20与所述背光模组30的边框区域通过框胶40进行贴合,从而无需将反射型偏光片13与液晶显示面板20进行贴合,以此通过将量子点复合膜10贴合于背光模组30上,可以有效提高背光模组的光效,从而提升显示装置的亮度。
在一实施例中,如图2所示,图2为本申请实施例提供的第二种显示装置的结构示意图,所述反射型偏光片13通过第一透明胶层14贴合于所述第一棱镜结构12背离所述量子点膜层11的一侧表面,所述反射型偏光片13背离所述第一棱镜结构12的一侧表面通过第二透明胶层15贴合于所述液晶显示面板20朝向所述背光模组30的一侧表面。
在图2所示的实施例中,所述液晶显示面板20与所述背光模组30的边框区域通过框胶40进行贴合,在不影响液晶显示面板20与量子点复合膜10通过第二透明胶层15进行贴合的同时,还可以通过将量子点复合膜10贴合在液晶显示面板20的底部,以此简化背光模组30的结构,并且可以改善显示装置的视角。
具体的,所述第二透明胶层15的厚度为10μm。在实际应用中,所述第二透明胶层15的厚度不仅限于10μm,还可以为5μm、8μm、15μm、18μm或者20μm等,仅需要大于或等于5μm且小于或等于20μm即可。
具体的,所述第一透明胶层14和所述第二透明胶层15均可以为紫外线光敏胶、压敏胶或环氧热敏胶中的任意一种。在实际应用中,第一透明胶层14和所述第二透明胶层15中的至少一个还可以替换为雾度胶层,雾度胶层中可以添加有TiO2、BaSO4、ZrO2等扩散粒子中的至少一种或多种的组合物,以此缓解或避免不同材料膜层贴合可能会产生干涉现象导致形成彩虹纹或摩尔纹等显示不良的问题。
进一步的,所述第一棱镜结构12的截面呈三角形或梯形,多个所述第一棱镜结构12在所述量子点膜层11的所述出光面呈连续分布或间隔分布。
如图3a至图3d所示,图3a至图3d为本申请实施例提供的量子点复合膜的第一实施例的截面结构示意图,该截面为平行于所述量子点复合膜10的短边方向y和厚度方向z的平面,图3a中的第一棱镜结构12的截面呈等腰三角形,第一棱镜结构12在量子点复合膜10的厚度方向z上的高度h1为20μm,第一棱镜结构12的底角α1为30°。
图3b中的第一棱镜结构12的截面呈等腰三角形,第一棱镜结构12在量子点复合膜10的厚度方向a3上的高度h1为25μm,第一棱镜结构12的底角α1为45°。
图3a和图3b中的第一棱镜结构12在量子点膜层11的出光面均呈连续分布,相邻所述第一棱镜结构12的底角相互连接。
图3c中的第一棱镜结构12的截面呈等腰三角形,第一棱镜结构12在量子点复合膜10的厚度方向a3上的高度h1为30μm,第一棱镜结构12的底角α1为70°。3c中的多个第一棱镜结构12在量子点膜层11的出光面呈间隔分布,任意相邻两个所述第一棱镜结构12之间的距离d1为30μm。
图3d中的第一棱镜结构12的截面呈等腰梯形,第一棱镜结构12在量子点复合膜10的厚度方向z上的高度h1为30μm,第一棱镜结构12的底角α1为60°。多个第一棱镜结构12在量子点复合膜10的出光面呈联系分布。
在实际应用中,所述第一棱镜结构12的截面形状不仅限于上述实施例中的等腰三角形或等腰梯形,也可以呈直角三角形、其他非等腰三角形、直角梯形或其他非等腰梯形等。
在实际应用中,当多个第一棱镜结构12在量子点膜层11的表面呈间隔分布时,任意相邻两个第一棱镜结构12之间的距离不仅限于上述的30μm,还可以为10μm、50μm、70μm、或者100μm等,仅需要大于0μm且小于或等于100μm即可。
在实际应用中,第一棱镜结构12的底角α1不仅限于上述实施例中的30°、45°、60°或70°,还可以为20°或80°,仅需要大于或等于20°且小于或等于80°即可。
如图4所示,图4为本申请实施例提供的量子点复合膜的第一实施例的立体结构示意图,所述第一棱镜结构12的长度方向与所述量子点复合膜10的长边方向x平行,第一棱镜结构12的宽度方向与所述量子点复合膜10的短边方向y平行,多个所述第一棱镜结构12沿量子点复合膜10的短边方向y呈连续分布。
如图5a至图5c所示,图5a至图5c为本申请实施例提供的第一棱镜结构的排列方向示意图,图5a中,第一棱镜结构12的长度方向与量子点复合膜10的长边方向x平行。图5b中,第一棱镜结构12的长度方向与量子点复合膜10的长边方向x垂直,图5c中第一棱镜结构12的长度方向与量子点复合膜10的长边方向x交叉形成一定的角度,该角度可以为锐角,也可以为钝角。
以所述第一棱镜结构12的截面为等腰三角形为例,设计如表1中几种第一棱镜结构12,第一棱镜结构12的高度h1统一为35μm,通过光学仿真分析各正视亮度及1/2亮度视角表现,结果如表1所示:
  Taper/° Space/μm 正视亮度/a.u. 1/2视角亮度/°
对照组 45 0 9.9 63.9
1 30 0 10 63.6
2 60 0 10.2 63.4
3 70 0 10.4 62.5
4 45 25 10.9 62.4
5 45 50 11.2 62.1
6 45 75 11.3 61.9
表1.不同第一棱镜结构设计光学规格仿真结果
如表1中第1组至第3组实验所示,随着第一棱镜结构12的底角(Taper)的角度逐渐增加,显示装置的正视亮度逐渐提高。相较于对照组,第3组实验中,当底角为70°时,显示装置的正视亮度提升约5%,且1/2亮度视角基本保持不变。
如表1中第4组至第6组实验所示,随着任意相邻第一棱镜结构12之间的距离d1逐渐增加,显示装置的正视亮度逐渐提高,且幅度较大。当任意相邻两个第一棱镜结构12之间的距离d1增加到75μm时,显示装置的正视亮度相较于对照组提升约14%,1/2亮度视角稍有下降,但仍保持在单边60°以上。
如图6所示,图6为本申请实施例提供的不同底角的第一棱镜结构的大视角色偏仿真结果柱形图,当第一棱镜结构12的底角α1增加到60°时,30°与60°视角色点y偏移明显降低;当第一棱镜结构12的底角α1增加到70°时,30°与60°视角色点x、y均有明显改善。
如图7所示,图7为本申请实施例提供的不同底角的第一棱镜结构光线入射-出射关系示意图,由于当第一棱镜结构12的底角α1提高到70°时,第一棱镜结构12将小视角(0至30°)光线折射到大视角出射,将中等视角(30 至50°)光线折射到小视角出射,将大视角(50°以上)光线全反射回量子点膜层11并进行二次出射,各个视角光线被平均化后,R、G、B光型差异减小,使得色偏现象得到改善。
在一实施例中,如图8所示,图8为本申请实施例提供的显示装置的第三实施例的结构示意图,图8所示的显示装置与图1所示的显示装置的结构大致相同,区别在于,图8所示的显示装置中的量子点复合膜10并未包含有反射型偏光片13,而是包括有第一光学膜层16,所述第一光学膜层16设置于所述第一棱镜结构12背离所述量子点膜层11的一侧,所述第一光学膜层16背离所述量子点膜层11的一侧表面具有多个第二棱镜结构160。
所述第一光学膜层16可以通过第一透明胶层14贴合于所述第一棱镜结构12背离所述量子点膜层11的一侧上,所述量子点膜层11可以与背光模组30朝向所述液晶显示面板20的一侧表面贴合。
在一实施例中,如图9所示,图9为本申请实施例提供的显示装置的第四实施例的结构示意图,图9所示的显示装置与图8所示的显示装置的结构大致相同,区别在于,图9所示的显示装置中的量子点膜层11不与背光模组30朝向液晶显示面板20的一侧表面贴合,第一光学膜层16朝向所述液晶显示面板20的一侧表面可以通过第二透明胶层15与液晶显示面板20的底面贴合。
需要说明的是,如图8和图9所示,第一棱镜结构12可以使得量子点膜层11与第一光学膜层16之间形成多个空气间隙。光线从量子点膜层11出光面的第一棱镜结构12出射后,经过空气间隙再进入至第一光学膜层16的过程中会发生第一次收光折射,使光线在进入第一光学膜层16后与所述量子点复合膜10的厚度方向z之间的夹角有所减小。
光线从第一光学膜层16表面的第二棱镜结构160出射时,会发生第二次收光折射。相较于光线在第一光学膜层16中,光线从第二棱镜结构160出射后与所述量子点复合膜10的厚度方向z之间的夹角有所减小,以使光线的出射角度减小,使得在超大视角(>60°)区域出射的光线量得以减少,在较小视角区域出射的光线量得以增加,从而提高显示面板的正视亮度,并改善显示面板在大视角暗态情况下漏光的问题。
以图8或图9所示的显示装置中的量子点复合膜微粒,建立对照实验,其中实验组的量子点复合层10包括量子点膜层11、第一棱镜结构12和第一光学膜层16,对照组的量子点复合层10仅包括量子点膜层11和第一光学膜层16。
如图10所示,图10为本申请实施例提供的实验组和对照组出射光型比对示意图,当视角在0至60°之间时,实验组和对照组的亮度几乎一致;当视角大于60°时,实验组的亮度曲线的曲率明显大于对照组的亮度曲线的曲率,且实验组的亮度明显低于对照组的亮度。
  亮态 暗态 对比度
对照组 55.20nit 0.0243nit 2271
实验组 78.18nit 0.0192nit 4071
表2.实验组和对照组的光学规格数据
如表2所示,表2为本申请实施例提供的实验组和对照组的光学规格数据表,相较于对照组,实验组的正视亮度提升了41.8%,暗态亮度下降了21.0%,对比度提升了79%。
结合图10和表2可知,在量子点膜层11与第一光学膜层16之间增设第一棱镜结构12,可以有效提高显示装置的正视亮度,并改善显示装置在大视角暗态下漏光的问题,以此提升显示装置的对比度。
进一步的,所述第二棱镜结构160的截面呈三角形或梯形,各个所述第二棱镜结构160的底角相同,所述第二棱镜结构160的底角大于或等于20°且小于或等于80°。
如图11a至图11d所示,图11a至图11d为本申请实施例提供的量子点复合膜的第二实施例的截面结构示意图。
图11a中第一棱镜结构12和第二棱镜结构160的截面均呈等腰三角形,多个第一棱镜结构12在量子点膜层11的出光面呈连续分布,多个第二棱镜结构160在第一光学膜层16的表面呈连续分布。第一棱镜结构12的高度h1为20μm,第一棱镜结构12的底角α1为30°,第二棱镜结构160的高度h2为20μm,第二棱镜结构160的底角α2为30°。
图11b中第一棱镜结构12和第二棱镜结构160的截面均呈等腰三角形,多个第一棱镜结构12在量子点膜层11的出光面呈间隔分布,多个第二棱镜结构160在第一光学膜层16的表面呈间隔分布。第一棱镜结构12的高度h1为25μm,第一棱镜结构12的底角α1为60°,任意相邻第一棱镜结构12之间的距离d1为30μm,第二棱镜结构160的高度h2为25μm,第二棱镜结构160的底角α2为45°,任意相邻第二棱镜结构160之间的距离d2为50μm。
图11c中第一棱镜结构12和第二棱镜结构160的截面均呈等腰三角形,多个第一棱镜结构12在量子点膜层11的出光面呈连续分布,多个第二棱镜结构160在第一光学膜层16的表面呈连续分布。第一棱镜结构12的高度h1为30μm,第一棱镜结构12的底角α1为45°,第二棱镜结构160的高度h2为30μm,第二棱镜结构160的底角α2为60°。
图11d中第一棱镜结构12的截面呈等腰三角形,第二棱镜结构160的截面呈等腰梯形,多个第一棱镜结构12在量子点膜层11的出光面呈间隔分布,多个第二棱镜结构160在第一光学膜层16的表面呈连续分布。第一棱镜结构12的高度h1为30μm,第一棱镜结构12的底角α1为70°,任意相邻第一棱镜结构12之间的距离为25μm,第二棱镜结构160的高度h2为30μm,第二棱镜结构160的底角α2为45°。
在实际应用中,第一棱镜结构12的高度h1还可以为10μm或者50μm等,仅需要大于或等于10μm且小于或等于50μm即可。第二棱镜结构160的高度h2还可以为10μm或者50μm等,仅需要大于或等于10μm且小于或等于50μm即可。
当第二棱镜结构160呈间隔分布时,任意相邻两个第二棱镜结构160之间的距离d2不仅限于上述实施例中的25μm或50μm,也可以为10μm、30μm、70μm或者100μm等,仅需要大于0μm且小于或等于100μm即可。
在实际应用中,第二棱镜结构160的底角α2还可以为20°、50°或者80°等,仅需要大于或等于20°且小于或等于80°即可。
设计如表3所示的6组实验,经光学仿真及实验验证,量子点复合膜10不同的棱镜结构设计具有不同的光学规格。
实验组 第一棱镜结构 第二棱镜结构 正视亮度 1/2亮度视角
  Taper/° Taper/° /a.u.
1 30 45 12.34 55.3
2 45 45 13 55.2
3 60 45 13.6 54.4
4 45 30 12.2 61
5 45 45 13 55.2
6 45 60 12.72 45.8
表3.实验组设计参数及光学规格
结合图12以及表3所示,图12为本申请实施例提供的表3中各实验组对应出射光型图,如图12以及表3中实验组1至3所示,随着第一棱镜结构12的底角α1逐渐增大,显示装置的正视亮度逐渐增大,1/2亮度视角基本保持不变。由此可知,通过改变量子点膜层11出光面上的第一棱镜结构12的设计,可以将显示装置的能效提高约10%,并且保持1/2亮度视角基本不变。
如图12以及表3中实验组4至6所示,随着第二棱镜结构160的底角α2逐渐增大,1/2视角亮度逐渐减小,且减小的幅度较大。由此可知,通过改变第二棱镜结构160的设计,可以调整显示装置单边的1/2亮度视角在40°至60°。因此,量子点复合膜10中的第一棱镜结构12主要影响显示装置的能效,第一光学膜层16的第二棱镜结构160主要影响显示装置的视角。
在一实施例中,第二棱镜结构160采用双Taper结构设计,即所述第二棱镜结构160包括第一子棱镜结构161和第二子棱镜结构162,所述第二子棱镜结构162穿插设置于多个所述第一子棱镜结构161之间或者设置于所述第一子棱镜结构161的一侧,所述第一子棱镜结构161的底角α21与所述第二子棱镜结构162的底角α22不同。
在一实施例中,第一子棱镜结构161与第二子棱镜结构162的截面形状相同,第一子棱镜结构161与第二子棱镜结构162在量子点复合膜10的厚度方向z上的高度相同,且第一子棱镜结构161与第二子棱镜结构162的数量相同。
如图13a至图13d所示,图13a至图13d为本申请实施例提供的量子点复 合膜的第三实施例的截面结构示意图,图13a中第一子棱镜结构161和第二子棱镜结构162的截面均呈等腰三角形,且高度均为20μm,第一子棱镜结构161的底角α21为70°,第二子棱镜结构162的底角α22为45°,第一子棱镜结构161与第二子棱镜结构162的数量之比为1:1。
在一实施例中,第一子棱镜结构161与第二子棱镜结构162的数量不同。
如图13b所示,第一子棱镜结构161和第二子棱镜结构162的截面均呈等腰三角形,且高度均为20μm,第一子棱镜结构161的底角α21为60°,第二子棱镜结构162的底角α22为45°,第一子棱镜结构161与第二子棱镜结构162的数量之比为2:1,相邻两个所述第二子棱镜结构162之间设置有两个相邻设置的第一子棱镜结构161。
在实际应用中,第一子棱镜结构161与第二子棱镜结构162的数量之比不仅限于上述实施例中的2:1,还可以为3:1、1:2或1:3等。
如图13c所示,第一子棱镜结构161和第二子棱镜结构162的截面均呈等腰梯形,且高度均为30μm,第一子棱镜结构161的底角α21为60°,第二子棱镜结构162的底角α22为30°,第一子棱镜结构161与第二子棱镜结构162的数量之比为1:1。
在一实施例中,第一子棱镜结构161与第二子棱镜结构162的截面形状不同。
如图13d所示,第一子棱镜结构161的截面形状呈等腰三角形,第二子棱镜结构162的截面形状呈等腰梯形,第一子棱镜结构161和第二子棱镜结构162的高度均为30μm,第一子棱镜结构161的底角α21为70°,第二子棱镜结构162的底角α22为70,第一子棱镜结构161与第二子棱镜结构162的数量之比为1:1。在其他实施例中,第一子棱镜结构161的截面形状也可以呈等腰梯形,第二子棱镜结构162的截面形状也可以呈等腰三角形。
在实际应用中,第一子棱镜结构161的底角还可以为45°、50°或者80°等,仅需要大于或等于45°且小于或等于80°即可。第二子棱镜结构162的底角还可以为10°、20°或者40°等,仅需要大于或等于10°且小于或等于45°即可。第一子棱镜结构161的高度可以与第二子棱镜结构162的高度相同,也可以大于或小于第二子棱镜结构162的高度。
设计如表4所示的8组对照实验,对照组中第一子棱镜结构161与第二子棱镜结构162的截面形状以及底角均相同,实验组中第一子棱镜结构161与第二子棱镜结构162的截面形状相同,底角不同。
Figure PCTCN2021136633-appb-000001
表4.双Taper结构Gamma Shift改善结果
图14为本申请实施例提供的双棱镜结构的出射光型对比示意图,结合图14和表4可知,实验组中,第一子棱镜结构161与第二子棱镜结构162具有不同的底角,可使出射光线的出射光型呈现阶梯式变化,减少了从大角度(40°至60°)出射的光线量,从而压低了特定视角的亮度,减少大视角漏光的问题,提高显示装置的能效,同时还可以使大视角下不同灰阶的伽马偏移(Gamma Shift)量有所下降,从而改善不同灰阶下伽马偏移的情况。
在一实施例中,如图15所示,图15为本申请实施例提供的量子点复合膜的第二实施例的一种立体结构示意图,多个第一棱镜结构12沿第一方向a1连续分布,多个第二棱镜结构160沿第二方向a2连续分布,第一方向a1与第二方向a2平行,且均平行于所述量子点复合膜10的长边方向x,并且垂直于所述量子点复合膜10的短边方向y。
在一实施例中,如图16所示,图16为本申请实施例提供的量子点复合膜 的第二实施例的另一种立体结构示意图,第一棱镜结构12沿第一方向a1连续分布,第二棱镜结构160沿第二方向a2连续分布,第一方向a1与第二方向a2正交垂直,第一方向a1与量子点复合膜10的长边方向x平行,第二方向a2与量子点复合膜10的长边方向x垂直。在实际应用中,第一方向a1与第二方向a2也可以不垂直,但可以交叉形成一定的角度,例如10°、20°、45°、60°、70°或者80°等。
在一实施例中,第一子棱镜结构161的底角α21可以为70°,第二子棱镜结构162的底角α22可以为30°。以本实施例中第一子棱镜结构161的底角α21和第二子棱镜结构162的底角α22的角度建立4组对照实验组,4组对照实验组中第一棱镜结构12的折射率各不相同,分别为1.43、1.50、1.57和1.64。
实验组 α1 α2 折射率 视角改善范围
1 70° 30° 1.43 40°~65°
2 70° 30° 1.50 35°~60°
3 70° 30° 1.57 25°~50°
4 70° 30° 1.64 20°~45°
表5.各实验组的光学规格数据表
如表5所示,表5为各实验组的光学规格数据表,当第一棱镜结构12的底角和第二棱镜结构160的底角的角度保持恒定时,随着第一棱镜结构12的折射率的增大,视角改善范围逐渐减小。
如图17所示,图17为本申请实施例提供的各个实验组的出射光型比对图,由于设计了层叠设置的第一棱镜结构12和第二棱镜结构160这两层棱镜结构,4个实验组出射光线的光型各自都存在两个拐点。随着视角的增大,经过拐点时,各实验组的亮度曲线的曲率突然增大。在4个实验组中,随着第一棱镜结构12的折射率的增大,拐点向低角度的方向移动。由此可知,第一棱镜结构12的折射率越大,拐点产生的视角范围越小,这是由于随着第一棱镜结构12的折射率的增大,第一棱镜结构12对光线的折射作用增强,光线的出射角度变小。
如图18所示,图18为本申请实施例提供的表5中4组实验组在102灰阶、20°视角下的Gamma shift数值的柱形图,随着第一棱镜结构12的折射率的提高,在此条件下Gamma shift数值随之降低,3、4号实验组可以将Gamma shift指标改善至规格内(即3%以下)。在实际应用中,可以根据不同的光学规格为第一棱镜结构12选择不同折射率的材料。
在本申请实施例中,第一棱镜结构12的折射率为1.4。在实际应用中,第一棱镜结构12的折射率不仅限于上述实施例中的1.4,还可以为1.3、1.5、1.6或1.7等,仅需要大于或等于1.3且小于或等于1.7即可。
进一步的,如图19所示,图19为本申请实施例提供的显示装置的第五实施例的结构示意图,图19所示的显示装置与图8所示的显示装置的结构大致相同,区别在于,图19所示的显示装置中的所述量子点复合膜10还包括反射型偏光片13,所述反射型偏光片13设置于所述第一光学膜层16背离所述量子点膜层11的一侧。
所述反射型偏光片13通过第二透明胶层15与第一光学膜层16背离所述量子点膜层11的一侧表面贴合。
在一实施例中,如图20所示,图20为本申请实施例提供的显示装置的第六实施例的结构示意图,图20所示的显示装置与图9所示的显示装置的结构大致相同,区别在于,图20所示的显示装置中的所述量子点复合膜10包括量子点膜层11、第一棱镜结构12、第一光学膜层16和反射型偏光片13,反射型偏光片13背离所述第一光学膜层16的一侧表面通过雾面(Haze)胶层18与液晶显示面板20靠近背光模组30的一侧表面贴合。采用雾度胶层18可以改善不同材料膜层贴合产生的彩虹纹或摩尔纹等由于干涉现象导致的显示不良。
本申请实施例的有益效果:本申请实施例提供一种显示装置,所述显示装置包括量子点复合膜、液晶显示面板以及背光模组,所述量子点复合膜包括量子点膜层,所述量子点膜层的出光面设置有多个第一棱镜结构,通过第一棱镜结构对光线的出射角度的调整,使得光线更多的从较小的角度出射,从而提高显示装置的正视亮度,并改善或避免显示装置在大视角暗态情况下漏光的问题,以此提升显示装置的对比度。
综上所述,虽然本申请以优选实施例揭露如上,但上述优选实施例并非用 以限制本申请,本领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为基准。

Claims (20)

  1. 一种显示装置,包括:
    背光模组;
    液晶显示面板,设置于所述背光模组的出光侧;以及
    量子点复合膜,设置于所述液晶显示面板与所述背光模组之间,所述量子点复合膜包括:
    量子点膜层;以及
    多个第一棱镜结构,设置于所述量子点膜层的出光面。
  2. 如权利要求1所述的显示装置,其中,所述第一棱镜结构的截面呈三角形或梯形。
  3. 如权利要求1所述的显示装置,其中,多个所述第一棱镜结构在所述量子点膜层的所述出光面沿第一方向呈连续分布或间隔分布。
  4. 如权利要求3所述的显示装置,其中,所述量子点复合膜还包括反射型偏光片,所述反射型偏光片设置于所述第一棱镜结构背离所述量子点膜层的一侧。
  5. 如权利要求4所述的显示装置,其中,所述量子点复合膜还包括第一光学膜层,所述第一光学膜层设置于所述第一棱镜结构背离所述量子点膜层的一侧;
    其中,所述第一光学膜层背离所述量子点膜层的一侧表面具有多个第二棱镜结构。
  6. 如权利要求5所述的显示装置,其中,多个所述第二棱镜结构在所述第一光学膜层背离所述量子点膜层的一侧沿第二方向呈连续分布或间隔分布,所述第一方向与所述第二方向平行或交叉。
  7. 如权利要求6所述的显示装置,其特征在于,相邻所述第二棱镜结构之间的距离大于0且小于或等于100μm。
  8. 如权利要求5所述的显示装置,其中,所述第二棱镜结构的截面呈三角形或梯形。
  9. 如权利要求8所述的显示装置,其中,各个所述第二棱镜结构的底角相同,所述第二棱镜结构的底角大于或等于20°且小于或等于80°。
  10. 如权利要求8所述的显示装置,其中,所述第二棱镜结构包括多个第一子棱镜结构和多个第二子棱镜结构,所述第二子棱镜结构穿插设置于所述第一子棱镜结构之间或设置于所述第一子棱镜结构的一侧;
    其中,所述第一子棱镜结构的底角与所述第二子棱镜结构的底角不同;和/或,所述第一子棱镜结构的截面形状与所述第二子棱镜结构的截面形状不同。
  11. 如权利要求10所述的显示装置,其中,所述第一子棱镜结构的底角大于所述第二子棱镜结构的底角。
  12. 如权利要求11所述的显示装置,其中,所述第一子棱镜结构的底角大于45°且小于或等于80°,所述第二子棱镜结构的底角大于或等于10°且小于或等于45°。
  13. 如权利要求5所述的显示装置,其中,所述反射型偏光片设置于所述第一光学膜层背离所述量子点膜层的一侧。
  14. 如权利要求1所述的显示装置,其中,所述第一棱镜结构的材料包括透明聚合物以及无机粒子。
  15. 如权利要求14所述的显示装置,其中,所述透明聚合物包括聚甲基丙烯酸甲酯、聚碳酸酯、涤纶树脂或环氧树脂中的至少一种,所述无机粒子包括TiO2、BaSO4、ZrO2中的至少一种。
  16. 如权利要求1所述的显示装置,其中,所述第一棱镜结构的折射率大于或等于1.3且小于或等于1.7。
  17. 如权利要求1所述的显示装置,其中,所述量子点膜层包括复合膜基材以及分布于所述复合膜基材中的多个量子点;
    其中,所述复合膜基材的材料包括透明聚合物。
  18. 如权利要求17所述的显示装置,其中,所述透明聚合物的材料包括聚甲基丙烯酸甲酯、聚碳酸酯、涤纶树脂或环氧树脂中的至少一种,所述量子点包括发光核以及包括所述发光核的无机保护壳层;
    其中,所述无机保护壳层的材料包括CdS、ZnSe、ZnCdS 2、ZnS以及ZnO中的至少一种。
  19. 如权利要求18所述的显示装置,其中,所述量子点包括红光量子点和绿光量子点;
    其中,所述红光量子点的所述发光核的材料包括CdSe、Cd 2SeTe及InAs中的至少一种,所述绿光量子点的所述发光核的材料包括ZnCdSe 2、InP、Cd 2SSe中的至少一种。
  20. 如权利要求1所述的显示装置,其中,所述量子点复合膜贴合于所述液晶显示面板朝向所述背光模组的一侧;或,所述量子点复合膜贴合于所述背光模组朝向所述液晶显示面板的一侧。
PCT/CN2021/136633 2021-11-25 2021-12-09 显示装置 WO2023092668A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21827380.3A EP4439160A1 (en) 2021-11-25 2021-12-09 Display device
JP2021576415A JP7526214B2 (ja) 2021-11-25 2021-12-09 表示装置
US17/620,671 US20240045270A1 (en) 2021-11-25 2021-12-09 Display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111408950.4A CN114035378B (zh) 2021-11-25 2021-11-25 显示装置
CN202111408950.4 2021-11-25

Publications (1)

Publication Number Publication Date
WO2023092668A1 true WO2023092668A1 (zh) 2023-06-01

Family

ID=80138701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/136633 WO2023092668A1 (zh) 2021-11-25 2021-12-09 显示装置

Country Status (5)

Country Link
US (1) US20240045270A1 (zh)
EP (1) EP4439160A1 (zh)
JP (1) JP7526214B2 (zh)
CN (1) CN114035378B (zh)
WO (1) WO2023092668A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240310677A1 (en) * 2023-03-13 2024-09-19 Meta Platforms Technologies, Llc Wide color gamut enabled edge-lit blu for high ppi vr-lcd display

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218984A (ja) * 2006-02-14 2007-08-30 Furukawa Electric Co Ltd:The 光学機能シート
CN203413546U (zh) * 2013-06-28 2014-01-29 3M材料技术(广州)有限公司 光学膜层、背光模组和液晶显示装置
US20160291239A1 (en) * 2015-03-31 2016-10-06 Samsung Display Co., Ltd. Prism plate, display device having the same, and method of manufacturing prism plate
CN109445011A (zh) * 2018-12-17 2019-03-08 深圳市华星光电技术有限公司 量子点偏光片、显示面板和显示装置
CN109739051A (zh) * 2019-02-21 2019-05-10 深圳市华星光电技术有限公司 量子点液晶显示器
CN209514115U (zh) * 2018-12-11 2019-10-18 宁波激智科技股份有限公司 一种具有多层棱镜结构的量子点复合导光板
CN111458930A (zh) * 2020-03-06 2020-07-28 Tcl华星光电技术有限公司 发光复合膜层、背光模组及显示装置
CN113296312A (zh) * 2021-05-14 2021-08-24 惠州视维新技术有限公司 显示装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI317444B (en) * 2004-09-03 2009-11-21 Eternal Chemical Co Ltd Optical film having high hardness and use thereof
CN100399146C (zh) * 2005-04-08 2008-07-02 友达光电股份有限公司 背光模块及其增亮膜
JP5018371B2 (ja) * 2007-09-20 2012-09-05 凸版印刷株式会社 光学シート、バックライトユニット及び表示装置
JP5058000B2 (ja) 2008-01-15 2012-10-24 五洋紙工株式会社 光拡散性レンズシート、該シートを用いた直下型バックライト、及び該バックライトを組み込んだ液晶テレビ
JP2011123475A (ja) * 2009-11-16 2011-06-23 Sumitomo Chemical Co Ltd 偏光板、ならびにこれを用いた液晶パネルおよび液晶表示装置
JP2011150077A (ja) * 2010-01-20 2011-08-04 Toppan Printing Co Ltd 光学シート、バックライトユニットおよびディスプレイ装置
KR101514657B1 (ko) * 2013-04-23 2015-05-04 주식회사 엘엠에스 유-무기 하이브리드 조성물, 이를 이용하여 제조된 광학 부재 및 광학 장치
KR102367759B1 (ko) * 2015-06-12 2022-02-28 삼성전자주식회사 백 라이트 유닛 및 이를 포함하는 디스플레이 장치
JP6586805B2 (ja) 2015-07-14 2019-10-09 大日本印刷株式会社 エッジライト型バックライト及び液晶表示装置
CN105137644B (zh) * 2015-09-23 2018-08-10 宁波激智科技股份有限公司 一种减干涉光学增亮膜
JP6206749B1 (ja) * 2016-03-03 2017-10-04 東レフィルム加工株式会社 積層フィルム
CN206594325U (zh) * 2017-02-20 2017-10-27 张家港康得新光电材料有限公司 一种高透光防刮增亮膜
JP6886992B2 (ja) 2018-03-30 2021-06-16 恵和株式会社 光拡散板積層体、バックライトユニット、及び液晶表示装置
CN208999593U (zh) * 2018-09-26 2019-06-18 张家港康得新光电材料有限公司 一种复合膜
KR102591781B1 (ko) 2018-10-05 2023-10-23 삼성전자주식회사 디스플레이 장치
CN209148898U (zh) * 2018-12-25 2019-07-23 深圳市隆利科技股份有限公司 设棱镜结构的扩散膜及背光模组及液晶模组及终端设备
CN110174802A (zh) * 2019-06-03 2019-08-27 惠州市华星光电技术有限公司 一种量子点led背光源及其制备方法
CN210465918U (zh) * 2019-08-09 2020-05-05 广州市高浦特光电科技有限公司 一种增亮膜
CN212083715U (zh) * 2020-06-22 2020-12-04 深圳照东光控科技有限公司 一种微棱镜增亮膜

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218984A (ja) * 2006-02-14 2007-08-30 Furukawa Electric Co Ltd:The 光学機能シート
CN203413546U (zh) * 2013-06-28 2014-01-29 3M材料技术(广州)有限公司 光学膜层、背光模组和液晶显示装置
US20160291239A1 (en) * 2015-03-31 2016-10-06 Samsung Display Co., Ltd. Prism plate, display device having the same, and method of manufacturing prism plate
CN209514115U (zh) * 2018-12-11 2019-10-18 宁波激智科技股份有限公司 一种具有多层棱镜结构的量子点复合导光板
CN109445011A (zh) * 2018-12-17 2019-03-08 深圳市华星光电技术有限公司 量子点偏光片、显示面板和显示装置
CN109739051A (zh) * 2019-02-21 2019-05-10 深圳市华星光电技术有限公司 量子点液晶显示器
CN111458930A (zh) * 2020-03-06 2020-07-28 Tcl华星光电技术有限公司 发光复合膜层、背光模组及显示装置
CN113296312A (zh) * 2021-05-14 2021-08-24 惠州视维新技术有限公司 显示装置

Also Published As

Publication number Publication date
JP2024501392A (ja) 2024-01-12
CN114035378B (zh) 2023-06-27
CN114035378A (zh) 2022-02-11
JP7526214B2 (ja) 2024-07-31
US20240045270A1 (en) 2024-02-08
EP4439160A1 (en) 2024-10-02

Similar Documents

Publication Publication Date Title
US9804311B2 (en) Higher transmission light control film comprising a transmissive region and an absorptive region each having a different index of refraction
KR20090088438A (ko) 렌즈 시트, 면 광원 장치 및 액정 표시 장치
JP2007286261A (ja) 光学シート、バックライト装置および液晶表示装置
CN113703226B (zh) 高亮度、防蓝光量子点光学板及其制备方法和背光模组
WO2015190202A1 (ja) 光拡散性シート及び該シートを含むバックライト装置
KR100909427B1 (ko) 광제어 필름
WO2023155527A1 (zh) 背光模组及显示装置
WO2023092668A1 (zh) 显示装置
WO2021035636A1 (zh) 液晶显示面板及显示装置
WO2022082981A1 (zh) 偏光结构及液晶显示装置
WO2021227162A1 (zh) 表面处理方法、抗眩光涂层及显示装置
CN205450321U (zh) 一种抗电磁波增亮膜
JP2024539541A (ja) 量子ドット集積板、その製造方法及びそれを含む表示装置
CN109814185A (zh) 一种大尺寸微透复合膜及其制备方法
CN113138495B (zh) 背光模组及显示装置
KR100980068B1 (ko) 광학용 복합 필름
KR100544518B1 (ko) 광손실을 최소화한 프리즘 필름
CN113589583A (zh) 显示装置
JP2005266264A (ja) スクリーン
CN116990897B (zh) 偏光片及其制备方法、显示面板
WO2020228210A1 (zh) 量子点液晶显示器
CN209947113U (zh) 一种大尺寸微透复合膜
KR20120104220A (ko) 광확산성 시트 및 이를 사용한 백라이트
CN117055259A (zh) 光学膜组、显示面板及显示装置
CN111045123A (zh) 一种反射膜及复合导光结构

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17620671

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2021576415

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21827380

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021827380

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021827380

Country of ref document: EP

Effective date: 20240625