WO2023092509A1 - 导电胶膜及其制作方法、电子设备及其制作方法 - Google Patents

导电胶膜及其制作方法、电子设备及其制作方法 Download PDF

Info

Publication number
WO2023092509A1
WO2023092509A1 PCT/CN2021/133733 CN2021133733W WO2023092509A1 WO 2023092509 A1 WO2023092509 A1 WO 2023092509A1 CN 2021133733 W CN2021133733 W CN 2021133733W WO 2023092509 A1 WO2023092509 A1 WO 2023092509A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive adhesive
gap
film layer
substrate
adhesive film
Prior art date
Application number
PCT/CN2021/133733
Other languages
English (en)
French (fr)
Inventor
李少鹏
张卫本
舒建华
范荣坤
苟强
苏涛
邓豪
邓天军
唐小龙
李汶泽
张程
孙发奎
张静
刘媛
黄定杰
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2021/133733 priority Critical patent/WO2023092509A1/zh
Priority to CN202180003627.0A priority patent/CN116508116A/zh
Publication of WO2023092509A1 publication Critical patent/WO2023092509A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present disclosure relates to the field of display technology, in particular to a conductive adhesive film and a manufacturing method thereof, electronic equipment and a manufacturing method thereof.
  • OLED display panels have gradually become one of the mainstream in the display field due to their low power consumption, high color saturation, wide viewing angle, thin thickness, and flexibility. one.
  • a conductive adhesive film in one aspect, includes: a first film layer and a conductive particle layer.
  • the first film layer includes a plurality of electrode contact regions and a non-contact region separating the plurality of electrode contact regions.
  • There are multiple gap structures in the first film layer and the multiple gap structures are located at least in the non-contact area.
  • the conductive particle layer is located on one side of the first film layer, the conductive particle layer contains conductive particles, and the orthographic projection of the conductive particles on the first film layer covers at least part of the electrode contact area .
  • the plurality of gap structures are also located in the contact area.
  • the total volume of the gap structures located in the non-contact area is larger than the total volume of the gap structures located in the electrode contact area.
  • the density of the gap structures located in the non-contact area is greater than the density of the gap structures located in the electrode contact area.
  • the cross-sectional area of the gap structure located in the non-contact region is larger than the cross-sectional area of the gap structure located in the electrode contact region.
  • the cross section is perpendicular to the extending direction of the gap structure.
  • the plurality of gap structures include at least one gap groove, and the at least one gap groove is located on a side of the first film layer close to and/or away from the conductive particle layer.
  • the cross-sectional shape of the at least one gap groove in a plane perpendicular to the extending direction of the at least one gap groove is rectangular, trapezoidal or U-shaped.
  • the gap groove is a through groove penetrating along a direction parallel to the first film layer.
  • the first film layer includes: a first substrate and a plurality of first film blocks, the plurality of first film blocks are arranged on one side of the first substrate, and two adjacent One of the at least one gap groove is formed between each of the first film block and the first substrate.
  • the plurality of gap structures includes at least one gap hole, and the axis of the at least one gap hole is parallel to the first film layer.
  • the cross-sectional shape of the at least one clearance hole in a plane perpendicular to the axial direction of the at least one clearance hole is circular, elliptical or rectangular.
  • the interstitial holes are through holes.
  • the first film layer includes: a second substrate, a third substrate, and a plurality of second film blocks, and the plurality of second film blocks are arranged between the second substrate and the One of the at least one interstitial hole is formed between the third substrates, the two adjacent second membrane blocks, the second substrate, and the third substrate.
  • the plurality of gap structures extend along a first direction and are arranged in sequence along a second direction.
  • the first direction is perpendicular to the second direction, and both are parallel to the first film layer.
  • the maximum dimension of at least one of the plurality of gap structures along the third direction is c1; the dimension of the first film layer along the third direction is a1, and the third direction perpendicular to the first film layer.
  • c1 k0 ⁇ a1, 20% ⁇ k0 ⁇ 30%.
  • the first film layer includes a first region and a second region sequentially arranged along the second direction. Within the range of the first region, there is a second distance d2 between two adjacent gap structures; within the range of the second region, there is a third distance between two adjacent gap structures d3.
  • the first film layer includes a third region, a fourth region and a fifth region sequentially arranged along the second direction.
  • a fourth distance d4 between two adjacent gap structures
  • a fifth distance between two adjacent gap structures d5 within the range of the fourth region
  • a sixth distance d6 between two adjacent gap structures.
  • d5 k5 ⁇ c1, 4 ⁇ k5 ⁇ 6.
  • the length of the first film layer along the second direction is L1
  • the length of the third region along the second direction is L2
  • the length of the fourth region along the second direction The length of the fifth region is L3, the length of the fifth region along the second direction is L4, and the sum of the lengths of the third region and the fourth region along the second direction is L5.
  • the conductive adhesive film further includes: a second film layer, the second film layer is removably pasted on the side of the first film layer away from the conductive particle layer.
  • a method for making a conductive adhesive film comprising: making a first film layer, the first film layer including a plurality of electrode contact areas and a plurality of electrode contact areas separating the plurality of electrode contact areas.
  • a non-contact area there are multiple gap structures in the first film layer, and the multiple gap structures are at least located in the non-contact area.
  • a conductive particle layer is formed on one side of the first film layer, the conductive particle layer contains conductive particles, and the orthographic projection of the conductive particles on the first film layer covers at least part of the electrode contact area .
  • the plurality of interstitial structures includes at least one interstitial slot.
  • the step of making the first film layer includes: providing a first substrate; forming a plurality of first film blocks on one side of the first substrate, two adjacent first film blocks and the One of the at least one clearance groove is formed between the three first substrates.
  • the plurality of interstitial structures includes at least one interstitial hole.
  • the step of making the first film layer includes: providing a second substrate; forming a plurality of second film blocks on one side of the second substrate; and forming a plurality of second film blocks away from the One side of the second substrate forms a third substrate. Wherein, one of the at least one interstitial hole is formed between two adjacent second membrane blocks, the second substrate and the third substrate.
  • the manufacturing method further includes: forming a second film layer on the side of the first film layer away from the conductive particle layer, and the second film layer can be removed and pasted on the first film layer.
  • a film layer is away from the side of the conductive particle layer.
  • an electronic device in yet another aspect, includes: a substrate and a driving chip.
  • the substrate has a chip installation area; the substrate includes a plurality of first bump electrodes located in the chip installation area, and the plurality of first bump electrodes are arranged at intervals.
  • the driving chip has a plurality of second protruding electrodes, and the plurality of second protruding electrodes are arranged at intervals.
  • the plurality of first bump electrodes of the substrate and the plurality of second bump electrodes of the driving chip are bonded and connected by at least one conductive adhesive film as described above.
  • the plurality of first raised electrodes are arranged in multiple rows and columns, the first row of first raised electrodes is an input electrode, and the other rows of first raised electrodes are output electrodes. The distance between the electrodes and the adjacent output electrodes is greater than the distance between two adjacent rows of the output electrodes.
  • the plurality of gap structures of the conductive adhesive film are extended along the row direction or column direction of the plurality of first bump electrodes.
  • a method for manufacturing an electronic device includes: providing a substrate, the substrate having a chip mounting area; the substrate including a plurality of first bumps located in the chip mounting area. The plurality of first raised electrodes are arranged at intervals.
  • a driver chip is provided, the driver chip has a plurality of second bump electrodes, and the plurality of second bump electrodes are arranged at intervals; between the plurality of first bump electrodes and the plurality of second bump electrodes At least one conductive adhesive film is arranged between them. Pressing the driving chip and the substrate, so that the plurality of first bump electrodes and the plurality of second bump electrodes are bonded and connected.
  • the conductive adhesive film is the conductive adhesive film as described in any one of the above; and/or, the number of the conductive adhesive film is multiple, and before pressing the driving chip and the substrate, multiple conductive adhesive films
  • the adhesive films are arranged at intervals in a plane parallel to the substrate.
  • Fig. 1 is a stacked structure diagram of an electronic device before a conductive adhesive film is laminated according to some embodiments
  • FIG. 2 is a stacked structure diagram of another electronic device before the conductive adhesive film is laminated according to some embodiments;
  • Fig. 3 is a structural diagram of an electronic device provided according to some embodiments.
  • Fig. 4 is a cross-sectional view of an electronic device before a conductive adhesive film is laminated according to some embodiments
  • FIG. 5 is a cross-sectional view of another electronic device before the conductive adhesive film is laminated according to some embodiments
  • Fig. 6 is a cross-sectional view of yet another electronic device before the conductive adhesive film is laminated according to some embodiments
  • Figure 7 is a structural diagram of a first film layer according to some embodiments.
  • FIG. 8 is a structural diagram of a conductive adhesive film according to some embodiments.
  • 9 to 12 are structural diagrams of conductive adhesive films along the X direction according to some embodiments.
  • FIG. 13 is a structural diagram of another conductive adhesive film according to some embodiments.
  • 14 to 17 are structural diagrams along the X direction of another conductive adhesive film according to some embodiments.
  • FIG. 18 is a structural diagram of a substrate along the Z direction according to some embodiments.
  • 19 to 23 are structural diagrams of conductive adhesive films disposed on substrates according to some embodiments.
  • Fig. 24 is a structural diagram of another conductive adhesive film according to some embodiments.
  • 25 is a flow chart of a method for making a conductive adhesive film according to some embodiments.
  • Fig. 26 is a step diagram of making a conductive adhesive film according to some embodiments.
  • Fig. 27 is a flow chart of another method for making a conductive adhesive film according to some embodiments.
  • Figure 28 is a diagram of the steps of making another conductive adhesive film according to some embodiments.
  • Fig. 29 is a flow chart of another method for making a conductive adhesive film according to some embodiments.
  • Fig. 30 is a step diagram of making another conductive adhesive film according to some embodiments.
  • Fig. 31 is a flow chart of another method for making a conductive adhesive film according to some embodiments.
  • Figure 32 is a diagram of the steps of making another conductive adhesive film according to some embodiments.
  • Fig. 33 is a stacked structure diagram of yet another conductive adhesive film of an electronic device before lamination according to some embodiments.
  • Fig. 34 is a structural view of another conductive adhesive film disposed on a substrate according to some embodiments.
  • Fig. 35 is a flowchart of a manufacturing method of an electronic device according to some embodiments.
  • Fig. 36 is a diagram of manufacturing steps of an electronic device according to some embodiments.
  • Fig. 37 is a flowchart of another manufacturing method of an electronic device according to some embodiments.
  • Fig. 38 is a diagram of the manufacturing steps of another electronic device according to some embodiments.
  • FIG. 39 is a structural diagram of the binding of the driver chip and the display panel under ideal conditions.
  • FIG. 40 is a structural diagram of the binding of the driver chip and the display panel in the related art.
  • FIG. 41 is a structural diagram of another binding of a driver chip and a display panel in the related art.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality” means two or more.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • parallel As used herein, “parallel”, “perpendicular”, and “equal” include the stated situation and the situation similar to the stated situation, the range of the similar situation is within the acceptable deviation range, wherein the The stated range of acceptable deviation is as determined by one of ordinary skill in the art taking into account the measurement in question and errors associated with measurement of the particular quantity (ie, limitations of the measurement system).
  • “parallel” includes absolute parallelism and approximate parallelism, wherein the acceptable deviation range of approximate parallelism can be, for example, a deviation within 5°; Deviation within 5°.
  • “Equal” includes absolute equality and approximate equality, where the difference between the two that may be equal is less than or equal to 5% of either within acceptable tolerances for approximate equality, for example.
  • Exemplary embodiments are described herein with reference to cross-sectional and/or plan views that are idealized exemplary drawings.
  • the thickness of layers and regions are exaggerated for clarity. Accordingly, variations in shape from the drawings as a result, for example, of manufacturing techniques and/or tolerances are contemplated.
  • example embodiments should not be construed as limited to the shapes of regions illustrated herein but are to include deviations in shapes that result, for example, from manufacturing. For example, an etched region illustrated as a rectangle will, typically, have curved features.
  • the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the actual shape of a region of a device and are not intended to limit the scope of example embodiments.
  • the number of raised electrodes of the driver chip or the number of driver chips is constantly increasing, so the convexity of the OLED display panel binding area The number of electrodes is continuously increasing.
  • the chip bump electrodes 011 on the driving chip 01 are connected to the corresponding substrate on the display panel 02.
  • the conductive particles 031 are respectively in contact with the chip bump electrodes 011 and the substrate bump electrodes 021, and the conductive particles 031 are compressed to a certain degree to produce deformation.
  • the size of the bonding area of the display panel 02 is determined, as the number of substrate bump electrodes 021 to be bonded increases, the spacing between the substrate bump electrodes 021 decreases, and the temperature uniformity of each position is poor.
  • the conductive adhesive film 03 between the driver chip 01 and the display panel 02 has poor uniformity of overflow, and the conductive adhesive film 03 cannot effectively overflow , leading to the accumulation of glue and conductive particles 031 between two adjacent chip bump electrodes 011 (or adjacent two substrate bump electrodes 021) and between the chip bump electrodes 011 to be bonded and the substrate bump electrodes 021 , forming a weak pressure, so that the display panel 02 cannot be turned on.
  • the glue flow stability of the conductive adhesive film 03 is poor.
  • FIG. 2 is a stacked structure diagram of another electronic device 10 before the conductive adhesive film is laminated according to some embodiments
  • the electronic device 10 includes: a substrate 101 and a driving chip 102, and the substrate 101 has a chip mounting area (such as FIG. 1 and FIG. dashed box in Figure 2).
  • the substrate 101 includes a plurality of first bump electrodes 1011 located in the chip mounting area, and the plurality of first bump electrodes 1011 are arranged at intervals.
  • the driving chip 102 has a plurality of second protruding electrodes 1021 , and the plurality of second protruding electrodes 1021 are arranged at intervals.
  • the plurality of first bump electrodes 1011 of the substrate 101 and the plurality of second bump electrodes 1021 of the driving chip 102 are bonded and connected through at least one conductive adhesive film 1 .
  • the electronic device 10 may be a mobile phone, and in other examples, the electronic device 10 may also be (but not limited to) a wireless device, a personal data assistant (PDA), a handheld desktop or laptop computers, GPS receivers/navigators, cameras, MP4 video players, camcorders, game consoles, watches, clocks, calculators, TV monitors, flat panel displays, computer monitors, automotive displays (e.g., odometer displays, etc.), navigators, cockpit controls and/or displays, displays of camera views (e.g., displays of rear-view cameras in vehicles), electronic photographs, electronic billboards or signage, projectors, architectural structures, packaging and aesthetics structure (eg, for a display of an image of a piece of jewelry), etc.
  • PDA personal data assistant
  • the electronic device 10 includes a display panel 103.
  • the display panel 103 has a display area 1031 and a peripheral area 1032 located on at least one side of the display area 1031.
  • the display area 1031 is provided with A plurality of pixels, for example, each pixel includes sub-pixels of at least three colors, and the sub-pixels of multiple colors include at least a first color sub-pixel, a second color sub-pixel and a third color sub-pixel, the first color , the second color and the third color are three primary colors (such as red, green and blue).
  • At least one side of the peripheral area 1032 is provided with a binding area, and the substrate 101 is disposed in the binding area.
  • the display panel 103 is also provided with a plurality of signal lines (not shown), one end of the plurality of signal lines is electrically connected to a plurality of pixels in the display area 1031, and the other end is connected to the first raised electrode on the substrate 101 in the binding area.
  • 1011 is electrically connected, because the first bump electrode 1011 is electrically connected to the second bump electrode 1021 on the driver chip 102 , so the driver chip 102 can control the display panel 103 to display images.
  • an anti-reflection layer 104 is further disposed on the display panel 103 located in the display area 1031 .
  • Some embodiments of the present disclosure provide a conductive adhesive film 1 , which can be used in the above-mentioned electronic device 10 .
  • the conductive adhesive film 1 includes: a first film layer 11 and a conductive particle layer 12 .
  • the first film layer 11 includes a plurality of electrode contact regions Q1 and a non-contact region Q2 separating the plurality of electrode contact regions Q1 .
  • the electrode contact area Q1 is configured to correspond to the first bump electrode 1011 and the second bump electrode 1021 to be bonded.
  • the first film layer 11 may include electrode contact areas Q1 and non-contact areas Q2 alternately arranged along the N direction, and the orthographic projection of one electrode contact area Q1 in the Z direction covers the first electrode to be bound.
  • the bump electrodes 1011 and the second bump electrodes 1021 are configured to correspond to the first bump electrode 1011 and the second bump electrode 1021 to be bonded.
  • the gap structure 111 may extend in a direction parallel to the conductive particle layer 12 , or may pass through the conductive particle layer close to and away from the two main surfaces of the first film layer, which is not limited in the present disclosure.
  • the conductive particle layer 12 is located on one side of the first film layer 11 .
  • the conductive particle layer 12 contains conductive particles 121 .
  • the orthographic projection of the conductive particles 121 on the first film layer 11 covers at least part of the electrode contact area Q1 .
  • the orthographic projection of the conductive particles 121 on the first film layer 11 may only cover part of the electrode contact area Q1 .
  • the first film layer 11 is a resin material, for example, the material of the first film layer 11 is epoxy resin.
  • the conductive particles 121 are metal particles, and in other examples, the material of the conductive particles 121 may also be polymer or carbon fiber.
  • the conductive particle layer 12 also contains an adhesive material (such as resin, etc.).
  • the conductive particle 121 can be doped into the adhesive material to form a raw material for making the conductive particle layer 12 .
  • the glue can flow into the gap structures 111, which is different from the conductive adhesive of the "solid" structure.
  • setting the gap structure 111 on the non-contact area Q2 of the first film layer 11 of the conductive adhesive film 1 can increase the glue overflow space, and ensure that the glue liquid flows from the first protruding electrodes 1011 and the second protruding electrodes to be bound.
  • the effective overflow between the electrodes 1021 can reduce the accumulation of glue and conductive particles 121 between the electrodes to be bound, so that the effective conduction between the first raised electrodes 1011 and the second raised electrodes 1021 to be bound can also be improved.
  • the capture rate of particles 121 reduces the risk of weak pressure.
  • the effective conductive particles 121 refer to the conductive particles 121 that electrically connect the first bump electrodes 1011 and the second bump electrodes 1021 after binding.
  • the gap structure 111 it is also beneficial to save the material of the conductive adhesive film, thereby reducing the production cost of the conductive adhesive film 1 .
  • the direction of glue overflow can be controlled, the fluidity of glue can be improved, the uniformity of glue overflow in various positions and directions can be improved, and the binding error between structures to be bound can be reduced.
  • the conductive adhesive film 1 When using the conductive adhesive film 1, the conductive adhesive film 1 needs to be heated to melt and soften the first film layer 11 and the conductive particle layer 12, and the conductive adhesive film 1 is arranged between the two raised electrodes to be bound , and press the two raised electrodes to be bound to each other, so as to bind the two raised electrodes to be bound through the conductive adhesive film 1 .
  • the flow speeds of the first film layer 11 and the conductive particle layer 12 are different, so that the first film layer 11 can drive the conductive particle 121 to move, In order to improve the effective capture rate of conductive particles 121 between the first bump electrode 1011 and the second bump electrode 1021 to be bound.
  • the conduction principle of the conductive adhesive film 1 is: use conductive particles 121 to connect the electrodes between the structures to be bound to conduct conduction, and at the same time avoid conduction and short circuit between two adjacent electrodes, so as to achieve only the connection between the electrodes perpendicular to the second electrode.
  • the purpose of conduction in the direction of a film layer 11 is: use conductive particles 121 to connect the electrodes between the structures to be bound to conduct conduction, and at the same time avoid conduction and short circuit between two adjacent electrodes, so as to achieve only the connection between the electrodes perpendicular to the second electrode.
  • the plurality of gap structures 111 are not only located in the plurality of non-contact areas Q2 , but also located in the electrode contact area Q1 .
  • This arrangement can provide a larger overflow glue space for the conductive adhesive film 1 between the first bump electrodes 1011 and the second bump electrodes 1021 to be bound, and avoid the first bump electrodes 1011 and the second bump electrodes to be bound.
  • Adhesive materials and conductive particles 121 accumulate between the second protruding electrodes 1021 , thereby reducing weak pressure and ensuring reliable electrical connection between the two protruding electrodes.
  • the orthographic projection of the conductive particles 121 in the conductive particle layer on the first film layer 11 not only covers the electrode contact area Q1 , but also covers the non-contact area Q2 .
  • the non-contact area Q2 in a direction parallel to the first film layer 11, includes an annular area Q21 located on the outer peripheral side of the plurality of electrode contact areas Q1 and a mesh area located in the annular area Q21 Q22.
  • Such setting makes it more conducive to the uniform overflow of the conductive adhesive film 1 after the gap structure 111 is provided in the non-contact area Q2.
  • a gap structure may also be provided on the conductive particle layer 12 .
  • Such arrangement can further increase the overflow space of the glue solution and increase the fluidity of the conductive particle layer 12 .
  • a gap structure is set on the conductive particle layer 12, and the gap structure is closer to the conductive particles 121, which is more conducive to adjusting the flow direction of the conductive particles 121, thereby improving the binding capacity.
  • the effective capturing rate of conductive particles 121 between the first bump electrodes 1011 and the second bump electrodes 1021 is .
  • a gap structure is disposed in a portion of the conductive particle layer 12 covering the non-contact region Q2 . In some other examples, a gap structure is disposed in the portion of the conductive particle layer 12 covering the electrode contact region Q1 . In still some examples, the conductive particle layer 12 is provided with a gap structure in both the portion covering the non-contact region Q2 and the portion covering the electrode contact region Q1 .
  • the arrangement of the gap structure in the conductive particle layer 12 may be in the same direction as the arrangement direction of the gap structure 111 on the first film layer 11 , which will not be repeated here.
  • the total volume of the gap structures 111 located in the non-contact area Q2 is greater than the total volume of the gap structures 111 located in the electrode contact area Q1 .
  • the non-contact area Q2 can have a larger glue overflow space than the electrode contact area Q1, thereby ensuring that the glue in both the electrode contact area Q1 and the non-contact area Q2 can effectively overflow.
  • the density of the gap structures 111 located in the non-contact area Q2 is greater than the density of the gap structures 111 located in the electrode contact area Q1 .
  • the “density” of the above-mentioned gap structures 111 refers to the number of gap structures 111 arranged in the same volume space. Then "the density of the gap structures 111 located in the non-contact region Q2 is greater than the density of the gap structures 111 located in the electrode contact region Q1" means: the number of gap structures 111 arranged in the non-contact region Q2 is more than that arranged in the electrode contact region Q1 quantity. Since part of the glue in the electrode contact area Q1 needs to overflow to the non-contact area Q2, the non-contact area Q2 needs a larger overflow space. This setting can ensure that the glue in each position can be effectively and evenly overflowed, avoiding the occurrence of glue and Accumulation of conductive particles 121 .
  • the electrode contact area Q1 between two non-contact areas Q2 is also provided with the same gap structure 111, (that is, the gap groove 111a), the electrode contact area Q1 and
  • the length of the non-contact area Q2 between the two electrode contact areas Q1 along the N direction is roughly the same, and three gap structures 111 are arranged in the non-contact area Q2, and one electrode contact area Q1 between the two non-contact areas Q2 is provided.
  • a gap structure that is to say, the density of the gap structure 111 located in the non-contact area Q2 is greater than the density of the gap structure 111 located in the electrode contact area Q1, so that the glue solution in the electrode contact area Q1 and the non-contact area Q2 can be guaranteed. Effective overflow.
  • the area of the cross section of the gap structure 111 located in the non-contact area Q2 is greater than the area of the cross section of the gap structure 111 located in the electrode contact area Q1; wherein , the cross section is perpendicular to the extending direction of the gap structure 111 .
  • the volume of the gap structure 111 arranged in the non-contact region Q2 can be larger than the volume of the gap structure 111 arranged in the electrode contact region Q1, so that the non-contact region Q2 has The larger glue overflow space can ensure that the glue in the electrode contact area Q1 and the non-contact area Q2 can effectively overflow.
  • each electrode contact area Q1 and the non-contact area Q2 between two electrode contact areas Q1 are provided with a gap structure 111 (that is, a gap groove 111a), and the non-contact area Q2
  • the cross-sectional area of the gap structure 111 is larger than the cross-sectional area of the gap structure 111 disposed in the electrode contact area Q1, so that the glue in the non-contact area Q2 has a larger overflow space.
  • the plurality of gap structures 111 includes at least one gap groove 111 a, and the at least one gap groove 111 a is located on a side of the first film layer 11 close to and/or away from the conductive particle layer 12 .
  • the gap groove 111a can increase the space for the glue to overflow, which is beneficial to Adequate overflow of the glue reduces the risk of weak pressure between the raised electrodes to be bonded.
  • a plurality of gap grooves 111a are located on the side of the first film layer 11 close to the conductive particle layer 12 , and the extending direction of the gap grooves 111a is parallel to the plane where the first film layer 11 is located.
  • the gap groove 111a is close to the conductive particle layer 12, when the conductive adhesive film 1 is squeezed, the conductive particle layer can also flow in the gap groove 111a, thereby improving the capture rate of the conductive particles 121 at the gap groove 111a place,
  • the gap groove 111a is arranged corresponding to the protruding electrodes to be bound, the capture rate of the conductive particles 111a between the upper and lower protruding electrodes can be improved, thereby ensuring reliable binding of the protruding electrodes.
  • the gap groove 111 a may also be located on a side of the first film layer 11 away from the conductive particle layer 12 .
  • the extending direction of the gap groove 111 a may also be set along a direction perpendicular to the first film layer 11 .
  • the cross-sectional shape of the at least one clearance groove 111 a in a plane perpendicular to the extending direction of the at least one clearance groove 111 a is a rectangle, a trapezoid or a U shape.
  • the cross-sectional shape of the gap groove 111 a in a plane perpendicular to the extending direction of the gap groove 111 a is a rectangle.
  • the cross-sectional shapes of the plurality of clearance grooves 111a in a plane perpendicular to the extending direction of the clearance grooves 111a are trapezoidal.
  • the clearance grooves 111a are vertical to
  • the cross-sectional shape in the plane of the extending direction of the gap groove 111a is an upright isosceles trapezoid.
  • the cross-sectional shapes of the clearance grooves 111 a in a plane perpendicular to the extending direction of the clearance grooves 111 a are all inverted U shapes.
  • the disclosure does not specifically limit the cross-sectional shape of the gap groove 111a in a plane perpendicular to the extending direction of the gap groove 111a (ie, the X direction).
  • the gap groove 111a is vertical to the gap groove 111a.
  • the cross-sectional shape in the plane of the extension direction can also be other shapes, such as semicircle, regular polygon, etc.
  • the cross-sectional shapes of the plurality of clearance grooves 111a in a plane perpendicular to the extending direction of the clearance grooves 111a (ie the X direction) can be the same or different.
  • the gap groove 111 a is a through groove penetrating along a direction parallel to the first film layer 11 .
  • the gap groove 111a is set as a through groove structure, which is convenient for processing and manufacturing, and in the extending direction of the gap groove 111a, the glue can flow to the gap groove 111a, which can ensure the extending direction of the gap groove 111a Glue flow uniformity at each location.
  • the first film layer 11 includes: a first substrate 112 and a plurality of first film blocks 113, the plurality of first film blocks 113 are arranged on one side of the first substrate 112, two adjacent At least one gap groove 111 a among the gap grooves 111 a is formed between the first membrane block 113 and the first substrate 112 .
  • the first film layer 11 adopts a combined structure of a bulk film block and a sheet substrate, and can be attached layer by layer during manufacture.
  • the size of the gap groove 111a can be adjusted by adjusting the interval and height of the first film block 113, and by using the first base material 112 and the first film block 113 with different shapes of inner wall surfaces, the gap groove 111a with different cross-sectional shapes can be obtained .
  • the plurality of gap structures 111 includes at least one gap hole 111 b, and the axis of the at least one gap hole 111 b is parallel to the first film layer 11 .
  • the gap structure 111 adopts the gap hole 111b, and the glue in the first film layer 11 can flow into the gap holes 111b on both sides when flowing, thereby increasing the space for the glue to overflow, which is conducive to the full overflow of the glue and improves the overflow. Glue uniformity.
  • the axis of the clearance hole 111b is parallel to the first film layer 11, and the axis of the clearance hole 111b is set along the X direction.
  • the axis of the clearance hole 111b can also be The axis perpendicular to the first film layer 11 , that is, the gap hole 111 b may also be arranged along the Z direction.
  • the cross-sectional shape of the at least one clearance hole 111b in a plane perpendicular to the axial direction of the at least one clearance hole 111b is circular, elliptical or rectangular.
  • the cross-sectional shapes of the plurality of clearance holes 111b in a plane perpendicular to the axial direction of the clearance holes 111b are all circular.
  • the cross-sectional shapes of the plurality of clearance holes 111b in a plane perpendicular to the axial direction of the clearance holes 111b are all elliptical, and the major axis of the ellipse is along the direction perpendicular to The direction of the first film layer 11 (ie, the Z direction) is set.
  • the cross-sectional shapes of the plurality of clearance holes 111 b in a plane perpendicular to the axial direction of the clearance holes 111 b are all rectangular.
  • the disclosure does not specifically limit the cross-sectional shape of the gap hole 111b in a plane perpendicular to the extending direction of the gap hole 111b (ie, the X direction).
  • the gap hole 111b is perpendicular to the gap hole 111b.
  • the cross-sectional shape in the plane of the extension direction can also be other shapes, such as semicircle, regular polygon, trapezoid, etc.
  • the cross-sectional shapes of the plurality of clearance holes 111b in a plane perpendicular to the extending direction of the clearance holes 111b (ie the X direction) can be the same or different.
  • the clearance hole 111b is a through hole.
  • the axis of the gap hole 111b is parallel to the first film layer 11, and the gap hole 111b is a through hole, which is beneficial to improve the uniformity of glue overflow at various positions along the extending direction of the hole (ie, the X direction).
  • the first film layer 11 includes: a second substrate 114, a third substrate 115, and a plurality of second film blocks 116, and the plurality of second film blocks 116 are arranged between the second substrate 114 and the third film block. Between the substrates 115 , at least one of the gap holes 111 b is formed between two adjacent second film blocks 116 , the second substrate 114 , and the third substrate 115 .
  • the interstitial hole 111b adopts a combined structure of a block film block and a sheet substrate, and can be attached layer by layer during fabrication.
  • the size of the interstitial hole 111b can be adjusted by adjusting the interval and height of the second membrane block 116, and the interstitial hole 111b with different cross-sectional shapes can be obtained by using substrates and membrane blocks with different inner wall surfaces.
  • the plurality of gap structures 111 extend along the first direction and are arranged sequentially along the second direction. Wherein, the first direction is perpendicular to the second direction, and both are parallel to the first film layer 11 .
  • a plurality of gap structures 111 extend along the X direction (that is, the first direction) and are arranged along the Y direction (that is, the second direction).
  • the overflow glue is uniform, and the gap structure 111 is arranged regularly, which is convenient for processing and manufacturing.
  • a plurality of first raised electrodes 1011 are arranged in multiple rows and columns, the first row of first raised electrodes 1011 is the input electrode 1011a, and the other rows of first raised electrodes
  • the electrodes 1011 are output electrodes 1011b, and the distance between an input electrode 1011a and adjacent output electrodes 1011b is greater than the distance between two adjacent rows of output electrodes 1011b.
  • the plurality of gap structures 111 of the conductive adhesive film 1 extend along the row direction or column direction of the plurality of first bump electrodes 1011 .
  • the first bump electrodes 1011 are arranged in multiple rows along the M direction and in multiple columns along the N direction.
  • the row of first protruding electrodes 1011 away from the display area 1031 is the input electrode 1011a.
  • the gap holes 111b on the conductive adhesive film 1 extend along the row direction of the first bump electrodes 1011 (ie, the M direction), and extend along the column direction of the first bump electrodes 1011 (ie, the N direction). direction) alignment settings.
  • the gap structures 111 extend along the column direction of the first bump electrodes 1011 (ie, the N direction), and are arranged along the row direction of the first bump electrodes 1011 (ie, the M direction).
  • the maximum dimension of at least one gap structure 111 in the plurality of gap structures 111 along the second direction is c1; the dimension of the first film layer 11 along the third direction (ie, the Z direction) is a1, the third direction is perpendicular to the first film layer 11 .
  • the gap structure 111 adopts a circular gap hole 111b with the same size, when the gap hole 111b has a maximum dimension c1 along the third direction (that is, the Z direction) and the first film layer 11 along the third direction ( That is, when the dimension a1 in the Z direction) satisfies the above relationship, it can be ensured that the gap structure 111 can not only have enough gaps to provide overflow space for glue overflow, but also ensure that the porosity of the first film layer 11 will not be too large , to prevent the first film layer 11 from collapsing.
  • the gap structure 111 adopts a circular gap hole 111b, and a plurality of gap holes 111b extend along the row direction of the first bump electrodes 1011 (ie, the M direction), and along the first bump electrodes 1011
  • the column direction that is, the N direction
  • the maximum dimension c1 of the clearance hole 111b along the third direction is the diameter of the clearance hole 111b.
  • the gap structure 111 adopts a circular gap hole 111b, and a plurality of gap holes 111b extend along the column direction of the first bump electrodes 1011 (that is, the N direction), and along the first bump electrodes 1011
  • the row direction of 1011 namely the M direction
  • the maximum dimension c1 of the clearance hole 111b along the third direction is the diameter of the clearance hole 111b.
  • d1 2 ⁇ c1
  • d1 2.5 ⁇ c1
  • d1 3 ⁇ c1.
  • the first distance d1 between the two clearance holes 111b refers to the shortest distance between the two clearance holes 111b.
  • the distance between the two gap holes 111b can be neither too large nor too small, thereby ensuring that the gap structure 111 is evenly distributed, and It is beneficial to processing and can ensure the uniformity of glue overflow.
  • Such setting can make the gap structure 111 have different arrangement densities in different regions, so that different regions have different glue overflow spaces, which is beneficial to adjust the glue overflow in each region, thereby ensuring the uniformity of glue overflow in the entire region .
  • the gap structure 111 adopts a plurality of circular gap holes 111b, and the plurality of gap holes 111b extend along the column direction of the first bump electrode 1011 (ie, the N direction), and along the first bump The electrodes 1011 are aligned in a row direction (ie, the M direction).
  • the first area A is set corresponding to the output electrode 1011b
  • the second area B is set corresponding to the input electrode 1011a
  • the distance between two adjacent rows of output electrodes 1011b is smaller than the distance between the input electrode 1011a and the adjacent row of output electrodes 1011b , that is to say, in the first area A
  • the density of the first bump electrodes 1011 is higher, and the space for the glue to overflow is smaller. Therefore, the distance between the clearance holes 111b in the first area A is smaller than that in the second area
  • the spacing between the gap holes 111b in B i.e.
  • d2 ⁇ d3 can ensure that the density of the gap holes 111b in the first area A is higher, so that the first area A has a larger space for the glue to overflow, thereby ensuring the first area A
  • the glue in the first area A and the second area B can be effectively overflowed, so that the uniformity of the glue overflow in each position of the entire area is improved.
  • the first film layer 11 includes a third region C, a fourth region D and a fifth region E sequentially arranged along the second direction (ie, the Y direction).
  • the third region C there is a fourth distance d4 between two adjacent gap structures 111; within the scope of the fourth region D, there is a fifth distance d5 between two adjacent gap structures 111; Within the five regions E, there is a sixth distance d6 between two adjacent gap structures 111 .
  • gap structures 111 have different arrangement densities in different areas, so that different areas have different glue overflow spaces, which is beneficial to improve the glue liquid in each area. Spill uniformity.
  • the gap structure 111 adopts a plurality of circular gap holes 111b, and the plurality of gap holes 111b extend along the row direction of the first bump electrodes 1011 (ie, the M direction), and along the first bump
  • the starting electrodes 1011 are arranged in a column direction (ie N direction). In the column direction of the first bump electrodes 1011 (ie, the N direction).
  • the glue located in the fourth area D overflows to the third area C and the fifth area E on both sides respectively. Therefore, the third area C and the fifth area E need more glue overflow space than the fourth area D.
  • more clearance holes 111b can be set in the third area C and the fifth area E, so that the third area C and the fifth area E have a larger glue overflow space, so that the third area The glue in C and the fifth area E can overflow effectively, so as to ensure the uniformity of the glue overflow in the third area C, the fourth area D and the fifth area E.
  • the gap structure 111 adopts a plurality of circular gap holes 111b, and the plurality of gap holes 111b are extended along the row direction of the first bump electrodes 1011 (that is, the N direction), and along the first The bump electrodes 1011 are aligned in a row direction (ie, the M direction).
  • the third region C, the fourth region D and the fifth region E are arranged in a row from the output electrode 1011b to an end close to the input electrode 1011a.
  • the distance between the input electrode 1011a and the adjacent output electrode 1011b is greater than the distance between the adjacent output electrodes 1011b, the distance between the adjacent output electrodes 1011b If the spacing is equal, the end far away from the input electrode 1011a has a smaller glue overflow space, so the farther away from the input electrode 1011a, the smaller the glue overflow space on the first film layer 11, therefore, when d4 ⁇ d5 ⁇ d6 At this time, the glue overflow space from the fifth area E to the third area C on the first film layer 11 can be increased sequentially, so as to ensure that the overall glue overflow of the third area C, the fourth area D and the fifth area E is uniform sex.
  • the length of the first film layer 11 along the second direction is L1
  • the length of the third region C along the second direction is L2
  • the length of the fourth region D along the second direction is L2.
  • the length of the direction is L3
  • the length of the fifth region E along the second direction is L4
  • the length of the third region C and the fourth region D along the second direction is between and for L5.
  • the number of gap structures 111 in different regions can be adjusted by adjusting the lengths of different regions, thereby adjusting the size of the glue overflow space in different regions, which is beneficial to ensure the uniformity of glue overflow in each region.
  • adjacent first bump electrodes 1011 are uniformly arranged.
  • the length of the area D is equivalent, and the length of the third area C is equal to the length of the fifth area E.
  • the lengths are equivalent, and this setting can ensure that the glue solution overflows with high uniformity within the area of the output electrode 1011b.
  • the relationship between the length of the fifth region E and the sum of the lengths of the third region C and the fourth region D is not specifically limited, and can be determined according to the distance between the input electrode 1011a and the adjacent output electrode 1011b.
  • any of the first region A, the second region B, the third region C, the fourth region D, and the fifth region E may include the electrode contact region Q1 or the non-contact region. District Q2. On this basis, the distance between two adjacent gap structures 111 in the non-contact area Q2 may still be greater than the distance between two adjacent gap structures 111 in the electrode contact area Q1 .
  • the conductive adhesive film 1 further includes: a second film layer 13 , and the second film layer 13 is removably pasted on the side of the first film layer 11 away from the conductive particle layer 12 .
  • Setting the second film layer 13 can protect the first film layer 11 and prevent the first film layer 11 from being polluted or damaged.
  • the second film layer 13 is a release film, when the conductive adhesive film 1 is not used, the second film layer 13 can be attached on the first film layer 11, and the first film layer 11 plays a good protective role, when the conductive adhesive film 1 is used, the second film layer 13 can be torn off.
  • Some embodiments of the present disclosure also provide a method for manufacturing a conductive adhesive film 1, which is used to manufacture the conductive adhesive film 1 described in any of the above, please refer to Figure 25, the manufacturing method includes steps S1 and S2.
  • the first film layer 11 includes a plurality of electrode contact regions Q1 and the non-contact region Q2 separating the plurality of electrode contact regions Q1; the first film layer 11 has a plurality of gap structures 111, A plurality of gap structures 111 are located at least in the non-contact area Q2.
  • the gap structure 111 may be formed by opening a gap groove 111 a or a gap hole 111 b on the first film layer 11 .
  • the clearance hole 111 b opened on the first film layer 11 has a rectangular cross-sectional shape along a direction perpendicular to the axis of the clearance hole 111 b, and a plurality of clearance holes 111 b are arranged at equal intervals.
  • the conductive particle layer 12 contains conductive particles 121.
  • the orthographic projection of the conductive particles 121 on the first film layer 11 covers at least part of the electrode contact area Q1.
  • the conductive particle layer 12 may be provided on one side of the first film layer 11 by coating.
  • the gap structure 111 may be provided on the first film layer 11 first, and then the conductive particle layer 12 is formed on one side of the first film layer 11 .
  • the conductive particle layer 12 may also be formed on one side of the first film layer 11 first, and then the gap structure 111 is opened in the first film layer 11 .
  • the plurality of gap structures 111 includes a plurality of gap grooves 111a.
  • the steps of making the first film layer 11 include steps S11-S12.
  • the first substrate 112 is a sheet structure, so that other structures can be arranged on the surface of the first substrate 112, for example, a first film is arranged on one side surface of the first substrate 112 Block 113.
  • a plurality of first film blocks 113 are arranged at intervals on one side surface of the first substrate 112 , and the inner wall surfaces of two adjacent first film blocks 113 opposite to the first substrate 112 The surface close to the first film block 113 jointly determines the shape and size of the gap groove 111a.
  • the first membrane block 113 is a cuboid structure, that is to say, the opposite inner wall surfaces of two adjacent first membrane blocks 113 and the surface of the first substrate 112 close to the first membrane block 113 are planes, and the gap
  • the cross section of the groove 111a in a plane perpendicular to the extending direction of the clearance groove 111a is rectangular.
  • the gap groove 111 a formed by the first substrate 112 and the first film block 113 extends along a direction parallel to the first film layer 11 .
  • the first substrate 112 and the first film block 113 are made of the same material, so that the first film layer 11 has better integrity.
  • the plurality of interstitial structures 111 includes a plurality of interstitial holes 111b.
  • the steps of making the first film layer 11 include steps S11' ⁇ S13'.
  • the second substrate 114 is in the shape of a sheet, so that other structures can be arranged on the surface of the second substrate 114, for example, a second film block 116 is arranged on one side of the second substrate 114 .
  • a plurality of second film blocks 116 are disposed on one side surface of the second substrate 114 at intervals.
  • the second membrane block 116 is a cuboid structure.
  • the third base material 115 is also a sheet structure, and the axis of the clearance hole 111b formed by the second base material 114 , the second film block 116 and the third base material 115 is parallel to the axis of the first base material 115 .
  • the shapes of the first membrane layer 11, the opposite surfaces of the second substrate 114 and the third substrate 115, and the opposite surfaces of two adjacent second membrane blocks 116 jointly determine the shape of the gap hole 111b, and the second membrane block 116 is
  • the interstitial hole 111b formed by the second base material 114 , the second membrane block 116 and the third base material 115 has a rectangular cross-section along a direction perpendicular to the axis of the interstitial hole 111b.
  • the materials of the second substrate 114 , the second film block 116 and the third substrate 115 are the same, so that the first film layer 11 has better integrity.
  • the manufacturing method of the conductive adhesive film 1 further includes step S3.
  • the second film layer 13 can be used to protect the first film layer 11 to prevent the first film layer 11 from being polluted or damaged.
  • the present disclosure does not specifically limit the sequence of steps S1 , S2 and S3 , and in some examples, the above-mentioned conductive adhesive film 1 can be fabricated in accordance with the fabrication sequence of S1 - S2 - S3 . In some other examples, the above-mentioned conductive adhesive film 1 can also be manufactured according to the steps of S1-S3-S2. In some other embodiments, the conductive adhesive film 1 can also be made according to the steps of S3-S1-S2, please refer to FIG.
  • a first film layer 11 is provided on one side surface of the first film layer 11, and a gap structure 111 (that is, a gap hole 111b) is provided on the first film layer 11, and a conductive particle layer is finally arranged on the side of the first film layer 11 away from the second film layer 13 12.
  • a gap structure 111 that is, a gap hole 111b
  • FIG. 33 is a stacked structure diagram of another electronic device according to some embodiments before the conductive adhesive film is laminated.
  • FIG. 34 It is another structure diagram of a conductive adhesive film disposed on a substrate according to some embodiments, the electronic device 10 includes: a substrate 101 and a driving chip 102 .
  • the substrate 101 has a chip mounting area.
  • the substrate 101 includes a plurality of first bump electrodes 1011 located in the chip mounting area, and the plurality of first bump electrodes 1011 are arranged at intervals.
  • the driver chip 102 has a plurality of second bump electrodes 1021, and the plurality of second bump electrodes 1021 are arranged at intervals.
  • the plurality of first bump electrodes 1011 of the substrate 101 and the plurality of second bump electrodes 1021 of the driver chip 102 pass through A plurality of conductive adhesive films 1 are bonded and connected, and the plurality of conductive adhesive films 1 are arranged in a plane parallel to the substrate 101 .
  • a plurality of conductive adhesive films 1 refers to at least two conductive adhesive films 1, and the conductive adhesive films 1 can be the conductive adhesive films 1 described in any of the above, or other conductive adhesive films 1, for example Preferably, no gap structure 111 is provided in the conductive adhesive film 1 .
  • the plurality of conductive adhesive films 1 are arranged at intervals, which can provide space for glue overflow and improve the uniformity of glue overflow.
  • a plurality of first raised electrodes 1011 are arranged in multiple rows and columns, the first row of first raised electrodes 1011 is an input electrode 1011a, and the other rows of first raised electrodes 1011 are output electrodes 1011b, The distance between the input electrode 1011a and the adjacent output electrode 1011b is greater than the distance between two adjacent rows of output electrodes 1011b.
  • a plurality of conductive adhesive films 1 include a first conductive adhesive film 1a and a second conductive adhesive film 1b, the first conductive adhesive film 1a is located between the input electrode 1011a and the corresponding second bump electrode 1021, and the second conductive adhesive film 1b is located Between the output electrode 1011b and the corresponding second bump electrode 1021 .
  • Such setting can make enough glue overflow space between the input electrode 1011a and the output electrode 1011b, thereby ensuring that the glue at the input electrode 1011a and the output electrode 1011b can effectively overflow, so as to improve the uniformity of the overall glue overflow.
  • Some embodiments of the present disclosure also provide a manufacturing method of the electronic device 10, which is used for manufacturing the above-mentioned electronic device 10, please refer to FIG. 35 , the manufacturing method includes steps S1'-S4'.
  • the substrate 101 has a chip mounting area; the substrate 101 includes a plurality of first bump electrodes 1011 located in the chip mounting area, and the plurality of first bump electrodes 1011 are arranged at intervals.
  • the first bump electrodes 1011 on the substrate 101 are arranged in multiple rows and columns, and the first bump electrodes 1011 are used to bond with the second bump electrodes 1021 of the driving chip 102 described below. It should be noted that the number and arrangement of the first bump electrodes 1011 on the substrate 101 in FIG. 36 are only examples, and are not intended to limit the embodiments of the present disclosure.
  • the driving chip 102 has a plurality of second bump electrodes 1021, and the plurality of second bump electrodes 1021 are arranged at intervals.
  • the second protruding electrodes 1021 are arranged opposite to the first protruding electrodes 1011 to be bonded, and there is a one-to-one correspondence.
  • At least one conductive adhesive film 1 means that a whole piece of conductive adhesive film 1 is arranged between the first bump electrode 1011 and the second bump electrode 1021, or multiple pieces of conductive adhesive film 1 are arranged.
  • step S3' includes steps S31-S32.
  • the step (a) in Fig. 36 provides the conductive adhesive film 1 with the second film layer 13, please continue to refer to the step (b) in Fig. 36, the second film layer 13 of the conductive adhesive film 1 is torn off After removal, the conductive adhesive film 1 is pasted on the first bump electrodes 1011 of the substrate 101 .
  • step (c) the driver chip 102 is attached to the side of the conductive adhesive film 1 away from the substrate 101.
  • the temperature at which the driver chip 102 is attached to the conductive adhesive film 1 is T2, and T2 satisfies:
  • step (d) the driver chip 102 is pressed onto the substrate 101 by the press head 2 .
  • the conductive adhesive film 1 is the conductive adhesive film 1 described above; for example, please continue to refer to FIG.
  • the glue in the first film layer 11 flows in the direction of the arrow in the figure (ie step (d) in FIG. 36 ), and the gap hole 111b provides space for the glue to flow. .
  • the glue in the first film layer 11 flows toward the conductive particle layer 12, and when the first protruding electrodes 1011 and the second protruding electrodes 1021 are close to a specific distance, a part of the conductive particles 121 are captured by the first protruding electrodes 1011 and the corresponding Between the second bump electrodes 1021, and the conductive particles 121 are deformed under certain degree of compression, so as to ensure that the conductive particles 121 are in good contact with the first bump electrodes 1011 and the second bump electrodes 1021, so as to play a good role. Conductive effect.
  • the plurality of conductive adhesive films 1 are arranged at intervals in a plane parallel to the substrate 101 . It should be noted that, in this example, no gap structure 111 is provided on the conductive adhesive film 1 .
  • No gap structure 111 is set in the conductive adhesive film 1, since the first conductive adhesive film 1a and the second conductive adhesive film 1b are arranged at intervals, an overflow space is provided for the overflow of the glue liquid, thereby the overflow effect of the glue liquid can be improved, and the glue can be ensured. The liquid overflows effectively.
  • step (b) after tearing off the second film layer 13 on the first conductive adhesive film 1a and the second conductive adhesive film 1b respectively, the first conductive adhesive film 1a and the second conductive adhesive film The films 1 b are respectively attached on the first bump electrodes 1011 of the substrate 101 .
  • the first conductive adhesive film 1a covers the input electrode 1011a
  • the second conductive adhesive film 1b covers the output electrode 1011b.
  • step (c) the driver chip 102 is attached to the side of the first conductive adhesive film 1a and the second conductive adhesive film 1b away from the substrate 101, and the driver chip 102 is attached to the conductive adhesive film 1
  • the temperature is T5
  • the attachment pressure is F5
  • F5 satisfies: 80N ⁇ F5 ⁇ 100N
  • step (d) the driver chip 102 is pressed onto the substrate 101 by the press head 2 .
  • temperature and pressure should be selected according to the actual production process, which is not specifically limited in the present disclosure.
  • different temperatures and pressures are selected according to different materials of the first film layer 11 .
  • materials that flow easily at low temperatures choose lower temperatures and pressures; for materials that require high temperatures to flow, choose higher temperatures and pressures.
  • the fluidity of the glue can be enhanced, so that the pressure can be appropriately reduced; or by increasing the pressure, the temperature can be appropriately reduced.
  • three or more conductive adhesive films 1 may also be arranged at intervals, and the present disclosure does not specifically limit the number of conductive adhesive films 1 .
  • the conductive adhesive film 1 provided by some embodiments of the present disclosure, by arranging a plurality of gap structures 111 at least in the non-contact area Q2, when the glue overflows, the glue can flow into the gap structures 111, and " Compared with the conductive adhesive film with "solid" structure, setting the gap structure 111 on the non-contact area Q2 of the first film layer 11 of the conductive adhesive film 1 can increase the glue overflow space and ensure that the glue liquid flows from the first protruding electrode to be bound. 1011 and the second bump electrode 1021 effectively overflow, reducing the accumulation of glue and conductive particles 121 between the bump electrodes to be bound, so it can also improve the bonding between the first bump electrode 1011 and the second bump electrode to be bound.
  • the effective capture rate of conductive particles 121 between the electrodes 1021 reduces the risk of weak pressure.
  • the effective conductive particles 121 refer to the conductive particles 121 that electrically connect the first bump electrodes 1011 and the second bump electrodes 1021 after binding.
  • the uniformity of overflowing glue is improved, the binding effect of the electronic device 10 is good, the binding time is saved, and the binding difficulty is reduced.

Landscapes

  • Laminated Bodies (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

公开一种导电胶膜,该导电胶膜包括第一膜层和导电粒子层。第一膜层包括多个电极接触区和将多个电极接触区隔开的非接触区。第一膜层中具有多个间隙结构,多个间隙结构至少位于非接触区。导电粒子层位于第一膜层的一侧,导电粒子层中包含有导电粒子,导电粒子在第一膜层上的正投影至少覆盖部分电极接触区。

Description

导电胶膜及其制作方法、电子设备及其制作方法 技术领域
本公开涉及显示技术领域,尤其涉及一种导电胶膜及其制作方法、电子设备及其制作方法。
背景技术
有机电致发光二极管(Organic Light-Emitting Diode,简称OLED)显示面板板凭借其低功耗、高色饱和度、广视角、薄厚度、能实现柔性化等优异性能,逐渐成为显示领域的主流之一。
发明内容
一方面,提供一种导电胶膜,所述导电胶膜包括:第一膜层和导电粒子层。所述第一膜层包括多个电极接触区和将所述多个电极接触区隔开的非接触区。所述第一膜层中具有多个间隙结构,所述多个间隙结构至少位于所述非接触区。所述导电粒子层位于所述第一膜层的一侧,所述导电粒子层中包含有导电粒子,所述导电粒子在所述第一膜层上的正投影至少覆盖部分所述电极接触区。
在一些实施例中,所述多个间隙结构还位于所述接触区。
在一些实施例中,所述多个间隙结构中,位于所述非接触区的间隙结构的总容积大于位于所述电极接触区的间隙结构的总容积。
在一些实施例中,所述多个间隙结构中,位于所述非接触区的间隙结构的密度大于位于所述电极接触区的间隙结构的密度。
在一些实施例中,所述多个间隙结构中,位于所述非接触区的间隙结构的横截面的面积大于位于所述电极接触区的间隙结构的横截面的面积。其中,所述横截面垂直于所述间隙结构的延伸方向。
在一些实施例中,所述多个间隙结构包括至少一个间隙槽,所述至少一个间隙槽位于所述第一膜层靠近和/或远离所述导电粒子层的一侧。
在一些实施例中,所述至少一个间隙槽在垂直于所述至少一个间隙槽的延伸方向的平面内的截面形状为矩形、梯形或U形。
在一些实施例中,所述间隙槽为沿平行于所述第一膜层的方向贯通的通槽。
在一些实施例中,所述第一膜层包括:第一基材和多个第一膜块,所述多个第一膜块设置在所述第一基材的一侧,相邻的两个所述第一膜块与所述第一基材三者之间形成所述至少一个间隙槽中的一个间隙槽。
在一些实施例中,所述多个间隙结构包括至少一个间隙孔,所述至少一个间隙孔的轴线平行于所述第一膜层。
在一些实施例中,所述至少一个间隙孔在垂直于所述至少一个间隙孔的轴线方向的平面内的截面形状为圆形、椭圆形或矩形。
在一些实施例中,所述间隙孔为通孔。
在一些实施例中,所述第一膜层包括:第二基材、第三基材和多个第二膜块,所述多个第二膜块设置在所述第二基材与所述第三基材之间,相邻的两个所述第二膜块与所述第二基材、所述第三基材四者之间形成所述至少一个间隙孔中的一个间隙孔。
在一些实施例中,所述多个间隙结构沿第一方向延伸,且沿第二方向依次排列。其中,所述第一方向与所述第二方向垂直,且均平行于所述第一膜层。
在一些实施例中,所述多个间隙结构中的至少一个间隙结构沿所述第三方向的最大尺寸为c1;所述第一膜层沿第三方向的尺寸为a1,所述第三方向垂直于所述第一膜层。其中,c1=k0·a1,20%≤k0≤30%。
在一些实施例中,相邻两个所述间隙结构之间具有第一间距d1,d1满足:d1=k1·c1,2≤k1≤3。
在一些实施例中,所述第一膜层包括沿所述第二方向依次设置的第一区域和第二区域。在所述第一区域的范围内,相邻两个所述间隙结构之间具有第二间距d2;在所述第二区域的范围内,相邻两个所述间隙结构之间具有第三间距d3。d2和d3满足:d2=k2·c1,2≤k2≤3;d3=k3·c1,4≤k3≤6。
在一些实施例中,所述第一膜层包括沿所述第二方向依次设置的第三区域、第四区域和第五区域。在所述第三区域的范围内,相邻两个所述间隙结构之间具有第四间距d4;在所述第四区域的范围内,相邻两个所述间隙结构之间具有第五间距d5;在所述第五区域的范围内,相邻两个所述间隙结构之间具有第六间距d6。d4、d5和d6满足:d4=d6=k4·c1,1≤k4≤1.5;d5=k5·c1,4≤k5≤6。
或,d4、d5和d6满足:d4=k6·c1,1≤k6≤1.5;d5=k7·c1,2≤k7≤3;d6=k8·c1,4≤k8≤6。
在一些实施例中,所述第一膜层沿所述第二方向的长度为L1,所述第三区域沿所述第二方向的长度为L2,所述第四区域沿所述第二方向的长度为L3,所述第五区域沿所述第二方向的长度为L4,所述第三区域和所述第四区域沿第二方向的长度之和为L5。当d4、d5和d6满足:
d4=d6=k4·c1,1≤k4≤1.5;d5=k5·c1,4≤k5≤6时,L1、L2、L3和L4满足:L3=k9·L1,40%≤k9≤60%;L2+L4=k10·L1,40%≤k10≤60%;L2=L4。当d4、d5和d6满足:d4=k6·c1,1≤k6≤1.5;d5=k7·c1,2≤k7≤3;d6=k8·c1,4≤k8≤6时,L2、L3和L5满足:L2=k11·L5,40%≤k11≤60%;L3=k12·L5,40%≤k12≤60%。
在一些实施例中,所述导电胶膜还包括:第二膜层,所述第二膜层可撕除的粘贴在所述第一膜层远离所述导电粒子层的一侧。
另一方面,提供一种导电胶膜的制作方法,所述制作方法包括:制作第一膜层,所述第一膜层包括多个电极接触区和将所述多个电极接触区隔开的非接触区;所述第一膜层中具有多个间隙结构,所述多个间隙结构至少位于所述非接触区。在位于所述第一膜层的一侧形成导电粒子层,所述导电粒子层中包含有导电粒子,所述导电粒子在所述第一膜层上的正投影至少覆盖部分所述电极接触区。
在一些实施例中,所述多个间隙结构包括至少一个间隙槽。所述制作第一膜层的步骤,包括:提供第一基材;在所述第一基材的一侧形成多个第一膜块,相邻的两个所述第一膜块与所述第一基材三者之间形成所述至少一个间隙槽中的一个间隙槽。
在一些实施例中,所述多个间隙结构包括至少一个间隙孔。所述制作第一膜层的步骤,包括:提供第二基材;在所述第二基材的一侧形成多个第二膜块;以及,在所述多个第二膜块远离所述第二基材的一侧形成第三基材。其中,相邻的两个所述第二膜块与所述第二基材、所述第三基材四者之间形成所述至少一个间隙孔中的一个间隙孔。
在一些实施例中,所述制作方法还包括:在所述第一膜层远离所述导电粒子层的一侧形成第二膜层,所述第二膜层可撕除的粘贴在所述第一膜层远离所述导电粒子层的一侧。
又一方面,提供一种电子设备,所述电子设备包括:基板和驱动芯片。所述基板具有芯片安装区域;所述基板包括位于所述芯片安装区域内的多个第一凸起电极,所述多个第一凸起电极间隔设置。所述驱动芯片具有多个第二凸起电极,所述多个第二凸起电极间隔设置。其中,所述基板的多个第一凸起电极和所述驱动芯片的多个第二凸起电极通过至少一个如上任一项所述的导电胶膜绑定连接。
在一些实施例中,所述多个第一凸起电极呈多排多列排列设置,第一排第一凸起电极为输入电极,其他各排第一凸起电极为输出电极,所述输入电 极与相邻所述输出电极之间的间距大于相邻两排所述输出电极之间的间距。所述导电胶膜的多个间隙结构沿所述多个第一凸起电极的排方向或者列方向延伸设置。
再一方面,提供一种电子设备的制作方法,所述电子设备的制作方法包括:提供基板,所述基板具有芯片安装区域;所述基板包括位于所述芯片安装区域内的多个第一凸起电极,所述多个第一凸起电极间隔设置。提供驱动芯片,所述驱动芯片具有多个第二凸起电极,所述多个第二凸起电极间隔设置;在所述多个第一凸起电极与所述多个第二凸起电极之间设置至少一个导电胶膜。压合所述驱动芯片与所述基板,以使所述多个第一凸起电极与所述多个第二凸起电极绑定连接。其中,所述导电胶膜为如上任一项所述的导电胶膜;和/或,所述导电胶膜的数量为多个,在压合所述驱动芯片与所述基板之前,多个导电胶膜在平行于所述基板的平面内间隔排列。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的一种导电胶膜未压合前的电子设备的堆叠结构图;
图2为根据一些实施例的另一种导电胶膜未压合前的电子设备的堆叠结构图;
图3为根据一些实施例提供的一种电子设备的结构图;
图4为根据一些实施例的一种导电胶膜未压合前的电子设备的截面图;
图5为根据一些实施例的另一种导电胶膜未压合前的电子设备的截面图;
图6为根据一些实施例的又一种导电胶膜未压合前的电子设备的截面图;
图7为根据一些实施例的第一膜层的结构图;
图8为根据一些实施例的导电胶膜的结构图;
图9~图12为根据一些实施例的导电胶膜沿X方向的结构图;
图13为根据一些实施例的另一种导电胶膜的结构图;
图14~图17为根据一些实施例的另一种导电胶膜沿X方向的结构图;
图18为根据一些实施例的基板沿Z方向的结构图;
图19~图23为根据一些实施例的导电胶膜在基板上设置的结构图;
图24为根据一些实施例的又一种导电胶膜的结构图;
图25为根据一些实施例的导电胶膜的制作方法流程图;
图26为根据一些实施例的导电胶膜的制作步骤图;
图27为根据一些实施例的另一种导电胶膜的制作方法流程图;
图28为根据一些实施例的另一种导电胶膜的制作步骤图;
图29为根据一些实施例的又一种导电胶膜的制作方法流程图;
图30为根据一些实施例的又一种导电胶膜的制作步骤图;
图31为根据一些实施例的再一种导电胶膜的制作方法流程图;
图32为根据一些实施例的又一种导电胶膜的制作步骤图;
图33为根据一些实施例的又一种电子设备导电胶膜未压合前的堆叠结构图;
图34为根据一些实施例的另一种导电胶膜在基板上设置的结构图;
图35为根据一些实施例的一种电子设备的制作方法流程图;
图36为根据一些实施例的一种电子设备的制作步骤图;
图37为根据一些实施例的另一种电子设备的制作方法流程图;
图38为根据一些实施例的另一种电子设备的制作步骤图;
图39为驱动芯片与显示面板在理想情况下绑定的结构图;
图40为相关技术中驱动芯片与显示面板绑定的结构图;
图41为相关技术中另一种驱动芯片与显示面板绑定的结构图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)” 或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
如本文所使用的那样,“平行”、“垂直”、“相等”包括所阐述的情况以及与所阐述的情况相近似的情况,该相近似的情况的范围处于可接受偏差范围内,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。例如,“平行”包括绝对平行和近似平行,其中近似平行的可接受偏差范围例如可以是5°以内偏差;“垂直”包括绝对垂直和近似垂直,其中近似垂直的可接受偏差范围例如也可以是5°以内偏差。“相等”包括绝对相等和近似相等,其中近似相等的可接受偏差范围内例如可以是相等的两者之间的差值小于或等于其中任一者的5%。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
在OLED显示装置中,为满足高清晰度、高分辨率以及大尺寸和折叠类产品的需求,驱动芯片的凸起电极不断增加或者驱动芯片的数量不断增加,则OLED显示面板绑定区域的凸起电极数量不断增加。
请参阅图39,当驱动芯片01和显示面板02通过导电胶膜03绑定时,在绑定效果良好的情况下,驱动芯片01上的芯片凸起电极011与对应的显示面板02上的基板凸起电极021之间应当具有一层导电粒子031,导电粒子031分别与芯片凸起电极011以及基板凸起电极021接触,且导电粒子031受到一定程度的压缩产生形变。然而,当显示面板02绑定区域尺寸确定时,随着 待绑定的基板凸起电极021数量增加,基板凸起电极021之间的间距减小,各个位置温度均一性较差。请参阅图40,当驱动芯片01与显示面板02通过导电胶膜03粘接时,驱动芯片01与显示面板02之间的导电胶膜03溢胶均一性较差,导电胶膜03无法有效溢出,导致相邻两个芯片凸起电极011(或相邻两个基板凸起电极021)之间以及待绑定的芯片凸起电极011和基板凸起电极021之间胶材和导电粒子031堆积,形成弱压,从而导致显示面板02无法点亮。并且,请参阅图41,导电胶膜03的胶液流动稳定性差,压合时,驱动芯片01各个位置受力不均衡,会随胶液流动而向一侧移动,容易导致待绑定的芯片凸起电极011和基板凸起电极021错位,从而造成绑定精度误差。
基于此,本公开一些实施例提供一种电子设备10,请参阅图1和图2,图1为根据一些实施例的一种导电胶膜未压合前的电子设备10的堆叠结构图,图2为根据一些实施例的另一种导电胶膜未压合前的电子设备10的堆叠结构图,该电子设备10包括:基板101和驱动芯片102,基板101具有芯片安装区域(例如图1和图2中的虚线框)。基板101包括位于芯片安装区域内的多个第一凸起电极1011,多个第一凸起电极1011间隔设置。驱动芯片102具有多个第二凸起电极1021,多个第二凸起电极1021间隔设置。其中,基板101的多个第一凸起电极1011和驱动芯片102的多个第二凸起电极1021通过至少一个导电胶膜1绑定连接。
请参阅图3,在一些示例中,所述电子设备10可以为移动电话,在另一些示例中,所述电子设备10还可以为(但不限于)无线装置、个人数据助理(PDA)、手持式或便携式计算机、GPS接收器/导航器、相机、MP4视频播放器、摄像机、游戏控制台、手表、时钟、计算器、电视监视器、平板显示器、计算机监视器、汽车显示器(例如,里程表显示器等)、导航仪、座舱控制器和/或显示器、相机视图的显示器(例如,车辆中后视相机的显示器)、电子相片、电子广告牌或指示牌、投影仪、建筑结构、包装和美学结构(例如,对于一件珠宝的图像的显示器)等。
请继续参阅图1和图2,在一些示例中,该电子设备10包括显示面板103,显示面板103上具有显示区1031和位于显示区1031至少一侧的周边区1032,显示区1031中设置有多个像素,示例性的,每个像素包括至少三种颜色的亚像素,该多种颜色的亚像素至少包括第一颜色亚像素、第二颜色亚像素和第三颜色亚像素,第一颜色、第二颜色和第三颜色为三基色(例如红色、绿色和蓝色)。
所述周边区1032的至少一侧设有绑定区,基板101设置在绑定区。显示 面板103上还设有多条信号线(未图示),多条信号线一端与显示区1031的多个像素电连接,另一端与位于绑定区的基板101上的第一凸起电极1011电连接,由于第一凸起电极1011与驱动芯片102上的第二凸起电极1021电连接,从而可以由驱动芯片102控制显示面板103显示画面。
在一些示例中,请继续参阅图1和图2,位于显示区1031的显示面板103上还设有减反射层104。
本公开一些实施例提供了一种导电胶膜1,该导电胶膜1可以用于上述电子设备10。
请参阅图4~图6,该导电胶膜1包括:第一膜层11和导电粒子层12。
第一膜层11包括多个电极接触区Q1和将多个电极接触区Q1隔开的非接触区Q2。第一膜层11中具有多个间隙结构111,多个间隙结构111至少位于非接触区Q2,例如,如图4所示,多个间隙结构111可以仅位于非接触区Q2。
需要说明的是,电极接触区Q1用于与待绑定的第一凸起电极1011和第二凸起电极1021对应设置。例如,如图4所示,第一膜层11可以包括沿N方向交替设置的电极接触区Q1和非接触区Q2,一个电极接触区Q1在Z方向上的正投影覆盖待绑定的第一凸起电极1011和第二凸起电极1021。
间隙结构111可以沿与导电粒子层12平行的方向延伸,或者可以贯穿导电粒子层靠近和远离第一膜层的两个主表面,本公开对此不做限制。
导电粒子层12位于第一膜层11的一侧,导电粒子层12中包含有导电粒子121,导电粒子121在第一膜层11上的正投影至少覆盖部分电极接触区Q1。例如,如图4所示,导电粒子121在第一膜层11上的正投影可以仅覆盖部分电极接触区Q1。
在一些示例中,第一膜层11为树脂材料,示例性的,第一膜层11的材料为环氧树脂。
在一些示例中,导电粒子121为金属粒子,在另一些示例中,导电粒子121的材料还可以为聚合物或碳纤维。
在一些示例中,导电粒子层12中除包含导电粒子121外,还包含胶材(例如树脂等),可以通过将导电粒子121掺杂到胶材中,形成制作导电粒子层12的原材料。
本公开一些实施例提供的导电胶膜1,通过设置多个间隙结构111至少位于非接触区Q2,当绑定溢胶时,胶液可以向间隙结构111中流动,与“实心”结构的导电胶膜相比,在导电胶膜1的第一膜层11的非接触区Q2上设置间 隙结构111可以增加溢胶空间,保证胶液从待绑定的第一凸起电极1011和第二凸起电极1021之间有效溢出,减少待绑定电极之间出现胶材和导电粒子121堆积,因此还可以提高待绑定的第一凸起电极1011与第二凸起电极1021之间有效的导电粒子121的捕捉率,减小出现弱压的风险。其中,有效的导电粒子121是指,使第一凸起电极1011与第二凸起电极1021在绑定后实现电连接的导电粒子121。
此外,通过设置间隙结构111,还有利于节省导电胶膜的材料,从而降低了导电胶膜1的生产成本。
需要说明的是,通过控制间隙结构111的大小和设置方式,可以控制溢胶方向,提高胶液流动性,提高各个位置和方向的溢胶均匀性,降低待绑定结构之间的绑定误差。
在使用该导电胶膜1时,需将导电胶膜1加热,使第一膜层11和导电粒子层12熔融变软,将导电胶膜1设置于待绑定的两个凸起电极之间,相互压合待绑定的两个凸起电极,以通过导电胶膜1对待绑定的两个凸起电极进行绑定。其中,导电胶膜1中的第一膜层11和导电粒子层12流动时,第一膜层11和导电粒子层12的流动速度不同,从而可以使第一膜层11带动导电粒子121移动,以提高待绑定的第一凸起电极1011与第二凸起电极1021之间有效的导电粒子121的捕捉率。该导电胶膜1的导通原理为:利用导电粒子121连接待绑定的结构之间的电极使之导通,同时又能避免相邻两电极间导通短路,而达成只在垂直于第一膜层11的方向导通的目的。
在一些示例中,如图5和图6所示,所述多个间隙结构111除了位于多个非接触区Q2以外,还位于电极接触区Q1。
这样设置,可以为位于待绑定的第一凸起电极1011和第二凸起电极1021之间的导电胶膜1提供更大的溢胶空间,避免待绑定的第一凸起电极1011和第二凸起电极1021之间产生胶材和导电粒子121的堆积,从而减小出现弱压的现象,保证两个凸起电极电连接可靠。
在一些示例中,请继续参阅图5和图6,导电粒子层中的导电粒子121在第一膜层11上的正投影除了覆盖电极接触区Q1以外,还覆盖非接触区Q2。
导电粒子层12中设置的导电粒子121的数量越多,覆盖的范围越广,越能提高待绑定第一凸起电极1011与第二凸起电极1021之间的导电粒子121的捕捉率,从而保证待绑定第一凸起电极1011与第二凸起电极1021之间的导电性。
在一些示例中,请参阅图7,在平行于第一膜层11的方向上,非接触区 Q2包括位于多个电极接触区Q1外周侧的环形区Q21和位于环形区Q21内的网状区Q22。这样设置,使得在非接触区Q2内设置间隙结构111后,更有利于导电胶膜1均匀溢胶。
在一些实施例中,导电粒子层12上也可以设置间隙结构。这样设置,这样可以进一步增加胶液溢出空间,增加导电粒子层12的流动性。并且,由于导电粒子121位于导电粒子层12中,因此,在导电粒子层12上设置间隙结构,间隙结构距导电粒子121更近,更有利于调节导电粒子121的流动方向,从而提高待绑定的第一凸起电极1011和第二凸起电极1021之间有效的导电粒子121的捕捉率。
在一些示例中,导电粒子层12的覆盖非接触区Q2的部位中设置有间隙结构。在另一些示例中,导电粒子层12的覆盖电极接触区Q1的部位中设置有间隙结构。在又一些示例中,导电粒子层12的覆盖非接触区Q2的部位和覆盖电极接触区Q1的部位中均设置有间隙结构。
需要说明的是,导电粒子层12中的间隙结构的设置方式,可以与第一膜层11上的间隙结构111的设置方向相同,此处不再赘述。
在一些实施例中,第一膜层11的多个间隙结构111中,位于非接触区Q2的间隙结构111的总容积大于位于电极接触区Q1的间隙结构111的总容积。
这样设置,可以使非接触区Q2比电极接触区Q1具有更大的溢胶空间,从而保证电极接触区Q1和非接触区Q2的胶液均可以有效溢出。
在一些实施例中,第一膜层11的多个间隙结构111中,位于非接触区Q2的间隙结构111的密度大于位于电极接触区Q1的间隙结构111的密度。
需要解释的是,上述间隙结构111的设置“密度”是指:在相同的容积空间中,设置的间隙结构111的数量。则“位于非接触区Q2的间隙结构111的密度大于位于电极接触区Q1的间隙结构111的密度”是指:设置在非接触区Q2的间隙结构111的数量多于设置在电极接触区Q1的数量。由于电极接触区Q1的部分胶液需要向非接触区Q2溢出,则非接触区Q2需要更大的溢胶空间,这样设置,可以保证各个位置的胶液可以有效均匀溢出,避免出现胶材和导电粒子121的堆积。
示例性的,请参阅图5,在沿N方向区域中,两个非接触区Q2之间的电极接触区Q1也设有相同的间隙结构111,(即间隙槽111a),电极接触区Q1与两个电极接触区Q1之间的非接触区Q2沿N方向的长度大致相同,在非接触区Q2中设置3个间隙结构111,在两个非接触区Q2之间的电极接触区Q1 设置1个间隙结构,也就是说,位于非接触区Q2的间隙结构111的密度大于位于电极接触区Q1的间隙结构111的密度,这样设置可以保证电极接触区Q1和非接触区Q2的胶液均可以有效溢出。
在一些实施例中,第一膜层11的多个间隙结构111中,位于非接触区Q2的间隙结构111的横截面的面积大于位于电极接触区Q1的间隙结构111的横截面的面积;其中,横截面垂直于间隙结构111的延伸方向。
需要说明的是,这样设置,当电极接触区Q1以及非接触区Q2的间隙结构111的数量以及在延伸方向的尺寸相同时,当位于非接触区Q2的间隙结构111的横截面的面积大于位于电极接触区Q1的间隙结构111的横截面的面积时,可以使设置在非接触区Q2的间隙结构111的容积大于设置在电极接触区Q1的间隙结构111的容积,从而使非接触区Q2具有更大的溢胶空间,可以保证电极接触区Q1和非接触区Q2的胶液均可以有效溢出。
示例性的,请参阅图6,在每个电极接触区Q1以及两个电极接触区Q1之间的非接触区Q2均设置有间隙结构111(即间隙槽111a),并且设置在非接触区Q2的间隙结构111的横截面面积大于设置在电极接触区Q1的间隙结构111的横截面面积,从而使非接触区Q2处的胶液具有更大的溢出空间。
在一些实施例中,多个间隙结构111包括至少一个间隙槽111a,至少一个间隙槽111a位于第一膜层11靠近和/或远离导电粒子层12的一侧。
需要说明的是,间隙槽111a无论设置在靠近还是远离导电粒子层12的一侧,或者同时设置在靠近和远离导电粒子层12的一侧,间隙槽111a均可以增加胶液溢出空间,有利于胶液充分溢出,降低待绑定的凸起电极之间出现弱压的风险。
在一些示例中,请参阅图8~图12,多个间隙槽111a位于第一膜层11靠近导电粒子层12的一侧,并且间隙槽111a的延伸方向与第一膜层11所在的平面平行,这样设置,由于间隙槽111a靠近导电粒子层12,当导电胶膜1受到挤压时,导电粒子层也可以向间隙槽111a中流动,从而提高间隙槽111a处的导电粒子121的捕捉率,当间隙槽111a与待绑定的凸起电极对应设置时,可以提高上下凸起电极之间的导电粒子111a的捕捉率,从而保证凸起电极绑定可靠。
在另一些示例中,间隙槽111a还可以位于第一膜层11远离导电粒子层12的一侧。
在另一些示例中,间隙槽111a的延伸方向还可以沿垂直于第一膜层11的方向设置。
在一些实施例中,至少一个间隙槽111a在垂直于至少一个间隙槽111a的延伸方向的平面内的截面形状为矩形、梯形或U形。
在一些示例中,请参阅图8和图9,间隙槽111a在垂直于间隙槽111a的延伸方向的平面内的截面形状为矩形。
在另一些示例中,请参阅图10,多个间隙槽111a在垂直于间隙槽111a的延伸方向(即X方向)的平面内的截面形状均为梯形,示例性的,间隙槽111a在垂直于间隙槽111a的延伸方向(即X方向)的平面内的截面形状为正置的等腰梯形。
在又一些实施例中,请参阅图11,间隙槽111a在垂直于间隙槽111a的延伸方向(即X方向)的平面内的截面形状均为倒置的U形。
需要说明的是,本公开对间隙槽111a在垂直于间隙槽111a的延伸方向(即X方向)的平面内的截面形状不做具体限定,在其他示例中,间隙槽111a在垂直于间隙槽111a的延伸方向(即X方向)的平面内的截面形状还可以为其他形状,例如半圆形、正多边形等。并且,当第一膜层11上具有多个间隙槽111a时,多个间隙槽111a在垂直于间隙槽111a的延伸方向(即X方向)的平面内的截面形状可以相同,也可以不同。
在一些实施例中,间隙槽111a为沿平行于第一膜层11的方向贯通的通槽。
请参阅图8~图12,间隙槽111a设置为通槽结构,方便加工制作,且在间隙槽111a的延伸方向上,胶液均可以向间隙槽111a处流动,能保证沿间隙槽111a延伸方向各个位置处的胶液流动均一性。
在一些实施例中,第一膜层11包括:第一基材112和多个第一膜块113,多个第一膜块113设置在第一基材112的一侧,相邻的两个第一膜块113与第一基材112三者之间形成至少一个间隙槽111a中的一个间隙槽111a。
请参阅图12,第一膜层11采用块状膜块与片状基材的组合式结构,制作时,可以逐层贴附。通过调整第一膜块113的间隔和高度可以调整间隙槽111a的尺寸,并且通过采用具有不同形状内壁面的第一基材112和第一膜块113,可以得到具有不同截面形状的间隙槽111a。
在一些实施例中,多个间隙结构111包括至少一个间隙孔111b,至少一个间隙孔111b的轴线平行于第一膜层11。
需要解释的是,间隙结构111采用间隙孔111b,第一膜层11中胶液流动时可以向两侧的间隙孔111b中流动,从而增加胶液溢出空间,有利于胶液溢出充分,提高溢胶均一性。
在一些示例中,请参阅图13~图17,间隙孔111b的轴线平行于第一膜层11,并且间隙孔111b的轴线沿X方向设置,在另一些示例中,间隙孔111b的轴线还可以垂直于第一膜层11,即间隙孔111b的轴线还可以沿Z方向设置。
在一些实施例中,至少一个间隙孔111b在垂直于至少一个间隙孔111b的轴线方向的平面内的截面形状为圆形、椭圆形或矩形。
在一些示例中,请参阅图13和图14,多个间隙孔111b在垂直于间隙孔111b的轴线方向(即X方向)的平面内的截面形状均为圆形。
在另一些示例中,请参阅图15,多个间隙孔111b在垂直于间隙孔111b的轴线方向(即X方向)的平面内的截面形状均为椭圆形,并且椭圆形的长轴沿垂直于第一膜层11的方向(即Z方向)设置。
在又一些示例中,请参阅图16和图17,多个间隙孔111b在垂直于间隙孔111b的轴线方向(即X方向)的平面内的截面形状均为矩形。
需要说明的是,本公开对间隙孔111b在垂直于间隙孔111b的延伸方向(即X方向)的平面内的截面形状不做具体限定,在其他示例中,间隙孔111b在垂直于间隙孔111b的延伸方向(即X方向)的平面内的截面形状还可以为其他形状,例如半圆形、正多边形、梯形等。当第一膜层11上具有多个间隙孔111b时,多个间隙孔111b在垂直于间隙孔111b的延伸方向(即X方向)的平面内的截面形状可以相同,也可以不同。
在一些实施例中,间隙孔111b为通孔。
请参阅图13~图17,间隙孔111b的轴线平行于第一膜层11,间隙孔111b采用通孔,有利于改善沿孔的延伸方向(即X方向)的各个位置的溢胶均一性。
在一些实施例中,第一膜层11包括:第二基材114、第三基材115和多个第二膜块116,多个第二膜块116设置在第二基材114与第三基材115之间,相邻的两个第二膜块116与第二基材114、第三基材115四者之间形成至少一个间隙孔111b中的一个间隙孔111b。
请参阅图17,间隙孔111b采用块状膜块与片状基材的组合式结构,制作时,可以逐层贴附。通过调整第二膜块116的间隔和高度等可以调整间隙孔111b的尺寸,并且通过采用具有不同形状内壁面的基材和膜块,可以得到具有不同截面形状的间隙孔111b。
在一些实施例中,多个间隙结构111沿第一方向延伸,且沿第二方向依次排列。其中,第一方向与第二方向垂直,且均平行于第一膜层11。
请参阅图8~图17,多个间隙结构111沿X方向(即第一方向)延伸,并 沿Y方向(即第二方向)排列,这样设置,可以提高整个导电胶膜1在各个位置的溢胶均一性,并且,间隙结构111排列规整,方便加工制作。
在一些实施例中,在上述电子设备10中,多个第一凸起电极1011呈多排多列排列设置,第一排第一凸起电极1011为输入电极1011a,其他各排第一凸起电极1011为输出电极1011b,输入电极1011a与相邻输出电极1011b之间的间距大于相邻两排输出电极1011b之间的间距。导电胶膜1的多个间隙结构111沿多个第一凸起电极1011的排方向或者列方向延伸设置。
请参与图1、图2和图18,第一凸起电极1011沿M方向设置多排,沿N方向设置多列。其中远离显示区1031的一排第一凸起电极1011为输入电极1011a。
在一些示例中,请参阅图1,导电胶膜1上的间隙孔111b,沿第一凸起电极1011的排方向(即M方向)延伸,沿第一凸起电极1011的列方向(即N方向)排列设置。
在另一些示例中,请参阅图2,间隙结构111沿第一凸起电极1011的列方向(即N方向)延伸,沿第一凸起电极1011的排方向(即M方向)排列设置。
在一些实施例中,多个间隙结构111中的至少一个间隙结构111沿第二方向(即Y方向)的最大尺寸为c1;第一膜层11沿第三方向(即Z方向)的尺寸为a1,第三方向垂直于第一膜层11。其中,c1和a1满足:c1=k0·a1,20%≤k0≤30%,示例性的,c1=20%·a1、c1=25%·a1或c1=30%·a1。
请参阅图19和图20,间隙结构111采用尺寸相同的圆形的间隙孔111b,当间隙孔111b沿第三方向(即Z方向)的最大尺寸c1和第一膜层11沿第三方向(即Z方向)的尺寸a1之间满足上述关系时,可以保证间隙结构111既能够具有足够的间隙为胶液溢流提供溢流空间,又可以保证第一膜层11的孔隙率不会太大,避免第一膜层11坍塌。
在一些示例中,请参阅图19,间隙结构111采用圆形的间隙孔111b,多个间隙孔111b沿第一凸起电极1011的排方向(即M方向)延伸,沿第一凸起电极1011的列方向(即N方向)均匀排列设置。间隙孔111b沿第三方向(即Z方向)的最大尺寸c1即为间隙孔111b的直径。
在另一些示例中,请参阅图20,间隙结构111采用圆形的间隙孔111b,多个间隙孔111b沿第一凸起电极1011的列方向(即N方向)延伸,沿第一凸起电极1011的排方向(即M方向)均匀排列设置。间隙孔111b沿第三方向(即Z方向)的最大尺寸c1即为间隙孔111b的直径。
在一些实施例中,相邻两个间隙结构111之间具有第一间距d1,d1满足:d1=k1·c1,2≤k1≤3。示例性的,d1=2·c1、d1=2.5·c1或d1=3·c1。
请参阅图19和图20,两个间隙孔111b之间的第一间距d1是指两个间隙孔111b之间的最近距离。当两个间隙孔111b之间的第一间距d1满足上述条件时,可以使得两个间隙孔111b之间的距离既不会过大,也不会过小,从而保证间隙结构111分布均匀,有利于加工,并可以保证胶液溢流均一性。
在一些实施例中,第一膜层11包括沿第二方向(即Y方向)依次设置的第一区域A和第二区域B;在第一区域A的范围内,相邻两个间隙结构111之间具有第二间距d2;在第二区域B的范围内,相邻两个间隙结构111之间具有第三间距d3;d2和d3满足:d2=k2·c1,2≤k2≤3;示例性的,d2=2·c1、d2=2.5·c1或d2=3·c1;d3=k3·c1,4≤k3≤6,示例性的,d3=4·c1、d3=5·c1或d3=6·c1。
这样设置,可以使间隙结构111在不同区域具有不同的设置密度,从而使不同的区域具有不同的胶液溢出空间,有利于调整各个区域胶液溢出情况,从而保证整个区域内的溢胶均一性。
在一些示例中,请参阅图21,间隙结构111采用多个圆形的间隙孔111b,多个间隙孔111b沿第一凸起电极1011的列方向(即N方向)延伸,沿第一凸起电极1011的排方向(即M方向)排列设置。第一区域A与输出电极1011b对应设置,第二区域B与输入电极1011a对应设置,由于相邻两排输出电极1011b之间的间距小于输入电极1011a与相邻一排输出电极1011b之间的距离,也就是说在第一区域A内,第一凸起电极1011设置密度较大,胶液溢流空间较小,因此,设置第一区域A内的间隙孔111b之间的间距小于第二区域B内的间隙孔111b之间的间距(即d2<d3),可以保证第一区域A内间隙孔111b的设置密度更大,使得第一区域A具有更大的胶液溢出空间,从而保证第一区域A和第二区域B的胶液均可以有效溢出,使整个区域各个位置的溢胶均一性提高。
在一些实施例中,第一膜层11包括沿第二方向(即Y方向)依次设置的第三区域C、第四区域D和第五区域E。在第三区域C的范围内,相邻两个间隙结构111之间具有第四间距d4;在第四区域D的范围内,相邻两个间隙结构111之间具有第五间距d5;在第五区域E的范围内,相邻两个间隙结构111之间具有第六间距d6。在一些示例中,d4、d5和d6满足:d4=d6=k4·c1,1≤k4≤1.5,示例性的,d4=d6=c1、d4=d6=1.2·c1或d4=d6=1.5·c1;d5=k5·c1,4≤k5≤6,示例性的,d5=4·c1、d5=5·c1或d5=6·c1。在另一些示例中,d4、 d5和d6满足:d4=k6·c1,1≤k6≤1.5,示例性的,d4=c1、d4=1.3·c1或d4=1.5·c1;d5=k7·c1,2≤k7≤3,示例性的,d5=2·c1、d5=2.3·c1或d5=3·c1;d6=k8·c1,4≤k8≤6,示例性的,d6=4·c1、d6=4.5·c1或d6=6·c1。
这样设置,可以使不同的区域具有不同的数量的间隙结构111,即间隙结构111在不同区域具有不同的设置密度,从而使不同的区域具有不同的胶液溢出空间,有利于提高各个区域胶液溢出均一性。
在一些示例中,请参阅图22,间隙结构111采用多个圆形的间隙孔111b,多个间隙孔111b沿第一凸起电极1011的排方向(即M方向)延伸设置,沿第一凸起电极1011的列方向(即N方向)排列设置。在第一凸起电极1011的列方向上(即N方向)。位于第四区域D的胶液分别向两侧的第三区域C和第五区域E溢出,因此,第三区域C和第五区域E比第四区域D需要更大的溢胶空间,当设置d4=d6<d5时,可以在第三区域C和第五区域E设置更多个间隙孔111b,从而使第三区域C和第五区域E具有较大的胶液溢出空间,使得第三区域C和第五区域E的胶液可以有效溢出,从而保证第三区域C、第四区域D和第五区域E的溢胶均一性。
在另一些示例中,请参阅图23,间隙结构111采用多个圆形的间隙孔111b,多个间隙孔111b沿第一凸起电极1011的列方向(即N方向)延伸设置,沿第一凸起电极1011的排方向(即M方向)排列设置。第三区域C、第四区域D和第五区域E由输出电极1011b向靠近输入电极1011a的一端排列设置。在第一凸起电极1011的排方向上(即M方向),由于输入电极1011a与相邻输出电极1011b之间的间距大于相邻输出电极1011b之间的间距,相邻输出电极1011b之间的间距相等,则远离输入电极1011a的一端具有较小的胶液溢出空间,因此越远离输入电极1011a,第一膜层11上的胶液溢流空间越小,因此,当设置d4<d5<d6时,可以使得第一膜层11上由第五区域E到第三区域C的胶液溢出空间依次增大,从而保证第三区域C、第四区域D和第五区域E的整体溢胶均一性。
在一些实施例中,第一膜层11沿第二方向(即Y方向)的长度为L1,第三区域C沿第二方向(即Y方向)的长度为L2,第四区域D沿第二方向(即Y方向)的长度为L3,第五区域E沿第二方向(即Y方向)的长度为L4,第三区域C和第四区域D沿第二方向(即Y方向)的长度之和为L5。在一些示例中,当d4、d5和d6满足:d4=d6=k4·c1,1≤k4≤1.5;d5=k5·c1,4≤k5≤6时,L1、L2、L3和L4满足:L3=k9·L1,40%≤k9≤60%,示例性的,L3=40%·L1、L3=50%·L1或L3=60%·L1;L2+L4=k10·L1,40%≤k10≤ 60%,示例性的,当L3=40%·L1时,L2+L4=60%·L1,当L3=50%·L1时,L2+L4=50%·L1或当L3=60%·L1时,L2+L4=40%·L1;L2=L4。在另一些示例中,当d4、d5和d6满足:d4=k6·c1,1≤k6≤1.5;d5=k7·c1,2≤k7≤3;d6=k8·c1,4≤k8≤6时,L2、L3和L5满足:L2=k11·L5,40%≤k11≤60%,示例性的,L2=40%·L5、L2=50%·L5或L2=60%·L5;L3=k12·L5,40%≤k12≤60%,示例性的,当L2=40%·L5时,L3=60%·L5,当L2=50%·L5时,L3=50%·L5或当L2=60%·L5时,L3=40%·L5。
这样设置,可以通过调整不同区域的长度调整不同区域的间隙结构111的数量,从而调整不同区域的胶液溢出空间的大小,有利于保证各个区域胶液溢出均一性。
在一些示例中,请参阅图22,第一凸起电极1011的列方向上(即N方向),相邻第一凸起电极1011均匀设置。L3=k9·L1,40%≤k9≤60%,L2+L4=k10·L1,40%≤k10≤60%,L2=L4表示:第三区域C和第五区域E长度的总和与第四区域D的长度相当,并且第三区域C的长度和第五区域E的长度相等,这样设置,可以保证结构对称,使得两侧胶液溢出空间相等,有利于提高胶液溢出均一性。
在另一些示例中,请参阅图23,L2=k11·L5,40%≤k11≤60%,L3=k12·L5,40%≤k12≤60%表示,第三区域C和第四区域D的长度相当,这样设置,可以保证在输出电极1011b的区域范围内,胶液溢出均一性较高。第五区域E的长度与第三区域C和第四区域D的长度之和的关系不做具体限定,可以根据输入电极1011a与相邻输出电极1011b之间的间距进行确定。
需要说明的是,对于上述第一区域A、第二区域B、第三区域C、第四区域D和第五区域E中的任一者,既可以包含电极接触区Q1,也可以包含非接触区Q2。在此基础上,非接触区Q2中相邻两个间隙结构111之间的间距,仍可以大于电极接触区Q1中相邻两个间隙结构111之间的间距。
在一些实施例中,所述导电胶膜1还包括:第二膜层13,第二膜层13可撕除的粘贴在第一膜层11远离导电粒子层12的一侧。
设置第二膜层13可以对第一膜层11起到保护作用,避免第一膜层11受到污染或破坏。
在一些示例中,请参阅图24,第二膜层13为离型膜,在不使用导电胶膜1时,第二膜层13可以贴附在第一膜层11上,对第一膜层11起到良好的保护作用,当使用导电胶膜1时,可以将第二膜层13撕除。
本公开一些实施例还提供了一种导电胶膜1的制作方法,用于制作上述 任一项所述的导电胶膜1,请参阅图25,该制作方法包括步骤S1和S2。
S1、制作第一膜层11,第一膜层11包括多个电极接触区Q1和将多个电极接触区Q1隔开的非接触区Q2;第一膜层11中具有多个间隙结构111,多个间隙结构111至少位于非接触区Q2。
在该步骤中,可以通过在第一膜层11上开设间隙槽111a或间隙孔111b以形成间隙结构111。请参阅图26,在该示例中,第一膜层11上开设的间隙孔111b沿垂直于间隙孔111b轴线方向的截面形状为矩形,且多个间隙孔111b等间距设置。
S2、在位于第一膜层11的一侧形成导电粒子层12,导电粒子层12中包含有导电粒子121,导电粒子121在第一膜层11上的正投影至少覆盖部分电极接触区Q1。
在该步骤中,可以通过涂布的方式在第一膜层11的一侧设置导电粒子层12。
在一些示例中,可以在第一膜层11上先设置间隙结构111,然后再在第一膜层11的一侧形成导电粒子层12。在另一些示例中,还可先在第一膜层11的一侧形成导电粒子层12,再在第一膜层11中开设间隙结构111。
在一些实施例中,多个间隙结构111包括多个间隙槽111a。请参阅图27,制作第一膜层11的步骤,包括步骤S11~S12。
S11、提供第一基材112。
在该步骤中,请参阅图28,第一基材112为片状结构,从而可以在第一基材112的表面设置其他结构,例如在第一基材112的一侧表面上设置第一膜块113。
S12、在第一基材112的一侧形成多个第一膜块113,相邻的两个第一膜块113与第一基材112三者之间形成至少一个间隙槽111a中的一个间隙槽111a。
在该步骤中,请参阅图28,多个第一膜块113间隔设置在第一基材112的一侧表面上,相邻两个第一膜块113相对的内壁面以及第一基材112靠近第一膜块113的表面共同决定间隙槽111a的形状和尺寸。请参阅图28,第一膜块113为长方体结构,也就是说,相邻两个第一膜块113相对的内壁面以及第一基材112靠近第一膜块113的表面均为平面,间隙槽111a在垂直于间隙槽111a延伸方向的平面内的截面为矩形。
在一些示例中,请继续参阅图28,第一基材112和第一膜块113所形成的间隙槽111a沿平行于第一膜层11的方向延伸。
在一些示例中,第一基材112和第一膜块113的材料相同,以使第一膜层11具有较好的整体性。
在一些实施例中,多个间隙结构111包括多个间隙孔111b。请参阅图29,制作第一膜层11的步骤,包括步骤S11'~S13'。
S11'、提供第二基材114。
在该步骤中,请参阅图30,第二基材114为片状,从而可以在第二基材114的表面设置其他结构,例如在第二基材114的一侧表面设置第二膜块116。
S12'、在第二基材114的一侧形成多个第二膜块116。
在该步骤中,多个第二膜块116间隔设置在第二基材114的一侧表面上。请继续参阅图25,第二膜块116为长方体结构。
S13'、在多个第二膜块116远离第二基材114的一侧形成第三基材115。其中,相邻的两个第二膜块116与第二基材114、第三基材115四者之间形成至少一个间隙孔111b中的一个间隙孔111b。
在该步骤中,请继续参阅图30,第三基材115也为片状结构,第二基材114、第二膜块116和第三基材115所形成的间隙孔111b的轴线平行于第一膜层11,第二基材114和第三基材115相对设置的表面以及相邻两个第二膜块116相对设置的表面的形状共同决定间隙孔111b的形状,第二膜块116为长方体结构,第二基材114、第二膜块116以及第三基材115形成的间隙孔111b沿垂直于间隙孔111b轴线方向的截面为矩形。
在一些示例中,第二基材114、第二膜块116以及第三基材115的材料相同,以使第一膜层11具有较好的整体性。
在一些实施例中,请参阅图31,导电胶膜1的制作方法还包括步骤S3。
S3、在第一膜层11远离导电粒子层12的一侧形成第二膜层13,第二膜层13可撕除的粘贴在第一膜层11远离导电粒子层12的一侧。
在该步骤中,第二膜层13可以用于保护第一膜层11,避免第一膜层11污染或者损坏。
需要说明的是,本公开对步骤S1、S2和S3的顺序不做具体限定,在一些示例中,可以按照S1-S2-S3的制作顺序制作上述导电胶膜1。在另一些示例中,还可以按照S1-S3-S2的步骤制作上述导电胶膜1。在又一些实施例中,还可以按照S3-S1-S2的步骤制作导电胶膜1,请参阅图32,制作导电胶膜1时,先提供第二膜层13,然后再第二膜层13的一侧表面设置第一膜层11,并在第一膜层11上设置间隙结构111(即间隙 孔111b),最后在第一膜层11远离第二膜层13的一侧设置导电粒子层12。
本公开另一些实施例还提供了一种电子设备10,请参阅图33和图34,图33为根据一些实施例的又一种电子设备导电胶膜未压合前的堆叠结构图,图34为根据一些实施例的另一种导电胶膜在基板上设置的结构图,该电子设备10包括:基板101和驱动芯片102。基板101具有芯片安装区域。基板101包括位于芯片安装区域内的多个第一凸起电极1011,多个第一凸起电极1011间隔设置。驱动芯片102具有多个第二凸起电极1021,多个第二凸起电极1021间隔设置其中,基板101的多个第一凸起电极1011和驱动芯片102的多个第二凸起电极1021通过多个导电胶膜1绑定连接,多个导电胶膜1在平行于基板101的平面内排列。
上述“多个导电胶膜1”是指至少两个导电胶膜1,所述导电胶膜1既可以是上述任一项所述的导电胶膜1,也可以是其他导电胶膜1,示例性的,导电胶膜1中不开设间隙结构111。
通多个导电胶膜1将基板101与驱动芯片102进行绑定时,多个导电胶膜1间隔设置,可以为胶液溢出提供空间,改善胶液溢出的均一性。
在一些实施例中,多个第一凸起电极1011呈多排多列排列设置,第一排第一凸起电极1011为输入电极1011a,其他各排第一凸起电极1011为输出电极1011b,输入电极1011a与相邻输出电极1011b之间的间距大于相邻两排输出电极1011b之间的间距。多个导电胶膜1包括第一导电胶膜1a和第二导电胶膜1b,第一导电胶膜1a位于输入电极1011a与对应的第二凸起电极1021之间,第二导电胶膜1b位于输出电极1011b与对应的第二凸起电极1021之间。
这样设置,可以使得输入电极1011a和输出电极1011b之间具有足够的胶液溢出空间,从而保证输入电极1011a和输出电极1011b处的胶液均可以有效溢出,以提高整体胶液溢出均一性。
本公开一些实施例还提供了一种电子设备10的制作方法,用于制作上述电子设备10,请参阅图35,该制备方法包括步骤S1'~S4'。
S1'、提供基板101,基板101具有芯片安装区域;基板101包括位于芯片安装区域内的多个第一凸起电极1011,多个第一凸起电极1011间隔设置。
请参阅图18和图36,基板101上的第一凸起电极1011呈多排多列设置,第一凸起电极1011用于与下述驱动芯片102的第二凸起电极1021绑定。需要说明的是,图36中基板101上的第一凸起电极1011的数量和排列方式仅 作为示例,并不作为对本公开实施例的具体限制。
S2'、提供驱动芯片102,驱动芯片102具有多个第二凸起电极1021,多个第二凸起电极1021间隔设置。
请继续参阅图36,第二凸起电极1021与待绑定的第一凸起电极1011相对设置,且一一对应。
S3'、在多个第一凸起电极1011与多个第二凸起电极1021之间设置至少一个导电胶膜1。
上述“至少一个导电胶膜1”是指,第一凸起电极1011和第二凸起电极1021之间设置一整块导电胶膜1,或者设置多块导电胶膜1。
在一些示例中,请参阅图36和图37,步骤S3'包括步骤S31~S32。
S31、提供导电胶膜1,并将导电胶膜1的第二膜层13撕除,将导电胶膜1的导电粒子层12贴附在基板101上;使导电胶膜1完全覆盖基板101上的第一凸起电极1011。
请参阅图36,图36中的步骤(a)提供具有第二膜层13的导电胶膜1,请继续参阅图36中的步骤(b),将导电胶膜1的第二膜层13撕除后,将导电胶膜1贴附在基板101的第一凸起电极1011上。
在该步骤中,导电胶膜1的贴附温度为T1,T1满足:60℃≤T1≤80℃,示例性的,T1=60℃、T1=70℃或T1=80℃;贴附压力为F1,F1满足:
80N≤F1≤120N,示例性的,F1=80N、F1=100N或F1=120N。
S32、将驱动芯片102贴合在第一膜层11远离导电粒子层12的一侧,使第二凸起电极1021与第一凸起电极1011一一对应设置。
请参阅图36,在步骤(c)中,驱动芯片102贴附在导电胶膜1进远离基板101的一侧,驱动芯片102贴合在导电胶膜1上的温度为T2,T2满足:
70℃≤T2≤90℃,示例性的,T2=70℃、T2=75℃或T2=90℃;
贴附压力为F2,F2满足:80N≤F2≤100N,示例性的,F2=80N、F2=85N或F2=100N。通过该步骤,可以通过导电胶膜1将基板101以及驱动芯片102进行初步固定。
S4'、压合驱动芯片102与基板101,以使多个第一凸起电极1011与多个第二凸起电极1021绑定连接。
请参阅图36,在步骤(d)中,通过压头2将驱动芯片102向基板101压合。
在一些示例中,压合温度为T3,T3满足:185℃≤T3≤195℃,示例性的,T3=185℃、T3=187℃或T3=195℃;压合压力为F3,F3满足:
250N≤F3≤450N,示例性的,F3=250N、F3=300N或F3=450N。
在一些示例中,导电胶膜1为如上述任一项的导电胶膜1;示例性的,请继续参阅图36,导电胶膜1的第一膜层11上设有间隙孔111b,当压头2将驱动芯片102向基板101进行压合时,第一膜层11的胶液按照图(即图36中的步骤(d))中的箭头方向流动,间隙孔111b为胶液流动提供空间。第一膜层11的胶液向导电粒子层12流动,当第一凸起电极1011和第二凸起电极1021靠近到特定距离,一部分导电粒子121被捕捉到第一凸起电极1011和对应的第二凸起电极1021之间,并且,导电粒子121受到一定程度的压缩产生形变,以保证导电粒子121与第一凸起电极1011以及第二凸起电极1021均接触良好,以起到良好的导电作用。
在另一些示例中,导电胶膜1的数量为多个,在压合驱动芯片102与基板101之前,多个导电胶膜1在平行于基板101的平面内间隔排列。需要说明的是,在该示例中,导电胶膜1上没有设置间隙结构111。
请参阅图38,通过两个导电胶膜1将基板101与驱动芯片102进行绑定,第一导电胶膜1a覆盖输入电极1011a,第二导电胶膜1b覆盖输出电极1011b,压合前,第一导电胶膜1a和第二导电胶膜1b之间具有间距d7,间距d7的取值范围为:300μm≤d7≤500μm,示例性的,d7=300μm、d7=400μm或d7=500μm。该导电胶膜1中没有设置间隙结构111,由于第一导电胶膜1a和第二导电胶膜1b间隔设置,则为胶液溢出提供了溢出空间,从而可以提高胶液的溢出效果,保证胶液有效溢出。
请参阅图38,在步骤(b)中,将第一导电胶膜1a和第二导电胶膜1b上的第二膜层13分别撕除后,将第一导电胶膜1a和第二导电胶膜1b分别贴附在基板101的第一凸起电极1011上。其中,第一导电胶膜1a覆盖输入电极1011a,第二导电胶膜1b覆盖输出电极1011b。在该步骤中,第一导电胶膜1a和第二导电胶膜1b的贴附温度为T4,T4满足:60℃≤T4≤80℃,示例性的,T4=60℃、T4=70℃或T4=80℃,贴附压力为F4,F4满足:
80N≤F4≤120N,示例性的,F4=80N、F4=100N或F4=120N。
请参阅图38,在步骤(c)中,驱动芯片102贴附在第一导电胶膜1a和第二导电胶膜1b进远离基板101的一侧,驱动芯片102贴合在导电胶膜1上的温度为T5,T5满足:70℃≤T5≤90℃,示例性的,T5=70℃、T5=75℃或T5=90℃,贴附压力为F5,F5满足:80N≤F5≤100N,示例性的,F5=80N,F5=90N或F5=100N。通过该步骤,可以通过导电胶膜1将基板101以及驱动芯片102进行初步固定。
请参阅图38,在步骤(d)中,通过压头2将驱动芯片102向基板101压合。在该步骤中,压合温度为T6,T6满足:185℃≤T6≤195℃,示例性的,T6=185℃、T6=190℃或T6=195℃,压合压力为F6,F6满足:
250N≤F6≤450N,示例性的,F6=250N、F6=300N或F6=450N。
需要说明的是,上述温度以及压力的选择应根据实际生产工艺进行选择,本公开对此不做具体限定。示例性的,根据第一膜层11的不同的材质选用不同的温度和压力。对于低温即可易于流动的材料,选择更低的温度和压力;对于需要高温才能实现流动的材料则选择更高的温度和压力。另外,通过提高温度,增强胶液流动性,从而可以适当降低压力;或者通过提高压力可以适当降低温度。
在另一些示例中,还可以间隔设置三个或者更多个导电胶膜1,本公开对导电胶膜1的数量不做具体限定。
综上所述,本公开一些实施例提供的导电胶膜1,通过设置多个间隙结构111至少位于非接触区Q2,当绑定溢胶时,胶液可以向间隙结构111中流动,与“实心”结构的导电胶膜相比,在导电胶膜1的第一膜层11的非接触区Q2上设置间隙结构111可以增加溢胶空间,保证胶液从待绑定的第一凸起电极1011和第二凸起电极1021之间有效溢出,减少待绑定凸起电极之间出现胶材和导电粒子121堆积,因此还可以提高待绑定的第一凸起电极1011与第二凸起电极1021之间有效的导电粒子121的捕捉率,减小出现弱压的风险。其中,有效的导电粒子121是指,使第一凸起电极1011与第二凸起电极1021在绑定后实现电连接的导电粒子121。此外,通过设置间隙结构111,还有利于节省导电胶膜的材料,从而降低了导电胶膜1的生产成本。还可以通过控制间隙结构111的大小和设置方式,可以控制溢胶方向,提高胶液流动性,提高各个位置和方向的溢胶均匀性,降低待绑定结构之间的绑定误差。本公开一些实施例提供的电子设备10,在绑定时,由于采用上述导电胶膜1,则溢胶均一性提高,电子设备10绑定效果好,节约绑定时间,降低绑定难度。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (27)

  1. 一种导电胶膜,包括:
    第一膜层,所述第一膜层包括多个电极接触区和将所述多个电极接触区隔开的非接触区;所述第一膜层中具有多个间隙结构,所述多个间隙结构至少位于所述非接触区;
    导电粒子层,位于所述第一膜层的一侧,所述导电粒子层中包含有导电粒子,所述导电粒子在所述第一膜层上的正投影至少覆盖部分所述电极接触区。
  2. 根据权利要求1所述的导电胶膜,其中,所述多个间隙结构还位于所述接触区。
  3. 根据权利要求2所述的导电胶膜,其中,所述多个间隙结构中,位于所述非接触区的间隙结构的总容积大于位于所述电极接触区的间隙结构的总容积。
  4. 根据权利要求3所述的导电胶膜,其中,所述多个间隙结构中,位于所述非接触区的间隙结构的密度大于位于所述电极接触区的间隙结构的密度。
  5. 根据权利要求3所述的导电胶膜,其中,所述多个间隙结构中,位于所述非接触区的间隙结构的横截面的面积大于位于所述电极接触区的间隙结构的横截面的面积;其中,所述横截面垂直于所述间隙结构的延伸方向。
  6. 根据权利要求1~5中任一项所述的导电胶膜,其中,
    所述多个间隙结构包括至少一个间隙槽,所述至少一个间隙槽位于所述第一膜层靠近和/或远离所述导电粒子层的一侧。
  7. 根据权利要求6所述的导电胶膜,其中,
    所述至少一个间隙槽在垂直于所述至少一个间隙槽的延伸方向的平面内的截面形状为矩形、梯形或U形。
  8. 根据权利要求6或7所述的导电胶膜,其中,
    所述间隙槽为沿平行于所述第一膜层的方向贯通的通槽。
  9. 根据权利要求6~8中任一项所述的导电胶膜,其中,所述第一膜层包括:
    第一基材和多个第一膜块,所述多个第一膜块设置在所述第一基材的一侧,相邻的两个所述第一膜块与所述第一基材三者之间形成所述至少一个间隙槽中的一个间隙槽。
  10. 根据权利要求1~5中任一项所述的导电胶膜,其中,
    所述多个间隙结构包括至少一个间隙孔,所述至少一个间隙孔的轴线平行于所述第一膜层。
  11. 根据权利要求10所述的导电胶膜,其中,
    所述至少一个间隙孔在垂直于所述至少一个间隙孔的轴线方向的平面内的截面形状为圆形、椭圆形或矩形。
  12. 根据权利要求10或11所述的导电胶膜,其中,
    所述间隙孔为通孔。
  13. 根据权利要求10~12中任一项所述的导电胶膜,其中,所述第一膜层包括:
    第二基材、第三基材和多个第二膜块,所述多个第二膜块设置在所述第二基材与所述第三基材之间,相邻的两个所述第二膜块与所述第二基材、所述第三基材四者之间形成所述至少一个间隙孔中的一个间隙孔。
  14. 根据权利要求1~13中任一项所述的导电胶膜,其中,所述多个间隙结构沿第一方向延伸,且沿第二方向依次排列;
    其中,所述第一方向与所述第二方向垂直,且均平行于所述第一膜层。
  15. 根据权利要求14所述的导电胶膜,其中,
    所述多个间隙结构中的至少一个间隙结构沿所述第三方向的最大尺寸为
    c1;
    所述第一膜层沿第三方向的尺寸为a1,所述第三方向垂直于所述第一膜层;
    其中,c1和a1满足:c1=k0·a1,20%≤k0≤30%。
  16. 根据权利要求15所述的导电胶膜,其中,
    相邻两个所述间隙结构之间具有第一间距d1,d1满足:
    d1=k1·c1,2≤k1≤3。
  17. 根据权利要求15所述的导电胶膜,其中,所述第一膜层包括沿所述第二方向依次设置的第一区域和第二区域;
    在所述第一区域的范围内,相邻两个所述间隙结构之间具有第二间距d2;
    在所述第二区域的范围内,相邻两个所述间隙结构之间具有第三间距d3;
    d2和d3满足:d2=k2·c1,2≤k2≤3;d3=k3·c1,4≤k3≤6。
  18. 根据权利要求15所述的导电胶膜,其中,所述第一膜层包括沿所述第二方向依次设置的第三区域、第四区域和第五区域;
    在所述第三区域的范围内,相邻两个所述间隙结构之间具有第四间距d4;
    在所述第四区域的范围内,相邻两个所述间隙结构之间具有第五间距d5;
    在所述第五区域的范围内,相邻两个所述间隙结构之间具有第六间距d6;
    d4、d5和d6满足:
    d4=d6=k4·c1,1≤k4≤1.5;d5=k5·c1,4≤k5≤6;或,
    d4、d5和d6满足:
    d4=k6·c1,1≤k6≤1.5;d5=k7·c1,2≤k7≤3;d6=k8·c1,4≤k8≤6。
  19. 根据权利要求18所述的导电胶膜,其中,所述第一膜层沿所述第二方向的长度为L1,所述第三区域沿所述第二方向的长度为L2,所述第四区域沿所述第二方向的长度为L3,所述第五区域沿所述第二方向的长度为L4,所述第三区域和所述第四区域沿第二方向的长度之和为L5;
    当d4、d5和d6满足:d4=d6=k4·c1,1≤k4≤1.5;d5=k5·c1,4≤k5≤6时,L1、L2、L3和L4满足:
    L3=k9·L1,40%≤k9≤60%;
    L2+L4=k10·L1,40%≤k10≤60%;
    L2=L4;
    当d4、d5和d6满足:d4=k6·c1,1≤k6≤1.5;d5=k7·c1,2≤k7≤3;d6=k8·c1,4≤k8≤6时,L2、L3和L5满足:
    L2=k11·L5,40%≤k11≤60%;
    L3=k12·L5,40%≤k12≤60%。
  20. 根据权利要求1~19中任一项所述的导电胶膜,还包括:
    第二膜层,可撕除的粘贴在所述第一膜层远离所述导电粒子层的一侧。
  21. 一种导电胶膜的制作方法,包括:
    制作第一膜层,所述第一膜层包括多个电极接触区和将所述多个电极接触区隔开的非接触区;所述第一膜层中具有多个间隙结构,所述多个间隙结构至少位于所述非接触区;
    在位于所述第一膜层的一侧形成导电粒子层,所述导电粒子层中包含有导电粒子,所述导电粒子在所述第一膜层上的正投影至少覆盖部分所述电极接触区。
  22. 根据权利要求21所述的制作方法,其中,所述多个间隙结构包括至少一个间隙槽;所述制作第一膜层的步骤,包括:
    提供第一基材;
    在所述第一基材的一侧形成多个第一膜块,相邻的两个所述第一膜块与所述第一基材三者之间形成所述至少一个间隙槽中的一个间隙槽。
  23. 根据权利要求21所述的制作方法,其中,所述多个间隙结构包括至 少一个间隙孔;所述制作第一膜层的步骤,包括:
    提供第二基材;
    在所述第二基材的一侧形成多个第二膜块;以及,
    在所述多个第二膜块远离所述第二基材的一侧形成第三基材;
    其中,相邻的两个所述第二膜块与所述第二基材、所述第三基材四者之间形成所述至少一个间隙孔中的一个间隙孔。
  24. 根据权利要求21~23中任一项所述的制作方法,还包括:
    在所述第一膜层远离所述导电粒子层的一侧形成第二膜层,所述第二膜层可撕除的粘贴在所述第一膜层远离所述导电粒子层的一侧。
  25. 一种电子设备,包括:
    基板,具有芯片安装区域;所述基板包括位于所述芯片安装区域内的多个第一凸起电极,所述多个第一凸起电极间隔设置;
    驱动芯片,具有多个第二凸起电极,所述多个第二凸起电极间隔设置;
    其中,所述基板的多个第一凸起电极和所述驱动芯片的多个第二凸起电极通过至少一个如权利要求1~20中任一项所述的导电胶膜绑定连接。
  26. 根据权利要求25所述的电子设备,所述多个第一凸起电极呈多排多列排列设置,第一排第一凸起电极为输入电极,其他各排第一凸起电极为输出电极,所述输入电极与相邻所述输出电极之间的间距大于相邻两排所述输出电极之间的间距;
    所述导电胶膜的多个间隙结构沿所述多个第一凸起电极的排方向或者列方向延伸设置。
  27. 一种电子设备的制作方法,包括:
    提供基板,所述基板具有芯片安装区域;所述基板包括位于所述芯片安装区域内的多个第一凸起电极,所述多个第一凸起电极间隔设置;
    提供驱动芯片,所述驱动芯片具有多个第二凸起电极,所述多个第二凸起电极间隔设置;
    在所述多个第一凸起电极与所述多个第二凸起电极之间设置至少一个导电胶膜;
    压合所述驱动芯片与所述基板,以使所述多个第一凸起电极与所述多个第二凸起电极绑定连接;
    其中,所述导电胶膜为如权利要求1~20中任一项所述的导电胶膜;和/或,
    所述导电胶膜的数量为多个,在压合所述驱动芯片与所述基板之前,多 个导电胶膜在平行于所述基板的平面内间隔排列。
PCT/CN2021/133733 2021-11-26 2021-11-26 导电胶膜及其制作方法、电子设备及其制作方法 WO2023092509A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/133733 WO2023092509A1 (zh) 2021-11-26 2021-11-26 导电胶膜及其制作方法、电子设备及其制作方法
CN202180003627.0A CN116508116A (zh) 2021-11-26 2021-11-26 导电胶膜及其制作方法、电子设备及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/133733 WO2023092509A1 (zh) 2021-11-26 2021-11-26 导电胶膜及其制作方法、电子设备及其制作方法

Publications (1)

Publication Number Publication Date
WO2023092509A1 true WO2023092509A1 (zh) 2023-06-01

Family

ID=86538691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133733 WO2023092509A1 (zh) 2021-11-26 2021-11-26 导电胶膜及其制作方法、电子设备及其制作方法

Country Status (2)

Country Link
CN (1) CN116508116A (zh)
WO (1) WO2023092509A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116937007A (zh) * 2023-09-15 2023-10-24 厦门海辰储能科技股份有限公司 储能装置及储能系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006096788A (ja) * 2004-09-28 2006-04-13 Seiko Epson Corp 非粘着膜付き異方性導電膜、非粘着膜付き異方性導電膜を用いた電気光学装置、電気光学装置の製造方法、電気光学装置の製造装置、その製造装置を用いた製造方法、電子機器
CN102738088A (zh) * 2011-04-07 2012-10-17 瑞鼎科技股份有限公司 覆晶装置
CN106842647A (zh) * 2017-03-20 2017-06-13 武汉华星光电技术有限公司 一种显示装置、绑定结构及其制备方法
CN209947454U (zh) * 2018-11-26 2020-01-14 广州方邦电子股份有限公司 导电胶膜及线路板
CN209947452U (zh) * 2018-11-26 2020-01-14 广州方邦电子股份有限公司 导电胶膜及线路板
CN112135467A (zh) * 2020-08-27 2020-12-25 广州国显科技有限公司 焊接结构和显示模组
CN113161242A (zh) * 2021-02-23 2021-07-23 青岛歌尔微电子研究院有限公司 芯片封装工艺

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006096788A (ja) * 2004-09-28 2006-04-13 Seiko Epson Corp 非粘着膜付き異方性導電膜、非粘着膜付き異方性導電膜を用いた電気光学装置、電気光学装置の製造方法、電気光学装置の製造装置、その製造装置を用いた製造方法、電子機器
CN102738088A (zh) * 2011-04-07 2012-10-17 瑞鼎科技股份有限公司 覆晶装置
CN106842647A (zh) * 2017-03-20 2017-06-13 武汉华星光电技术有限公司 一种显示装置、绑定结构及其制备方法
CN209947454U (zh) * 2018-11-26 2020-01-14 广州方邦电子股份有限公司 导电胶膜及线路板
CN209947452U (zh) * 2018-11-26 2020-01-14 广州方邦电子股份有限公司 导电胶膜及线路板
CN112135467A (zh) * 2020-08-27 2020-12-25 广州国显科技有限公司 焊接结构和显示模组
CN113161242A (zh) * 2021-02-23 2021-07-23 青岛歌尔微电子研究院有限公司 芯片封装工艺

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116937007A (zh) * 2023-09-15 2023-10-24 厦门海辰储能科技股份有限公司 储能装置及储能系统
CN116937007B (zh) * 2023-09-15 2023-12-26 厦门海辰储能科技股份有限公司 储能装置及储能系统

Also Published As

Publication number Publication date
CN116508116A (zh) 2023-07-28

Similar Documents

Publication Publication Date Title
WO2021012458A1 (zh) 无缝拼接屏
US12010887B2 (en) Semiconductor unit, method of manufacturing the same, and electronic apparatus
WO2021164360A1 (zh) 一种显示模组和显示装置
WO2023065488A1 (zh) 一种显示模组及无缝拼接显示装置
US20170374740A1 (en) Display device
WO2023092509A1 (zh) 导电胶膜及其制作方法、电子设备及其制作方法
WO2020168624A1 (zh) 一种液晶显示面板及显示装置
US12013615B2 (en) Liquid crystal display panel, and liquid crystal display device
WO2023088168A1 (zh) 阵列基板、显示面板及其制作方法
US10008691B2 (en) Array substrate and manufacturing method thereof, display panel and display device
US11494014B2 (en) Touch panel, touch display device, and fabrication method thereof
WO2015039481A1 (zh) 电致发光装置及其制备方法
KR20110064287A (ko) 외곽영역이 최소화된 액정표시장치
CN113053254A (zh) 显示面板及其制作方法、显示装置
WO2022048046A1 (zh) 覆晶薄膜及显示面板
WO2020019468A1 (zh) Tft阵列基板及其制造方法与柔性液晶显示面板
WO2019114077A1 (zh) 异方性导电胶膜
WO2017215395A1 (zh) 显示面板、显示装置、显示面板的制造方法及显示装置的制造方法
TWI725260B (zh) 液晶盒及其製造方法
WO2020168608A1 (zh) 大尺寸显示面板及其制作方法
JP2010224070A (ja) 液晶表示パネルの製造方法
CN107367860A (zh) 液晶显示组件
US11164998B2 (en) Electrode structure, micro light emitting device, and display panel
WO2023103012A1 (zh) 拼接屏及其制备方法和显示装置
WO2020062510A1 (zh) 成盒结构、显示面板及显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202180003627.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 17927050

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965242

Country of ref document: EP

Kind code of ref document: A1