WO2023092447A1 - 一种测试设备及其测试方法 - Google Patents

一种测试设备及其测试方法 Download PDF

Info

Publication number
WO2023092447A1
WO2023092447A1 PCT/CN2021/133469 CN2021133469W WO2023092447A1 WO 2023092447 A1 WO2023092447 A1 WO 2023092447A1 CN 2021133469 W CN2021133469 W CN 2021133469W WO 2023092447 A1 WO2023092447 A1 WO 2023092447A1
Authority
WO
WIPO (PCT)
Prior art keywords
stage
circuit board
test
fixing
scintillation crystal
Prior art date
Application number
PCT/CN2021/133469
Other languages
English (en)
French (fr)
Inventor
蔡超
汪飞
凌怡清
谢庆国
Original Assignee
湖北锐世数字医学影像科技有限公司
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖北锐世数字医学影像科技有限公司, 华中科技大学 filed Critical 湖北锐世数字医学影像科技有限公司
Publication of WO2023092447A1 publication Critical patent/WO2023092447A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal

Definitions

  • the present application relates to the field of high-energy photon testing, in particular to testing equipment and a testing method based on the testing equipment.
  • the performance of the PET detector directly determines the overall performance of the PET system.
  • the main properties of PET detectors include time resolution, energy resolution, count rate, and deposition position information of ⁇ photons.
  • the probe as the key of the PET detector, determines the main performance of the detector, so how to accurately test the performance parameters of the probe is particularly important.
  • the probe of the detector includes a scintillation crystal, a photoelectric converter, and a scintillation pulse electrical signal readout circuit.
  • the scintillation crystal is used to deposit gamma photons, which are responsible for converting the gamma photons into visible light photons; the photoelectric converter is responsible for converting the visible light photons generated by the scintillation crystal.
  • the scintillation pulse electrical signal is generated; the scintillation pulse electrical signal readout circuit is responsible for inputting the scintillation pulse electrical signal into a sampling device such as an oscilloscope or an MVT acquisition board.
  • the first is to place the scintillation crystal and the circuit board in the pre-dug grooves on the foam board through the foam board, and then fix these devices with tools such as tape.
  • the second is to print some small parts by 3D, then fix the scintillation crystal and circuit board on these small parts, and then adjust these small parts to a suitable position for measurement.
  • one of the purposes of the present application is to provide a testing device with high testing accuracy, small error and high experimental repeatability.
  • the second purpose of the present application is to provide a test method with high test accuracy, small error and high experiment repeatability, which is used to test the performance parameters of the probe.
  • the third purpose of the present application is to provide a test method with high test accuracy, small error and high experiment repeatability, which is used to test the coincidence time resolution of the probe.
  • a testing device comprising at least one testing module, the testing module comprising: a displacement platform for providing displacement in at least one direction; a mounting device for installing a circuit board on the displacement platform; a supporting device for carrying a scintillation crystal and a radiation source adjacent to the scintillation crystal; the displacement stage adjusts the position of the circuit board to couple the circuit board with the scintillation crystal.
  • the mounting device includes a magnet, and the magnet fixes the circuit board to the translation stage.
  • the supporting device includes a first object stage and a limiting member, and the limiting member is installed on the first object stage and forms with the first object stage to fix the flashing crystal holder.
  • the first stage is provided with an opening and a fourth fixing hole
  • the limiting member is provided with a first adjustment hole
  • the limiting member is installed in the opening
  • the limiting member The position member is fixed on the first object stage through the first adjusting hole and the fourth fixing hole.
  • the length of the first adjustment hole is greater than the diameter of the fourth fixing hole so that the installation position of the limiting member can adapt to the scintillation crystals of different sizes.
  • the first object stage is further provided with a second limiting edge, and the second limiting edge is in contact with the limiting member to prevent the limiting member from sliding during installation.
  • the supporting device includes a second object stage, the second object stage is fixed to the first object stage, and the second object stage is used for installing the radiation source.
  • the second object stage is provided with an insertion slot, and the insertion slot is used for inserting the radiation source.
  • the second stage is provided with a second adjustment hole
  • the first stage is provided with a third fixing hole
  • the second stage passes through the second adjustment hole and The third fixing hole is fixed to the first object stage.
  • the length of the second adjustment hole is greater than the diameter of the third fixing hole to adjust the height of the radiation source.
  • the displacement stage includes: a first direction moving part, which moves along a first direction; a second direction moving part, which moves along a second direction, and the second direction is different from the first direction;
  • the second direction fixing part is arranged between the first direction moving part and the second direction moving part.
  • the displacement stage further includes: a first direction fixing part connected to the first direction moving part; a first direction operating part, the first direction operating part Installed on the first direction fixing part and connected with the first direction moving part, the first direction operating part drives the first direction moving part to move in the first direction; the second direction operating part, the second direction operating part, The two-direction operating part is mounted on the second-direction fixing part and connected to the second-direction moving part, and the second-direction operating part drives the second-direction moving part to move in the second direction.
  • the test equipment also includes a shield cover, which covers the test module and provides a dark environment for testing.
  • the testing equipment further includes a base plate and a moving device, and the displacement stage is slidably installed on the base plate through the moving device.
  • the two test modules are arranged opposite to each other on the mobile device along the same straight line.
  • a testing method for testing equipment comprising the following steps: installing a circuit board on a translation stage; fixing the scintillation crystal to a supporting device; moving the translation platform so that the scintillation crystal and the The photoelectric converter on the circuit board is initially aligned; the position of the circuit board is fine-tuned by operating the displacement stage, so that the photoelectric converter is coupled with the scintillation crystal; the radiation source is installed on the support device and connected with the scintillation crystal The scintillation crystal is close; the shielding cover is installed and the performance parameters of the probe are tested.
  • a testing method for testing equipment comprising the following steps: respectively installing circuit boards on oppositely arranged displacement stages; respectively fixing scintillation crystals to supporting devices corresponding to the circuit boards; respectively moving The displacement stage is used to initially align the scintillation crystal with the corresponding photoelectric converter on the circuit board; respectively operate the displacement platform to fine-tune the position of the circuit board, so that the photoelectric converter is aligned with the corresponding photoelectric converter Coupling the scintillation crystals of the two test modules and aligning the scintillation crystals of the two test modules; installing the radiation source on one of the supporting devices and being close to the scintillation crystals; resolution to test.
  • the displacement stage in this application can adjust the position of the circuit board so that the circuit board and the scintillation crystal are more accurately coupled, and at the same time the scintillation crystal and the radiation source are arranged close to each other, there is no foreign object blocking between the two, which can ensure accurate positioning under short-distance conditions. Straight, thus ensuring the accuracy and repeatability of the probe performance test.
  • the displacement platform is slidably installed on the base plate through the moving device, and the two test modules are ensured to be on the same straight line through the moving device, so that the measurement that meets the time resolution can be realized and the accuracy of the measurement can be improved.
  • Fig. 1 is the exploded view of the test equipment of the present application
  • Fig. 2 is the perspective view of the bottom plate of the test equipment of Fig. 1;
  • Fig. 3 is a perspective view of a test module of the test device of Fig. 1;
  • Fig. 4 is a perspective view of a fixing bracket of the test module of Fig. 3;
  • Fig. 5 is the perspective view of the displacement stage of the test module of Fig. 3;
  • FIG. 6 is a perspective view of a mounting plate of the test module of FIG. 3;
  • FIG. 7 is a perspective view of a magnet of the test module of FIG. 3;
  • FIG. 8 is a perspective view of a supporting device of the test module of FIG. 3;
  • Fig. 9 is a perspective view of a first stage of the supporting device of Fig. 8.
  • Fig. 10 is a perspective view of a second stage of the supporting device of Fig. 8;
  • Fig. 11 is a schematic diagram of a test process of the test equipment of the present application.
  • Fig. 12 is another schematic diagram of the test process of the test equipment of the present application.
  • FIG. 13 is a schematic diagram of another testing process of the testing equipment of the present application.
  • a component when a component is said to be “fixed” to another component, it may be directly on the other component or there may be another intermediate component through which it is fixed.
  • a component When a component is said to be “connected” to another component, it may be directly connected to the other component or there may be another intermediate component at the same time.
  • a component When a component is said to be “set on” another component, it may be set directly on the other component or there may be another intermediate component at the same time.
  • the terms “vertical,” “horizontal,” “left,” “right,” and similar expressions are used herein for purposes of illustration only.
  • FIG. 1 is an exploded view of the test equipment of the present application.
  • the testing equipment includes a base plate 10 , a shielding case 20 , two testing modules 30 and a moving device 40 .
  • the shielding cover 20 provides a dark environment for the test, which ensures that the entire test process will not be affected by ambient light, and improves the accuracy and rigor of the test.
  • the shielding cover 20 is black and made of plastic.
  • the shielding cover 20 is made of metal materials such as tungsten steel, which can realize the function of radiation shielding and is safer as a whole; it is also more convenient and simple to test with time resolution.
  • the bottom of the shielding case 20 is provided with a wire hole, which facilitates the connection of the signal wire and the power wire during the experiment.
  • the bottom plate 10 provides an operating surface for the testing process.
  • the bottom plate 10 is provided with a mounting slot 11 , a limiting hole 12 and a groove 13 .
  • the installation groove 11 is located on the upper surface of the bottom plate 10 and is in a straight line.
  • the installation groove 11 is used for installing the slide rail 42 of the mobile device 40 (see FIG. 1 ).
  • the installation slot 11 extends from one end of the bottom plate 10 to the opposite end, so that the test module 30 can move between two ends of the bottom plate 10 .
  • the limiting holes 12 are located on both sides of the installation groove 11 and are used to fix the supporting device 36 of the test module 30 (see FIG. 3 ). By designing the distribution of the limiting holes 12, the supporting device 36 can be evenly stressed after being fixed.
  • the groove 13 is located at the edge of the bottom plate 10 and surrounds the bottom plate 10 .
  • the groove 13 is used for installing the shielding case 20 so as to position the shielding case 20 and the bottom plate 10 .
  • the testing module 30 includes a fixing bracket 31 , a locking member 32 , a translation platform 33 , a mounting device 35 , and a supporting device 36 .
  • the fixing bracket 31 includes a fixing plate 310 and a connecting plate 311 .
  • the fixing plate 310 is perpendicular to the connecting plate 311 .
  • the fixing plate 310 is provided with a plurality of first fixing holes 3101 , and the number of the first fixing holes 3101 is evenly distributed on the fixing plate 310 .
  • the displacement stage 33 is fixed to the fixing plate 310 through the first fixing hole 3101 .
  • the connecting plate 311 defines a second fixing hole 3110 and a locking hole 3111 .
  • the connecting plate 311 is fixed to the slider 41 of the moving device 40 through the second fixing hole 3110 (see FIG. 1 ).
  • the locking hole 3111 is a threaded hole, and the locking member 32 is rotated and installed in the locking hole 3111.
  • the slider 41 drives the fixed bracket 31 to move to a suitable position through the connecting plate 311, the locking member 32 is in contact with the bottom plate 10 (see FIG. 1 ).
  • the fixing bracket 31 is fixed on the base plate 10 .
  • the displacement stage 33 is used to provide displacement in one or more directions.
  • the translation platform 33 is a biaxial translation platform, which can provide displacement in two directions at most.
  • the translation platform 33 can be a three-axis translation platform to achieve more accurate measurement.
  • the translation stage 33 includes a first direction fixing part 330 , a first direction moving part 331 , a first direction operating part 332 , a second direction fixing part 333 , a second direction moving part 334 and a second direction operating part 335 .
  • the first direction moving part 331 is slidably installed on the first direction fixing part 330 to provide displacement in the first direction.
  • the first direction operating part 332 is mounted on the first direction fixing part 330, and one end of the first direction operating part 332 is connected to the first direction moving part 331.
  • the first direction moving part 331 is relatively
  • the one-direction fixing part 330 moves in the first direction.
  • the first direction operating part 332 may be a differential head, and the position of the first direction moving part 331 can be adjusted by rotation.
  • the second direction fixing part 333 is fixed to the first direction moving part 331 , so that the first direction moving part 331 can drive the second direction fixing part 333 to move in the first direction.
  • the second direction moving part 334 is slidably installed on the second direction fixing part 333 .
  • the second direction operating part 335 is installed on the second direction fixing part 333, and one end of the second direction operating part 335 is connected with the second direction moving part 334. By adjusting the second direction operating part 335, the second direction moving part 334 is relatively
  • the two-direction fixing part 333 moves in the second direction.
  • the second-direction operating part 335 can be a differential head, and the position of the second-direction moving part 334 can be adjusted by rotation to provide displacement in the second direction.
  • both the first direction operation part 332 and the second direction operation part 335 are manually operated, and the translation stage 33 is a manual translation stage.
  • the displacement platform 33 can also be an electric displacement platform, and the movement is controlled by a motor to make the testing equipment more precise.
  • the electric stage can also be remotely controlled by the host computer, so as to realize remote measurement.
  • first direction operating part 332 and the second direction operating part 335 in this application is to provide accurate displacement in multiple directions for the circuit board to be tested.
  • the specific settings in the above embodiments The form is only an example rather than a limitation, and any device or device capable of accurately displacing the circuit board to be tested should fall within the technical scope of the present application.
  • the mounting device 35 includes a mounting plate 350 and a magnet 351 .
  • the shape of the mounting board 350 corresponds to that of the circuit board 200 .
  • the mounting plate 350 is a metal plate.
  • the mounting plate 350 is provided with multiple mounting holes 3501 , and the multiple mounting holes 3501 are evenly distributed on the mounting plate 350 .
  • the mounting plate 350 is fixed to the translation platform 33 through the installation hole 3501 , and the movement in the first direction and the second direction is realized through the translation platform 33 .
  • the magnet 351 is cylindrical. Both ends of the magnet 351 are respectively attracted to the mounting plate 350 and the circuit board 200 , so that the circuit board 200 is fixed on the translation stage 33 .
  • the number of magnets 351 is multiple, and the multiple magnets 351 make the circuit board 200 evenly stressed.
  • the magnet 351 has a hollow structure, and this design can reduce the weight of the magnet 351 without reducing the suction force.
  • the circuit board 200 is magnetically fixed by the magnet 351 , the operation is simple and fast, and the circuit board 200 of different sizes can be applied.
  • the function of the mounting device 35 in this application is to provide fixed support for the circuit board 200, that is, any structure or component that can provide a fixed support for the circuit board 200, such as buckles, etc., should be placed Into the scope of technical inspiration of the present application.
  • the supporting device 36 includes a first object stage 360 , a limiting member 361 and a second object stage 363 .
  • the first stage 360 is used to fix the scintillation crystal 300 .
  • the scintillation crystal 300 is generally in the shape of a bar.
  • the second object stage 363 is used to install the radiation source 400 . Since the second object stage 363 is fixed on the first object stage 360 , the distance between the scintillation crystal 300 and the radiation source 400 remains unchanged.
  • the limiting member 361 is installed on the first object stage 360 and forms a fixing groove 362 between the first object stage 360 .
  • the first stage 360 includes a main body 364 , two fixing feet 365 , two first limiting sides 367 and a second limiting side 368 .
  • the main body 364 defines a third fixing hole 3640 for fixing the second stage 363 .
  • the main body 364 also defines an opening 3641 and a fourth fixing hole 3642 .
  • the opening 3641 is located on the top wall of the main body 364 , so that the fixing groove 362 is located on the top of the main body 364 , which facilitates the fixing operation of the scintillation crystal 300 .
  • the fourth fixing hole 3642 is located in the opening 3641 .
  • the second limiting edge 368 is located on the edge of the opening 3641, so that the limiting member 361 can be limited during installation in the opening 3641, preventing the limiting member 361 from sliding during installation, which brings difficulties to the installation.
  • the two first limiting sides 367 are located on two sides of the third fixing hole 3640 respectively, and the two first limiting sides 367 are parallel to each other.
  • the two first limit sides 367 position the second object stage 363 during installation on the first object stage 360 , preventing the second object stage 363 from sliding during the installation process, which brings difficulty to the installation.
  • each fixing leg 365 is provided with a third adjustment hole 3650 , and the third adjustment hole 3650 is an elongated hole.
  • the fixing feet 365 are installed in the limiting holes 12 (see FIG. 2 ) of the bottom plate 10 through the third adjustment holes 3650 , so that the supporting device 36 is fixed on the bottom plate 10 . Since the third adjustment hole 3650 is an elongated hole, the length of the third adjustment hole 3650 is greater than the diameter of the limiting hole 12 , so that the installation position of the supporting device 36 can be adjusted to fine-tune the position of the scintillation crystal 300 .
  • a relief portion 366 is formed between the two fixed feet 365, and the relief portion 366 is used for the slide rail 42 (see FIG. 1 ) to pass through, so that the supporting device 36 and the displacement table 33 (see FIG. 3 ) are located on the same straight line.
  • the shape of the limiting member 361 corresponds to the opening 3641 .
  • the limiting member 361 is provided with a first adjusting hole 3610, and the first adjusting hole 3610 is an elongated hole. The length of the first adjusting hole 3610 is greater than the diameter of the fourth fixing hole 3642 .
  • the limiting member 361 is fixed to the main body 364 through the first adjusting hole 3610 and the fourth fixing hole 3642 .
  • a fixing groove 362 is formed between the end of the limiting member 361 and the end surface of the opening 3641 , and the fixing groove 362 is used for installing the scintillation crystal 300 (see FIG. 3 ).
  • the position of the limiting member 361 can be adjusted during installation to use scintillation crystals 300 of different sizes.
  • the installation and fixing process of the scintillation crystal 300 becomes simple and fast, and scintillation crystals 300 of different sizes can be applied.
  • the second stage 363 includes a mounting portion 3630 and an insertion portion 3632 .
  • the insertion portion 3632 extends from the installation portion 3630 and is perpendicular to the installation portion 3630 .
  • the installation part 3630 is provided with a second adjustment hole 3631 , and the second object stage 363 is fixed to the first object stage 360 through the second adjustment hole 3631 .
  • the insertion part 3632 is provided with an insertion slot 3633, and the insertion slot 3633 is used for inserting the radiation source 400 (see FIG. 3 ).
  • the crystal fixing groove 362 on the second stage 363 is adjacent to the second stage 363, so that the radiation source 400 can be inserted into the socket 3633 and be close to the scintillation crystal 300 to be tested. There is no foreign object blocking between them and they are almost fit together, which can ensure the collimation under short-distance conditions, which is of great significance for accurately testing the performance of the probe parameters.
  • the second adjusting hole 3631 is a long hole, and the length of the second adjusting hole 3631 is greater than the diameter of the third fixing hole 3640 . Since the length of the second adjustment hole 3631 is greater than the diameter of the third fixing hole 3640, the position of the second stage 363 can be adjusted during installation, so as to adjust the height of the radiation source 400. Through the above design, the radiation source 400 is easy to install and can be adjusted. height and suitable for radiation sources 400 of different sizes.
  • the mobile device 40 includes a slider 41 and a slide rail 42 .
  • the slide rail 42 is fixedly installed in the installation groove 11 (see FIG. 2 ).
  • the slider 41 is slidably mounted on the slide rail 42 .
  • the fixing bracket 31 (see FIG. 4 ) is fixed on the slider 41 .
  • the moving device 40 is a single-rail structure in this embodiment, and in other embodiments, the slide rail 42 may also be a double-rail structure to increase the stability of the entire test equipment.
  • the circuit board 200 when using the test equipment to measure the performance parameters of the probe, the circuit board 200 is installed on the translation stage 33 through the installation device 35 , and the translation stage 33 is placed on one end of the guide rail 42 .
  • the scintillation crystal 300 is fixed on the support device 36 , and the translation stage 33 is moved to initially align the scintillation crystal 300 with the photoelectric converter on the circuit board 200 .
  • the position of the circuit board 200 is finely adjusted by operating the displacement stage 33 , so that the photoelectric converter is coupled with the scintillation crystal 300 .
  • Install the radiation source 400 on the supporting device 36 connect the signal wires and power wires required by the circuit board 200, install the shielding cover 20 and test the performance parameters of the probe.
  • the circuit board 200 is installed on the translation stage 33 through the installation device 35 , and the translation stage 33 is placed on one end of the base plate 10 .
  • the scintillation crystal 300 is fixed on the support device 36 , and the translation stage 33 is moved to initially align the scintillation crystal 300 with the photoelectric converter on the circuit board 200 .
  • the position of the circuit board 200 is finely adjusted by operating the displacement stage 33 , so that the photoelectric converter is coupled with the scintillation crystal 300 .
  • the radiation source 400 is installed on the supporting device 36 .
  • a test module 30 is also arranged at the other end of the base plate 10, and the displacement table 33 of the test module 30 is located on the slide rail 42, and the slide rail 42 makes the two test modules 30 be located on the same straight line. Adjust the scintillation crystals 300 of the two test modules 30 through the translation stage 33, connect the required signal lines and power lines of the circuit board 200, install the shielding cover 20 and test the compliance time resolution of the probes.
  • the two test modules 30 are respectively used as a collimated detector and a detector to be tested, and the collimated detector and the detector to be tested can simultaneously receive a pair of gamma photons from the same annihilation event, Therefore, it is necessary to connect the collimation detector to the oscilloscope together, and use the AND trigger logic to realize synchronous acquisition. Therefore, the data of the collimated detector can also be recorded, so the scintillation pulse information of the collimated detector and the detector under test can be combined with constant fraction discriminator (CFD for short) or leading edge discriminator , referred to as LED) algorithm to calculate the coincidence time resolution of this pair of detectors. The obtained scintillation pulses can also be used to calculate the energy resolution of the collimated detector and the detector under test.
  • CFD constant fraction discriminator
  • LED leading edge discriminator
  • the present application also relates to a test method based on the above-mentioned test equipment, comprising the following steps:
  • the circuit board 200 is installed on the displacement platform 33 through the installation device 35;
  • the moving stage 33 couples the scintillation crystal 300 to the photoelectric converter on the circuit board 200;
  • the present application also relates to another test method based on the above-mentioned test equipment, comprising the following steps:
  • a test module 30 is respectively arranged at both ends of the slide rail 42, and the two test modules 30 are located on the same straight line;
  • the shield 20 is installed and the coincidence time resolution of the probes is tested.
  • circuit board 200 Since the circuit board 200 is fixed to the displacement stage 33 by the magnet 351 in this application, it is suitable for circuit boards 200 of different sizes, and the installation of the circuit board 200 is simple and fast; the position of the circuit board 200 can be adjusted.
  • the stopper 361 in this application is installed on the first stage 360 and forms a fixing groove 362 for fixing the scintillation crystal 300 with the first stage 360, the scintillation crystal 300 is directly held against by the stopper 361 when the scintillation crystal 300 is installed, and the scintillation crystal
  • the installation of the 300 is simple and fast; and because the size of the fixing groove 362 can be adjusted, it is suitable for scintillation crystals 300 of different sizes.
  • the displacement stage 33 can adjust the position of the circuit board 200 to make the circuit board 200 and the scintillation crystal 300 more accurately coupled, thereby ensuring the accuracy and repeatability of the probe performance test.
  • the displacement platform 33 is slidably installed on the base plate 10 through the mobile device 40, and the two test modules 30 are ensured to be on the same straight line through the mobile device 40, so that the measurement conforming to the time resolution can be realized and the measurement accuracy can be improved. accuracy.
  • the shielding cover 20 is set in the present application, a dark environment is provided for the test, which ensures that the whole test process will not be affected by ambient light, and improves the accuracy and rigor of the test.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

提供了一种测试设备及其测试方法,属于高能光子测试领域,测试设备包括至少一测试模块(30),其包括位移台(33),用于提供至少一个方向上的位移;安装装置(35),将电路板(200)安装于位移台(33);支撑装置(36),用于承载闪烁晶体(300)以及临近闪烁晶体(300)的射源(400);位移台(33)调节电路板(200)的位置以使电路板(200)与闪烁晶体(300)耦合。本申请的技术方案中电路板(200)以及闪烁晶体(300)的安装简单、快捷,电路板(200)与闪烁晶体(300)能够更加精准的耦合,从而保证了探头性能测试的准确性和可重复性。

Description

一种测试设备及其测试方法
本申请要求于2021年11月24日提交的中国专利申请202111405547.6的优先权,其全部内容通过援引加入本文。
技术领域
本申请涉及高能光子测试领域,尤其是涉及测试设备以及基于上述测试设备的测试方法。
背景技术
PET探测器作为PET系统的基本单元,其性能直接决定了PET系统的整体性能。PET探测器的主要性能包括时间分辨率、能量分辨率、计数率以及γ光子的沉积位置信息等。其中探头作为PET探测器的关键,决定了探测器的主要性能,因此如何准确测试探头的性能参数显得尤为重要。
探测器的探头包括闪烁晶体、光电转换器以及闪烁脉冲电信号读出电路,其中闪烁晶体用来沉积γ光子,负责将γ光子转换成可见光光子;光电转换器负责将闪烁晶体产生的可见光光子转化成闪烁脉冲电信号;闪烁脉冲电信号读出电路则负责将闪烁脉冲电信号输入到示波器或者MVT采集板等采样装置中。
目前现有技术中采用的测试设备主要有两种:
第一种是通过泡沫板,将闪烁晶体和电路板放在泡沫板上预先挖好的槽内,然后通过胶带等工具固定住这些器件。
第二种是通过3D打印出一些小型零件,然后将闪烁晶体和电路板固定在这些小型零件上,然后通过调整这些小零件到一个合适的位置进行测量。
通过泡沫板等固定装置简单搭建的实验装置容易出现随着测量时间变长导致闪烁晶体松动的问题,从而导致测量精度不够,甚至产生测量误差;而通过 3D打印的小零件进行测试,无法精确的保证每一次闪烁晶体和电路板的位置都相同,存在比较大的误差,导致实验不具备有很强的可重复性。
背景技术部分的内容仅仅是公开发明人所知晓的技术,并不当然代表本领域的现有技术。
发明内容
为了克服现有技术的不足,本申请的目的之一在于提供一种测试精度高、误差小、实验可重复性高的测试设备。
为了克服现有技术的不足,本申请的目的之二在于提供一种测试精度高、误差小、实验可重复性高的测试方法,该测试方法用于测试探头的性能参数。
为了克服现有技术的不足,本申请的目的之三在于提供一种测试精度高、误差小、实验可重复性高的测试方法,该测试方法用于测试探头的符合时间分辨率。
本申请的目的之一采用如下技术方案实现:
一种测试设备,包括至少一测试模块,所述测试模块包括:位移台,用于提供至少一个方向上的位移;安装装置,用于将电路板安装于所述位移台;支撑装置,用于承载闪烁晶体以及临近所述闪烁晶体的射源;所述位移台调节所述电路板的位置以使所述电路板与所述闪烁晶体耦合。
根据本申请的一方面,所述安装装置包括磁铁,所述磁铁将所述电路板固定于所述位移台。
根据本申请的一方面,所述支撑装置包括第一载物台以及限位件,所述限位件安装于所述第一载物台并与所述第一载物台形成固定所述闪烁晶体的固定槽。
根据本申请的一方面,所述第一载物台设有开口以及第四固定孔,所述限位件设有第一调节孔,所述限位件安装于所述开口中,所述限位件通过所述第 一调节孔以及所述第四固定孔固定于所述第一载物台。
根据本申请的一方面,所述第一调节孔的长度大于所述第四固定孔的直径以使所述限位件的安装位置适应不同尺寸的所述闪烁晶体。
根据本申请的一方面,所述第一载物台还设有第二限位边,所述第二限位边抵触所述限位件以避免所述限位件安装时滑动。
根据本申请的一方面,所述支撑装置包括第二载物台,所述第二载物台固定于所述第一载物台,所述第二载物台用于安装所述射源。
根据本申请的一方面,所述第二载物台设有插接槽,所述插接槽用于插接所述射源。
根据本申请的一方面,所述第二载物台设有第二调节孔,所述第一载物台设有第三固定孔,所述第二载物台通过所述第二调节孔以及所述第三固定孔固定于所述第一载物台。
根据本申请的一方面,所述第二调节孔的长度大于所述第三固定孔的直径以调节所述射源的高度。
根据本申请的一方面,所述位移台包括:第一方向移动部,沿第一方向运动;第二方向移动部,沿第二方向运动,所述第二方向与所述第一方向不同;第二方向固定部,所述第二方向固定部设置于所述第一方向移动部以及所述第二方向移动部之间。
根据本申请的一方面,所述位移台还包括:第一方向固定部,所述第一方向固定部与所述第一方向移动部连接;第一方向操作部,所述第一方向操作部安装于所述第一方向固定部并与所述第一方向移动部连接,所述第一方向操作部带动所述第一方向移动部沿第一方向运动;第二方向操作部,所述第二方向操作部安装于所述第二方向固定部并与所述第二方向移动部连接,所述第二方向操作部带动所述第二方向移动部沿第二方向运动。
根据本申请的一方面,所述测试设备还包括屏蔽罩,所述屏蔽罩遮盖所述 测试模块并为测试提供黑暗环境。
根据本申请的一方面,所述测试设备还包括底板以及移动装置,所述位移台通过所述移动装置滑动安装于所述底板。
根据本申请的一方面,两个所述测试模块沿同一直线相对设置于所述移动装置。
根据本申请的一方面,提供一种测试设备的测试方法,包括以下步骤:将电路板安装于位移台;将闪烁晶体固定于支撑装置;移动所述位移台以使所述闪烁晶体与所述电路板上的光电转换器初步对准;操作所述位移台以使所述电路板位置进行微调,使所述光电转换器与所述闪烁晶体耦合;将射源安装于所述支撑装置并与所述闪烁晶体临近;安装屏蔽罩并对探头的性能参数进行测试。
根据本申请的一方面,提供一种测试设备的测试方法,包括以下步骤:分别将电路板安装于相对设置的位移台;分别将闪烁晶体固定于与所述电路板对应的支撑装置;分别移动所述位移台以使所述闪烁晶体与对应的所述电路板上的光电转换器初步对准;分别操作所述位移台以使所述电路板位置进行微调,使所述光电转换器与对应的所述闪烁晶体耦合,同时使两所述测试模块的所述闪烁晶体对准;将射源安装于其中一个所述支撑装置并与所述闪烁晶体临近;安装屏蔽罩并对探头的符合时间分辨率进行测试。
由于本申请中位移台能够调节电路板的位置以使电路板与闪烁晶体更加精准的耦合,同时闪烁晶体与射源临近设置,二者之间无异物遮挡,能够保证在近距离条件下的准直,从而保证了探头性能测试的准确性和可重复性。
由于本申请中设置了移动装置,位移台通过移动装置滑动安装于底板,两测试模块通过移动装置确保位于同一直线上,从而能够实现符合时间分辨率的测量并且提高测量的准确性。
附图说明
图1为本申请测试设备的分解图;
图2为图1的测试设备的底板的立体图;
图3为图1的测试设备的测试模块的立体图;
图4为图3的测试模块的固定支架的立体图;
图5为图3的测试模块的位移台的立体图;
图6为图3的测试模块的安装板的立体图;
图7为图3的测试模块的磁铁的立体图;
图8为图3的测试模块的支撑装置的立体图;
图9为图8的支撑装置的第一载物台的立体图;
图10为图8的支撑装置的第二载物台的立体图;
图11为本申请测试设备的一测试过程示意图;
图12为本申请测试设备的另一测试过程示意图;
图13为本申请测试设备的又一测试过程示意图。
图中:10、底板;11、安装槽;12、限位孔;13、凹槽;20、屏蔽罩;30、测试模块;31、固定支架;310、固定板;3101、第一固定孔;311、连接板;3110、第二固定孔;3111、锁定孔;32、锁定件;33、位移台;330、第一方向固定部;331、第一方向移动部;332、第一方向操作部;333、第二方向固定部;334、第二方向移动部;335、第二方向操作部;35、安装装置;350、安装板;3501、安装孔;351、磁铁;36、支撑装置;360、第一载物台;361、限位件;3610、第一调节孔;362、固定槽;363、第二载物台;3630、安装部;3631、第二调节孔;3632、插接部;3633、插接槽;364、主体;3640、第三固定孔;3641、开口;3642、第四固定孔;365、固定脚;3650、第三调节孔;366、让位部;367、第一限位边;368、第二限位边;40、移动装置;41、滑块;42、滑轨;200、电路板;300、闪烁晶体;400、 射源。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者也可以存在另一中间组件,通过中间组件固定。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在另一中间组件。当一个组件被认为是“设置于”另一个组件,它可以是直接设置在另一个组件上或者可能同时存在另一中间组件。本文所测试的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
除非另有定义,本文所测试的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所测试的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所测试的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
以下结合附图对本申请的优选实施例进行说明,应当理解,此处所描述的 优选实施例仅用于说明和解释本申请,并不用于限定本申请。
请参阅图1,图1为本申请测试设备的分解图。
测试设备包括底板10、屏蔽罩20、两测试模块30以及移动装置40。
屏蔽罩20给测试提供了黑暗环境,保证了整个测试过程不会受到环境光的影响,提高了测试的准确性和严谨性。在本实施例中,屏蔽罩20呈黑色,由塑料制成。在其他实施例中,屏蔽罩20由钨钢等金属材料制成,能够实现射线屏蔽的功能,整体而言更加安全;针对符合时间分辨率的测试也更加方便、简单。屏蔽罩20底部设有过线孔,便于实验时信号线和电源线的接线。
请继续参阅图2,底板10为测试过程提供操作面。
底板10设有安装槽11、限位孔12以及凹槽13。
安装槽11位于底板10的上表面并呈直线。安装槽11用于安装移动装置40的滑轨42(见图1)。安装槽11从底板10一端延伸至相对的另一端,使测试模块30能够在底板10两端之间移动。
限位孔12位于安装槽11两侧,用于固定测试模块30的支撑装置36(见图3),通过设计限位孔12的分布方式可以使支撑装置36固定后受力均匀。
凹槽13位于底板10边缘并环绕底板10。凹槽13用于屏蔽罩20的安装,使屏蔽罩20与底板10定位。
请继续参阅图3,测试模块30包括固定支架31、锁定件32、位移台33、安装装置35、支撑装置36。
请继续参阅图3及图4,固定支架31包括固定板310以及连接板311。
固定板310垂直于连接板311。固定板310设有第一固定孔3101,第一固定孔3101的数量为多个,多个第一固定孔3101均匀分布于固定板310。位移台33通过第一固定孔3101固定于固定板310。
连接板311设有第二固定孔3110以及锁定孔3111。连接板311通过第二固定孔3110与移动装置40的滑块41固定(见图1)。锁定孔3111为螺纹 孔,锁定件32转动安装于锁定孔3111,当滑块41通过连接板311带动固定支架31移动至合适位置后,通过锁定件32与底板10(见图1)抵触,可以使固定支架31固定于底板10。
请继续参阅图5,位移台33用于提供一个或多个方向上的位移。在本实施例中,位移台33为双轴位移台,能够最多提供两个方向上的位移。在其他实施例中,位移台33可以为三轴位移台,实现更加准确的测量。
具体的,位移台33包括第一方向固定部330、第一方向移动部331、第一方向操作部332、第二方向固定部333、第二方向移动部334以及第二方向操作部335。
第一方向移动部331滑动安装于第一方向固定部330,以提供第一方向的位移。第一方向操作部332安装于第一方向固定部330,第一方向操作部332的一端与第一方向移动部331连接,通过调节第一方向操作部332,使第一方向移动部331相对第一方向固定部330在第一方向移动。比如第一方向操作部332可以是微分头,通过旋转可以调节第一方向移动部331的位置。
第二方向固定部333固定于第一方向移动部331,使第一方向移动部331能够带动第二方向固定部333在第一方向移动。第二方向移动部334滑动安装于第二方向固定部333。第二方向操作部335安装于第二方向固定部333,第二方向操作部335的一端与第二方向移动部334连接,通过调节第二方向操作部335,使第二方向移动部334相对第二方向固定部333在第二方向移动。比如第二方向操作部335可以是微分头,通过旋转可以调节第二方向移动部334的位置,以提供第二方向的位移。在本实施例中,第一方向操作部332以及第二方向操作部335均为手动操作,位移台33为手动位移台。在其他实施例中,位移台33也可以为电动位移台,通过电机控制移动,使测试设备更加精准。电动位移台也可以通过上位机远程控制,从而实现远程测量。
本领域技术人员应当理解的是,本申请中第一方向操作部332和第二方向 操作部335的主要功能是为待测的电路板提供多个方向的精确位移,以上实施例中的具体设置形式仅为示例而非限制,凡是能够使得待测电路板发生精确位移的器件或装置均应落入本申请的技术启示范围。
请继续参阅图3、图6及图7,安装装置35包括安装板350以及磁铁351。
安装板350的形状与电路板200的形状相对应。安装板350为金属板。安装板350设有安装孔3501,安装孔3501的数量为多个,多个安装孔3501均匀分布于安装板350。安装板350通过安装孔3501固定于位移台33,通过位移台33实现在第一方向和第二方向的移动。
磁铁351呈圆柱形。磁铁351两端分别与安装板350以及电路板200吸附,使电路板200固定于位移台33。磁铁351的数量为多个,多个磁铁351使电路板200均匀受力。磁铁351为中空结构,这种设计能够使磁铁351不减小吸力的前提下减轻重量。电路板200通过磁铁351磁吸的方式固定,操作简单、快捷,并且能够适用不同尺寸的电路板200。
本领域技术人员应当理解的是,本申请中的安装装置35的作用是为电路板200提供固定支撑,即凡是能够为电路板200提供固定支撑的结构或部件,比如卡扣等,均应落入本申请的技术启示范围。
请继续参阅图3以及图8,支撑装置36包括第一载物台360、限位件361以及第二载物台363。
第一载物台360用以固定闪烁晶体300。闪烁晶体300通常呈条形。
第二载物台363用以安装射源400,由于第二载物台363固定于第一载物台360,闪烁晶体300与射源400之间的距离不变。
限位件361安装于第一载物台360并与第一载物台360之间形成固定槽362。
请继续参阅图8以及图9,第一载物台360包括主体364、两固定脚365、 两第一限位边367以及第二限位边368。
主体364设有第三固定孔3640,第三固定孔3640用于固定第二载物台363。主体364还设有开口3641以及第四固定孔3642。开口3641位于主体364的顶壁上,使固定槽362位于主体364的顶部,便于闪烁晶体300的固定操作。第四固定孔3642位于开口3641中。第二限位边368位于开口3641的边缘,使限位件361安装于开口3641的过程中能够限位,防止限位件361安装时滑动,给安装带来困难。两第一限位边367分别位于第三固定孔3640两侧,两第一限位边367相互平行。两第一限位边367使第二载物台363安装于第一载物台360的过程中定位,防止第二载物台363安装过程滑动,给安装带来困难。
两固定脚365分别从主体364底部的两侧延伸而出,每一固定脚365设有第三调节孔3650,第三调节孔3650为长形孔。固定脚365通过第三调节孔3650安装于底板10的限位孔12(见图2),使支撑装置36固定于底板10。由于第三调节孔3650为长形孔,第三调节孔3650的长度大于限位孔12的直径,使支撑装置36的安装位置能够调节,以微调闪烁晶体300的位置。
两固定脚365之间形成让位部366,让位部366用于滑轨42(见图1)通过,使支撑装置36与位移台33(见图3)位于同一直线上。
限位件361的形状与开口3641对应。限位件361设有第一调节孔3610,第一调节孔3610为长形孔。第一调节孔3610的长度大于第四固定孔3642的直径。限位件361通过第一调节孔3610以及第四固定孔3642固定于主体364。限位件361的端部与开口3641的端面之间形成固定槽362,固定槽362用于安装闪烁晶体300(见图3)。
由于第一调节孔3610的长度大于第四固定孔3642的直径,限位件361安装过程中位置能够调节,以使用不同尺寸的闪烁晶体300。通过上述设计,闪烁晶体300的安装固定过程变得简单、快捷,并且能够适用不同尺寸的闪烁晶 体300。
请继续参阅图8、图9以及图10,第二载物台363包括安装部3630以及插接部3632。插接部3632从安装部3630延伸而出并垂直于安装部3630。安装部3630设有第二调节孔3631,第二载物台363通过第二调节孔3631固定于第一载物台360。插接部3632设有插接槽3633,插接槽3633用于插接射源400(见图3)。第二载物台363上的晶体固定槽362与第二载物台363临近设置,可以使得射源400插入插接槽3633后与待测的闪烁晶体300临近,闪烁晶体300与射源400之间无异物遮挡且几乎贴合,能够保证在近距离条件下的准直,对于准确测试探头参数性能具有重要意义。
第二调节孔3631为长形孔,第二调节孔3631的长度大于第三固定孔3640的直径。由于第二调节孔3631的长度大于第三固定孔3640的直径,第二载物台363安装时能够调节位置,以便于调节射源400的高度,通过上述设计,射源400安装方便、能够调节高度并且适用不同尺寸的射源400。
请继续参阅图1,移动装置40包括滑块41以及滑轨42。滑轨42固定安装于安装槽11(见图2)。滑块41滑动安装于滑轨42。固定支架31(见图4)固定于滑块41。移动装置40在本实施例中为单轨结构,在其他实施例中,滑轨42也可以为双轨结构,增加整个测试设备的稳定性。
请继续参阅图11以及图12,使用测试设备测量探头的性能参数时,将电路板200通过安装装置35安装于位移台33,并将位移台33放置于导轨42的一端。将闪烁晶体300固定于支撑装置36,移动位移台33使闪烁晶体300与电路板200上的光电转换器初步对准。操作位移台33使电路板200位置进行微调,使光电转换器与闪烁晶体300耦合。将射源400安装于支撑装置36,接好电路板200所需的信号线以及电源线,安装屏蔽罩20并对探头的性能参数进行测试。
请继续参阅图13,使用测试设备测量探头的符合时间分辨率时,将电路板 200通过安装装置35安装于位移台33,并将位移台33放置于底板10的一端。将闪烁晶体300固定于支撑装置36,移动位移台33使闪烁晶体300与电路板200上的光电转换器初步对准。操作位移台33使电路板200位置进行微调,使光电转换器与闪烁晶体300耦合。将射源400安装于支撑装置36。在底板10的另一端也设置一个测试模块30,测试模块30的位移台33位于滑轨42上,此时滑轨42使两测试模块30位于同一直线上。通过位移台33调节使两个测试模块30的闪烁晶体300对齐,接好电路板200所需的信号线以及电源线,安装屏蔽罩20并对探头的符合时间分辨率进行测试。
在测量探头的符合时间分辨率时,两测试模块30分别作为准直探测器和待测探测器,准直探测器和待测探测器能同时接收到来自于同一湮灭事件的一对γ光子,因此需要将准直探测器也一起接入到示波器中,利用与触发逻辑,实现同步采集。因此,准直探测器的数据也可以记录下来,因此可以通过准直探测器和待测探测器的闪烁脉冲信息,结合恒比甄别(constant fraction discriminator,简称CFD)或者上升沿甄别(leading edge discriminator,简称LED)算法,计算出这一对探测器的符合时间分辨率。也可以利用获得的闪烁脉冲,计算准直探测器和待测探测器的能量分辨率。
上述仅是以探头的符合时间分辨率以及能量分辨率来举例说明本专利提供的装置的用途,并不旨在保护具体的计算方法,因此没有提供相应描述。
本申请还涉及一种基于上述测试设备的测试方法,包括以下步骤:
将电路板200通过安装装置35安装于位移台33;
将闪烁晶体300固定于支撑装置36;
移动位移台33使闪烁晶体300与电路板200上的光电转换器耦合;
操作位移台33对电路板200的位置进行微调,使光电转换器与闪烁晶体300对准;
将射源400安装于支撑装置36;
安装屏蔽罩20并对探头的性能参数进行测试。
本申请还涉及另一种基于上述测试设备的测试方法,包括以下步骤:
在滑轨42的两端分别设置一测试模块30,两测试模块30位于同一直线上;
分别将两个电路板200通过安装装置35安装于对应的位移台33;
分别将两闪烁晶体300固定于对应的支撑装置36;
分别移动位移台33使闪烁晶体300各自与对应的电路板200上的光电转换器耦合;
分别操作位移台33对对应的电路板200的位置进行微调,使光电转换器与对应的闪烁晶体300对准;
将射源400安装于支撑装置36;
通过位移台33使两测试模块30的闪烁晶体300对准;
安装屏蔽罩20并对探头的符合时间分辨率进行测试。
由于本申请通过磁铁351将电路板200固定于位移台33,适合不同尺寸的电路板200,并且电路板200安装简单、快捷;电路板200位置能够调节。
由于本申请中限位件361安装于第一载物台360并与第一载物台360形成固定闪烁晶体300的固定槽362,闪烁晶体300安装时直接用限位件361抵住,闪烁晶体300安装简单、快捷;并且由于固定槽362尺寸能够调节,适合不同尺寸的闪烁晶体300。
由于本申请中位移台33能够调节电路板200的位置使电路板200与闪烁晶体300更加精准的耦合,从而保证了探头性能测试的准确性和可重复性。
由于本申请中设置了移动装置40,位移台33通过移动装置40滑动安装于底板10,两测试模块30通过移动装置40确保位于同一直线上,从而能够实现符合时间分辨率的测量并且提高测量的准确性。
由于本申请中设置了屏蔽罩20,给测试提供了黑暗环境,保证了整个测试 过程不会受到环境光的影响,提高了测试的准确性和严谨性。
以上实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进演变,都是依据本申请实质技术对以上实施例做的等同修饰与演变,这些都属于本申请的保护范围。

Claims (17)

  1. 一种测试设备,其特征在于,包括至少一测试模块,所述测试模块包括:
    位移台,用于提供至少一个方向上的位移;
    安装装置,用于将电路板安装于所述位移台;
    支撑装置,用于承载闪烁晶体以及临近所述闪烁晶体的射源;
    所述位移台调节所述电路板的位置以使所述电路板与所述闪烁晶体耦合。
  2. 根据权利要求1所述的测试设备,其特征在于,所述安装装置包括磁铁,所述磁铁将所述电路板固定于所述位移台。
  3. 根据权利要求1所述的测试设备,其特征在于,所述支撑装置包括第一载物台以及限位件,所述限位件安装于所述第一载物台并与所述第一载物台形成固定所述闪烁晶体的固定槽。
  4. 根据权利要求3所述的测试设备,其特征在于,所述第一载物台设有开口以及第四固定孔,所述限位件设有第一调节孔,所述限位件安装于所述开口中,所述限位件通过所述第一调节孔以及所述第四固定孔固定于所述第一载物台。
  5. 根据权利要求4所述的测试设备,其特征在于,所述第一调节孔的长度大于所述第四固定孔的直径以使所述限位件的安装位置适应不同尺寸的所述闪烁晶体。
  6. 根据权利要求4所述的测试设备,其特征在于,所述第一载物台还设有第二限位边,所述第二限位边抵触所述限位件以避免所述限位件安装时滑动。
  7. 根据权利要求3所述的测试设备,其特征在于,所述支撑装置包括第 二载物台,所述第二载物台固定于所述第一载物台,所述第二载物台用于安装所述射源。
  8. 根据权利要求7所述的测试设备,其特征在于,所述第二载物台设有插接槽,所述插接槽用于插接所述射源。
  9. 根据权利要求7所述的测试设备,其特征在于,所述第二载物台设有第二调节孔,所述第一载物台设有第三固定孔,所述第二载物台通过所述第二调节孔以及所述第三固定孔固定于所述第一载物台。
  10. 根据权利要求9所述的测试设备,其特征在于,所述第二调节孔的长度大于所述第三固定孔的直径以调节所述射源的高度。
  11. 根据权利要求1所述的测试设备,其特征在于,所述位移台包括:
    第一方向移动部,沿第一方向运动;
    第二方向移动部,沿第二方向运动,所述第二方向与所述第一方向不同;
    第二方向固定部,所述第二方向固定部设置于所述第一方向移动部以及所述第二方向移动部之间。
  12. 根据权利要求11所述的测试设备,其特征在于,所述位移台还包括:
    第一方向固定部,所述第一方向固定部与所述第一方向移动部连接;
    第一方向操作部,所述第一方向操作部安装于所述第一方向固定部并与所述第一方向移动部连接,所述第一方向操作部带动所述第一方向移动部沿第一方向运动;
    第二方向操作部,所述第二方向操作部安装于所述第二方向固定部并与所述第二方向移动部连接,所述第二方向操作部带动所述第二方向移动部沿第二方向运动。
  13. 根据权利要求1所述的测试设备,其特征在于,所述测试设备还包括屏蔽罩,所述屏蔽罩遮盖所述测试模块并为测试提供黑暗环境。
  14. 根据权利要求1所述的测试设备,其特征在于,所述测试设备还包括底板以及移动装置,所述位移台通过所述移动装置滑动安装于所述底板。
  15. 根据权利要求14所述的测试设备,其特征在于,两个所述测试模块沿同一直线相对设置于所述移动装置。
  16. 一种基于权利要求1-14中任意一项所述的测试设备的测试方法,其特征在于,包括以下步骤:
    将电路板安装于位移台;
    将闪烁晶体固定于支撑装置;
    移动所述位移台以使所述闪烁晶体与所述电路板上的光电转换器初步对准;
    操作所述位移台以使所述电路板位置进行微调,使所述光电转换器与所述闪烁晶体耦合;
    将射源安装于所述支撑装置并与所述闪烁晶体临近;
    安装屏蔽罩并对探头的性能参数进行测试。
  17. 一种基于权利要求1-15中任意一项所述的测试设备的测试方法,其特征在于,包括以下步骤:
    分别将电路板安装于相对设置的位移台;
    分别将闪烁晶体固定于与所述电路板对应的支撑装置;
    分别移动所述位移台以使所述闪烁晶体与对应的所述电路板上的光电转换器初步对准;
    分别操作所述位移台以使所述电路板位置进行微调,使所述光电转换器与对应的所述闪烁晶体耦合,同时使两所述测试模块的所述闪烁晶体对准;
    将射源安装于其中一个所述支撑装置并与所述闪烁晶体临近;
    安装屏蔽罩并对探头的符合时间分辨率进行测试。
PCT/CN2021/133469 2021-11-24 2021-11-26 一种测试设备及其测试方法 WO2023092447A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111405547.6 2021-11-24
CN202111405547.6A CN114167478A (zh) 2021-11-24 2021-11-24 一种测试设备及其测试方法

Publications (1)

Publication Number Publication Date
WO2023092447A1 true WO2023092447A1 (zh) 2023-06-01

Family

ID=80480391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133469 WO2023092447A1 (zh) 2021-11-24 2021-11-26 一种测试设备及其测试方法

Country Status (2)

Country Link
CN (1) CN114167478A (zh)
WO (1) WO2023092447A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116963385A (zh) * 2023-09-21 2023-10-27 荣耀终端有限公司 电路板组件和终端设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109444182A (zh) * 2018-12-22 2019-03-08 苏州瑞派宁科技有限公司 一种闪烁晶体测试装置
CN109541673A (zh) * 2018-11-19 2019-03-29 苏州瑞派宁科技有限公司 一种闪烁晶体测试装置
CN209296931U (zh) * 2018-11-19 2019-08-23 苏州瑞派宁科技有限公司 一种闪烁晶体测试装置
CN209400446U (zh) * 2018-12-22 2019-09-17 苏州瑞派宁科技有限公司 一种闪烁晶体测试装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109541673A (zh) * 2018-11-19 2019-03-29 苏州瑞派宁科技有限公司 一种闪烁晶体测试装置
CN209296931U (zh) * 2018-11-19 2019-08-23 苏州瑞派宁科技有限公司 一种闪烁晶体测试装置
CN109444182A (zh) * 2018-12-22 2019-03-08 苏州瑞派宁科技有限公司 一种闪烁晶体测试装置
CN209400446U (zh) * 2018-12-22 2019-09-17 苏州瑞派宁科技有限公司 一种闪烁晶体测试装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116963385A (zh) * 2023-09-21 2023-10-27 荣耀终端有限公司 电路板组件和终端设备
CN116963385B (zh) * 2023-09-21 2023-11-24 荣耀终端有限公司 电路板组件和终端设备

Also Published As

Publication number Publication date
CN114167478A (zh) 2022-03-11

Similar Documents

Publication Publication Date Title
WO2023092447A1 (zh) 一种测试设备及其测试方法
CN206671422U (zh) 一种电阻框架测试夹具以及电阻框架测试系统
CN109257916A (zh) 屏蔽箱
US3978992A (en) Positioning apparatus
CN108828647B (zh) 一种用于测量低能离子束流注量率和均匀性的装置
CN219919023U (zh) 相机测试装置
CN210346908U (zh) 一种光度检测装置
CN209764758U (zh) 一种多功能晶体检测平台
CN208314166U (zh) 一种磁通量测定装置
CN101464492B (zh) Fpga及配置prom抗总剂量测试方法
CN208476226U (zh) 轴类零件外径检测仪
CN211669299U (zh) 一种光电模块测试装置
CN216160061U (zh) X射线应力测定仪五轴检测装置
CN209559787U (zh) 一种ct探测器导轨组件及ct探测装置
CN211955275U (zh) 一种x射线衍射仪悬丝光井支架
CN113358936A (zh) 一种用于屏蔽盖中导电胶条的电阻测量装置
CN209911583U (zh) 一种光学探测器响应时间的测试装置
CN211012757U (zh) 一种孔中心到边缘距离的测量工具
CN210863915U (zh) 一种具有多向容差检测功能的smp连接器检测设备
CN208156174U (zh) 一种磁铁磁通量自动检测设备
CN209572326U (zh) 屏蔽箱
Musardo et al. A new magnetic measurement system for the future low emittance NSLS-II storage ring
CN215839127U (zh) 一种测试工装、扫描床以及pet空间分辨率测试设备
CN113189639B (zh) 一种晶体探测器检测装置
CN221612028U (zh) 一种环形磁铁检测工装

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965181

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE