WO2023090322A1 - 頭足類飼育方法、原虫予防方法、原虫駆除方法、及び頭足類幼生 - Google Patents

頭足類飼育方法、原虫予防方法、原虫駆除方法、及び頭足類幼生 Download PDF

Info

Publication number
WO2023090322A1
WO2023090322A1 PCT/JP2022/042418 JP2022042418W WO2023090322A1 WO 2023090322 A1 WO2023090322 A1 WO 2023090322A1 JP 2022042418 W JP2022042418 W JP 2022042418W WO 2023090322 A1 WO2023090322 A1 WO 2023090322A1
Authority
WO
WIPO (PCT)
Prior art keywords
breeding
cephalopod
concentration region
concentration
protozoan
Prior art date
Application number
PCT/JP2022/042418
Other languages
English (en)
French (fr)
Inventor
健太郎 藤井
輝 森島
一平 有本
Original Assignee
日本水産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本水産株式会社 filed Critical 日本水産株式会社
Publication of WO2023090322A1 publication Critical patent/WO2023090322A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • A01K61/10Culture of aquatic animals of fish
    • A01K61/13Prevention or treatment of fish diseases
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • A01K63/04Arrangements for treating water specially adapted to receptacles for live fish
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Definitions

  • the present disclosure relates to cephalopod breeding methods, protozoan prevention methods, protozoan extermination methods, and cephalopod larvae.
  • Patent Document 1 discloses an octopus breeding shelter and an octopus farming system.
  • the purpose of the present disclosure is to provide a technique for reducing the mortality rate when raising cephalopod larvae.
  • This disclosure provides: [1] A method for rearing cephalopod larvae in a breeding tank, wherein a high-concentration region having a high salt concentration relative to seawater is formed at the bottom of the breeding tank during the floating rearing period of the cephalopod larvae. and removing the high-concentration region after a predetermined period of time from forming the high-concentration region. [2] Forming the high-concentration region and removing the high-concentration region are performed during at least part of the period until the cephalopod larva reaches 15 days of age, according to [1] cephalopod rearing method.
  • [3] The method for breeding cephalopods according to [1] or [2], wherein the bottom of the breeding tank is within 5 cm from the deepest part of the breeding tank. [4] The method for rearing cephalopods according to any one of [1] to [3], wherein the salt concentration in the high concentration region is 40 ⁇ or more. [5] The head and foot according to any one of [1] to [4], wherein forming the high-concentration region includes supplying high-concentration salt water and/or solid salt to the bottom of the breeding aquarium. breeding method.
  • the highly concentrated salt water and/or the solid salt contains at least one salt selected from the group consisting of sodium chloride, potassium chloride, magnesium chloride, magnesium sulfate, calcium sulfate, and calcium chloride, [5] The cephalopod rearing method described. [7] In forming the high-concentration region, supply the high-concentration salt water and/or solid salt to the bottom of the breeding aquarium so as not to mix with the water above [5] or [6] The cephalopod rearing method described. [8] The breeding of cephalopods according to [7], wherein in forming the high-concentration region, the high-concentration salt water is supplied using supply means connecting the outside of the breeding tank to the bottom of the breeding tank. Method.
  • Method. The highly concentrated salt water and/or the solid salt contains at least one salt selected from the group consisting of sodium chloride, potassium chloride, magnesium chloride, magnesium sulfate, calcium sulfate, and calcium chloride, [23] The protozoan prophylaxis method described. [25] In forming the high-concentration region, supplying the high-concentration salt water and/or solid salt to the bottom part of the breeding aquarium so as not to mix with the water above [23] or [24] The protozoan prophylaxis method described.
  • Method. The highly concentrated salt water and/or the solid salt contains at least one salt selected from the group consisting of sodium chloride, potassium chloride, magnesium chloride, magnesium sulfate, calcium sulfate, and calcium chloride, [39] The described method of disinfesting the protozoa.
  • a cephalopod larva reared in a breeding tank wherein a high-concentration region having a high salt concentration relative to seawater is formed at the bottom of the breeding tank during the floating rearing period of the cephalopod larvae. and removing the high-concentration region after a predetermined time has passed since the formation of the high-concentration region.
  • forming the high-density region and removing the high-density region are performed for at least part of the period until the cephalopod larva reaches 15 days of age. cephalopod larvae.
  • the highly concentrated salt water and/or the solid salt contains at least one salt selected from the group consisting of sodium chloride, potassium chloride, magnesium chloride, magnesium sulfate, calcium sulfate, and calcium chloride. Cephalopod larvae as described.
  • [65] Protozoan-resistant cephalopod larvae.
  • the purpose of the present disclosure is to provide a technique for reducing the mortality rate when raising cephalopod larvae.
  • FIG. 1(a) and FIG. 1(b) are schematic configuration diagrams of an apparatus for carrying out a cephalopod rearing method according to the present embodiment.
  • FIG. 2 is a diagram illustrating a procedure for forming a high-concentration area in a breeding aquarium.
  • FIG. 1 is a schematic configuration diagram of a cephalopod breeding apparatus for carrying out the cephalopod breeding method described in this embodiment.
  • a cephalopod breeding apparatus 1 includes a breeding tank 2 for breeding cephalopods, a water exchange unit 3 as a water change means for changing water in the breeding tank 2, and a salt concentration in the breeding tank 2. and a salt supply unit 4 for forming a high high-concentration region.
  • 1(a) shows a vertical cross section of the breeding tank 2
  • FIG. 1(b) shows a top view of the vicinity of the bottom of the breeding tank 2.
  • salt water may be simply described as water.
  • cephalopods to be reared using the cephalopod breeding apparatus 1 are not particularly limited, but the larvae that float in the sea after hatching in the growth stage are targeted.
  • cephalopods include bigfin reef squid, common flying squid, spear squid, octopus maya, small octopus, common octopus, giant Pacific octopus, common octopus, and tenaga octopus, but are not limited thereto.
  • Cephalopods float in the water of the breeding tank 2 in the larval stage after hatching as described above.
  • the cephalopod rearing apparatus 1 described above can be used during the floating rearing period of cephalopod larvae.
  • the floating breeding period refers to the period after hatching and before landing on the bottom, during which the fish are kept in a floating state.
  • the floating rearing period is around 0 to 23 days of age.
  • age refers to the number of days elapsed since hatching expressed in days, and the date of hatching is defined as 0 days old.
  • the body length of common octopus in the rearing floating period is about 0.8 mm or less.
  • the age and body length of the common octopus during the floating rearing period may change depending on the rearing environment, and are not limited to the above ranges.
  • the period when the cephalopod breeding apparatus 1 can be used may be individually set according to the species.
  • the cephalopod breeding apparatus 1 as shown in FIG.
  • the water exchange section 3 includes a water injection section 31 and a drainage section 32 . Further, the water exchange section 3 may include an aeration facility 33 as shown in FIG. In addition to the facilities shown in FIG. 1, the cephalopod breeding apparatus 1 may be provided with facilities for breeding cephalopods such as feed supply facilities.
  • FIG. 1 shows an example in which the space for storing water W, which is salt water for breeding, inside the breeding aquarium 2 has a columnar shape with a circular bottom surface.
  • the capacity of the breeding aquarium 2 may be, for example, 100 L to 150 ⁇ 10 3 L, or may be 500 L to 150 ⁇ 10 3 L.
  • Cephalopod larvae may be introduced into the breeding tank 2 so that the number of cephalopod larvae per water W1L is 1 to 10 individuals.
  • the water injection unit 31 supplies salt water for breeding into the breeding tank 2 .
  • Salt water for breeding is, for example, seawater that has undergone a predetermined treatment such as sterilization.
  • the water injection part 31 is a pipe for supplying water to be injected into the breeding aquarium 2 from an external supply source.
  • the external supply source includes, for example, a water tank or a tank that stores salt water that has been subjected to a predetermined treatment.
  • a water inlet is provided at the end of the water inlet 31 .
  • the water inlet is arranged, for example, in the upper part of the breeding tank 2, and as shown in FIG. may be configured to Moreover, although not shown, the water injection by the water injection unit 31 may be performed by driving a pump provided in a pipe that constitutes the water injection unit 31, for example.
  • the drainage part 32 drains the salt water in the breeding aquarium 2 .
  • the drain part 32 is a pipe provided with a drain port 32a for taking in water in the breeding tank 2, and the water taken inside from the drain port 32a is discharged to the breeding tank 2 via the pipe.
  • the pipe provided with the drain port 32a is configured to extend vertically in the center C of the breeding aquarium 2, as shown in FIGS. 1(a) and 1(b).
  • water is discharged from the center of the breeding aquarium 2 .
  • the discharge destination of the internal water is, for example, the ocean.
  • the discharged water may be subjected to disinfection or sterilization treatment.
  • the sterilization or sterilization treatment may be carried out by chemicals, chlorine, ozone, electricity, filters, etc., as long as live bacteria or protozoa are not discharged as they are, or may be used in combination.
  • Drainage by the drainage section 32 may be performed, for example, by driving a pump provided in a pipe that constitutes the drainage section 32, although not shown.
  • a pipe may be arranged so as to extend radially from the center C of the breeding aquarium 2 continuously with the pipe extending in the vertical direction.
  • the aeration equipment 33 is installed, for example, near the bottom of the center C of the breeding tank 2, and supplies the water W with air bubbles taken into the breeding tank 2 by an air pump or the like.
  • the aeration equipment 33 is connected to a gas supply unit installed near the bottom of the breeding tank 2 to release bubbles into the water, and an air pump, and supplies air taken in by the air pump to the gas supply unit. It may have a gas pipe to As shown in FIG. 1, when the aeration operation is performed in a state where the gas supply unit is arranged on the water bottom at the center C of the breeding tank 2, the water rises around the drain port 32a near the center C in the breeding tank 2. A stream of bubbles can form.
  • a method of supplying air into the water W of the breeding tank 2 without using the aeration equipment 33 for example, a method of providing the water injection part 31 above the water can be mentioned.
  • a method of providing the water injection part 31 above the water By arranging the water injection part 31 at a position away from the water surface and dropping salt water for breeding from there, air can be mixed in the water as the salt water drops.
  • the method of supplying the water W in the breeding tank 2 is not limited to the method using the aeration equipment 33 .
  • the water in the breeding aquarium 2 can be changed by simultaneously performing water injection by the water injection unit 31 and drainage by the drainage unit 32.
  • the water in the breeding aquarium 2 is changed while maintaining the amount of water.
  • the amount of water in the breeding tank 2 is sufficient to raise the cephalopod larvae, the amount of water to be injected and the amount of water to be discharged need not be the same.
  • the amount of water in the breeding tank 2 is sufficient for breeding cephalopods, water supply, drainage, or both may be temporarily stopped. Also, as shown in FIG.
  • the arrangement of the water injection part 31, the drainage part 32, and the aeration equipment 33 is an example, and can be changed as appropriate.
  • the water injection by the water injection unit 31 may be performed near the water surface in the breeding tank 2 instead of near the water bottom.
  • the drainage by the drainage unit 32 may be performed from the vicinity of the bottom of the center C of the breeding aquarium 2 . In this case, pouring and draining may be performed below the floating area A where the cephalopod larvae can float.
  • a salt supply unit 4 is provided at the bottom of the breeding aquarium 2, which is the bottom, for forming a high-concentration region in which the salt concentration is higher than that of seawater.
  • the bottom of the breeding tank 2 which is the region where the high-concentration region is formed, refers to the portion of the region with salt water in the breeding tank 2 that is close to the bottom.
  • the bottom of the breeding tank 2 accumulates organic matter such as dead cephalopod larvae, leftover food, or excrement during breeding, and is also a source of the protozoa that is the problem in the present disclosure.
  • the bottom of the breeding tank 2 means a height of 15 cm or less, 10 cm or less, 5 cm or less, 3 cm or less, 1 cm or less, or 0.5 cm or less from the water depth of the water W in the breeding tank 2 .
  • the bottom may have a height range of 20% or less, 15% or less, 10% or less, 5% or less, 3% or less, or 1% or less of the water depth of the water W in the breeding tank 2. .
  • These ranges are areas where dead cephalopod larvae, leftover food, or organic matter such as excrement generated during breeding of cephalopod larvae in the breeding aquarium 2 can stay as deposits.
  • breeding tanks 2 used for breeding cephalopod larvae have a depth of about 80 cm to 200 cm, for example.
  • the above height ranges are 18.75% or less, 12.5% or less, 6.25% or less, 3.75% or less, 1 0.25% or less, or 0.625% or less, which is a sufficiently small range relative to water depth.
  • the lower limit of the bottom of the breeding tank 2, which is the region where the high-concentration region is formed, is not a problem as long as it is set so as to include sediment. It may be 0.01 cm or more, 0.03 cm or more, 0.05 cm or more, 0.07 cm or more, or 0.1 cm or more from the bottom of the water.
  • the lower limit of the bottom is 0.005% or more, 0.01% or more, 0.03% or more, 0.5% or more, or 0.1% or more of the water depth of the water W in the breeding tank 2. may be set.
  • the bottom of the water corresponds to the bottom wall 21 of the breeding aquarium 2 .
  • the salt supply unit 4 supplies salts to the bottom of the water where the high concentration area is formed.
  • the salt supply unit 4 may be configured as a pipe.
  • the salt supply part 4 may be installed so that the inlet 41 is provided above the water W and the outlet 42 is provided at the bottom of the water.
  • the inlet 41 is positioned above the water surface.
  • the inlet 41 may have a structure in which the inner diameter increases toward the end so that salts can be easily introduced.
  • the cephalopod larvae do not float near the bottom of the water. Therefore, in a water tank with a water depth of about 80 cm to 200 cm, a region 15 cm or less from the water bottom where the high concentration region is formed is a region below the floating region A.
  • the salt supply unit 4 shown in FIG. 1 since the salt supply unit 4 is not opened near the floating area A, the salt supplied from the input port 41 does not pass through the floating area A and is discharged from the discharge port. 42 will be discharged into the water.
  • a high-concentration area is an area that is intermittently established during the floating rearing period of cephalopod larvae. Therefore, during the floating rearing period of the cephalopod larvae, by adding salts for forming a high-concentration area on the bottom of the breeding tank 2, the salt concentration on the bottom of the water is increased compared to the water in other areas. Form high areas.
  • the salt concentration in the high-concentration region is higher than the concentration of seawater, which is the water W introduced into the breeding tank 2, and is, for example, 40 ⁇ or more, 45 ⁇ or more, 50 ⁇ or more, 55 ⁇ or more, 60 ⁇ or more, or 65 ⁇ .
  • the salinity concentration can be measured, for example, using a conductivity-type salinity meter.
  • the high concentration region may contain a substance that increases the specific gravity. Examples of such substances include glycerol. By increasing the specific gravity, it becomes easier for the high-concentration region to stay at the bottom of the breeding tank 2 .
  • the cephalopod breeding method using the cephalopod breeding apparatus 1 is a method of breeding cephalopod larvae in the breeding aquarium 2 .
  • FIG. 2 shows a state in which a high-concentration area S is formed in the breeding tank 2.
  • FIG. 2 shows a state in which a high-concentration area S is formed in the breeding tank 2.
  • FIG. 2 shows a state in which a high-concentration area S is formed in the breeding tank 2.
  • FIG. 2 shows a state in which a high-concentration area S is formed in the breeding tank 2.
  • FIG. 2 shows a result of supplying salts into the breeding tank 2 using the salt supply unit 4 .
  • FIG. 2 shows a state in which a high-concentration region S is formed by supplying high-concentration salt water from the salt supply unit 4 .
  • the highly concentrated salt water may contain, for example, at least one salt selected from the group consisting of sodium chloride, potassium chloride, magnesium chloride, magnesium sulfate, calcium sulfate, and calcium chloride. Also, the concentration of the high-concentration salt water can be set higher than the salt concentration in the high-concentration region S.
  • the salt supplied from the salt supply unit 4 is not limited to high-concentration salt water.
  • the high-concentration region S may be formed by supplying solid salt from the salt supply unit 4 .
  • the solid salt may contain at least one salt selected from the group consisting of sodium chloride, potassium chloride, magnesium chloride, magnesium sulfate, calcium sulfate, and calcium chloride.
  • the salts supplied from the salt supply unit 4 may contain at least one salt selected from the group consisting of sodium chloride, potassium chloride, magnesium chloride, magnesium sulfate, calcium sulfate, and calcium chloride.
  • the salts supplied from the salt supply unit 4 high-concentration salt water and solid salt may be used together.
  • the amount of solid salt to be added can be set in consideration of the salt concentration of the high-concentration region S. For example, when a solid salt is used in the form of granules or powder, it becomes easier to dissolve due to the larger surface area, and it becomes easier to adjust the salt concentration.
  • the salt supply unit 4 may supply high-concentration salt water and/or solid salt to the bottom of the breeding aquarium 2 . That is, the salt supply unit 4 may supply either one of the high-concentration salt water and the solid salt, or both the high-concentration salt water and the solid salt to the bottom of the breeding aquarium 2 . In other words, the salt supply unit 4 may supply at least one selected from the group consisting of high-concentration salt water and solid salt to the bottom of the breeding aquarium 2 .
  • the purpose of the high-concentration area S formed at the bottom of the breeding tank 2 is to prevent the generation and proliferation of protozoa occurring in the breeding tank 2 . Since protozoa can develop and proliferate on the bottom of the breeding tank 2, formation of the high-concentration region S on the bottom of the water makes it possible to deworm the protozoa.
  • the above-mentioned salt concentration is suitable for extermination of protozoa, and protozoa can be exterminated in a relatively short time.
  • the high-concentration area S is not formed in the floating area A of the cephalopod larvae, but is formed only on the bottom of the water. Therefore, the formation of the high-concentration region S prevents not only the protozoa but also the cephalopod larvae from dying.
  • the high-concentration region S is removed.
  • the salinity of the high-concentration region S can cause the salinity concentration to change throughout the breeding tank 2 . Therefore, the high-concentration region S is removed at the timing when the extermination of the protozoa has progressed to some extent.
  • the predetermined time can be set according to the salinity concentration of the high-concentration region S, and as an example, it may be 15 minutes or more and 60 minutes or less. As an experimental example, it has been confirmed that when protozoa are exposed to salt water with a salt concentration of 40 ⁇ , they can be dewormed in 32 minutes and 40 seconds.
  • the protozoa in the breeding tank 2 can be generally removed by maintaining the high-concentration region S for 15 minutes or longer.
  • the predetermined time may be 15 minutes or longer, 20 minutes or longer, 25 minutes or longer, 30 minutes or longer, 33 minutes or longer, or 35 minutes or longer.
  • the predetermined time is, for example, 180 minutes or less, 150 minutes or less, 120 minutes or less, 100 minutes or less, 80 minutes or less, 60 minutes or less, 50 minutes or less, 40 minutes or less.
  • the predetermined time is too short, the protozoa may not be effectively exterminated. If the predetermined time is long, the high concentration region S may not be maintained. Further, if the predetermined time is long, the growth of swimming cephalopod larvae may be affected by the high-concentration region S.
  • the salt supply unit 4 is also used to remove water existing in the high-concentration region S. That is, the high-concentration area S can be removed by sucking the salt water in the high-concentration area S from the discharge port 42 of the salt supply unit 4 shown in FIG. By adjusting the suction speed or the like, it is possible to remove the water in the vicinity of the high-concentration region S, that is, in the bottom of the breeding aquarium 2 .
  • the salt supply unit 4 is used as a supply means for connecting the outside of the breeding tank 2 and the bottom of the breeding tank 2, and is also used as a removal means for removing water present in the high-concentration region S. may be
  • the amount of water in the breeding tank 2 may decrease.
  • control such as increasing the amount of water injected from the water injection unit 31 may be performed so that the amount of water in the breeding tank 2 is maintained. .
  • the method of removing the high-concentration region S may be a method different from the method of using the salt supply unit 4 as a removing means. For example, when the drainage part 32 is provided at the bottom of the water, the water present in the high-concentration area S may be removed using the drainage part 32 . Moreover, when solid salt is thrown into the bottom of the water and remains after a predetermined time has passed, the solid may be removed first, and then the water near the bottom of the water may be removed.
  • the control may be changed so as to stop water replacement by the water injection part 31 and the water discharge part 32, or to minimize the amount of water to be injected.
  • the aeration equipment 33 may be stopped or the amount of ventilation may be reduced so that the high-concentration region S can be easily maintained.
  • the water in the breeding tank 2 becomes close to a stationary state, so that the high-concentration region S is easily maintained.
  • the amount of water to be removed may be adjusted within a range in which the high-concentration region S can be removed, and a large amount of water may be removed during removal.
  • the high-concentration region S may be colored with food coloring, for example, so that the removal of the high-concentration region S can be visually confirmed.
  • the high-concentration region S where the salt concentration is higher than seawater and removing the high-concentration region after a predetermined time has passed since the formation of the high-concentration region S.
  • the removal of the high-concentration region includes holding the high-concentration region S for a certain period of time and then agitating the whole to eliminate the high-concentration region S as a whole.
  • the mortality rate of cephalopod larvae in the breeding tank 2 can be suppressed by forming the high-concentration region S as described above and removing it after a predetermined period of time.
  • the formation and removal of the high-concentration region S may be performed during at least part of the period until the cephalopod larva reaches 15 days of age. During the period until the cephalopod larva reaches 15 days of age, mortality due to multiplication of protozoa is likely to occur. In addition, the protozoa that develop and proliferate during this period may originate from the salt water, feed, and the like introduced into the breeding tank 2 . Therefore, by forming and removing the high-concentration region S before the cephalopod larva reaches 15 days of age, it is possible to suppress the risk of protozoan development and proliferation during the period thereafter.
  • a series of steps including the formation and removal of the high-concentration region S may be performed during at least part of the period until the cephalopod larva reaches 15 days of age.
  • the period for cephalopod larvae to reach 15 days of age corresponds to the period from 0 to 15 days of age.
  • the series of steps may be performed during at least part of the period after 16 days of age, or may not be performed during the period after 16 days of age.
  • the formation and removal of the high-concentration region S may be performed once, or may be performed multiple times during the breeding period.
  • the formation and removal of the high-concentration region S may be performed when the protozoan proliferative tendency is confirmed.
  • a series of steps including the formation and removal of the high-concentration region S may be repeated during the breeding period. That is, a series of steps including the formation and removal of the high-concentration region S may be performed multiple times during the breeding period.
  • the bottom of the breeding tank 2 where the high-concentration region S is provided may be within 5 cm from the deepest part of the breeding tank.
  • the deepest part of the breeding tank is the part where organic matter such as dead cephalopod larvae, leftover food, or excrement during breeding, which is the source of protozoa, accumulates or can accumulate.
  • the salt concentration in the high concentration region S is 40 ⁇ or more, 45 ⁇ or more, 50 ⁇ or more, 55 ⁇ or more, 60 ⁇ or more, 65 ⁇ or more, 70 ⁇ or more, 75 ⁇ or more, 80 ⁇ or more, 85 ⁇ or more , 90 ⁇ or more, 95 ⁇ or more, or 100 ⁇ or more.
  • the salt concentration in the high-concentration region S there is no problem as long as the salt dissolves, but the salt concentration may be, for example, 250 ⁇ or less, 200 ⁇ or less, or 180 ⁇ or less.
  • the protozoa can be appropriately removed by setting the salt concentration of the high-concentration region S within the above range.
  • the cephalopods bred in the breeding tank 2 while properly removing the protozoa in the region where the protozoa may exist. The effect on larvae can be minimized.
  • the predetermined time which is the time for forming the high-concentration region S, may be 15 minutes or longer, 20 minutes or longer, 25 minutes or longer, 30 minutes or longer, 33 minutes or longer, or 35 minutes or longer.
  • the predetermined time is, for example, 180 minutes or less, 150 minutes or less, 120 minutes or less, 100 minutes or less, 80 minutes or less, 60 minutes or less, 50 minutes or less, It may be 40 minutes or less, or 30 minutes or less.
  • Forming the high-concentration region S may include supplying high-concentration salt water and/or solid salt to the bottom of the breeding aquarium 2 .
  • Solid salts for example, when used in granular or powder form, provide a large surface area. This facilitates dissolution of the solid salt and facilitates adjustment of the salt concentration.
  • the highly concentrated brine and/or solid salt may contain at least one salt selected from the group consisting of sodium chloride, potassium chloride, magnesium chloride, magnesium sulfate, calcium sulfate, and calcium chloride.
  • high-concentration salt water and/or solid salt may be supplied to the bottom of the breeding tank 2 so as not to mix with the water above. In this case, it is possible to suppress a change in the salinity concentration in the floating region A of the cephalopod larvae that may exist above.
  • solid salt for example, if it is a large mass, even if it is put in from the upper part of the breeding tank 2, it does not dissolve much until it reaches the bottom, and after reaching the bottom, it gradually dissolves, so that the high-concentration region S is formed. can be formed.
  • high-concentration salt water may be supplied using a supply means that connects the outside of the breeding tank 2 and the bottom of the breeding tank 2 .
  • the supply means may be a pipe such as the salt supply unit 4 .
  • the water existing in the high-concentration area S may be removed using a removing means that connects the outside of the breeding tank 2 and the bottom of the breeding tank 2 .
  • the removal means may be a pipe.
  • a member that functions as a supply means such as the salt supply unit 4 may be used as a removal means for removing water present in the high-concentration region S.
  • the formation and removal of the high-concentration region S can be realized by only one means, so the complication of the device configuration can be prevented.
  • the salt supply unit 4 may be installed at the time of use and removed after use.
  • the cephalopod breeding apparatus 1 and the cephalopod breeding method described above are apparatuses and methods capable of controlling the density of protozoa present in the breeding aquarium 2 . That is, the cephalopod breeding apparatus 1 and the cephalopod breeding method may control the protozoan density in the water of the breeding aquarium 2 to 350 individuals/ml or less during the floating breeding period. As described above, by forming the high-concentration region S with a high salt concentration and removing it after a predetermined period of time has elapsed, it is possible to exterminate the protozoa that can remain on the bottom of the water, and thus the density of the protozoa in water can be adjusted to a low level. can.
  • the protozoan density is controlled so that the protozoan density is 300 individuals/ml or less, 315 individuals/ml or less, 350 individuals/ml or less, 400 individuals/ml or less, 450 individuals/ml or less, or 500 individuals/ml or less. Also in this case, the proliferation of protozoa can be suppressed, and the mortality rate of cephalopod larvae can be suppressed.
  • the protozoa density can be calculated by collecting 50 ml of the breeding water near the bottom of the breeding tank 2 and visually counting the number of protozoa while observing 20 ⁇ l of the collected water under a microscope.
  • the mortality rate of common octopus larvae can be calculated by measuring the number of dead individuals from the water discharged during cleaning, and calculating it as a ratio to the number of breeding individuals.
  • protozoa that can occur in the breeding tank 2 include flagellates and ciliates. More specifically, flagella include Ichthyyobodonecator, and ciliates include Uronemamarinum, Philasterides dicentrarchi, Pseudocohnilembuspersalinus, Pseudorahabdosynochus hargisi, and Metanophrys sinensis. Therefore, when the cephalopod breeding apparatus 1 is used for breeding, the protozoa to be measured for protozoan density may be flagellates or ciliates. In this case, the state of protozoa generation in the breeding tank 2 can be grasped more accurately.
  • the configuration according to this embodiment can also be called a method for preventing the development of protozoa, that is, a method for preventing protozoa. That is, the method of preventing the generation of protozoa using the cephalopod breeding apparatus 1 is a method of preventing the generation of protozoa in the breeding tank 2 when breeding cephalopod larvae in the breeding tank 2. .
  • the target protozoan to be prevented from developing is not limited as long as the treatment with the high-concentration region S can prevent the development, but it can be flagella or ciliate, for example.
  • the method for preventing the occurrence of the above-mentioned protozoa includes forming a high-concentration region S having a high salt concentration with respect to seawater at the bottom of the breeding tank 2 during the floating rearing period of the cephalopod larvae, and forming a high-concentration region S and removing the high-concentration region S after a predetermined time has elapsed since forming the .
  • the protozoa in the breeding tank 2 can be exterminated, and the mortality rate of the cephalopod larvae can be suppressed.
  • the formation and removal of the high-concentration region S can be performed during at least part of the breeding period until the cephalopod larva reaches 15 days of age. This is because the breeding period until 15 days of age may increase mortality, which is expected to be caused by the development and proliferation of protozoa. Therefore, by forming and removing the high-concentration region S during the period described above, the generation of protozoa can be effectively suppressed.
  • the formation and removal of the high-concentration region S may be performed multiple times during the breeding period.
  • protozoa can develop and proliferate from larval carcasses, feed, and the like. Therefore, by performing the above treatment multiple times, the possibility of generating protozoa can be further reduced.
  • the bottom of the breeding tank 2 where the high-concentration region S is provided may be within 5 cm from the deepest part of the breeding tank.
  • the salt concentration in the high concentration region S is 40 ⁇ or more, 45 ⁇ or more, 50 ⁇ or more, 55 ⁇ or more, 60 ⁇ or more, 65 ⁇ or more, 70 ⁇ or more, 75 ⁇ or more, 80 ⁇ or more, 85 ⁇ or more , 90 ⁇ or more, 95 ⁇ or more, or 100 ⁇ or more.
  • the salinity concentration can be measured, for example, using a conductivity-type salinity meter.
  • the salt concentration in the high-concentration region S there is no problem as long as the salt dissolves, but the salt concentration may be, for example, 250 ⁇ or less, 200 ⁇ or less, or 180 ⁇ or less.
  • the salt concentration of the high-concentration region S within the above range, it is possible to appropriately prevent the generation of protozoa.
  • the cephalopod larvae reared in the breeding tank 2 are prevented from generating protozoa in the region where the protozoa can grow. Impact can be minimal.
  • the predetermined time which is the time for forming the high-concentration region S, may be 15 minutes or longer, 20 minutes or longer, 25 minutes or longer, 30 minutes or longer, 33 minutes or longer, or 35 minutes or longer.
  • the predetermined time is, for example, 180 minutes or less, 150 minutes or less, 120 minutes or less, 100 minutes or less, 80 minutes or less, 60 minutes or less, 50 minutes or less, It may be 40 minutes or less, or 30 minutes or less.
  • the predetermined time may be 15 minutes or more and 60 minutes or less.
  • Forming the high-concentration region S may include supplying high-concentration salt water and/or solid salt to the bottom of the breeding aquarium 2 .
  • Solid salts for example, when used in granular or powder form, provide a large surface area. This facilitates dissolution of the solid salt and facilitates adjustment of the salt concentration.
  • the highly concentrated brine and/or solid salt may contain at least one salt selected from the group consisting of sodium chloride, potassium chloride, magnesium chloride, magnesium sulfate, calcium sulfate, and calcium chloride.
  • high-concentration salt water and/or solid salt may be supplied to the bottom of the breeding tank 2 so as not to mix with the water above. In this case, it is possible to suppress the change in the salinity concentration in the floating area A of the cephalopod larvae that may exist above, so that the influence on the cephalopod larvae can be further reduced.
  • high-concentration salt water may be supplied using a supply means that connects the outside of the breeding tank 2 and the bottom of the breeding tank 2 .
  • the supply means may be a pipe such as the salt supply unit 4 .
  • the water existing in the high-concentration area S may be removed using a removing means that connects the outside of the breeding tank 2 and the bottom of the breeding tank 2 .
  • the removal means may be a pipe.
  • a member that functions as a supply means such as the salt supply unit 4 may be used as a removal means for removing water present in the high-concentration region S.
  • the formation and removal of the high-concentration region S can be realized by only one means, so the complication of the device configuration can be prevented.
  • the protozoan prevention method using the above-described cephalopod breeding apparatus 1 is a device and method capable of controlling the density of protozoa present in the breeding tank 2 by utilizing the formation and removal of the high-concentration region S. . That is, in the protozoan prevention method according to the present embodiment, in the floating breeding period, the protozoa density in the water of the breeding aquarium 2 is 300 individuals/ml or less, 315 individuals/ml or less, 350 individuals/ml or less, 400 individuals/ml or less, The protozoan density may be controlled to 450 individuals/ml or less, or 500 individuals/ml or less.
  • the high-concentration region S As described above, by forming the high-concentration region S with a high salt concentration and removing it after a predetermined period of time has elapsed, it is possible to exterminate the protozoa that can remain on the bottom of the water, and thus the density of the protozoa in water can be adjusted to a low level. can. Therefore, by controlling the protozoan density so that the protozoan density falls within the above range, the generation and proliferation of protozoa can be suppressed.
  • the configuration according to this embodiment can also be called a method for exterminating protozoa in the breeding aquarium 2, that is, a method for exterminating protozoa. That is, the method for exterminating protozoa using the cephalopod breeding apparatus 1 is a method for exterminating protozoa from the breeding tank 2 when cephalopod larvae are reared in the breeding tank 2 .
  • the protozoan to be exterminated is not limited as long as it can be exterminated by the treatment with the high-concentration region S, but it can be, for example, flagellates or ciliates.
  • the above-described method for exterminating the protozoa includes forming a high-concentration region S having a high salt concentration with respect to seawater at the bottom of the breeding tank 2 during the floating rearing period of the cephalopod larvae, and forming the high-concentration region S. and removing the high-concentration region S after a predetermined time has elapsed from the step of removing the high-concentration region S.
  • the formation and removal of the high-concentration region S can be performed during at least part of the breeding period until the cephalopod larva reaches 15 days of age. This is because the breeding period until 15 days of age may increase mortality, which is expected to be caused by the development and proliferation of protozoa. Therefore, by forming and removing the high-concentration region S during the period described above, the protozoa can be effectively exterminated, and their subsequent development and proliferation can be suppressed.
  • the formation and removal of the high-concentration region S may be performed multiple times during the breeding period.
  • protozoa can develop and proliferate from larval carcasses, feed, and the like. Therefore, the protozoa can be exterminated more appropriately by performing the above treatment multiple times.
  • the bottom of the breeding tank 2 where the high-concentration region S is provided may be within 5 cm from the deepest part of the breeding tank.
  • the salt concentration in the high concentration region S is 40 ⁇ or more, 45 ⁇ or more, 50 ⁇ or more, 55 ⁇ or more, 60 ⁇ or more, 65 ⁇ or more, 70 ⁇ or more, 75 ⁇ or more, 80 ⁇ or more, 85 ⁇ or more , 90 ⁇ or more, 95 ⁇ or more, or 100 ⁇ or more.
  • the salinity concentration can be measured, for example, using a conductivity-type salinity meter.
  • the salt concentration in the high-concentration region S there is no problem with the upper limit of the salt concentration in the high-concentration region S as long as the salt dissolves, but the salt concentration may be, for example, 250 ⁇ or less, 200 ⁇ or less, or 180 ⁇ or less.
  • the salt concentration of the high-concentration region S within the above range, the protozoa can be appropriately exterminated.
  • the high-concentration region S to within 5 cm from the deepest part of the breeding tank 2, while exterminating the protozoa in the region where the protozoa can occur, the effect on the cephalopod larvae reared in the breeding tank 2 is reduced. can be minimal.
  • the predetermined time which is the time for forming the high-concentration region S, may be 15 minutes or longer, 20 minutes or longer, 25 minutes or longer, 30 minutes or longer, 33 minutes or longer, or 35 minutes or longer.
  • the predetermined time is, for example, 180 minutes or less, 150 minutes or less, 120 minutes or less, 100 minutes or less, 80 minutes or less, 60 minutes or less, 50 minutes or less, It may be 40 minutes or less, or 30 minutes or less.
  • the predetermined time may be 15 minutes or more and 60 minutes or less.
  • Forming the high-concentration region S may include supplying high-concentration salt water and/or solid salt to the bottom of the breeding tank.
  • the highly concentrated brine and/or solid salt may contain at least one salt selected from the group consisting of sodium chloride, potassium chloride, magnesium chloride, magnesium sulfate, calcium sulfate, and calcium chloride.
  • high-concentration salt water and/or solid salt may be supplied to the bottom of the breeding tank 2 so as not to mix with the water above. In this case, it is possible to suppress the change in the salinity concentration in the floating area A of the cephalopod larvae that may exist above, so that the influence on the cephalopod larvae can be further reduced.
  • high-concentration salt water may be supplied using a supply means that connects the outside of the breeding tank 2 and the bottom of the breeding tank 2 .
  • the supply means may be a pipe such as the salt supply unit 4 .
  • the water existing in the high-concentration area S may be removed using a removing means that connects the outside of the breeding tank 2 and the bottom of the breeding tank 2 .
  • the removal means may be a pipe.
  • a member that functions as a supply means such as the salt supply unit 4 may be used as a removal means for removing water present in the high-concentration region S.
  • the formation and removal of the high-concentration region S can be realized by only one means, so the complication of the device configuration can be prevented.
  • the protozoa extermination method by the above-described cephalopod breeding apparatus 1 is a device and a method capable of controlling the density of protozoa present in the breeding tank 2 by utilizing the formation and removal of the high-concentration region S. . That is, in the protozoan extermination method according to the present embodiment, in the floating breeding period, the protozoan density in the water of the breeding aquarium 2 is 300 individuals/ml or less, 315 individuals/ml or less, 350 individuals/ml or less, 400 individuals/ml or less, The protozoan density may be controlled to 450 individuals/ml or less, or 500 individuals/ml or less.
  • the high-concentration region S As described above, by forming the high-concentration region S with a high salt concentration and removing it after the lapse of a predetermined period of time, it is possible to exterminate the protozoa that can stay on the bottom of the water in particular. can. Therefore, by controlling the protozoan density so that the protozoan density falls within the above range, the generation and proliferation of protozoa can be suppressed.
  • the formation and removal of the high-concentration region S can confer protozoan resistance in cephalopod larvae.
  • the formation and removal of the high-concentration region S can impart physiological and/or molecular biological changes related to gene expression to the body of cephalopod larvae during the free-floating rearing period.
  • the formation and removal of high-concentration regions S during suspension rearing of cephalopod larvae can have a deterrent effect on protozoan activity that affects cephalopod larval mortality.
  • the protozoan resistance acquired by the formation and removal of the high concentration area S can last for at least 5 days or more, 10 days or more, or 15 days or more.
  • Example 1 Using a cephalopod breeding apparatus similar to the cephalopod breeding apparatus 1 having a shape shown in FIG. The capacity of the breeding water tank used was 500L. The difference from the cephalopod breeding apparatus 1 is that the water injection section 31 and the drainage section 32 are installed at the bottom of the breeding aquarium 2 . Using such a cephalopod breeding apparatus, about 3,000 common octopus larvae on the 0th day after the start of breeding were put into the breeding tank 2, and then kept for 12 days.
  • the high-concentration area S was formed and removed five times according to the age of the octopus larvae. Specifically, the formation and removal of the high-concentration region S were performed on the 0th day, the 3rd day, the 6th day, and the 9th day after the start of feeding. A 26% sodium chloride aqueous solution was added so that a high-concentration region S was formed. The high-concentration area S was formed at a depth of about 3 cm from the water depth of the breeding tank 2, and was removed after being maintained for 15 minutes. The operations of forming and removing the high-concentration region S were performed in the same manner.
  • the water exchange unit 3 was controlled so that the water exchange rate in the breeding tank 2 was 77%/day from the 0th day to the 6th day after the start of breeding, and 100%/day from the 7th day onwards. During the period when the high-concentration area S was formed in the breeding tank 2, the water change was stopped.
  • Comparative Example 1 common octopus larvae were bred even under conditions where the formation and removal of the high-concentration region S were not performed, and the protozoan density and daily mortality rate at each age from the 7th day to the 12th day were measured and averaged. asked for Table 1 shows the results.
  • Example 1 tended to have a lower protozoan density than Comparative Example 1.
  • Example 1 had a lower daily mortality rate than Comparative Example 1. From this, it was confirmed that the protozoan density can be lowered and the mortality rate of common octopus larvae can be lowered by forming the high-concentration region S having a high salt concentration.
  • Example 2 The common octopus larvae that had been reared for 12 days while allowing the formation and removal of the high-concentration region S in Example 1 were reared for 5 days, and about 2000 of them had a protozoan density of 350 (individuals/ml). After exposure to the environment, the daily mortality rate was measured. As Comparative Example 2, common octopus larvae were reared for 12 days under conditions in which the formation and removal of the high-concentration region S were not performed, and further reared for 3 days. It was exposed to the bottom and the daily mortality rate was measured. Table 2 shows the results.
  • Example 2 had a lower daily mortality rate than Comparative Example 2 even when exposed to a high protozoan density. From this, it has been confirmed that the daily mortality rate can be reduced even when the protozoan density is increased by rearing in a high-concentration region S with a high salt concentration. In Example 2, the daily mortality rate was 8.00% or less even when the protozoan density in the water of the breeding tank was 150 individuals/ml or more.
  • SYMBOLS 1 Cephalopod rearing apparatus, 2... Breeding tank, 3... Water exchange part, 4... Salt supply part, 31... Water injection part, 32... Drainage part, 33... Aeration equipment, 21... Bottom wall, 41... Input port, 42 ...outlet.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Zoology (AREA)
  • Farming Of Fish And Shellfish (AREA)

Abstract

頭足類飼育方法は、飼育水槽内で頭足類幼生を飼育する方法であって、前記頭足類幼生の浮遊飼育期において、前記飼育水槽の底部において、海水に対して塩分濃度が大きい高濃度領域を形成することと、前記高濃度領域を形成することから所定時間経過した後に、前記高濃度領域を除去することと、を含む。

Description

頭足類飼育方法、原虫予防方法、原虫駆除方法、及び頭足類幼生
 本開示は、頭足類飼育方法、原虫予防方法、原虫駆除方法、及び頭足類幼生に関する。
 近年、嗜好性及び資源保全に対する消費者の関心が高まっており、頭足類においても養殖技術の開発が望まれている。
 例えば、特許文献1には、タコ飼育用シェルターおよびタコの養殖システムが開示されている。
特開2017-006054号公報
 頭足類の生産量を高めるための手法として、幼生の斃死率を低減させることが求められる。しかしながら、従来の養殖技術では、斃死率が高くなる場合が多いという問題があった。
 本開示は、頭足類幼生を飼育する際の斃死率を低減させる技術を提供することを目的とする。
 本開示は以下を提供する。
[1]飼育水槽内で頭足類幼生を飼育する方法であって、前記頭足類幼生の浮遊飼育期において、前記飼育水槽の底部において、海水に対して塩分濃度が大きい高濃度領域を形成することと、前記高濃度領域を形成することから所定時間経過した後に、前記高濃度領域を除去することと、を含む、頭足類飼育方法。
[2]前記高濃度領域を形成することおよび前記高濃度領域を除去することは、前記頭足類幼生が15日齢となるまでの期間の少なくとも一部において実施される、[1]に記載の頭足類飼育方法。
[3]前記飼育水槽の底部は、前記飼育水槽の最深部から5cm以内である、[1]または[2]に記載の頭足類飼育方法。
[4]前記高濃度領域における塩分濃度は、40‰以上である、[1]~[3]のいずれか1に記載の頭足類飼育方法。
[5]前記高濃度領域を形成することは、高濃度塩水および/または固体塩を前記飼育水槽の底部に供給することを含む、[1]~[4]のいずれか1に記載の頭足類飼育方法。
[6]前記高濃度塩水および/または前記固体塩は、塩化ナトリウム、塩化カリウム、塩化マグネシウム、硫酸マグネシウム、硫酸カルシウム、および塩化カルシウムからなる群から選ばれる少なくとも一種の塩を含む、[5]に記載の頭足類飼育方法。
[7]前記高濃度領域を形成することにおいて、前記高濃度塩水および/または固体塩を、前記飼育水槽の上方の水と混合しないように前記底部へ供給する、[5]または[6]に記載の頭足類飼育方法。
[8]前記高濃度領域を形成することにおいて、前記飼育水槽外と前記飼育水槽の底部とを接続する供給手段を用いて前記高濃度塩水を供給する、[7]に記載の頭足類飼育方法。
[9]前記供給手段は、配管である、[8]に記載の頭足類飼育方法。
[10]前記高濃度領域を除去することにおいて、前記供給手段を前記高濃度領域に存在する水を除去する除去手段として使用する、[8]または[9]に記載の頭足類飼育方法。
[11]前記所定時間は、15分以上60分以下である、[1]~[10]のいずれか1に記載の頭足類飼育方法。
[12]前記高濃度領域を除去することにおいて、前記飼育水槽外と前記飼育水槽の底部とを接続する除去手段を用いて前記高濃度領域に存在する水を除去する、[1]~[11]のいずれか1に記載の頭足類飼育方法。
[13]前記除去手段は、配管である、[12]に記載の頭足類飼育方法。
[14]前記高濃度領域を形成することおよび前記高濃度領域を除去することを、前記飼育期間において、複数回実施する、[1]~[13]のいずれか1に記載の頭足類飼育方法。
[15]前記頭足類幼生の浮遊飼育期において、前記飼育水槽の水中における原虫密度が350個体/ml以下となるように原虫密度を制御する、[1]~[14]のいずれか1に記載の頭足類飼育方法。
[16]前記原虫密度の測定対象となる原虫は、鞭毛虫または繊毛虫である、[15]に記載の頭足類飼育方法。
[17]飼育水槽内で頭足類幼生を飼育する方法であって、前記頭足類幼生の浮遊飼育期において、前記飼育水槽の水中における原虫密度が350個体/ml以下となるように原虫密度を制御する、頭足類飼育方法。
[18]前記原虫密度の測定対象となる原虫は、鞭毛虫または繊毛虫である、[17]に記載の頭足類飼育方法。
[19]飼育水槽内で頭足類幼生を飼育する際の、前記飼育水槽内での原虫の発生を予防する方法であって、前記頭足類幼生の浮遊飼育期において、前記飼育水槽の底部において、海水に対して塩分濃度が大きい高濃度領域を形成することと、前記高濃度領域を形成することから所定時間経過した後に、前記高濃度領域を除去することと、を含む、原虫予防方法。
[20]前記高濃度領域を形成することおよび前記高濃度領域を除去することは、前記頭足類幼生が15日齢となるまでの期間の少なくとも一部において実施される、[19]に記載の原虫予防方法。
[21]前記飼育水槽の底部は、前記飼育水槽の最深部から5cm以内である、[19]または[20]に記載の原虫予防方法。
[22]前記高濃度領域における塩分濃度は、40‰以上である、[19]~[21]のいずれか1に記載の原虫予防方法。
[23]前記高濃度領域を形成することは、高濃度塩水および/または固体塩を前記飼育水槽の底部に供給することを含む、[19]~[22]のいずれか1に記載の原虫予防方法。
[24]前記高濃度塩水および/または前記固体塩は、塩化ナトリウム、塩化カリウム、塩化マグネシウム、硫酸マグネシウム、硫酸カルシウム、および塩化カルシウムからなる群から選ばれる少なくとも一種の塩を含む、[23]に記載の原虫予防方法。
[25]前記高濃度領域を形成することにおいて、前記高濃度塩水および/または固体塩を、前記飼育水槽の上方の水と混合しないように前記底部へ供給する、[23]または[24]に記載の原虫予防方法。
[26]前記高濃度領域を形成することにおいて、前記飼育水槽外と前記飼育水槽の底部とを接続する供給手段を用いて前記高濃度塩水を供給する、[25]に記載の原虫予防方法。
[27]前記供給手段は、配管である、[26]に記載の原虫予防方法。
[28]前記高濃度領域を除去することにおいて、前記供給手段を前記高濃度領域に存在する水を除去する除去手段として使用する、[26]または[27]に記載の原虫予防方法。
[29]前記所定時間は、15分以上60分以下である、[19]~[28]のいずれか1に記載の原虫予防方法。
[30]前記高濃度領域を除去することにおいて、前記飼育水槽外と前記飼育水槽の底部とを接続する除去手段を用いて前記高濃度領域に存在する水を除去する、[19]~[29]のいずれか1に記載の原虫予防方法。
[31]前記除去手段は、配管である、[30]に記載の原虫予防方法。
[32]前記高濃度領域を形成することおよび前記高濃度領域を除去することを、前記飼育期間において、複数回実施する、[19]~[31]のいずれか1に記載の原虫予防方法。
[33]前記原虫は、鞭毛虫または繊毛虫である、[19]~[32]のいずれか1に記載の原虫予防方法。
[34]前記浮遊飼育期において、前記飼育水槽の水中における原虫密度が350個体/ml以下となるように原虫密度を制御する、[19]~[33]のいずれか1に記載の原虫予防方法。
[35]飼育水槽内で頭足類幼生を飼育する際の、前記飼育水槽内から原虫を駆除する方法であって、前記頭足類幼生の浮遊飼育期において、前記飼育水槽の底部において、海水に対して塩分濃度が大きい高濃度領域を形成することと、前記高濃度領域を形成することから所定時間経過した後に、前記高濃度領域を除去することと、を含む、原虫駆除方法。
[36]前記高濃度領域を形成することおよび前記高濃度領域を除去することは、前記頭足類幼生が15日齢となるまでの期間の少なくとも一部において実施される、[35]に記載の原虫駆除方法。
[37]前記飼育水槽の底部は、前記飼育水槽の最深部から5cm以内である、[35]または[36]に記載の原虫駆除方法。
[38]前記高濃度領域における塩分濃度は、40‰以上である、[35]~[37]のいずれか1に記載の原虫駆除方法。
[39]前記高濃度領域を形成することは、高濃度塩水および/または固体塩を前記飼育水槽の底部に供給することを含む、[35]~[38]のいずれか1に記載の原虫駆除方法。
[40]前記高濃度塩水および/または前記固体塩は、塩化ナトリウム、塩化カリウム、塩化マグネシウム、硫酸マグネシウム、硫酸カルシウム、および塩化カルシウムからなる群から選ばれる少なくとも一種の塩を含む、[39]に記載の原虫駆除方法。
[41]前記高濃度領域を形成することにおいて、前記高濃度塩水および/または固体塩を、前記飼育水槽の上方の水と混合しないように前記底部へ供給する、[39]または[40]に記載の原虫駆除方法。
[42]前記高濃度領域を形成することにおいて、前記飼育水槽外と前記飼育水槽の底部とを接続する供給手段を用いて前記高濃度塩水を供給する、[41]に記載の原虫駆除方法。
[43]前記供給手段は、配管である、[42]に記載の原虫駆除方法。
[44]前記高濃度領域を除去することにおいて、前記供給手段を前記高濃度領域に存在する水を除去する除去手段として使用する、[42]または[43]に記載の原虫駆除方法。
[45]前記所定時間は、15分以上60分以下である、[35]~[44]のいずれか1に記載の原虫駆除方法。
[46]前記高濃度領域を除去することにおいて、前記飼育水槽外と前記飼育水槽の底部とを接続する除去手段を用いて前記高濃度領域に存在する水を除去する、[35]~[45]のいずれか1に記載の原虫駆除方法。
[47]前記除去手段は、配管である、[46]に記載の原虫駆除方法。
[48]前記高濃度領域を形成することおよび前記高濃度領域を除去することを、前記飼育期間において、複数回実施する、[35]~[47]のいずれか1に記載の原虫駆除方法。
[49]前記原虫は、鞭毛虫または繊毛虫である、[35]~[48]のいずれか1に記載の原虫駆除方法。
[50]前記浮遊飼育期において、前記飼育水槽の水中における原虫密度が350個体/ml以下となるように原虫密度を制御する、[35]~[49]のいずれか1に記載の原虫駆除方法。
[51]飼育水槽内で飼育された頭足類幼生であって、前記頭足類幼生の浮遊飼育期において、前記飼育水槽の底部において、海水に対して塩分濃度が高い高濃度領域を形成することと、前記高濃度領域を形成することから所定時間経過した後に、前記高濃度領域を除去することと、を含む飼育方法により飼育された頭足類幼生。
[52]前記高濃度領域を形成することおよび前記高濃度領域を除去することは、前記頭足類幼生が15日齢となるまでの期間の少なくとも一部において実施される、[51]に記載の頭足類幼生。
[53]前記飼育水槽の底部は、前記飼育水槽の最深部から5cm以内である、[51]または[52]に記載の頭足類幼生。
[54]前記高濃度領域における塩分濃度は、40‰以上である、[51]~[53]のいずれか1に記載の頭足類幼生。
[55]前記高濃度領域を形成することは、高濃度塩水および/または固体塩を前記飼育水槽の底部に供給することを含む、[51]~[54]のいずれか1に記載の頭足類幼生。
[56]前記高濃度塩水および/または前記固体塩は、塩化ナトリウム、塩化カリウム、塩化マグネシウム、硫酸マグネシウム、硫酸カルシウム、および塩化カルシウムからなる群から選ばれる少なくとも一種の塩を含む、[55]に記載の頭足類幼生。
[57]前記高濃度領域を形成することにおいて、前記高濃度塩水および/または固体塩を、前記飼育水槽の上方の水と混合しないように前記底部へ供給する、[55]または[56]に記載の頭足類幼生。
[58]前記高濃度領域を形成することにおいて、前記飼育水槽外と前記飼育水槽の底部とを接続する供給手段を用いて前記高濃度塩水を供給する、[57]に記載の頭足類幼生。
[59]前記供給手段は、配管である、[58]に記載の頭足類幼生。
[60]前記高濃度領域を除去することにおいて、前記供給手段を前記高濃度領域に存在する水を除去する除去手段として使用する、[58]または[59]に記載の頭足類幼生。
[61]前記所定時間は、15分以上60分以下である、[51]~[60]のいずれか1に記載の頭足類幼生。
[62]前記高濃度領域を除去することにおいて、前記飼育水槽外と前記飼育水槽の底部とを接続する除去手段を用いて前記高濃度領域に存在する水を除去する、[51]~[61]のいずれか1に記載の頭足類幼生。
[63]前記除去手段は、配管である、[62]に記載の頭足類幼生。
[64]前記高濃度領域を形成することおよび前記高濃度領域を除去することを、前記飼育期間において、複数回実施する、[51]~[63]のいずれか1に記載の頭足類幼生。
[65]原虫耐性の頭足類幼生。
[66]前記原虫が、鞭毛虫または繊毛虫である、[65]に記載の頭足類幼生。
[67]飼育水槽内で飼育された頭足類幼生であって、前記頭足類幼生の浮遊飼育期において、前記飼育水槽の底部において、海水に対して塩分濃度が高い高濃度領域を形成することと、前記高濃度領域を形成することから所定時間経過した後に、前記高濃度領域を除去することと、を含む飼育方法により飼育され、前記頭足類幼生の浮遊飼育期において、前記飼育水槽の水中における原虫密度が150個体/ml以上であっても、日間斃死率が8.00以下となる、[65]または[66]に記載の頭足類幼生。
[68]前記高濃度領域の形成を1回又は複数回行う、[67]に記載の頭足類幼生。
 本開示は、頭足類幼生を飼育する際の斃死率を低減させる技術を提供することを目的とする。
図1(a)、および図1(b)は、本実施形態に係る頭足類飼育方法を実施する装置の概略構成図である。 図2は、飼育水槽内に高濃度領域を形成する際の手順について説明する図である。
 以下、添付図面を参照して、本開示を実施するための形態を詳細に説明する。なお、図面の説明においては同一要素には同一符号を付し、重複する説明を省略する。
[頭足類飼育装置および頭足類飼育方法]
 図1は、本実施形態で説明する頭足類飼育方法を行う頭足類飼育装置の概略構成図である。図1に示すように、頭足類飼育装置1は、頭足類を飼育する飼育水槽2と、飼育水槽2内を換水する換水手段である換水部3と、飼育水槽2内に塩分濃度が高い高濃度領域を形成するための塩類供給部4と、含んで構成される。なお、図1(a)は、飼育水槽2の鉛直方向断面を示し、図1(b)は、飼育水槽2の底面近傍の上面図を示している。飼育水槽2では、飼育用の塩水を用いて頭足類が飼育される。なお、本明細書では、塩水を単に水と記載する場合がある。
 頭足類飼育装置1を使用して飼育する頭足類は特に限定されないが、成長段階において孵化後の幼生では海中を浮遊する種類を対象とする。このような頭足類としては、例えば、アオリイカ、スルメイカ、ヤリイカ、オクトパス・マヤ、イイダコ、マダコ、ミズダコ、ヤナギダコ、およびテナガダコ等が挙げられるが、これに限定されるものではない。
 頭足類は、上記の通り孵化後の幼生期において、飼育水槽2の水中を浮遊する。上記の頭足類飼育装置1は、頭足類幼生の浮遊飼育期において使用され得る。本開示において、浮遊飼育期とは孵化後、着底前の浮遊している状態で飼育している期間をいう。例えば、マダコの場合、浮遊飼育期とは0日齢~23日齢頃である。本開示において、日齢とは孵化からの経過日数を日単位で表したものをいい、孵化日を0日齢とする。また、マダコの場合、飼育浮遊期のマダコの体長は0.8mm以下程度である。ただし、浮遊飼育期のマダコの日齢及び体長は、飼育環境に応じて変化する可能性があるので、上記の範囲には限定されない。また、種に応じて着底移行期の日齢及び体長が異なるので、頭足類飼育装置1の使用可能な時期は、種に応じて個別に設定されてもよい。
 頭足類飼育装置1は、図1に示すように、飼育水槽2内の水を交換する換水部3を含んで構成される。換水部3は、注水部31、および排水部32を含んで構成される。また、換水部3は、図1に示すように、エアレーション設備33を含んでいてもよい。なお、頭足類飼育装置1には、図1に示す設備のほかに、餌料供給設備等の頭足類の飼育に係る設備が設けられていてもよい。
 飼育水槽2の形状および容量等は特に限定されない。図1では、飼育水槽2の内部において飼育用の塩水である水Wを貯留する空間の形状が、底面が円形である円柱状である例が示されている。図1に示すように平面視において円形であり且つ円柱状の空間に水を貯留する場合、飼育水槽2内での水の移動の偏りをある程度抑制できる。容量については、頭足類幼生の浮遊飼育期における幼生の飼育に十分な容量を確保しておくことが好ましい。飼育水槽2の容量は、例えば、100L~150×10Lであってもよく、500L~150×10Lであってもよい。水W1Lに対して頭足類幼生の個体数が1個体~10個体となるように、飼育水槽2中に対して頭足類幼生が投入されていてもよい。
 注水部31は、飼育水槽2内に飼育用の塩水を供給する。飼育用の塩水とは、例えば、海水に対して殺菌処理等の所定の処理を行ったものである。注水部31は、外部の供給源から飼育水槽2内に注水する水を供給する配管である。外部の供給源とは、例えば、所定の処理を施したあとの塩水を貯留する水槽またはタンク等が挙げられる。注水部31の端部には、注水口が設けられる。注水口は、例えば飼育水槽2内の上方に配置されていて、図1(b)に示すように、飼育水槽2の側壁付近である周縁近傍において、周方向に沿って水平方向に塩水を供給するように構成されてもよい。また、図示していないが、注水部31による注水は、例えば、注水部31を構成する配管に設けられたポンプの駆動によって行われてもよい。
 排水部32は、飼育水槽2内の塩水を排水する。排水部32は、飼育水槽2内の水を取り込む排水口32aが設けられた配管であり、排水口32aから内部に取り込まれた水が配管を介して飼育水槽2へ排出される。
 排水部32を構成する配管のうち、排水口32aが設けられる配管は、図1(a)および図1(b)に示すように、飼育水槽2の中央Cにおいて上下方向に延びるように構成されてもよい。この場合、飼育水槽2内の中央から水が排出されることになる。内部の水の排出先としては、例えば、海洋等が挙げられる。海洋等に水が排出される前に、排出される水に対して除菌または殺菌処理が行われてもよい。除菌または殺菌処理としては、生きた細菌または原虫がそのまま排出されなければよく、例えば薬剤、塩素、オゾン、電気、またはフィルターなどでおこなってもよく、これらを組み合わせて用いてもよい。排水部32による排水は、例えば、図示していないが、排水部32を構成する配管に設けられたポンプの駆動によって行われてもよい。なお、上下方向の延びる配管に連続して、飼育水槽2の中央Cから半径方向に延びるように配管が配置されていてもよい。
 エアレーション設備33は、例えば、飼育水槽2の中央Cの水底付近に設置され、飼育水槽2内にエアポンプ等で取り込んだ空気の泡を水W中に供給する。図示していないが、エアレーション設備33は、飼育水槽2の水底付近に設置されて水中に泡を放出する気体供給部と、エアポンプに接続されて、エアポンプで取り込まれた空気を気体供給部へ供給する気体管とを有していてもよい。図1に示すように、飼育水槽2の中央Cの水底に気体供給部を配置した状態で、エアレーション動作を行うと、飼育水槽2内の中央C付近の排水口32aの周囲に水中を上昇する泡の流れが形成され得る。
 なお、エアレーション設備33を用いずに、飼育水槽2の水W中に空気を供給する方法としては、例えば、注水部31を水上に設ける方法が挙げられる。注水部31を水面から離れた位置に配置し、そこから飼育用の塩水を落下させることで、塩水の落下に伴って水中に空気を混合することができる。このように、飼育水槽2の水W中に供給する方法は、エアレーション設備33を用いる方法に限定されない。
 上記の頭足類飼育装置1では、注水部31による注水と排水部32による排水とを同時に行うことで、飼育水槽2内の換水を行うことができる。注水部31による単位時間あたりの注水量と、排水部32による単位時間あたりの排水量とを同じとすることで、飼育水槽2内の水量を維持しながら換水が行われる。頭足類幼生の飼育に支障のない飼育飼育水槽2内の水量が確保されていればよく、注水と排水の量が同じでなくてもよい。飼育水槽2内に頭足類飼育に支障のない水量が確保されていればよく、一時的に注水、排水、またはそれら両方を停止してもよい。また、図1(b)のように、注水部31が飼育水槽2の周縁付近に設けられて、排水部32の排水口32aが飼育水槽2の中央C付近に設けられていると、飼育水槽2内では、周縁付近から中央Cへ向かう水の流れができる。また、エアレーション設備33を動作させながら、注水部31および排水部32による注排水を行うと、水流の一部は上方へ向かうため、上下方向でも緩やかな循環の流れが形成される。
 なお、注水部31、排水部32およびエアレーション設備33の配置は一例で有り、適宜変更することができる。例えば、図1に示される例において、注水部31による注水が飼育水槽2内の水面の近傍で行われることに代えて、水底近傍で注水が行われてもよい。また、排水部32による排水についても、飼育水槽2の中央Cの水底近傍から排水が行われてもよい。この場合、頭足類幼生が浮遊し得る浮遊領域Aよりも下方で注排水が行われていてもよい。
 さらに、頭足類飼育装置1では、飼育水槽2の水底である底部に塩分濃度が海水よりも大きい高濃度領域を形成するための塩類供給部4が設けられる。
 高濃度領域が形成される領域となる飼育水槽2の底部とは、飼育水槽2内の塩水を有する領域のうち、底面に近接する部分をいう。飼育水槽2の底部は、飼育中の頭足類幼生の斃死個体、残餌、または排泄物などの有機物が蓄積し、本開示で問題となっている原虫が発生する元にもなっている特徴がある。
 具体的には、飼育水槽2の底部とは、飼育水槽2における水Wの水深に対して水底から15cm以下、10cm以下、5cm以下、3cm以下、1cm以下、または0.5cm以下の高さの範囲をいう。また、飼育水槽2における水Wの水深に対して、20%以下、15%以下、10%以下、5%以下、3%以下、または1%以下の高さの範囲が底部であってもよい。これらの範囲は、飼育水槽2内で頭足類幼生を飼育する際に発生する頭足類幼生の斃死個体、残餌、または排泄物などの有機物等が堆積物として滞留し得る領域である。頭足類幼生の飼育に使用される飼育水槽2は、例えば、水深が80cm~200cm程度となる水槽が多い。水深が80cmである場合、上述の高さの範囲は、それぞれ水Wの水深に対して水底から18.75%以下、12.5%以下、6.25%以下、3.75%以下、1.25%以下、または0.625%以下となり、水深に対して十分に小さい範囲となる。また、高濃度領域が形成される領域となる飼育水槽2の底部の下限は、堆積物が含まれるように設定されれば問題ないが、たとえば、底部の範囲は、水Wの水深に対して水底から0.01cm以上、0.03cm以上、0.05cm以上、0.07cm以上、または0.1cm以上であってもよい。また、飼育水槽2における水Wの水深に対して、0.005%以上、0.01%以上、0.03%以上、0.5%以上、または0.1%以上が、底部の下限として設定されてもよい。なお、水底は、飼育水槽2の底壁21に対応する。
 塩類供給部4は高濃度領域が形成される水底に対して、塩類を供給する。塩類供給部4は、例えば、図1に示すように、配管として構成されていてもよい。図1に示す例では、塩類供給部4は、水W上に投入口41が設けられるとともに水底に吐出口42が設けられるように設置されていてもよい。水W上に投入口41が設けられる場合、投入口41は、水面よりも上方に位置する。また、投入口41は塩類を投入しやすいように端部に向かって内径が広くなるような構造を有していてもよい。
 なお、飼育水槽2では、頭足類幼生は水底近傍を浮遊せず、例えば、水Wの水深に対して水底から20%~85%の高さの範囲付近の浮遊領域Aを浮遊する。したがって、水深が80cm~200cm程度である水槽では、高濃度領域が形成される水底から15cm以下の領域は、浮遊領域Aよりも下方の領域となる。図1に示す塩類供給部4を用いた場合、塩類供給部4は浮遊領域A付近で開口されていないため、投入口41から投入された塩類は、浮遊領域Aを経由することなく、吐出口42から水中へ吐出されることになる。
 高濃度領域とは、頭足類幼生の浮遊飼育期に、間欠的に設けられる領域である。そのため、頭足類幼生の浮遊飼育期の途中に、飼育水槽2の水底に対して高濃度領域を形成するための塩類を投入することで、水底に他の領域の水と比べて塩分濃度が高い領域を形成する。高濃度領域の塩分濃度は、飼育水槽2内に導入される水Wである海水の濃度より高く、例えば、40‰以上、45‰以上、50‰以上、55‰以上、60‰以上、65‰以上、70‰以上、75‰以上、80‰以上、85‰以上、90‰以上、95‰以上、または100‰以上であってもよい。塩分濃度は、たとえば電気伝導度式の塩分濃度計を用いて測定することが可能である。高濃度領域の塩分濃度の上限については、塩が溶解するかぎり問題はないが、例えば、塩分濃度は、250‰以下、200‰以下、または180‰以下であってもよい。また、高濃度領域は比重を高めるような物質を含んでもよい。そのような物質として、例えばグリセロールなどが例示される。比重を高めることにより、高濃度領域を飼育水槽2の底部に滞留させやすくなる。
 上記のように、頭足類飼育装置1による頭足類飼育方法は、飼育水槽2内で、頭足類幼生を飼育する方法である。
 ここで、頭足類飼育装置1による頭足類飼育方法では、頭足類幼生の浮遊飼育期において、飼育水槽2の底部において、海水に対して塩分濃度が大きい高濃度領域を形成することと、高濃度領域を形成することから所定時間経過した後に、高濃度領域を除去することと、を含む。
 図2は、飼育水槽2内に高濃度領域Sを形成した状態を示している。図2に示される例では、塩類供給部4を用いて飼育水槽2内に塩類を供給した結果、飼育水槽2の底部に高濃度領域Sが形成された状態となっている。
 図2では、塩類供給部4から高濃度塩水を供給することによって、高濃度領域Sが形成されている状態を示している。高濃度塩水としては、例えば、塩化ナトリウム、塩化カリウム、塩化マグネシウム、硫酸マグネシウム、硫酸カルシウム、および塩化カルシウムからなる群から選ばれる少なくとも一種の塩を含んでもよい。また、高濃度塩水の濃度は、高濃度領域Sにおける塩分濃度よりも高く設定され得る。
 なお、塩類供給部4から供給する塩類は、高濃度塩水とは限られない。例えば、固体塩を塩類供給部4から供給することで、高濃度領域Sを形成してもよい。固体塩は、塩化ナトリウム、塩化カリウム、塩化マグネシウム、硫酸マグネシウム、硫酸カルシウム、および塩化カルシウムからなる群から選ばれる少なくとも一種の塩を含んでもよい。以上のように、塩類供給部4から供給する塩類は、塩化ナトリウム、塩化カリウム、塩化マグネシウム、硫酸マグネシウム、硫酸カルシウム、および塩化カルシウムからなる群から選ばれる少なくとも一種の塩を含んでもよい。
 また、塩類供給部4から供給する塩類として、高濃度塩水と固体塩とを併用してもよい。高濃度領域Sの形成のために固体塩を投入する場合、高濃度領域Sの塩分濃度を考慮して、その投入量が設定され得る。固体塩は例えば粒状、または粉状で使用すると、表面積が広くなることにより溶解しやすくなり、塩分濃度を調整しやすくなる。以上のように、塩類供給部4は、高濃度塩水および/または固体塩を飼育水槽2の底部に供給してもよい。すなわち、塩類供給部4は、高濃度塩水および固体塩のいずれか一方、または、高濃度塩水および固体塩の両方を、飼育水槽2の底部に供給してもよい。言い換えると、塩類供給部4は、高濃度塩水および固体塩からなる群から選択される少なくとも1つを、飼育水槽2の底部に供給してもよい。
 飼育水槽2の底部に形成される高濃度領域Sは、飼育水槽2中に発生する原虫の発生および増殖を防ぐことを目的としている。原虫は、飼育水槽2の水底で発生および増殖し得るため、高濃度領域Sを水底に形成することで、原虫の駆虫が可能となる。なお、上述の塩分濃度は、原虫の駆除に適した塩分濃度であり、比較的短時間で原虫の駆除が可能となっている。また、高濃度領域Sは、頭足類幼生の浮遊領域Aには形成せず、水底のみに形成する。そのため、高濃度領域Sを形成することによって原虫のみならず頭足類幼生が斃死することは防がれる。
 また、所定時間経過した後に、この高濃度領域Sは除去される。高濃度領域Sを飼育水槽2内に形成すると、高濃度領域Sの塩分に由来して飼育水槽2内の全体で塩分濃度が変化し得る。そのため、原虫の駆除がある程度進捗したタイミングで高濃度領域Sを除去する。所定時間は、高濃度領域Sの塩分濃度に応じて設定され得るが、一例として、15分以上60分以下であってもよい。実験例として、原虫を塩分濃度40‰の塩水に曝露させた場合、32分40秒で駆虫できることが確認されている。この結果から、高濃度領域Sを15分以上維持することによって、飼育水槽2内の原虫を概ね除去できると考えられる。一方、60分以下とすることで、原虫の駆除を確実に行いながら、飼育水槽2内の水の塩分濃度の変化を抑制することができる。所定時間は15分以上、20分以上、25分以上、30分以上、33分以上、または35分以上であってもよい。また、高濃度領域Sが維持されるかぎり問題はないが、所定時間は、例えば180分以下、150分以下、120分以下、100分以下、80分以下、60分以下、50分以下、40分以下、または30分以下であってもよい。所定時間が短いと原虫の駆除が効果的に行われないことがある。所定時間が長いと、高濃度領域Sが維持されないことがある。また、所定時間が長いと、遊泳中の頭足類幼生の成育が高濃度領域Sにより影響を受けるおそれがある。
 高濃度領域Sの除去方法の一例としては、塩類供給部4を高濃度領域Sに存在する水の除去にも利用する方法が挙げられる。すなわち、図2に示す塩類供給部4の吐出口42から高濃度領域Sの塩水を吸引し、投入口41から外部に排出することによって、高濃度領域Sを除去することができる。吸引速度を調整すること等によって、高濃度領域S近傍、すなわち、飼育水槽2の底部の水を除去することができる。このように、塩類供給部4が、飼育水槽2外と飼育水槽2の底部とを接続する供給手段として使用されることに加えて、高濃度領域Sに存在する水を除去する除去手段として利用されてもよい。
 なお、高濃度領域Sに存在する水を除去することによって、飼育水槽2内の水量が減る可能性がある。この点を考慮して、高濃度領域Sを除去する際には、飼育水槽2内の水量が維持されるように、注水部31からの注水量を増大させる等の制御が実行されてもよい。
 なお、高濃度領域Sの除去方法は、塩類供給部4を除去手段として利用する方法とは異なる方法であってもよい。例えば、排水部32が水底に設けられている場合には、排水部32を利用して高濃度領域Sに存在する水が除去されてもよい。また、水底に固体塩が投入され、所定時間経過後も残存している場合には、まず、この固体が取り除かれ、その後に、水底付近の水が除去されてもよい。
 また、高濃度領域Sが飼育水槽2の底部に形成されている間は、注水部31および排水部32による換水が行われなくてもよい。注水部31および排水部32による注排水が行われることによって、飼育水槽2内の水の移動が発生し得るため、底部に形成された高濃度領域Sに存在する水が、それより上方の水と混合される可能性がある。このような状況を回避するために、例えば、注水部31および排水部32による換水を停止するか、または最小限の注排水量とするように制御が変更されてもよい。また、同時にエアレーション設備33を停止または通気量を少なくして高濃度領域Sが保たれやすくしてもよい。飼育水槽2内の水が静止状態に近くなることにより、高濃度領域Sが維持されやすくなるためである。高濃度領域Sを除去する場合には、高濃度領域Sが除去できる範囲で除去する水の量を調整すればよく、除去時にそれ以外の水を多めに除去してもよい。高濃度領域Sは、例えば食用色素などで着色して、高濃度領域Sの除去を目視で確認できるようにしてもよい。
 上記のように、頭足類飼育装置1を用いた頭足類飼育方法では、頭足類幼生の浮遊飼育期において、飼育水槽2の底部において、海水に対して塩分濃度が大きい高濃度領域Sを形成することと、高濃度領域Sを形成することから所定時間経過した後に、高濃度領域を除去することと、を含む。高濃度領域の除去には、高濃度領域Sを一定時間保持後、全体を攪拌することにより全体として高濃度領域Sを消失させることが含まれる。上記のように高濃度領域Sを形成し、所定時間後に除去することで、飼育水槽2内の頭足類幼生の斃死率を抑制することができる。
 頭足類幼生の浮遊飼育期では、水槽中での原虫の発生が原因となり、頭足類幼生の斃死が発生し得る。これは外套膜に入り込んだ原虫が、頭足類幼生を食べてしまうためと考えられる。これに対して、飼育水槽2の底部に高濃度領域Sを設けることで、水槽中に原虫が発生したとしても、その除去を行うことができる。
 なお、上記の高濃度領域Sの形成および除去は、頭足類幼生が15日齢になるまでの期間の少なくとも一部において実施されてよい。頭足類幼生が15日齢となるまでの期間は、原虫の増殖による斃死が発生しやすい。また、この期間に発生および増殖する原虫は、飼育水槽2内に投入された塩水および飼料等に由来するものであることがある。したがって、頭足類幼生が15日齢になるまでの期間に高濃度領域Sの形成および除去を行うことで、それ以降の期間に原虫が発生および増殖するリスクを抑制することができる。高濃度領域Sの形成および除去を含む一連の工程が、頭足類幼生が15日齢になるまでの期間の少なくとも一部の期間において行われてもよい。頭足類幼生が15日齢になるまでの期間は、0日齢から15日齢までの期間に相当する。この場合、当該一連の工程が、16日齢以降の期間の少なくとも一部においても行われてもよく、16日齢以降の期間において行われなくてもよい。
 また、高濃度領域Sの形成および除去は、1回でもよいし、飼育期間において複数回実施してもよい。頭足類幼生の飼育期間中、幼生の死体、または飼料等に由来して原虫が発生および増殖し得る。したがって、原虫が増殖している傾向が確認された場合に、高濃度領域Sの形成および除去が行われてもよい。以上のように、高濃度領域Sの形成および除去を含む一連の工程が、飼育期間において繰り返されてもよい。すなわち、高濃度領域Sの形成および除去を含む一連の工程が、飼育期間において複数回行われてもよい。
 また、高濃度領域Sを設ける飼育水槽2の底部は、飼育水槽の最深部から5cm以内であってもよい。飼育水槽の最深部は、原虫の発生の元になる飼育中の頭足類幼生の斃死個体、残餌、または排泄物などの有機物が蓄積している部分、また蓄積し得る部分である。また、高濃度領域Sにおける塩分濃度は、40‰以上、45‰以上、50‰以上、55‰以上、60‰以上、65‰以上、70‰以上、75‰以上、80‰以上、85‰以上、90‰以上、95‰以上、または100‰以上であってもよい。高濃度領域Sにおける塩分濃度の上限については、塩が溶解するかぎり問題はないが、塩分濃度は、例えば250‰以下、200‰以下、または180‰以下であってもよい。この場合、高濃度領域Sの塩分濃度を上記の範囲とすることで、原虫の除去を適切に行うことができる。一方、高濃度領域Sを飼育水槽2の最深部から5cm以内とすることで、原虫が存在し得る領域における原虫の除去を適切に行いつつ、且つ、飼育水槽2で飼育されている頭足類幼生への影響を最小限とすることができる。
 また、高濃度領域Sを形成する時間である所定時間は、15分以上、20分以上、25分以上、30分以上、33分以上、または35分以上であってもよい。また、高濃度領域Sが維持されるかぎり問題はないが、上記所定時間は、例えば180分以下、150分以下、120分以下、100分以下、80分以下、60分以下、50分以下、40分以下、または30分以下であってもよい。上記所定時間をこのような範囲とすることで、高濃度領域Sを形成している時間に、原虫を適切に除去できる。
 高濃度領域Sを形成することは、高濃度塩水および/または固体塩を飼育水槽2の底部に供給することを含んでもよい。固体塩は例えば粒状、または粉状で使用すると、表面積が広くなる。これにより、固体塩が溶解しやすくなり、塩分濃度を調整しやすくなる。高濃度塩水および/または固体塩は、塩化ナトリウム、塩化カリウム、塩化マグネシウム、硫酸マグネシウム、硫酸カルシウム、および塩化カルシウムからなる群から選ばれる少なくとも一種の塩を含んでいてもよい。これらの物質を飼育水槽2の底部へ供給することで、底部における高濃度領域Sを適切に形成することができる。
 また、高濃度領域Sを形成することでは、高濃度塩水および/または固体塩を、飼育水槽2の上方の水と混合しないように底部へ供給してもよい。この場合、上方に存在し得る頭足類幼生の浮遊領域Aの塩分濃度の変化を抑制することができる。固体塩を用いる場合、例えば大きな塊であれば、飼育水槽2上部から入れても底部に到達するまでにあまり溶解せず、底部に達したあとに徐々に溶解することにより、高濃度領域Sの形成することができる。
 なお、高濃度領域Sを形成することにおいて、飼育水槽2外と飼育水槽2の底部とを接続する供給手段を用いて高濃度塩水を供給してもよい。また、供給手段は、塩類供給部4のような配管であってもよい。
 また、高濃度領域Sを除去することにおいて、飼育水槽2外と飼育水槽2の底部とを接続する除去手段を用いて高濃度領域Sに存在する水を除去してもよい。また、除去手段は、配管であってもよい。
 さらに、塩類供給部4のように、供給手段として機能する部材を、高濃度領域Sに存在する水を除去する除去手段として使用してもよい。この場合、高濃度領域Sの形成および除去を1つの手段のみで実現できるため、装置構成の複雑化を防ぐことができる。塩類供給部4は使用時に設置し、使用が終了したら取り外すような使用をしてもよい。
 なお、上記の頭足類飼育装置1および頭足類飼育方法は、飼育水槽2内に存在する原虫密度を制御可能な装置および手法であるということもできる。すなわち、頭足類飼育装置1および頭足類飼育方法は、浮遊飼育期において、飼育水槽2の水中における原虫密度が350個体/ml以下となるように原虫密度を制御してもよい。上記のように、塩分濃度の高い高濃度領域Sを形成し、これを所定期間経過後に除去することによって、特に水底に滞留し得る原虫を駆除できるため、水中の原虫密度を低く調整することができる。そこで、上記のように原虫密度が350個体/ml以下となるように原虫密度を制御することで、原虫の増殖を抑制することができ、頭足類幼生の斃死率を抑制することができる。なお、原虫密度が300個体/ml以下、315個体/ml以下、350個体/ml以下、400個体/ml以下、450個体/ml以下、または500個体/ml以下となるように、原虫密度を制御してもよく、この場合も、原虫の増殖を抑制することができ、頭足類幼生の斃死率を抑制することができる。原虫密度は、飼育水槽2の底面付近の飼育水を50ml回収し、そのうち20μlを顕微鏡で観察しながら原虫の数を目視計測することによって、1mlあたりの原虫密度を算出することができる。また、マダコ幼生の斃死率は、掃除時に排出された水から斃死個体の数を計測し、飼育個体数に対する割合として算出することができる。
 なお、頭足類としてマダコを飼育する場合、飼育水槽2において発生し得る原虫としては、鞭毛虫、または繊毛虫が挙げられる。より具体的には、鞭毛虫としてはIchthyyobodonecatorが例示され、繊毛虫としては、Uronemamarinum,Philasterides dicentrarchi,Pseudocohnilembuspersalinus,Pseudorhabdosynochus hargisi,およびMetanophrys sinensisが例示される。したがって、上記の頭足類飼育装置1を用いて飼育する場合、原虫密度の測定対象となる原虫は、鞭毛虫、または繊毛虫としてもよい。この場合、飼育水槽2内の原虫の発生状況をより精度良く把握することができる。
[原虫予防方法]
 本実施形態に係る構成は、原虫の発生を予防する方法、すなわち原虫予防方法ということもできる。すなわち、頭足類飼育装置1を用いた原虫の発生を予防する方法は、飼育水槽2内で頭足類幼生を飼育する際の、飼育水槽2内での原虫の発生を予防する方法である。この場合、発生を予防する対象となる原虫は、高濃度領域Sによる処理によって発生を予防ができるのであれば限定されないが、例えば、鞭毛虫または繊毛虫とすることができる。
 上記の原虫の発生を予防する方法は、頭足類幼生の浮遊飼育期において、飼育水槽2の底部において、海水に対して塩分濃度が大きい高濃度領域Sを形成することと、高濃度領域Sを形成することから所定時間経過した後に、高濃度領域Sを除去することと、を含む。上記のように、飼育水槽2において、高濃度領域Sの形成および除去を行うことで、飼育水槽2内の原虫を駆除することができ、頭足類幼生の斃死率を抑制することができる。
 なお、高濃度領域Sの形成および除去は、頭足類幼生が15日齢となるまでの飼育期間の少なくとも一部において実施され得る。これは、15日齢となるまでの飼育期間は、原虫の発生および増殖が原因と予想される斃死が増加し得るためである。そのため、上記の期間に高濃度領域Sの形成および除去を行うことで、原虫の発生を効果的に抑制することができる。
 また、高濃度領域Sの形成および除去は、飼育期間において複数回実施されてもよい。頭足類幼生の飼育期間中、幼生の死体、飼料等に由来して原虫が発生および増殖し得る。したがって、複数回上記の処理を行うことで、原虫が発生する可能性をより低減することができる。
 また、高濃度領域Sを設ける飼育水槽2の底部は、飼育水槽の最深部から5cm以内であってもよい。また、高濃度領域Sにおける塩分濃度は、40‰以上、45‰以上、50‰以上、55‰以上、60‰以上、65‰以上、70‰以上、75‰以上、80‰以上、85‰以上、90‰以上、95‰以上、または100‰以上であってもよい。塩分濃度は、たとえば電気伝導度式の塩分濃度計を用いて測定することが可能である。高濃度領域Sにおける塩分濃度の上限については、塩が溶解するかぎり問題はないが、塩分濃度は、例えば250‰以下、200‰以下、または180‰以下であってもよい。高濃度領域Sの塩分濃度を上記の範囲とすることで、原虫の発生を適切に予防できる。一方、高濃度領域Sを飼育水槽2の最深部から5cm以内とすることで、原虫が発生し得る領域における原虫の発生を予防しながら、飼育水槽2で飼育されている頭足類幼生への影響は最小限とすることができる。
 また、高濃度領域Sを形成する時間である所定時間は、15分以上、20分以上、25分以上、30分以上、33分以上、または35分以上であってもよい。また、高濃度領域Sが維持されるかぎり問題はないが、上記所定時間は、例えば180分以下、150分以下、120分以下、100分以下、80分以下、60分以下、50分以下、40分以下、または30分以下であってもよい。上記所定時間をこのような範囲とすることで、高濃度領域Sを形成している時間に原虫の発生を適切に予防することができる。一例として、上記所定時間は、15分以上60分以下であってもよい。
 高濃度領域Sを形成することは、高濃度塩水および/または固体塩を飼育水槽2の底部に供給することを含んでもよい。固体塩は例えば粒状、または粉状で使用すると、表面積が広くなる。これにより、固体塩が溶解しやすくなり、塩分濃度を調整しやすくなる。高濃度塩水および/または固体塩は、塩化ナトリウム、塩化カリウム、塩化マグネシウム、硫酸マグネシウム、硫酸カルシウム、および塩化カルシウムからなる群から選ばれる少なくとも一種の塩を含んでいてもよい。これらの物質を飼育水槽2の底部へ供給することで、底部における高濃度領域Sを適切に形成することができる。
 また、高濃度領域Sを形成することでは、高濃度塩水および/または固体塩を、飼育水槽2の上方の水と混合しないように底部へ供給してもよい。この場合、上方に存在し得る頭足類幼生の浮遊領域Aの塩分濃度の変化を抑制することができるため、頭足類幼生への影響をより低減することができる。
 なお、高濃度領域Sを形成することにおいて、飼育水槽2外と飼育水槽2の底部とを接続する供給手段を用いて高濃度塩水を供給してもよい。また、供給手段は、塩類供給部4のような配管であってもよい。
 また、高濃度領域Sを除去することにおいて、飼育水槽2外と飼育水槽2の底部とを接続する除去手段を用いて高濃度領域Sに存在する水を除去してもよい。また、除去手段は、配管であってもよい。
 さらに、塩類供給部4のように、供給手段として機能する部材を、高濃度領域Sに存在する水を除去する除去手段として使用してもよい。この場合、高濃度領域Sの形成および除去を1つの手段のみで実現できるため、装置構成の複雑化を防ぐことができる。
 なお、上記の頭足類飼育装置1による原虫予防方法は、高濃度領域Sの形成および除去を利用して飼育水槽2内に存在する原虫密度を制御可能な装置および手法であるということもできる。すなわち、本実施形態に係る原虫予防方法は、浮遊飼育期において、飼育水槽2の水中における原虫密度が300個体/ml以下、315個体/ml以下、350個体/ml以下、400個体/ml以下、450個体/ml以下、または500個体/ml以下となるように原虫密度を制御してもよい。上記のように、塩分濃度の高い高濃度領域Sを形成し、これを所定期間経過後に除去することによって、特に水底に滞留し得る原虫を駆除できるため、水中の原虫密度を低く調整することができる。そこで、上記のように原虫密度が上記の範囲となるように原虫密度を制御することで、原虫の発生および増殖を抑制することができる。
[原虫駆除方法]
 本実施形態に係る構成は、飼育水槽2内の原虫を駆除する方法、すなわち原虫駆除方法ということもできる。すなわち、頭足類飼育装置1を用いた原虫の駆除方法は、飼育水槽2内で頭足類幼生を飼育する際の、飼育水槽2内から原虫を駆除する方法である。この場合、駆除対象となる原虫は、高濃度領域Sによる処理によって駆除ができるのであれば限定されないが、例えば、鞭毛虫または繊毛虫とすることができる。
 上記の原虫を駆除する方法は、頭足類幼生の浮遊飼育期において、飼育水槽2の底部において、海水に対して塩分濃度が大きい高濃度領域Sを形成することと、高濃度領域Sを形成することから所定時間経過した後に、高濃度領域Sを除去することと、を含む。上記のように、飼育水槽2において、高濃度領域Sの形成および除去を行うことで、飼育水槽2内の原虫を駆除することができ、頭足類幼生の斃死率を抑制することができる。
 なお、高濃度領域Sの形成および除去は、頭足類幼生が15日齢となるまでの飼育期間の少なくとも一部において実施され得る。これは、15日齢となるまでの飼育期間は、原虫の発生および増殖が原因と予想される斃死が増加し得るためである。そのため、上記の期間に高濃度領域Sの形成および除去を行うことで、原虫を効果的に駆除することができ、その後の発生および増殖も抑制することができる。
 また、高濃度領域Sの形成および除去は、飼育期間において複数回実施してもよい。頭足類幼生の飼育期間中、幼生の死体、飼料等に由来して原虫が発生および増殖し得る。したがって、複数回上記の処理を行うことで、原虫をより適切に駆除することができる。
 また、高濃度領域Sを設ける飼育水槽2の底部は、飼育水槽の最深部から5cm以内であってもよい。また、高濃度領域Sにおける塩分濃度は、40‰以上、45‰以上、50‰以上、55‰以上、60‰以上、65‰以上、70‰以上、75‰以上、80‰以上、85‰以上、90‰以上、95‰以上、または100‰以上であってもよい。塩分濃度は、たとえば電気伝導度式の塩分濃度計を用いて測定することが可能である。高濃度領域Sにおける塩分濃度の上限については塩が溶解するかぎり問題はないが、塩分濃度は、例えば250‰以下、200‰以下、または180‰以下であってもよい。高濃度領域Sの塩分濃度を上記の範囲とすることで、原虫を適切に駆除することができる。一方、高濃度領域Sを飼育水槽2の最深部から5cm以内とすることで、原虫が発生し得る領域における原虫を駆除しながら、飼育水槽2で飼育されている頭足類幼生への影響は最小限とすることができる。
 また、高濃度領域Sを形成する時間である所定時間は、15分以上、20分以上、25分以上、30分以上、33分以上、または35分以上であってもよい。また、高濃度領域Sが維持されるかぎり問題はないが、上記所定時間は、例えば180分以下、150分以下、120分以下、100分以下、80分以下、60分以下、50分以下、40分以下、または30分以下であってもよい。上記所定時間がこのような範囲に設定されることで、高濃度領域Sにおける原虫の駆除を適切に行うことができる。一例として、上記所定時間は、15分以上60分以下としてもよい。
 高濃度領域Sを形成することは、高濃度塩水および/または固体塩を飼育水槽の底部に供給することを含んでもよい。固体塩は例えば粒状、粉状で使用すると、表面積が広くなることにより溶解しやすくなり、塩分濃度を調整しやすくなる。高濃度塩水および/または固体塩は、塩化ナトリウム、塩化カリウム、塩化マグネシウム、硫酸マグネシウム、硫酸カルシウム、および塩化カルシウムからなる群から選ばれる少なくとも一種の塩を含んでいてもよい。これらの物質を飼育水槽2の底部へ供給することで、底部における高濃度領域Sを適切に形成することができる。
 また、高濃度領域Sを形成することでは、高濃度塩水および/または固体塩を、飼育水槽2の上方の水と混合しないように底部へ供給してもよい。この場合、上方に存在し得る頭足類幼生の浮遊領域Aの塩分濃度の変化を抑制することができるため、頭足類幼生への影響をより低減することができる。
 なお、高濃度領域Sを形成することにおいて、飼育水槽2外と飼育水槽2の底部とを接続する供給手段を用いて高濃度塩水を供給してもよい。また、供給手段は、塩類供給部4のような配管であってもよい。
 また、高濃度領域Sを除去することにおいて、飼育水槽2外と飼育水槽2の底部とを接続する除去手段を用いて高濃度領域Sに存在する水を除去してもよい。また、除去手段は、配管であってもよい。
 さらに、塩類供給部4のように、供給手段として機能する部材を、高濃度領域Sに存在する水を除去する除去手段として使用してもよい。この場合、高濃度領域Sの形成および除去を1つの手段のみで実現できるため、装置構成の複雑化を防ぐことができる。
 なお、上記の頭足類飼育装置1による原虫駆除方法は、高濃度領域Sの形成および除去を利用して飼育水槽2内に存在する原虫密度を制御可能な装置および手法であるということもできる。すなわち、本実施形態に係る原虫駆除方法は、浮遊飼育期において、飼育水槽2の水中における原虫密度が300個体/ml以下、315個体/ml以下、350個体/ml以下、400個体/ml以下、450個体/ml以下、または500個体/ml以下となるように原虫密度を制御してもよい。上記のように、塩分濃度が高い高濃度領域Sを形成し、これを所定期間経過後に除去することによって、特に水底に滞留し得る原虫を駆除できるため、水中の原虫密度を低く調整することができる。そこで、上記のように原虫密度が上記の範囲となるように原虫密度を制御することで、原虫の発生および増殖を抑制することができる。
 また、高濃度領域Sの形成および除去は、頭足類幼生における原虫耐性を付与し得る。高濃度領域Sの形成および除去は、浮遊飼育期における頭足類幼生の体に生理的及び/又は遺伝子発現に関連する分子生物学的な変化を与え得る。頭足類幼生の浮遊飼育期間中の高濃度領域Sの形成および除去は、頭足類幼生の斃死率に影響を与える原虫の活動を抑止する影響をもたらすことができる。高濃度領域Sの形成および除去により獲得された原虫耐性は、少なくとも5日以上、10日以上、または15日以上継続することができる。
[実施例1]
 図1に示す形状の頭足類飼育装置1と類似の頭足類飼育装置を用いて、頭足類の一種であるマダコの幼生を12日間飼育した。飼育水槽の容量は500Lのものを用いた。頭足類飼育装置1との相違点は、注水部31および排水部32が飼育水槽2の底部に設置されている点である。このような頭足類飼育装置を用いて飼育水槽2に対して飼育開始後0日目のマダコ幼生を約3000個体投入し、その後12日間飼育した。
 その際に、マダコ幼生の日齢に応じて5回、高濃度領域Sの形成および除去を行った。具体的には、高濃度領域Sの形成および除去を行ったのは、飼育開始後0日目、3日目、6日目、および9日目であった。26%塩化ナトリウム水溶液を高濃度領域Sが形成されるように投入した。高濃度領域Sは、飼育水槽2の水深から3cm程度に形成し、15分維持した後に除去した。高濃度領域Sの形成および除去の操作は、いずれも同様に行った。
 飼育水槽2内の換水率が、飼育開始後0日目~6日目では77%/日となり、7日目以降は100%/日となるように換水部3を制御した。なお、高濃度領域Sが飼育水槽2内に形成されている時間帯は、換水を停止した。
 上記の条件で、7日目から12日目におけるにおける原虫密度および日間斃死率を計測し、平均を求めた。その結果を表1に示す。また、ここで発生していた原虫を18SrRNA遺伝子配列解析によって調べたところ、Metanophrys sinensisであることが確認された。
 また、比較例1として、高濃度領域Sの形成および除去を行わない条件でもマダコ幼生の飼育を行い、7日目から12日目における各日齢における原虫密度および日間斃死率を計測し、平均を求めた。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1によると実施例1の方が比較例1よりも原虫密度が低い傾向を示すことが確認された。また、実施例1は比較例1と比較して日間斃死率が低くなった。このことから、塩分濃度の高い高濃度領域Sを形成することによって、原虫密度を低くし、且つ、マダコ幼生の斃死率を低下することができることが確認できた。
[実施例2]
 実施例1で高濃度領域Sの形成および除去をさせながら飼育した12日間飼育した後のマダコ幼生を、さらに5日間飼育し、そのうち約2000個体を、原虫密度が350(個体/ml)となる環境下に晒して、日間斃死率を測定した。比較例2として、高濃度領域Sの形成および除去を行わない条件で12日間飼育したマダコ幼生を、さらに3日間飼育し、そのうち約1500個体を、原虫密度が150(個体/ml)となる環境下に晒して、日間斃死率を測定した。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2によると、比較例2よりも実施例2のほうが、高い原虫密度に晒されても低い日間斃死率となった。このことから、塩分濃度の高い高濃度領域Sを形成する飼育を経ることによって、原虫密度が高くなっても日間斃死率を低下することができることが確認できた。実施例2では、飼育水槽の水中における原虫密度が150個体/ml以上であっても、日間斃死率が8.00%以下であった。
[変形例]
 以上、本開示の実施形態について説明したが、本開示に係る頭足類飼育方法、原虫予防方法および原虫駆除方法は、上記実施形態に限定されない。
 例えば、上記実施形態では頭足類がマダコである場合について説明したが、他の頭足類の幼生を飼育する場合には、必要に応じて適宜飼育条件を変更してもよい。本開示において説明した種々の例のうちの1つの例において、他の例において説明した事項の少なくとも一部が適用されてもよい。
 1…頭足類飼育装置、2…飼育水槽、3…換水部、4…塩類供給部、31…注水部、32…排水部、33…エアレーション設備、21…底壁、41…投入口、42…吐出口。

Claims (68)

  1.  飼育水槽内で頭足類幼生を飼育する方法であって、
     前記頭足類幼生の浮遊飼育期において、
      前記飼育水槽の底部において、海水に対して塩分濃度が大きい高濃度領域を形成することと、
      前記高濃度領域を形成することから所定時間経過した後に、前記高濃度領域を除去することと、
     を含む、頭足類飼育方法。
  2.  前記高濃度領域を形成することおよび前記高濃度領域を除去することは、前記頭足類幼生が15日齢となるまでの期間の少なくとも一部において実施される、請求項1に記載の頭足類飼育方法。
  3.  前記飼育水槽の底部は、前記飼育水槽の最深部から5cm以内である、請求項1または2に記載の頭足類飼育方法。
  4.  前記高濃度領域における塩分濃度は、40‰以上である、請求項1~3のいずれか一項に記載の頭足類飼育方法。
  5.  前記高濃度領域を形成することは、高濃度塩水および/または固体塩を前記飼育水槽の底部に供給することを含む、請求項1~4のいずれか一項に記載の頭足類飼育方法。
  6.  前記高濃度塩水および/または前記固体塩は、塩化ナトリウム、塩化カリウム、塩化マグネシウム、硫酸マグネシウム、硫酸カルシウム、および塩化カルシウムからなる群から選ばれる少なくとも一種の塩を含む、請求項5に記載の頭足類飼育方法。
  7.  前記高濃度領域を形成することにおいて、前記高濃度塩水および/または固体塩を、前記飼育水槽の上方の水と混合しないように前記底部へ供給する、請求項5または6に記載の頭足類飼育方法。
  8.  前記高濃度領域を形成することにおいて、前記飼育水槽外と前記飼育水槽の底部とを接続する供給手段を用いて前記高濃度塩水を供給する、請求項7に記載の頭足類飼育方法。
  9.  前記供給手段は、配管である、請求項8に記載の頭足類飼育方法。
  10.  前記高濃度領域を除去することにおいて、前記供給手段を前記高濃度領域に存在する水を除去する除去手段として使用する、請求項8または9に記載の頭足類飼育方法。
  11.  前記所定時間は、15分以上60分以下である、請求項1~10のいずれか一項に記載の頭足類飼育方法。
  12.  前記高濃度領域を除去することにおいて、前記飼育水槽外と前記飼育水槽の底部とを接続する除去手段を用いて前記高濃度領域に存在する水を除去する、請求項1~11のいずれか一項に記載の頭足類飼育方法。
  13.  前記除去手段は、配管である、請求項12に記載の頭足類飼育方法。
  14.  前記高濃度領域を形成することおよび前記高濃度領域を除去することを、前記飼育期間において、複数回実施する、請求項1~13のいずれか一項に記載の頭足類飼育方法。
  15.  前記頭足類幼生の浮遊飼育期において、
     前記飼育水槽の水中における原虫密度が350個体/ml以下となるように原虫密度を制御する、請求項1~14のいずれか一項に記載の頭足類飼育方法。
  16.  前記原虫密度の測定対象となる原虫は、鞭毛虫または繊毛虫である、請求項15に記載の頭足類飼育方法。
  17.  飼育水槽内で頭足類幼生を飼育する方法であって、
     前記頭足類幼生の浮遊飼育期において、
     前記飼育水槽の水中における原虫密度が350個体/ml以下となるように原虫密度を制御する、頭足類飼育方法。
  18.  前記原虫密度の測定対象となる原虫は、鞭毛虫または繊毛虫である、請求項17に記載の頭足類飼育方法。
  19.  飼育水槽内で頭足類幼生を飼育する際の、前記飼育水槽内での原虫の発生を予防する方法であって、
     前記頭足類幼生の浮遊飼育期において、
      前記飼育水槽の底部において、海水に対して塩分濃度が大きい高濃度領域を形成することと、
      前記高濃度領域を形成することから所定時間経過した後に、前記高濃度領域を除去することと、
     を含む、原虫予防方法。
  20.  前記高濃度領域を形成することおよび前記高濃度領域を除去することは、前記頭足類幼生が15日齢となるまでの期間の少なくとも一部において実施される、請求項19に記載の原虫予防方法。
  21.  前記飼育水槽の底部は、前記飼育水槽の最深部から5cm以内である、請求項19または20に記載の原虫予防方法。
  22.  前記高濃度領域における塩分濃度は、40‰以上である、請求項19~21のいずれか一項に記載の原虫予防方法。
  23.  前記高濃度領域を形成することは、高濃度塩水および/または固体塩を前記飼育水槽の底部に供給することを含む、請求項19~22のいずれか一項に記載の原虫予防方法。
  24.  前記高濃度塩水および/または前記固体塩は、塩化ナトリウム、塩化カリウム、塩化マグネシウム、硫酸マグネシウム、硫酸カルシウム、および塩化カルシウムからなる群から選ばれる少なくとも一種の塩を含む、請求項23に記載の原虫予防方法。
  25.  前記高濃度領域を形成することにおいて、前記高濃度塩水および/または固体塩を、前記飼育水槽の上方の水と混合しないように前記底部へ供給する、請求項23または24に記載の原虫予防方法。
  26.  前記高濃度領域を形成することにおいて、前記飼育水槽外と前記飼育水槽の底部とを接続する供給手段を用いて前記高濃度塩水を供給する、請求項25に記載の原虫予防方法。
  27.  前記供給手段は、配管である、請求項26に記載の原虫予防方法。
  28.  前記高濃度領域を除去することにおいて、前記供給手段を前記高濃度領域に存在する水を除去する除去手段として使用する、請求項26または27に記載の原虫予防方法。
  29.  前記所定時間は、15分以上60分以下である、請求項19~28のいずれか一項に記載の原虫予防方法。
  30.  前記高濃度領域を除去することにおいて、前記飼育水槽外と前記飼育水槽の底部とを接続する除去手段を用いて前記高濃度領域に存在する水を除去する、請求項19~29のいずれか一項に記載の原虫予防方法。
  31.  前記除去手段は、配管である、請求項30に記載の原虫予防方法。
  32.  前記高濃度領域を形成することおよび前記高濃度領域を除去することを、前記飼育期間において、複数回実施する、請求項19~31のいずれか一項に記載の原虫予防方法。
  33.  前記原虫は、鞭毛虫または繊毛虫である、請求項19~32のいずれか一項に記載の原虫予防方法。
  34.  前記浮遊飼育期において、前記飼育水槽の水中における原虫密度が350個体/ml以下となるように原虫密度を制御する、請求項19~33のいずれか一項に記載の原虫予防方法。
  35.  飼育水槽内で頭足類幼生を飼育する際の、前記飼育水槽内から原虫を駆除する方法であって、
     前記頭足類幼生の浮遊飼育期において、
      前記飼育水槽の底部において、海水に対して塩分濃度が大きい高濃度領域を形成することと、
      前記高濃度領域を形成することから所定時間経過した後に、前記高濃度領域を除去することと、
     を含む、原虫駆除方法。
  36.  前記高濃度領域を形成することおよび前記高濃度領域を除去することは、前記頭足類幼生が15日齢となるまでの期間の少なくとも一部において実施される、請求項35に記載の原虫駆除方法。
  37.  前記飼育水槽の底部は、前記飼育水槽の最深部から5cm以内である、請求項35または36に記載の原虫駆除方法。
  38.  前記高濃度領域における塩分濃度は、40‰以上である、請求項35~37のいずれか一項に記載の原虫駆除方法。
  39.  前記高濃度領域を形成することは、高濃度塩水および/または固体塩を前記飼育水槽の底部に供給することを含む、請求項35~38のいずれか一項に記載の原虫駆除方法。
  40.  前記高濃度塩水および/または前記固体塩は、塩化ナトリウム、塩化カリウム、塩化マグネシウム、硫酸マグネシウム、硫酸カルシウム、および塩化カルシウムからなる群から選ばれる少なくとも一種の塩を含む、請求項39に記載の原虫駆除方法。
  41.  前記高濃度領域を形成することにおいて、前記高濃度塩水および/または固体塩を、前記飼育水槽の上方の水と混合しないように前記底部へ供給する、請求項39または40に記載の原虫駆除方法。
  42.  前記高濃度領域を形成することにおいて、前記飼育水槽外と前記飼育水槽の底部とを接続する供給手段を用いて前記高濃度塩水を供給する、請求項41に記載の原虫駆除方法。
  43.  前記供給手段は、配管である、請求項42に記載の原虫駆除方法。
  44.  前記高濃度領域を除去することにおいて、前記供給手段を前記高濃度領域に存在する水を除去する除去手段として使用する、請求項42または43に記載の原虫駆除方法。
  45.  前記所定時間は、15分以上60分以下である、請求項35~44のいずれか一項に記載の原虫駆除方法。
  46.  前記高濃度領域を除去することにおいて、前記飼育水槽外と前記飼育水槽の底部とを接続する除去手段を用いて前記高濃度領域に存在する水を除去する、請求項35~45のいずれか一項に記載の原虫駆除方法。
  47.  前記除去手段は、配管である、請求項46に記載の原虫駆除方法。
  48.  前記高濃度領域を形成することおよび前記高濃度領域を除去することを、前記飼育期間において、複数回実施する、請求項35~47のいずれか一項に記載の原虫駆除方法。
  49.  前記原虫は、鞭毛虫または繊毛虫である、請求項35~48のいずれか一項に記載の原虫駆除方法。
  50.  前記浮遊飼育期において、前記飼育水槽の水中における原虫密度が350個体/ml以下となるように原虫密度を制御する、請求項35~49のいずれか一項に記載の原虫駆除方法。
  51.  飼育水槽内で飼育された頭足類幼生であって、前記頭足類幼生の浮遊飼育期において、前記飼育水槽の底部において、海水に対して塩分濃度が高い高濃度領域を形成することと、前記高濃度領域を形成することから所定時間経過した後に、前記高濃度領域を除去することと、を含む飼育方法により飼育された頭足類幼生。
  52.  前記高濃度領域を形成することおよび前記高濃度領域を除去することは、前記頭足類幼生が15日齢となるまでの期間の少なくとも一部において実施される、請求項51に記載の頭足類幼生。
  53.  前記飼育水槽の底部は、前記飼育水槽の最深部から5cm以内である、請求項51または52に記載の頭足類幼生。
  54.  前記高濃度領域における塩分濃度は、40‰以上である、請求項51~53のいずれか一項に記載の頭足類幼生。
  55.  前記高濃度領域を形成することは、高濃度塩水および/または固体塩を前記飼育水槽の底部に供給することを含む、請求項51~54のいずれか一項に記載の頭足類幼生。
  56.  前記高濃度塩水および/または前記固体塩は、塩化ナトリウム、塩化カリウム、塩化マグネシウム、硫酸マグネシウム、硫酸カルシウム、および塩化カルシウムからなる群から選ばれる少なくとも一種の塩を含む、請求項55に記載の頭足類幼生。
  57.  前記高濃度領域を形成することにおいて、前記高濃度塩水および/または固体塩を、前記飼育水槽の上方の水と混合しないように前記底部へ供給する、請求項55または56に記載の頭足類幼生。
  58.  前記高濃度領域を形成することにおいて、前記飼育水槽外と前記飼育水槽の底部とを接続する供給手段を用いて前記高濃度塩水を供給する、請求項57に記載の頭足類幼生。
  59.  前記供給手段は、配管である、請求項58に記載の頭足類幼生。
  60.  前記高濃度領域を除去することにおいて、前記供給手段を前記高濃度領域に存在する水を除去する除去手段として使用する、請求項58または59に記載の頭足類幼生。
  61.  前記所定時間は、15分以上60分以下である、請求項51~60のいずれか一項に記載の頭足類幼生。
  62.  前記高濃度領域を除去することにおいて、前記飼育水槽外と前記飼育水槽の底部とを接続する除去手段を用いて前記高濃度領域に存在する水を除去する、請求項51~61のいずれか一項に記載の頭足類幼生。
  63.  前記除去手段は、配管である、請求項62に記載の頭足類幼生。
  64.  前記高濃度領域を形成することおよび前記高濃度領域を除去することを、前記飼育期間において、複数回実施する、請求項51~63のいずれか一項に記載の頭足類幼生。
  65.  原虫耐性の頭足類幼生。
  66.  前記原虫が、鞭毛虫または繊毛虫である、請求項65に記載の頭足類幼生。
  67.  飼育水槽内で飼育された頭足類幼生であって、前記頭足類幼生の浮遊飼育期において、前記飼育水槽の底部において、海水に対して塩分濃度が高い高濃度領域を形成することと、前記高濃度領域を形成することから所定時間経過した後に、前記高濃度領域を除去することと、を含む飼育方法により飼育され、前記頭足類幼生の浮遊飼育期において、前記飼育水槽の水中における原虫密度が150個体/ml以上であっても、日間斃死率が8.00以下となる、請求項65または請求項66に記載の頭足類幼生。
  68.  前記高濃度領域の形成を1回又は複数回行う、請求項67に記載の頭足類幼生。
PCT/JP2022/042418 2021-11-22 2022-11-15 頭足類飼育方法、原虫予防方法、原虫駆除方法、及び頭足類幼生 WO2023090322A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021189456 2021-11-22
JP2021-189456 2021-11-22

Publications (1)

Publication Number Publication Date
WO2023090322A1 true WO2023090322A1 (ja) 2023-05-25

Family

ID=86397046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042418 WO2023090322A1 (ja) 2021-11-22 2022-11-15 頭足類飼育方法、原虫予防方法、原虫駆除方法、及び頭足類幼生

Country Status (1)

Country Link
WO (1) WO2023090322A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06284835A (ja) * 1992-06-16 1994-10-11 Riyouyou Sangyo Kk 魚病治療方法とその装置
EP3141111A2 (en) * 2015-09-08 2017-03-15 SP/F Frama System and method for removing exterior parasites from fish and fish feeding system and method
JP2019135948A (ja) * 2018-02-07 2019-08-22 日本水産株式会社 頭足類への給餌方法および頭足類への給餌器具

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06284835A (ja) * 1992-06-16 1994-10-11 Riyouyou Sangyo Kk 魚病治療方法とその装置
EP3141111A2 (en) * 2015-09-08 2017-03-15 SP/F Frama System and method for removing exterior parasites from fish and fish feeding system and method
JP2019135948A (ja) * 2018-02-07 2019-08-22 日本水産株式会社 頭足類への給餌方法および頭足類への給餌器具

Similar Documents

Publication Publication Date Title
CN106172121B (zh) 凡纳滨对虾工厂化虾苗盐化标粗的方法
WO1997014301A2 (en) Open air mariculture system and method of culturing marine animals
DK178985B1 (en) System and method for removing exterior parasites from fish and fish feeding system and method
CN108040955A (zh) 一种圆口铜鱼苗简易循环水养殖方法及装置
JP6468541B2 (ja) 害敵水生々物殺滅用部材及び後付型殺滅装置並びに養殖設備
JP2017148007A (ja) 魚類種苗の育成システム
JP2007215538A (ja) フグ類養殖方法及び養殖装置
Harboe et al. Design and operation of an incubator for yolk‐sac larvae of Atlantic halibut
CN104872013B (zh) 石斑鱼养殖方法和系统
KR101229378B1 (ko) 뱀장어 초기 자어 사육수조
JP6860764B2 (ja) 養殖方法および養殖設備
KR101549211B1 (ko) 어린 패류의 상향식 수류 실내사육장치
JPH01317346A (ja) 海水系養殖魚の外部寄生虫駆除方法
JP6980210B2 (ja) 良質な海洋環境を創出して海洋生態系の持続的保持を可能とする水生生物生産インフラシステム及び水生生物生産方法
JP2007159507A (ja) 貝類養殖槽および貝類養殖方法
WO2023090322A1 (ja) 頭足類飼育方法、原虫予防方法、原虫駆除方法、及び頭足類幼生
JP5315160B2 (ja) マグロの飼育、保管または輸送方法
WO2023090323A1 (ja) 頭足類飼育方法、頭足類飼育装置、原虫予防方法および原虫駆除方法
CN110250089B (zh) 一种鳗鱼养殖水质调节装置
JP2002000119A (ja) 魚介類の養殖方法
KR101839315B1 (ko) 쏘가리 초기 양식방법 및 양식장치
KR101839314B1 (ko) 쏘가리 초기 양식방법 및 양식장치
JP3887319B2 (ja) 魚介類の養殖システム及び魚介類の養殖方法
CN114831059B (zh) 一种马口鱼的早繁及规模化育苗方法及其装置
RU2004112414A (ru) Способ заводского культивирования молоди трепанга и установка для его осуществления

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895603

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023562345

Country of ref document: JP

Kind code of ref document: A