WO2023090323A1 - 頭足類飼育方法、頭足類飼育装置、原虫予防方法および原虫駆除方法 - Google Patents

頭足類飼育方法、頭足類飼育装置、原虫予防方法および原虫駆除方法 Download PDF

Info

Publication number
WO2023090323A1
WO2023090323A1 PCT/JP2022/042420 JP2022042420W WO2023090323A1 WO 2023090323 A1 WO2023090323 A1 WO 2023090323A1 JP 2022042420 W JP2022042420 W JP 2022042420W WO 2023090323 A1 WO2023090323 A1 WO 2023090323A1
Authority
WO
WIPO (PCT)
Prior art keywords
period
cephalopod
breeding
water
water exchange
Prior art date
Application number
PCT/JP2022/042420
Other languages
English (en)
French (fr)
Inventor
一平 有本
健太郎 藤井
輝 森島
Original Assignee
日本水産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本水産株式会社 filed Critical 日本水産株式会社
Publication of WO2023090323A1 publication Critical patent/WO2023090323A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Definitions

  • the present disclosure relates to a cephalopod breeding method, a cephalopod breeding apparatus, a protozoa prevention method, and a protozoa extermination method.
  • Patent Document 1 discloses an octopus breeding shelter and an octopus farming system.
  • the purpose of the present disclosure is to provide a technique for reducing the mortality rate when raising cephalopod larvae.
  • This disclosure provides: [1] A method of rearing cephalopod larvae in a breeding tank having water exchange means, wherein the rate of water exchange with respect to the amount of water in the breeding tank per day by the water exchange means during the floating rearing period of the cephalopod larvae A method of rearing cephalopods, comprising a period of high water exchange in which is 200% or more. [2] The method for rearing cephalopods according to [1], wherein the high water exchange period is set to include a period until the cephalopod larva reaches 15 days of age. [3] The method for rearing cephalopods according to [1] or [2], wherein the high water exchange period is a continuous period of 12 hours or longer.
  • the method for raising cephalopods according to 1. [14] The cephalopod breeding method according to [13], wherein the adjustment period is set during the breeding period until the cephalopod larva reaches 10 days of age. [15] The cephalopod rearing method according to any one of [9] to [14], wherein the water exchange means drains water near the bottom of the breeding tank. [16] The method for rearing cephalopods according to any one of [9] to [15], wherein the protozoa whose protozoan density is to be measured is a ciliate.
  • [17] A breeding tank for breeding cephalopod larvae; A cephalopod breeding apparatus, wherein water is changed during a water change period so that the rate of water change to the amount of water in the breeding tank per day is 200% or more.
  • the water replacement means performs water replacement so that the rate of water replacement with respect to the amount of water in the breeding aquarium per day is 100% or less during the adjustment period before the high water replacement period, [17]-[ 20], the cephalopod breeding apparatus according to any one of [22] The cephalopod breeding apparatus according to [21], wherein the adjustment period is set until the cephalopod larva reaches 10 days of age. [23] The cephalopod breeding apparatus according to any one of [17] to [22], wherein the water exchange means includes drainage means for draining water near the bottom of the breeding tank.
  • the method for preventing protozoa according to 1. [31] The protozoan prevention method according to [30], wherein the adjustment period is set to a period until the cephalopod larva becomes 10 days old. [32] The protozoan prevention method according to any one of [26] to [31], wherein the water exchange means drains water near the bottom of the breeding tank. [33] The method for preventing protozoa according to any one of [26] to [32], wherein the protozoa are ciliates. [34] The method for preventing protozoa according to any one of [26] to [33], wherein during the floating breeding period, the density of protozoa in the water of the breeding aquarium is controlled so that the density is 400 individuals/ml or less. .
  • a method for exterminating protozoa including a high water exchange period in which the water exchange rate with respect to the amount of water in the breeding aquarium per day is 200% or more.
  • the protozoan extermination method according to [35] wherein the high water exchange period is set to include a period until the cephalopod larva reaches 15 days of age.
  • the protozoan extermination method according to [35] or [36], wherein the high water exchange period is a continuous period of 12 hours or longer.
  • FIG. 1(a) and FIG. 1(b) are schematic configuration diagrams of a cephalopod breeding apparatus according to this embodiment.
  • FIG. 1 is a schematic configuration diagram of a cephalopod breeding apparatus described in this embodiment.
  • the cephalopod breeding apparatus 1 includes a breeding tank 2 for breeding the cephalopods, and a water exchange unit 3 as water changing means in the breeding tank 2 .
  • 1(a) shows a vertical cross section of the breeding tank 2
  • FIG. 1(b) shows a top view of the vicinity of the bottom of the breeding tank 2.
  • salt water may be simply described as water.
  • cephalopods to be reared using the cephalopod breeding apparatus 1 are not particularly limited, but the larvae that float in the sea after hatching in the growth stage are targeted.
  • cephalopods include bigfin reef squid, common flying squid, spear squid, octopus maya, small octopus, common octopus, giant Pacific octopus, common octopus, and tenaga octopus, but are not limited thereto.
  • Cephalopods float in the water of the breeding tank 2 in the larval stage after hatching as described above.
  • the cephalopod rearing apparatus 1 described above can be used during the floating rearing period of cephalopod larvae.
  • the term "floating breeding period" refers to the period after hatching and before landing on the bottom, during which the larvae are kept in a floating state.
  • the floating rearing period is around 0 to 23 days of age.
  • age refers to the number of days elapsed since hatching expressed in days, and the date of hatching is defined as 0 days old.
  • the body length of the common octopus in the breeding floating period is typically about 0.8 mm or less.
  • the age and body length of common octopus during the floating breeding period may change depending on the breeding environment, and the age and body length of the transition period to grounding differ depending on the species.
  • the usable time may be individually set according to the species.
  • the cephalopod breeding apparatus 1 as shown in FIG. If the water in the breeding tank 2 is not changed, the leftover food of the cephalopod larvae, the excrement of the cephalopod larvae, or the deceased individuals will rot, or the concentration of ammonia will increase, causing the cephalopods to rot. The substance may affect the growth of larvae. Therefore, it is necessary to change the water during rearing of cephalopod larvae.
  • the water exchange section 3 includes a water injection section 4 and a drainage section 5 . Further, the water exchange section 3 may include an aeration facility 6 as shown in FIG. In addition to the facilities shown in FIG. 1, the cephalopod breeding apparatus 1 may be provided with facilities for breeding cephalopods such as feed supply facilities.
  • FIG. 1 shows an example in which the space for storing water W, which is salt water for breeding, inside the breeding aquarium 2 has a columnar shape with a circular bottom surface.
  • the capacity of the breeding aquarium 2 may be, for example, 100 L to 150 ⁇ 10 3 L, or may be 500 L to 150 ⁇ 10 3 L.
  • Cephalopod larvae may be introduced into the breeding tank 2 so that the number of cephalopod larvae per water W1L is 1 to 10 individuals.
  • the water injection unit 4 supplies salt water for breeding into the breeding tank 2 .
  • the saltwater for breeding may be, for example, seawater subjected to a predetermined treatment such as a sterilization treatment.
  • the water injection unit 4 is not particularly limited as long as it is configured to supply water to the breeding tank 2.
  • the water injection unit 4 may include a water injection pipe 41 as a water injection means and a pipe 42 to the water injection pipe 41. .
  • the water injection pipe 41 is, for example, a long cylindrical pipe that is placed near the bottom wall 21, which is the bottom of the water, and extends parallel to the bottom of the water. For example, a plurality of openings 41a are provided on the side surface of the water injection pipe 41 along its extending direction.
  • the pipe 42 is a pipe that supplies water to be injected into the breeding tank 2 from an external supply source to the water injection pipe 41 .
  • the external supply source includes, for example, a water tank or a tank that stores salt water that has been subjected to a predetermined treatment.
  • water injection by the water injection pipe 41 may be performed by driving a pump provided in the pipe 42, for example.
  • the vicinity of the bottom of the breeding tank 2 refers to a height range of 10% or less or 15 cm or less from the bottom of the water W in the breeding tank 2, whichever is shorter.
  • the bottom of the water corresponds to the bottom wall 21 of the breeding aquarium 2 .
  • the cephalopod larvae do not float near the bottom of the water, but float in a floating area A in the vicinity of a height range of 20% to 85% from the water depth of the water W, for example. Therefore, the height position where the water injection pipe 41 is arranged is below the floating area A and closer to the bottom of the water.
  • the water injection pipe 41 may be arranged so as to extend radially from the center C of the breeding tank 2, as shown in FIG. 1(b). Further, the water injection pipe 41 may be arranged at substantially the same position as the drain pipe 51 described later, for example. As shown in FIG. 1(b), when the water injection pipe 41 is provided near the bottom of the breeding tank 2, the water injected from the opening 41a forms a water flow near the bottom of the water. It can facilitate mobility. Note that the installation location of the water injection pipe 41 is not limited to the vicinity of the bottom of the water.
  • the opening 41a of the water injection pipe 41 may be provided on a side surface away from the drain pipe 51 as shown in FIG. 1(b) instead of facing the drain pipe 51. In this case, the water supplied into the breeding tank 2 through the opening 41a is prevented from being introduced into the drain pipe 51 as it is.
  • the drainage unit 5 drains the water in the breeding tank 2.
  • the drainage part 5 is not particularly limited as long as it can discharge the water in the breeding tank 2 to the outside of the breeding tank. It may be configured to include a pipe 52 .
  • the drain pipe 51 is arranged near the bottom wall 21, which is the bottom of the water, like the water injection pipe 41, and is, for example, a long cylindrical pipe extending parallel to the bottom of the water.
  • a plurality of openings 51a are provided on the side surface of the drain pipe 51 along its extending direction.
  • the water injection pipe 41 of the water injection part 4 is provided near the water surface of the breeding tank 2, and the drain pipe 51 of the drainage part 5 is provided so as to extend vertically in the center of the breeding tank 2.
  • a device can be considered.
  • the drain pipe 51 is preferably arranged near the bottom of the water.
  • the opening 51a may be provided with a filter, a net, or the like.
  • the pipe 52 is a pipe that connects the drain pipe 51 and the outside, and is a pipe that conveys and discharges the water in the water tank introduced into the drain pipe 51 to the outside.
  • the discharge destination of the internal water is, for example, the ocean. Before the water is discharged into the ocean or the like, the discharged water may be subjected to a sterilization treatment.
  • the sterilization treatment may be treatment using drugs, chlorine, ozone, electricity, filters, etc., as long as the live bacteria or protozoa are not expelled as they are, or a combination thereof.
  • the drainage through the drainage pipe 51 may be performed by driving a pump provided in the piping 52, for example.
  • the drain pipe 51 may be arranged so as to extend radially from the center C of the breeding aquarium 2 as shown in FIG. 1(b). Also, the drain pipe 51 may be arranged at substantially the same position as the water injection pipe 41, for example. In the vertical direction, at least part of the water injection pipe 41 and at least part of the drain pipe 51 may be at the same height position. The distance between the water inlet pipe 41 and the drain pipe 51 may be smaller than the maximum lateral width of the drain pipe 51 in plan view. The distance between the water injection pipe 41 and the drain pipe 51 may be smaller than the maximum horizontal width of the water injection pipe 41 in plan view.
  • the opening 51a of the drain pipe 51 may also be provided on a side surface away from the water injection pipe 41 as shown in FIG. In this case, the water supplied into the breeding tank 2 through the opening 41a is prevented from being introduced into the drain pipe 51 as it is. Further, as shown in FIG. 1B, when the opening 41a and the opening 51a are directed in opposite directions, it is possible to create a horizontally rotating water flow and make it difficult for the organic matter to deposit.
  • the aeration equipment 6 is installed, for example, on the bottom of the water at the center C of the breeding tank 2, and supplies the air taken into the breeding tank 2 by an air pump or the like into the water W as bubbles.
  • the oxygen concentration of the water may be measured, and the cephalopod rearing apparatus 1 appropriately adjusts the oxygen concentration by the aeration equipment 6 so that the oxygen concentration does not affect the rearing. may be adjusted.
  • the aeration equipment 6 may have a gas supply unit 61 that releases bubbles into water, and a gas pipe 62 that is connected to an air pump (not shown) and supplies air taken in by the air pump to the gas supply unit 61. .
  • the gas supply unit 61 is arranged at the bottom of the water tank 2 at the center C, if the aeration operation is performed, a rising bubble flow can be formed in the vicinity of the center C in the breeding tank 2. .
  • a method of supplying air into the water W of the breeding tank 2 without using the aeration equipment 6 for example, a method of providing the water injection unit 4 above the water can be mentioned.
  • the water injection part 4 By arranging the water injection part 4 at a position away from the water surface and dropping salt water for rearing from there, air can be mixed in the water as the salt water drops.
  • the water injection pipe 41 of the water injection unit 4 is arranged at a position away from the water surface, and the water injection pipe 41 drops salt water into the water.
  • the method of supplying the water W in the breeding aquarium 2 is not limited to the method of using the aeration equipment 6 .
  • the water in the breeding tank 2 can be changed by simultaneously performing water injection by the water injection unit 4 and drainage by the drainage unit 5.
  • the amount of water injected per unit time by the water injection unit 4 and the amount of water discharged per unit time by the drainage unit 5 are the same.
  • the amount of water in the breeding tank 2 should be ensured so as not to hinder the breeding of the cephalopod larvae, and the amount of water supplied and the amount of water discharged need not be the same.
  • the water in the breeding tank 2 is necessary for cephalopod larvae, but it is necessary to either supply water or drain the water temporarily, as long as the amount of water that does not interfere with breeding is secured and the water quality is not affected. You can stop both.
  • the cephalopod breeding method using the cephalopod breeding apparatus 1 is a method of breeding cephalopod larvae in the breeding aquarium 2 having the water exchange unit 3 as water exchange means.
  • the water exchange rate with respect to the water volume of the breeding tank 2 per day is 200% or more, 210%, or more during the high water exchange period of the floating breeding period of the cephalopod larvae. % or more, 220% or more, 230% or more, 240% or more, 250% or more, 260% or more, 270% or more, 280% or more, or 290% or more.
  • the water replacement rate for the amount of water in the breeding tank 2 per day may be, for example, 2000% or less, 1800% or less, or 1500% or less.
  • a period of high water exchange can be set during the flotation feeding period.
  • a part of the floating rearing period may be a high water exchange period.
  • the water exchange unit 3 of the cephalopod breeding apparatus 1 performs water exchange so that the water exchange rate is 200% or more during the high water exchange period.
  • the water in the rearing tank 2 is constantly changed by the water changing unit 3 .
  • the water replacement rate for the amount of water in the breeding tank 2 per day can be set to about 10% to 100%.
  • This water exchange rate is, for example, a value based on Documents 1 to 3 below. If the amount of water drained from the breeding tank 2 is increased, the feed put into the breeding tank 2 also flows out.
  • the high water exchange period is provided as described above, even if protozoa occur in the breeding tank 2, the proliferation of the protozoa can be suppressed by using the water exchange. Therefore, the mortality rate of cephalopod larvae in the breeding tank 2 can be suppressed.
  • Reference 1 Dan et al. (2016) An upwelling system for culturing common octopus paralarvae and its combined effect with supplying natural zooplankton on paralarval survival and growth.
  • Reference 2 Uriarte et al. (2010) Rearing and growth of the octopus Robsonella fontaniana(Cephalopoda:Octopodidae) From planktonic hatchings to benthic juveniles.
  • Reference 3 Villanueva et al. (2002) Growth and proteolytic activity of Octopus vulgaris paralarvae with different food rations during first feeding, using Artemia nauplii and compounddiets.
  • the high water exchange period can be set to the breeding period until the cephalopod larva reaches 15 days of age. This is because during the breeding period up to 15 days of age, deaths expected to be caused by the proliferation of protozoa may increase. Therefore, the mortality rate can be effectively suppressed by setting the high water exchange period in the above period.
  • At least part of the breeding period up to 15 days of age may be a period of high water exchange.
  • the breeding period until 15 days of age corresponds to the period from 0 days of age to 15 days of age.
  • the high water exchange period may be set in the breeding period until the animal reaches 15 days of age, and the high water exchange period may be set in the period after the 16th day of age. As described above, the high water exchange period can be set to include the period until the cephalopod larva reaches 15 days of age.
  • the high water exchange period may be set to the period after the cephalopod larvae are 5 days old.
  • the period from hatching to 5 days of age is a period when the larvae are particularly small, so if a high water exchange period is set, there is a possibility that the larvae will be discharged outside along with the water in the tank when draining. Therefore, the high water exchange period may be set during the period when the cephalopod larvae are 5 days old or later.
  • the development of protozoa is likely to be confirmed 3 to 5 days after hatching of cephalopod larvae. Therefore, the above setting can effectively suppress the mortality rate.
  • At least a part of the period after 5 days of age may be a period of high water exchange.
  • the high water exchange period When the high water exchange period is set after the cephalopod larvae are 5 days old, at least part of the breeding period until 4 days old may be the high water exchange period, Alternatively, the high water replacement period may not be set.
  • the breeding period until 4 days old corresponds to the period from 0 days old to 4 days old.
  • an adjustment period may be included in which the water exchange rate of the water exchange unit 3 with respect to the amount of water in the breeding tank 2 per day is 80% or less, 90% or less, or 100% or less.
  • the lower limit of the water exchange rate for the water volume of the breeding tank 2 per day by the water exchange unit 3 is not particularly limited as long as the cephalopod larvae can survive stably, but is set to 0% or more, 10% or more, or 20% or more. be able to.
  • the water exchange rate is lower than during the high water exchange period, and the water exchange rate in the breeding tank 2 is low.
  • this adjustment period can also be a period for confirming the status of cephalopod larvae in the breeding aquarium 2, for example, changes in the mortality rate.
  • the adjustment period may be set to a period until the cephalopod larva reaches 10 days of age.
  • the cephalopod rearing apparatus 1 and the cephalopod rearing method by setting an adjustment period until the cephalopod larva reaches 10 days of age, the outflow of the cephalopod larvae is suppressed and the cephalopod larvae Larval growth may be encouraged. At least part of the period up to 10 days of age may be an adjustment period. The period until 10 days old corresponds to the period from 0 days old to 10 days old.
  • the water replacement unit 3 of the cephalopod breeding apparatus 1 may perform water replacement so that the water replacement rate is 100% or less during the adjustment period before the high water replacement period.
  • the breeding period from hatching of the cephalopod larvae to 15 days of age may consist only of the high water exchange period, but the adjustment period and the high water exchange period may be combined as described above. may Furthermore, an adjustment period, a high water replacement period, and an intermediate period in which the water replacement rate is between the adjustment period and the high water replacement period may be combined.
  • each period in the breeding period from hatching of the cephalopod larvae to 15 days of age, each period may be set so that the adjustment period, the intermediate period, and the high water exchange period occur in order from the time of hatching. .
  • the water replacement rate in the breeding tank 2 increases as the age of the cephalopod larvae increases.
  • the high water replacement period may be set as needed according to the conditions in the breeding tank 2 .
  • the high water exchange period is a continuous period of 1 minute or more, 5 minutes or more, 10 minutes or more, 30 minutes or more, 1 hour or more, 3 hours or more, 5 hours or more, 7 hours or more, 10 hours or more, or 12 hours or more. There may be.
  • the high water exchange period is a continuous period of 1 minute or more, 5 minutes or more, 10 minutes or more, 30 minutes or more, 1 hour or more, 3 hours or more, 5 hours or more, 7 hours or more, 10 hours or more, or 12 hours or more. There may be.
  • the drainage pipe 51 which is the drainage means of the drainage section 5 of the water exchange section 3, is provided near the bottom of the breeding tank 2, so that drainage is performed near the bottom. It is known that protozoa proliferate easily in the breeding aquarium 2 near the bottom of the water. This is because organic matter in the water, such as feed floating in the water or carcasses of dead larvae, which are considered to be involved in protozoan proliferation, precipitates and stays on the bottom of the water.
  • the drain pipe 51 is provided in the vicinity of the water bottom of the breeding tank 2 as described above, it is thought that the organic substances remaining at the bottom of the water can be discharged out of the tank during water changes. Therefore, the mortality rate of cephalopod larvae can be suppressed.
  • the cephalopod breeding apparatus 1 and the cephalopod breeding method described above can also be said to be apparatuses and methods capable of controlling the density of protozoa existing in the breeding tank 2 by the operation of the water exchange section 3 . That is, in the cephalopod breeding apparatus 1 and the cephalopod breeding method, the density of the protozoa in the water of the breeding aquarium 2 is 350 individuals/ml or less, 400 individuals/ml or less, 450 individuals/ml or less, or 500 individuals/ml during the floating breeding period. The protozoa density may be controlled so as to be less than individuals/ml.
  • Protozoa may be mixed into the cephalopod breeding apparatus 1 from breeding water or feed, and when the protozoa density is 0.01 individual/ml or more, 0.1 individual/ml or more, or 1 individual/ml or more can be.
  • protozoa that can occur in the breeding tank 2 include, for example, flagellates and ciliates. More specifically, flagella include Ichthyyobodonecator, and ciliates include Uronemamarinum, Philasterides dicentrarchi, Pseudocohnilembuspersalinus, Pseudorahabdosynochus hargisi, and Metanophrys sinensis. Therefore, when the cephalopod breeding apparatus 1 is used to breed the cephalopods, the protozoa to be measured for the protozoa density may be ciliates. In this case, the state of protozoa generation in the breeding tank 2 can be grasped more accurately.
  • the configuration according to this embodiment can also be called a method for preventing the development of protozoa, that is, a method for preventing protozoa. That is, the method for preventing the occurrence of protozoa using the cephalopod breeding apparatus 1 is to prevent the generation of cephalopod larvae in the breeding tank 2 having a water exchange unit 3 as a water exchange means. It is a method for preventing the development of protozoa. In this case, protozoa whose development is to be prevented include flagellates and ciliates.
  • flagella include Ichthyyobodonecator
  • ciliates include Uronemamarinum, Philasterides dicentrarchi, Pseudocohnilembuspersalinus, Pseudorhabdosynochus hargisi, and Metanophrys sinensis.
  • the above-mentioned method for preventing the occurrence of protozoa is a high water exchange period in which the water exchange unit 3 as a water exchange means has a water exchange rate of 200% or more with respect to the amount of water in the breeding tank 2 per day during the floating rearing period of cephalopod larvae. including.
  • the high water exchange period can be set to the breeding period until the cephalopod larva reaches 15 days of age. This is because the breeding period until 15 days of age may increase mortality, which is expected to be caused by the development and proliferation of protozoa. Therefore, the mortality rate can be effectively suppressed by setting the high water exchange period in the above period. At least part of the breeding period up to 15 days of age may be a period of high water exchange. In addition, the high water exchange period may be set in the breeding period until the animal reaches 15 days of age, and the high water exchange period may be set in the period after the 16th day of age. As described above, the high water exchange period can be set to include the period until the cephalopod larva reaches 15 days of age.
  • the high water exchange period may be set to the period after the cephalopod larvae are 5 days old.
  • the development of protozoa is likely to be confirmed 3 to 5 days after hatching of cephalopod larvae. Therefore, the above setting can effectively suppress the mortality rate.
  • At least a part of the period after 5 days of age may be a period of high water exchange.
  • the high water exchange period is set after the cephalopod larvae are 5 days old, at least part of the breeding period until 4 days old may be the high water exchange period, Alternatively, the high water replacement period may not be set.
  • an adjustment period may be included in which the water exchange rate of the water exchange unit 3 with respect to the water volume of the breeding aquarium 2 per day is 80% or less, 90% or less, or 100% or less.
  • the lower limit of the water exchange rate for the water volume of the breeding tank 2 per day by the water exchange unit 3 is not particularly limited as long as the cephalopod larvae can survive stably, but is, for example, 0% or more, 10% or more, or 20% or more. can do.
  • the water exchange rate is lower than during the high water exchange period, and the water exchange rate in the breeding tank 2 is low.
  • this adjustment period can also be a period for confirming the status of cephalopod larvae in the breeding aquarium 2, for example, changes in the mortality rate.
  • the adjustment period may be set to a period until the cephalopod larva reaches 10 days of age. As mentioned above, when the age is low, cephalopod larvae may be washed out if the water exchange rate is high.
  • the growth of cephalopod larvae may be promoted while suppressing the outflow of cephalopod larvae by setting an adjustment period in the period until 10 days of age. . At least part of the period up to 10 days of age may be an adjustment period.
  • the breeding period from hatching of the cephalopod larvae to 15 days of age may consist only of the high water exchange period, but the adjustment period and the high water exchange period may be combined as described above. may Furthermore, an adjustment period, a high water replacement period, and an intermediate period in which the water replacement rate is between the adjustment period and the high water replacement period may be combined.
  • each period may be set so as to have an adjustment period, an intermediate period, and a high water replacement period in order from the time of hatching. .
  • the water replacement rate in the breeding aquarium 2 is increased as the age of the cephalopod larvae increases.
  • the high water replacement period may be set as needed according to the conditions in the breeding tank 2 .
  • the high water exchange period is a continuous period of 1 minute or more, 5 minutes or more, 10 minutes or more, 30 minutes or more, 1 hour or more, 3 hours or more, 5 hours or more, 7 hours or more, 10 hours or more, or 12 hours or more. There may be.
  • the high water exchange period is a continuous period of 1 minute or more, 5 minutes or more, 10 minutes or more, 30 minutes or more, 1 hour or more, 3 hours or more, 5 hours or more, 7 hours or more, 10 hours or more, or 12 hours or more. There may be.
  • the drainage pipe 51 which is the drainage means of the drainage section 5 of the water exchange section 3, is provided near the bottom of the breeding tank 2, so that drainage is performed near the bottom.
  • the breeding aquarium 2 it is presumed that protozoa are likely to occur near the bottom of the water. This is because organic matter in the water, such as feed floating in the water or carcasses of dead larvae, which are considered to be involved in protozoan proliferation, precipitates and stays on the bottom of the water.
  • the drain pipe 51 is provided in the vicinity of the bottom of the breeding tank 2 as described above, it is possible to drain out of the tank the organic substances remaining at the bottom of the tank during water changes. Therefore, it is thought that the development and proliferation of protozoa are suppressed, and the mortality rate of cephalopod larvae can be suppressed.
  • the method of preventing protozoa using the cephalopod breeding apparatus 1 can be said to be a method of controlling the density of protozoa existing in the breeding tank 2 by the operation of the water exchange unit 3 . That is, as a method for preventing protozoa, protozoa are added so that the density of protozoa in the water of the breeding aquarium 2 is 350 individuals/ml or less, 400 individuals/ml or less, 450 individuals/ml or less, or 500 individuals/ml or less during the floating breeding period. Density may be controlled. By setting a high water exchange period in which the water exchange rate is 200% or more per day as described above, it is possible to discharge the protozoa generated especially at the bottom of the water to the outside of the system.
  • Protozoa density in water can be adjusted to be low.
  • the generation of protozoa can be suppressed, and the mortality rate of cephalopod larvae can be suppressed.
  • Protozoa may enter the cephalopod breeding apparatus 1 from water or feed for breeding, and the protozoa density is controlled to 0.01 individual/ml or more, 0.1 individual/ml or more, or 1 individual/ml or more. It is possible that
  • the configuration according to this embodiment can also be called a method for exterminating protozoa in the breeding aquarium 2, that is, a method for exterminating protozoa. That is, the method for exterminating protozoa using the cephalopod breeding apparatus 1 is to exterminate protozoa from the breeding tank 2 when breeding cephalopod larvae in the breeding tank 2 having the water exchange unit 3 as a water exchange means.
  • protozoa to be exterminated include, for example, flagellates and ciliates.
  • flagella include Ichthyyobodonecator
  • ciliates include Uronemamarinum, Philasterides dicentrarchi, Pseudocohnilembuspersalinus, Pseudorhabdosynochus hargisi, and Metanophrys sinensis.
  • the method for exterminating the protozoa includes a high water exchange period in which the water exchange unit 3 as a water exchange means has a water exchange rate of 200% or more with respect to the amount of water in the breeding tank 2 per day during the floating rearing period of the cephalopod larvae. .
  • the high water exchange period as described above and promoting water exchange in the breeding tank 2 during this period, the protozoa in the breeding tank 2 can be exterminated, and the mortality rate of cephalopod larvae can be suppressed. can be done.
  • the high water exchange period can be set to the breeding period until the cephalopod larva reaches 15 days of age. This is because the breeding period until 15 days of age may increase mortality, which is expected to be caused by the development and proliferation of protozoa. Therefore, the mortality rate can be effectively suppressed by setting the high water exchange period in the above period. At least part of the breeding period up to 15 days of age may be a period of high water exchange. In addition, the high water exchange period may be set in the breeding period until the animal reaches 15 days of age, and the high water exchange period may be set in the period after the 16th day of age. As described above, the high water exchange period can be set to include the period until the cephalopod larva reaches 15 days of age.
  • the high water exchange period may be set to the period after the cephalopod larvae are 5 days old.
  • the rearing tank 2 protozoa are likely to be confirmed after about 3 to 5 days have passed since the hatching of the cephalopod larvae. Therefore, with the above setting, the protozoa can be appropriately removed and the mortality rate can be effectively suppressed.
  • At least a part of the period after 5 days of age may be a period of high water exchange.
  • the high water exchange period is set after the cephalopod larvae are 5 days old, at least part of the breeding period until 4 days old may be the high water exchange period, Alternatively, the high water replacement period may not be set.
  • an adjustment period may be included in which the water exchange rate of the water exchange unit 3 with respect to the amount of water in the breeding tank 2 per day is 80% or less, 90% or less, or 100% or less.
  • the lower limit of the water exchange rate for the water volume of the breeding tank 2 per day by the water exchange unit 3 is not particularly limited as long as the cephalopod larvae can survive stably, but is, for example, 0% or more, 10% or more, or 20% or more. can do.
  • the water exchange rate is lower than during the high water exchange period, and the water exchange rate in the breeding tank 2 is low.
  • this adjustment period can also be a period for confirming the status of cephalopod larvae in the breeding aquarium 2, for example, changes in the mortality rate.
  • the adjustment period may be set to a period until the cephalopod larva reaches 10 days of age. As mentioned above, when the age is low, cephalopod larvae may be washed out if the water exchange rate is high.
  • the growth of the cephalopod larvae may be promoted while suppressing the outflow of the cephalopod larvae by setting an adjustment period in the period until the 10th day of age.
  • At least part of the period up to 10 days of age may be an adjustment period.
  • the breeding period from hatching of the cephalopod larvae to 15 days of age may consist only of the high water exchange period, but the adjustment period and the high water exchange period may be combined as described above. may Furthermore, an adjustment period, a high water replacement period, and an intermediate period in which the water replacement rate is between the adjustment period and the high water replacement period may be combined.
  • each period may be set so as to have an adjustment period, an intermediate period, and a high water replacement period in order from the time of hatching. .
  • the water replacement rate in the breeding aquarium 2 is increased as the age of the cephalopod larvae increases.
  • the high water replacement period may be set as needed according to the conditions in the breeding tank 2 .
  • the high water exchange period is a continuous period of 1 minute or more, 5 minutes or more, 10 minutes or more, 30 minutes or more, 1 hour or more, 3 hours or more, 5 hours or more, 7 hours or more, 10 hours or more, or 12 hours or more. There may be.
  • the high water exchange period is a continuous period of 1 minute or more, 5 minutes or more, 10 minutes or more, 30 minutes or more, 1 hour or more, 3 hours or more, 5 hours or more, 7 hours or more, 10 hours or more, or 12 hours or more. There may be.
  • the drainage pipe 51 which is the drainage means of the drainage section 5 of the water exchange section 3, is provided near the bottom of the breeding tank 2, so that drainage is performed near the bottom.
  • protozoa are likely to occur near the bottom of the water. This is because organic substances in the water, such as feed floating in the water and dead larva carcasses, which are considered to be involved in protozoan proliferation, precipitate and stay on the bottom of the water.
  • the drain pipe 51 is provided near the bottom of the breeding tank 2 as described above, in addition to the protozoa remaining on the bottom of the water, organic matter and the like remaining on the bottom of the water during water changes can also be discharged out of the tank. can. Therefore, it is considered that the extermination of protozoa is promoted and further development and proliferation of protozoa are suppressed, and the mortality rate of cephalopod larvae can be suppressed.
  • the method of exterminating protozoa using the cephalopod breeding apparatus 1 described above can also be said to be a method of controlling the density of protozoa existing in the breeding tank 2 by the operation of the water exchange unit 3 . That is, as a method for exterminating protozoa, the density of protozoa in the water of the breeding aquarium 2 is 350 individuals/ml or less, 400 individuals/ml or less, 450 individuals/ml or less, or 500 individuals/ml or less during the floating breeding period. Density may be controlled.
  • the protozoa density in the water can be adjusted to a low level by water changes. In this way, by controlling the protozoan density to be within the above range, it is possible to appropriately exterminate the protozoa in the breeding aquarium 2 and suppress the mortality rate of the cephalopod larvae. .
  • [Evaluation example] (1. Evaluation of protozoan density and daily mortality rate by setting high water exchange period) Using the cephalopod rearing apparatus 1 shown in FIG. 1, larvae of common octopus, which is a type of cephalopod, were reared from 0 to 18 days of age. Specifically, 3000 0-day-old common octopus larvae were put into a breeding tank 2 of 500 L capacity, and then raised to 18-day-old. The water exchange rate in the breeding tank 2 was set to three levels shown in Table 1 below according to the age of the common octopus larvae, and the water exchange unit 3 was controlled so as to achieve the water exchange rate. In this state, the protozoan density and daily mortality rate were measured at 0, 3, 6, 9, 12, 15 and 18 days of age. Table 2 shows the results.
  • the period T1 corresponds to the adjustment period, and each of the periods T2 and T3 corresponds to the high water replacement period.
  • the water exchange rate was changed depending on the time zone, but the operation was performed under the condition of 480% or more per day.
  • the protozoan density in the breeding tank 2 50 ml of the breeding water near the bottom of the breeding tank 2 was collected, 20 ⁇ l of which was visually measured while observing with a microscope, and the protozoan density per 1 mL was calculated.
  • the daily mortality rate of common octopus larvae was calculated by measuring the number of dead individuals from the water discharged during cleaning.
  • the results shown in Table 2 confirmed that the daily mortality rate fluctuated in a manner similar to the protozoan density. However, it changes slightly later than the change in protozoan density. For example, even after the high water exchange period of period T2 started, the daily mortality rate increased. However, it was confirmed that the daily mortality rate gradually decreased after several days had passed. From this result, it was confirmed that by providing a high water exchange period, it is possible to control the protozoan density in the breeding tank 2 so that it is below a certain value, and to suppress the mortality rate of cephalopod larvae. was done. When the measurement was carried out on the next day after the end of the 18-day test, no protozoa were confirmed and no mortality was observed. In addition, when the protozoan that occurred here was examined by 18S rRNA gene sequence analysis, it was confirmed to be Methanophrys sinensis.
  • the water injection pipe 41 of the water injection part 4 is provided near the water surface of the breeding tank 2, and the drain pipe 51 of the drainage part 5 is provided so as to extend vertically in the center of the breeding tank 2. was used to raise common octopus larvae from 0 to 18 days of age, and the survival rate of common octopus larvae was evaluated.
  • the water injection pipe 41 injects water into the breeding tank 2 in the circumferential direction of the breeding tank 2 from near the water surface of the breeding tank 2 .
  • a circulation flow is formed in the breeding tank 2 in the circumferential direction and the vertical direction.
  • SYMBOLS 1 Cephalopod breeding apparatus, 2... Breeding tank, 3... Water exchange part, 4... Water injection part, 5... Drainage part, 6... Aeration equipment, 21... Bottom wall, 41... Water injection pipe, 41a... Opening, 42... Piping , 51... Drainage pipe, 51a... Opening, 52... Piping, 61... Gas supply part, 62... Gas pipe.

Abstract

頭足類飼育方法は、換水手段を有する飼育水槽内で頭足類幼生を飼育する方法であって、前記頭足類幼生の浮遊飼育期において、前記換水手段による1日あたりの前記飼育水槽の水量に対する換水率が200%以上である高換水期間を含む。

Description

頭足類飼育方法、頭足類飼育装置、原虫予防方法および原虫駆除方法
 本開示は、頭足類飼育方法、頭足類飼育装置、原虫予防方法および原虫駆除方法に関する。
 近年、嗜好性及び資源保全に対する消費者の関心が高まっており、頭足類においても養殖技術の開発が望まれている。
 例えば、特許文献1には、タコ飼育用シェルターおよびタコの養殖システムが開示されている。
特開2017-006054号公報
 頭足類の生産量を高めるための手法として、幼生の斃死率を低減させることが求められる。しかしながら、従来の養殖技術では、斃死率が高くなる場合が多いという問題があった。
 本開示は、頭足類幼生を飼育する際の斃死率を低減させる技術を提供することを目的とする。
 本開示は以下を提供する。
[1]換水手段を有する飼育水槽内で頭足類幼生を飼育する方法であって、前記頭足類幼生の浮遊飼育期において、前記換水手段による1日あたりの前記飼育水槽の水量に対する換水率が200%以上である高換水期間を含む、頭足類飼育方法。
[2]前記高換水期間は、前記頭足類幼生が15日齢となるまでの期間を含んで設定される、[1]に記載の頭足類飼育方法。
[3]前記高換水期間は、12時間以上の連続した期間である、[1]または[2]に記載の頭足類飼育方法。
[4]前記高換水期間は、前記頭足類幼生が5日齢以降の期間に設定される、[1]~[3]のいずれか1に記載の頭足類飼育方法。
[5]前記高換水期間の前に、前記換水手段による前記1日あたりの前記飼育水槽の水量に対する換水率が100%以下となる調整期間をさらに含む、[1]~[4]のいずれか1に記載の頭足類飼育方法。
[6]前記調整期間は、前記頭足類幼生が10日齢となるまでの期間に設定される、[5]に記載の頭足類飼育方法。
[7]前記換水手段は、前記飼育水槽の水底近傍において排水を行う、[1]~[6]のいずれか1に記載の頭足類飼育方法。
[8]飼育水槽内で頭足類幼生を飼育する方法であって、前記頭足類幼生の浮遊飼育期において、前記飼育水槽の水中における原虫密度が400個体/ml以下となるように原虫密度を制御する、頭足類飼育方法。
[9]前記飼育水槽は、換水手段を有し、前記浮遊飼育期において、前記換水手段による1日あたりの前記飼育水槽の水量に対する換水率が200%以上である高換水期間を設ける、[8]に記載の頭足類飼育方法。
[10]前記高換水期間は、前記頭足類幼生が15日齢となるまでの期間を含んで設定される、[9]に記載の頭足類飼育方法。
[11]前記高換水期間は、12時間以上の連続した期間である、[9]または[10]に記載の頭足類飼育方法。
[12]前記高換水期間は、前記頭足類幼生が5日齢以降の期間に設定される、[9]~[11]のいずれか1に記載の頭足類飼育方法。
[13]前記高換水期間の前に、前記換水手段による前記1日あたりの前記飼育水槽の水量に対する換水率が100%以下となる調整期間をさらに含む、[9]~[12]のいずれか1に記載の頭足類飼育方法。
[14]前記調整期間は、前記飼育期間のうち前記頭足類幼生が10日齢となるまでの期間に設定される、[13]に記載の頭足類飼育方法。
[15]前記換水手段は、前記飼育水槽の水底近傍において排水を行う、[9]~[14]のいずれか1に記載の頭足類飼育方法。
[16]前記原虫密度の測定対象となる原虫は、繊毛虫である、[9]~[15]のいずれか1に記載の頭足類飼育方法。
[17]頭足類幼生を飼育する飼育水槽と、前記飼育水槽内の水の換水を行う換水手段と、を有し、前記換水手段は、前記頭足類幼生の浮遊飼育期に含まれる高換水期間において、1日あたりの前記飼育水槽の水量に対する換水率が200%以上となるように、換水を行う、頭足類飼育装置。
[18]前記高換水期間は、前記頭足類幼生が15日齢となるまでの期間を含んで設定される、[17]に記載の頭足類飼育装置。
[19]前記高換水期間は、12時間以上の連続した期間である、[17]または[18]に記載の頭足類飼育装置。
[20]前記高換水期間は、前記頭足類幼生が5日齢以降の期間に設定される、[17]~[19]のいずれか1に記載の頭足類飼育装置。
[21]前記換水手段は、前記高換水期間の前の調整期間において、前記1日あたりの前記飼育水槽の水量に対する換水率が100%以下となるように、換水を行う、[17]~[20]のいずれか1に記載の頭足類飼育装置。
[22]前記調整期間は、前記頭足類幼生が10日齢となるまでの期間に設定される、[21]に記載の頭足類飼育装置。
[23]前記換水手段は、前記飼育水槽の水底近傍において排水を行う排水手段を含む、[17]~[22]のいずれか1に記載の頭足類飼育装置。
[24]前記浮遊飼育期において、前記飼育水槽の水中における原虫密度が400個体/ml以下となるように原虫密度を制御する、[17]~[23]のいずれか1に記載の頭足類飼育装置。
[25]前記原虫密度の測定対象となる原虫は、繊毛虫である、[24]に記載の頭足類飼育装置。
[26]換水手段を有する飼育水槽内に頭足類幼生を飼育する際の、前記飼育水槽内での原虫の発生を予防する方法であって、前記頭足類幼生の浮遊飼育期において、前記換水手段による1日あたりの前記飼育水槽の水量に対する換水率が200%以上である高換水期間を含む、原虫予防方法。
[27]前記高換水期間は、前記頭足類幼生が15日齢となるまでの期間を含んで設定される、[26]に記載の原虫予防方法。
[28]前記高換水期間は、12時間以上の連続した期間である、[26]または[27]に記載の原虫予防方法。
[29]前記高換水期間は、前記頭足類幼生が5日齢以降の期間に設定される、[26]~[28]のいずれか1に記載の原虫予防方法。
[30]前記高換水期間の前に、前記換水手段による前記1日あたりの前記飼育水槽の水量に対する換水率が100%以下となる調整期間をさらに含む、[26]~[29]のいずれか1に記載の原虫予防方法。
[31]前記調整期間は、前記頭足類幼生が10日齢となるまでの期間に設定される、[30]に記載の原虫予防方法。
[32]前記換水手段は、前記飼育水槽の水底近傍において排水を行う、[26]~[31]のいずれか1に記載の原虫予防方法。
[33]前記原虫は、繊毛虫である、[26]~[32]のいずれか1に記載の原虫予防方法。
[34]前記浮遊飼育期において、前記飼育水槽の水中における原虫密度が400個体/ml以下となるように原虫密度を制御する、[26]~[33]のいずれか1に記載の原虫予防方法。
[35]換水手段を有する飼育水槽内に頭足類幼生を飼育する際の、前記飼育水槽内から原虫を駆除する方法であって、前記頭足類幼生の浮遊飼育期において、前記換水手段による1日あたりの前記飼育水槽の水量に対する換水率が200%以上である高換水期間を含む、原虫駆除方法。
[36]前記高換水期間は、前記頭足類幼生が15日齢となるまでの期間を含んで設定される、[35]に記載の原虫駆除方法。
[37]前記高換水期間は、12時間以上の連続した期間である、[35]または[36]に記載の原虫駆除方法。
[38]前記高換水期間は、前記頭足類幼生が5日齢以降の期間に設定される、[35]~[37]のいずれか1に記載の原虫駆除方法。
[39]前記高換水期間の前に、前記換水手段による前記1日あたりの前記飼育水槽の水量に対する換水率が100%以下となる調整期間をさらに含む、[35]~[38]のいずれか1に記載の原虫駆除方法。
[40]前記調整期間は、前記頭足類幼生が10日齢となるまでの期間に設定される、[39]に記載の原虫駆除方法。
[41]前記換水手段は、前記飼育水槽の水底近傍において排水を行う、[35]~[40]のいずれか1に記載の原虫駆除方法。
[42]前記原虫は、繊毛虫である、[35]~[41]のいずれか1に記載の原虫駆除方法。
[43]前記浮遊飼育期において、前記飼育水槽の水中における原虫密度が400個体/ml以下となるように原虫密度を制御する、[35]~[42]のいずれか1に記載の原虫駆除方法。
 本開示によれば、頭足類幼生を飼育する際の斃死率を低減させる技術が提供される。
図1(a)、および図1(b)は、本実施形態に係る頭足類飼育装置の概略構成図である。
 以下、添付図面を参照して、本開示を実施するための形態を詳細に説明する。なお、図面の説明においては同一要素には同一符号を付し、重複する説明を省略する。
[頭足類飼育装置および頭足類飼育方法]
 図1は、本実施形態で説明する頭足類飼育装置の概略構成図である。図1に示すように、頭足類飼育装置1は、頭足類を飼育する飼育水槽2と、飼育水槽2内の換水手段である換水部3と、を含んで構成される。なお、図1(a)は、飼育水槽2の鉛直方向断面を示し、図1(b)は、飼育水槽2の底面近傍の上面図を示している。飼育水槽2では、飼育用の塩水を用いて頭足類が飼育される。なお、本明細書では、塩水を単に水と記載する場合がある。
 頭足類飼育装置1を使用して飼育する頭足類は特に限定されないが、成長段階において孵化後の幼生では海中を浮遊する種類を対象とする。このような頭足類としては、例えば、アオリイカ、スルメイカ、ヤリイカ、オクトパス・マヤ、イイダコ、マダコ、ミズダコ、ヤナギダコ、およびテナガダコ等が挙げられるが、これに限定されるものではない。
 頭足類は、上記の通り孵化後の幼生期において、飼育水槽2の水中を浮遊する。上記の頭足類飼育装置1は、頭足類幼生の浮遊飼育期において使用され得る。本明細書において、浮遊飼育期とは孵化後、着底前の浮遊している状態で飼育している期間をいう。例えば、マダコの場合、浮遊飼育期とは0日齢~23日齢頃である。本開示において、日齢とは孵化からの経過日数を日単位で表したものをいい、孵化日を0日齢とする。また、マダコの場合、典型的には、飼育浮遊期のマダコの体長は0.8mm以下程度である。浮遊飼育期のマダコの日齢及び体長は、飼育環境に応じて変化する可能性があり、また、種に応じて着底移行期の日齢及び体長が異なるので、頭足類飼育装置1の使用可能な時期は、種に応じて個別に設定されてもよい。
 頭足類飼育装置1は、図1に示すように、飼育水槽2内の水を交換する換水部3を含んで構成される。飼育水槽2内の水は、換水を行わないと、頭足類幼生の残餌、頭足類幼生の排泄物、または斃死個体が腐敗したり、またアンモニア濃度が高くなったりすることにより頭足類幼生の成育に影響を与えることがある。そのため、頭足類幼生の飼育中は換水を行う必要がある。換水部3は、注水部4、および排水部5を含んで構成される。また、換水部3は、図1に示すように、エアレーション設備6を含んでいてもよい。なお、頭足類飼育装置1には、図1に示す設備のほかに、餌料供給設備等の頭足類の飼育に係る設備が設けられていてもよい。
 飼育水槽2の形状および容量等は特に限定されない。図1では、飼育水槽2の内部において飼育用の塩水である水Wを貯留する空間の形状が、底面が円形である円柱状である例が示されている。図1に示すように平面視において円形であり且つ円柱状の空間に水を貯留する場合、飼育水槽2内での水の移動の偏りをある程度抑制できる。容量については、頭足類幼生の浮遊飼育期における飼育に十分な容量を確保しておくことが好ましい。飼育水槽2の容量は、例えば、100L~150×10Lであってもよく、500L~150×10Lであってもよい。水W1Lに対して頭足類幼生の個体数が1個体~10個体となるように、飼育水槽2中に対して頭足類幼生が投入されていてもよい。
 注水部4は、飼育水槽2内に飼育用の塩水を供給する。飼育用の塩水とは、例えば、海水に対して殺菌処理等の所定の処理を行ったものでもよい。注水部4は、飼育水槽2に水が供給される構成であれば特に限定されないが、例えば、注水手段である注水管41と、注水管41までの配管42とを含んで構成されてもよい。
 注水管41は、例えば、水底である底壁21近傍に配置され、水底に沿って平行に延びる例えば長尺の円筒状の管である。注水管41の延在方向に沿って、その側面に例えば複数の開口41aが設けられる。配管42は、外部の供給源から注水管41まで、飼育水槽2内に注水する水を供給する管である。外部の供給源とは、例えば、所定の処理を施したあとの塩水を貯留する水槽またはタンク等が挙げられる。図示しないが、注水管41による注水は、例えば、配管42に設けられたポンプの駆動によって行われてもよい。
 飼育水槽2の水底近傍とは、飼育水槽2における水Wの水深に対して水底から10%以下または15cm以下のいずれか短いほうの高さの範囲をいう。なお、水底は、飼育水槽2の底壁21に対応する。飼育水槽2では、頭足類幼生は水底近傍を浮遊せず、例えば、水Wの水深に対して水底から20%~85%の高さの範囲付近の浮遊領域Aを浮遊する。したがって、注水管41が配置される高さ位置は、浮遊領域Aよりも下方であり、より水底に近い位置となる。
 注水管41は、例えば、図1(b)に示すように、飼育水槽2の中央Cから半径方向に延びるように配置されてよい。また、注水管41は、例えば、後述の排水管51とほぼ同じ位置になるように配置されてもよい。図1(b)に示すように、注水管41が飼育水槽2の水底近傍に設けられている場合、開口41aから注水される水が水底付近で水流を形成するため、水底近傍の堆積物の移動を促進することができる。なお、注水管41の設置場所は水底近傍に限定されない。
 なお、注水管41の開口41aは、排水管51と対向する方向ではなく、図1(b)に示すように、排水管51に対して離れた側の側面に設けられていてもよい。この場合、開口41aから飼育水槽2内に供給された水が、そのまま排水管51内に導入することが防がれる。
 排水部5は、飼育水槽2内の水を排水する。排水部5は、飼育水槽2内の水を飼育水槽外へ排出できれば特に限定されないが、例えば、飼育水槽2内の水を取り込む排水管51と、排水管51から飼育水槽2の外部へ排出する配管52とを含んで構成されてもよい。
 排水管51は、注水管41と同じく水底である底壁21近傍に配置され、水底に沿って平行に延びる例えば長尺の円筒状の管である。排水管51の延在方向に沿って、その側面に例えば複数の開口51aが設けられる。図1に示される例とは異なり、注水部4の注水管41が飼育水槽2の水面近傍に設けられ、排水部5の排水管51が飼育水槽2の中央において鉛直方向に延びるように設けられた装置が考えられる。この装置で頭足類幼生を飼育した場合、排水管51が水底近傍に配置される装置で頭足類幼生を飼育した場合よりも早い日齢で原虫が観察され、同時に生残率が低くなる。そのため排水管51は水底近傍に配置されることが好ましい。飼育中の頭足類幼生が、飼育水槽2から排水と同時に排出されないように、開口51aにフィルターまたはネット等を取り付けた構造としてもよい。配管52は、排水管51と外部とを接続する管であり、排水管51内に導入された水槽内の水を外部へ運搬して排出する管である。内部の水の排出先としては、例えば、海洋等が挙げられる。海洋等に水が排出される前に、排出される水に対して殺菌処理が行われてもよい。殺菌処理としては、生きた細菌または原虫がそのまま排出されなければよく、例えば薬物、塩素、オゾン、電気、またはフィルター等を用いた処理であってもよく、これらを組み合わせもよい。図示しないが、排水管51による排水は、例えば、配管52に設けられたポンプの駆動によって行われてもよい。
 排水管51は、例えば、図1(b)に示すように、飼育水槽2の中央Cから半径方向に延びるように配置されてよい。また、排水管51は、例えば、注水管41とほぼ同じ位置になるように配置されてもよい。鉛直方向において、注水管41の少なくとも一部と、排水管51の少なくとも一部とが、同じ高さ位置であってもよい。注水管41と排水管51との間の距離が、排水管51の平面視における最大の横幅よりも小さくてもよい。注水管41と排水管51との間の距離は、注水管41の平面視における最大の横幅よりも小さくてもよい。
 なお、排水管51の開口51aについても、注水管41と対向する方向ではなく、図1(b)に示すように、注水管41に対して離れた側の側面に設けられていてもよい。この場合、開口41aから飼育水槽2内に供給された水が、そのまま排水管51内に導入することが防がれる。また、図1(b)に示すように、開口41aと開口51aとが互いに逆の方向を向いている場合、横回転の水流をつけ、有機物を堆積させにくくすることができる。
 エアレーション設備6は、例えば、飼育水槽2の中央Cの水底に設置され、飼育水槽2内にエアポンプ等で取り込んだ空気を泡として水W中に供給する。頭足類幼生の飼育中では、水の酸素濃度が測定されてもよく、頭足類飼育装置1は、酸素濃度が飼育に影響のない状態となるように適宜エアレーション設備6により、酸素濃度を調整してもよい。エアレーション設備6は、水中に泡を放出する気体供給部61と、図示しないエアポンプに接続されて、エアポンプで取り込まれた空気を気体供給部61へ供給する気体管62とを有していてもよい。図1に示すように、飼育水槽2の中央Cの水底に気体供給部61を配置した状態で、エアレーション動作を行うと、飼育水槽2内の中央C付近において上昇する泡の流れが形成され得る。
 なお、エアレーション設備6を用いずに、飼育水槽2の水W中に空気を供給する方法としては、例えば、注水部4を水上に設ける方法が挙げられる。注水部4を水面から離れた位置に配置し、そこから飼育用の塩水を落下させることで、塩水の落下に伴って水中に空気を混合することができる。例えば、注水部4の注水管41が水面から離れた位置に配置されて、注水管41が塩水を水中に落下させる。このように、飼育水槽2の水W中に供給する方法は、エアレーション設備6を用いる方法に限定されない。
 上記の頭足類飼育装置1では、注水部4による注水と排水部5による排水とを同時に行うことで、飼育水槽2内の換水を行うことができる。注水部4による単位時間あたりの注水量と、排水部5による単位時間あたりの排水量とを同じとすることで、飼育水槽2内の水量を維持しながら換水が行われる。飼育水槽2内の水量は頭足類幼生の飼育に支障のない程度に確保されていればよく、注水量と排水量とが同じでなくてもよい。なお、飼育水槽2内の換水は頭足類の幼生に必要であるが、飼育に支障のない水量が確保され且つ水質に影響を与えない範囲で、一時的に注水および排水のいずれか一方または両方を停止してもよい。
 上記のように、エアレーション設備6を動作させながら、注水部4および排水部5による注排水を行うと、例えば、図1(b)に示す矢印Fのように、注水管41から排水管51へ向かう周方向の流れFが形成された状態で換水が行われる。注水管41の開口41aの形成位置、および排水管51の開口51aの形成位置に応じて、周方向の流れFが形成され得る。また、エアレーション設備6が動作することで、水流の一部は上方へ向かう。この結果、上下方向でも緩やかな循環の流れが形成される。
 上記のように、頭足類飼育装置1による頭足類飼育方法は、換水手段としての換水部3を有する飼育水槽2内で、頭足類幼生を飼育する方法である。
 ここで、頭足類飼育装置1および頭足類飼育方法では、頭足類幼生の浮遊飼育期の高換水期間において、1日あたりの飼育水槽2の水量に対する換水率が、200%以上、210%以上、220%以上、230%以上、240%以上、250%以上、260%以上、270%以上、280%以上、または290%以上であってもよい。1日あたりの飼育水槽2の水量に対する換水率は、頭足類幼生が安定して生存可能できれば特に上限はないが、例えば2000%以下、1800%以下、または1500%以下であってもよい。高換水期間は、浮遊飼育期中に設定され得る。浮遊飼育期中の一部の期間が、高換水期間であってもよい。頭足類飼育装置1の換水部3は、高換水期間において、上記換水率が200%以上となるように換水を行う。上記のように高換水期間を設定し、当該期間において飼育水槽2内の換水を促進することで、飼育水槽2内の頭足類幼生の斃死率を抑制することができる。
 頭足類幼生の浮遊飼育期では、水槽中での原虫の発生が原因となり、頭足類幼生の斃死が発生し得る。これは、外套膜に入り込んだ原虫が、頭足類幼生を食べてしまうためと考えられる。これに対して、換水率が200%以上である高換水期間を設けることで、水槽中に原虫が発生したとしても、その増殖を抑制しながら、幼生の飼育を続けることができ、斃死率を抑制することができる。
 一般的に、頭足類幼生を飼育する間では、換水部3による飼育水槽2内の換水が常時行われる。ただし、通常は、1日あたりの飼育水槽2の水量に対する換水率が10%~100%程度に設定され得る。この換水率は、例えば、下記の文献1~3等に基づいた値である。飼育水槽2内の水の排水量を増加させると、飼育水槽2内に投入された飼料も流出するため、通常は、飼料の流出を避けて上記の程度の換水率を設定する場合が多い。これに対して、上記のように高換水期間を設けた場合、飼育水槽2中に原虫が発生したとしても、換水を利用してその増殖を抑制することができる。そのため、飼育水槽2中での頭足類幼生の斃死率が抑制され得る。
文献1:Dan etal.(2018) An upwelling system for culturing common octopus paralarvae and itscombined effect with supplying natural zooplankton on paralarval survival andgrowth.
文献2:Uriarte etal.(2010) Rearing and growth of the octopus Robsonella fontaniana(Cephalopoda:Octopodidae) From planktonic hatchings to benthic juveniles.
文献3:Villanueva etal. (2002) Growth and proteolytic activity of Octopus vulgaris paralarvae withdifferent food rations during first feeding, using Artemia nauplii and compounddiets.
 なお、高換水期間は、頭足類幼生が15日齢となるまでの飼育期間に設定され得る。これは、15日齢となるまでの飼育期間は、原虫の増殖が原因と予想される斃死が増加し得るためである。そのため、上記の期間に高換水期間を設定することで、斃死率を効果的に抑制することができる。15日齢となるまでの飼育期間において、その期間の少なくとも一部が、高換水期間であってもよい。15日齢となるまでの飼育期間は、0日齢から15日齢までの期間に相当する。なお、15日齢となるまでの飼育期間に高換水期間が設定され、且つ、16日齢以降の期間においても、高換水期間が設定されてもよい。以上のように、高換水期間は、頭足類幼生が15日齢となるまでの期間を含んで設定され得る。
 なお、高換水期間は、頭足類幼生が5日齢以降の期間に設定されていてもよい。幼生の孵化から5日齢での期間は、幼生が特に小さい時期であるため、高換水期間を設定すると、排水時に水槽内の水とともに幼生が外部へ排出されてしまう可能性がある。そのため、頭足類幼生が5日齢以降となる期間に高換水期間を設定していてもよい。また、原虫の発生は、頭足類幼生の孵化から3~5日程度経過した時期から確認されやすい。したがって、上記の設定とすることで、斃死率を効果的に抑制することができる。5日齢以降の期間の少なくとも一部の期間が、高換水期間であってもよい。頭足類幼生が5日齢以降の期間に高換水期間が設定される場合に、4日齢となるまでの飼育期間において、その期間の少なくとも一部が、高換水期間であってもよく、または、高換水期間が設定されなくてもよい。4日齢となるまでの飼育期間は、0日齢から4日齢までの期間に相当する。
 また、高換水期間の前に、換水部3による1日あたりの飼育水槽2の水量に対する換水率が80%以下、90%以下、100%以下となる調整期間を含んでもよい。換水部3による1日あたりの飼育水槽2の水量に対する換水率の下限は、頭足類幼生が安定して生存できれば特に制限はないが、例えば0%以上、10%以上、20%以上とすることができる。調整期間は、高換水期間と比べて換水率が低く、飼育水槽2内の換水速度が低い状態である。この状態は、高換水期間と比較すると原虫の増殖が発生する可能性が高くなると考えられる一方で、水中の飼料の流出が抑制されるため、頭足類幼生の成長が促進され得る。また、この調整期間は、飼育水槽2内の頭足類幼生の状況、例えば、斃死率の変化を確認する期間にもなり得る。さらに、調整期間は、頭足類幼生が10日齢となるまでの期間に設定されていてもよい。上述のように、日齢が浅い時期は、換水率が高い状態であると飼料が流出することによって、頭足類幼生が飼料と接触できず、飢餓で死んでしまったり、頭足類幼生が流れに負けてしまい捕獲のための遊泳行動ができず餓死してしまったりする可能性がある。これに対して、頭足類飼育装置1及び頭足類飼育方法では、10日齢となるまでの期間に調整期間を設定することで、頭足類幼生の流出を抑制しつつ、頭足類幼生の成長が促されてもよい。10日齢となるまでの期間において、その期間の少なくとも一部が、調整期間であってもよい。10日齢となるまでの期間は、0日齢から10日齢までの期間に相当する。頭足類飼育装置1の換水部3は、高換水期間の前の調整期間において、上記換水率が100%以下となるように、換水を行ってもよい。
 なお、頭足類幼生が孵化してから15日齢となるまでの飼育期間は、高換水期間のみによって構成されてもよいが、上記のように調整期間と高換水期間とを組み合わせて構成してもよい。さらに、調整期間と、高換水期間と、換水率が調整期間と高換水期間との間である中間期間を組み合わせて構成してもよい。一例として、頭足類幼生が孵化してから15日齢となるまでの飼育期間において、孵化時から順に調整期間、中間期間、および高換水期間となるように、各期間を設定してもよい。この場合、頭足類幼生の日齢の増加に応じて、飼育水槽2における換水率が高くなることになる。また、各期間の途中であっても、飼育水槽2内の状況に応じて、高換水期間が随時設定されてもよい。
 高換水期間は、1分以上、5分以上、10分以上、30分以上、1時間以上、3時間以上、5時間以上、7時間以上、10時間以上、または12時間以上の連続した期間であってもよい。上記の範囲の連続した高換水期間を設けることで、飼育水槽2中に原虫が発生した場合であっても、高換水による原虫の増殖を実現することができる。なお、高換水期間が短時間であっても、換水は促進されるため、原虫の増殖が抑制され、頭足類幼生の斃死率を抑制することができる。上記の範囲の上限としては、頭足類幼生の飼育に影響がなければ問題ないが、例えば高換水期間は、19日以下、18日以下、15日以下、12日以下、または10日以下の連続した期間であってもよい。
 頭足類飼育装置1では、換水部3の排水部5の排水手段である排水管51が、飼育水槽2の水底近傍に設けられるため、水底近傍で排水が行われる。飼育水槽2のうち、原虫が増殖しやすいのは、水底近傍であることが知られている。これは、水中を浮遊する飼料、または斃死した幼生の死骸等の、原虫の増殖に関与すると考えられる水中の有機物等が沈殿し、水底に滞留するためである。これに対して、上記のように、排水管51が飼育水槽2の水底近傍に設けられると、換水時に水底に滞留する有機物等も水槽外へ排出することができると考えられる。そのため、頭足類幼生の斃死率を抑制することができる。
 なお、上記の頭足類飼育装置1および頭足類飼育方法は、換水部3の動作によって、飼育水槽2内に存在する原虫密度を制御可能な装置および手法であるということもできる。すなわち、頭足類飼育装置1および頭足類飼育方法は、浮遊飼育期において、飼育水槽2の水中における原虫密度が350個体/ml以下、400個体/ml以下、450個体/ml以下、または500個体/ml以下となるように原虫密度を制御してもよい。上記のように1日あたりの換水率が200%以上となる高換水期間を設けることによって、特に水底に滞留し得る原虫を系外へ排出することができるため、換水によって水中の原虫密度を低く調整することができる。そこで、原虫密度が上記の範囲以下となるように原虫密度を制御することで、原虫の増殖を抑制することができ、頭足類幼生の斃死率を抑制することができる。なお原虫は飼育用の水又は飼料から頭足類飼育装置1に混入する場合があり、原虫密度が0.01個体/ml以上、0.1個体/ml以上又は1個体/ml以上となる場合があり得る。
 なお、頭足類としてマダコを飼育する場合、飼育水槽2において発生し得る原虫としては、例えば、鞭毛虫、繊毛虫が挙げられる。より具体的には鞭毛虫としてはIchthyyobodonecatorが例示され、繊毛虫としては、Uronemamarinum,Philasterides dicentrarchi,Pseudocohnilembuspersalinus,Pseudorhabdosynochus hargisi,およびMetanophrys sinensisが例示される。したがって、上記の頭足類飼育装置1を用いて飼育する場合、原虫密度の測定対象となる原虫は、繊毛虫としてもよい。この場合、飼育水槽2内の原虫の発生状況をより精度良く把握することができる。
[原虫予防方法]
 本実施形態に係る構成は、原虫の発生を予防する方法、すなわち原虫予防方法ということもできる。すなわち、頭足類飼育装置1を用いた原虫の発生を予防する方法は、換水手段としての換水部3を有する飼育水槽2内で頭足類幼生を飼育する際の、飼育水槽2内での原虫の発生を予防する方法である。この場合、発生を予防する対象となる原虫は、鞭毛虫、繊毛虫が挙げられる。より具体的には鞭毛虫としてはIchthyyobodonecatorが例示され、繊毛虫としては、Uronemamarinum,Philasterides dicentrarchi,Pseudocohnilembuspersalinus,Pseudorhabdosynochus hargisi,およびMetanophrys sinensisが例示される。
 上記の原虫の発生を予防する方法は、頭足類幼生の浮遊飼育期において、換水手段としての換水部3による1日あたりの飼育水槽2の水量に対する換水率が200%以上である高換水期間を含む。上記のように高換水期間を設定し、当該期間において飼育水槽2内の換水を促進することで、飼育水槽2内の原虫の発生を予防することができ、頭足類幼生の斃死率を抑制することができる。
 なお、高換水期間は、頭足類幼生が15日齢となるまでの飼育期間に設定され得る。これは、15日齢となるまでの飼育期間は、原虫の発生および増殖が原因と予想される斃死が増加し得るためである。そのため、上記の期間に高換水期間を設定することで、斃死率を効果的に抑制することができる。15日齢となるまでの飼育期間において、その期間の少なくとも一部が、高換水期間であってもよい。なお、15日齢となるまでの飼育期間に高換水期間が設定され、且つ、16日齢以降の期間においても、高換水期間が設定されてもよい。以上のように、高換水期間は、頭足類幼生が15日齢となるまでの期間を含んで設定され得る。
 なお、高換水期間は、頭足類幼生が5日齢以降の期間に設定されていてもよい。原虫の発生は、頭足類幼生の孵化から3~5日程度経過した時期から確認されやすい。したがって、上記の設定とすることで、斃死率を効果的に抑制することができる。5日齢以降の期間の少なくとも一部の期間が、高換水期間であってもよい。頭足類幼生が5日齢以降の期間に高換水期間が設定される場合に、4日齢となるまでの飼育期間において、その期間の少なくとも一部が、高換水期間であってもよく、または、高換水期間が設定されなくてもよい。
 また、高換水期間の前に、換水部3による1日あたりの飼育水槽2の水量に対する換水率が80%以下、90%以下、または100%以下となる調整期間を含んでもよい。換水部3による1日あたりの飼育水槽2の水量に対する換水率の下限は、頭足類幼生が安定して生存できれば特に制限はないが、例えば0%以上、10%以上、または20%以上とすることができる。調整期間は、高換水期間と比べて換水率が低く、飼育水槽2内の換水速度が低い状態である。この状態は、高換水期間と比較すると原虫の発生する可能性が高くなると考えられる一方で、水中の飼料の流出が抑制されるため、頭足類幼生の成長が促進され得る。また、この調整期間は、飼育水槽2内の頭足類幼生の状況、例えば、斃死率の変化を確認する期間にもなり得る。さらに、調整期間は、頭足類幼生が10日齢となるまでの期間に設定されていてもよい。上述のように、日齢が浅い時期は、換水率が高い状態であると頭足類幼生が流出してしまう可能性がある。これに対して、原虫予防方法では、10日齢となるまでの期間に調整期間を設定することで、頭足類幼生の流出を抑制しつつ、頭足類幼生の成長が促されてもよい。10日齢となるまでの期間において、その期間の少なくとも一部が、調整期間であってもよい。
 なお、頭足類幼生が孵化してから15日齢となるまでの飼育期間は、高換水期間のみによって構成されてもよいが、上記のように調整期間と高換水期間とを組み合わせて構成してもよい。さらに、調整期間と、高換水期間と、換水率が調整期間と高換水期間との間である中間期間を組み合わせて構成してもよい。一例として、頭足類幼生が孵化してから15日齢となるまでの飼育期間について、孵化時から順に調整期間、中間期間、および高換水期間となるように、各期間を設定してもよい。この場合、頭足類幼生の日齢の増加に応じて、飼育水槽2における換水率を高めることになる。また、各期間の途中であっても、飼育水槽2内の状況に応じて、高換水期間が随時設定されてもよい。
 高換水期間は、1分以上、5分以上、10分以上、30分以上、1時間以上、3時間以上、5時間以上、7時間以上、10時間以上、または12時間以上の連続した期間であってもよい。上記の範囲の連続した高換水期間を設けることで、飼育水槽2中に原虫が発生した場合であっても、高換水による原虫の増殖を実現することができる。なお、高換水期間が短時間であっても、換水は促進されるため、原虫の増殖が抑制され、頭足類幼生の斃死率を抑制することができる。上記の範囲の上限としては、頭足類幼生の飼育に影響がなければ問題ないが、例えば高換水期間は、19日以下、18日以下、15日以下、12日以下、または10日以下の連続した期間であってもよい。
 頭足類飼育装置1では、換水部3の排水部5の排水手段である排水管51が、飼育水槽2の水底近傍に設けられるため、水底近傍で排水が行われる。飼育水槽2のうち、原虫が発生しやすいのは、水底近傍であると推測される。これは、水中を浮遊する飼料、または斃死した幼生の死骸等の、原虫の増殖に関与すると考えられる水中の有機物等が沈殿し、水底に滞留するためである。これに対して、上記のように、排水管51が飼育水槽2の水底近傍に設けられると、換水時に水底に滞留する有機物等も水槽外へ排出することができる。そのため、原虫の発生および増殖が抑制されると考えられ、頭足類幼生の斃死率を抑制することができる。
 なお、上記の頭足類飼育装置1による原虫予防方法は、換水部3の動作によって、飼育水槽2内に存在する原虫密度を制御する手法であるともいえる。すなわち、原虫予防方法として、浮遊飼育期において、飼育水槽2の水中における原虫密度が350個体/ml以下、400個体/ml以下、450個体/ml以下、または500個体/ml以下となるように原虫密度を制御してもよい。上記のように1日あたりの換水率が200%以上となる高換水期間を設けることによって、特に水底において発生した原虫を系外へ排出することができるため、仮に原虫が発生したとしても換水によって水中の原虫密度を低く調整することができる。このように、上記の範囲以下となるように原虫密度を制御することで、原虫の発生を抑制することができ、頭足類幼生の斃死率を抑制することができる。なお原虫は飼育用の水又は飼料から頭足類飼育装置1に混入する場合があり、原虫密度が0.01個体/ml以上、0.1個体/ml以上又は1個体/ml以上に制御するようになる場合があり得る。
[原虫駆除方法]
 本実施形態に係る構成は、飼育水槽2内の原虫を駆除する方法、すなわち原虫駆除方法ということもできる。すなわち、頭足類飼育装置1を用いた原虫の駆除方法は、換水手段としての換水部3を有する飼育水槽2内で頭足類幼生を飼育する際の、飼育水槽2内から原虫を駆除する方法である。この場合、駆除対象となる原虫は、例えば、鞭毛虫、繊毛虫が挙げられる。より具体的には鞭毛虫としてはIchthyyobodonecatorが例示され、繊毛虫としては、Uronemamarinum,Philasterides dicentrarchi,Pseudocohnilembuspersalinus,Pseudorhabdosynochus hargisi,およびMetanophrys sinensisが例示される。
 上記の原虫の駆除する方法は、頭足類幼生の浮遊飼育期において、換水手段としての換水部3による1日あたりの飼育水槽2の水量に対する換水率が200%以上である高換水期間を含む。上記のように高換水期間を設定し、当該期間において飼育水槽2内の換水を促進することで、飼育水槽2内の原虫を駆除することができ、頭足類幼生の斃死率を抑制することができる。
 なお、高換水期間は、頭足類幼生が15日齢となるまでの飼育期間に設定され得る。これは、15日齢となるまでの飼育期間は、原虫の発生および増殖が原因と予想される斃死が増加し得るためである。そのため、上記の期間に高換水期間を設定することで、斃死率を効果的に抑制することができる。15日齢となるまでの飼育期間において、その期間の少なくとも一部が、高換水期間であってもよい。なお、15日齢となるまでの飼育期間に高換水期間が設定され、且つ、16日齢以降の期間においても、高換水期間が設定されてもよい。以上のように、高換水期間は、頭足類幼生が15日齢となるまでの期間を含んで設定され得る。
 なお、高換水期間は、頭足類幼生が5日齢以降の期間に設定されていてもよい。飼育水槽2内では、頭足類幼生の孵化から3~5日程度経過した時期から原虫が確認されやすい。したがって、上記の設定とすることで、原虫を適切に除去し、斃死率を効果的に抑制することができる。5日齢以降の期間の少なくとも一部の期間が、高換水期間であってもよい。頭足類幼生が5日齢以降の期間に高換水期間が設定される場合に、4日齢となるまでの飼育期間において、その期間の少なくとも一部が、高換水期間であってもよく、または、高換水期間が設定されなくてもよい。
 また、高換水期間の前に、換水部3による1日あたりの飼育水槽2の水量に対する換水率が80%以下、90%以下、100%以下となる調整期間を含んでもよい。換水部3による1日あたりの飼育水槽2の水量に対する換水率の下限は、頭足類幼生が安定して生存できれば特に制限はないが、例えば0%以上、10%以上、または20%以上とすることができる。調整期間は、高換水期間と比べて換水率が低く、飼育水槽2内の換水速度が低い状態である。この状態は、高換水期間と比較すると原虫の発生する可能性が高くなると考えられる一方で、水中の飼料の流出が抑制されるため、頭足類幼生の成長が促進され得る。また、この調整期間は、飼育水槽2内の頭足類幼生の状況、例えば、斃死率の変化を確認する期間にもなり得る。さらに、調整期間は、頭足類幼生が10日齢となるまでの期間に設定されていてもよい。上述のように、日齢が浅い時期は、換水率が高い状態であると頭足類幼生が流出してしまう可能性がある。これに対して、原虫駆除方法では、10日齢となるまでの期間に調整期間を設定することで、頭足類幼生の流出を抑制しつつ、頭足類幼生の成長が促されてもよい。10日齢となるまでの期間において、その期間の少なくとも一部が、調整期間であってもよい。
 なお、頭足類幼生が孵化してから15日齢となるまでの飼育期間は、高換水期間のみによって構成されてもよいが、上記のように調整期間と高換水期間とを組み合わせて構成してもよい。さらに、調整期間と、高換水期間と、換水率が調整期間と高換水期間との間である中間期間を組み合わせて構成してもよい。一例として、頭足類幼生が孵化してから15日齢となるまでの飼育期間について、孵化時から順に調整期間、中間期間、および高換水期間となるように、各期間を設定してもよい。この場合、頭足類幼生の日齢の増加に応じて、飼育水槽2における換水率を高めることになる。また、各期間の途中であっても、飼育水槽2内の状況に応じて、高換水期間が随時設定されてもよい。
 高換水期間は、1分以上、5分以上、10分以上、30分以上、1時間以上、3時間以上、5時間以上、7時間以上、10時間以上、または12時間以上の連続した期間であってもよい。上記の範囲の連続した高換水期間を設けることで、飼育水槽2中に原虫が発生した場合であっても、高換水により原虫を適切に駆除することができる。なお、高換水期間が短時間であっても、換水は促進されるため、原虫の駆除が行われ、頭足類幼生の斃死率を抑制することができる。上記の範囲の上限としては、頭足類幼生の飼育に影響がなければ問題ないが、例えば、高換水期間は、19日以下、18日以下、15日以下、12日以下、または10日以下の連続した期間であってもよい。
 頭足類飼育装置1では、換水部3の排水部5の排水手段である排水管51が、飼育水槽2の水底近傍に設けられるため、水底近傍で排水が行われる。飼育水槽2のうち、原虫が発生しやすいのは、水底近傍であると推測される。これは、水中を浮遊する飼料、斃死した幼生の死骸等、原虫の増殖に関与すると考えられる水中の有機物等が沈殿し、水底に滞留するためである。これに対して、上記のように、排水管51が飼育水槽2の水底近傍に設けられると、水底に滞留する原虫に加えて、換水時に水底に滞留する有機物等も水槽外へ排出することができる。そのため、原虫の駆除を促進するとともにさらなる原虫の発生および増殖が抑制されると考えられ、頭足類幼生の斃死率を抑制することができる。
 なお、上記の頭足類飼育装置1による原虫駆除方法は、換水部3の動作によって、飼育水槽2内に存在する原虫密度を制御する手法であるともいえる。すなわち、原虫駆除方法として、浮遊飼育期において、飼育水槽2の水中における原虫密度が350個体/ml以下、400個体/ml以下、450個体/ml以下、または500個体/ml以下となるように原虫密度を制御してもよい。上記のように1日あたりの換水率が200%以上となる高換水期間を設けることによって、特に水底において発生した原虫を系外へ排出することで駆除ができるため、仮に原虫が発生したとしても換水によって水中の原虫密度を低く調整することができる。このように、上記の範囲以下となるように原虫密度を制御することで、飼育水槽2内での原虫の駆除を適切に行うことができ、頭足類幼生の斃死率を抑制することができる。
[評価例]
(1.高換水期間の設定による原虫密度および日間斃死率の評価)
 図1に示す頭足類飼育装置1を用いて、頭足類の一種であるマダコの幼生を0日齢~18日齢まで飼育した。具体的には、500L容量の飼育水槽2に対して0日齢のマダコ幼生を3000個体投入し、その後18日齢まで飼育した。マダコ幼生の日齢に応じて飼育水槽2内の換水率を下記の表1に示す3段階に設定して、当該換水率となるように換水部3を制御した。その状態で、0,3,6,9,12,15,18日齢における原虫密度および日間斃死率を計測した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 期間T1は、調整期間に相当し、期間T2及び期間T3のそれぞれは、高換水期間に相当する。期間T3は、時間帯によって換水率を変更したが、1日あたり480%以上となる条件で運転を行った。
 飼育水槽2内の原虫密度は、飼育水槽2の底面付近の飼育水を50ml回収し、そのうち20μlを顕微鏡で観察しながら目視計測し、1mLあたりの原虫密度を算出した。また、マダコ幼生の日間斃死率は、掃除時に排出された水から斃死個体の数を計測し、算出した。
 表2に示す結果によれば、飼育水槽2内では、マダコ幼生が3日齢以降で原虫が増加していることが確認された。換水率を200%以上とした期間T2に入った後原虫密度は減少し、同時に日間斃死率も減少した。
 また、表2に示す結果では、日間斃死率は、原虫密度に類似した変動をしていることが確認された。ただし、原虫密度の変化よりも少し遅れて変動している。例えば、期間T2の高換水期間が開始された後においても、日間斃死率が上昇している。ただし、数日経過後には、日間斃死率も徐々に低下することが確認された。この結果から、高換水期間を設けることで、飼育水槽2内の原虫密度が一定値以下となるように制御が可能であり、且つ、頭足類幼生の斃死率を抑制することができることが確認された。なお18日間の試験終了後の翌日にも測定したところ原虫は確認されず斃死も0であった。また、ここで発生していた原虫を18S rRNA遺伝子配列解析によって調べたところ、Metanophrys sinensisであることが確認された。
(2.注水部および排水部の配置とマダコ生残率との評価)
 次に、図1に示す頭足類飼育装置1を用いて、頭足類の一種であるマダコの幼生を0日齢~18日齢まで飼育し、マダコ幼生の生残率を評価した。
 一方、比較例の構成として、注水部4の注水管41が飼育水槽2の水面近傍に設けられ、排水部5の排水管51が飼育水槽2の中央において鉛直方向に延びるように設けられた装置を用いて、マダコの幼生を0日齢~18日齢まで飼育し、マダコ幼生の生残率を評価した。比較例の構成では、注水管41は、飼育水槽2の水面近傍から、飼育水槽2の周方向に飼育水槽2内へ注水する。一方、中央に設けられた排水管51によって排水を行うことで、飼育水槽2内の周方向且つ上下方向の循環流が形成される。
 それぞれの飼育水槽2について、0日齢のマダコ幼生を3000個体投入し、その後18日齢まで飼育した。マダコ幼生の日齢に応じた飼育水槽2内の換水率は、上記の表1に示す条件と同様にした。その状態で、0,3,6,9,12,15,18日齢におけるマダコの生残率を、0日齢での幼生数を100%とした場合の、残存幼生の個体数の割合として算出した。結果を表3に示す。表3では、マダコの生残率を計測した18日齢までの結果を示している。
Figure JPOXMLDOC01-appb-T000003
 表3に示す結果によれば、飼育水槽2内では、マダコ幼生が9日齢となる時期から、各条件での生残率に差が出てくることが確認された。注水管41および排水管51の配置が異なる比較例の装置を用いた飼育の場合、12日齢で生残率が50%未満となることが確認された。一方、図1に示す頭足類飼育装置1を用いた場合には、15日齢において生残率が50%以上であり、18日齢においても比較例の装置の場合と比較して高い生残率となることが確認された。
[変形例]
 以上、本開示の実施形態について説明したが、本開示に係る頭足類飼育方法、頭足類飼育装置、原虫予防方法および原虫駆除方法は、上記実施形態に限定されない。
 例えば、上記実施形態では頭足類がマダコである場合について説明したが、他の頭足類の幼生を飼育する場合には、必要に応じて適宜飼育条件を変更してもよい。本開示において説明した種々の例のうちの1つの例において、他の例において説明した事項の少なくとも一部が適用されてもよい。
 1…頭足類飼育装置、2…飼育水槽、3…換水部、4…注水部、5…排水部、6…エアレーション設備、21…底壁、41…注水管、41a…開口、42…配管、51…排水管、51a…開口、52…配管、61…気体供給部、62…気体管。

Claims (43)

  1.  換水手段を有する飼育水槽内で頭足類幼生を飼育する方法であって、
     前記頭足類幼生の浮遊飼育期において、前記換水手段による1日あたりの前記飼育水槽の水量に対する換水率が200%以上である高換水期間を含む、頭足類飼育方法。
  2.  前記高換水期間は、前記頭足類幼生が15日齢となるまでの期間を含んで設定される、請求項1に記載の頭足類飼育方法。
  3.  前記高換水期間は、12時間以上の連続した期間である、請求項1または2に記載の頭足類飼育方法。
  4.  前記高換水期間は、前記頭足類幼生が5日齢以降の期間に設定される、請求項1~3のいずれか一項に記載の頭足類飼育方法。
  5.  前記高換水期間の前に、前記換水手段による前記1日あたりの前記飼育水槽の水量に対する換水率が100%以下となる調整期間をさらに含む、請求項1~4のいずれか一項に記載の頭足類飼育方法。
  6.  前記調整期間は、前記頭足類幼生が10日齢となるまでの期間に設定される、請求項5に記載の頭足類飼育方法。
  7.  前記換水手段は、前記飼育水槽の水底近傍において排水を行う、請求項1~6のいずれか一項に記載の頭足類飼育方法。
  8.  飼育水槽内で頭足類幼生を飼育する方法であって、
     前記頭足類幼生の浮遊飼育期において、
     前記飼育水槽の水中における原虫密度が400個体/ml以下となるように原虫密度を制御する、頭足類飼育方法。
  9.  前記飼育水槽は、換水手段を有し、
     前記浮遊飼育期において、前記換水手段による1日あたりの前記飼育水槽の水量に対する換水率が200%以上である高換水期間を設ける、請求項8に記載の頭足類飼育方法。
  10.  前記高換水期間は、前記頭足類幼生が15日齢となるまでの期間を含んで設定される、請求項9に記載の頭足類飼育方法。
  11.  前記高換水期間は、12時間以上の連続した期間である、請求項9または10に記載の頭足類飼育方法。
  12.  前記高換水期間は、前記頭足類幼生が5日齢以降の期間に設定される、請求項9~11のいずれか一項に記載の頭足類飼育方法。
  13.  前記高換水期間の前に、前記換水手段による前記1日あたりの前記飼育水槽の水量に対する換水率が100%以下となる調整期間をさらに含む、請求項9~12のいずれか一項に記載の頭足類飼育方法。
  14.  前記調整期間は、前記飼育期間のうち前記頭足類幼生が10日齢となるまでの期間に設定される、請求項13に記載の頭足類飼育方法。
  15.  前記換水手段は、前記飼育水槽の水底近傍において排水を行う、請求項9~14のいずれか一項に記載の頭足類飼育方法。
  16.  前記原虫密度の測定対象となる原虫は、繊毛虫である、請求項9~15のいずれか一項に記載の頭足類飼育方法。
  17.  頭足類幼生を飼育する飼育水槽と、
     前記飼育水槽内の水の換水を行う換水手段と、
     を有し、
     前記換水手段は、前記頭足類幼生の浮遊飼育期に含まれる高換水期間において、1日あたりの前記飼育水槽の水量に対する換水率が200%以上となるように、換水を行う、頭足類飼育装置。
  18.  前記高換水期間は、前記頭足類幼生が15日齢となるまでの期間を含んで設定される、請求項17に記載の頭足類飼育装置。
  19.  前記高換水期間は、12時間以上の連続した期間である、請求項17または18に記載の頭足類飼育装置。
  20.  前記高換水期間は、前記頭足類幼生が5日齢以降の期間に設定される、請求項17~19のいずれか一項に記載の頭足類飼育装置。
  21.  前記換水手段は、前記高換水期間の前の調整期間において、前記1日あたりの前記飼育水槽の水量に対する換水率が100%以下となるように、換水を行う、請求項17~20のいずれか一項に記載の頭足類飼育装置。
  22.  前記調整期間は、前記頭足類幼生が10日齢となるまでの期間に設定される、請求項21に記載の頭足類飼育装置。
  23.  前記換水手段は、前記飼育水槽の水底近傍において排水を行う排水手段を含む、請求項17~22のいずれか一項に記載の頭足類飼育装置。
  24.  前記浮遊飼育期において、前記飼育水槽の水中における原虫密度が400個体/ml以下となるように原虫密度を制御する、請求項17~23のいずれか一項に記載の頭足類飼育装置。
  25.  前記原虫密度の測定対象となる原虫は、繊毛虫である、請求項24に記載の頭足類飼育装置。
  26.  換水手段を有する飼育水槽内に頭足類幼生を飼育する際の、前記飼育水槽内での原虫の発生を予防する方法であって、
     前記頭足類幼生の浮遊飼育期において、前記換水手段による1日あたりの前記飼育水槽の水量に対する換水率が200%以上である高換水期間を含む、原虫予防方法。
  27.  前記高換水期間は、前記頭足類幼生が15日齢となるまでの期間を含んで設定される、請求項26に記載の原虫予防方法。
  28.  前記高換水期間は、12時間以上の連続した期間である、請求項26または27に記載の原虫予防方法。
  29.  前記高換水期間は、前記頭足類幼生が5日齢以降の期間に設定される、請求項26~28のいずれか一項に記載の原虫予防方法。
  30.  前記高換水期間の前に、前記換水手段による前記1日あたりの前記飼育水槽の水量に対する換水率が100%以下となる調整期間をさらに含む、請求項26~29のいずれか一項に記載の原虫予防方法。
  31.  前記調整期間は、前記頭足類幼生が10日齢となるまでの期間に設定される、請求項30に記載の原虫予防方法。
  32.  前記換水手段は、前記飼育水槽の水底近傍において排水を行う、請求項26~31のいずれか一項に記載の原虫予防方法。
  33.  前記原虫は、繊毛虫である、請求項26~32のいずれか一項に記載の原虫予防方法。
  34.  前記浮遊飼育期において、前記飼育水槽の水中における原虫密度が400個体/ml以下となるように原虫密度を制御する、請求項26~33のいずれか一項に記載の原虫予防方法。
  35.  換水手段を有する飼育水槽内に頭足類幼生を飼育する際の、前記飼育水槽内から原虫を駆除する方法であって、
     前記頭足類幼生の浮遊飼育期において、前記換水手段による1日あたりの前記飼育水槽の水量に対する換水率が200%以上である高換水期間を含む、原虫駆除方法。
  36.  前記高換水期間は、前記頭足類幼生が15日齢となるまでの期間を含んで設定される、請求項35に記載の原虫駆除方法。
  37.  前記高換水期間は、12時間以上の連続した期間である、請求項35または36に記載の原虫駆除方法。
  38.  前記高換水期間は、前記頭足類幼生が5日齢以降の期間に設定される、請求項35~37のいずれか一項に記載の原虫駆除方法。
  39.  前記高換水期間の前に、前記換水手段による前記1日あたりの前記飼育水槽の水量に対する換水率が100%以下となる調整期間をさらに含む、請求項35~38のいずれか一項に記載の原虫駆除方法。
  40.  前記調整期間は、前記頭足類幼生が10日齢となるまでの期間に設定される、請求項39に記載の原虫駆除方法。
  41.  前記換水手段は、前記飼育水槽の水底近傍において排水を行う、請求項35~40のいずれか一項に記載の原虫駆除方法。
  42.  前記原虫は、繊毛虫である、請求項35~41のいずれか一項に記載の原虫駆除方法。
  43.  前記浮遊飼育期において、前記飼育水槽の水中における原虫密度が400個体/ml以下となるように原虫密度を制御する、請求項35~42のいずれか一項に記載の原虫駆除方法。
PCT/JP2022/042420 2021-11-22 2022-11-15 頭足類飼育方法、頭足類飼育装置、原虫予防方法および原虫駆除方法 WO2023090323A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-189453 2021-11-22
JP2021189453 2021-11-22

Publications (1)

Publication Number Publication Date
WO2023090323A1 true WO2023090323A1 (ja) 2023-05-25

Family

ID=86397042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042420 WO2023090323A1 (ja) 2021-11-22 2022-11-15 頭足類飼育方法、頭足類飼育装置、原虫予防方法および原虫駆除方法

Country Status (1)

Country Link
WO (1) WO2023090323A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150114304A1 (en) * 2009-07-03 2015-04-30 Larry Pierce Organic fishery system having cleaning and heating features
JP2020074761A (ja) * 2018-11-06 2020-05-21 ダイセン・メンブレン・システムズ株式会社 循環式陸上養殖用の飼育水質管理システムと運転方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150114304A1 (en) * 2009-07-03 2015-04-30 Larry Pierce Organic fishery system having cleaning and heating features
JP2020074761A (ja) * 2018-11-06 2020-05-21 ダイセン・メンブレン・システムズ株式会社 循環式陸上養殖用の飼育水質管理システムと運転方法

Similar Documents

Publication Publication Date Title
CN103391712B (zh) 双壳贝的多层式养殖装置及使用该养殖装置的养殖方法
US9167803B2 (en) Device for farming benthic organisms such as bivalves
US11484015B2 (en) Systems and methods of intensive recirculating aquaculture
CN106900608A (zh) 一种大鳞鲃鱼的培育方法
KR101728224B1 (ko) 부유 이물질 제거가 용이한 해마 양성용 사육수조
JP2006254880A (ja) カニ類等の池中養殖法
EP3141111A2 (en) System and method for removing exterior parasites from fish and fish feeding system and method
JP2017148007A (ja) 魚類種苗の育成システム
KR100915037B1 (ko) 해양오염이 방지되는 어류와 해삼의 복합 양식 방법 및 그장치
JP2007215538A (ja) フグ類養殖方法及び養殖装置
CN106614172A (zh) 沙栖水中生物养殖装置
JPH11169011A (ja) 甲殻類養殖システム及び方法
KR101402645B1 (ko) 뱀장어 초기 자어 사육수조 청소시스템
KR101170304B1 (ko) 양식어류와 갯지렁이의 복합양식 시스템 및 방법
KR101549211B1 (ko) 어린 패류의 상향식 수류 실내사육장치
JP6980210B2 (ja) 良質な海洋環境を創出して海洋生態系の持続的保持を可能とする水生生物生産インフラシステム及び水生生物生産方法
WO2003096803A1 (fr) Procede et systeme de reproduction d'alevins
KR20190070152A (ko) 나노 버블 및 마이크로 버블을 이용한 양식장 관리방법
WO2023090323A1 (ja) 頭足類飼育方法、頭足類飼育装置、原虫予防方法および原虫駆除方法
JP2007159507A (ja) 貝類養殖槽および貝類養殖方法
JP2016123383A (ja) 浮上槽及び仔稚魚管理方法
KR20220006208A (ko) 패류 인공종묘 양식장치
Chen et al. Sea cucumber aquaculture in China
KR101603715B1 (ko) 어류 생육 장치 및 이를 이용하는 긴꼬리투구새우의 생육 방법
JP2018093776A (ja) 魚介類の養殖システムおよび魚介類の養殖方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895604

Country of ref document: EP

Kind code of ref document: A1