WO2023090315A1 - アセトアミノフェンの製造方法 - Google Patents

アセトアミノフェンの製造方法 Download PDF

Info

Publication number
WO2023090315A1
WO2023090315A1 PCT/JP2022/042371 JP2022042371W WO2023090315A1 WO 2023090315 A1 WO2023090315 A1 WO 2023090315A1 JP 2022042371 W JP2022042371 W JP 2022042371W WO 2023090315 A1 WO2023090315 A1 WO 2023090315A1
Authority
WO
WIPO (PCT)
Prior art keywords
acetaminophen
reaction
porous body
monolithic porous
catalyst
Prior art date
Application number
PCT/JP2022/042371
Other languages
English (en)
French (fr)
Inventor
百合恵 古場
裕次 谷池
尚之 渡辺
Original Assignee
株式会社エーピーアイ コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エーピーアイ コーポレーション filed Critical 株式会社エーピーアイ コーポレーション
Priority to CN202280075018.0A priority Critical patent/CN118176177A/zh
Priority to EP22895596.9A priority patent/EP4434964A1/en
Priority to JP2023561598A priority patent/JPWO2023090315A1/ja
Publication of WO2023090315A1 publication Critical patent/WO2023090315A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/02Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
    • C07C233/10Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with carbon atoms of carboxamide groups bound to carbon atoms of an unsaturated carbon skeleton containing rings other than six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/16Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms
    • C07C233/24Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a six-membered aromatic ring
    • C07C233/25Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a six-membered aromatic ring having the carbon atom of the carboxamide group bound to a hydrogen atom or to a carbon atom of an acyclic saturated carbon skeleton

Definitions

  • the present invention relates to a method for producing acetaminophen useful as a pharmaceutical.
  • Acetaminophen is an antipyretic analgesic that has been used frequently for a long time, and is a highly safe drug that can be administered not only to adults but also to children.
  • a batch-type reaction method is conventionally known as a method for producing acetaminophen.
  • a method for producing acetaminophen by adding para-nitrophenol, acetic acid and a metal catalyst to a reaction vessel, adding hydrogen, and reacting them at high temperature Patent Document 1.
  • the reaction temperature is high, and the reaction is difficult to control because it is accompanied by intense heat generation when the catalyst is added. Therefore, a safer and more productive industrial manufacturing method is desired.
  • Patent Document 2 As a method for increasing productivity, there is a continuous reaction method. For example, para-nitrophenol is added to an acetic anhydride/acetic acid solution to form a solution, and the solution is placed in a column filled with a noble metal catalyst, specifically a Pd/C catalyst, at a hydrogen pressure of 8 MPa to 10 MPa and a reaction temperature of 90 to 140°C.
  • a noble metal catalyst specifically a Pd/C catalyst
  • Patent Document 2 There is known a method for continuously producing acetaminophen by passing and reacting.
  • Patent Document 2 requires equipment capable of withstanding extremely high pressure conditions, and the reaction temperature is also high. Further, when the reaction is continuously performed for a long time under high temperature and high pressure, deterioration of the catalyst may be accelerated.
  • Patent Document 3 acetaminophen as a carrier for metal-supported catalysts for products.
  • An object of the present invention is to provide a method for continuously producing acetaminophen safely and inexpensively at low reaction temperature and low reaction pressure, with high selectivity and good yield.
  • the present inventors found that when a solution containing para-nitrophenol, together with an acetylating agent and hydrogen, is continuously passed through a column filled with a catalyst in which a metal element is supported on a monolithic porous body, the reaction can be performed under a low reaction pressure and It was found that acetaminophen can be obtained safely and inexpensively with high selectivity and good yield even at the reaction temperature.
  • the present invention is characterized by the following.
  • a method for producing acetaminophen by passing a solution containing paranitrophenol together with an acetylating agent and hydrogen through a column packed with a catalyst to cause an acetaminophenation reaction, wherein the catalyst is Acetaminophen is a metal-supported catalyst in which a metal element is supported on a monolithic porous material, and the reaction temperature of the acetaminophen reaction is 0° C. to 60° C. and the reaction pressure is 0.1 MPa to 1 MPa. Production method.
  • the monolithic porous body has a skeleton made of an inorganic compound with a three-dimensional continuous network structure, and furthermore, through holes formed in the gaps of the skeleton and extending from the surface of the skeleton toward the inside
  • [8] According to any one of [1] to [7], characterized in that the metal element supported amount of the metal-supported catalyst is 0.1% by mass to 10% by mass with respect to the metal-supported catalyst. method for producing acetaminophen.
  • FIG. 1 is a system diagram of a flow synthesis system showing an embodiment of the method for producing acetaminophen of the present invention.
  • FIG. 2 is a system diagram of a flow synthesis system equipped with a back pressure valve showing another embodiment of the method for producing acetaminophen of the present invention.
  • a solution containing paranitrophenol (hereinafter sometimes referred to as "paranitrophenol solution”) is continuously passed through a column filled with a catalyst together with an acetylating agent and hydrogen.
  • a method for continuously producing acetaminophen through an acetamination reaction by passing a liquid through the catalyst (hereinafter, this step may be referred to as the "acetamination step of the present invention"), wherein the catalyst
  • a metal-supported catalyst in which a metal element is supported on a monolithic porous body (hereinafter sometimes referred to as “a monolithic porous body of the present invention”) (hereinafter sometimes referred to as a “metal-supported metal catalyst of the present invention”).
  • the acetoamination reaction is characterized in that the reaction temperature is 0° C. to 60° C. and the reaction pressure is 0.1 MPa to 1 MPa.
  • acetamination step of the present invention There is no particular limitation on how the acetamination step of the present invention is carried out.
  • a para-nitrophenol solution is continuously passed through a reaction vessel 3 equipped with a column 2 packed with the metal-supported catalyst 1 of the present invention, together with an acetylating agent and hydrogen.
  • p-nitrophenol is continuously acetaminated with an acetylating agent and hydrogen in the presence of the metal-supported catalyst of the present invention, and the reaction product liquid containing acetaminophen flowing out of the column 2 is received in the recovery tank 4.
  • a method by a synthetic system is mentioned.
  • the flow synthesis system shown in FIG. 2 differs from the flow synthesis system shown in FIG. 1 in that a back pressure valve 5 is provided in the flow path for feeding the reaction product liquid from the reaction vessel 3 to the recovery tank 4, and the rest of the configuration is the same. It is said that This flow synthesis system will be described later.
  • Para-nitrophenol which is a raw material for producing acetaminophen, may be a commercially available product, or may be obtained by applying a known method.
  • the solvent used for the para-nitrophenol solution is not particularly limited as long as it can dissolve para-nitrophenol and does not hinder the progress of the reaction.
  • the solvent include aliphatic alcohol solvents having 1 to 4 carbon atoms such as methanol, ethanol and propanol; and aliphatic carboxylic acid solvents having 1 to 3 carbon atoms such as formic acid, acetic acid and propionic acid. From the viewpoint of cost, reactivity, etc., aliphatic carboxylic acid solvents having 1 to 3 carbon atoms are preferred, and acetic acid is particularly preferred.
  • One of these solvents may be used alone, or two or more of them may be used in any combination and ratio. From the viewpoint of ease of solvent removal, it is preferable to use one solvent alone.
  • the concentration of para-nitrophenol in the para-nitrophenol solution is not particularly limited as long as it does not interfere with the flow to the column.
  • the concentration of para-nitrophenol in the para-nitrophenol solution is usually 0.1% by mass to 50% by mass, preferably 5% by mass to 40% by mass, particularly preferably 10% by mass to 30% by mass, from the viewpoint of productivity and reactivity. % by mass.
  • the amount of hydrogen (hydrogen gas) used is not particularly limited as long as the reaction proceeds.
  • the amount of hydrogen (hydrogen gas) to be used is usually 1 mol or more, preferably 3 mol or more, and usually 20 mol or less, preferably 10 mol or less, per 1 mol of para-nitrophenol.
  • Hydrogen may be continuously injected into and mixed with the paranitrophenol solution or the paranitrophenol solution containing the acetylating agent in the flow channel before the column 2, or may be directly pressurized into the column 2.
  • Hydrogen may be used by dissolving part or all of it in the solvent of the para-nitrophenol solution. Before the para-nitrophenol solution passes through the column 2, hydrogen is preferably used by thoroughly mixing the above amount with the solvent.
  • Hydrogen can be used by mixing it with an inert gas such as nitrogen, helium, or argon, but it is preferable to use hydrogen alone.
  • an inert gas such as nitrogen, helium, or argon
  • the acetylating agent is not particularly limited as long as it can acetylate an amino group.
  • the acetylating agent one or more of acetic anhydride, acetyl chloride and the like are usually used. Acetic anhydride is preferred from the viewpoint of cost and reactivity.
  • the amount of acetylating agent used is not particularly limited.
  • the amount of the acetylating agent to be used is generally 1 mol to 10 mol, preferably 1 mol to 5 mol, more preferably 1 mol to 2 mol, per 1 mol of para-nitrophenol, from the viewpoint of cost and reactivity.
  • the acetylating agent may be premixed with a solution containing paranitrophenol, or may be injected into the paranitrophenol solution feed channel before and/or after the column 2 to be continuously mixed with the paranitrophenol solution. Alternatively, it may be injected into the column 2 separately from the para-nitrophenol solution and continuously mixed with the para-nitrophenol solution in the column 2.
  • the acetylating agent is preferably continuously mixed with the para-nitrophenol solution in the flow channel before the column 2 from the viewpoint that the unstable intermediate can be rapidly converted into the target product.
  • the metal-supported catalyst of the present invention is a catalyst in which a metal is immobilized by supporting a metal element on a carrier.
  • the metal element that can be used in the metal-supported catalyst of the present invention is not particularly limited as long as it has the activity of reducing the nitro group.
  • the metal elements palladium (Pd), platinum (Pt), rhodium (Rh), ruthenium (Ru), Ag (silver) and mixtures of two or more thereof can be used.
  • Pd alone or a mixture of Pd and at least one selected from Pt, Rh, Ru and Ag is preferred. From the viewpoint of catalytic performance, Pd and/or Pt, especially Pd alone is preferred.
  • the lower limit of the metal element content in the metal-supported catalyst of the present invention is usually 0.1% by mass or more, preferably 0.3% by mass or more, and more preferably 0.3% by mass or more. is 0.5% by mass or more, and the upper limit is usually 10% by mass or less, preferably 7% by mass or less.
  • the carrier means a substance that serves as a base for immobilizing the metal element without inhibiting the reaction.
  • the structure of the carrier in the present invention is generally a monolithic porous body, preferably an inorganic monolithic porous body.
  • the monolith porous body has a high porosity and specific surface area, it is possible to efficiently carry out the flow and reaction of the solution.
  • the monolithic porous material has micrometer-order through-holes inside the particles, and the solution diffuses quickly to the deep part of the particles. can be reduced, and reactivity and productivity can be improved.
  • Each particle of the monolithic porous material of the present invention has a skeleton with a three-dimensional continuous network structure, furthermore, through holes formed in the gaps of the skeleton and the surface extending from the surface of the skeleton toward the inside It is preferable to have a structure composed of dispersedly formed pores (hereinafter sometimes referred to as a “two-step hierarchical porous structure”).
  • a structure composed of dispersedly formed pores hereinafter sometimes referred to as a “two-step hierarchical porous structure”.
  • a co-continuous structure composed of through holes and pores having different sizes in two steps is preferable.
  • constituent materials of the monolith porous body used in the present invention include inorganic compounds such as silica gel or titanium oxide, and organic compounds such as epoxy resin.
  • an inorganic compound is preferable, and silica gel is particularly preferable, from the viewpoint of cost and chemical stability.
  • the shape of the monolithic porous material used in the present invention can be block, granular, or powdery. From the viewpoint of improving flow path resistance and reactivity, the shape of the monolithic porous body is preferably granular.
  • the pore size, through-hole size, and particle size of the carrier are such that the mode pore size of the pore size distribution of the through-holes is at least 5 times the mode pore size of the pores, and the particle size is 5 times the mode size of the through-holes.
  • the skeleton of each particle of the granular porous material maintains a three-dimensional continuous network structure with a two-step hierarchical porous structure (Patent Document 3).
  • the monolithic porous body of the present invention preferably has a mode pore size of 1 nm or more and 100 nm or less in the pore size distribution, and more preferably 2 nm or more and 20 nm or less.
  • the monolithic porous material of the present invention is preferably a porous carrier having such relatively large pores.
  • the mode pore diameter of the pore size distribution of the through-holes is 5 times or more, preferably 5 to 100 times, particularly 5 to 50 times the mode pore diameter of the pores. It is preferable from the viewpoint of productivity.
  • the most frequent pore diameter in the pore diameter distribution of the through-holes is preferably 0.1 ⁇ m or more and 50 ⁇ m from the viewpoint of reactivity and productivity, and the most frequent pore diameter is more preferably 0.1 ⁇ m or more. 30 ⁇ m or less.
  • the monolithic porous material of the present invention is in the form of particles, and the particle diameter is preferably two times or more the most frequent pore diameter of the through holes, and the particle diameter is preferably 1000 to 5000 times the most frequent pore diameter of the through holes. It is preferable from the viewpoint of reactivity and productivity.
  • the particle diameter of the particulate monolithic porous material of the present invention is usually 20 ⁇ m to 500 ⁇ m, preferably 50 ⁇ m to 500 ⁇ m, particularly preferably 50 ⁇ m to 250 ⁇ m. If the particle size of the monolithic porous material is too small, flow resistance may increase and productivity may decrease, and if it is too large, reactivity may decrease.
  • the most frequent pore diameters of the pores and through-holes of the monolithic porous body can be measured according to conventional methods such as a mercury intrusion method and a nitrogen gas adsorption method.
  • the particle size of the monolithic porous material is the particle size of the sieve used for classification.
  • the monolithic porous material used in the present invention commercially available products such as DualPore (registered trademark) manufactured by DPS, MonoTrap (registered trademark) manufactured by GL Sciences, and MonoPure manufactured by Kikotec can be used.
  • a catalyst in which Pd is supported on a monolithic porous body composed of a skeleton made of a compound having a three-dimensional continuous network structure (hereinafter sometimes referred to as "Pd/DualPore (registered trademark)").
  • Pd/DualPore registered trademark
  • a catalyst in which Pt is supported on a monolithic porous body composed of a skeleton made of a compound having a three-dimensional continuous network structure (hereinafter sometimes referred to as “Pt/DualPore (registered trademark)”) is preferable, and Pd/DualPore ( registered trademark) is particularly preferred.
  • acetaminophen can be obtained with high selectivity and good yield even at low pressure and low temperature, with high efficiency, safety and low cost.
  • the metal-supported catalyst of the present invention can be produced by conventionally known methods such as the method described in Yamada, T. et al. Catal. Sci. Technol. 2020, 10, 6359.
  • a monolithic porous material and a metal salt are added to an organic solvent, the metal is reduced after sufficient stirring, and the produced metal-adsorbed monolithic porous material is collected by filtration, washed with water and methanol, and dried. be able to.
  • a flow synthesis system suitable for carrying out the method for producing acetaminophen of the present invention uses a reaction vessel having an inlet and an outlet, and includes "input of raw materials from the inlet”, “reaction” and “recovery of the product from the outlet”. ” at the same time, the concept of which is well known to those skilled in the art (for example, “Flow Micro Synthesis” (Kagaku Dojin), 2014, p. 9).
  • the column filled with the metal-supported catalyst of the present invention has a thin tubular shape.
  • the material of the column according to the present invention is not particularly limited.
  • materials for the column include glass, stainless steel (SUS), Hastelloy, and Teflon (registered trademark), with SUS and Hastelloy being preferred.
  • the size of the column is not particularly limited as long as it is suitable for the reaction.
  • a column with a diameter of 10 mm ⁇ length of 100 mm, a column with a diameter of 10 mm ⁇ length of 250 mm, or the like can be used.
  • the shape of the column may be helical or ring-shaped, but is usually a straight tube.
  • the cross-sectional shape of the column is usually circular or rectangular, preferably circular. That is, the column is preferably cylindrical.
  • the number of columns is not particularly limited, it is usually 1 to 10,000 for industrial use.
  • a column may be used in which a column reaction zone is formed by uniting or combining a plurality of column-forming members.
  • An example of a catalyst-packed column is a 4.6 mm ⁇ 100 mm SUS column packed with Pd/DualPore (registered trademark) (Pd: 0.39 g, 0.04 mmol/g, DualPore (registered trademark)). and Pd/DualPore (registered trademark) (Pd: 0.39 g, 0.09 mmol/g, DualPore (registered trademark)) packed in a 4.6 mm ⁇ 100 mm SUS column as close-packed as possible.
  • Pd/DualPore registered trademark
  • Pd/DualPore registered trademark
  • the tube used for the channel for introducing and discharging the substrate, etc. into the column There are no particular restrictions on the tube used for the channel for introducing and discharging the substrate, etc. into the column.
  • a specific example of the tube is a Teflon (registered trademark) tube with an inner diameter of 1 mm.
  • Substrates, etc. can be introduced into and discharged from the column by liquid transfer using a syringe pump, diaphragm pump, mass controller, or the like.
  • a back pressure valve or an in-line analyzer may be provided in the channel on the outflow side of the reaction product liquid from the column.
  • the reaction temperature of the acetoamination reaction of the present invention means the external temperature of the column packed with the supported metal catalyst of the present invention.
  • the reaction temperature is generally 0° C. to 60° C., preferably 5° C. to 50° C., particularly preferably 10° C. to 40° C., from the viewpoint of reactivity and productivity. If the reaction temperature is lower than the above lower limit, the reactivity may decrease. If the reaction temperature is higher than the above upper limit, the yield and purity may decrease due to side reactions, and the metal-supported catalyst of the present invention may deteriorate.
  • the lower limit of the reaction pressure for the acetoamination reaction of the present invention is usually 0.1 MPa or more, preferably 0.2 MPa or more, and the upper limit is usually 1 MPa or less, preferably 0.8 MPa or less, and particularly preferably 0.6 MPa or less. be.
  • the reaction pressure can be adjusted by using a back pressure valve or the like to apply back pressure to the flow path after passage through the column filled with the metal-supported catalyst of the present invention.
  • the reaction time of the acetoamination reaction of the present invention means the time (residence time) during which the reaction solution stays in the column packed with the metal-supported catalyst of the present invention. Although the reaction time varies depending on the reaction temperature and reaction pressure, it is usually 1 second or more and 60 seconds or less.
  • Space velocity (S/V) is the amount of solution of para-nitrophenol passing through the catalyst per unit time divided by the column volume. From the viewpoint of productivity, the space velocity (S/V) is usually 100 h -1 to 1000 h -1 , preferably 120 h -1 to 700 h -1 , particularly preferably 140 h -1 to 400 h -1 .
  • the target product, acetaminophen is isolated from the reaction product liquid obtained in the acetaminolation step of the present invention by subjecting the reaction product liquid to treatments such as pressure release, neutralization, liquid separation, concentration, and filtration.
  • treatments such as pressure release, neutralization, liquid separation, concentration, and filtration.
  • purification means such as crystallization and column chromatography may be used.
  • each abbreviation represents the following compounds.
  • PAP para-aminophenol
  • APAP acetaminophen
  • PAAPA 4-acetamidophenyl acetate
  • PNP para-nitrophenol
  • PNPA 4-nitrophenyl acetate
  • AcOH acetic acid
  • MeOH methanol
  • PAAPA and PNPA are by-products.
  • Example 1 A SUS column with an inner diameter of 4.6 mm and a length of 100 mm was packed with catalyst 1 (Pd/DualPore (registered trademark) (1)) as a reaction vessel, and acetaminophen was added using the flow synthesis system shown in FIG. Synthesized.
  • catalyst 1 Pd/DualPore (registered trademark) (1)
  • S/V is the space velocity (h -1 ), which is obtained by dividing the amount of para-nitrophenol solution passing through the catalyst per unit time by the column volume.
  • the feed rate of the paranitrophenol solution was kept at 4.5 mL/min using diaphragm and cylinder pumps.
  • the hydrogen gas feed rate was maintained at 375 mL/min using a mass controller.
  • the reaction vessel was kept at 30° C. with a water bath.
  • Example 2 In Example 1, the reaction was carried out in the same manner as in Example 1, except that the metal-supported catalyst, the feed rate of the para-nitrophenol solution, and the hydrogen equivalent were changed as shown in Table 3. The obtained reaction product liquid was analyzed in the same manner as in Example 1, and the results are summarized in Table 3.
  • Example 1 In Example 1, catalyst 1 (Pd/DualPore (registered trademark) (1)) was added to catalyst 6 (5% Pd/C (beads) (manufactured by N.E. The solution was changed to a methanol solution of nitrophenol (concentration 0.84 mol / L), and the supply rate, hydrogen equivalent (molar amount of hydrogen per 1 mol of para-nitrophenol) and reaction pressure (back pressure) of the solution were as shown in Table 3. The reaction was carried out in the same manner as in Example 1, except that the The obtained reaction product liquid was analyzed in the same manner as in Example 1, and the results are summarized in Table 3.
  • Pd/carbon 5% Pd/carbon (powder) was also considered, but Pd/carbon (powder) has a very small particle size and a very large pressure loss, so it cannot be used under high pressure. and para-nitrophenol solution cannot be passed through the reaction vessel and the reaction does not proceed. Therefore, Pd/carbon (beads) was used in this comparative example.
  • Example 7 In Example 1, the reaction was carried out in the same manner as in Example 1, except that catalyst 1 (Pd/DualPore (registered trademark) (1)) was changed to catalyst 5 (Pd/DualPore (registered trademark) (5)). gone. As a result of analyzing the obtained reaction product liquid in the same manner as in Example 1, S/V was 163/h.
  • Example 2 In Example 1, catalyst 1 (Pd/DualPore (registered trademark) (1)) was added to catalyst 7 (10% Pd/DIAION (registered trademark) HP20 (manufactured by Mitsubishi Chemical Corporation)), and an acetic acid solution of para-nitrophenol was added to para-nitrophenol. Changed to a methanol solution of nitrophenol (concentration 0.84 mol/L), changed the supply rate of the solution to 4 mL/min, changed the hydrogen equivalent to 3.6 MR, and changed the reaction pressure (back pressure) to 0.5 MPa. Except for this, the reaction was carried out in the same manner as in Example 1. As a result of analyzing the resulting reaction product liquid in the same manner as in Example 1, the S/V was 30/h.
  • Examples 1 to 7 and Comparative Examples 1 and 2 the use of monolithic porous bodies increases the space velocity (S/V) and improves productivity.
  • Examples 1 to 6 and Comparative Example 1 the use of a monolithic porous body allows a smaller amount of metal to be supported, a shorter reaction time, a higher selectivity, and a better Acetaminophen can be efficiently obtained with high yield.
  • acetaminophen can be obtained efficiently with a good yield by increasing the amount of Pd supported.
  • Examples 4 and 5 acetaminophen can be efficiently obtained with high selectivity and good yield even when the hydrogen equivalent is reduced to a value close to the minimum equivalent of 3 equivalents required for the reaction. be able to.
  • the method for producing acetaminophen of the present invention does not require high-pressure reaction equipment, and under mild conditions of low reaction temperature and low reaction pressure, safely and inexpensively produces para-nitrophenol with high selectivity and good yield. It is possible to continuously produce acetaminophen, which is useful as a pharmaceutical product, from this, and is industrially useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

パラニトロフェノールを含む溶液を、アセチル化剤及び水素と共に、触媒が充填されたカラムに通液することによりアセトアミノ化反応させてアセトアミノフェンを製造する方法。該触媒が、モノリス多孔体に金属元素を担持した金属担持触媒であり、該アセトアミノ化反応の反応温度が0℃~60℃で、反応圧力が0.1MPa~1MPaであることを特徴とする。

Description

アセトアミノフェンの製造方法
 本発明は、医薬品として有用なアセトアミノフェンの製造方法に関する。
 アセトアミノフェンは古くから繁用されている解熱鎮痛薬であり、成人だけではなく小児にも投与できる安全性の高い薬品である。
 従来、アセトアミノフェンの製造方法としては、バッチ式の反応方法が知られている。例えば、パラニトロフェノール、酢酸及び金属触媒を反応容器に添加し、水素を加え、高温で反応させてアセトアミノフェンを製造する方法が知られている(特許文献1)。
 しかし、特許文献1の方法では、反応温度が高く、さらに触媒添加時に激しい発熱を伴うため反応の制御が難しい。
 したがって、より安全で生産性の高い工業的な製造方法が望まれている。
 生産性を高めるため方法として連続式の反応方法がある。
 例えば、パラニトロフェノールを無水酢酸/酢酸溶液に添加して溶液とし、水素圧8MPa~10MPa、反応温度90~140℃で、貴金属触媒、具体的にはPd/C触媒を充填したカラムに該溶液を通液して反応させることにより、アセトアミノフェンを連続的に製造する方法が知られている(特許文献2)。
 しかし、特許文献2の方法では、非常に高い圧力条件に耐え得る設備を必要とし、反応温度も高い。また、高温高圧下で連続的に長時間反応させる場合には触媒の劣化が早まる可能性がある。
 したがって、連続的な製造方法として、より穏和な条件で反応を行うことができ、省エネルギーで、設備等のコストの低い製造方法が望まれている。
 担体の細孔径、貫通孔径、及び粒子径は、貫通孔の孔径分布の最頻孔径が細孔の最頻孔径の5倍以上、粒子径が貫通孔の最頻孔径の5倍以上であれば、粒状多孔体の各粒子の骨格体が、2段階階層的多孔構造の3次元連続網目構造を保持していることが知られている(特許文献3)。しかし、この特許文献3にはアセトアミノフェンの製品用金属担持触媒の担体としての記載はない。
国際公開第2017/154024号 中国特許出願公開第102060729号明細書 特許第6501282号公報
 本発明の課題は、低い反応温度及び低い反応圧力で、高い選択性と良好な収率のもとに、安全かつ安価にアセトアミノフェンを連続的に製造する方法を提供することにある。
 本発明者は、パラニトロフェノールを含む溶液を、アセチル化剤及び水素と共に、モノリス多孔体に金属元素を担持した触媒を充填したカラムに連続的に通液して反応させると、低い反応圧力及び反応温度であっても、高い選択性と良好な収率で、安全かつ安価にアセトアミノフェンが得られることを見出した。
 本発明は、以下を特徴とする。
[1] パラニトロフェノールを含む溶液を、アセチル化剤及び水素と共に、触媒が充填されたカラムに通液することによりアセトアミノ化反応させてアセトアミノフェンを製造する方法であって、該触媒が、モノリス多孔体に金属元素を担持した金属担持触媒であり、該アセトアミノ化反応の反応温度が0℃~60℃で、反応圧力が0.1MPa~1MPaであることを特徴とする、アセトアミノフェンの製造方法。
[2] 前記モノリス多孔体が無機モノリス多孔体であることを特徴とする、[1]に記載のアセトアミノフェンの製造方法。
[3] 前記モノリス多孔体が3次元連続網目構造の無機化合物からなる骨格体を有し、更に、前記骨格体の間隙に形成された貫通孔と、前記骨格体の表面から内部に向けて延伸する前記表面に分散して形成された細孔からなる2段階階層的多孔構造であることを特徴とする、[1]又は[2]に記載のアセトアミノフェンの製造方法。
[4] 前記モノリス多孔体が、3次元連続網目構造の無機化合物からなる骨格体であり、前記金属元素がパラジウム及び/又は白金であることを特徴とする、[1]~[3]のいずれかに記載のアセトアミノフェンの製造方法。
[5] 前記モノリス多孔体は、前記細孔の孔径分布の最頻孔径が1nm以上100nm以下のモノリス多孔体であることを特徴とする、[3]又は[4]に記載のアセトアミノフェンの製造方法。
[6] 前記モノリス多孔体の前記貫通孔の孔径分布の最頻孔径が、前記細孔の最頻孔径の5倍以上で、且つ、0.1μm以上50μm以下であることを特徴とする、[3]~[5]のいずれかに記載のアセトアミノフェンの製造方法。
[7] 前記モノリス多孔体が粒子状であり、粒子径が前記貫通孔の最頻孔径の2倍以上、且つ、20μm以上であることを特徴とする、[3]~[6]のいずれかに記載のアセトアミノフェンの製造方法。
[8] 前記金属担持触媒の金属元素担持量が、該金属担持触媒に対して0.1質量%~10質量%であることを特徴とする、[1]~[7]のいずれかに記載のアセトアミノフェンの製造方法。
 本発明のアセトアミノフェンの製造方法によれば、低い反応温度及び低い反応圧力で、高い選択性で良好な収率のもとに、安全かつ安価にアセトアミノフェンを連続的に製造することができる。
図1は、本発明のアセトアミノフェンの製造方法の実施の形態の一例を示すフロー合成システムの系統図である。 図2は、本発明のアセトアミノフェンの製造方法の実施の形態の他の例を示す背圧弁を備えたフロー合成システムの系統図である。
 以下、本発明について詳細に説明する。
[アセトアミノフェンの製造方法]
 本発明のアセトアミノフェンの製造方法は、パラニトロフェノールを含む溶液(以下、「パラニトロフェノール溶液」と称す場合がある。)を、アセチル化剤及び水素と共に、触媒が充填されたカラムに連続的に通液することにより、アセトアミノ化反応させてアセトアミノフェンを連続的に製造する(以下、この工程を「本発明のアセトアミノ化工程」と称す場合がある。)方法であって、該触媒が、モノリス多孔体(以下、「本発明のモノリス多孔体」と称す場合がある。)に金属元素を担持した金属担持触媒(以下、「本発明の金属担持触媒」と称す場合がある。)であり、該アセトアミノ化反応の反応温度が0℃~60℃で、反応圧力が0.1MPa~1MPaであることを特徴とする。
<アセトアミノ化工程>
 本発明のアセトアミノ化工程の実施方法には特に制限はない。
 例えば、図1,2に示すように、本発明の金属担持触媒1を充填したカラム2を備える反応容器3に、パラニトロフェノール溶液をアセチル化剤及び水素と共に連続的に通液し、カラム2内でパラニトロフェノールを本発明の金属担持触媒の存在下にアセチル化剤と水素により連続的にアセトアミノ化反応させ、カラム2から流出するアセトアミノフェンを含む反応生成液を回収槽4に受けるフロー合成システムによる方法が挙げられる。
 図2のフロー合成システムは、図1のフロー合成システムにおいて、反応容器3からの反応生成液を回収槽4に送給する流路に背圧弁5を設けた点が異なり、その他は同様の構成とされている。
 このフロー合成システムについては後述する。
<パラニトロフェノール溶液>
 アセトアミノフェンの製造原料であるパラニトロフェノールは、市販品を用いてもよいし、公知の方法を準用して得られたものを用いてもよい。
 パラニトロフェノール溶液に用いる溶媒としては、パラニトロフェノールを溶解することができ、かつ反応の進行を阻害しないものであれば特に限定されない。該溶媒としては、例えば、メタノール、エタノール、プロパノール等の炭素数1~4の脂肪族アルコール溶媒;ギ酸、酢酸、プロピオン酸等の炭素数1~3の脂肪族カルボン酸溶媒が挙げられる。コスト、反応性等の観点から、好ましくは炭素数1~3の脂肪族カルボン酸溶媒、特に好ましくは酢酸である。
 これらの溶媒は、1種を単独で用いてもよく、2種以上を任意の組み合わせと比率で混合して用いてもよい。溶媒除去の容易性から、溶媒は1種を単独で用いることが好ましい。
 パラニトロフェノール溶液のパラニトロフェノールの濃度は、カラムへの流通に支障がなければ特に限定されない。パラニトロフェノール溶液のパラニトロフェノールの濃度は、生産性及び反応性の観点から、通常0.1質量%~50質量%、好ましくは5質量%~40質量%、特に好ましくは10質量%~30質量%である。
<水素>
 水素(水素ガス)の使用量は、反応が進行する限り特に限定されない。水素(水素ガス)の使用量は、パラニトロフェノール1molに対して、通常1mol以上、好ましくは3mol以上で、通常20mol以下、好ましくは10mol以下である。
 水素の供給方法としては特に制限はない。水素は、カラム2前の流路内において、パラニトロフェノール溶液、又はアセチル化剤を含むパラニトロフェノール溶液に連続的に注入して混合してもよいし、カラム2に直接圧入してもよい。水素は、パラニトロフェノール溶液の溶媒にその一部又は全部を溶解させて用いてもよい。水素は、パラニトロフェノール溶液がカラム2を通過する前に、上述した使用量を溶媒に十分混合させて用いることが好ましい。
 水素は、窒素、ヘリウム、アルゴン等の不活性ガスと混合して用いることも可能であるが、水素は水素のみ単独で用いることが好ましい。
<アセチル化剤>
 アセチル化剤としては、アミノ基をアセチル化することができるものであれば特に限定されない。アセチル化剤としては、通常、無水酢酸、アセチルクロライド等の1種又は2種以上が用いられる。コストと反応性の観点から、無水酢酸が好ましい。
 アセチル化剤の使用量は、特に限定されない。アセチル化剤の使用量は、パラニトロフェノール1molに対して、コストと反応性の観点から、通常1mol~10mol、好ましくは1mol~5mol、より好ましくは1mol~2molである。
 アセチル化剤は、パラニトロフェノールを含む溶液にあらかじめ混合しておいてもよいし、カラム2の前及び/又は後のパラニトロフェノール溶液の送給流路に注入してパラニトロフェノール溶液と連続的に混合してもよいし、パラニトロフェノール溶液とは別にカラム2に注入してカラム2内でパラニトロフェノール溶液と連続的に混合してもよい。不安定な中間体を速やかに目的物へと変換できるという観点から、アセチル化剤はカラム2前の流路内において、パラニトロフェノール溶液と連続的に混合することが好ましい。
<金属担持触媒>
 本発明の金属担持触媒は、担体に金属元素を担持することで、金属が固定化された触媒である。
 本発明の金属担持触媒に使用可能な金属元素は、ニトロ基を還元する活性を有するものであれば特に限定されない。該金属元素としては、通常、パラジウム(Pd)、白金(Pt)、ロジウム(Rh)、ルテニウム(Ru)、Ag(銀)及びこれらの2種以上の混合物を用いることができる。これらの金属元素の中で、Pd単独、又はPdとPt、Rh、Ru及びAgから選ばれる少なくとも1種との混合物が好ましい。触媒性能の観点から、Pd及び/又はPt、特にPd単独が好ましい。
 金属元素の担持量は、触媒性能及びコストの観点から、本発明の金属担持触媒中の金属元素の含有量として下限が通常0.1質量%以上、好ましくは0.3質量%以上、より好ましくは0.5質量%以上であり、上限が、通常10質量%以下、好ましくは7質量%以下である。
<担体>
 本発明において担体とは、反応を阻害せず、金属元素を固定する土台となる物質を意味する。
 本発明における担体の構造は、通常モノリス多孔体、好ましくは無機モノリス多孔体である。
 モノリス多孔体は空隙率及び比表面積が高いため、溶液の流通及び反応を効率的に行うことが出来る。また、モノリス多孔体は、粒子内部にマイクロメートルオーダーの貫通孔が存在し、溶液が粒子深部まで速やかに拡散するため、貫通孔を持たない単一孔構造の多孔体に比べて流路抵抗を低減し、反応性及び生産性を向上させることができる。
 本発明のモノリス多孔体の各粒子は、3次元連続網目構造の骨格体を有し、更に骨格体の間隙に形成された貫通孔と、骨格体の表面から内部に向けて延伸する該表面に分散して形成された細孔からなる構造(以下、「2段階階層的多孔構造」と称す場合がある。)を有することが好ましい。
 本発明のモノリス多孔体の構造としては、該2段階の大きさの異なる貫通孔と細孔からなる共連続構造が好ましい。
 本発明で用いるモノリス多孔体の構成物質としては、シリカゲルまたは酸化チタン等の無機化合物、エポキシ樹脂等の有機化合物が挙げられる。モノリス多孔体の構成物質としては、コスト及び化学的安定性から、無機化合物が好ましく、シリカゲルが特に好ましい。
 本発明で用いるモノリス多孔体の形状は、塊状、粒状、粉末状のものを用いることができる。流路抵抗及び反応性を向上させる観点から、モノリス多孔体の形状は、粒状が好ましい。
 前述の通り、担体の細孔径、貫通孔径、及び粒子径は、貫通孔の孔径分布の最頻孔径が細孔の最頻孔径の5倍以上、粒子径が貫通孔の最頻孔径の5倍以上であれば、粒状多孔体の各粒子の骨格体が、2段階階層的多孔構造の3次元連続網目構造を保持していることが知られている(特許文献3)。
 本発明のモノリス多孔体は、細孔の孔径分布の最頻孔径が1nm以上100nm以下であることが生産性の観点から好ましく、この最頻孔径は、より好ましくは2nm以上20nm以下である。
 本発明のモノリス多孔体は、このように比較的大きな細孔を有する多孔性担体であることが好ましい。
 本発明のモノリス多孔体は、貫通孔の孔径分布の最頻孔径が、細孔の最頻孔径の5倍以上で、5倍~100倍が好ましく、特に5倍~50倍であることが、生産性の観点から好ましい。
 本発明のモノリス多孔体は、貫通孔の孔径分布の最頻孔径が0.1μm以上50μmであることが反応性及び生産性の観点から好ましく、この最頻孔径は、より好ましくは0.1μm以上30μm以下である。
 本発明のモノリス多孔体は粒子状であり、粒子径が貫通孔の最頻孔径の2倍以上であることが好ましく、粒子径は貫通孔の最頻孔径の1000倍~5000倍であることが反応性及び生産性の観点から好ましい。
 粒子状の本発明のモノリス多孔体の粒子径は、通常20μm~500μm、好ましくは50μm~500μm、特に好ましくは50μm~250μmである。モノリス多孔体の粒子径が小さすぎると流路抵抗が大きくなり生産性が低下するおそれがあり、大きすぎると反応性が低下するおそれがある。
 本発明において、モノリス多孔体の細孔及び貫通孔の各最頻孔径は、水銀圧入法、窒素ガス吸着法により常法に従って測定することができる。
 モノリス多孔体の粒子径は、分級処理に使用する篩の目開きの粒子径である。
 本発明で使用するモノリス多孔体としては、例えば、DPS社製のDualPore(登録商標)、ジーエルサイエンス社製のMonoTrap(登録商標)、キコーテック社製のMonoPure等の市販品を使用することができる。
 本発明の金属担持触媒としては、3次元連続網目構造の化合物からなる骨格体よりなるモノリス多孔体にPdを担持した触媒(以下「Pd/DualPore(登録商標)」と記載する場合がある。)、3次元連続網目構造の化合物からなる骨格体よりなるモノリス多孔体にPtを担持した触媒(以下、「Pt/DualPore(登録商標)」と記載する場合がある。)が好ましく、Pd/DualPore(登録商標)が特に好ましい。
 このような本発明の金属担持触媒を用いることにより、低い圧力及び低い温度においても高い選択性及び良好な収率で、高効率、安全かつ安価にアセトアミノフェンを得ることができる。
 本発明の金属担持触媒は、Yamada, T. et al. Catal. Sci. Technol. 2020, 10, 6359に記載の方法等、従来公知の方法により製造することができる。例えば、モノリス多孔体と金属塩を有機溶媒に添加し、十分に撹拌した後に金属を還元し、生成した金属吸着モノリス多孔体をろ取し、水及びメタノールで洗浄し、乾燥することにより製造することができる。
<フロー合成システム>
 本発明のアセトアミノフェンの製造方法の実施に好適なフロー合成システムは、入口と出口を有する反応容器を用い、「入口からの原料の投入」、「反応」及び「出口からの生成物の回収」を同時に行うシステムを意味し、その概念は当業者に周知である(例えば、「フロー・マイクロ合成」(化学同人)2014年発行、9頁)。このフロー合成システムにおいて、本発明の金属担持触媒が充填されるカラムは細い管状である。
 本発明に係るカラムの材質は特に限定されない。カラムの材質としては、例えば、ガラス、ステンレス鋼(SUS)、ハステロイ、テフロン(登録商標)が挙げられ、好ましくはSUS、ハステロイである。
 カラムの大きさは、反応に適したものであれば特に限定されない。カラムとしては、例えば、直径10mm×長さ100mmのカラム、直径10mm×長さ250mmのカラム等を用いることができる。
 カラムの形状は、螺旋状、リング状でもよいが、通常、直管である。
 カラムの断面形状は、通常円形又は矩形であるが、好ましくは円形である。即ち、カラムは円筒形であることが好ましい。
 カラムの本数は特に限定されないが、工業的には通常1本~10000本である。
 カラムは、複数のカラム形成部材の合体、組み合わせにより、カラム反応ゾーンを形成させたものを用いてもよい。
 触媒充填カラムの一例としては、Pd/DualPore(登録商標)(Pd:0.39g、0.04mmol/g、DualPore(登録商標))を4.6mm×100mmのSUS製カラムに最密充填したものや、Pd/DualPore(登録商標)(Pd:0.39g、0.09mmol/g、DualPore(登録商標))を4.6mm×100mmのSUS製カラムに最密充填したものが挙げられる。
 カラムへの基質等を導入及び排出する流路に用いるチューブは特に限定されない。該チューブの具体例としては、内径1mmのテフロン(登録商標)チューブが挙げられる。
 カラムへの基質等の導入及び排出は、シリンジポンプ、ダイヤフラムポンプ、マスコントローラ等を用いた送液により行うことができる。
 カラムからの反応生成液流出側の流路には背圧弁やインライン分析装置を設けてもよい。
<反応条件>
 本発明のアセトアミノ化反応の反応温度は、本発明の金属担持触媒が充填されたカラムの外温を意味する。該反応温度は、反応性及び生産性等の観点から、通常0℃~60℃、好ましくは5℃~50℃で、特に好ましくは10℃~40℃ある。反応温度が上記下限よりも低い場合は反応性が低下する場合がある。反応温度が上記上限より高い場合は副反応による収率及び純度の低下や本発明の金属担持触媒の劣化のおそれがある。
 本発明のアセトアミノ化反応の反応圧力の下限は、通常0.1MPa以上、好ましくは0.2MPa以上であり、上限は、通常1MPa以下、好ましくは0.8MPa以下、特に好ましくは0.6MPa以下である。上記範囲の反応圧力で反応を行うことにより、パラニトロフェノール溶液中の水素濃度が上がり、効率的に反応を行うことができる。
 反応圧力は、本発明の金属担持触媒が充填されたカラム通過後の流路に背圧弁などを用いて背圧をかけることに調整することができる。
 本発明のアセトアミノ化反応の反応時間は、本発明の金属担持触媒が充填されたカラム内に反応液が滞留する時間(滞留時間)を意味する。反応時間は、反応温度や反応圧力によっても異なるが、通常1秒以上60秒以下である。
 空間速度(S/V)は、単位時間当たりに触媒を通過するパラニトロフェノールの溶液量をカラム容積で除したものである。空間速度(S/V)は、生産性の観点から、通常100h-1~1000h-1、好ましくは120h-1~700h-1、特に好ましくは140h-1~400h-1である。
<後処理>
 本発明のアセトアミノ化工程で得られた反応生成液からの目的物であるアセトアミノフェンの単離は、この反応生成液の放圧、中和、分液、濃縮、濾過等の処理によって行ってもよく、晶析、カラムクロマトグラフィー等の公知の精製手段によって行ってもよい。
 本発明を実施例により更に詳細に説明する。本発明の範囲は、下記の実施例に限定されるものではない。
 以下の実施例及び比較例においては、特に断りのない限り、パラニトロフェノール、無水酢酸の比は1:1.2である。
[略号]
 実施例において、それぞれの略号は以下の化合物を表す。
  PAP  :パラアミノフェノール
  APAP :アセトアミノフェン
  PAAPA:4-アセトアミドフェニルアセテート
  PNP  :パラニトロフェノール
  PNPA :4-ニトロフェニルアセテート
  AcOH :酢酸
  MeOH :メタノール
 PAP、PAAPA及びPNPAは副生物である。
[フロー合成装置]
 以下の実施例及び比較例では、以下のフロー合成装置を用いた。
 Syriss社製「Asiaフローケミストリーシステム」
[分析方法1(HPLC)]
 以下の実施例及び比較例における反応生成液の分析に用いた装置及び条件は下記表1の通りである。
Figure JPOXMLDOC01-appb-T000001
[金属担持触媒]
以下の実施例及び比較例において用いた金属担持触媒は下記表2の通りである。表2中「TM」は「(登録商標)」を示す。表2中の触媒1~7の担体の構成物質は、以下の通りである。
 触媒1~5:シリカゲル
 触媒6:活性炭
 触媒7:スチレン-ジビニルベンゼン系合成吸着剤
Figure JPOXMLDOC01-appb-T000002
[実施例1]
 内径4.6mm×長さ100mmのSUS製カラムに触媒1(Pd/DualPore(登録商標)(1))を充填したものを反応容器とし、図2に示すフロー合成システムを用いてアセトアミノフェンを合成した。
 パラニトロフェノールの酢酸溶液(濃度0.84mol/L)及び無水酢酸103g(パラニトロフェノール1molに対して1.2mol)の混合溶液1L(以下、パラニトロフェノール溶液)と、水素ガス(パラニトロフェノール1molに対して4.9mol)とを、カラム2前の流路内において、連続的に混合し、反応容器3に、20分間流通させた。得られた反応生成液を分析方法1にて分析した結果を表3に示す。得られた反応生成液には、アセトアミノフェン(0.78mol/L、収率94.0%)が含まれていた。表3中、「S/V」は空間速度(h-1)であり、単位時間当たりに触媒を通過するパラニトロフェノールの溶液量をカラム容積で除したものである。
 パラニトロフェノール溶液の供給速度は、ダイヤフラムポンプ及びシリンダーポンプを用いて4.5mL/分に保持した。水素ガスの供給速度は、マスコントローラを用いて、375mL/分に保持した。反応容器は、水浴で30℃に保持した。
[実施例2~6]
 実施例1において、金属担持触媒、パラニトロフェノール溶液の供給速度及び水素当量を表3に示すように変更したこと以外は、実施例1と同様にして反応を行った。得られた反応生成液を実施例1と同様にして分析した結果を表3にまとめた。
[比較例1]
 実施例1において、触媒1(Pd/DualPore(登録商標)(1))を触媒6(5%Pd/C(ビーズ)(エヌ・イー ケムキャット社製))に、パラニトロフェノールの酢酸溶液をパラニトロフェノールのメタノール溶液(濃度0.84mol/L)にそれぞれ変更し、該溶液の供給速度、水素当量(パラニトロフェノール1molに対する水素のmol量)及び反応圧力(背圧)を表3に示すように変更したこと以外は、実施例1と同様にして反応を行った。得られた反応生成液を実施例1と同様にして分析した結果を表3にまとめた。
 なお、比較例として、5%Pd/カーボン(粉末)を使用することも検討したが、Pd/カーボン(粉末)は、粒径が非常に小さく、圧力損失が非常に大きいことから、高圧下でないとパラニトロフェノールの溶液を反応容器に通液させることができず反応が進まないと推測されるため、本比較例ではPd/カーボン(ビーズ)を使用した。
[実施例7]
 実施例1において、触媒1(Pd/DualPore(登録商標)(1))を触媒5(Pd/DualPore(登録商標)(5))に変更したこと以外は、実施例1と同様にして反応を行った。得られた反応生成液を実施例1と同様にして分析した結果、S/Vは163/hであった。
[比較例2]
 実施例1において、触媒1(Pd/DualPore(登録商標)(1))を触媒7(10%Pd/DIAION(登録商標)HP20(三菱ケミカル社製))に、パラニトロフェノールの酢酸溶液をパラニトロフェノールのメタノール溶液(濃度0.84mol/L)にそれぞれ変更し、該溶液の供給速度を4mL/分、水素当量を3.6MR、及び反応圧力(背圧)を0.5MPaに変更したこと以外は、実施例1と同様にして反応を行った。得られた反応生成液を実施例1と同様にして分析した結果、S/Vは30/hであった。
Figure JPOXMLDOC01-appb-T000003
 実施例1~7及び比較例1~2から明らかなように、モノリス多孔体を使用することにより、空間速度(S/V)が大きくなり、生産性を向上させることができる。
 実施例1~6及び比較例1から明らかなように、モノリス多孔体を使用することにより従来技術で使用されている担体よりも、少ない金属担持量、短い反応時間、高い選択性、且つ良好な収率で効率よくアセトアミノフェンを得ることができる。
 実施例1~3及び6から明らかなように、Pd担持量が増えることで、良好な収率で効率よくアセトアミノフェンを得ることができる。
 実施例4~5から明らかなように、水素当量を反応に必要な最低当量である3当量に近い値まで少なくしても、高い選択性、且つ良好な収率で効率よくアセトアミノフェンを得ることができる。
 本発明のアセトアミノフェンの製造方法は、高圧反応設備を必要とせずに、低い反応温度及び低い反応圧力という穏和な条件で、安全かつ安価に、高い選択性かつ良好な収率でパラニトロフェノールから医薬品として有用なアセトアミノフェンを連続的に製造することができ、産業上有用である。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2021年11月16日付で出願された日本特許出願2021-186485に基づいており、その全体が引用により援用される。
 1 本発明の金属担持触媒
 2 カラム
 3 反応容器
 4 回収槽
 5 背圧弁

Claims (8)

  1.  パラニトロフェノールを含む溶液を、アセチル化剤及び水素と共に、触媒が充填されたカラムに通液することによりアセトアミノ化反応させてアセトアミノフェンを製造する方法であって、該触媒が、モノリス多孔体に金属元素を担持した金属担持触媒であり、該アセトアミノ化反応の反応温度が0℃~60℃で、反応圧力が0.1MPa~1MPaであることを特徴とする、アセトアミノフェンの製造方法。
  2.  前記モノリス多孔体が無機モノリス多孔体であることを特徴とする、請求項1に記載のアセトアミノフェンの製造方法。
  3.  前記モノリス多孔体が3次元連続網目構造の無機化合物からなる骨格体を有し、更に、前記骨格体の間隙に形成された貫通孔と、前記骨格体の表面から内部に向けて延伸する前記表面に分散して形成された細孔からなる2段階階層的多孔構造であることを特徴とする、請求項1又は2に記載のアセトアミノフェンの製造方法。
  4.  前記モノリス多孔体が、3次元連続網目構造の無機化合物からなる骨格体であり、前記金属元素がパラジウム及び/又は白金であることを特徴とする、請求項1~3のいずれか1項に記載のアセトアミノフェンの製造方法。
  5.  前記モノリス多孔体は、前記細孔の孔径分布の最頻孔径が1nm以上100nm以下のモノリス多孔体であることを特徴とする、請求項3又は4に記載のアセトアミノフェンの製造方法。
  6.  前記モノリス多孔体の前記貫通孔の孔径分布の最頻孔径が、前記細孔の最頻孔径の5倍以上で、且つ、0.1μm以上50μm以下であることを特徴とする、請求項3~5のいずれか1項に記載のアセトアミノフェンの製造方法。
  7.  前記モノリス多孔体が粒子状であり、粒子径が前記貫通孔の最頻孔径の2倍以上、且つ、20μm以上であることを特徴とする、請求項3~6のいずれか1項に記載のアセトアミノフェンの製造方法。
  8.  前記金属担持触媒の金属元素担持量が、該金属担持触媒に対して0.1質量%~10質量%であることを特徴とする、請求項1~7のいずれか1項に記載のアセトアミノフェンの製造方法。

     
PCT/JP2022/042371 2021-11-16 2022-11-15 アセトアミノフェンの製造方法 WO2023090315A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280075018.0A CN118176177A (zh) 2021-11-16 2022-11-15 对乙酰氨基酚的制造方法
EP22895596.9A EP4434964A1 (en) 2021-11-16 2022-11-15 Method for producing acetaminophen
JP2023561598A JPWO2023090315A1 (ja) 2021-11-16 2022-11-15

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-186485 2021-11-16
JP2021186485 2021-11-16

Publications (1)

Publication Number Publication Date
WO2023090315A1 true WO2023090315A1 (ja) 2023-05-25

Family

ID=86397017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042371 WO2023090315A1 (ja) 2021-11-16 2022-11-15 アセトアミノフェンの製造方法

Country Status (4)

Country Link
EP (1) EP4434964A1 (ja)
JP (1) JPWO2023090315A1 (ja)
CN (1) CN118176177A (ja)
WO (1) WO2023090315A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH072746A (ja) * 1993-04-30 1995-01-06 Hoechst Celanese Corp アシルアミノフェノールの製造方法
JP2010207777A (ja) * 2009-03-12 2010-09-24 Osaka Municipal Technical Research Institute カラムリアクター及びその製造方法
CN102060729A (zh) * 2010-12-28 2011-05-18 刘瑞平 一种连续性高效制备对乙酰氨基苯酚的方法
JP2013517253A (ja) * 2010-01-13 2013-05-16 ディーエスエム アイピー アセッツ ビー.ブイ. マイクロ反応システムを使ったアシル化
JP2014091092A (ja) * 2012-11-05 2014-05-19 Hitachi Chemical Techno Service Co Ltd マイクロリアクター及びその製造方法、並びに、合成システム及び合成分離分析システム
JP2021186485A (ja) 2020-06-03 2021-12-13 株式会社大一商会 遊技機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH072746A (ja) * 1993-04-30 1995-01-06 Hoechst Celanese Corp アシルアミノフェノールの製造方法
JP2010207777A (ja) * 2009-03-12 2010-09-24 Osaka Municipal Technical Research Institute カラムリアクター及びその製造方法
JP2013517253A (ja) * 2010-01-13 2013-05-16 ディーエスエム アイピー アセッツ ビー.ブイ. マイクロ反応システムを使ったアシル化
CN102060729A (zh) * 2010-12-28 2011-05-18 刘瑞平 一种连续性高效制备对乙酰氨基苯酚的方法
JP2014091092A (ja) * 2012-11-05 2014-05-19 Hitachi Chemical Techno Service Co Ltd マイクロリアクター及びその製造方法、並びに、合成システム及び合成分離分析システム
JP2021186485A (ja) 2020-06-03 2021-12-13 株式会社大一商会 遊技機

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Flow-Micro Synthesis", 2014, KAGAKU DOJIN, pages: 9
LI YUE; MA YUXUAN; ZHANG YUANYUAN; WANG XIAOJING; BAI FENGHUA: "Preparation of N-acetyl-para-aminophenol via a flow route of a clean amination and acylation of p-nitrophenol catalyzing by core-shell Cu2O@CeO2", ARABIAN JOURNAL OF CHEMISTRY, ELSEVIER, AMSTERDAM, NL, vol. 13, no. 12, 7 October 2020 (2020-10-07), AMSTERDAM, NL , pages 8613 - 8625, XP086379125, ISSN: 1878-5352, DOI: 10.1016/j.arabjc.2020.09.047 *
YAMADA, T. ET AL., CATAL. SCI. TECHNOL., vol. 10, 2020, pages 6359

Also Published As

Publication number Publication date
EP4434964A1 (en) 2024-09-25
CN118176177A (zh) 2024-06-11
JPWO2023090315A1 (ja) 2023-05-25

Similar Documents

Publication Publication Date Title
EP1726577B1 (en) Method of catalytic reaction using micro-reactor
Frost et al. Heterogeneous catalytic synthesis using microreactor technology
Newman et al. The role of flow in green chemistry and engineering
Singh et al. Recent advances for serial processes of hazardous chemicals in fully integrated microfluidic systems
JP4216074B2 (ja) 有機金属骨格材料およびその製造方法
TWI442971B (zh) 氫化有機化合物之連續方法及反應器
JP2021102628A (ja) 非イオン性造影剤の調製に有用な中間体の調製プロセス
Oyamada et al. Continuous flow hydrogenation using polysilane-supported palladium/alumina hybrid catalysts
JP2000508653A (ja) 超臨界水素化
Lebl et al. Scalable continuous flow hydrogenations using Pd/Al2O3-coated rectangular cross-section 3D-printed static mixers
EP3789097A1 (en) A concentrated glucaric acid product
Wernik et al. Continuous flow heterogeneous catalytic reductive aminations under aqueous micellar conditions enabled by an oscillatory plug flow reactor
JP5598952B2 (ja) マイクロリアクター、およびマイクロリアクターを利用した液相化学反応方法
US7253329B2 (en) Selective hydrogenation of cyclododecatriene to cyclododecene
WO2023090315A1 (ja) アセトアミノフェンの製造方法
US7091383B2 (en) Method for the production of amines
Laporte et al. Multiphasic Continuous‐Flow Reactors for Handling Gaseous Reagents in Organic Synthesis: Enhancing Efficiency and Safety in Chemical Processes
Moutombi et al. Highly selective solvent-free hydrogenation of pinenes to added-value cis-pinane
Habraken et al. Iridium (I)-catalyzed ortho-directed hydrogen isotope exchange in continuous-flow reactors
CN109096090A (zh) 一种用于对二甲苯催化氧化合成对甲基苯甲酸的催化剂及一种对甲基苯甲酸的制备方法
WO2021235335A1 (ja) アセトアミノフェンの製造方法
CN111036148B (zh) 一种使用微泡沫填充床进行气液固反应的装置和方法
EP1373166A2 (en) Supercritical hydrogenation
JP2003521525A (ja) 化学プロセス
JP2002356461A (ja) ジアミノジシクロヘキシルメタンの連続的製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895596

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023561598

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18705667

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280075018.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022895596

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022895596

Country of ref document: EP

Effective date: 20240617