WO2023088190A1 - 预制混凝土构件、预制混凝土组件及其拼接方法 - Google Patents

预制混凝土构件、预制混凝土组件及其拼接方法 Download PDF

Info

Publication number
WO2023088190A1
WO2023088190A1 PCT/CN2022/131427 CN2022131427W WO2023088190A1 WO 2023088190 A1 WO2023088190 A1 WO 2023088190A1 CN 2022131427 W CN2022131427 W CN 2022131427W WO 2023088190 A1 WO2023088190 A1 WO 2023088190A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel bar
bar
longitudinal
splicing
connecting steel
Prior art date
Application number
PCT/CN2022/131427
Other languages
English (en)
French (fr)
Inventor
初明进
Original Assignee
初明进
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202122810535.3U external-priority patent/CN216552523U/zh
Priority claimed from CN202122810566.9U external-priority patent/CN216839841U/zh
Priority claimed from CN202111356303.3A external-priority patent/CN114396127A/zh
Priority claimed from CN202122810567.3U external-priority patent/CN216552383U/zh
Priority claimed from CN202111354702.6A external-priority patent/CN114396116A/zh
Priority claimed from CN202111356322.6A external-priority patent/CN114396117A/zh
Application filed by 初明进 filed Critical 初明进
Publication of WO2023088190A1 publication Critical patent/WO2023088190A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/02Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements
    • E04B1/04Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements the elements consisting of concrete, e.g. reinforced concrete, or other stone-like material
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/41Connecting devices specially adapted for embedding in concrete or masonry

Definitions

  • the invention relates to the technical field of construction engineering, in particular to a prefabricated concrete component, a prefabricated concrete component and a splicing method thereof.
  • the structure of prefabricated components in prefabricated concrete structures determines the efficiency and benefits of the structure, and the performance of horizontal joints and vertical joints between prefabricated components determines the overall performance of the structure.
  • the connection structure of steel bars at the joints between precast concrete components is the key technology for assembling integral structures; in the existing technology of assembling integral concrete structures, post-casting strips are generally installed at the joints, and one technical method is to protrude connecting steel bars from precast components. This leads to low production, transportation, and installation efficiency and poor benefits; another technical solution is a structure such as a laminated slab shear wall.
  • the prefabricated components do not have ribs, the post-casting belts at the joints make the construction more complicated.
  • the first object of the present invention is to provide a prefabricated composite wall.
  • a first object of the present invention is to provide a precast concrete element. It includes a connecting end, the connecting end includes a receiving part and a connecting steel bar accommodated in the receiving part, the receiving part includes an opening arranged on the connecting end face of the connecting end, and the connecting reinforcing bar includes a connecting bar close to the connecting end face first side;
  • the connecting steel bar can move in the receiving part, so as to be arranged in the receiving part in an inclined state or a horizontal state, when the connecting steel bar is arranged in the receiving part in the horizontal state, the first The side protrudes out of the connecting end face.
  • the accommodating portion includes a first hole, or a first hole and a second hole communicating with each other, and the opening of the first hole is arranged on the connecting end surface of the connecting end, so The second hole extends along the length direction of the connecting end surface, and the opening of the second hole is arranged on the top surface of the connecting end.
  • the receiving portion includes a groove extending along the length direction of the connecting end surface.
  • the accommodating portion is formed by a gap between prefabricated panels on both sides of the connecting end.
  • the connecting end further includes a supporting steel bar disposed in the receiving portion, and the supporting steel bar supports the connecting steel bar.
  • the connecting end further includes a limiting steel bar arranged in the accommodating portion, the limiting steel bar is located above the supporting steel bar, and the connecting steel bar is between the supporting steel bar and the supporting steel bar. Move in the gap between the limit bars.
  • the distance between the supporting steel bar and the limiting steel bar is 0-15mm larger than the diameter of the connecting steel bar.
  • the precast concrete member further includes a first longitudinal reinforcement connected to the first side, the first longitudinal reinforcement extends along the length direction of the connecting end surface, and the first longitudinal reinforcement The bars are movable so that the connecting bars are arranged in the receiving portion in an inclined or horizontal state;
  • the first longitudinal rib in the inclined state, is in contact with or close to the connection end surface; in the horizontal state, the first longitudinal rib is away from the connection end surface.
  • the precast concrete member further includes a first transverse bar connected to the first longitudinal bar, and in the inclined state, the first transverse bar can abut against the connection end surface.
  • the prefabricated concrete member further includes a second longitudinal bar, the second longitudinal bar is arranged in the accommodation part along the length direction of the connecting end surface, and the connecting bar also includes the second side of the connecting end face;
  • the second side can move up and down along the length direction of the second longitudinal rib, so that the connecting steel bar is arranged in the accommodating portion in the inclined state or the horizontal state.
  • the second longitudinal reinforcement is provided with a first limiting part, and when the second side moves to the first limiting part, the connecting steel bar is set in the horizontal state within the housing.
  • the prefabricated concrete member further includes a third longitudinal bar, the third longitudinal bar is arranged in the receiving part along the length direction of the connecting end surface, and the connecting bar also includes The second side of the connection end face, the second side is connected with the third longitudinal rib;
  • the third longitudinal bar can move up and down, so that the connecting steel bar is arranged in the accommodating part in the inclined state or the horizontal state.
  • the third longitudinal bar is provided with a second limiting part, and the second limiting part can make the third longitudinal bar drive the connecting steel bar to move, so that the connecting bar A reinforcing bar is arranged in the receiving portion in the inclined state or the horizontal state.
  • the connecting steel bar further includes a second side away from the connecting end surface, the second side includes a sliding part, and the receiving part is provided with a sliding groove, and the sliding groove is arranged along the The lengthwise direction of the connecting end surface extends, and the sliding part is slidably arranged in the slide groove, so that the connecting steel bar is arranged in the accommodating part in the inclined state or the horizontal state.
  • a third limiting component is provided in the sliding groove, and when the second side slides to the third limiting component, the connecting steel bar is arranged in the horizontal state on the inside the accommodating part.
  • the second object of the present invention is to provide a precast concrete assembly, which includes any one of the above precast concrete elements.
  • the precast concrete assembly further includes a precast concrete splicing member matched with the precast concrete member, and the precast concrete splicing member includes a splicing end.
  • the splicing end includes a splicing hole
  • the receiving portion of the connecting end includes a first hole
  • the sum of the depth of the splicing hole plus the depth of the first hole is greater than or equal to The length of the connecting bar.
  • the splicing end includes a splicing groove
  • the accommodating portion includes a groove extending along the length direction of the connecting end surface
  • the connecting end further includes a support disposed in the accommodating portion
  • the supporting steel bar supports the connecting steel bar, and the sum of the depth of the splicing groove and the depth of the groove is greater than or equal to the length of the connecting steel bar.
  • the splicing groove is provided with ribs that are the same in height as the supporting steel bars or lower in height than the supporting steel bars.
  • the connecting end further includes a supporting steel bar arranged in the accommodating part, the supporting steel bar supports the connecting steel bar, and a Or a bar of lower height than said supporting bar.
  • the third object of the present invention is to provide a method for splicing the above-mentioned precast concrete components, including:
  • Concrete is poured into the accommodating portion and the splicing end, so that the prefabricated concrete component and the prefabricated concrete splicing component are fixedly connected together.
  • the prefabricated concrete member of the invention has simple structure and very convenient construction.
  • Fig. 1 (a) and Fig. 1 (b) have shown the prefabricated concrete member that an embodiment of the present invention provides, wherein in Fig. The reinforcing bars are set in the transverse holes in a horizontal state.
  • Fig. 2 shows a prefabricated concrete splicing member provided by an embodiment of the present invention.
  • Fig. 3 shows a precast concrete element provided by another embodiment of the present invention.
  • Fig. 4 (a) and Fig. 4 (b) have shown the prefabricated concrete member that another embodiment of the present invention provides, wherein in Fig. Partial cross-sectional view of 4(a).
  • Fig. 5 shows a precast concrete splice member provided by another embodiment of the present invention.
  • Fig. 6(a) and Fig. 6(b) show the splicing process of the prefabricated concrete component and the prefabricated concrete splicing component provided by an embodiment of the present invention.
  • Fig. 7 shows a precast concrete member provided by another embodiment of the present invention.
  • Fig. 8 shows a precast concrete member provided by another embodiment of the present invention.
  • Fig. 9(a) and Fig. 9(b) show the prefabricated concrete member provided by another embodiment of the present invention, wherein in Fig. The reinforcing bars are arranged in the receiving portion in a horizontal state.
  • Fig. 10 shows a longitudinal rib provided by an embodiment of the present invention.
  • Fig. 11 shows a connecting steel bar provided by an embodiment of the present invention.
  • Fig. 12 shows a connecting steel bar provided by another embodiment of the present invention.
  • Fig. 13(a) and Fig. 13(b) show the prefabricated concrete member comprising the connecting reinforcement shown in Fig. 11 provided by another embodiment of the present invention, wherein in Fig. 13(a) the connecting reinforcement is arranged in an inclined state In Fig. 13(b), the connecting steel bar is set in the accommodating part in a horizontal state.
  • Fig. 14 shows a precast concrete element provided by another embodiment of the present invention.
  • Fig. 15(a) and Fig. 15(b) show the prefabricated concrete member provided by another embodiment of the present invention, wherein in Fig. The reinforcing bars are arranged in the receiving portion in a horizontal state.
  • Fig. 16 shows a partial structure of a precast concrete member provided by another embodiment of the present invention.
  • Fig. 17 shows a precast concrete member provided by another embodiment of the present invention.
  • Fig. 18 shows a precast concrete element provided by another embodiment of the present invention.
  • Fig. 19 shows a precast concrete element provided by another embodiment of the present invention.
  • Fig. 20 shows a precast concrete element provided by another embodiment of the present invention.
  • Fig. 21(a) and Fig. 21(b) show the prefabricated concrete member provided by another embodiment of the present invention, wherein in Fig. 21(a), the connecting reinforcement is arranged in the longitudinal groove in an inclined state, Fig. 21(b) The middle connecting reinforcement is arranged in the longitudinal groove in a horizontal state.
  • Fig. 22 shows a precast concrete splice member provided by another embodiment of the present invention.
  • Fig. 23 shows a precast concrete element provided by another embodiment of the present invention.
  • Fig. 24(a) and Fig. 24(b) show the prefabricated concrete member provided by another embodiment of the present invention, wherein in Fig. 24(a), the connecting reinforcement is arranged in the longitudinal groove in an inclined state, and Fig. 24(b) The middle connecting reinforcement is arranged in the longitudinal groove in a horizontal state.
  • Fig. 25 shows a precast concrete element provided by another embodiment of the present invention.
  • Fig. 26 shows a precast concrete member provided by another embodiment of the present invention.
  • Fig. 27(a) and Fig. 27(b) show the prefabricated concrete member provided by another embodiment of the present invention, wherein in Fig. 27(a), the connecting reinforcement is arranged in the longitudinal groove in an inclined state, and Fig. 27(b) The middle connecting reinforcement is arranged in the longitudinal groove in a horizontal state.
  • Fig. 28 shows a precast concrete element provided by another embodiment of the present invention.
  • Fig. 29(a) and Fig. 29(b) show the prefabricated concrete member provided by another embodiment of the present invention, wherein in Fig. 29(a), the connecting reinforcement is arranged in the longitudinal groove in an inclined state, and Fig. 29(b) The middle connecting reinforcement is arranged in the longitudinal groove in a horizontal state.
  • Fig. 30 shows a precast concrete element provided by another embodiment of the present invention.
  • Fig. 31 shows a precast concrete element provided by another embodiment of the present invention.
  • Fig. 32 shows the splicing process of the prefabricated concrete component and the prefabricated concrete splicing component provided by an embodiment of the present invention.
  • Fig. 33(a) and Fig. 33(b) show the prefabricated composite wall provided by an embodiment of the present invention, wherein in Fig. The reinforcing bars are arranged in the receiving portion in a horizontal state.
  • Fig. 34 shows a precast concrete splice member provided by another embodiment of the present invention.
  • Fig. 35 shows a prefabricated composite wall body provided by another embodiment of the present invention.
  • Fig. 36(a) and Fig. 36(b) show the prefabricated composite wall body provided by another embodiment of the present invention, wherein the connecting steel bars in Fig.
  • the connecting reinforcement is arranged in the receiving part in a horizontal state.
  • Fig. 37 shows a prefabricated composite wall provided by another embodiment of the present invention.
  • Fig. 38 shows a prefabricated composite wall body provided by another embodiment of the present invention.
  • Fig. 39 shows a prefabricated composite wall body provided by another embodiment of the present invention.
  • Fig. 40(a) and Fig. 40(b) show the prefabricated composite wall provided by another embodiment of the present invention, wherein in Fig. 40(a), the connecting steel bar is arranged in the accommodation portion in an inclined state, and in Fig. 40(b) The connecting reinforcement is arranged in the receiving part in a horizontal state.
  • Fig. 41 shows a prefabricated composite wall body provided by another embodiment of the present invention.
  • Fig. 42 shows a prefabricated composite wall provided by another embodiment of the present invention.
  • Fig. 43 shows a prefabricated composite wall body provided by another embodiment of the present invention.
  • Figure 44(a) and Figure 44(b) show the splicing process of the prefabricated composite wall and the prefabricated concrete splicing member provided by an embodiment of the present invention.
  • first, second and other ordinal numerals are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features.
  • a feature defined as “first” or “second” may explicitly or implicitly include one or more of said features.
  • “plurality” means two or more, unless otherwise specifically defined.
  • connection and “connected” in the present invention should be understood in a broad sense, for example, it can be a fixed connection, a flexible connection, or a detachable connection , or integrally connected, including the case where the two are in contact with each other; it may be mechanically connected; it may be directly connected, or indirectly connected through an intermediary, and it may be the internal communication of two elements or the interaction relationship between two elements.
  • connection and “connected” in the present invention should be understood in a broad sense, for example, it can be a fixed connection, a flexible connection, or a detachable connection , or integrally connected, including the case where the two are in contact with each other; it may be mechanically connected; it may be directly connected, or indirectly connected through an intermediary, and it may be the internal communication of two elements or the interaction relationship between two elements.
  • Fig. 1 (a) and Fig. 1 (b) have shown a kind of prefabricated concrete element 100 provided by the present invention, and it comprises connection end (that is the end that this prefabricated concrete element is connected with other prefabricated concrete element or cast-in-place concrete),
  • the connection end has a connection end surface 101 on which a receiving portion is arranged, and in this embodiment the receiving portion is a transverse hole 102 .
  • the transverse hole 102 opens on the connection end surface 101 and is a hole extending substantially along the horizontal direction.
  • the transverse hole can be parallel to the horizontal direction, or can form a certain angle (within the range of 0 to not more than 90 ° ) with the horizontal direction.
  • the transverse hole 102 can be a through hole or a non-through hole, which can be set as needed.
  • Connecting bars 103 are housed in the transverse holes 102 .
  • the “accommodation” mentioned in the present invention means “partially or completely located”, that is, the connecting steel bar 103 is accommodated in the transverse hole 102 means that the connecting steel bar 103 is partially or completely located in the transverse hole 102 .
  • the connecting steel bar 103 includes a first side 103 a close to the connecting end surface 101 .
  • the connecting steel bar 103 in this embodiment is a rectangular steel bar ring (or rectangular stirrup), so it also has a second side 103b away from the connecting end face.
  • the connecting steel bar 103 can also be in other shapes, and does not necessarily have a second side (such as "]" shape), as long as the relevant effects can be achieved.
  • the connecting steel bar 103 can move in the transverse hole 102, so as to be arranged in the transverse hole 102 in an inclined state (Fig. 1(a)) or a horizontal state (Fig. 1(b)).
  • the connecting steel bar 103 when the connecting steel bar 103 is arranged in the transverse hole 102 in an inclined state, the first side 103a is located in the transverse hole 102; when the connecting steel bar 103 is arranged in the transverse hole 102 in a horizontal state, the first side 103a protrudes from the connecting end surface 101 outside.
  • the connecting steel bar 103 when the connecting steel bar 103 is arranged in the transverse hole 102 in an oblique state, the first side 103a is located outside the transverse hole 102; 102, the first side 103a protrudes out of the connection end surface 101 to a greater length.
  • the connecting steel bars 103 are installed after the precast concrete member 100 is manufactured, without interfering with the production of the precast concrete member 100, and the connecting steel bars 103 are installed in the factory or before hoisting, so as to avoid the workload on the construction site and significantly reduce the on-site Workload:
  • the connecting steel bar 103 is installed in the transverse hole 102 in an inclined state, and generally does not protrude from the side of the component, so as not to interfere with transportation and hoisting.
  • the connecting steel bar 103 During joint construction between precast concrete members, it is very convenient to adjust the connecting steel bar 103 to a horizontal state; since the connecting steel bar 103 has a tendency to change from an inclined state to a horizontal state under its own weight, indirect disturbances (such as vibrating precast concrete member) can also adjust the connecting steel bar 103 to a horizontal state, so that the connecting steel bar 103 has the performance of automatically adjusting to a horizontal state.
  • the prefabricated concrete member 100 is only provided with transverse holes, which simplifies the opening structure.
  • the precast concrete component 100 in this embodiment can be spliced together with cast-in-place concrete during construction, or can be spliced together with the precast concrete spliced component 200 shown in FIG. 2 .
  • the prefabricated concrete splicing member 200 includes a splicing end (that is, the end where the prefabricated concrete elements are connected), and the splicing end includes a splicing hole 201, which is also a transverse hole in this embodiment. In other embodiments of the present invention, it can also be For other structures, only the connecting steel bar 103 can be accommodated.
  • the joint width (the distance between the two) between the precast concrete member 100 and the precast concrete splicing member 200 can be 0-20mm, that is, the prefabricated concrete member 100 and the precast concrete splicing member 200 adopt close-fitting seam technology; the precast concrete member 100
  • the width of the joint with the prefabricated concrete splicing member 200 may also be greater than 20 mm; preferably, the prefabricated concrete member 100 and the prefabricated concrete splicing member 200 are close joints.
  • the sum of the depth of the splicing hole 201, the depth of the transverse hole 102, and the width of the joint is 0-20mm longer than the length of the connecting steel bar 103 (horizontal length in this embodiment), or 20mm-200mm.
  • the connecting end face 102 of the precast concrete member 100 is set opposite to the splicing end face 202 of the precast concrete splicing member 200; Make the first side 103a of the connecting steel bar 103 extend out of the connecting end face 101 and into the splicing hole 201; since the connecting steel bar 103 has a tendency to change from an inclined state to a horizontal state under its own weight, the indirect disturbance can also make the connecting steel bar 103 Adjust to a horizontal state; even if the joint width between the precast concrete splicing member 200 and the precast concrete member 100 is 0, resulting in no operating space and no direct contact with the connecting reinforcement, the disturbance connecting reinforcement 103 can make it adjust from the inclined state to the horizontal state , such as vibrating the precast concrete member 100; in this way, the connecting steel bar 103 connecting the precast concrete splicing member 200 and the precast concrete member 100 has the performance of automatic positioning, realizing the automatic installation of the connecting steel bar, which is extremely
  • the transverse holes can be inclined at a certain angle.
  • the precast concrete member 100 shown in FIG. 1( a ) and FIG. 1( b ) may further include a first longitudinal reinforcement 104 .
  • the first longitudinal rib 104 is located outside the connection end surface 101, and the first longitudinal rib 101 is connected to the first side 103a.
  • the connection can be fixed connection or not fixed connection (for example, the two are in contact).
  • the first longitudinal bar 104 can resist the connecting steel bar 103 so that the connecting steel bar 103 will not protrude from the transverse hole 103 and be placed in the transverse hole 102 in an inclined state.
  • the first longitudinal reinforcement 104 can be removed directly, and the connecting reinforcement 103 can change the inclination state.
  • other measures can be used to resist the connecting steel bar 103, such as blocking the transverse hole 102 with a rigid plate, etc.
  • the first longitudinal bar 104 can move (for example, move horizontally), so that the connecting bar 103 is arranged in the transverse hole 102 in an inclined state or a horizontal state. Wherein, in the inclined state, the first longitudinal rib 104 contacts the connection end surface 101 ; in the horizontal state, the first longitudinal rib 104 is away from the connection end surface 101 .
  • the state of the connection 103 can be adjusted through the first longitudinal reinforcement 104, and then spliced with other cast-in-place concrete splicing components or prefabricated splicing components (for example, the connection ends are provided with longitudinal grooves).
  • Fig. 4 (a) and Fig. 4 (b) have shown another kind of prefabricated concrete member 400 of the present invention, and its difference with the precast concrete member 100 shown in Fig. 1 (a) and Fig. 1 (b) is that
  • the connecting end of the prefabricated concrete member 400 also includes a longitudinal hole 404 communicating with the transverse hole 402 (that is, the accommodation portion is an intersecting transverse hole 402 and a longitudinal hole 404), and its opening is arranged on a face 405 perpendicular to the connecting end face 401.
  • the surface 405 may not be perpendicular to the connection end surface 401 .
  • the longitudinal hole 404 can be a through hole or a non-through hole, and this embodiment is a through hole (as shown in FIG. 4( b )).
  • the connecting bars 403 are accommodated in the transverse holes 402 and the longitudinal holes 404 .
  • the connecting steel bar 403 can also be accommodated only in the transverse hole 402 or only in the longitudinal hole 404 .
  • the connecting steel bar 403 in the transportation state, is arranged in the transverse hole 402 or the longitudinal hole 404 in an inclined state. During construction, the connecting steel bar 403 can be adjusted to a horizontal state.
  • the prefabricated concrete member 400 in this embodiment can be spliced together with cast-in-place concrete during construction, and can also be spliced with the prefabricated concrete spliced member 200 or
  • the precast concrete splicing elements 500 shown in FIG. 5 are spliced together.
  • the precast concrete splicing member 500 includes a splicing end that includes a splicing hole 501, which in this embodiment is also an intersecting transverse hole and a longitudinal hole.
  • the stitching holes 501 may only include transverse holes.
  • the connecting end face 402 of the precast concrete member 400 is opposite to the splicing end face 502 of the precast concrete splicing member 500;
  • the first side 403a of the connecting steel bar 403 stretches out of the connecting end face 401 and into the splicing hole 501; then pour concrete into the transverse hole 402 of the prefabricated concrete component 400 and the splicing hole 501 of the prefabricated concrete splicing component 500, so that the prefabricated concrete component 400 and the precast concrete splicing member 500 are fixedly connected together to form a precast concrete assembly.
  • FIG. 6(a) and Fig. 6(b) show the splicing process of the precast concrete member 400 shown in Fig. 4(a) and Fig. 4(b) and the precast concrete splicing member 200 shown in Fig. 2 .
  • the connecting steel bar 403 is in an inclined state
  • the connecting steel bar 403 is in a horizontal state and extends into the splicing hole 201 of the precast concrete splicing member 200 .
  • the splicing hole can be inclined at a certain angle.
  • the precast concrete member connection structure is adopted, the cast-in-place concrete is poured through the longitudinal hole 404 of the precast concrete member 400, and the concrete is filled with the splicing hole 201 to realize the splicing of the precast concrete member.
  • the precast concrete member 400 shown in FIG. 4( a ) and FIG. 4( b ) may further include a first longitudinal reinforcement 406 .
  • the connection, function and construction method of the first longitudinal reinforcement 406 are similar to those of the first longitudinal reinforcement 104 shown in FIG. 3 , and will not be repeated here.
  • the precast concrete member 400 shown in FIG. 4( a ) and FIG. 4( b ) may further include a second longitudinal reinforcement 407 , and there is at least one second longitudinal reinforcement 407 .
  • the second longitudinal bars 407 are arranged in the longitudinal holes 404 along the length direction of the longitudinal holes 404 , and the connecting bars 403 are connected with the second longitudinal bars 407 .
  • the second longitudinal rib 407 is disposed in the longitudinal hole 404 .
  • the second side 403b of the connecting bar 403 away from the connecting end surface 401 can move up and down along the length direction of the second longitudinal bar 407, so that the connecting bar 403 is arranged in the transverse hole 402 and the longitudinal hole 404 in an inclined state or a horizontal state.
  • the second longitudinal rib 407 may be provided with a first limiting part (not shown in the figure), when the second side moves to the first limiting part, the connecting steel bar 403 is arranged in the horizontal hole 402 and the longitudinal hole 404 in a horizontal state Inside.
  • the first limiting component is used to position the connecting steel bar 403 and prevent the second side 403b of the connecting steel bar 403 from being displaced downward beyond a horizontal state.
  • the prefabricated concrete member 400 shown in Figure 4(a) and Figure 4(b) can also include a third longitudinal reinforcement 408, and the third longitudinal reinforcement 408 is one or 2 or more.
  • the third longitudinal rib 408 is disposed in the longitudinal hole 404 along the length direction of the longitudinal hole 404 .
  • the third longitudinal rib 408 is movably disposed in the longitudinal hole 404 .
  • the third longitudinal rib 408 is connected to the second side 403b (not shown in the figure) away from the connecting end surface 401 of the connecting steel bar 403, and the third longitudinal rib 408 can move up and down, driving the connecting steel bar 403 to an inclined state (Fig. 9(a) ) or a horizontal state ( FIG.
  • the third longitudinal rib 408 may also be provided with a limiting component (the second limiting component 408a shown in FIG. 10 , the second limiting component 408a may be a short steel bar).
  • the second limiting part 408a can make the third longitudinal bar 408 drive the connecting steel bar 403 to move (for example, the second limiting part 408a hooks the connecting bar 403 to move), so that it can be adjusted to be inclined or horizontal state.
  • the third longitudinal rib can also be fixedly connected with the second side 403b, or connected together in other ways, as long as the relevant effect can be achieved.
  • the second side 403b of the connecting reinforcement 403 of the precast concrete member 400 shown in Figure 4(a) and Figure 4(b) may include a sliding part A , at this time, a sliding groove 404a is provided in the longitudinal direction of the longitudinal hole 404 .
  • the sliding part A is slidably arranged in the sliding groove 404a, so that the connecting steel bar 403 is arranged in the transverse hole 402 and the longitudinal hole 404 in an inclined state (Fig. 13(a)) or a horizontal state (Fig. 13(b)).
  • the sliding part A is separately connected to the connecting steel bar 403 .
  • the sliding part A1 is formed by extending the second side 403 b of the connecting steel bar 403 .
  • the precast concrete member 100 shown in FIG. 1( a ) and FIG. 1( b ) or FIG. 3 may be provided with a sliding groove 404 a similar to that shown in FIG. Wherein, the chute can be arranged on the bottom surface of the transverse hole 102 .
  • the rest are similar to Fig. 13(a) and Fig. 13(b), and will not be repeated here.
  • a chute 404a is provided in the longitudinal direction of the longitudinal hole 404, so that the second side 403b of the connecting steel bar 403 is at a specified position, thereby ensuring that the position of the connecting steel bar 403 is in a controllable state, such as the connecting steel bar will not fall off during transportation, and the connecting steel bar
  • the length extending out of the prefabricated concrete member 400 is a fixed value, etc.; especially if there is no longitudinal bar connected to the connecting steel bar, the position of the connecting steel bar 403 can be controlled. For example, the connecting steel bar 403 will not fall off, saving longitudinal ribs.
  • a third limiting component B (as shown in FIG. 14 ) may be provided in the slide slot 404a.
  • the connecting steel bars 403 are arranged horizontally in the transverse hole 402 and the longitudinal hole 404 .
  • the third limiting part B can be a concrete block.
  • FIG. 15(a) and Fig. 15(b) show the chute 404b in another embodiment of the present invention, which is set in a different position from the chute 404a, wherein the connecting steel bar 403 is in an inclined state in Fig. (a) , in (b) is horizontal.
  • FIG. 16 shows a chute 404c and a connecting steel bar in another embodiment of the present invention.
  • the connecting steel bar has a sliding part A2 different from the sliding parts A and A1 shown in FIGS. 10 and 11 .
  • the prefabricated concrete member may include one connecting end, or may include multiple connecting ends (for example, as shown in FIGS. 17-19 ).
  • a receiving portion of the present invention may include multiple connecting steel bars.
  • the prefabricated concrete member of the present invention has a simple structure, and the connecting steel bar is installed in the containing part after the prefabricated concrete member is manufactured, without interfering with the manufacture of the precast concrete member; and the connecting steel bar does not need to be installed on the construction site, reducing the workload on site.
  • the connecting steel bar is accommodated in the containing part, does not occupy the volume, and will not be collided; during construction, it is only necessary to adjust the connecting steel bar to a horizontal state, and then it can be connected with other connecting components, and the process is simple.
  • the present invention obliquely arranges the connecting steel bars in the receiving part during the production and transportation stages, which greatly reduces the space of the receiving part, such as reducing the depth of the transverse hole, thereby reducing the opening ratio of the prefabricated concrete components, and further reducing the amount of post-cast concrete.
  • the connecting steel bar of the present invention has a tendency to be adjusted to a horizontal state under its own weight in an inclined state, so that the connecting steel bar is adjusted to a horizontal state from an inclined state with a certain degree of automation, that is, slightly disturbing the connecting steel bar such as vibrating prefabricated concrete components or connecting
  • the steel bar can be adjusted from the inclined state to the horizontal state by connecting the steel bar, and the connecting steel bar has the performance of automatic positioning. This feature facilitates the setting of connecting reinforcement between prefabricated components, and is especially suitable for setting connecting reinforcement when prefabricated concrete components are closely connected.
  • the connecting steel bar is installed in the precast concrete member on one side of the joint, and then extends into the precast concrete member on the other side of the joint.
  • the automatic positioning performance of the connecting steel bar realizes the automatic installation of the connecting steel bar, which is extremely Convenient.
  • the present invention also provides various reinforcing bars matched with the connecting reinforcing bars, which can easily extend the connecting reinforcing bars out of the accommodating part, greatly increasing the safety and speed of construction.
  • Fig. 21 (a) and Fig. 21 (b) have shown another kind of prefabricated concrete member 100-1 provided by the present invention, and it comprises connection end, and connection end is provided with connection end surface 101-1, along the connection end surface 101-1
  • the longitudinal direction is provided with a longitudinal groove 102-1.
  • the opening of the longitudinal groove 102-1 is arranged on the connection end surface 101-1.
  • the longitudinal groove 102-1 can be a through groove or a non-through groove, which can be set as required.
  • the connecting bars 103-1 are housed in the longitudinal grooves 102-1. There may be one or more connecting steel bars in the longitudinal groove 102-1. In this embodiment, a plurality of connecting steel bars 103-1 are arranged along the length direction of the longitudinal groove 102-1. Wherein, the connecting steel bar 103-1 includes a first side 103a-1 close to the connecting end surface 101-1.
  • the connecting steel bar 103-1 in this embodiment is a rectangular steel bar ring, so it also has a second side 103b-1 away from the connecting end face.
  • the supporting steel bar 104-1 supports the connecting steel bar 103-1.
  • the supporting steel bar 104-1 is a transverse bar, which is fixedly arranged in the longitudinal groove 102-1.
  • the connecting bar 103-1 is movable in the longitudinal groove 102-1 so as to be disposed in the longitudinal groove 102-1 in an inclined state (FIG. 21(a)) or a horizontal state (FIG. 21(b)).
  • the connecting steel bar 103-1 is arranged in the longitudinal groove 102-1 in an oblique state
  • the first side 103a-1 is located in the longitudinal groove 102-1; when the connecting steel bar 103-1 is arranged in the longitudinal groove in a horizontal state
  • the first side 103a-1 protrudes out of the connection end surface 101-1.
  • the first side 103a-1 when the connecting steel bar 103-1 is arranged in the longitudinal groove 102-1 in an oblique state, the first side 103a-1 may be located outside the longitudinal groove 102-1; When the connecting steel bar 103-1 is arranged in the longitudinal groove 102-1 in a horizontal state, the first side 103a-1 can extend out of the connecting end surface 101-1 to a greater length.
  • the connecting steel bar 103-1 can be installed after the precast concrete member 100-1 is manufactured, which facilitates the manufacture of the precast concrete member 100-1.
  • the connecting steel bar 103-1 in the transportation state, is arranged in the longitudinal groove 102-1 in an inclined state.
  • the other end of the prefabricated concrete member 100-1 opposite to the connecting end is also provided with a longitudinal groove, but no connecting reinforcement is provided in the groove, Therefore, the prefabricated concrete elements 100-1 can be spliced together in pairs, without other splicing elements.
  • the opposite end of the precast concrete member 100-1 may not be provided with a groove.
  • the prefabricated concrete component 100-1 is spliced together with the cast-in-place concrete, and can also be spliced together with the precast concrete spliced component 200-1 shown in FIG. 22 .
  • the prefabricated concrete splicing member 200-1 includes a splicing groove 201-1, which is also a longitudinal groove in this embodiment. In other embodiments of the present invention, it can also be of other types, such as holes.
  • the joint width between the precast concrete component 100-1 and the precast concrete splicing component 200-1 can be 0-20mm, that is, the prefabricated concrete component 100 and the precast concrete splicing component 200 adopt close joint joint technology; the prefabricated concrete component 100-1 and the The width of the joint between the prefabricated concrete splicing components 200-1 can also be greater than 20 mm; preferably, the prefabricated concrete component 100-1 and the prefabricated concrete splicing component 200-1 are close joints.
  • the sum of the depth of the splicing groove 201-1, the depth of the transverse hole 102-1 and the width of the joint is 0-50mm (in this embodiment, the length in the horizontal direction) greater than the length of the connecting steel bar 103-1, or 50mm -200mm etc.
  • the splicing groove 201-1 is provided with a rib 203-1 that is the same as or slightly higher than the height of the support bar 104-1 (the adjacent precast concrete member 100-1 and the precast concrete splicing member
  • the height of 200-1 refers to the height when both are installed in place).
  • connection end face 102-1 of the precast concrete member 100-1 is set opposite to the splicing end face 202-1 of the precast concrete splicing member 200-1; the precast concrete member 100-1
  • the connecting steel bar 103-1 is adjusted from an inclined state to a horizontal state, so that the first side 103a-1 of the connecting steel bar 103-1 stretches into the splicing groove 201-1 and contacts the strapping bar 203-1; because the connecting steel bar 103 under its own weight -1 has a tendency to change from an inclined state to a horizontal state, so the indirect disturbance can also adjust the connecting steel bar 103-1 to a horizontal state; in this way, even if the joint between the prefabricated concrete splicing member 200-1 and the prefabricated concrete member 100-1 When the width is 0 so that there is no operating space and cannot directly contact the connecting steel bar, disturbing the connecting steel bar 103-1 can make it adjust from a tilted state to a horizontal state, such as vibrating the precast
  • the precast concrete member 100-1 shown in Fig. 21(a) and Fig. 21(b) may further include a second longitudinal reinforcement 105-1.
  • the second longitudinal rib 105-1 is arranged in the longitudinal groove 102-1 along the length direction of the longitudinal groove 102-1.
  • the second longitudinal rib 105 - 1 is fixedly arranged in the longitudinal groove 102 .
  • the second side 103b-1 of the connecting steel bar 103-1 away from the connecting end surface 101-1 can move up and down along the length direction of the second longitudinal bar 105-1, so that the connecting steel bar 103-1 is arranged in an inclined state or a horizontal state Inside the longitudinal groove 102-1.
  • the second longitudinal bar 105-1 may also be provided with a first limiting member (not shown in the figure).
  • the connecting steel bar 103- 1 is arranged in the longitudinal groove 102-1 in a horizontal state.
  • the first limiting part is for positioning the connecting steel bar 103-1, and can prevent the connecting steel bar 103-1 from sliding down beyond the horizontal position.
  • the precast concrete member 100-1 shown in Fig. 21(a) and Fig. 21(b) may further include a third longitudinal reinforcement 106-1.
  • the third longitudinal rib 106-1 is arranged in the longitudinal groove 102-1 along the length direction of the longitudinal groove 102-1.
  • the third longitudinal rib 106-1 is movable in the longitudinal groove 102-1.
  • the third longitudinal bar 106-1 is connected to the second side 103b-1 of the connecting steel bar 103-1 away from the connecting end surface 101-1, and the third longitudinal bar 106-1 can move up and down, so that the connecting steel bar 103-1 is in an inclined state. ( FIG. 24( a )) or a horizontal state ( FIG.
  • the second side 103b-1 of the connecting steel bar 103-1 of the precast concrete member 100-1 shown in Fig. 21(a) and Fig. 21(b) may also include a sliding part.
  • a sliding groove 102a-1 is provided along the length direction of the groove 102-1.
  • the sliding part is slidably disposed in the sliding groove 102a-1, so that the connecting steel bar 103-1 is disposed in the longitudinal groove 102-1 in an inclined state or a horizontal state.
  • a chute 102a-1 is provided in the longitudinal direction of the longitudinal groove 102-1, so that the second side 103b-1 of the connecting steel bar 103-1 has a specified position, thereby ensuring that the position of the connecting steel bar 103-1 is in a controllable state, For example, the connecting steel bar will not fall off during transportation, and the length of the connecting steel bar protruding out of the precast concrete member 100-1 is a fixed value when the connecting steel bar is adjusted to a horizontal state; especially, the connecting steel bar 103-1 can also be realized without longitudinal bars connected to the connecting steel bar. The position is controllable to avoid falling off.
  • the sliding part and the chute 102a-1 can also be other structures as mentioned above.
  • the prefabricated concrete member 100-1 shown in Figure 21(a) and Figure 21(b) can also include a first longitudinal reinforcement 107-1, the first A longitudinal rib 107-1 is located outside the connection end surface 101-1.
  • the first longitudinal reinforcement 107-1 is connected to the first side 103a-1, and the first longitudinal reinforcement 107-1 is located outside the circular connecting reinforcement 103-1.
  • the first longitudinal bar 107-1 is located in the annular connecting bar 103-1, and is connected to the side of the connecting bar 103-1.
  • the connection can be fixed or not.
  • the first longitudinal bar 107-1 when the connection is not fixed, the first longitudinal bar 107-1 can withstand the connecting steel bar 103-1, so that the connecting steel bar 103-1 will not protrude from the longitudinal groove 102-1, and it will be in an inclined state. placed in the longitudinal groove 102-1. In this case, during construction, the first longitudinal reinforcement 107-1 can be removed directly, and then the subsequent construction process as described above can be carried out. According to the technical route of this embodiment, other measures can be adopted to resist the connecting steel bar 103-1, such as blocking the longitudinal groove 102-1 with a rigid plate.
  • the connecting reinforcement 103-1 1 when the first longitudinal reinforcement 107-1 is fixedly connected (such as horizontally or longitudinally), the connecting reinforcement 103-1 1 is disposed in the longitudinal groove 102-1 in an inclined state (such as shown in FIG. 27(a)) or a horizontal state (such as shown in FIG. 27(b)).
  • the first longitudinal rib 107-1 contacts the connection end surface 101-1; in the horizontal state, the first longitudinal rib 107-1 is away from the connection end surface 101-1.
  • the state of the connecting steel bar 103-1 can be adjusted through the first longitudinal bar 107-1, and then spliced with other cast-in-place concrete splicing components or prefabricated splicing components (for example, the connection ends are provided with longitudinal grooves).
  • first longitudinal rib 107-1 there is one first longitudinal rib 107-1, and in the embodiment shown in FIG. 27(a) and FIG. 27(b), there are two first longitudinal ribs. In other embodiments of the present invention, other numbers of first longitudinal ribs may also be used.
  • a transverse rib 108-1 can also be provided on the connection end surface 101-1, the transverse rib 108-1 is connected with the first longitudinal rib 107-1, and the length of the transverse rib 108-1 is greater than the width of the longitudinal groove 102-1 , which plays a role in positioning the first longitudinal rib 107-1.
  • the prefabricated concrete member 100-1 shown in Figure 21(a) and Figure 21(b) can also include a limiter fixedly arranged in the longitudinal groove 102-1.
  • Bit Rebar 109-1 In this embodiment, the limit reinforcement 109-1 is also a horizontal bar, which is located above the support reinforcement 104-1, and the connecting reinforcement 103-1 moves in the gap between the support reinforcement 104-1 and the limit reinforcement 109-1, thereby Switching between the inclined state (FIG. 29(a)) and the horizontal state (FIG. 29(b)) is performed.
  • the width of the gap (that is, the distance between the supporting steel bar 104-1 and the limit steel bar 109-1) is 1-15mm larger than the diameter of the connecting steel bar 103-1 (other values are also possible), so that the connecting steel bar 103-1 can move freely; at the same time, the supporting steel bar 104-1 and the limit steel bar 109-1 clamp the connecting steel bar 103-1, which can better control the position of the connecting steel bar 103-1.
  • the supporting steel bars 104-1 and the limiting steel bars 109-1 can also be U-shaped steel bars, or any other shape, as long as the corresponding supporting and limiting effects can be realized.
  • the prefabricated concrete member whose accommodating part is a longitudinal groove can also be a structure as shown in Figure 30, which includes two L-shaped members at connecting ends, and of course other structures, such as a T-shaped member.
  • Fig. 31 shows another precast concrete component 300-1 of the present invention
  • the second side 303b-1 of the uppermost connecting steel bar 303-1 protrudes out of the component in an inclined state. It limits the connecting reinforcement 303-1 by supporting the supporting reinforcement 304-1 and the limiting reinforcement 309-1.
  • Fig. 32(a) and Fig. 32(b) show the splicing process of the precast concrete member 300-1 shown in Fig. 31 and the precast concrete splicing member 200-1 shown in Fig. 22 .
  • the connecting steel bar 303-1 in an inclined state
  • the connecting steel bar 303-1 in Fig. 32(b), is in a horizontal state, and extends into the longitudinal groove 201-1 of the prefabricated concrete splicing member 200-1
  • the part where the connecting reinforcement 303-1 extends into the splicing member 200-1 can be above the reinforcement 203-1 or below the reinforcement 203-1.
  • the laminated plate shear wall structure is easy to install and has a certain application prospect.
  • the reinforced formwork integrated structure similar to the laminated slab shear wall structure also has good technical advantages.
  • These prefabricated concrete structural components are all composed of two prefabricated slabs and connecting bars connecting the two prefabricated slabs.
  • Figure 33(a) and Figure 33(b) show another prefabricated concrete component 100-2 provided by the present invention (in order to distinguish it from the foregoing embodiments, hereinafter referred to as "prefabricated composite wall 100-2"), which It is formed by connecting piece 111-2 and at least two prefabricated panels 112-2. In this embodiment, there are two prefabricated slabs 112-2.
  • An engineering application example of the prefabricated composite wall 100-2 in this embodiment is a laminated slab shear wall, that is, a double skin wall. It should be noted that the prefabricated composite wall body 100-2 of the present invention can also be in other shapes, such as T-shape, L-shape and so on.
  • the prefabricated composite wall 100-2 includes a connection end, which is provided with a connection end surface 121-2 and a receiving portion 122-2 formed by the gap between the two side walls of the connection end.
  • the connection bar 123-2 is accommodated in the accommodation part 122-2.
  • a plurality of connecting steel bars 123-2 are arranged along the longitudinal direction of the receiving portion 122-2.
  • the connecting steel bar 123-2 includes a first side 123a-2 close to the connecting end surface 121-2.
  • the connecting steel bar 123-2 in this embodiment is a rectangular steel bar ring, so it also has a second side 123b-2 away from the connecting end face.
  • the supporting steel bar 124-2 supports the connecting steel bar 123-2.
  • the supporting steel bar 124-2 is a horizontal bar, which is fixedly arranged in the receiving portion 122-2.
  • the supporting steel bar 124-2 can be a steel bar provided separately, and can also be served by the steel bar of the connecting piece 111-2.
  • the connecting bar 123-2 is movable in the accommodation part 122-2, so as to be disposed in the accommodation part 122-2 in an inclined state (FIG. 33(a)) or a horizontal state (FIG. 33(b)).
  • the connecting steel bar 123-2 when the connecting steel bar 123-2 is arranged in the receiving part 122-2 in an inclined state, the first side 123a-2 is located in the receiving part 122-2; when the connecting steel bar 123-2 is arranged in the receiving part 122- 2, the first side 123a-2 protrudes outside the connection end surface 121-2.
  • the connecting steel bar 123-2 is installed after the prefabricated composite wall 100-2 is manufactured, which facilitates the fabrication of the prefabricated composite wall 100-2.
  • the connecting steel bar 123-2 in the transportation state, is arranged in the receiving portion 122-2 in an inclined state.
  • it is very convenient to adjust the connecting steel bar 123-2 to a horizontal state. Since the connecting steel bar 123-2 has a tendency to change from an inclined state to a horizontal state under its own weight, the indirect disturbance can also adjust the connecting steel bar 123-2 to a horizontal state.
  • the other end of the prefabricated composite wall 100-2 opposite to the connecting end is also provided with a receiving part, but no connecting reinforcement is provided in the receiving part, so
  • the prefabricated composite walls 100-2 can be spliced together in pairs without other splicing components.
  • the prefabricated composite wall body 100-2 can also be spliced together with cast-in-place concrete, or can also be spliced together with the prefabricated concrete splicing member 200-2 shown in FIG. 34 .
  • the joint width between the prefabricated composite wall 100-2 and the prefabricated concrete splicing component 200-2 can be 0-20mm, that is, the prefabricated composite wall 100 and the prefabricated concrete splicing component 200 adopt close-fitting joint technology; the prefabricated composite wall 100
  • the width of the joint between -2 and the prefabricated concrete splicing component 200-2 can also be greater than 20 mm; preferably, the joint between the prefabricated composite wall 100-2 and the prefabricated concrete splicing component 200-2 is a close joint.
  • the prefabricated concrete splicing component 200-2 includes a splicing end, and the splicing end is provided with a rib 201-2 that is the same as or slightly lower in height than the supporting steel bar 104-2 (the adjacent prefabricated composite wall 100-2 and the prefabricated concrete splicing component
  • the height of 200-2 refers to the height when both are installed in place). In other embodiments of the present invention, it can also be of other types, such as holes or grooves.
  • the connecting end face 121-2 of the prefabricated composite wall 100-2 is set facing the splicing end face of the prefabricated concrete splicing member 200-2; the prefabricated composite wall 100-2
  • the connecting steel bar 123-2 is adjusted from an inclined state to a horizontal state, so that the first side 123a-2 of the connecting steel bar 123-2 protrudes out of the connecting end face 121-2, and rests on the reinforcing bar 201-2, or on the reinforcing bar 201-2; because the connecting steel bar 123-2 has a tendency to change from an inclined state to a horizontal state under its own weight, so the indirect disturbance can also adjust the connecting steel bar 123-2 to a horizontal state; so even if the prefabricated concrete splicing member 200- When the joint width between the 2 pieces and the prefabricated composite wall 100-2 is 0, resulting in no operating space and no direct contact with the connecting steel bars, disturbing the connecting steel bars 123-2 can make it adjust from an inclined state to a horizontal state, such as vibrating the prefabricated
  • the second side 123b-2 of the connecting reinforcement 123-2 of the prefabricated composite wall 100-2 shown in Figure 33(a) and Figure 33(b) may include a sliding part, at this time, the receiving part
  • the longitudinal direction of 122-2 is provided with a sliding groove 122a-2.
  • the sliding portion is slidably disposed in the sliding groove 122a-2, so that the connecting steel bar 123-2 is disposed in the receiving portion 122-2 in an inclined state or a horizontal state.
  • a second limiting part may also be provided in the chute, and when the second side 123b-2 slides to the second limiting part, the connecting steel bar 123-2 is horizontally arranged in the accommodating part 122-2 .
  • the prefabricated composite wall body 100-2 shown in Fig. 33(a) and Fig. 33(b) may further include a second longitudinal rib 125-2.
  • the second longitudinal bar 125-2 is arranged in the receiving part 122-2 along the length direction of the receiving part 122-2, and the connecting steel bar 123-2 is connected with the second longitudinal bar 125-2.
  • the second longitudinal rib 125-2 is disposed in the receiving portion 122-2, for example, connected to the connecting piece 111-2.
  • the second side 123b-2 of the connecting steel bar 123-2 away from the connecting end surface 121-2 can move up and down along the length direction of the second longitudinal bar 125-2, so that the connecting steel bar 123-2 is tilted (Fig. 36(a) )) or a horizontal state (FIG. 36(b)) is set in the accommodating portion 122-2.
  • the second longitudinal bar 125-2 can be provided with a first limiting part (not shown in the figure), when the second side 123b-2 moves to the first limiting part, the connecting steel bar 123-2 is set in a horizontal state Inside the housing part 122-2.
  • the first limiting part is for positioning the connecting steel bar 123-2, and can prevent the connecting steel bar 123-2 from sliding down.
  • the prefabricated composite wall 100-2 shown in Fig. 33(a) and Fig. 33(b) may further include a third longitudinal rib 126-2.
  • the third longitudinal rib 126-2 is disposed in the accommodation portion 122-2 along the length direction of the accommodation portion 122-2.
  • the third longitudinal rib 126-2 can move in the accommodation portion 122-2.
  • the third longitudinal bar 126-2 is connected to the second side 123b-2 of the connecting bar 123-2 away from the connecting end surface 121-2, and the third longitudinal bar 126-2 can move up and down, so that the connecting bar 123-2 is in an inclined state. Or it is set in the accommodation part 122-2 in a horizontal state.
  • the connecting steel bar 123-2 is driven to be in an inclined state; moving the upper end (or lower end) of the third longitudinal bar 126-2 tends to Near the prefabricated composite wall 100-2, it drives the connecting steel bar 123-2 to tend to the horizontal state until it is horizontal.
  • the linkage between the connecting reinforcement 123-2 and the longitudinal reinforcement 126-2 is realized, and the connecting reinforcement 123-2 can be adjusted to the required position without directly contacting the connecting reinforcement 123-2, which is convenient for setting the connecting reinforcement;
  • the adjustment range of the connecting reinforcement 123-2 is not large, and the longitudinal reinforcement 126-2 can be connected with the connector 111-2, for example, connected with a steel wire with a certain length, or the longitudinal reinforcement 126-2 and the connector 111-2 are set with a ring together.
  • Limiting components may also be provided on the third longitudinal rib 126-2.
  • the limiting part can hook the connecting bar 123-2 to adjust it to an inclined or horizontal state.
  • the third longitudinal rib can also be fixedly connected with the second side 123b-2, or be connected together in other ways, as long as the relevant effect can be achieved.
  • Fig. 38 shows another arrangement of the second longitudinal ribs 125-2.
  • the prefabricated composite wall 100-2 includes three longitudinal reinforcements 125-2 (also can be changed to the third longitudinal reinforcement 126-2), and one (125a-2) of the three longitudinal reinforcements is located at the connecting reinforcement 123- 2 outside (can provide guide rails or inner limit for the movement of the connecting steel bar 123-2, so that 123b-2 will not move to the inside of the accommodating part), and the other two (125b-2) are located in the connecting steel bar 123-2.
  • the two longitudinal bars located inside the connecting bar 123-2 are at the same distance from the longitudinal bar located outside the connecting bar 123-2.
  • the gap between the three longitudinal bars can be set to be small, just enough to allow the connecting steel bar 123-2 to move up and down in the gap.
  • the width of the gap ie, the horizontal distance
  • the third longitudinal ribs 126-2 can also be arranged as shown in FIG. 38 .
  • the longitudinal reinforcement located outside the connecting reinforcement can be connected to the connecting piece 111-2 inside or outside the connecting piece 111-2. When it is outside the connecting piece 111-2, it can better prevent the connecting piece 111-2 from interfering with the movement of the connecting steel bar 123-2 (equivalent to setting a track for the connecting steel bar 123-2).
  • the prefabricated composite wall 100-2 shown in Fig. 33(a) and Fig. 33(b) may further include first longitudinal ribs 127-2 and first transverse ribs 128-2.
  • the first longitudinal rib 127-2 is located outside the connection end surface 121-2, and the first longitudinal rib 127-2 is connected to the first side 123a-2.
  • the first longitudinal reinforcement 127-2 can also be connected with the connecting reinforcement 123-2; at this time, the first longitudinal reinforcement 127-2 can be located at the circular connecting reinforcement 123-2 Inside.
  • the connection can be fixed or not.
  • the first longitudinal bar 127-2 when the connection is not fixed, the first longitudinal bar 127-2 can resist the connecting steel bar 123-2, so that the connecting steel bar 123-2 will not protrude from the receiving part 122-2, and it is placed in an inclined state Inside the receiving portion 122-2. In this case, during construction, the first longitudinal reinforcement 127-2 can be removed directly, and then the subsequent construction process as described above can be carried out. According to the technical route of this embodiment, other measures may be adopted to resist the connecting steel bar 123-2, such as blocking the receiving portion 122-2 with a rigid plate.
  • the first longitudinal bar 127-2 when fixedly connected, can move (such as horizontally or vertically), so that the connecting steel bar 123-2 can be tilted (for example, FIG. 40( a )) or a horizontal state (for example, FIG. 40( b )) is set in the accommodating portion 122 - 2 .
  • the first longitudinal rib 127-2 in the inclined state, contacts the connection end surface 121-2; in the horizontal state, the first longitudinal rib 127-2 is away from the connection end surface 121-2.
  • the first longitudinal bar 127-2 is connected with the connecting steel bar, and when moving vertically, it can drive the connecting steel bar 123-2 to rotate around the supporting steel bar 124-2, thereby realizing the inclined state of the connecting steel bar 123-2 or level state.
  • the state of the connecting reinforcement 123-2 can be adjusted through the first longitudinal reinforcement 127-2, and then spliced with other cast-in-situ concrete splicing components or prefabricated splicing components.
  • the first transverse rib 128-2 is connected with the first longitudinal rib 127-2, and the length of the first transverse rib 128-2 is greater than the width of the receiving part 122-2, so as to support the first longitudinal rib 127. -2
  • the role of positioning In this embodiment, there are two first transverse ribs 128-2 located on the upper and lower sides of the first longitudinal rib 127-2. In other embodiments of the present invention, other numbers of first transverse ribs 128-2 may also be used.
  • the prefabricated composite wall 100-2 shown in Fig. 33(a) and Fig. 33(b) may also include a limiting steel bar 129-2 fixedly arranged in the receiving portion 122-2.
  • the limit reinforcement 129-2 is also a horizontal bar, which is located above the support reinforcement 124-2, and the connecting reinforcement 123-2 moves in the gap between the support reinforcement 124-2 and the limit reinforcement 129-2, thereby Switch between tilted state and horizontal state.
  • the width of the gap (that is, the distance between the supporting steel bar 124-2 and the limit steel bar 129-2) is 0-10mm (or larger) than the diameter of the connecting steel bar 123-2, so that the connecting steel bar 123-2 is able to move freely.
  • the supporting steel bar 124-2 and the limiting steel bar 129-2 clamp the connecting steel bar 123-2, which can better control the position of the connecting steel bar 123-2.
  • the supporting steel bars 124-2 and the limiting steel bars 129-2 can also be U-shaped steel bars, or any other shape, as long as the corresponding supporting and limiting effects can be realized.
  • the prefabricated composite wall may include one connecting end, or may include multiple connecting ends, as shown in FIG. 42;
  • FIG. 42 is an L-shaped cross-sectional wall, including two connecting sections.
  • Fig. 43 shows another prefabricated composite wall 300-2 of the present invention, the second side 323b-2 of the uppermost connecting steel bar 323-2 sticks out of the component in an inclined state.
  • Fig. 44(a) and Fig. 44(b) show the splicing process of the prefabricated composite wall 300-2 shown in Fig. 43 and the prefabricated concrete splicing member 200-2 shown in Fig. 34 .
  • the connecting reinforcement 323-2 is in an inclined state
  • the connecting reinforcement 323-2 is in a horizontal state, and rests on the rib 201-2.
  • the vertical joints of the laminated shear wall structure can significantly improve the efficiency and benefit of the structure by adopting the close joint technology (that is, the distance between adjacent prefabricated components is 0 or a small distance).
  • the close joint technology that is, the distance between adjacent prefabricated components is 0 or a small distance.
  • a vertical post-cast section with a width of about 200 mm is set between prefabricated walls, which makes it difficult to construct close-fitting joints.
  • the prefabricated composite wall of the present invention has a simple structure, and the connecting steel bars are installed in the gap between the two prefabricated panels of the prefabricated composite wall, which does not interfere with the production of prefabricated concrete components, and the connecting steel bars do not need to be installed on site, reducing on-site work quantity.
  • the connecting steel bar is accommodated in the containing part, which does not occupy the volume and will not be collided; during construction, it is only necessary to adjust the connecting steel bar to the horizontal state to connect with other connecting components, and the process is simple.
  • the inclined state of the connecting steel bars of the present invention has a tendency to be adjusted to a horizontal state under its own weight, so that the connecting steel bars can be adjusted from the inclined state to the horizontal state with a certain degree of automation, that is, slightly disturbing the connecting steel bars such as vibrating prefabricated composite walls or connecting steel bars, and connecting The steel bar can be adjusted from the inclined state to the horizontal state; in this way, the installation of the connecting steel bar has self-adaptiveness.
  • This feature is convenient for setting connecting reinforcement between prefabricated composite walls, and is especially suitable for setting connecting reinforcement when prefabricated composite walls are closely connected.
  • the connecting steel bar is installed in the prefabricated composite wall on one side of the joint, and then extends into the prefabricated wall on the other side of the joint, that is, the connecting steel bar has the performance of automatic positioning, and the automatic installation of the connecting steel bar is realized. Extremely convenient and fast.
  • the invention also provides various reinforcing bars matched with the connecting reinforcing bars, which can easily pull the connecting reinforcing bars out of the accommodating part, greatly increasing the safety and speed of construction.
  • the technology of the present invention is applied to the laminated shear wall structure, even if the distance between the supporting steel bar or the outermost steel bar truss of the prefabricated wall is not more than 200mm from the side of the prefabricated wall, or even the supporting steel bar is close to the connecting end face of the prefabricated composite wall, the wall can also be installed
  • the connecting steel bars between the walls realize the close-fitting joints of the walls, which greatly improves the efficiency and benefits.

Abstract

本发明提供了一种预制混凝土构件、预制混凝土组件及其拼接方法。预制混凝土构件包括连接端,连接端包括容纳部和容纳在容纳部内的连接钢筋,容纳部包括设置在连接端的连接端面的开口,连接钢筋包括靠近连接端面的第一侧;其中,连接钢筋在容纳部内能够移动,从而以倾斜状态或水平状态设置在容纳部内,当连接钢筋以水平状态设置在容纳部内时,第一侧伸出连接端面外。本发明的预制组合墙体结构简单,施工非常便捷。

Description

预制混凝土构件、预制混凝土组件及其拼接方法 技术领域
本发明涉及建筑工程技术领域,特别是涉及一种预制混凝土构件、预制混凝土组件及其拼接方法。
背景技术
为改变现浇混凝土结构施工速度慢、施工现场脏乱差的问题,建筑业实施装配化的施工方式。
装配式混凝土结构中预制构件的构造决定结构的效率和效益,预制构件间的水平接缝、竖向接缝性能决定了结构整体性能。预制混凝土构件间接缝处钢筋连接构造是装配整体式结构的关键技术;现有装配整体式混凝土结构技术中,接缝处一般设置后浇带,一种技术手段是预制构件上伸出连接钢筋,导致制作、运输、安装效率低,效益差;另一种技术方案是叠合板剪力墙等结构,虽然预制构件不出筋,但是接缝处后浇带使施工较为复杂。
装配整体式混凝土结构接缝处采用密拼缝连接技术效率高,施工方便,但是如何设置连接钢筋是关键技术。现有技术没有令人满意的解决方案,影响结构的效率和效益。
发明内容
为了解决上述现有技术中的问题之一,本发明的第一目的是提供一种预制组合墙体。
为了解决上述现有技术中的问题之一,本发明的第一目的是提供一种预制混凝土构件。其包括连接端,所述连接端包括容纳部和容纳在所述容纳部内的连接钢筋,所述容纳部包括设置在所述连接端的连接端面的开口,所述连接钢筋包括靠近所述连接端面的第一侧;
其中,所述连接钢筋在所述容纳部内能够移动,从而以倾斜状态或水平状态设置在所述容纳部内,当所述连接钢筋以所述水平状态设置在所述容纳部内时,所述第一侧伸出所述连接端面外。
在本发明的一些实施例中,所述容纳部包括第一孔洞,或相互连通的第一孔洞和第二孔洞,所述第一孔洞的开口设置在所述连接端的所述连接端面上,所述第二孔洞沿所 述连接端面的长度方向延伸,且所述第二孔洞开口设置在所述连接端的顶面上。
在本发明的一些实施例中,所述容纳部包括沿所述连接端面的长度方向延伸的凹槽。
在本发明的一些实施例中,所述容纳部由所述连接端的两侧预制板之间的空隙形成。
在本发明的一些实施例中,所述连接端还包括设置在所述容纳部内的支承钢筋,所述支承钢筋支承所述连接钢筋。
在本发明的一些实施例中,所述连接端还包括设置在所述容纳部内的限位钢筋,所述限位钢筋位于所述支承钢筋的上方,所述连接钢筋在所述支承钢筋与所述限位钢筋之间的间隙中移动。
在本发明的一些实施例中,所述支承钢筋与所述限位钢筋之间的距离比所述连接钢筋的直径大0-15mm。
在本发明的一些实施例中,所述预制混凝土构件还包括与所述第一侧相连的第一纵筋,所述第一纵筋沿所述连接端面的长度方向延伸,所述第一纵筋能够移动,从而使所述连接钢筋以倾斜或水平状态设置在所述容纳部内;
其中,在所述倾斜状态,所述第一纵筋接触或靠近所述连接端面;在所述水平状态,所述第一纵筋远离所述连接端面。
在本发明的一些实施例中,所述预制混凝土构件还包括与所述第一纵筋相连的第一横筋,在所述倾斜状态,所述第一横筋能够抵靠所述连接端面。
在本发明的一些实施例中,所述预制混凝土构件还包括第二纵筋,所述第二纵筋沿所述连接端面的长度方向设置在所述容纳部内,所述连接钢筋还包括远离所述连接端面的第二侧;
其中,所述第二侧能够沿着所述第二纵筋的长度方向上下移动,从而使所述连接钢筋以所述倾斜状态或所述水平状态设置在所述容纳部内。
在本发明的一些实施例中,所述第二纵筋设有第一限位部件,当所述第二侧移动至所述第一限位部件时,所述连接钢筋以所述水平状态设置在所述容纳部内。
在本发明的一些实施例中,所述预制混凝土构件还包括第三纵筋,所述第三纵筋沿所述连接端面的长度方向设置在所述容纳部内,所述连接钢筋还包括远离所述连接端面的第二侧,所述第二侧与所述第三纵筋相连;
其中,所述第三纵筋能够上下移动,从而使所述连接钢筋以所述倾斜状态或所述水 平状态设置在所述容纳部内。
在本发明的一些实施例中,所述第三纵筋设有第二限位部件,所述第二限位部件能够使得所述第三纵筋带动所述连接钢筋运动,从而使所述连接钢筋以所述倾斜状态或所述水平状态设置在所述容纳部内。
在本发明的一些实施例中,所述连接钢筋还包括远离所述连接端面的第二侧,所述第二侧包括滑动部,所述容纳部设有滑槽,所述滑槽沿所述连接端面的长度方向延伸,所述滑动部可滑动地设置在所述滑槽内,从而使所述连接钢筋以所述倾斜状态或所述水平状态设置在所述容纳部内。
在本发明的一些实施例中,所述滑槽内设有第三限位部件,所述第二侧滑动至所述第三限位部件时,所述连接钢筋以所述水平状态设置在所述容纳部内。
本发明的第二目的是提供一种预制混凝土组件,其包括上述任一的预制混凝土构件。
在本发明的一些实施例中,预制混凝土组件还包括与所述预制混凝土构件相配的预制混凝土拼接构件,所述预制混凝土拼接构件包括拼接端。
在本发明的一些实施例中,所述拼接端包括拼接孔洞,所述连接端的所述容纳部包括第一孔洞,所述拼接孔洞的深度加上所述第一孔洞的深度之和大于或等于所述连接钢筋的长度。
在本发明的一些实施例中,所述拼接端包括拼接凹槽,所述容纳部包括沿所述连接端面的长度方向延伸的凹槽,所述连接端还包括设置在所述容纳部内的支承钢筋,所述支承钢筋支承所述连接钢筋所述拼接凹槽的深度与所述凹槽的深度之和大于或等于所述连接钢筋的长度。
在本发明的一些实施例中,所述拼接凹槽内设有与所述支承钢筋的高度相同或比所述支承钢筋高度低的搭筋。
在本发明的一些实施例中,所述连接端还包括设置在所述容纳部内的支承钢筋,所述支承钢筋支承所述连接钢筋,所述拼接端内设有与所述支承钢筋的高度相同或比所述支撑钢筋高度低的搭筋。
本发明的第三目的是提供一种上述预制混凝土组件的拼接方法,包括:
将所述预制混凝土构件的所述连接端面与所述预制混凝土拼接构件的拼接端面对向设置;
将所述预制混凝土构件的所述连接钢筋从倾斜状态调至水平状态,并使所述连接钢 筋的所述第一侧伸入拼接端内;以及
往所述容纳部和所述拼接端内浇注混凝土,使所述预制混凝土构件和所述预制混凝土拼接构件固定连接在一起。
本发明的预制混凝土构件结构简单,施工非常便捷。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
图1(a)和图1(b)示出了本发明一实施例提供的预制混凝土构件,其中图1(a)中连接钢筋以倾斜状态设置在横向孔洞内,图1(b)中连接钢筋以水平状态设置在横向孔洞内。
图2示出了本发明一实施例提供的预制混凝土拼接构件。
图3示出了本发明另一实施例提供的预制混凝土构件。
图4(a)和图4(b)示出了本发明又一实施例提供的预制混凝土构件,其中图4(a)中连接钢筋以倾斜状态设置在容纳部内,图4(b)为图4(a)的部分剖视图。
图5示出了本发明另一实施例提供的预制混凝土拼接构件。
图6(a)和图6(b)示出了本发明一实施例提供的预制混凝土构件与预制混凝土拼接构件的拼接过程。
图7示出了本发明又一实施例提供的预制混凝土构件。
图8示出了本发明又一实施例提供的预制混凝土构件。
图9(a)和图9(b)示出了本发明又一实施例提供的预制混凝土构件,其中图9(a)中连接钢筋以倾斜状态设置在容纳部内,图9(b)中连接钢筋以水平状态设置在容纳部内。
图10示出了本发明一实施例提供的纵筋。
图11示出了本发明一实施例提供的连接钢筋。
图12示出了本发明又一实施例提供的连接钢筋。
图13(a)和图13(b)示出了本发明又一实施例提供的包括图11所示的连接钢筋的预制混凝土构件,其中图13(a)中连接钢筋以倾斜状态设置在容纳部内,图13(b)中连接钢筋以水平状态设置在容纳部内。
图14示出了本发明又一实施例提供的预制混凝土构件。
图15(a)和图15(b)示出了本发明又一实施例提供的预制混凝土构件,其中图15(a)中连接钢筋以倾斜状态设置在容纳部内,图15(b)中连接钢筋以水平状态设置在容纳部内。
图16示出了本发明又一实施例提供的预制混凝土构件的部分结构。
图17示出了本发明又一实施例提供的预制混凝土构件。
图18示出了本发明又一实施例提供的预制混凝土构件。
图19示出了本发明又一实施例提供的预制混凝土构件。
图20示出了本发明又一实施例提供的预制混凝土构件。
图21(a)和图21(b)示出了本发明又一实施例提供的预制混凝土构件,其中图21(a)中连接钢筋以倾斜状态设置在纵向凹槽内,图21(b)中连接钢筋以水平状态设置在纵向凹槽内。
图22示出了本发明又一实施例提供的预制混凝土拼接构件。
图23示出了本发明又一实施例提供的预制混凝土构件。
图24(a)和图24(b)示出了本发明又一实施例提供的预制混凝土构件,其中图24(a)中连接钢筋以倾斜状态设置在纵向凹槽内,图24(b)中连接钢筋以水平状态设置在纵向凹槽内。
图25示出了本发明又一实施例提供的预制混凝土构件。
图26示出了本发明又一实施例提供的预制混凝土构件。
图27(a)和图27(b)示出了本发明又一实施例提供的预制混凝土构件,其中图27(a)中连接钢筋以倾斜状态设置在纵向凹槽内,图27(b)中连接钢筋以水平状态设置在纵向凹槽内。
图28示出了本发明又一实施例提供的预制混凝土构件。
图29(a)和图29(b)示出了本发明又一实施例提供的预制混凝土构件,其中图29(a)中连接钢筋以倾斜状态设置在纵向凹槽内,图29(b)中连接钢筋以水平状态设置在纵向凹槽内。
图30示出了本发明又一实施例提供的预制混凝土构件。
图31示出了本发明又一实施例提供的预制混凝土构件。
图32示出了本发明一实施例提供的预制混凝土构件与预制混凝土拼接构件的拼接过程。
图33(a)和图33(b)示出了本发明一实施例提供的预制组合墙体,其中图33(a)中连接钢筋以倾斜状态设置在容纳部内,图33(b)中连接钢筋以水平状态设置在容纳部内。
图34示出了本发明另一实施例提供的预制混凝土拼接构件。
图35示出了本发明又一实施例提供的预制组合墙体。
图36(a)和图36(b)示出了本发明又一实施例提供的预制组合墙体,其中图36(a)中连接钢筋以倾斜状态设置在容纳部内,图36(b)中连接钢筋以水平状态设置在容纳部内。
图37示出了本发明又一实施例提供的预制组合墙体。
图38示出了本发明又一实施例提供的预制组合墙体。
图39示出了本发明又一实施例提供的预制组合墙体。
图40(a)和图40(b)示出了本发明又一实施例提供的预制组合墙体,其中图40(a)中连接钢筋以倾斜状态设置在容纳部内,图40(b)中连接钢筋以水平状态设置在容纳部内。
图41示出了本发明又一实施例提供的预制组合墙体。
图42示出了本发明又一实施例提供的预制组合墙体。
图43示出了本发明又一实施例提供的预制组合墙体。
图44(a)和图44(b)示出了本发明一实施例提供的预制组合墙体与预制混凝土拼接构件的拼接过程。
具体实施方式
在下文中,仅简单地描述了某些示例性实施例。正如本领域技术人员可认识到的那样,在不脱离本发明的精神或范围的情况下,可通过各种不同方式修改所描述的实施例。因此,附图和描述被认为本质上是示例性的而非限制性的。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
本发明中,术语“第一”、“第二”等序数词仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
需要说明的是,除非另有明确的规定和限定,本发明中的术语“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是柔性连接,也可以是可拆卸连接,或一体地连接,也包括二者相互接触的情况;可以是机械连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
以下结合附图和实施例,对本发明的具体实施方式进行更加详细的说明,以便能够更好地理解本发明的方案以及其各个方面的优点。然而,以下描述的具体实施方式和实施例仅是说明的目的,而不是对本发明的限制。
图1(a)和图1(b)示出了本发明提供的一种预制混凝土构件100,其包括连接端(即该预制混凝土构件与其他预制混凝土构件或现浇混凝土相连的那端),连接端有连接端面101,其上设有容纳部,本实施例中容纳部为横向孔洞102。横向孔洞102开口在连接端面101上,且大致沿水平方向延伸的孔洞。该横向孔洞可与水平方向平行,也可与水平方向呈一定角度(0到不大于90 的范围内)。本发明中,横向孔洞102可以是贯通孔也可以是不贯通孔,视需要设定即可。
连接钢筋103容纳在横向孔洞102中。本发明中所述的“容纳”是指“部分或全部位于”,即连接钢筋103容纳在横向孔洞102中是指连接钢筋103部分或全部位于横向孔洞102内。其中,连接钢筋103包括靠近连接端面101的第一侧103a。本实施例中的连接钢筋103为矩形钢筋环(或矩形箍筋),因此其还具有远离连接端面的第二侧103b。需要说明的是,本发明中连接钢筋103还可以是其他形状,也不一定具有第二侧(比如为“]”型),只要能实现相关效果就行。
本发明中,连接钢筋103在横向孔洞102内能够移动,从而以倾斜状态(图1(a))或水平状态(图1(b))设置在横向孔洞102内。其中,当连接钢筋103以倾斜状态设置在横向孔洞102内时,第一侧103a位于横向孔洞102内;当连接钢筋103以水平状态设置在横向孔洞102内时,第一侧103a伸出连接端面101外。需要说明的是,在本发明的其他实施例中,当连接钢筋103以倾斜状态设置在横向孔洞102 内时,第一侧103a位于横向孔洞102外;当连接钢筋103以水平状态设置在横向孔洞102内时,第一侧103a伸出连接端面101外更大长度。
本实施例中,连接钢筋103在制作好预制混凝土构件100后安装,不干扰预制混凝土构件100制作,并且连接钢筋103在工厂或者吊装前集中安装,避免在施工现场的工作量,显著减少场内工作量;在运输、吊装环节,连接钢筋103以倾斜状态设置在横向孔洞102内,一般不伸出构件侧面,不干扰运输、吊装。预制混凝土构件间的接缝施工时,将连接钢筋103调至水平状态即可,非常便捷;由于在自重下连接钢筋103具有由倾斜状态变为水平状态的趋势,因此间接扰动(例如震动预制混凝土构件)也可以使连接钢筋103调至水平状态,使连接钢筋103具有自动调整至水平状态的性能。本实施中,预制混凝土构件100仅设置横向孔洞,简化了开孔构造。
本实施例中的预制混凝土构件100在施工时可与现浇混凝土拼接在一起,也可以与图2所示的预制混凝土拼接构件200拼接在一起。
预制混凝土拼接构件200包括拼接端(即预制混凝土构件相连的那端),拼接端包括拼接孔洞201,在本实施例中其也为横向孔洞,在本发明的其他实施例中,其还可以为其他构造,可以容纳连接钢筋103即可。预制混凝土构件100与预制混凝土拼接构件200间的接缝宽度(二者间的间距)可为0-20mm,即预制混凝土构件100与预制混凝土拼接构件200间采用密拼缝技术;预制混凝土构件100与预制混凝土拼接构件200间的接缝宽度也可以大于20mm;优选预制混凝土构件100与预制混凝土拼接构件200间为密拼缝。其中,拼接孔洞201的深度、横向孔洞102的深度以及拼缝宽度之和比连接钢筋103的长度大0-20mm(本实施例中为水平方向的长度),或者20mm-200mm等。
当与现浇混凝土拼接时,将预制混凝土构件100的连接钢筋103从倾斜状态调至水平状态,使连接钢筋103的第一侧103a伸出连接端面101外,然后浇筑后浇混凝土,使预制混凝土构件100和现浇混凝土连接在一起。
当与预制混凝土拼接构件200拼接时,将预制混凝土构件100的连接端面102与预制混凝土拼接构件200的拼接端面202对向设置;将预制混凝土构件100的连接钢筋103从倾斜状态调整至水平状态,使连接钢筋103的第一侧103a伸出连接端面101外,并伸入拼接孔洞201;由于在自重下连接钢筋103具有由倾斜状态变为水平状态的趋势,因此间接扰动也可以使连接钢筋103调至水平状态;这样即使预制混凝土拼接 构件200拼与预制混凝土构件100间的接缝宽度为0导致没有操作空间不能直接接触连接钢筋时,扰动连接钢筋103可使其由倾斜状态调整至水平状态,例如震动预制混凝土构件100;这样连接预制混凝土拼接构件200拼与预制混凝土构件100的连接钢筋103具有自动就位的性能,实现了连接钢筋自动化安装,极为方便、快捷。然后往预制混凝土构件100的横向孔洞102、预制混凝土拼接构件200的拼接孔洞201中浇注混凝土,使预制混凝土构件100和预制混凝土拼接构件200固定连接在一起,形成预制混凝土组件。为了方便在接缝处及横向孔洞内浇筑混凝土,横向孔洞可以倾斜一定角度。
如图3所示,图1(a)和图1(b)所示的预制混凝土构件100还可包括第一纵筋104。第一纵筋104位于连接端面101外,第一纵筋101与第一侧103a相连。该相连可以固定连接也可以是不固定连接(例如二者接触)。
不固定连接时,第一纵筋104能够抵住连接钢筋103,使连接钢筋103不会伸出横向孔洞103,以倾斜状态放置在横向孔洞102内。此种情况下,施工时,可直接撤走第一纵筋104,连接钢筋103可改变倾斜状态。依照本实施例的技术路线,可以采用其他的措施抵住连接钢筋103,例如用刚性板堵住横向孔洞102等
固定连接时,第一纵筋104能够移动(比如水平移动),从而使连接钢筋103以倾斜状态或水平状态设置在横向孔洞102。其中,在倾斜状态,第一纵筋104接触连接端面101;在水平状态,第一纵筋104远离连接端面101。在施工时,可通过第一纵筋104调整连接103的状态,然后与其他现浇混凝土拼接构件或预制拼接构件(比如其连接端设有纵向凹槽)进行拼接。
图4(a)和图4(b)示出了本发明的另一种预制混凝土构件400,其跟图1(a)和图1(b)所示的预制混凝土构件100的不同之处在于,该预制混凝土构件400的连接端还包括与横向孔洞402连通的纵向孔洞404(即容纳部为相交的横向孔洞402和纵向孔洞404),其开口设置在与连接端面401垂直的面405上。在本发明的另一实施例中,面405也可不与连接端面401垂直。本发明中,纵向孔洞404可为贯通孔,也可为不贯通孔,本实施例为贯通孔(如图4(b)所示)。此时,连接钢筋403容纳在横向孔洞402和纵向孔洞404内。在本发明的其他实施例中,连接钢筋403还可仅容纳在横向孔洞402或仅容纳在纵向孔洞404内。
本实施例中,在运输状态时,连接钢筋403以倾斜状态设置在横向孔洞402或纵向孔洞404内。施工时,将连接钢筋403调至水平状态即可。
类似图1(a)和图1(b)所示实施例,本实施例中的预制混凝土构件400在 施工使可与现浇混凝土拼接在一起,也可以与图2的预制混凝土拼接构件200或图5所示的预制混凝土拼接构件500拼接在一起。
预制混凝土拼接构件500包括拼接端,拼接端包括拼接孔洞501,在本实施例中其也为相交的横向孔洞和纵向孔洞。在本发明的其他实施例中,拼接孔洞501可仅包括横向孔洞。
当与现浇混凝土拼接时,将预制混凝土构件400的连接钢筋403从倾斜状态调至水平状态,使连接钢筋403的第一侧403a伸出连接端面401外,浇筑现浇混凝土,并往横向孔洞内浇注混凝土,使预制混凝土构件400和连接构件连接在一起,形成混凝土组件。
当与预制混凝土拼接构件500拼接时,将预制混凝土构件400的连接端面402与预制混凝土拼接构件500的拼接端面502对向设置;预制混凝土构件400的连接钢筋403从倾斜状态调整至水平状态,使连接钢筋403的第一侧403a伸出连接端面401外,并伸入拼接孔洞501;然后往预制混凝土构件400的横向孔洞402、预制混凝土拼接构件500的拼接孔洞501中浇注混凝土,使预制混凝土构件400和预制混凝土拼接构件500固定连接在一起,形成预制混凝土组件。
图6(a)和图6(b)示出了图4(a)和图4(b)所示的预制混凝土构件400与图2所示的预制混凝土拼接构件200的拼接过程。其中图6(a)中,连接钢筋403处于倾斜状态,图6(b)中连接钢筋403处于水平状态,并伸入预制混凝土拼接构件200的拼接孔洞201中。为了方便及拼接孔洞201内浇筑混凝土,拼接孔洞可以倾斜一定角度。采用图6(a)和图6(b)所示预制混凝土构件连接构造,现浇混凝土通过预制混凝土构件400的纵向孔洞404浇筑,混凝土充满拼接孔洞201,实现预制混凝土构件拼接。
如图7所示的,图4(a)和图4(b)所示的预制混凝土构件400还可包括第一纵筋406。该第一纵筋406的与图3所示的第一纵筋104的连接方式、功能及施工方法类似,在此不再赘述。
如图8所示,图4(a)和图4(b)所示的预制混凝土构件400还可以包括第二纵筋407,第二纵筋407至少为1根。第二纵筋407沿纵向孔洞404的长度方向设置在纵向孔洞404内,连接钢筋403与第二纵筋407相连。本实施例中,第二纵筋407设置在纵向孔洞404内。连接钢筋403的远离连接端面401的第二侧403b能够沿着第二纵筋407的长度方向上下移动,从而使连接钢筋403以倾斜状态或水平状态设置在横向孔洞 402和纵向孔洞404内。
第二纵筋407上可设有第一限位部件(图中未示出),当第二侧移动至第一限位部件时,连接钢筋403以水平状态设置在横向孔洞402和纵向孔洞404内。第一限位部件是为了对连接钢筋403进行定位,可防止连接钢筋403第二侧403b向下变位超过水平状态。
如图9(a)和图9(b)所示,图4(a)和图4(b)所示的预制混凝土构件400还可以包括第三纵筋408,第三纵筋408为1根或2根或更多。第三纵筋408沿纵向孔洞404的长度方向设置在纵向孔洞404内,本实施例中,第三纵筋408可移动地设置在纵向孔洞404内。第三纵筋408与连接钢筋403的远离连接端面401的第二侧403b(图中未示出)相连,第三纵筋408能够上下移动,带动连接钢筋403以倾斜状态(图9(a))或水平状态(图9(b))设置在横向孔洞402和纵向孔洞404内。即通过拉动第三纵筋408的上端(或下端)远离预制混凝土构件400,带动连接钢筋403处于倾斜状态;移动第三纵筋408的上端(或下端)趋近预制混凝土构件400,带动连接钢筋403趋向水平状态直至水平状态。这样实现连接钢筋403与纵筋408联动,不直接接触连接钢筋403却可以调整连接钢筋403至需要的位置,方便设置连接钢筋;而且实际工程中,同一接缝处连接钢筋有多根,采用本实施例技术可同时设置多根连接钢筋。
第三纵筋408上也可设置限位部件(如图10所示的第二限位部件408a,第二限位部件408a可为短钢筋)。当拖动第三纵筋408,第二限位部件408a可使得第三纵筋408带动连接钢筋403运动(例如第二限位部件408a勾住连接钢筋403运动),使其调整为倾斜或水平状态。当然,第三纵筋也可与第二侧403b固定连接在一起,或采用其他方式连接在一起,只要能实现相关效果即可。
如图11、图13(a)和图13(b)所示,图4(a)和图4(b)所示的预制混凝土构件400的连接钢筋403的第二侧403b可包括滑动部A,此时,纵向孔洞404的长度方向设有滑槽404a。滑动部A可滑动地设置在滑槽404a内,从而使连接钢筋403以倾斜状态(图13(a))或水平状态(图13(b))设置在横向孔洞402和纵向孔洞404内。图11中滑动部A是单独连接到连接钢筋403上的,图12中滑动部A1是由连接钢筋403的第二侧403b延伸形成的。
需要说明的是,图1(a)和图1(b)或图3所示的预制混凝土构件100可设置类似图13所示的滑槽404a和包括滑动部A的第二侧403b。其中,滑槽可设置在横向孔洞102的底面。其余与图13(a)和图13(b)类似,在此不再赘述。在纵向孔洞404 的长度方向设有滑槽404a,使连接钢筋403的第二侧403b在指定的位置,从而保证连接钢筋403位置处于可控的状态,例如运输时连接钢筋不会脱落、连接钢筋调整为水平状态时其伸出预制混凝土构件400的长度是固定值等;特别是没有与连接钢筋相连的纵筋也可以实现连接钢筋403位置可控,例如连接钢筋403不会脱落,可节省纵筋。
滑槽404a内可设有第三限位部件B(如图14所示)。当第二侧403b滑动至第三限位部件B时,连接钢筋403以水平状态设置在横向孔洞402和纵向孔洞404内。第三限位部件B可为混凝土块。
图15(a)和图15(b)示出了本发明另一种实施例中的滑槽404b,其与滑槽404a设置的位置不同,其中,图(a)中连接钢筋403处于倾斜状态,(b)中处于水平状态。图16示出了本发明另一种实施例中的滑槽404c和连接钢筋,该连接钢筋具有与图10和图11所示的滑动部A、A1不同的滑动部A2。
本发明中,预制混凝土构件可包括一个连接端,也可包括多个连接端(例如图17-19所示)。图17和18中有两个连接端,图19中有三个连接端,图18的预制混凝土构件为L型构件,图19的预制混凝土构件为T型构件。
如图20所示,本发明的一个容纳部中可以包括多个连接钢筋。当然,第一、第二、第三纵筋都可以是一个或多个。
本发明的预制混凝土构件结构简单,连接钢筋在预制混凝土构件制作完成后安装在容纳部内,不干扰预制混凝土构件制作;并且连接钢筋不需在工地现场安装,减少了现场工作量。在运输、吊装的过程中,连接钢筋容纳在容纳部内,不占体积,不会被碰撞;在施工时,仅需将连接钢筋调至水平状态,即可与其他连接构件进行连接,工艺简洁。本发明在制作、运输等阶段连接钢筋倾斜设置在容纳部内,极大地减少了容纳部的空间,例如减少横向孔洞的深度,从而减少了预制混凝土构件的开孔率,进而减少后浇混凝土量。
本发明的连接钢筋在倾斜状态下在其自重作用下有调整至水平状态的趋势,使连接钢筋由倾斜状态调整至水平状态具有一定的自动性,即稍微扰动连接钢筋例如震动预制混凝土构件或连接钢筋,连接钢筋即可从倾斜状态调整至水平状态,连接钢筋具有自动就位的性能。这一特性方便预制构件间设置连接钢筋,尤其适用于预制混凝土构件间密拼连接时设置连接钢筋。
采用本发明技术,连接钢筋安装在接缝处一侧的预制混凝土构件内,然后伸入接缝另一侧预制混凝土构件,连接钢筋具有的自动就位的性能,实现了连接钢筋自动化 安装,极为方便、快捷。本发明还提供了各种不同的与连接钢筋配合的钢筋,能非常简便地将连接钢筋伸出容纳部,大大加快了施工安全性和速度。
图21(a)和图21(b)示出了本发明提供的又一种预制混凝土构件100-1,其包括连接端,连接端设有连接端面101-1,沿连接端面101-1的长度方向设置有纵向凹槽102-1。纵向凹槽102-1开口的设置连接端面101-1上。本发明中,纵向凹槽102-1可以是贯通凹槽也可以是不贯凹槽,视需要设定即可。
连接钢筋103-1容纳在纵向凹槽102-1中。纵向凹槽102-1中的连接钢筋可以为一个或多个,本实施例中,沿纵向凹槽102-1的长度方向设置有多个连接钢筋103-1。其中,连接钢筋103-1包括靠近连接端面101-1的第一侧103a-1。本实施例中的连接钢筋103-1为矩形钢筋环,因此其还具有远离连接端面的第二侧103b-1。
支承钢筋104-1支承连接钢筋103-1,本实施例中,支承钢筋104-1为横筋,其固定设置在纵向凹槽102-1内。连接钢筋103-1在纵向凹槽102-1内能够移动,从而以倾斜状态(图21(a))或水平状态(图21(b))设置在纵向凹槽102-1内。其中,当连接钢筋103-1以倾斜状态设置在纵向凹槽102-1内时,第一侧103a-1位于纵向凹槽102-1内;当连接钢筋103-1以水平状态设置在纵向凹槽102-1内时,第一侧103a-1伸出连接端面101-1外。需要说明的是,在本发明的其他实施例中,当连接钢筋103-1以倾斜状态设置在纵向凹槽102-1内时,第一侧103a-1可位于纵向凹槽102-1外;当连接钢筋103-1以水平状态设置在纵向凹槽102-1时,第一侧103a-1可伸出连接端面101-1外更大长度。
连接钢筋103-1可在制作好预制混凝土构件100-1后安装,方便预制混凝土构件100-1制作。本实施例中,在运输状态时,连接钢筋103-1以倾斜状态设置在纵向凹槽102-1内。施工时,将连接钢筋103-1调至水平状态即可,非常便捷;由于在自重下连接钢筋103-1具有由倾斜状态变为水平状态的趋势,因此间接扰动也可以使连接钢筋103-1调至水平状态。
图21(a)和图21(b)所示的实施例中,预制混凝土构件100-1的与连接端相对的另一端也设有纵向凹槽,但该凹槽内未设有连接钢筋,因此该预制混凝土构件100-1可以两两拼接在一起,不需要其他拼接构件。当然,预制混凝土构件100-1的相对端也可以不设置凹槽。预制混凝土构件100-1与现浇混凝土拼接在一起,也可以与图22所示的预制混凝土拼接构件200-1拼接在一起。
预制混凝土拼接构件200-1包括拼接凹槽201-1,在本实施例中其也为纵向凹槽,在本发明的其他实施例中,其还可以为其他类型,例如孔洞。预制混凝土构件100-1与预制混凝土拼接构件200-1间的接缝宽度可为0-20mm,即预制混凝土构件100与预制混凝土拼接构件200间采用密拼缝技术;预制混凝土构件100-1与预制混凝土拼接构件200-1间的接缝宽度也可以大于20mm;优选预制混凝土构件100-1与预制混凝土拼接构件200-1间为密拼缝。其中,拼接凹槽201-1的深度、横向孔洞102-1的深度以及拼缝宽度之和比连接钢筋103-1的长度大0-50mm(本实施例中为水平方向的长度),或者50mm-200mm等。
图22所示的实施例中,拼接凹槽201-1内设有与支承钢筋104-1的高度相同或稍高的搭筋203-1(相邻预制混凝土构件100-1与预制混凝土拼接构件200-1高度是指二者都安装到位的状态下的高度)。当与现浇混凝土拼接时,将预制混凝土构件100-1的连接钢筋103-1从倾斜状态调至水平状态,使连接钢筋103-1的第一侧103a-1伸出连接端面101-1外,并伸入现浇混凝土中即可,使预制混凝土构件100-1和现浇混凝土固定连接在一起,形成组件。
当与预制混凝土拼接构件200-1拼接时,将预制混凝土构件100-1的连接端面102-1与预制混凝土拼接构件200-1的拼接端面202-1对向设置;将预制混凝土构件100-1的连接钢筋103-1从倾斜状态调整至水平状态,使连接钢筋103-1的第一侧103a-1伸入拼接凹槽201-1与搭筋203-1接触;由于在自重下连接钢筋103-1具有由倾斜状态变为水平状态的趋势,因此间接扰动也可以使连接钢筋103-1调至水平状态;这样即使预制混凝土拼接构件200-1拼与预制混凝土构件100-1间的接缝宽度为0导致没有操作空间不能直接接触连接钢筋时,扰动连接钢筋103-1可使其由倾斜状态调整至水平状态,例如震动预制混凝土构件100-1;这样连接预制混凝土拼接构件200-1拼与预制混凝土构件100-1的连接钢筋103-1具有自动就位的性能,实现了连接钢筋自动化安装,极为方便、快捷。然后往预制混凝土构件100-1的纵向凹槽102-1、预制混凝土拼接构件200-1的拼接凹槽201-1中浇注混凝土,使预制混凝土构件100-1和预制混凝土拼接构件200-1固定连接在一起,形成预制混凝土组件。
如图23所示,图21(a)和图21(b)所示的预制混凝土构件100-1还可以包括第二纵筋105-1。第二纵筋105-1沿纵向凹槽102-1的长度方向设置在纵向凹槽102-1内。本实施例中,第二纵筋105-1固定设置在纵向凹槽102内。连接钢筋103-1的远离连接端面101-1的第二侧103b-1能够沿着第二纵筋105-1的长度方向上下 移动,从而使连接钢筋103-1以倾斜状态或水平状态设置在纵向凹槽102-1内。
本实施例中,第二纵筋105-1上也可设有第一限位部件(图中未示出),当第二侧103b-1移动至第一限位部件时,连接钢筋103-1以水平状态设置在纵向凹槽102-1内。第一限位部件是为了对连接钢筋103-1进行定位,可防止连接钢筋103-1向下滑落至超过水平位置。
如图24(a)和图24(b)所示,图21(a)和图21(b)所示的预制混凝土构件100-1还可以包括第三纵筋106-1。第三纵筋106-1沿纵向凹槽102-1的长度方向设置在纵向凹槽102-1内,本实施例中,第三纵筋106-1在纵向凹槽102-1内可移动。第三纵筋106-1与连接钢筋103-1的远离连接端面101-1的第二侧103b-1相连,第三纵筋106-1能够上下移动,从而使连接钢筋103-1以倾斜状态(图24(a))或水平状态(图24(b))设置在纵向凹槽102-1内。即通过移动第三纵筋106-1的上端(或下端)远离预制混凝土构件100-1,带动连接钢筋103-1处于倾斜状态;移动第三纵筋106-1的上端(或下端)趋近预制混凝土构件100-1,带动连接钢筋103-1趋向水平状态直至水平状态。这样实现连接钢筋103-1与第三纵筋106-1联动,不直接接触连接钢筋103-1却可以调整连接钢筋103-1至需要的位置,方便设置连接钢筋;而且实际工程中,同一接缝处连接钢筋有多根,采用本实施例技术不需一一设置连接钢筋。
如图25所示,图21(a)和图21(b)所示的预制混凝土构件100-1的连接钢筋103-1的第二侧103b-1也可包括滑动部,此时,纵向凹槽102-1的长度方向设有滑槽102a-1。滑动部可滑动地设置在滑槽102a-1内,从而使连接钢筋103-1以倾斜状态或水平状态设置在纵向凹槽102-1内。在纵向凹槽102-1的长度方向设有滑槽102a-1,使连接钢筋103-1的第二侧103b-1具有指定的位置,从而保证连接钢筋103-1位置处于可控的状态,例如运输时连接钢筋不会脱落,连接钢筋调整为水平状态时其伸出预制混凝土构件100-1的长度是固定值等;特别是没有与连接钢筋相连的纵筋也可以实现连接钢筋103-1位置可控,避免脱落。
滑动部和滑槽102a-1也可是如前所述的其他结构。
如图26、图27(a)、图27(b)所示,图21(a)和图21(b)所示的预制混凝土构件100-1还可包括第一纵筋107-1,第一纵筋107-1位于连接端面101-1外。图25所示的实施例中,第一纵筋107-1与第一侧103a-1相连,第一纵筋107-1位于环形的连接钢筋103-1外。图27所示的实施例中,第一纵筋107-1位于环形的连接钢筋103-1内,且与连接钢筋103-1的侧部相连。该相连可以固定连接也可以 是不固定连接。
图26所示的实施例中,不固定连接时,第一纵筋107-1能够抵住连接钢筋103-1,使连接钢筋103-1不会伸出纵向凹槽102-1,以倾斜状态放置在纵向凹槽102-1内。此种情况下,施工时,可直接撤走第一纵筋107-1,然后进行如上所述的后续施工过程。依照本实施例的技术路线,可以采用其他的措施抵住连接钢筋103-1,例如用刚性板堵住纵向凹槽102-1等。
图26、图27(a)、图27(b)所示的实施例在固定连接时,第一纵筋107-1均能够移动(比如水平移动或沿纵向移动),从而使连接钢筋103-1以倾斜状态(例如图27(a)所示)或水平状态(例如图27(b)所示)设置在纵向凹槽102-1。图26所示的实施例中,在倾斜状态,第一纵筋107-1接触连接端面101-1;在水平状态,第一纵筋107-1远离连接端面101-1。在施工时,可通过第一纵筋107-1调整连接钢筋103-1的状态,然后与其他现浇混凝土拼接构件或预制拼接构件(比如其连接端设有纵向凹槽)进行拼接。
图26所示的实施例中,第一纵筋107-1为1根,图27(a)、图27(b)所示的实施例中第一纵筋有2根。在本发明的其他实施例中,第一纵筋也可以是其他数量。
如图28所示,还可在连接端面101-1上设置横筋108-1,横筋108-1与第一纵筋107-1相连,横筋108-1的长度大于纵向凹槽102-1的宽度,起到对第一纵筋107-1定位的作用。本实施例中,横筋108-1有2个,位于第一纵筋107-1的上下两侧,在本发明的其他实施例中,横筋108-1可以是1个,也可以是其他数量。
如图29(a)和图29(b)所示,图21(a)和图21(b)所示的预制混凝土构件100-1还可包括固定设置在纵向凹槽102-1内的限位钢筋109-1。本实施例中,限位钢筋109-1也为横筋,其位于支承钢筋104-1的上方,连接钢筋103-1在支承钢筋104-1和限位钢筋109-1之间的间隙中移动,从而进行倾斜状态(图29(a))和水平状态(图29(b))的切换。可选地,该间隙的宽度(即支承钢筋104-1与限位钢筋109-1之间的距离)比连接钢筋103-1的直径大1-15mm(也可以是其他数值),以便连接钢筋103-1能够自由移动;同时支承钢筋104-1与限位钢筋109-1夹持连接钢筋103-1,可更好的控制连接钢筋103-1的位置。
本发明中,支承钢筋104-1和限位钢筋109-1还可以是U形钢筋,或其他任何形状,只有可以实现相应支承和限位效果即可。
本发明中,容纳部为纵向凹槽的预制混凝土构件还可以是如图30的结构,为包括2个连接端L型构件,当然也可以是其他结构,例如T型构件。
图31示出了本发明的另一种预制混凝土构件300-1,其最上端的连接钢筋303-1的第二侧303b-1在倾斜状态下伸出了构件外。其通过支撑支承钢筋304-1和限位钢筋309-1对连接钢筋303-1进行限位。
图32(a)和图32(b)示出了图31所示的预制混凝土构件300-1与图22所示的预制混凝土拼接构件200-1的拼接过程。其中图32(a)中,连接钢筋303-1处于倾斜状态,图32(b)中连接钢筋303-1处于水平状态,并伸入预制混凝土拼接构件200-1的纵向凹槽201-1中;连接钢筋303-1伸入拼接构件200-1的部分可以在搭筋203-1之上,也可以在搭筋203-1之下。
叠合板剪力墙结构作为一种装配式建筑结构体系,安装轻便,具有一定的应用前景。此外,与叠合板剪力墙结构构造类似的钢筋模板一体化结构也有良好的技术优势。这些预制混凝土结构构件都是由两个预制板及连接两块预制板的连接筋组成。
图33(a)和图33(b)示出了本发明提供的又一种预制混凝土构件100-2(为了与前述实施例进行区别,下称“预制组合墙体100-2”),其由连接件111-2和至少两片预制板112-2形成。本实施例中,预制板112-2为两片,本实施例的预制组合墙体100-2的一种工程应用实例是叠合板剪力墙,即双皮墙。需要特别说明的是,本发明的预制组合墙体100-2还可以是其他形状,比如T形、L形等。
预制组合墙体100-2包括连接端,连接端设有连接端面121-2和由连接端的两侧墙体之间的空隙形成的容纳部122-2。连接钢筋123-2容纳在容纳部122-2中。容纳部122-2中的连接钢筋可以为一个或多个,本实施例中,沿容纳部122-2的纵向长度方向设置有多个连接钢筋123-2。其中,连接钢筋123-2包括靠近连接端面121-2的第一侧123a-2。本实施例中的连接钢筋123-2为矩形钢筋环,因此其还具有远离连接端面的第二侧123b-2。
支承钢筋124-2支承连接钢筋123-2,本实施例中,支承钢筋124-2为横筋,其固定设置在容纳部122-2内。支承钢筋124-2可是单独设置的钢筋,也可以由连接件111-2的钢筋担任。连接钢筋123-2在容纳部122-2内能够移动,从而以倾斜状态(图33(a))或水平状态(图33(b))设置在容纳部122-2内。其中,当连接钢筋123-2以倾斜状态设置在容纳部122-2内时,第一侧123a-2位于容纳部122-2内; 当连接钢筋123-2以水平状态设置在容纳部122-2内时,第一侧123a-2伸出连接端面121-2外。
连接钢筋123-2在制作好预制组合墙体100-2后安装,方便预制组合墙体100-2制作。本实施例中,在运输状态时,连接钢筋123-2以倾斜状态设置在容纳部122-2内。施工时,将连接钢筋123-2调至水平状态即可,非常便捷。由于在自重下连接钢筋123-2具有由倾斜状态变为水平状态的趋势,因此间接扰动也可以使连接钢筋123-2调至水平状态。
图33(a)和图33(b)所示的实施例中,预制组合墙体100-2的与连接端相对的另一端也设有容纳部,但该容纳部内未设有连接钢筋,因此该预制组合墙体100-2可以两两拼接在一起,不需要其他拼接构件。当然,预制组合墙体100-2也可与现浇混凝土拼接在一起,或也可以与图34所示的预制混凝土拼接构件200-2拼接在一起。预制组合墙体100-2与预制混凝土拼接构件200-2间的接缝宽度可为0-20mm,即预制组合墙体100与预制混凝土拼接构件200间采用密拼缝技术;预制组合墙体100-2与预制混凝土拼接构件200-2间的接缝宽度也可以大于20mm;优选预制组合墙体100-2与预制混凝土拼接构件200-2间为密拼缝。
预制混凝土拼接构件200-2包括拼接端,拼接端内设有与支承钢筋104-2的高度相同或高度略低的搭筋201-2(相邻预制组合墙体100-2与预制混凝土拼接构件200-2高度是指二者都安装到位的状态下的高度)。在本发明的其他实施例中,其还可以为其他类型,例如孔洞或凹槽。当与现浇混凝土拼接时,将预制组合墙体100-2的连接钢筋123-2从倾斜状态调至水平状态,使连接钢筋123-2的第一侧123a-2伸出连接端面121-2外,并伸入现浇混凝土制得的连接构件中,并往容纳部内浇注混凝土,使预制组合墙体100-2和连接构件固定连接在一起,形成预制混凝土组件。
当与预制混凝土拼接构件200-2拼接时,将预制组合墙体100-2的连接端面121-2与预制混凝土拼接构件200-2的拼接端面对向设置;将预制组合墙体100-2的连接钢筋123-2从倾斜状态调整至水平状态,使连接钢筋123-2的第一侧123a-2伸出连接端面121-2外,并搁置在搭筋201-2上,或者在搭筋201-2之下;由于在自重下连接钢筋123-2具有由倾斜状态变为水平状态的趋势,因此间接扰动也可以使连接钢筋123-2调至水平状态;这样即使预制混凝土拼接构件200-2拼与预制组合墙体100-2间的接缝宽度为0导致没有操作空间不能直接接触连接钢筋时,扰动连接钢筋123-2可使其由倾斜状态调整至水平状态,例如震动预制组合墙体100-2;这样连接预制混 凝土拼接构件200-2与预制组合墙体100-2的连接钢筋123-2具有自动就位的性能,实现了连接钢筋自动化安装,极为方便、快捷。然后往预制组合墙体100-2的预制板112-2间、预制混凝土拼接构件200-2的空间中浇注混凝土,使预制组合墙体100-2和预制混凝土拼接构件200-2固定连接在一起,形成预制混凝土组件。
如图35所示,图33(a)和图33(b)所示的预制组合墙体100-2的连接钢筋123-2的第二侧123b-2可包括滑动部,此时,容纳部122-2的长度方向设有滑槽122a-2。滑动部可滑动地设置在滑槽122a-2内,从而使连接钢筋123-2以倾斜状态或水平状态设置在容纳部122-2内。可选地,该滑槽内也可设有第二限位部件,当第二侧123b-2滑动至第二限位部件时,连接钢筋123-2以水平状态设置在容纳部122-2内。
如图36(a)和图36(b)所示,图33(a)和图33(b)所示的预制组合墙体100-2还可以包括第二纵筋125-2。第二纵筋125-2沿容纳部122-2的长度方向设置在容纳部122-2内,连接钢筋123-2与第二纵筋125-2相连。本实施例中,第二纵筋125-2设置在容纳部122-2内,例如与连接件111-2连接。连接钢筋123-2的远离连接端面121-2的第二侧123b-2能够沿着第二纵筋125-2的长度方向上下移动,从而使连接钢筋123-2以倾斜状态(图36(a))或水平状态(图36(b))设置在容纳部122-2内。
第二纵筋125-2上可设有第一限位部件(图中未示出),当第二侧123b-2移动至第一限位部件时,连接钢筋123-2以水平状态设置在容纳部122-2内。第一限位部件是为了对连接钢筋123-2进行定位,可防止连接钢筋123-2向下滑落。
如图37所示,图33(a)和图33(b)所示的预制组合墙体100-2还可以包括第三纵筋126-2。第三纵筋126-2沿容纳部122-2的长度方向设置在容纳部122-2内,本实施例中,第三纵筋126-2可在容纳部122-2内移动。第三纵筋126-2与连接钢筋123-2的远离连接端面121-2的第二侧123b-2相连,第三纵筋126-2能够上下移动,从而使连接钢筋123-2以倾斜状态或水平状态设置在容纳部122-2内。即通过拉动第三纵筋126-2的上端(或下端)远离预制组合墙体100-2,带动连接钢筋123-2处于倾斜状态;移动第三纵筋126-2的上端(或下端)趋近预制组合墙体100-2,带动连接钢筋123-2趋向水平状态直至水平状态。这样实现连接钢筋123-2与纵筋126-2联动,不直接接触连接钢筋123-2却可以调整连接钢筋123-2至需要的位置,方便设置连接钢筋;而且实际工程中,同一接缝处连接钢筋有多根,采用本实施例技术不需一一设 置连接钢筋。连接钢筋123-2调整幅度不大,纵筋126-2可以连接件111-2连接,例如用具有一定长度的钢丝连接,或者用环状物将纵筋126-2与连接件111-2套在一起。
第三纵筋126-2上也可设置限位部件。当拖动第三纵筋126-2,限位部件可勾住连接钢筋123-2使其调整为倾斜或水平状态。当然,第三纵筋也可与第二侧123b-2固定连接在一起,或采用其他方式连接在一起,只要能实现相关效果即可。
图38示出了第二纵筋125-2的另一种排布方式。图38中,该预制组合墙体100-2包括三根纵筋125-2(也可换为第三纵筋126-2),这三根纵筋中一根(125a-2)位于连接钢筋123-2外(可为连接钢筋123-2移动提供导轨或者内侧限位,使123b-2不会向容纳部内侧移动),另外两根(125b-2)位于连接钢筋123-2内。可选地,位于连接钢筋123-2内两根纵筋与位于连接钢筋123-2外的那根纵筋的距离相等。该三根纵筋之间间隙可设置为较小,恰好能让连接钢筋123-2在间隙内上下移动。可选地,该间隙的宽度(即水平距离)比连接钢筋123-2的直径大0-10mm。第三纵筋126-2也可以按照图38所示排布。这三根纵筋中位于连接钢筋外的纵筋可在连接件111-2内侧,也可以在连接件111-2的外侧,与连接件111-2连接。当在连接件111-2外侧时,可更好的避免连接件111-2干扰连接钢筋123-2移动(相当于给连接钢筋123-2设置了一个轨道)。
如图39所示,图33(a)和图33(b)所示的预制组合墙体100-2还可以包括第一纵筋127-2和第一横筋128-2。第一纵筋127-2位于连接端面121-2外,第一纵筋127-2与第一侧123a-2相连。如图40(a)和40(b)所示,第一纵筋127-2也可与连接钢筋123-2相连;此时,第一纵筋127-2可位于环形的连接钢筋123-2内。该相连可以固定连接也可以是不固定连接。
图39所示的实施例中,不固定连接时,第一纵筋127-2能够抵住连接钢筋123-2,使连接钢筋123-2不会伸出容纳部122-2,以倾斜状态放置在容纳部122-2内。此种情况下,施工时,可直接撤走第一纵筋127-2,然后进行如上所述的后续施工过程。依照本实施例的技术路线,可以采用其他的措施抵住连接钢筋123-2,例如用刚性板堵住容纳部122-2等。
图40(a)和40(b)所示的实施例中,固定连接时,第一纵筋127-2能够移动(比如水平移动或竖向移动),从而使连接钢筋123-2以倾斜状态(例如图40(a))或水平状态(例如图40(b))设置在容纳部122-2内。图39所示的实施例中,在倾斜状态,第一纵筋127-2接触连接端面121-2;在水平状态,第一纵筋127-2远离连接端面121-2。图40所示的实施例中,第一纵筋127-2与连接钢筋相连,竖 向移动时可以带动连接钢筋123-2绕支承钢筋124-2转动,从而实现连接钢筋123-2倾斜状态或者水平状态。在施工时,可通过第一纵筋127-2调整连接钢筋123-2的状态,然后与其他现浇混凝土拼接构件或预制拼接构件进行拼接。
图39所示的实施例中,第一横筋128-2与第一纵筋127-2相连,第一横筋128-2的长度大于容纳部122-2的宽度,起到对第一纵筋127-2定位的作用。本实施例中,第一横筋128-2有2个,位于第一纵筋127-2的上下两侧,在本发明的其他实施例中,第一横筋128-2也可以是其他数量。
如图41所示,图33(a)和图33(b)所示的预制组合墙体100-2还可包括固定设置在容纳部122-2内的限位钢筋129-2。本实施例中,限位钢筋129-2也为横筋,其位于支承钢筋124-2的上方,连接钢筋123-2在支承钢筋124-2和限位钢筋129-2之间的间隙中移动,从而进行倾斜状态和水平状态的切换。可选地,该间隙的宽度(即支承钢筋124-2与限位钢筋129-2之间的距离)比连接钢筋123-2的直径大0-10mm(或者更大的宽度),以便连接钢筋123-2能够自由移动。支承钢筋124-2与限位钢筋129-2夹持连接钢筋123-2,可更好的控制连接钢筋123-2的位置。
本发明中,支承钢筋124-2和限位钢筋129-2还可以是U形钢筋,或其他任何形状,只有可以实现相应支承和限位效果即可。
本发明中,预制组合墙体可包括一个连接端,也可包括多个连接端,如图42所示;图42为L形截面墙体,包括两个连接段。
图43示出了本发明的另一种预制组合墙体300-2,其最上端的连接钢筋323-2的第二侧323b-2在倾斜状态下伸出了构件外。
图44(a)和图44(b)示出了图43所示的预制组合墙体300-2与图34所示的预制混凝土拼接构件200-2的拼接过程。其中图44(a)中,连接钢筋323-2处于倾斜状态,图44(b)中连接钢筋323-2处于水平状态,并搁置在搭筋201-2上。
叠合剪力墙结构竖向接缝处采用密拼缝技术(即相邻预制构件间的间距为0或很小的距离)可显著提升结构效率和效益。目前已有的叠合剪力墙结构为了设置水平连接钢筋,在预制墙之间设置宽度200mm左右的竖向后浇段,难以构造密拼缝。
本发明的预制组合墙体结构简单,连接钢筋后装在预制组合墙体的两片预制板间的空隙内,不干扰预制混凝土构件制作,并且连接钢筋不需在工地现场安装,减少了现场工作量。在运输、吊装的过程中,连接钢筋容纳在容纳部内,不占体 积,不会被碰撞;在施工时,仅需将连接钢筋调至水平状态,即可与其他连接构件进行连接,工艺简洁。
本发明的连接钢筋倾斜状态在自重下有调整至水平状态的趋势,使连接钢筋由倾斜状态调整至水平状态具有一定的自动性,即稍微扰动连接钢筋例如震动预制组合墙体或连接钢筋,连接钢筋即可从倾斜状态调整至水平状态;这样连接钢筋安装具备了自适应性。这一特性方便预制组合墙体间设置连接钢筋,尤其适用于预制组合墙体间密拼连接时设置连接钢筋。
采用本发明技术,连接钢筋安装在接缝处一侧的预制组合墙体内,然后伸入接缝另一侧预制墙体,即连接钢筋具有自动就位的性能,实现了连接钢筋自动化安装,极为方便、快捷。本发明还提供了各种不同的与连接钢筋配合的钢筋,能非常简便地将连接钢筋从容纳部中拉出,大大加快了施工安全性和速度。
本发明技术应用于叠合剪力墙结构中,即使支承钢筋或预制墙最外侧钢筋桁架距预制墙侧面的距离不大于200mm,甚至支承钢筋靠近预制组合墙体的连接端面,也可设置墙体间的连接钢筋,实现墙体密拼缝连接,极大地提升了效率和效益。
显然,上述实施例仅仅是为清楚地说明本发明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明的保护范围之中。

Claims (15)

  1. 一种预制混凝土构件,其特征在于,包括连接端,所述连接端包括容纳部和容纳在所述容纳部内的连接钢筋,所述容纳部包括设置在所述连接端的连接端面的开口,所述连接钢筋包括靠近所述连接端面的第一侧;
    其中,所述连接钢筋在所述容纳部内能够移动,从而以倾斜状态或水平状态设置在所述容纳部内,当所述连接钢筋以所述水平状态设置在所述容纳部内时,所述第一侧伸出所述连接端面外。
  2. 根据权利要求1所述的预制混凝土构件,其特征在于,所述容纳部包括第一孔洞,或相互连通的第一孔洞和第二孔洞,所述第一孔洞的开口设置在所述连接端的所述连接端面上,所述第二孔洞沿所述连接端面的长度方向延伸,且所述第二孔洞开口设置在所述连接端的顶面上;或
    所述容纳部包括沿所述连接端面的长度方向延伸的凹槽;或
    所述容纳部由所述连接端的两侧预制板之间的空隙形成。
  3. 根据权利要求1所述的预制混凝土构件,其特征在于,所述连接端还包括设置在所述容纳部内的支承钢筋,所述支承钢筋支承所述连接钢筋。
  4. 根据权利要求3所述的预制混凝土构件,其特征在于,所述连接端还包括设置在所述容纳部内的限位钢筋,所述限位钢筋位于所述支承钢筋的上方,所述连接钢筋在所述支承钢筋与所述限位钢筋之间的间隙中移动;
    可选地,所述支承钢筋与所述限位钢筋之间的距离比所述连接钢筋的直径大0-15mm。
  5. 根据权利要求1所述的预制混凝土构件,其特征在于,还包括与所述第一侧相连的第一纵筋,或还包括与所述第一侧相连的第一纵筋和与所述第一纵筋相连的第一横筋;
    其中,所述第一纵筋沿所述连接端面的长度方向延伸,所述第一纵筋能够移动,从而使所述连接钢筋以倾斜或水平状态设置在所述容纳部内;
    在所述倾斜状态,所述第一纵筋接触或靠近所述连接端面;在所述水平状态,所述第一纵筋远离所述连接端面;
    在所述倾斜状态,所述第一横筋能够抵靠所述连接端面。
  6. 根据权利要求1所述的预制混凝土构件,其特征在于,还包括第二纵筋,所述第二纵筋沿所述连接端面的长度方向设置在所述容纳部内,所述连接钢筋还包括远离所述连接端面的第二侧;
    其中,所述第二侧能够沿着所述第二纵筋的长度方向上下移动,从而使所述连接钢筋以所述倾斜状态或所述水平状态设置在所述容纳部内。
  7. 根据权利要求6所述的预制混凝土构件,其特征在于,所述第二纵筋设有第一限位部件,当所述第二侧移动至所述第一限位部件时,所述连接钢筋以所述水平状态设置在所述容纳部内。
  8. 根据权利要求1所述的预制混凝土构件,其特征在于,还包括第三纵筋,所述第三纵筋沿所述连接端面的长度方向设置在所述容纳部内,所述连接钢筋还包括远离所述连接端面的第二侧,所述第二侧与所述第三纵筋相连;
    其中,所述第三纵筋能够上下移动,从而使所述连接钢筋以所述倾斜状态或所述水平状态设置在所述容纳部内。
  9. 根据权利要求8所述的预制混凝土构件,其特征在于,所述第三纵筋设有第二限位部件,所述第二限位部件能够使得所述第三纵筋带动所述连接钢筋运动,从而使所述连接钢筋以所述倾斜状态或所述水平状态设置在所述容纳部内。
  10. 根据权利要求1所述的预制混凝土构件,其特征在于,所述连接钢筋还包括远离所述连接端面的第二侧,所述第二侧包括滑动部,所述容纳部设有滑槽,所述滑槽沿所述连接端面的长度方向延伸,所述滑动部可滑动地设置在所述滑槽内,从而使所述连接钢筋以所述倾斜状态或所述水平状态设置在所述容纳部内。
  11. 根据权利要求10所述的预制混凝土构件,其特征在于,所述滑槽内设有第三 限位部件,所述第二侧滑动至所述第三限位部件时,所述连接钢筋以所述水平状态设置在所述容纳部内。
  12. 一种预制混凝土组件,其特征在于,包括权利要求1-11中任一所述的预制混凝土构件。
  13. 根据权利要求12所述的预制混凝土组件,其特征在于,还包括与所述预制混凝土构件相配的预制混凝土拼接构件,所述预制混凝土拼接构件包括拼接端。
  14. 根据权利要求13所述的预制混凝土组件,其特征在于,所述拼接端包括拼接孔洞,所述连接端的所述容纳部包括第一孔洞,所述拼接孔洞的深度加上所述第一孔洞的深度之和大于或等于所述连接钢筋的长度;或
    所述拼接端包括拼接凹槽,所述容纳部包括沿所述连接端面的长度方向延伸的凹槽,所述连接端还包括设置在所述容纳部内的支承钢筋,所述支承钢筋支承所述连接钢筋,所述拼接凹槽的深度与所述凹槽的深度之和大于或等于所述连接钢筋的长度;或
    所述连接端还包括设置在所述容纳部内的支承钢筋,所述支承钢筋支承所述连接钢筋,所述拼接端内设有与所述支承钢筋的高度相同或比所述支撑钢筋高度低的搭筋。
  15. 一种权利要求13或14所述的预制混凝土组件的拼接方法,包括:
    将所述预制混凝土构件的所述连接端面与所述预制混凝土拼接构件的拼接端面对向设置;
    将所述预制混凝土构件的所述连接钢筋从倾斜状态调至水平状态,并使所述连接钢筋的所述第一侧伸入拼接端内;以及
    往所述容纳部和所述拼接端内浇注混凝土,使所述预制混凝土构件和所述预制混凝土拼接构件固定连接在一起。
PCT/CN2022/131427 2021-11-16 2022-11-11 预制混凝土构件、预制混凝土组件及其拼接方法 WO2023088190A1 (zh)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CN202122810535.3U CN216552523U (zh) 2021-11-16 2021-11-16 预制组合墙体、预制混凝土组件
CN202122810566.9U CN216839841U (zh) 2021-11-16 2021-11-16 预制混凝土构件、预制混凝土组件
CN202122810567.3 2021-11-16
CN202111356303.3A CN114396127A (zh) 2021-11-16 2021-11-16 预制组合墙体、预制混凝土组件及其拼接方法
CN202122810567.3U CN216552383U (zh) 2021-11-16 2021-11-16 预制混凝土构件、预制混凝土组件
CN202111354702.6A CN114396116A (zh) 2021-11-16 2021-11-16 预制混凝土构件、预制混凝土组件及其拼接方法
CN202122810566.9 2021-11-16
CN202111356322.6 2021-11-16
CN202111356303.3 2021-11-16
CN202122810535.3 2021-11-16
CN202111354702.6 2021-11-16
CN202111356322.6A CN114396117A (zh) 2021-11-16 2021-11-16 预制混凝土构件、预制混凝土组件及其拼接方法

Publications (1)

Publication Number Publication Date
WO2023088190A1 true WO2023088190A1 (zh) 2023-05-25

Family

ID=86396246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131427 WO2023088190A1 (zh) 2021-11-16 2022-11-11 预制混凝土构件、预制混凝土组件及其拼接方法

Country Status (1)

Country Link
WO (1) WO2023088190A1 (zh)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110302880A1 (en) * 2010-06-14 2011-12-15 Dipietro Michael Rebar Sleeve Unit
CN202850192U (zh) * 2012-08-24 2013-04-03 初明进 一种预制混凝土空心构件
CN203452228U (zh) * 2013-08-02 2014-02-26 初明进 框架—剪力墙建筑结构
CN103643741A (zh) * 2013-09-23 2014-03-19 初明进 预制混凝土构件连接方法
CN106677419A (zh) * 2017-01-28 2017-05-17 初明进 带连接钢筋的预制混凝土构件制作方法
CN109339281A (zh) * 2018-11-16 2019-02-15 华侨大学 一种预制装配式钢筋混凝土剪力墙竖向拼接节点结构及其施工方法
CN111424849A (zh) * 2020-05-13 2020-07-17 浙江大学建筑设计研究院有限公司 一种安装便捷型预制钢筋混凝土剪力墙及施工方法
US20210040741A1 (en) * 2018-12-12 2021-02-11 Dalian University Of Technology Design and Rapid Construction Method for Flush Assembly of the Prefabricated Steel Beam and the Floor Slab
CN114396127A (zh) * 2021-11-16 2022-04-26 山东艾科福建筑科技有限公司 预制组合墙体、预制混凝土组件及其拼接方法
CN114396116A (zh) * 2021-11-16 2022-04-26 山东艾科福建筑科技有限公司 预制混凝土构件、预制混凝土组件及其拼接方法
CN114396117A (zh) * 2021-11-16 2022-04-26 山东艾科福建筑科技有限公司 预制混凝土构件、预制混凝土组件及其拼接方法
CN216552383U (zh) * 2021-11-16 2022-05-17 山东艾科福建筑科技有限公司 预制混凝土构件、预制混凝土组件
CN216552523U (zh) * 2021-11-16 2022-05-17 山东艾科福建筑科技有限公司 预制组合墙体、预制混凝土组件
CN216839841U (zh) * 2021-11-16 2022-06-28 山东艾科福建筑科技有限公司 预制混凝土构件、预制混凝土组件

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110302880A1 (en) * 2010-06-14 2011-12-15 Dipietro Michael Rebar Sleeve Unit
CN202850192U (zh) * 2012-08-24 2013-04-03 初明进 一种预制混凝土空心构件
CN203452228U (zh) * 2013-08-02 2014-02-26 初明进 框架—剪力墙建筑结构
CN103643741A (zh) * 2013-09-23 2014-03-19 初明进 预制混凝土构件连接方法
CN106677419A (zh) * 2017-01-28 2017-05-17 初明进 带连接钢筋的预制混凝土构件制作方法
CN109339281A (zh) * 2018-11-16 2019-02-15 华侨大学 一种预制装配式钢筋混凝土剪力墙竖向拼接节点结构及其施工方法
US20210040741A1 (en) * 2018-12-12 2021-02-11 Dalian University Of Technology Design and Rapid Construction Method for Flush Assembly of the Prefabricated Steel Beam and the Floor Slab
CN111424849A (zh) * 2020-05-13 2020-07-17 浙江大学建筑设计研究院有限公司 一种安装便捷型预制钢筋混凝土剪力墙及施工方法
CN114396127A (zh) * 2021-11-16 2022-04-26 山东艾科福建筑科技有限公司 预制组合墙体、预制混凝土组件及其拼接方法
CN114396116A (zh) * 2021-11-16 2022-04-26 山东艾科福建筑科技有限公司 预制混凝土构件、预制混凝土组件及其拼接方法
CN114396117A (zh) * 2021-11-16 2022-04-26 山东艾科福建筑科技有限公司 预制混凝土构件、预制混凝土组件及其拼接方法
CN216552383U (zh) * 2021-11-16 2022-05-17 山东艾科福建筑科技有限公司 预制混凝土构件、预制混凝土组件
CN216552523U (zh) * 2021-11-16 2022-05-17 山东艾科福建筑科技有限公司 预制组合墙体、预制混凝土组件
CN216839841U (zh) * 2021-11-16 2022-06-28 山东艾科福建筑科技有限公司 预制混凝土构件、预制混凝土组件

Similar Documents

Publication Publication Date Title
US3918222A (en) Prefabricated modular flooring and roofing system
KR101556545B1 (ko) 더블 월 피씨를 이용하는 구조물 시공방법
KR101509505B1 (ko) 슬래브거더교 시공방법 및 그 교량
ITMI20071455A1 (it) Travi migliorate per l'armatura del calcestruzzo e metodo per il loro collegamento con pilastri per dare continuita da campata a campata
KR20140108353A (ko) 전단보강용 철근을 이용한 덧침 콘크리트와의 일체성 향상 및 중공슬래브의 전단내력 향상구조 및 이를 이용한 시공방법
EP1214483B1 (en) Hollow-core slab for forming a floor field in which ducts can be incorporated, and method for forming a floor field with ducts using such hollow-core slabs
WO2023088190A1 (zh) 预制混凝土构件、预制混凝土组件及其拼接方法
JP2019078090A (ja) 張出架設作業車及び施工方法
KR101228642B1 (ko) 일체성 향상을 위해 가장자리 단차 접합부를 갖는 중공슬래브
KR20190120853A (ko) 커플거더
KR20130096969A (ko) 층고절감형 철골 합성보, 이를 이용한 슬림플로어 구조 및 그 시공방법
CN216552523U (zh) 预制组合墙体、预制混凝土组件
CN216839841U (zh) 预制混凝土构件、预制混凝土组件
KR20110136138A (ko) 와이어와 거푸집 지지프레임을 이용한 지하바닥판 시공방법
CN114396127A (zh) 预制组合墙体、预制混凝土组件及其拼接方法
CN114396116A (zh) 预制混凝土构件、预制混凝土组件及其拼接方法
KR20130123697A (ko) 지하구조물의 현수식 거푸집 지지장치 및 이를 이용한 무지보 역타설 지하구조물의 구축방법
WO2001000943A1 (en) Hollow filler block for a block-and-rib reinforced concrete slab
CN113136783A (zh) 一种预制t梁及其施工方法
KR101684477B1 (ko) 거더 일체형 코핑부를 이용한 교량 시공 방법
KR102216897B1 (ko) 플라스틱 폼을 사용한 일방향 장선슬래브 시스템 및 일방향 장선슬래브 시공방법
KR20200100730A (ko) 착탈식 바닥 구조
JPH0693675A (ja) PCa耐震壁およびこのPCa耐震壁と現場打ち柱またはPCa柱とを接合する方法
RU2781834C2 (ru) Быстромонтируемое вертикальное скользящее соединение стеновых панелей
KR102606698B1 (ko) 프리캐스트 콘크리트 중공 슬래브, 이의 제조방법 및 이를 위한 중공 형성 구조물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894726

Country of ref document: EP

Kind code of ref document: A1