WO2023088171A1 - 一种电子级正硅酸乙酯返回钢瓶的处理方法及装置 - Google Patents

一种电子级正硅酸乙酯返回钢瓶的处理方法及装置 Download PDF

Info

Publication number
WO2023088171A1
WO2023088171A1 PCT/CN2022/131265 CN2022131265W WO2023088171A1 WO 2023088171 A1 WO2023088171 A1 WO 2023088171A1 CN 2022131265 W CN2022131265 W CN 2022131265W WO 2023088171 A1 WO2023088171 A1 WO 2023088171A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel cylinder
teos
foreign matter
cylinder
steel
Prior art date
Application number
PCT/CN2022/131265
Other languages
English (en)
French (fr)
Inventor
栗鹏伟
潘海涛
姚丹
齐相前
孙猛
Original Assignee
金宏气体股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金宏气体股份有限公司 filed Critical 金宏气体股份有限公司
Publication of WO2023088171A1 publication Critical patent/WO2023088171A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/08Cleaning containers, e.g. tanks
    • B08B9/093Cleaning containers, e.g. tanks by the force of jets or sprays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/0064Cleaning by methods not provided for in a single other subclass or a single group in this subclass by temperature changes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/08Cleaning containers, e.g. tanks
    • B08B9/083Removing scrap from containers, e.g. removing labels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/08Cleaning containers, e.g. tanks
    • B08B9/46Inspecting cleaned containers for cleanliness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to the technical field of ethyl orthosilicate, in particular to a processing method and device for an electronic-grade ethyl orthosilicate cylinder.
  • ultra-high-purity tetraethyl orthosilicate TEOS
  • LPCVD low-pressure chemical vapor deposition process
  • TEOS return cylinders Especially the used TEOS cylinders, that is, TEOS return cylinders, if improperly handled and directly used for filling ultra-high-purity ethyl orthosilicate, TEOS will be polluted again, causing moisture and particulate matter to pollute TEOS return cylinders, resulting in excessive impurities. Therefore, it is necessary to thoroughly treat the foreign matter that is likely to cause secondary pollution for the returned steel cylinders to ensure that the content of various impurities in the steel cylinders is within an acceptable range.
  • the used TEOS is returned to the steel cylinder with a small amount of TEOS remaining. Due to the limitation of the chemical properties of TEOS, the inside of the steel cylinder is washed directly with water. TEOS is easily hydrolyzed and forms a gel hydrolyzate, which is difficult to handle when attached to the inner wall of the steel cylinder. As a result, it is impossible to accurately judge whether the cleaning is complete. If the electronic grade tetraethyl orthosilicate is directly stored again, it is impossible to ensure that the particulate matter will not pollute the secondary refilled TEOS; if it is not used, it will cause huge waste and increase production costs.
  • the process of returning TEOS to steel cylinders is basically nitrogen replacement, purging, ultrasonic cleaning with ultrapure water, vacuuming, and drying.
  • Chinese invention patent CN110420943A is a device and method for removing solid particles in ultra-high-purity orthosilicate cylinders. Through the method of double-loop filtration, two cylinders are processed at the same time, which improves the processing efficiency, reduces the use of ultra-pure water, and reduces costs. easy to use.
  • the steel cylinders treated by this process can only control the solid particulate matter in the TEOS steel cylinders within an acceptable range, but cannot completely remove the solid pollutants, and the treatment of liquid pollutants in the contaminated TEOS steel cylinders is ineffective. It needs to cooperate with other The method first removes the liquid pollutants in the steel cylinder.
  • Tetraethyl orthosilicate has a boiling point of 165.5°C and a saturated vapor pressure of 0.13kPa (20°C). Liquids with high boiling points are difficult to remove completely by vacuuming, and TEOS will gradually be decomposed into silicon oxide by water in the presence of water. Therefore, it is not advisable to use aqueous liquid to wash the contaminated cylinders that have been exposed to tetraethyl orthosilicate, which will cause the formation of silica and make the cylinders more difficult to handle.
  • the valve used by TEOS to return to the steel cylinder is generally a diaphragm valve with a maximum temperature of 60°C. If the temperature is too high during the processing of the steel cylinder, it is easy to cause damage to the diaphragm valve or reduce its service life.
  • the object of the present invention is to provide a processing method and device for electronic grade orthosilicate steel cylinders, which can completely treat the polluted foreign matter on the inner wall of the steel cylinder under anhydrous and low temperature conditions, improve the cleanliness of the inner wall of the steel cylinder, and will not Damage the diaphragm valve, ensure the reuse rate of steel cylinders, and can clean several steel cylinders at the same time, with simple operation and low cost.
  • the present invention provides a treatment method for returning electronic grade tetraethyl orthosilicate to the steel cylinder.
  • the pulse steam washing process is used to process the foreign matter in the TEOS returned steel cylinder; the pulse steam washing process includes vaporizing the organic solvent to form steam.
  • the pulse is sprayed into the TEOS return cylinder, condensed on the inner wall of the TEOS return cylinder, and the foreign matter is separated from the inner wall of the steel cylinder by the thermal expansion and contraction of the foreign matter and the oscillation of the pulse; the foreign matter includes the
  • the TEOS returns the solid particles and/or liquid in the cylinder.
  • the solid particles are dust and TEOS hydrolyzate, and the liquids are ethanol, water, TEOS, etc.
  • the treatment method also includes a foreign matter heat treatment process.
  • the foreign matter heat treatment is to purge the inner wall of the steel cylinder with a high-temperature inert gas for the TEOS return steel cylinder.
  • the heat treatment temperature is 450-700°C and the time is 10-60 minutes;
  • the silica powder formed is swept out of the cylinder. If the pulse steam washing process cannot remove the solid particles returned by TEOS to the steel cylinder, the valve can be disassembled and then the foreign matter heat treatment process can be continued to further remove the solid particles or other foreign matter returned by TEOS to the steel cylinder.
  • the heat treatment conditions for the foreign matter include nitrogen or argon as an inert gas, a heat treatment temperature of 500-550° C., and a time of 20-30 minutes.
  • nitrogen or argon as an inert gas
  • the reason for dismantling the valve is that the valve for TEOS returning to the steel cylinder is a diaphragm valve with a maximum temperature resistance of 60°C. If it is directly heat-treated, it will seriously damage the valve. Therefore, the valve needs to be disassembled and purged with inert gas at high temperature to form powder. Purge out of cylinder.
  • the inert gas may be any of nitrogen, helium or argon.
  • the particles on the inner wall of the steel cylinder are mainly dust and hydrolyzate of TEOS.
  • TEOS(C 8 H 20 O 4 Si) the structural formula is TEOS is easily hydrolyzed, and can be hydrolyzed under acid and alkali conditions to obtain a chain or three-dimensional network gel. After TEOS is stored, transported or discharged, the residual liquid is hydrolyzed and the gel-like hydrolyzate is attached to the inner wall of the steel cylinder. , After the gel loses water, it forms solid particles that firmly adhere to the inner wall of the steel cylinder, which brings great difficulty to cleaning.
  • the overall hydrolysis reaction equation is:
  • the hydrolysis product in the particulate matter on the inner wall of the steel cylinder is silicon dioxide hydrate, which loses water under high temperature to form silicon dioxide powder, which is detached from the inner wall of the steel cylinder, and only needs to be purged with inert gas.
  • the first foreign matter detection use the x-ray foreign matter detection machine to detect the TEOS returned to the inside of the steel cylinder, and record the situation of the foreign matter existing in the steel cylinder;
  • Pulse steam washing turn the contaminated TEOS return cylinder upside down, vaporize the organic solvent with a boiling point ⁇ 60°C, and then pulse steam into the TEOS return cylinder, and condense on the inner wall of the TEOS return cylinder , to realize the separation of the foreign matter from the TEOS back to the inner wall of the steel cylinder;
  • the second foreign matter detection is carried out on the inside of the steel cylinder, and the inside of the steel cylinder is detected by an X-ray foreign matter detection machine;
  • test feed high-purity nitrogen or high-purity helium to keep the pressure at 1-6 Bar, or the absolute pressure in vacuum state is ⁇ 50 Pa, save it for later use;
  • the qualified standards are pressure test: fill with nitrogen and maintain 30bar pressure for 24h; air tightness test ⁇ 1.0 ⁇ 10-10 mbar ⁇ L/s; particulate matter (>0.1 ⁇ m) is 0; moisture ⁇ 50ppb; oxygen content ⁇ 100ppb .
  • the foreign matter heat treatment process includes heating the inert gas with a nitrogen heater to heat and purge the foreign matter on the inner wall of the cylinder, and focusing on the position of the foreign matter found in the second foreign matter detection process.
  • the airtightness of the valve is tested by helium airtightness test, and the qualified condition is that the airtightness ⁇ 1.0 ⁇ 10 -10 mbar ⁇ L/s is qualified. If the airtightness is not reached, replace the valve.
  • the pulse steam of the pulse steam washing is regulated by the electromagnetic pulse valve, and the vapor of the organic solvent is condensed on the surface of the inner wall of the steel cylinder to realize the cleaning of the inner wall of the steel cylinder.
  • the organic solvent in S4 is one of dichloromethane, ether or acetone.
  • the organic solvent is filtered through a precision filter before being pumped into the cylinder to remove water and solid impurities in the organic solvent.
  • the present invention can simultaneously clean several TEOS return steel cylinders.
  • the steel cylinders are arranged side by side and connected to pulse valves respectively, so as to realize simultaneous cleaning of the steel cylinders.
  • the present invention cleans the polluted TEOS returned steel cylinder and detects whether it meets the requirement of repeated use under anhydrous condition.
  • This invention adopts an anhydrous cleaning process, selects an organic solvent with a low boiling point, vaporizes it at low temperature, and then uses a pulse mode to spray the organic solvent vapor to the inner wall of the steel cylinder for condensation, so that the foreign matter in the steel cylinder first contacts the hot air flow, Then the temperature is lowered rapidly, and the foreign matter is separated from the inner wall of the steel cylinder due to the different thermal expansion and contraction ratio, so as to improve the elution efficiency of the foreign matter in the steel cylinder.
  • let’s take granular foreign matter as an example. The particulate matter adheres to the inner wall of the steel cylinder.
  • the particulate matter When the organic solvent sprays into the steel cylinder and contacts the particulate matter, the particulate matter is heated and expands in volume.
  • the condensing device on the outer wall of the steel cylinder is equipped with a low-temperature water circulation The flow takes away the heat from the outer wall of the steel cylinder, and the rapid cooling of the particulate matter causes the volume to shrink again.
  • the steam is pulsed and continuously sprayed into the steel cylinder, and the particulate matter continuously expands-shrinks-expands-shrinks in a short period of time...so that the adhesion between the particulate matter and the inside of the steel cylinder is reduced, and finally it is separated from the inner wall of the steel cylinder to realize the particle material cleaning.
  • the present invention also utilizes the oscillating action of the pulse to spray the steam to the surface of the pollutant inside the steel cylinder to separate it from the inner wall of the steel cylinder.
  • the condensed water circulates in the jacket of the steel cylinder, taking away the heat of the inner wall of the steel cylinder, and the flushing flow rate can be adjusted, with an ideal flushing flow setting, which can be adjusted according to the record of foreign matter detection on the inner wall of the steel cylinder Number of pulse rinses, adjust rinse intensity and shorten rinse time.
  • the pulse steam washing used in the present invention is realized through a pulse valve and a condensation jacket.
  • the valve for TEOS to return to the steel cylinder is a diaphragm valve, and the maximum operating temperature is 60°C. Therefore, in order to ensure the normal operation of the valve, the present invention needs to be carried out at a low temperature. Therefore, the organic solvent selected in the present invention needs to be lower than 60°C. under conditions.
  • the pulse washing at low temperature cannot completely remove the foreign matter returned by TEOS to the steel cylinder, it needs to be heat treated again at high temperature, so the valve needs to be removed and the airtightness of the valve needs to be ensured. Therefore, after the cleaning is completed, in order to ensure the safe use of the TEOS return cylinder, it is necessary to carry out five inspections on the TEOS return cylinder again to ensure the safety of the TEOS in storage.
  • the present invention also provides a treatment device for polluted electronic-grade orthosilicate steel cylinders, comprising an organic solvent tank-solvent pump-vaporizer-pulse valve-steel cylinder rack connected in series in sequence,
  • the TEOS return steel cylinder is placed on the steel cylinder rack, at least one inverted TEOS return cylinder to be processed is placed on the steel cylinder rack for processing;
  • the steel cylinder rack is fixed with a condensing device, so The condensing device can be completely attached and covered on the outer wall of the TEOS return cylinder;
  • the TEOS return cylinder is arranged in parallel and connected to the pulse valve respectively;
  • the organic solvent is stored in the organic solvent tank, pumped by the solvent pump into the gasifier, gasified into steam, and then sprayed into the TEOS return cylinder through the pulse valve, condensed on the inner wall of the TEOS return cylinder through the condensation device, and the foreign matter expands with heat and contracts with the pulse Under the action of steam purging,
  • the outer wall of the steel cylinder is provided with a condensed water jacket, and the condensed water circulates in the condensed water jacket to condense the steam of the organic solvent on the inner wall of the steel cylinder.
  • a filter is also provided between the pulse valve and the gasifier, and the filter filters the gasified organic solvent vapor in the gasifier to purify the organic solvent that enters the cylinder. steam.
  • the pulse valve is controlled by the electromagnetic pilot valve, which opens and closes the high-pressure gas source to generate pulses in an instant.
  • the diaphragm valve relies on the delay of the air flow through the air resistance and air volume, so that the input long signal becomes a pulse signal.
  • the pulse steam of the pulse steam washing is regulated by the electromagnetic pulse valve, and the steam of the organic solvent is condensed on the surface of the inner wall of the steel cylinder in TEOS, so as to realize the cleaning of the inner wall of the steel cylinder.
  • the present invention adopts the above technical solutions to obtain the following technical effects:
  • the present invention adopts an anhydrous washing process, adopts a low-boiling-point organic solvent to carry out pulse injection into the steel cylinder, and quickly condenses on the inner wall of the steel cylinder, and utilizes the thermal expansion and contraction of the particulate matter and the shock effect of the pulse to make it difficult to adhere to the inner wall of the steel cylinder
  • the removed particulate matter is separated; for the foreign matter that cannot be removed by the pulse steam washing process, the foreign matter heat treatment process can be performed after the valve is disassembled, and the particulate matter is transformed into powder and blown out of the steel cylinder, so as to realize the high standard of the five inspections of the steel cylinder and return the cylinder for reuse.
  • the whole process is an anhydrous operation, which avoids the hydrolyzate produced by TEOS hydrolysis that is more difficult to clean, and the standard of the cleaned steel cylinder is high, which fully meets the storage requirements of electronic grade tetraethyl orthosilicate and the inspection standard of the steel cylinder when it leaves the factory.
  • TEOS return cylinders can be washed in parallel in parallel, which improves the operation efficiency, is simple to operate, and reduces the cleaning cost.
  • the pulse steam washing process of the present invention has absolutely no influence on the valve (diaphragm valve) of TEOS returning to the steel cylinder, and most of the polluted steel cylinders can be processed once to compound the standard without dismantling the valve.
  • the foreign matter heat treatment process can be performed by disassembling the valve. Compared with the direct multiple foreign matter heat treatment process in the prior art, it has the advantages of low energy consumption and reduced labor cost.
  • Fig. 1 is a schematic structural diagram of a processing device for returning TEOS to steel cylinders according to Embodiment 1 of the present invention.
  • Fig. 2 is a flow chart of the processing method for returning TEOS to steel cylinders according to Embodiment 2 of the present invention.
  • Fig. 3 is a flow chart of the processing method of the TEOS return steel cylinder of Comparative Example 1 of the present invention.
  • 1 organic solvent tank 1 organic solvent tank; 101 solvent tank inlet valve; 2 solvent pump; 3 vaporizer; 301 discharge valve; 4 filter; 5 pulse valve; 6TEOS return cylinder; 601 condensate jacket; 602 condensate inlet; 603 condensed water outlet; 604 pulse tube.
  • the invention provides a processing device and method for electronic-grade orthosilicate steel cylinders, which can remove foreign matter in the steel cylinder from the steel cylinder.
  • the foreign matter referred to here includes particles and/or liquids and particles returned by TEOS in the steel cylinder Including dust, ethyl tetrasilicate hydrolyzate, specifically, the hydrolyzate is silicon dioxide hydrate, which adheres to the inner wall of the steel cylinder or deposits at the bottom of the steel cylinder.
  • the liquid includes ethanol, water and other liquid organic and inorganic substances produced by the hydrolysis of tetraethyl orthosilicate.
  • Ethyl orthosilicate is very easy to undergo hydrolysis reaction with water to form a gel-like hydrolyzate, which has a strong adhesion effect.
  • the hydrolyzate first adheres to the inner wall of the steel cylinder and forms solid particles, which are difficult to remove from the inner wall of the steel cylinder. Therefore, it is necessary to A water-free treatment process and device are provided to remove foreign matters attached or deposited in steel cylinders.
  • This embodiment provides a processing device for electronic-grade orthosilicate steel cylinders.
  • this embodiment includes organic solvent tanks 1-solvent pump 2-vaporizer 3-filter 4-pulse valve 5-several steel cylinder racks arranged in series and connected by pipelines, and TEOS returns steel cylinder 6 upside down Fixed on the cylinder rack.
  • a condensing device is fixed on the cylinder rack, and the condensing device can be completely attached and covered on the outer wall of the TEOS return cylinder 6;
  • multiple TEOS return steel cylinders 6 can be cleaned simultaneously, and are respectively connected with pulse valves 5 to be arranged in parallel.
  • the bottom of the solvent tank 1 is provided with an outlet connected to the solvent pump 2.
  • the solvent pump 2 pumps the organic solvent into the vaporizer 3, and the organic solvent is vaporized into steam in the vaporizer 3.
  • a discharge valve 301 is provided at the bottom of the gasifier 3. When the internal pressure of the gasifier 3 exceeds the range or the process is completed, the organic solvent in the gasifier 3 can be discharged through the discharge valve 301.
  • the top of the vaporizer 3 is provided with an outlet connected to the filter 4, and the filter 4 filters impurities such as particles, ethanol, and moisture in the organic solvent to improve the purity of the organic solvent.
  • the filtered organic solvent vapor enters the TEOS and returns to the steel cylinder 6 after passing through the pulse valve 5 stroke pulse steam.
  • the condensing device coated on the outer wall of the TEOS return steel cylinder 6 can quickly cool down the TEOS return steel cylinder 6 .
  • the condensing device is a condensed water jacket 601 , and the condensed water jacket is detachably wrapped around the outer wall of the TEOS return cylinder 6 .
  • the condensed water jacket 601 is provided with condensed water inlet 602 and condensed water outlet 603, so that the condensed water circulates in the condensed water jacket 601, takes away the heat of TEOS returning to the inner wall of the steel cylinder, and condenses the steam of the organic solvent in the TEOS returning to the steel cylinder 6 on the inner wall.
  • the shape of the jacket 601 is the same as that of the TEOS return cylinder 6, and the top of the jacket 601 is provided with a movable cover.
  • the cover When the cover is opened, the TEOS return cylinder 6 can be placed upside down from the top opening.
  • the cover can be hinged on the jacket 601 up and down.
  • the shape of the jacket 601 is the same as that of the TEOS return cylinder 6, and an opening is provided along the length direction, and can be opened.
  • a fixing member or a fastener is used at the opening Snap to secure.
  • a pulse tube 604 is provided in the TEOS return cylinder 6, one end is connected with the pulse valve 5, and the other end extends to the bottom of the TEOS return cylinder 6, and the steam of the organic solvent is injected into the bottom of the TEOS return cylinder through the pulse valve 5 and the pulse tube 604, and is diffused
  • the steam in contact with the inner wall of the steel cylinder condenses quickly on the inner wall of the steel cylinder when it is cold, and at the same time, the foreign matter on the inner wall of the steel cylinder contacts the steam and expands due to heat, and at the same time shrinks again due to the condensed circulating water on the inner wall of the steel cylinder.
  • the foreign matter forms a repeated cycle of expansion-contraction-expansion-contraction, and finally separates from the inner wall of the steel cylinder.
  • the steam is injected into the steel cylinder in pulse form, and the steam presents a certain pressure and injects into the steel cylinder to realize the vibration effect, thereby realizing the effect of auxiliary elution.
  • TEOS return steel cylinder 6 has a recovery pipeline connected to solvent tank 1.
  • the washed organic solvent flows out of the steel cylinder and flows into solvent tank 1 through the recovery pipeline.
  • Solvent tank inlet valve 101 is installed on the top of solvent tank 1 to open the solvent tank. The tank inlet valve 101 allows the solvent to flow into the solvent tank 1 to realize the recovery and reuse of the organic solvent.
  • the recovery pipeline is equipped with a filter to absorb impurities such as particles and moisture in the organic solvent.
  • the organic solvent is stored in the organic solvent tank, pumped into the gasifier by a solvent pump, gasified into steam, and then sprayed into the TEOS return cylinder 1 through the pulse valve 5, and condensed on the inner wall of the TEOS return cylinder by the condensing device ,
  • the foreign matter expands with heat and contracts with cold under the action of pulse steam purging, forming a repeated expansion-contraction process, and finally achieves the separation of foreign matter from the TEOS back to the inner wall of the steel cylinder 6 .
  • the filter 4 filters impurities such as particles and moisture in the vaporized organic solvent vapor in the vaporizer 3, and purifies the organic solvent that enters the TEOS and returns to the steel cylinder. steam.
  • this embodiment is also equipped with an external nitrogen heater, which can heat the inert gas, including nitrogen, helium and other gases at high temperature, and blow the heated gas into the steel cylinder through the connecting pipe and nozzle.
  • an external nitrogen heater which can heat the inert gas, including nitrogen, helium and other gases at high temperature, and blow the heated gas into the steel cylinder through the connecting pipe and nozzle.
  • the pulse steam washing process is used to process the foreign matter returned by TEOS in the steel cylinder; the organic solvent is vaporized in the gasifier 3 to form steam, and then pulse-jetted to TEOS and returned to the steel cylinder 6, and the condensed water jacket 601 Under the action, the steam condenses on the inner wall of the steel cylinder returned by TEOS, and the foreign matter is separated from the inner wall of the steel cylinder by using the thermal expansion and contraction of the foreign matter and the shock action of the pulse.
  • the foreign matter heat treatment process can also be used to heat treat the TEOS returned to the steel cylinder.
  • the inner wall of the steel cylinder is treated with a high-temperature inert gas.
  • the temperature of the inert gas ie, the heat treatment temperature
  • the inert gas is heated by a nitrogen heater.
  • Inert gases can optionally be heated with a nitrogen heater.
  • the foreign matter heat treatment process of the following examples or/and comparative examples is the same as that of this example except temperature, time, and inert gas.
  • This embodiment provides a processing method for returning electronic-grade orthosilicate to a steel cylinder.
  • the concrete steps of processing method comprise:
  • Discharge residual liquid discharge TEOS and return the residual liquid in the steel cylinder, purging with 1-5 Bar nitrogen for 5-30 minutes, collect the residual liquid into the residual liquid tank for centralized treatment.
  • the first foreign matter detection use the X-ray foreign matter detection machine to detect the TEOS returned to the inside of the steel cylinder, and record the foreign matter existing in the steel cylinder;
  • Pulse steam washing put the contaminated TEOS back into the steel cylinder upside down, dichloromethane with a boiling point of 40°C is used as a solvent to vaporize, and pulse the dichloromethane steam into the TEOS back into the steel cylinder, and the low-temperature circulating water with a temperature of 4°C is
  • the internal circulation of the condensed water jacket realizes the rapid cooling of the inner wall of the steel cylinder, makes the methylene chloride vapor condense on the inner wall of the steel cylinder, and realizes the separation of foreign matter from the inner wall of the steel cylinder.
  • Dichloromethane vapor is filtered through a filter before being pumped into the cylinder to remove water and solid particle impurities.
  • Vacuum drying return the TEOS cleaned in step 4 to the steel cylinder for vacuum drying to remove methylene chloride in the steel cylinder;
  • the second foreign matter detection return TEOS to the inside of the steel cylinder for the second foreign matter detection, and use the X-ray foreign matter detection machine to detect the inside of the steel cylinder;
  • the five qualified standards are pressure holding test: full nitrogen pressure of 30bar for 24 hours; helium leak detection air tightness of 8.0 ⁇ 10 -10 mbar L/s; particulate matter ( ⁇ 0.1 ⁇ m) of 0; moisture of 12ppb; Oxygen is divided into 50ppb.
  • test If the test is qualified, inject high-purity nitrogen or high-purity helium to maintain the pressure at 1-6 Bar, store it, and store it for use.
  • testing standards and methods nitrogen purge operation, valve airtightness, and steel cylinder five testing standards refer to GB50646-2011 "Technical Specifications for Special Gas System Engineering".
  • five testing standards for steel cylinders and helium leakage testing standards refer to this standard : 11.3 Piping and System Acceptance and Appendix A.
  • the five qualification standards for steel cylinders are: filled with nitrogen and kept for 24 hours under the pressure of 30bar; air tightness of helium leak detection ⁇ 1.0 ⁇ 10 -10 mbar L/s; particulate matter ( ⁇ 0.1 ⁇ m) is 0; moisture ⁇ 50ppb; oxygen content ⁇ 100ppb. Meeting the above standards is deemed that the steel cylinder meets the standard requirements for storing electronic grade orthosilicate, and can be put into use again.
  • the X-ray foreign matter detector uses the model SX6974D produced by SYSTEM SQUARE.
  • the nitrogen heater is KVTS Hot N 2 from Wuxi Kabites Semiconductor Technology Co., Ltd.
  • This embodiment provides a treatment method for a contaminated electronic grade orthosilicate cylinder.
  • the specific steps of the processing method include:
  • Drain the residual liquid Return the contaminated TEOS to the cylinder to drain the residual liquid, purging with 1-5 bar nitrogen for 30 minutes, and collect the residual liquid into the residual liquid tank for centralized treatment.
  • the first foreign matter detection TEOS is returned to the inside of the steel cylinder to detect foreign matter, and the X-ray foreign matter detection machine is used to return TEOS to the inside of the steel cylinder, and there is no foreign matter.
  • Pulse steam washing use dichloromethane with a boiling point of 40°C as pulse steam, turn TEOS back into the cylinder upside down, fix it on the cylinder processing rack, and use the filtered pulse steam to wash the TEOS back into the cylinder at a temperature of 7°C
  • Low-temperature water circulates in the condensed water jacket to realize rapid cooling of the inner wall of the steel cylinder, so that the pulse steam condenses on the surface of the inner wall of the steel cylinder, and the pulse steam washes for 30 minutes.
  • Vacuum drying return the TEOS to the steel cylinder for drying under vacuum conditions, with an absolute vacuum pressure of 30Pa and a temperature of 50°C for 2 hours.
  • the second foreign matter detection return TEOS to the inside of the steel cylinder for foreign matter detection again, and use the X-ray foreign matter detection machine to check the inside of the steel cylinder without foreign matter.
  • the steel cylinder is evacuated, and the absolute pressure is evacuated to 5-50Pa, and stored for later use.
  • This embodiment provides a treatment method for a contaminated electronic grade orthosilicate cylinder.
  • the specific steps of the processing method include:
  • Drain the residual liquid Return the contaminated TEOS to the cylinder to drain the residual liquid, purging with 3Bar nitrogen for 20 minutes, and collect the residual liquid into the residual liquid tank for centralized treatment.
  • the first foreign matter detection TEOS returns the foreign matter inside the steel cylinder to detect the foreign matter, uses the X-ray foreign matter detection machine to detect the inside of the steel cylinder, takes pictures of the foreign matter and records it, and focuses on the parts with foreign matter in the second foreign matter detection.
  • Pulse steam washing use ether with a boiling point temperature of 35°C as pulse steam, return TEOS to the steel cylinder upside down, fix it on the cylinder processing rack, and use the filtered pulse steam to wash the steel cylinder.
  • the internal circulation of the condensed water jacket realizes the rapid cooling of the inner wall of the steel cylinder, so that the pulsed organic vapor condenses on the surface of the inner wall of the steel cylinder, and the pulse steam washing time is 20 minutes.
  • Vacuum drying The steel cylinder is vacuum-dried, with a vacuum absolute pressure of 30Pa and a temperature of 50 degrees Celsius, for 2 hours.
  • the second foreign matter detection the foreign matter detection inside the steel cylinder, using the X-ray foreign matter detection machine to inspect the inside of the steel cylinder, focusing on the parts with foreign matter in the first foreign matter detection, and no foreign matter.
  • the steel cylinder is evacuated, and the absolute pressure is evacuated to 5-50Pa, and stored for later use.
  • This embodiment provides a treatment method for a contaminated electronic grade orthosilicate cylinder.
  • the specific steps of the processing method include:
  • Drain the residual liquid Return the contaminated TEOS to the cylinder to drain the residual liquid, purging with 3Bar nitrogen for 20 minutes, and collect the residual liquid into the residual liquid tank for centralized treatment.
  • the first foreign matter detection TEOS returns the foreign matter inside the steel cylinder to detect the foreign matter, uses the X-ray foreign matter detection machine to detect the inside of the steel cylinder, takes pictures of the foreign matter and records it, and focuses on the parts with foreign matter in the second foreign matter detection.
  • Pulse steam washing use the organic solvent acetone with a boiling point of 56°C as the pulse steam, return TEOS to the steel cylinder upside down, fix it on the cylinder processing rack, and use the filtered pulse steam to wash the steel cylinder, so that the low temperature water at 4°C
  • the inner circulation of the condensed water jacket can quickly cool down the inner wall of the steel cylinder, so that the pulse steam can condense on the surface of the inner wall of the steel cylinder, and the washing time of the pulse steam is 20 minutes.
  • Vacuum drying the steel cylinder is vacuum-dried for 2 hours under the conditions of absolute vacuum pressure of 30Pa and temperature of 50°C.
  • the second foreign matter detection For the foreign matter detection inside the steel cylinder, use the X-ray foreign matter detection machine to inspect the inside of the steel cylinder, and focus on detecting the parts with foreign matter recorded in the first foreign matter detection, and then detect no foreign matter again.
  • the steel cylinder is evacuated, and the absolute pressure is evacuated to 5-50Pa, and stored for later use.
  • This embodiment provides a treatment method for a contaminated electronic grade orthosilicate cylinder.
  • the specific steps of the processing method include:
  • Discharge residual liquid discharge TEOS and return the residual liquid in the steel cylinder, purging with 1-5 Bar nitrogen for 5-30 minutes, collect the residual liquid into the residual liquid tank for centralized treatment.
  • the first foreign matter detection use the x-ray foreign matter detector of SYSTEM SQUARE SX6974D to detect the TEOS returned to the inside of the cylinder, and record the foreign matter existing in the cylinder;
  • Pulse steam washing put the contaminated TEOS back into the steel cylinder upside down, dichloromethane with a boiling point of 40°C is used as a solvent to vaporize, and pulse the dichloromethane steam into the TEOS back into the steel cylinder, and the low-temperature circulating water with a temperature of 4°C is
  • the internal circulation of the condensed water jacket realizes the rapid cooling of the inner wall of the steel cylinder, makes the methylene chloride vapor condense on the inner wall of the steel cylinder, and realizes the separation of foreign matter from the inner wall of the steel cylinder.
  • Dichloromethane vapor is filtered through a filter before being pumped into the cylinder to remove water and solid particle impurities.
  • Vacuum drying return the TEOS cleaned in step 4 to the steel cylinder for vacuum drying to remove methylene chloride in the steel cylinder;
  • the second foreign matter detection return TEOS to the inside of the steel cylinder for the second foreign matter detection, and use the X-ray foreign matter detection machine to detect the inside of the steel cylinder;
  • step 2-step 6 If there is foreign matter, dismantle the valve of the steel cylinder, use a nitrogen heater to heat the nitrogen, blow it into TEOS and return it to the steel cylinder, and perform heat treatment on the foreign matter on the inner wall of the steel cylinder.
  • the heat treatment temperature is 550 ° C, and the time is 20 minutes. Sweep out the steel cylinder, reset the valve, return to step 2, check the valve again, and proceed to step 2-step 6 again in sequence.
  • the five qualified standards are pressure holding test: full nitrogen pressure of 30bar for 24 hours; helium leak detection air tightness of 8.0 ⁇ 10 -10 mbar L/s; particulate matter ( ⁇ 0.1 ⁇ m) of 0; moisture of 12ppb; Oxygen is divided into 50ppb.
  • test If the test is qualified, inject high-purity nitrogen or high-purity helium to maintain the pressure at 1-6 Bar, store it, and store it for use.
  • This embodiment provides a treatment method for a contaminated electronic grade orthosilicate cylinder.
  • the specific steps of the processing method include:
  • Discharge residual liquid discharge TEOS and return the residual liquid in the steel cylinder, purging with 1-5 Bar nitrogen for 5-30 minutes, collect the residual liquid into the residual liquid tank for centralized treatment.
  • the first foreign matter detection use the X-ray foreign matter detection machine to detect the TEOS returned to the inside of the steel cylinder, and record the foreign matter existing in the steel cylinder;
  • Pulse steam washing put the contaminated TEOS back into the steel cylinder upside down, dichloromethane with a boiling point of 40°C is used as a solvent to vaporize, and pulse the dichloromethane steam into the TEOS back into the steel cylinder, and the low-temperature circulating water with a temperature of 4°C is
  • the internal circulation of the condensed water jacket realizes the rapid cooling of the inner wall of the steel cylinder, makes the methylene chloride vapor condense on the inner wall of the steel cylinder, and realizes the separation of foreign matter from the inner wall of the steel cylinder.
  • Dichloromethane vapor is filtered through a filter before being pumped into the cylinder to remove water and solid particle impurities.
  • Vacuum drying return the TEOS cleaned in step 4 to the steel cylinder for vacuum drying to remove methylene chloride in the steel cylinder;
  • the second foreign matter detection return TEOS to the inside of the steel cylinder for the second foreign matter detection, and use the X-ray foreign matter detection machine to detect the inside of the steel cylinder;
  • the five test results are the pressure-holding test: 24 hours under the condition of 30bar full of nitrogen; the airtightness of helium leak detection is 2.0 ⁇ 10 -10 mbar ⁇ L/s; the particulate matter ( ⁇ 0.1 ⁇ m) is 0; the moisture content is 9ppb; 20ppb.
  • test If the test is qualified, inject high-purity nitrogen or high-purity helium to maintain the pressure at 1-6 Bar, store it, and store it for use.
  • This embodiment provides a processing method for returning electronic-grade orthosilicate to a steel cylinder.
  • the specific steps of the specific processing method include:
  • Discharge residual liquid discharge TEOS and return the residual liquid in the steel cylinder, purging with 1-5 Bar nitrogen for 5-30 minutes, collect the residual liquid into the residual liquid tank for centralized treatment.
  • the first foreign matter detection use the X-ray foreign matter detection machine to detect the TEOS returned to the inside of the cylinder, and record the foreign matter in the cylinder, including the state of the foreign matter, the particle position, and the particle size;
  • Heat treatment of foreign matter Disassemble the valve of the steel cylinder, use a nitrogen heater to heat the nitrogen, blow it into TEOS and return it to the steel cylinder, and perform heat treatment on the foreign matter on the inner wall of the steel cylinder.
  • the heat treatment temperature is 700 ° C, and the time is 60 minutes. Nitrogen is purged out of the steel cylinder, return to step 2 after resetting the valve, and check the valve again;
  • the second foreign matter detection return TEOS to the inside of the steel cylinder for the second foreign matter detection, use the X-ray foreign matter detection machine to detect the inside of the steel cylinder, and record the position and particle size of foreign matter if there is foreign matter;
  • the second foreign matter heat treatment carry out the second foreign matter heat treatment on the foreign matter, the heat treatment temperature is 500 ° C, and the time is 20 minutes.
  • the foreign matter is transformed into a silicon dioxide solid powder and nitrogen is purged out of the steel cylinder. After the valve is reset, return to step 2, and again Check the valve until it is qualified, and proceed to the next step.
  • Five inspections of steel cylinders include pressure holding, helium leak detection, particulate matter, moisture and oxygen detection;
  • the five test results are the pressure-holding test: keep 24h under the condition of 30bar full of nitrogen; the air tightness of helium leak detection is 2.0 ⁇ 10 -10 mbar L/s; the particulate matter ( ⁇ 0.1 ⁇ m) is 0 ⁇ m; the moisture content is 9ppb; 20ppb.
  • Comparative Example 1 5 contaminated returned steel cylinders were tested separately, and the foreign matter heat treatment was performed at least twice to meet the standard.
  • repeated foreign matter heat treatment requires high temperature, long time, high energy consumption, and repeated installation-removal of cylinder valves, which is extremely cumbersome, increases labor consumption, and increases processing costs.

Abstract

一种电子级正硅酸乙酯返回钢瓶的处理方法,采用脉冲蒸汽洗涤工艺处理TEOS返回钢瓶(6)内的异物;脉冲蒸汽洗涤工艺包括将有机溶剂气化形成蒸汽后脉冲喷吹至TEOS返回钢瓶(6)内,在TEOS返回钢瓶(6)的内壁冷凝,利用异物的热胀冷缩和脉冲的震荡作用将异物从TEOS返回钢瓶(6)的内壁上分离;异物包括TEOS返回钢瓶(6)内的颗粒物和/或液体。

Description

一种电子级正硅酸乙酯返回钢瓶的处理方法及装置 技术领域
本发明涉及正硅酸乙酯技术领域,具体涉及一种电子级正硅酸乙酯钢瓶的处理方法及装置。
背景技术
随着半导体行业的发展,其对制程的主要工艺离子注入、扩散、外延生长及光刻提出了更高的要求,而这也对湿化学品提出了更高的要求。目前超高纯正硅酸乙酯(TEOS)主要应用于集成电路低压化学气相淀积工艺(LPCVD),正硅酸乙酯从液态蒸发成气态,在硅片表面淀积生成二氧化硅薄膜,在一定程度上克服SiC氧化层过薄和等离子增强化学气相沉积法(PECVD)二氧化硅层过于疏松的弊端,保证了氧化层介质的致密性及其与SiC晶片的粘附能力,提高了器件的电性能和成品率,且避免了为获得一定厚度氧化层长时间高温氧化的不足,这些优良的工艺特性和其在使用安全性方面的显著特点已逐步成为沉积二氧化硅薄膜的主流工艺。因此电子级正硅酸乙酯在集成电路行业的需求不断提高。
但如果正硅酸乙酯中的固体颗粒、金属离子、水分、纯度等超标,将严重影响硅片中电路内各元器件的性能甚至损坏电路,甚至芯片报废。电子级正硅酸乙酯的存储通过钢瓶进行的,一个五加仑的电子级TEOS钢瓶的价格在数万元以上,制造成本高,因此需要反复利用以节约成本。这对于包装物钢瓶的洁净程度要求极高,在充装、运输、储存与使用等过程中都存在污染的风险。特别是使用后的TEOS钢瓶,即TEOS返回钢瓶,如处理不当直接用于超高纯正硅酸乙酯的充装会再次污染TEOS,造成水分与颗粒物污染TEOS返回钢瓶,导致杂质超标。因此,对返回钢瓶需要对易造成二次污染的异物进行彻底处理,确保钢瓶中的各项杂质含量在可接受的范围之内。
使用过的TEOS返回钢瓶内部残留少量的TEOS,由于TEOS化学性质限制,直接采用水清洗钢瓶内部,TEOS极易发生水解反应,并形成凝胶水解物,附着在钢瓶内壁上难以处理,且处理后的结果无法准确判断是否清理完全,若直接再次储存电子级的正硅酸乙酯来说是无法保证颗粒物不污染二 次充装的TEOS;若不使用,造成巨大地浪费,且提高生产成本。
目前TEOS返回钢瓶处理的流程基本上氮气置换,吹扫,超纯水超声洗涤,抽真空,干燥等环节。如中国专利CN211217827U和中国专利CN209507560U提供的正硅酸乙酯充装钢瓶的处理系统。中国发明专利CN110420943A一种去除超高纯正硅酸乙酯钢瓶中固体颗粒的装置及方法通过双回路过滤的方法,同时处理两个钢瓶,提高处理效率,并减少超纯水的使用,降低成本,操作简单。经该工艺处理后的钢瓶仅是将TEOS钢瓶内的固体颗粒物质控制在可接受范围内,并不能完全将固体污染物去除,且对被污染的TEOS钢瓶中液体污染物处理失效,需要配合其他方法先去除钢瓶内的液体污染物。
正硅酸乙酯的沸点165.5℃,饱和蒸气压为0.13kPa(20℃),高沸点的液体难以通过抽真空彻底的去除,同时在有水的情况下TEOS会逐渐被水分解成氧化硅。因此,在接触过正硅酸乙酯的污染钢瓶不宜再使用含水液体进行洗涤,会造成氧化硅的形成,使钢瓶更难处理。同时TEOS返回钢瓶上使用的阀门一般是使用最高温度为60℃的隔膜阀,若在钢瓶处理过程中温度过高,易造成隔膜阀的损坏或者造成降低其使用寿命。
显然,针对被污染的TEOS返回钢瓶需要一种低温、无水条件下进行处理,提高钢瓶内的处理的洁净度,并保证钢瓶的重复使用率。
发明内容
本发明的目的是为了提供一种电子级正硅酸乙酯钢瓶的处理方法及装置,能够在无水和低温条件下完全处理钢瓶内壁的污染的异物,提高钢瓶内壁的洁净度,且不会损伤隔膜阀,保证钢瓶的重复使用率,而且可以同时对数个钢瓶同时清洗,操作简单,成本低。
为实现上述目的,本发明提供了一种电子级正硅酸乙酯返回钢瓶的处理方法,采用脉冲蒸汽洗涤工艺处理TEOS返回钢瓶内的异物;脉冲蒸汽洗涤工艺包括将有机溶剂气化形成蒸汽后脉冲喷吹至所述TEOS返回钢瓶内,在所述TEOS返回钢瓶的内壁冷凝,利用所述异物的热胀冷缩和脉冲的震荡作用将所述异物从钢瓶内壁上分离;所述异物包括所述TEOS返回钢瓶内的固 体颗粒物和/或液体。固体颗粒物为灰尘、TEOS水解产物,液体为乙醇、水、TEOS等。
进一步地,处理方法还包括异物热处理工艺,所述异物热处理是对所述TEOS返回钢瓶用高温惰性气体吹扫钢瓶内壁,热处理温度450~700℃,时间10~60min;将经所述异物热处理后形成的二氧化硅粉末吹扫出钢瓶。若脉冲蒸汽洗涤工艺无法清除TEOS返回钢瓶内的固体颗粒时,可将阀门拆卸后继续进行异物热处理工艺,进一步地去除TEOS返回钢瓶内的固体颗粒物质或其他异物。优选地,所述异物热处理条件包括惰性气体选择氮气或氩气,热处理温度500~550℃,时间20~30min。将阀门拆卸的原因在于TEOS返回钢瓶的阀门为最高耐温60℃的隔膜阀,如果直接进行热处理将严重损坏阀门,因此需要将阀门拆卸,并高温下采用惰性气体吹扫实现呈粉末,最终被吹扫出钢瓶内。惰性气体可以是氮气、氦气或氩气等任一种。
在钢瓶内壁的颗粒物主要为灰尘及TEOS的水解物。TEOS(C 8H 20O 4Si),结构式为
Figure PCTCN2022131265-appb-000001
TEOS极易水解,在酸和碱条件下均可水解,得到链状或三维网状的凝胶,在TEOS储存、运输或排出后的残液水解呈凝胶状的水解产物附着于钢瓶的内壁,凝胶失水后形成固体颗粒牢固地附着于钢瓶内壁,给清洗带来极大地难度。水解总反应方程式为:
C 8H 20O 4Si+H 2O→Si(OH) 4+4C 2H 5OH
Si(OH) 4→SiO 2·2H 2O
显然,钢瓶内壁的颗粒物质中的水解产物是二氧化硅水合物,在高温作用下失水形成二氧化硅粉末,从钢瓶内壁脱离,惰性气体吹扫即可。
进一步地,本发明的技术方案包括以下步骤:
S1、排出残液:排出所述TEOS返回钢瓶内的残液,氮气吹扫;
S2、检查阀门:检查钢瓶阀门的气密性;
S3、第一次异物检测:使用x光异物检测机对TEOS返回钢瓶内部进行检测,记录钢瓶内部存在的所述异物的情况;
S4、脉冲蒸汽洗涤:将被污染的所述TEOS返回钢瓶倒置,沸点≤60℃的 有机溶剂气化后将蒸汽脉冲喷吹至所述TEOS返回钢瓶内,并在所述TEOS返回钢瓶的内壁冷凝,实现所述异物从所述TEOS返回钢瓶内壁上分离;
S5、真空干燥:对S4清洗,除去钢瓶内的有机溶剂;
S6、第二次异物检测:对钢瓶内部进行第二次异物检测,使用x光异物检测机对钢瓶内部进行检测;
若存在异物,拆卸钢瓶阀门,对异物进行异物热处理,将固体颗粒物转变为二氧化硅固体粉末并吹扫出钢瓶,复位阀门后返回至S2,重复S2-S6;
若不存在异物,直接进行下一步操作;
S7、钢瓶五项检测:分别包括压力测试、气密性、颗粒物、水分和氧分检测;检测不合格,返回至S4,重复S4-S7;
若检测合格,通入高纯氮气或高纯氦气保持压力在1~6Bar,或者真空状态绝对压力≤50Pa,保存,备用;
所述合格的标准分别为压力测试:充满氮气保持30bar压力24h;气密性测试≤1.0×10 -10mbar·L/s;颗粒物(>0.1μm)为0;水分≤50ppb;氧分≤100ppb。
其中异物热处理工艺包括将惰性气体用氮气加热器加热后对钢瓶内壁的异物进行加热吹扫,并着重针对第二次异物检测过程中发现的异物位置重点加热吹扫。
进一步地,S2中检测阀门的气密性为气密性氦检,合格条件为气密性≤1.0×10 -10mbar·L/s为合格,如若达不到,更换阀门。
进一步地,所述脉冲蒸汽洗涤的脉冲蒸汽通过电磁脉冲阀调节,有机溶剂的蒸气在钢瓶内壁表面进行冷凝,实现对钢瓶内壁的清洗。
进一步地,S4中的有机溶剂为二氯甲烷、乙醚或丙酮的一种。所述有机溶剂在泵入钢瓶之前经精密过滤器过滤,去除所述有机溶剂中的水和固体杂质。
进一步地,本发明能够对若干个所述TEOS返回钢瓶同时进行清洗,清洗时,将钢瓶并列设置并分别与脉冲阀连接,从而实现钢瓶的同时清洗。
本发明在无水条件下,对被污染的TEOS返回钢瓶进行清洗并检测是否 符合重复使用的要求。
处理工艺原理:本发明采用无水清洗工艺,选用低沸点的有机溶剂,将其低温气化后采用脉冲模式将有机溶剂蒸汽喷出至钢瓶内壁进行冷凝,使钢瓶内的异物先接触热气流,再迅速降温,利用异物因热胀冷缩率不同而与钢瓶内壁分离,从而提高钢瓶内异物的洗脱效率。具体地说,以颗粒状形态的异物为例进行说明,颗粒物质附着在钢瓶内壁,当有机溶剂喷射进入钢瓶内与颗粒物质接触,颗粒物质受热,体积膨胀,钢瓶外壁的冷凝装置设有低温水循环流动,带走钢瓶外壁的热量,颗粒物质迅速降温导致体积再次收缩。同时,蒸汽呈脉冲式连续喷射在钢瓶内,颗粒物质在短时间内连续发生膨胀-收缩-膨胀-收缩…从而使颗粒物质与钢瓶内部的附着力降低,最后从钢瓶内壁分离脱出,实现颗粒物质的清洗。
同时,本发明还利用脉冲的震荡作用将蒸汽喷射至钢瓶内部的污染物表面使其与钢瓶内壁脱离。同时,由于钢瓶外壁设有冷凝夹套,冷凝水在钢瓶夹套内循环,带走钢瓶内壁的热量,且冲洗流量可以调整,具有理想的冲洗流量设置,根据钢瓶内壁异物检测情况的记录来调整脉冲冲洗的次数,调整冲洗强度并缩短冲洗时间。本发明使用的脉冲蒸汽洗涤是通过脉冲阀和冷凝夹套来实现的。
另一方面,本发明中TEOS返回钢瓶的阀门为隔膜阀,最高使用温度60℃,因此本发明为保证阀门的正常工作需要在低温下进行,因此本发明选用的有机溶剂需要在低于60℃条件下进行。当低温条件下脉冲洗涤无法完全除去TEOS返回钢瓶内的异物时,需要在高温再次进行热处理,因此需要卸下阀门,同时需要保证阀门的气密性。因此在清洗完成后,为保证TEOS返回钢瓶的安全使用,需要再次对TEOS返回钢瓶进行五项检查,以保证在储存TEOS的安全。
为实现上述目的,本发明还提供了一种被污染的电子级正硅酸乙酯钢瓶的处理装置,包括依次串联的有机溶剂罐-溶剂泵-气化器-脉冲阀-钢瓶置物架,所述TEOS返回钢瓶置于所述钢瓶置物架上,至少包括一个倒置、待处理的所述TEOS返回钢瓶置于所述钢瓶置物架上进行处理;所述钢瓶置物架 上固设有冷凝装置,所述冷凝装置能够完全贴合并包覆在所述TEOS返回钢瓶的外壁;所述TEOS返回钢瓶并联设置,并分别与所述脉冲阀连接;有机溶剂存储在所述有机溶剂罐内,经溶剂泵泵入所述气化器内,气化成蒸汽后经所述脉冲阀喷吹至所述TEOS返回钢瓶内,经所述冷凝装置冷凝在所述TEOS返回钢瓶的内壁,异物通过热胀冷缩在脉冲蒸汽吹扫的作用下,形成反复的膨胀-收缩过程,最终实现异物从所述TEOS返回钢瓶的内壁上分离。
进一步地,所述钢瓶外壁设有冷凝水夹套,冷凝水在所述冷凝水夹套内循环,将有机溶剂的蒸汽冷凝在所述钢瓶内壁。
进一步地,所述脉冲阀和所述气化器之间还设有过滤器,所述过滤器将所述气化器中气化的有机溶剂蒸汽进行过滤,纯化进入所述钢瓶中有机溶剂的蒸汽。
所述脉冲阀受电磁先导阀的控制,在瞬间启闭高压气源产生脉冲的膜片阀,是靠气流经气阻、气容的延时作用,使输入的长信号变为脉冲信号。脉冲蒸汽洗涤的脉冲蒸汽通过电磁脉冲阀调节,有机溶剂的蒸气在TEOS返回钢瓶内壁表面进行冷凝,实现对钢瓶内壁的清洗。
综上所述,本发明采用以上技术方案,获得以下技术效果:
1.本发明采用无水洗涤工艺,采用低沸点有机溶剂进行脉冲喷吹至钢瓶内,并快速冷凝在钢瓶内壁,利用颗粒物质的热胀冷缩和脉冲的震荡作用,将附着在钢瓶内壁难以去除的颗粒物质分离;对于脉冲蒸汽洗涤工艺无法去除的异物可以通过拆卸阀门后进行异物热处理工艺,将颗粒物质转变为粉末状吹出钢瓶内部,从而实现钢瓶五项检测的高标准返回瓶再次利用。整个工艺为无水操作,避免了TEOS水解产生更加难以清洗的水解物,且清洗后钢瓶的标准高,完全符合电子级正硅酸乙酯的储存要求和钢瓶出厂时的检验标准。
2.本发明可以多个TEOS返回钢瓶并联同时洗涤,提高操作效率高,且操作简单,降低了清洗成本。
3.本发明技术的脉冲蒸汽洗涤工艺对TEOS返回钢瓶的阀门(隔膜阀)完全无影响,对于污染钢瓶大部分一次性处理即可复合标准,无需拆卸阀门。 对于重度污染的钢瓶,可以通过拆卸阀门进行异物热处理工艺。相比较现有技术中的直接多次异物热处理工艺具有低能耗、降低人工成本的优点。
附图说明
图1本发明实施例1的TEOS返回钢瓶的处理装置结构示意图。
图2本发明实施例2的TEOS返回钢瓶的处理方法流程图。
图3本发明对照例1的TEOS返回钢瓶的处理方法流程图。
其中:1有机溶剂罐;101溶剂罐进口阀;2溶剂泵;3气化器;301卸料阀;4过滤器;5脉冲阀;6TEOS返回钢瓶;601冷凝水夹套;602冷凝水进口;603冷凝水出口;604脉冲管。
具体实施方式
下面结合本发明的具体内容,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。
本发明提供了一种电子级正硅酸乙酯钢瓶的处理装置和处理方法,能够将钢瓶内的异物从钢瓶内去除,这里所指的异物包括TEOS返回钢瓶内的颗粒物和/或液体,颗粒物包括灰尘、正硅酸乙酯水解物,具体地,水解物为二氧化硅水合物,附着在钢瓶内壁或沉积在钢瓶底部。液体包括正硅酸乙酯水解产生的乙醇、水和其他液状的有机、无机物质。正硅酸乙酯极易与水发生水解反应,生成凝胶类的水解物,极具有黏附作用,水解产物首先粘附在钢瓶内壁,形成固体颗粒,难以将其从钢瓶内壁去除,因此,需要提供一种无水处理工艺和装置来去除附着或沉积在钢瓶内的异物。
实施例1
本实施例提供了一种电子级正硅酸乙酯钢瓶的处理装置。
参阅图1,本实施例包括依次串联设置、通过管道连接的的有机溶剂罐1-溶剂泵2-气化器3-过滤器4-脉冲阀5-若干个钢瓶置物架,TEOS返回钢瓶6倒置固定在钢瓶置物架上。钢瓶置物架上固设有冷凝装置,冷凝装置能够完全贴合并包覆在TEOS返回钢瓶6的外壁;
其中TEOS返回钢瓶6可多个同时进行清洗处理,并分别与脉冲阀5连接,呈并联设置。
溶剂罐1底部设有出口与溶剂泵2连接,溶剂泵2将有机溶剂泵入气化器3内,有机溶剂在气化器3内气化成蒸汽。气化器3底部设有卸料阀301,当气化器3内部压力超范围或工艺完成后,可通过卸料阀301排出气化器3内的有机溶剂。
气化器3顶部设有出口与过滤器4连接,过滤器4将有机溶剂中的颗粒物、乙醇、水分等杂质过程过滤,提高有机溶剂的纯度。
过滤后的有机溶剂蒸汽在经过脉冲阀5行程脉冲蒸汽,进入TEOS返回钢瓶6内。
包覆在TEOS返回钢瓶6的外壁上的冷凝装置能够对TEOS返回钢瓶6快速进行降温。具体地,冷凝装置为冷凝水夹套601,冷凝水夹套可拆卸地完全包裹在TEOS返回钢瓶6的外壁。冷凝水夹套601设有冷凝水进口602和冷凝水出口603,使冷凝水在冷凝水夹套601内循环,带走TEOS返回钢瓶内壁的热量,将有机溶剂的蒸汽冷凝在TEOS返回钢瓶6的内壁上。
优选地,夹套601的形状与TEOS返回钢瓶6形状相同,夹套601顶部设有可活动的盖子,打开盖子,TEOS返回钢瓶6能够从顶部开口倒置放入。在优选地,盖子可以上下活动地铰接在夹套601上。
优选地,夹套601的形状与TEOS返回钢瓶6形状相同,并沿长度方向设有开口,并可以打开,将TEOS返回钢瓶6放入夹套601内后,在开口使用固定件或紧固件扣合固定。
TEOS返回钢瓶6内设有脉冲管604,一端与脉冲阀5连接,另一端延伸至TEOS返回钢瓶6底部,有机溶剂的蒸汽经脉冲阀5和脉冲管604喷射入TEOS返回钢瓶的底部,在弥漫至整个TEOS返回钢瓶6内,钢瓶内壁接触到的蒸汽遇冷快速冷凝在钢瓶内壁上,同时钢瓶内壁上的异物接触到蒸汽受热膨胀,同时由于钢瓶内壁的冷凝循环水的作用使其再次收缩,从而使异物形成膨胀-收缩-膨胀-收缩的反复循环,从而最终从钢瓶内壁分离。另一方面蒸汽脉冲式喷射入钢瓶内部,蒸汽呈现出一定的压力射入钢瓶内,实现震荡 作用,从而实现辅助洗脱的作用。
TEOS返回钢瓶6瓶口设有回收管路,与溶剂罐1连接,洗涤后的有机溶剂从钢瓶流出后经回收管路流入溶剂罐1,溶剂罐1顶部设有溶剂罐进口阀101,打开溶剂罐进口阀101,溶剂流入溶剂罐1内,实现有机溶剂的回收再用。其中回收管路上设有过滤器来吸收有机溶剂中的颗粒和水分等杂质。
有机溶剂存储在所述有机溶剂罐内,经溶剂泵泵入所述气化器内,气化成蒸汽后经脉冲阀5喷吹至TEOS返回钢瓶1内,经冷凝装置冷凝在TEOS返回钢瓶的内壁,异物通过热胀冷缩在脉冲蒸汽吹扫的作用下,形成反复的膨胀-收缩过程,最终实现异物从TEOS返回钢瓶6的内壁上分离。
脉冲阀5和气化器3之间还设有过滤器4,过滤器4将气化器3中气化的有机溶剂蒸汽中的颗粒物和水分等杂质进行过滤,纯化进入TEOS返回钢瓶中有机溶剂的蒸汽。
优选地,本实施例还辅助外置设有氮气加热器,能够对惰性气体,包括氮气、氦气等气体进行高温加热,将加热后的气体经连接管道和喷头喷吹至钢瓶内。
通过上述的处理装置,采用脉冲蒸汽洗涤工艺处理TEOS返回钢瓶内的异物;将有机溶剂在气化器3内气化形成蒸汽后脉冲喷吹至TEOS返回钢瓶6内,在冷凝水夹套601的作用下蒸汽在TEOS返回钢瓶的内壁冷凝,利用所述异物的热胀冷缩和脉冲的震荡作用将异物从钢瓶内壁上分离。
当上述的脉冲蒸汽洗涤工艺无法完全处理钢瓶内壁的异物时,还可以继续采用异物热处理工艺对TEOS返回钢瓶进行热处理,具体地,用高温惰性气体处理钢瓶内壁,惰性气体温度(即热处理温度)为450~700℃,时间10~60min,最后将异物形成的氧化硅粉末吹扫出钢瓶。惰性气体通过氮气加热器进行加热。惰性气体可以选择用氮气加热器进行加热。
采用高温惰性气体处理钢瓶内壁,无需将钢瓶整体置入钢瓶加热炉中进行热处理,在钢瓶置物架上直接即可进行,无需挪动钢瓶。或将钢瓶放入钢瓶加热炉进行高温加热也可实现处理钢瓶内壁异物的效果。
以下实施例或/和对照例的异物热处理工艺除温度、时间、惰性气体外,其他均与本实施例相同。
实施例2
本实施例提供了一种电子级正硅酸乙酯返回钢瓶的处理方法。
参阅图2,处理方法的具体步骤包括:
1、排出残液:排出TEOS返回钢瓶内的残液,1~5Bar氮气吹扫5~30min,残液收集至残液罐,集中处理。
2、检查阀门:检查钢瓶阀门的气密性;对阀门进行气密性氦检,气密性6.0×10 -11mbar·L/s,合格。
3、第一次异物检测:使用x光异物检测机对TEOS返回钢瓶内部进行检测,记录钢瓶内部存在的所述异物的情况;
4、脉冲蒸汽洗涤:将被污染的TEOS返回钢瓶倒置,沸点40℃的二氯甲烷作为溶剂气化后将二氯甲烷蒸汽脉冲喷吹至TEOS返回钢瓶内,温度为4℃的低温循环水在冷凝水夹套内循环从而实现钢瓶内壁的快速降温,使二氯甲烷蒸汽在钢瓶内壁冷凝,实现异物从钢瓶内壁上分离。
二氯甲烷蒸汽在泵入钢瓶之前经过滤器过滤,去除其中的水和固体颗粒杂质。
5、真空干燥:对步骤4清洗后的TEOS返回钢瓶进行真空干燥,除去钢瓶内的二氯甲烷;
6、第二次异物检测:对TEOS返回钢瓶内部进行第二次异物检测,使用x光异物检测机对钢瓶内部进行检测;
存在异物,拆卸钢瓶阀门,对异物进行异物热处理,热处理温度450℃,时间30min,将异物转变为二氧化硅固体粉末并氮气吹扫出钢瓶,复位阀门后返回至步骤2,再次检测阀门,并依次再次进行步骤2-步骤6。
7、钢瓶五项检测:分别包括保压、氦泄漏检测、颗粒物、水分和氧分检测;检测不合格,返回至S4,并依次再次进行步骤4-步骤7;
五项检测合格的标准分别为保压测试:充满氮气压力30bar条件下保持24h;氦泄漏检测气密性8.0×10 -10mbar·L/s;颗粒物(≥0.1μm)为0;水分12ppb; 氧气分50ppb。
8.检测合格,通入高纯氮气或高纯氦气保持压力在1~6Bar,保存,入库待用。
其中,检测标准及方法:氮气吹扫操作、阀门气密性、钢瓶五项检测标准参考GB50646-2011《特种气体系统工程技术规范》,其中,钢瓶五项检测、和氦泄漏检测标准参见该标准:11.3管路与系统验收和附录A。
阀门气密性参见GB/T 12137-2002气瓶气密性试验方法。
钢瓶五项合格标准为:充满氮气压力30bar以下条件保持24h;氦泄漏检测气密性≤1.0×10 -10mbar·L/s;颗粒物(≥0.1μm)为0;水分≤50ppb;氧气分≤100ppb。符合以上标准视为钢瓶符合储存电子级正硅酸乙酯的标准要求,可以投入再次使用。
x光异物检测机选用SYSTEM SQUARE生产的型号SX6974D。
氮气加热器选用无锡凯必特斯半导体科技有限公司KVTS Hot N 2
实施例3
本实施例提供了一种被污染的电子级正硅酸乙酯钢瓶的处理方法。
处理方法的具体步骤包括:
1、排出残液:将被污染的TEOS返回钢瓶残液排尽,1~5bar氮气吹扫30min,残液收集至残液罐,集中处理。
2、检查阀门:对TEOS返回钢瓶的阀门进行检查,包括阀门气密性氦检,气密性为5.0×10 -11mbar·L/s,合格。
3、第一次异物检测:对TEOS返回钢瓶内部异物进行检测,使用x光异物检测机对TEOS返回钢瓶内部,无异物。
4、脉冲蒸汽洗涤:使用沸点为40℃的二氯甲烷作为脉冲蒸气,将TEOS返回钢瓶倒置,固定于钢瓶处理架上,使用过滤后的脉冲蒸气对TEOS返回钢瓶进行洗涤,温度为7℃的低温水在冷凝水夹套内循环来实现钢瓶内壁的快速降温,使脉冲蒸气在钢瓶内壁表面冷凝,脉冲蒸汽洗涤30min。
5、真空干燥:将TEOS返回钢瓶在真空条件下进行干燥处理,真空绝压30Pa,温度50℃下,干燥2小时。
6、第二次异物检测:对TEOS返回钢瓶内部再次进行异物检测,使用X光异物检测机对钢瓶内部,无异物。
7、钢瓶五项检测,充满氮气压力5~30bar条件下保持24h;气密性为7×10 -11mbar·L/s;颗粒物(>0.1μm)为0;水分为10ppb;氧分为40ppb;检测结果符合要求。
8、检测合格,钢瓶抽真空,将绝对压力抽至5~50Pa,保存,备用。
实施例4
本实施例提供了一种被污染的电子级正硅酸乙酯钢瓶的处理方法。
处理方法的具体步骤包括:
1、排出残液:将被污染的TEOS返回钢瓶残液排尽,3Bar氮气吹扫20min,残液收集至残液罐,集中处理。
2、检查阀门:对TEOS返回钢瓶的阀门进行检查,包括阀门气密性氦检,气密性为4.0×10 -11mbar·L/s,合格。
3、第一次异物检测:对TEOS返回钢瓶内部异物进行检测,使用x光异物检测机检测钢瓶内部,并对异物拍照记录,在第二次异物检测时着重检测有异物的部位。
4、脉冲蒸汽洗涤:使用沸点温度为35℃的乙醚作为脉冲蒸气,将TEOS返回钢瓶倒置,固定于钢瓶处理架上,使用过滤后的脉冲蒸气对钢瓶进行洗涤,温度为5℃的低温水在冷凝水夹套内循环来实现钢瓶内壁的快速降温,使脉冲的有机蒸气在钢瓶内壁表面进行冷凝,脉冲蒸汽洗涤时间20min。
5、真空干燥:钢瓶真空干燥,真空绝压30Pa,温度50摄氏度下,干燥2小时。
6、第二次异物检测:钢瓶内部异物检测,使用X光异物检测机对钢瓶内部,着重检测第一次异物检测时有异物的部位,无异物。
7、钢瓶五项检测,充满氮气压力在5~30bar条件下保持24h;气密性为6×10-11mbar·L/s;颗粒物(>0.1μm)为0;水分为15ppb;氧分为35ppb。
8、检测合格,钢瓶抽真空,将绝对压力抽至5~50Pa,保存,备用。
实施例5
本实施例提供了一种被污染的电子级正硅酸乙酯钢瓶的处理方法。
处理方法的具体步骤包括:
1、排出残液:将被污染的TEOS返回钢瓶残液排尽,3Bar氮气吹扫20min,残液收集至残液罐,集中处理。
2、检查阀门:对TEOS返回钢瓶的阀门进行检查,包括阀门气密性氦检,气密性为5.0×10 -10mbar·L/s,大于阀门气密性的标准要求(1.0×10 -10mbar·L/s)不合格,更换新的阀门;
再次对新更换的阀门进行气密性检测,气密性为2.0×10 -11mbar·L/s,合格。
3、第一次异物检测:对TEOS返回钢瓶内部异物进行检测,使用x光异物检测机检测钢瓶内部,并对异物拍照记录,在第二次异物检测时着重检测有异物的部位。
4、脉冲蒸汽洗涤:使用沸点为56℃的有机溶剂丙酮作为脉冲蒸气,将TEOS返回钢瓶倒置,固定于钢瓶处理架上,使用过滤后的脉冲蒸气对钢瓶进行洗涤,使4℃的低温水在冷凝水夹套内循环,对钢瓶内壁进行迅速降温,使脉冲蒸气能够在钢瓶内壁表面进行冷凝,脉冲蒸汽洗涤时间20min。
5、真空干燥:钢瓶真空干燥,真空绝对压力30Pa和温度50℃条件下干燥2小时。
6、第二次异物检测:钢瓶内部异物检测,使用X光异物检测机对钢瓶内部,并重点检测第一次异物检测时记录的有异物的部位,再次检测无异物。
7、钢瓶五项检测,充满氮气压力5~30bar条件下保持24h;气密性为6×10 -11mbar·L/s;颗粒物(>0.1μm)为0;水分为15ppb;氧分为35ppb。
8、检测合格,钢瓶抽真空,将绝对压力抽至5~50Pa,保存,备用。
实施例6
本实施例提供了一种被污染的电子级正硅酸乙酯钢瓶的处理方法。
处理方法的具体步骤包括:
1、排出残液:排出TEOS返回钢瓶内的残液,1~5Bar氮气吹扫5~30min,残液收集至残液罐,集中处理。
2、检查阀门:检查钢瓶阀门的气密性;对阀门进行气密性氦检,气密性6.0×10 -11mbar·L/s,合格。
3、第一次异物检测:使用SYSTEM SQUARE SX6974D的x光异物检测机对TEOS返回钢瓶内部进行检测,记录钢瓶内部存在的所述异物的情况;
4、脉冲蒸汽洗涤:将被污染的TEOS返回钢瓶倒置,沸点40℃的二氯甲烷作为溶剂气化后将二氯甲烷蒸汽脉冲喷吹至TEOS返回钢瓶内,温度为4℃的低温循环水在冷凝水夹套内循环从而实现钢瓶内壁的快速降温,使二氯甲烷蒸汽在钢瓶内壁冷凝,实现异物从钢瓶内壁上分离。
二氯甲烷蒸汽在泵入钢瓶之前经过滤器过滤,去除其中的水和固体颗粒杂质。
5、真空干燥:对步骤4清洗后的TEOS返回钢瓶进行真空干燥,除去钢瓶内的二氯甲烷;
6、第二次异物检测:对TEOS返回钢瓶内部进行第二次异物检测,使用x光异物检测机对钢瓶内部进行检测;
存在异物,拆卸钢瓶阀门,采用氮气加热器对氮气加热后吹入TEOS返回钢瓶内,对钢瓶内壁的异物进行热处理,热处理温度550℃,时间20min,将异物转变为二氧化硅固体粉末并氮气吹扫出钢瓶,复位阀门后返回至步骤2,再次检测阀门,并依次再次进行步骤2-步骤6。
7、钢瓶五项检测:分别包括保压、氦泄漏检测、颗粒物、水分和氧分检测;检测不合格,返回至S4,并依次再次进行步骤4-步骤7;
五项检测合格的标准分别为保压测试:充满氮气压力30bar条件下保持24h;氦泄漏检测气密性8.0×10 -10mbar·L/s;颗粒物(≥0.1μm)为0;水分12ppb;氧气分50ppb。
8.检测合格,通入高纯氮气或高纯氦气保持压力在1~6Bar,保存,入库待用。
实施例7
本实施例提供了一种被污染的电子级正硅酸乙酯钢瓶的处理方法。
处理方法的具体步骤包括:
1、排出残液:排出TEOS返回钢瓶内的残液,1~5Bar氮气吹扫5~30min,残液收集至残液罐,集中处理。
2、检查阀门:检查钢瓶阀门的气密性;对阀门进行气密性氦检,气密性6.0×10 -11mbar·L/s,合格。
3、第一次异物检测:使用x光异物检测机对TEOS返回钢瓶内部进行检测,记录钢瓶内部存在的所述异物的情况;
4、脉冲蒸汽洗涤:将被污染的TEOS返回钢瓶倒置,沸点40℃的二氯甲烷作为溶剂气化后将二氯甲烷蒸汽脉冲喷吹至TEOS返回钢瓶内,温度为4℃的低温循环水在冷凝水夹套内循环从而实现钢瓶内壁的快速降温,使二氯甲烷蒸汽在钢瓶内壁冷凝,实现异物从钢瓶内壁上分离。
二氯甲烷蒸汽在泵入钢瓶之前经过滤器过滤,去除其中的水和固体颗粒杂质。
5、真空干燥:对步骤4清洗后的TEOS返回钢瓶进行真空干燥,除去钢瓶内的二氯甲烷;
6、第二次异物检测:对TEOS返回钢瓶内部进行第二次异物检测,使用x光异物检测机对钢瓶内部进行检测;
存在异物,拆卸钢瓶阀门,对异物进行异物热处理,热处理温度500℃,时间20min,将异物转变为二氧化硅固体粉末并氮气吹扫出钢瓶,复位阀门后返回至步骤2,再次检测阀门,并依次再次进行步骤2-步骤6。
7、钢瓶五项检测:分别包括保压、氦泄漏检测、颗粒物、水分和氧分检测;检测不合格,返回至S4,并依次再次进行步骤4-步骤7;
五项检测结果分别为保压测试:充满氮气压力30bar条件下保持24h;氦泄漏检测气密性2.0×10 -10mbar·L/s;颗粒物(≥0.1μm)为0;水分9ppb;氧气分20ppb。
8.检测合格,通入高纯氮气或高纯氦气保持压力在1~6Bar,保存,入库待用。
对照例1
本实施例提供了一种电子级正硅酸乙酯返回钢瓶的处理方法。
该对比例选用5个被污染的返回钢瓶进行分别检测。
具体地处理方法的具体步骤包括:
1、排出残液:排出TEOS返回钢瓶内的残液,1~5Bar氮气吹扫5~30min,残液收集至残液罐,集中处理。
2、检查阀门:检查钢瓶阀门的气密性;对阀门进行气密性氦检,气密性6.0×10 -11mbar·L/s,合格。
3、第一次异物检测:使用x光异物检测机对TEOS返回钢瓶内部进行检测,记录钢瓶内部存在的异物的情况包括异物的状态、颗粒位置、颗粒大小;
4、异物热处理:拆卸钢瓶阀门,采用氮气加热器对氮气加热后吹入TEOS返回钢瓶内,对钢瓶内壁的异物进行热处理,热处理温度700℃,时间60min,将异物转变为二氧化硅固体粉末并氮气吹扫出钢瓶,复位阀门后返回至步骤2,再次检测阀门;
5、第二次异物检测:对TEOS返回钢瓶内部进行第二次异物检测,使用x光异物检测机对钢瓶内部进行检测,存在异物并记录异物的位置和颗粒大小;
6、第二次异物热处理:对异物进行第二次异物热处理,热处理温度500℃,时间20min,将异物转变为二氧化硅固体粉末并氮气吹扫出钢瓶,复位阀门后返回至步骤2,再次检测阀门,直至合格,进行下一步操作。
7、钢瓶五项检测:五项检测分别包括保压、氦泄漏检测、颗粒物、水分和氧分检测;
五项检测结果分别为保压测试:充满氮气压力30bar条件下保持24h;氦泄漏检测气密性2.0×10 -10mbar·L/s;颗粒物(≥0.1μm)为0μm;水分9ppb;氧气分20ppb。
通过上述的方法,对选取的5个污染程度颗粒大小分布不同的返回钢瓶分别进行测试,结果表明,其中2个返回钢瓶经过2次异物热处理,2个返回钢瓶经过3次异物热处理,1个经过4次异物热处理。
结果分析:通过实施例2-7可见,对于轻中度的污染情况的被污染的TEOS返回钢瓶采用脉冲蒸汽洗涤的方法,严重污染的钢瓶还可以再辅以异物热处理工艺,能够完成被污染的TEOS返回钢瓶的清洗,清洗后的钢瓶符 合再次储存正硅酸乙酯的要求,且整个过程对阀门没有影响。
对比例1经过对5个被污染的返回钢瓶进行分别检测,至少经过两次的异物热处理方可符合标准。但是,反复异物热处理,温度高、时间长,能耗高,且操作需要反复安装-拆除钢瓶阀门,异常繁琐,增加了人工的耗损,提高了处理的成本。
显然,通过上述实施例和对比例结果分析可见,采用本发明的实施例,先采用脉冲蒸汽洗涤能够极大程度地将钢瓶内的颗粒物去除,且无需高温环境操作,对钢瓶阀门无影响,无需拆除阀门直接进行洗涤,安全高效,节约能耗,降低人工操作工序。当可能存在较大颗粒物无法完全通过脉冲蒸汽洗涤洗脱时,辅以异物热处理工艺,能够完全去除。经过上述实施例处理后的返回钢瓶能够达到钢瓶出厂使的标准,能够再次使用,成本低。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (11)

  1. 一种电子级正硅酸乙酯返回钢瓶的处理方法,其特征在于,采用脉冲蒸汽洗涤工艺处理TEOS返回钢瓶内的异物;脉冲蒸汽洗涤工艺包括将有机溶剂气化形成蒸汽后脉冲喷吹至所述TEOS返回钢瓶内,在所述TEOS返回钢瓶的内壁冷凝,利用所述异物的热胀冷缩和脉冲的震荡作用将所述异物从所述TEOS返回钢瓶的内壁上分离;所述异物包括所述TEOS返回钢瓶内的颗粒物和/或液体。
  2. 如权利要求1所述的电子级正硅酸乙酯返回钢瓶的处理方法,其特征在于,还包括异物热处理工艺,所述异物热处理是对所述TEOS返回钢瓶在惰性气体氛围下用氮气吹扫钢瓶内壁,热处理温度450~700℃,时间10~60min;将所述异物形成的二氧化硅粉末吹扫出钢瓶。
  3. 如权利要求2所述的电子级正硅酸乙酯返回钢瓶的处理方法,其特征在于,所述异物热处理条件包括惰性气体选择氮气、氦气或氩气,热处理温度500~550℃,时间20~30min。
  4. 如权利要求1-3任一所述的电子级正硅酸乙酯返回钢瓶的处理方法,其特征在于,包括以下步骤:
    S1、排出残液:排出所述TEOS返回钢瓶内的残液,氮气吹扫;
    S2、检查阀门:检查钢瓶阀门的气密性;
    S3、第一次异物检测:使用x光异物检测机对TEOS返回钢瓶内部进行检测,记录钢瓶内部存在的所述异物的情况;
    S4、脉冲蒸汽洗涤:将被污染的所述TEOS返回钢瓶倒置,沸点≤60℃的有机溶剂气化后将蒸汽脉冲喷吹至所述TEOS返回钢瓶内,并在所述TEOS返回钢瓶的内壁冷凝,实现所述异物从所述TEOS返回钢瓶内壁上分离;
    S5、真空干燥:对S4清洗后的钢瓶进行真空干燥,除去钢瓶内的有机溶剂;
    S6、第二次异物检测:对钢瓶内部进行第二次异物检测,使用x光异物检测机对钢瓶内部进行检测;
    若存在异物,拆卸钢瓶阀门,对异物进行异物热处理,将异物转变为二氧化硅固体粉末并吹扫出钢瓶,复位阀门后返回至S2,重复S2-S6;
    若不存在异物,直接进行下一步操作;
    S7、钢瓶五项检测:分别包括压力测试、气密性、颗粒物、水分和氧分检测;检测不合格,返回至S4,重复S4-S7;
    若检测合格,通入高纯氮气或高纯氦气保持压力在1~6Bar,或者真空状态绝对压力≤50Pa,保存,备用;
    所述合格的标准分别为压力测试:充满氮气压力≤30bar保持24h;气密性测试≤1.0×10 -10mbar·L/s;颗粒物(>0.1μm)为0;水分≤50ppb;氧分≤100ppb。
  5. 如权利要求4所述的电子级正硅酸乙酯返回钢瓶的处理方法,其特征在于,S2中检测阀门的气密性为气密性氦检,合格条件为气密性≤1.0×10 -10mbar·L/s为合格,如若达不到,更换阀门。
  6. 如权利要求4所述的电子级正硅酸乙酯返回钢瓶的处理方法,其特征在于,所述脉冲蒸汽洗涤的脉冲蒸汽通过电磁脉冲阀调节,有机溶剂的蒸气在所述TEOS返回钢瓶内壁表面进行冷凝,实现对所述TEOS返回钢瓶的内壁进行清洗。
  7. 如权利要求4所述的电子级正硅酸乙酯返回钢瓶的处理方法,其特征在于,S4中的有机溶剂为二氯甲烷、乙醚或丙酮中的一种;在泵入钢瓶之前经过滤器过滤,去除所述有机溶剂中的水和固体杂质。
  8. 如权利要求1-3任一所述的电子级正硅酸乙酯返回钢瓶的处理方法,其特征在于,包括若干个钢瓶置物架,可以将若干个所述TEOS返回钢瓶同时并联设置,并同时进行清洗。
  9. 一种实现如权利要求1~8任一所述电子级正硅酸乙酯返回钢瓶的处理方法的装置,其特征在于,包括
    依次串联的有机溶剂罐-溶剂泵-气化器-脉冲阀-钢瓶置物架,所述TEOS返回钢瓶置于所述钢瓶置物架上,至少包括一个倒置、待处理的所述TEOS返回钢瓶置于所述钢瓶置物架上进行处理;
    所述钢瓶置物架上固设有冷凝装置,所述冷凝装置能够完全贴合并包覆在所述TEOS返回钢瓶的外壁;
    所述TEOS返回钢瓶并联设置,并分别与所述脉冲阀连接;
    有机溶剂存储在所述有机溶剂罐内,经溶剂泵泵入所述气化器内,气化成蒸汽后经所述脉冲阀喷吹至所述返回TEOS返回钢瓶内,经所述冷凝装置冷凝在所述TEOS返回钢瓶的内壁,所述异物因热胀冷缩率不同从所述TEOS返回钢瓶的内壁上分离。
  10. 如权利要求9所述的电子级正硅酸乙酯返回钢瓶的处理装置,其特征在于,所述冷凝装置为冷凝水夹套,所述冷凝水夹套包裹在所述TEOS返回钢瓶外壁,冷凝水在所述冷凝水夹套内循环,将有机溶剂蒸汽冷凝在所述钢瓶内壁。
  11. 如权利要求9所述的电子级正硅酸乙酯返回钢瓶的处理装置,其特征在于,所述脉冲阀和所述气化器之间还设有过滤器,所述过滤器将所述气化器中气化的有机溶剂蒸汽进行过滤,纯化进入所述TEOS返回钢瓶中有机溶剂的蒸汽。
PCT/CN2022/131265 2021-11-17 2022-11-11 一种电子级正硅酸乙酯返回钢瓶的处理方法及装置 WO2023088171A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111363741.2A CN114082731B (zh) 2021-11-17 2021-11-17 一种电子级正硅酸乙酯返回钢瓶的处理方法及装置
CN202111363741.2 2021-11-17

Publications (1)

Publication Number Publication Date
WO2023088171A1 true WO2023088171A1 (zh) 2023-05-25

Family

ID=80301397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131265 WO2023088171A1 (zh) 2021-11-17 2022-11-11 一种电子级正硅酸乙酯返回钢瓶的处理方法及装置

Country Status (2)

Country Link
CN (1) CN114082731B (zh)
WO (1) WO2023088171A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114082731B (zh) * 2021-11-17 2022-08-23 苏州金宏气体股份有限公司 一种电子级正硅酸乙酯返回钢瓶的处理方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003024885A (ja) * 2001-07-17 2003-01-28 Mitsubishi Heavy Ind Ltd 洗浄方法およびその装置
CN206854308U (zh) * 2017-06-26 2018-01-09 富锦象屿金谷生化科技有限公司 中间罐喷淋系统
CN207430855U (zh) * 2017-11-03 2018-06-01 黑龙江省计算中心 一种实验用试管脉冲蒸汽清洗装置
CN110420943A (zh) * 2019-08-30 2019-11-08 苏州金宏气体股份有限公司 一种去除超高纯正硅酸乙酯钢瓶中固体颗粒的装置及方法
CN211217827U (zh) * 2019-11-05 2020-08-11 苏州金宏气体股份有限公司 一种正硅酸乙酯充装钢瓶的处理系统
CN114082731A (zh) * 2021-11-17 2022-02-25 苏州金宏气体股份有限公司 一种电子级正硅酸乙酯返回钢瓶的处理方法及装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100481256B1 (ko) * 1998-12-15 2005-04-11 어드밴스드 테크놀러지 머티리얼즈, 인코포레이티드 유출 기체류의 사용점 처리 장치 및 방법
US6468859B1 (en) * 1999-09-20 2002-10-22 Micron Technology, Inc. Method of reducing electrical shorts from the bit line to the cell plate
JP4285885B2 (ja) * 2000-04-20 2009-06-24 独立行政法人産業技術総合研究所 オゾン生成装置
CN101826445B (zh) * 2009-03-02 2012-07-18 中芯国际集成电路制造(上海)有限公司 净化管路及炉管杂质的装置和方法
CN102747338A (zh) * 2011-04-18 2012-10-24 北大方正集团有限公司 一种气体传输管路和二氧化硅沉积装置
JP6439919B2 (ja) * 2013-11-14 2018-12-19 大日本印刷株式会社 プリフォームの殺菌方法及び装置
CN105562406A (zh) * 2014-10-14 2016-05-11 洛阳瑞昌石油化工设备有限公司 一种金属腔体内壁除焦方法
CN205887576U (zh) * 2016-06-13 2017-01-18 中国科学院化学研究所 核磁管批量清洗装置
CN209077386U (zh) * 2018-11-09 2019-07-09 湖南华地茶业有限公司 一种洗瓶机
CN209507560U (zh) * 2019-01-21 2019-10-18 苏州金宏气体股份有限公司 一种高纯正硅酸乙酯用钢瓶的处理系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003024885A (ja) * 2001-07-17 2003-01-28 Mitsubishi Heavy Ind Ltd 洗浄方法およびその装置
CN206854308U (zh) * 2017-06-26 2018-01-09 富锦象屿金谷生化科技有限公司 中间罐喷淋系统
CN207430855U (zh) * 2017-11-03 2018-06-01 黑龙江省计算中心 一种实验用试管脉冲蒸汽清洗装置
CN110420943A (zh) * 2019-08-30 2019-11-08 苏州金宏气体股份有限公司 一种去除超高纯正硅酸乙酯钢瓶中固体颗粒的装置及方法
CN211217827U (zh) * 2019-11-05 2020-08-11 苏州金宏气体股份有限公司 一种正硅酸乙酯充装钢瓶的处理系统
CN114082731A (zh) * 2021-11-17 2022-02-25 苏州金宏气体股份有限公司 一种电子级正硅酸乙酯返回钢瓶的处理方法及装置

Also Published As

Publication number Publication date
CN114082731B (zh) 2022-08-23
CN114082731A (zh) 2022-02-25

Similar Documents

Publication Publication Date Title
US5749159A (en) Method for precision cleaning and drying surfaces
WO2023088171A1 (zh) 一种电子级正硅酸乙酯返回钢瓶的处理方法及装置
US8567089B2 (en) Evaporator, evaporation method and substrate processing apparatus
JP2768952B2 (ja) 金属酸化処理装置及び金属酸化処理方法
KR20090127067A (ko) 반도체 공정에서 사용하기 위한 아세틸렌 기체 정제 방법
FR2820056A1 (fr) Appareil de filtrage, procede associe de contre-lavage, dispositif de filtrage et centrale electrique
CN208444821U (zh) 晶圆传送装置及半导体工艺设备
KR101643455B1 (ko) 기판 처리 방법 및 장치
CN103100528A (zh) 一种清洗除钠的工艺和系统
JP2012087983A (ja) 流体加熱装置及び基板処理装置
WO2011158404A1 (ja) ベルジャー清浄化方法、多結晶シリコンの製造方法、およびベルジャー用乾燥装置
JP6133877B2 (ja) B2f4製造プロセス
US20070102023A1 (en) Apparatus for treating substrates with phosphoric acid solution and method for regenerating the phosphoric acid solution employed therein
KR101413747B1 (ko) 리무버 및 이를 이용한 스크러버용 제습장치
JPH0548295B2 (zh)
CN1805680A (zh) 微波管慢波电路粘接装配新工艺及其粘合剂清洗系统
KR100681807B1 (ko) 오존 처리 방법 및 오존 처리 장치
KR100483577B1 (ko) 폐가스 처리장치
FR2771661A1 (fr) Procede et dispositif de nettoyage par voie des fluides supercritiques d'objets en matiere plastique de formes complexes
CN211217827U (zh) 一种正硅酸乙酯充装钢瓶的处理系统
CN101250692B (zh) 处理容器的大气开放方法
CN218478826U (zh) 碘蒸气钝化硅片装置及测量少子寿命的预处理系统
JP2913564B2 (ja) 蒸気洗浄乾燥装置
TWI833277B (zh) 半導體製造裝置及半導體製造裝置的清理方法
JP3326845B2 (ja) 洗浄乾燥方法および洗浄乾燥装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894708

Country of ref document: EP

Kind code of ref document: A1