WO2023087957A1 - 一种铝管、其制造方法及全铝换热器 - Google Patents

一种铝管、其制造方法及全铝换热器 Download PDF

Info

Publication number
WO2023087957A1
WO2023087957A1 PCT/CN2022/123385 CN2022123385W WO2023087957A1 WO 2023087957 A1 WO2023087957 A1 WO 2023087957A1 CN 2022123385 W CN2022123385 W CN 2022123385W WO 2023087957 A1 WO2023087957 A1 WO 2023087957A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
aluminum
composite layer
core material
composite
Prior art date
Application number
PCT/CN2022/123385
Other languages
English (en)
French (fr)
Inventor
张萍
王浩红
高凤华
池武
万小峰
Original Assignee
格朗吉斯铝业(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 格朗吉斯铝业(上海)有限公司 filed Critical 格朗吉斯铝业(上海)有限公司
Publication of WO2023087957A1 publication Critical patent/WO2023087957A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/12Making tubes or metal hoses with helically arranged seams
    • B21C37/122Making tubes or metal hoses with helically arranged seams with welded or soldered seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/12Making tubes or metal hoses with helically arranged seams
    • B21C37/124Making tubes or metal hoses with helically arranged seams the tubes having a special shape, e.g. with corrugated wall, flexible tubes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/003Multiple wall conduits, e.g. for leak detection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/004Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using protective electric currents, voltages, cathodes, anodes, electric short-circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/06Fastening; Joining by welding
    • F28F2275/064Fastening; Joining by welding by induction welding or by using microwaves

Definitions

  • the invention relates to the field of aluminum tubes and heat exchangers, in particular to an aluminum tube with internal threads, a manufacturing method thereof, and a heat exchanger using the aluminum tube.
  • heat exchangers for refrigeration and air conditioning are mainly copper tube aluminum fins (RTPF), and the refrigerant in the tube exchanges heat with the outside air through the tube wall and fins.
  • All-aluminum heat exchangers are rarely used, and there are mainly two types: one is a brazed parallel flow micro-channel heat exchanger, and the other is an extruded aluminum tube aluminum fin heat exchanger. Because the parallel flow heat exchanger adopts flat tubes, the condensed water is not easy to discharge.
  • the application of this kind of heat exchanger in the outdoor heat exchanger of the heating condition or the evaporator of the cooling condition has not yet been mass-produced.
  • the extruded tubes of extruded aluminum tubes and aluminum fin heat exchangers Due to the limitation of the production process, the extruded tubes of extruded aluminum tubes and aluminum fin heat exchangers have poor corrosion resistance, and it is difficult to process internal threads to enhance heat transfer. It is difficult to obtain products with high corrosion resistance and high heat transfer efficiency.
  • the heat transfer tube is the main part of the heat exchanger, the weight accounts for 30%-50% of the heat exchanger, and the cost accounts for more than 40% of the heat exchanger.
  • Traditional heat transfer tubes use copper as raw material, and due to the shortage of copper resources, its price has risen.
  • CN201527144 proposes an air-conditioning heat exchanger using aluminum alloy U-shaped tubes, which can reduce the charge amount of refrigerant under the condition that it has the same heat exchange performance as the copper tube heat exchanger.
  • CN112254563A proposes a long-life aluminum alloy with high corrosion resistance and a spiral grooved pipe produced from the alloy. The flat pipe adopts the existing extrusion process and improves the corrosion resistance of the flat pipe through the design of the alloy composition.
  • the present invention relates to an aluminum tube with internal threads, wherein the material of the aluminum tube is a multilayer composite material, the multilayer composite material includes a core material and a composite layer, and the alloy of the core material includes : 0.5 to 2.0 wt% Si, 0.5 to 1.5 wt% Mn, 0.06 to 0.60 wt% Fe, 0.1 to 1.0 wt% Cu, ⁇ 0.5 wt% Mg, ⁇ 1.0 wt% Zn, ⁇ 0.2 wt% % Ti, Zr ⁇ 0.2% by weight, other elements with a single content of ⁇ 0.05% by weight and a total content of ⁇ 0.15% by weight, and the balance is aluminum; the alloy of the composite layer includes: ⁇ 1.0% by weight of Si, ⁇ 1.5 wt% Mn, ⁇ 0.5 wt% Fe, ⁇ 0.25 wt% Cu, ⁇ 0.25 wt% Mg, 0.01-2 wt% Zn, ⁇ 0.1 wt% Ti, ⁇ 0.1
  • the depth of diffusion of elements in the composite layer to the core material in the aluminum tube is 20-80 ⁇ m. In another embodiment, the diffusion depth of elements in the core material of the aluminum tube to the composite layer is more than 20 ⁇ m.
  • the composite layer in the aluminum tube includes at least an outer composite layer located on the outer surface of the core material. In an optional embodiment, the composite layer further includes an inner composite layer located on the inner surface of the core material.
  • the thicknesses of the outer composite layer and the inner composite layer in the aluminum tube are respectively 5%-20% of the thickness of the multilayer composite material. In a preferred embodiment, the thicknesses of the outer composite layer and the inner composite layer in the aluminum tube are respectively 10%-15% of the thickness of the multilayer composite material.
  • the aluminum tube has a high frequency weld with a height less than or equal to the tooth height of the internal thread.
  • the aluminum tube has a high frequency weld with a width less than or equal to the tooth width of the internal thread.
  • the potential of the composite layer in the aluminum tube is from -850 mV to -730 mV, and the potential of the core material is from -730 mV to -600 mV.
  • the present invention also relates to a heat exchanger comprising the aluminum tube heat exchange tube of the present invention.
  • the present invention also relates to a method for manufacturing an aluminum pipe, which may at least include the following steps: Step 1: Obtain a multi-layer composite material with a target size; Step 2: Install the composite material on the pipe making equipment for decoiling, Press the internal thread structure on the multilayer composite material by a thread die to obtain a multilayer composite material with internal threads; Step 3: perform high-frequency induction welding on the multilayer composite material with internal threads obtained in step 2 to form a high The aluminum tube with the height of the internal welding rib of the frequency welding seam is less than or equal to the tooth height of the internal thread; step 4: winding the aluminum tube obtained in step 3 into a coil and performing annealing treatment.
  • Fig. 1 schematic diagram of aluminum tube of the present invention
  • Fig. 2 the production technological process of aluminum tube of the present invention
  • Fig. 3 The type of screw thread on the composite material of the present invention.
  • Figure 4 (a) a schematic structural view of an internal thread of the present invention
  • Fig. 5 a metallographic microscope picture of an elliptical aluminum tube of the present invention and the high-frequency welding seam position of the aluminum tube of the present invention
  • Fig. 6 the structural representation of the composite material of aluminum pipe of the present invention.
  • Fig. 7 the corrosion resistance mechanism of the composite material of the aluminum tube of the present invention.
  • Fig. 8 partial schematic diagram of heat exchanger of the present invention.
  • Figure 10 Elemental diffusion between composite layer and core material
  • Figure 13 After 30 days of corrosion testing, (a) the results of the heat exchanger of the present invention (b) the cross-sectional view of the aluminum tube without fin protection;
  • Figure 15 Photograph of (a) a heat exchanger with extruded aluminum tubes of the prior art (b) cross-sectional view of extruded aluminum tubes without fin protection after 30 days of corrosion testing
  • Figure 16 Graph of the results of a heat exchanger with copper tubes after a 30-day corrosion test.
  • selected from refers to one or more elements of the group listed thereafter, independently selected, and may include a combination of two or more elements.
  • one or more or “at least one” means one, two, three, four, five, six, seven, eight, nine or more.
  • the term "optional” or “optionally” means that the subsequently described event or circumstance may or may not occur, and that description includes that said event or circumstance occurs and that it does not.
  • aluminum tube lumen refers to the tubular cavity inside the aluminum tube.
  • outer surface of the core material refers to the surface of the core material near the outside of the aluminum tube.
  • Inner surface of the core material refers to the surface of the core material near the inner cavity side of the aluminum tube.
  • the present invention relates to an aluminum tube with internal threads
  • the material of the aluminum tube is a multi-layer composite material
  • the multi-layer composite material includes a core material and a composite layer.
  • the shape of the aluminum tube can be a round tube or an oval tube.
  • the aluminum tube is an aluminum round tube.
  • aluminum round tubes can be used in heat exchangers to manufacture round tube heat exchangers.
  • the aluminum tube is an aluminum oval tube.
  • the elliptical structure can reduce the air side pressure drop of the heat exchanger using the aluminum tube, and reduce the energy consumption of the air conditioning system using the heat exchanger.
  • internal thread refers to the thread structure on the lumen side of the aluminum tube.
  • the internal thread can increase the contact area between the aluminum tube and the heat exchange medium, and can also make the heat exchange medium flow in the aluminum tube in a turbulent state, which helps to improve the efficiency of heat exchange.
  • An aluminum pipe with an internal thread can be obtained by rolling threads on a multi-layer composite material, and then by the manufacturing method of the aluminum pipe of the present invention (described in the subsequent specification).
  • the threads on the multilayer composite can be obtained by any suitable method. In one embodiment, the threads on the multilayer composite are obtained by roll forming.
  • the type of thread can be selected according to actual needs. By flexibly replacing different internal thread rollers, different types of internal thread forms can be pressed on the multi-layer composite material, as shown in FIG. 3 , for example.
  • the aluminum tubes obtained through subsequent processes also have correspondingly different types of internal threads.
  • Fig. 4(a) shows a structural schematic diagram of an internal thread, the internal thread form 1 in Fig. 3 is pressed by the material strip, which is a single helical structure.
  • the outer diameter of the internally threaded aluminum tube is 5mm-15mm, preferably 5mm-9mm.
  • the thickness of the bottom wall is 0.3mm-1.0mm, preferably 0.3mm-0.5mm.
  • the tooth height is 0.05mm-0.5mm, preferably 0.1mm-0.25mm.
  • the number of teeth is 20-70.
  • the addendum angle ⁇ is 10°-70°, preferably 20°-50°.
  • the helix angle is 0°-40°, preferably 10°-30°.
  • Fig. 4(b) shows another internal thread structure, which is formed by pressing the internal thread pattern 3 in Fig. 3 on the material strip.
  • the internal thread contains two kinds of internal threads with different helix angles, which are alternately pressed on the material strip. Therefore, it is difficult to produce this kind of thread by conventional drawing methods.
  • the preparation method of the present invention can be used to flexibly adjust the internal thread rollers. preparation.
  • the outer diameter of the internally threaded pipe is 5mm-15mm, preferably 5mm-9mm.
  • the thickness of the bottom wall is 0.3mm-1.0mm, preferably 0.3mm-0.5mm.
  • the tooth height is 0.05mm-0.5mm, preferably 0.1mm-0.25mm.
  • the total number of teeth is 20-70.
  • the addendum angle ⁇ is 10°-70°, preferably 20°-50°.
  • the helix includes two kinds of left-handed and right-handed, and the angle thereof is 0°-40°, preferably 10°-30°.
  • Aluminum tubes with high-frequency welds are obtained by high-frequency induction welding.
  • high-frequency induction welding has the meaning generally understood by those skilled in the art, and may refer to a welding process that uses skin effect and proximity effect generated by high-frequency current to join materials (such as aluminum materials) together.
  • the frequency of high frequency welding may be about 300-450 kHz.
  • the structure of the high-frequency weld is shown in the metallographic micrograph in Fig. 5.
  • the aluminum tube can have more excellent mechanical properties.
  • the height of the high-frequency welding seam refers to the height of the welding rod of the high-frequency welding seam inside the aluminum tube.
  • the weld height is less than or equal to the internal thread height.
  • the height of the high-frequency weld can be 50%-100% of the tooth height of the internal thread, preferably 75%-100%, more preferably 85%-100%, such as about 50%, 55%, 60%, 65% , 70%, 75%, 80%, 85%, 89%, 90%, 95%, 100%, etc.
  • the width of the weld is less than or equal to the tooth width of the internal thread.
  • the width of the high frequency weld can be 50%-100% of the tooth width, preferably 75%-100%, more preferably 85%-100%, for example about 50%, 55%, 60%, 65%, 70% %, 75%, 80%, 85%, 90%, 91%, 95%, 100%, etc.
  • Aluminum tubes also need to be expanded for use in heat exchangers. Therefore, the high-frequency weld seam needs to have a certain mechanical strength, so that it has better manufacturability during subsequent expansion and avoids cracking of the pipe wall.
  • the aluminum tube is made of multi-layer composite material.
  • Multilayer composites can be in the form of sheets or strips.
  • the multilayer composite is a multilayer composite tape.
  • Multilayer composites consist of a core material and composite layers.
  • the composite layer is used as a sacrificial anode protection layer to improve the corrosion resistance of the aluminum tube.
  • the core material has high strength to meet the strength and formability requirements of the aluminum tube.
  • the multilayer composite material consists of a core material and composite layers.
  • Multilayer composites can also include additional layers to perform different functions, as desired. For example, a solder layer may also be included.
  • the invention obtains the raw material of the aluminum tube by remelting and casting waste materials in production and aluminum alloy materials recovered from the heat exchanger. Compared with electrolytic aluminum, the method of the invention can reduce energy consumption, reduce carbon emissions in the production process of aluminum tube materials, and is more environmentally friendly.
  • the composite layer may be a single layer composite layer.
  • the multilayer composite material consists of a core material and an outer composite layer located on the outer surface of the core material, in which case the composite layer is the outer composite layer.
  • the outer side of the aluminum tube is a composite layer
  • the inner cavity side of the aluminum tube is a core material
  • the inner surface of the core material has an internal thread.
  • the composite layer may be a two-layer composite layer.
  • the multilayer composite material consists of a core material, an outer composite layer on the outer surface of the core material, and an inner composite layer on the inner surface of the core material.
  • the aluminum tube obtained through the follow-up process has an outer composite layer on the outside of the aluminum tube, an inner composite layer on the inner side of the aluminum tube, a core material between the outer composite layer and the inner composite layer, and an inner composite layer on the surface close to the inner cavity of the aluminum tube. thread.
  • the thickness of the outer composite layer is 5-20%, preferably 5%-15%, eg 10%, 15%, of the thickness of the multilayer composite.
  • the thickness of the inner composite layer is 5-20%, preferably 5%-15%, eg 15%, of the thickness of the multilayer composite.
  • the potential of the composite layer in the aluminum tube needs to be lower than that of the core material, so that the aluminum tube has excellent corrosion resistance.
  • the composite layer has a potential of -850 mV to -730 mV and the core material has a potential of -730 mV to -600 mV.
  • the composition of the core material alloy will affect the potential of the aluminum tube core material. Therefore, it is necessary to reasonably control the composition of the core material alloy, so that the core material has a higher potential than the composite layer, so that the composite layer can be used as a protective layer to prevent the core material from being corroded.
  • Core alloys include:
  • the alloy of the core material contains:
  • the Mn content in the core material alloy has a significant impact on the potential distribution and mechanical strength of the obtained multilayer composite material, which will further affect the corrosion resistance and strength of the aluminum tube.
  • the Mn content in the core material alloy is above 1.5% by weight, it is easy to cause the material to appear in a state of large particles during the casting process, which is not conducive to obtaining a suitable uniform potential gradient distribution, which in turn leads to a decrease in the corrosion resistance of the material.
  • the core material alloy comprises less than 1.5% by weight of Mn, preferably 0.5-1.5% by weight of Mn, for example 1.21% or 1.13% by weight of Mn.
  • the alloy from which the core material is made comprises: 0.72% by weight Si, 1.21% by weight Mn, 0.45% by weight Fe, 0.51% by weight Cu, 0.02% by weight Mg, 0.03% by weight Zn, 0.14 % by weight of Ti, 0.01% by weight of Zr, and the balance of aluminum. It should be understood that it may also contain other elements with a single content of ⁇ 0.05% by weight and a total content of ⁇ 0.15% by weight.
  • the alloy composition of the core material is: 1.37 wt% Si, 1.13 wt% Mn, 0.36 wt% Fe, 0.43 wt% Cu, 0.16 wt% Mg, 0.24 wt% Zn , 0.08% by weight of Ti, 0.04% by weight of Zr, and the balance being aluminum. It should be understood that it may also contain other elements with a single content of ⁇ 0.05% by weight and a total content of ⁇ 0.15% by weight.
  • composition of the composite layer alloy will affect the potential of the composite layer of the aluminum tube. Therefore, it is necessary to reasonably control the composition of the composite layer alloy, so that the composite layer has a lower potential than the core material, which can be used as a protective layer, so that the aluminum tube has a corrosion-resistant effect.
  • the alloy of the composite layer contains:
  • the alloy of the composite layer contains:
  • the composite layer is prepared from an alloy comprising: 0.08% by weight Si, 0.02% by weight Mn, 0.26% by weight Fe, 0.01% by weight Cu, 0.01% by weight Mg, 0.01% by weight Zn, 0.01 % by weight of Ti, ⁇ 0.1% by weight of Zr, and the balance of aluminum. It should be understood that it may also contain other elements with a single content of ⁇ 0.05% by weight and a total content of ⁇ 0.15% by weight.
  • the composite layer is prepared with an alloy composition of: 0.18% by weight Si, 0.05% by weight Mn, 0.32% by weight Fe, 0.02% by weight Cu, 0.01% by weight Mg, 1.15% by weight Zn , 0.02% by weight of Ti, ⁇ 0.1% by weight of Zr, and the balance being aluminum. It should be understood that it may also contain other elements with a single content of ⁇ 0.05% by weight and a total content of ⁇ 0.15% by weight.
  • the alloy composition for preparing the composite layer is: 0.7% by weight of Si, 1.2% by weight of Mn, 0.25% by weight of Fe, 0.03% by weight of Cu, 0.02% by weight of Mg, 0.7% by weight of Zn , 0.02% by weight of Ti, 0.02% by weight of Zr, and the balance of aluminum. It should be understood that it may also contain other elements with a single content of ⁇ 0.05% by weight and a total content of ⁇ 0.15% by weight.
  • the alloy of the clad layer contains the appropriate content of elements in order to obtain the excellent properties of the aluminum tube.
  • the alloy of the composite layer contains less than 1.0% by weight Si.
  • the alloy of the composite layer contains 0.01% by weight or more and less than 1.0% by weight of Si.
  • the alloy of the composite layer contains less than 0.5% by weight Fe.
  • the alloy of the composite layer contains 0.005% by weight or more and less than 0.5% by weight of Fe.
  • the alloy of the composite layer contains less than 0.25% by weight Cu.
  • the alloy of the composite layer contains 0.0025% by weight or more and less than 0.25% by weight of Cu.
  • the alloy of the composite layer contains less than 0.25% by weight of Mg.
  • the alloy of the composite layer contains more than 0.0025% by weight and less than 0.25% by weight of Mg,
  • the alloy of the composite layer contains less than 0.1% by weight of Ti.
  • the alloy of the composite layer contains 0.001% by weight or more and less than 0.1% by weight of Ti.
  • the alloy of the composite layer contains less than 0.1% by weight Zr.
  • the alloy of the composite layer contains 0.001% by weight or more and less than 0.1% by weight of Zr.
  • the Zn content will affect the corrosion resistance and strength of the aluminum tube.
  • the Zn content exceeds 2% by weight, the Zn content in the composite layer is too high, which will increase the corrosion rate of the material and shorten the service life of the product.
  • the alloy of the composite layer comprises 0.01-2 wt. % Zn, preferably 0.01-1.5 wt. % Zn, for example 0.01 wt. %, 1.15 wt. % or 0.7 wt. % Zn.
  • the self-corrosion and galvanic corrosion properties of the material can be further improved by controlling the grain structure of the composite layer and the core material, and controlling the interdiffusion of elements between the composite layer and the core material .
  • the depth of interdiffusion of elements in the composite layer and the core material needs to be controlled within an appropriate range so that the aluminum tube can obtain the desired performance.
  • Such a diffusion process can be realized, for example, by a production process.
  • the diffusion of elements can usually be determined by the distribution of elements (such as Si, Mn, Fe, Cu, Mg, Zn, Ti and/or Zr, etc.).
  • the elemental distribution between the composite layer and the core material was determined by scanning electron microscope element distribution. Those skilled in the art will understand that when referring to elemental diffusion depth, it is determined by the element under consideration. When more than one element is considered, the extent of diffusion referred to is determined by the combination of the most deeply diffused element and the shallowest element.
  • the elements used are Cu and/or Zn.
  • the total thickness of the tube wall material of the aluminum tube is 700 ⁇ m, and the thickness of the composite layer is 80 ⁇ m.
  • the Zn element contained in the composite layer alloy diffuses to the core material.
  • the distance difference from the outer surface of the aluminum tube in Figure 10 is about 130 ⁇ m
  • the distance it diffuses in the core material is the Zn element
  • the depth of diffusion from the composite layer to the core material, from the thicknesses of the core material and the composite layer shows that the diffusion depth of the Zn element from the composite layer to the core material in FIG. 10 is about 50 ⁇ m.
  • the Cu element contained in the core material layer diffuses to the composite layer.
  • the distance difference from the outer surface of the aluminum tube in Figure 10 is about 70 ⁇ m
  • the distance it diffuses in the composite layer is the Cu element From the diffusion depth of the composite layer to the core material, it can also be seen that the diffusion depth of the Cu element from the composite layer to the core material in FIG. 10 is about 10 ⁇ m.
  • the depth of diffusion of elements is 10-100 ⁇ m, preferably 20-80 ⁇ m, for example, 10 ⁇ m, 15 ⁇ m, 20 ⁇ m, 25 ⁇ m, 30 ⁇ m, 35 ⁇ m, 40 ⁇ m, 45 ⁇ m, 50 ⁇ m, 55 ⁇ m, 60 ⁇ m, 65 ⁇ m, 70 ⁇ m, 75 ⁇ m, 80 ⁇ m, 85 ⁇ m, 90 ⁇ m, 95 ⁇ m, 100 ⁇ m.
  • the diffusion depth of elements in the composite layer to the core material is too large, the overall potential gradient of the material is small, and it is impossible to form a good sacrificial anode to protect the core material.
  • the element diffused from the composite layer to the core is Cu and/or Zn.
  • the depth of Cu and/or Zn diffused into the core material is 10-100 ⁇ m, preferably 20-80 ⁇ m, such as 10 ⁇ m, 15 ⁇ m, 20 ⁇ m, 25 ⁇ m, 30 ⁇ m, 35 ⁇ m, 40 ⁇ m, 45 ⁇ m, 50 ⁇ m, 55 ⁇ m, 60 ⁇ m, 65 ⁇ m, 70 ⁇ m, 75 ⁇ m, 80 ⁇ m, 85 ⁇ m, 90 ⁇ m, 95 ⁇ m, 100 ⁇ m.
  • the diffusion depth of elements in the core material (such as Si, Mn, Fe, Cu, Mg, Zn, Ti and/or Zr, etc.) to the composite layer is more than 10 ⁇ m, preferably more than 20 ⁇ m, such as 10 ⁇ m, 15 ⁇ m, 20 ⁇ m , 25 ⁇ m, 30 ⁇ m, 35 ⁇ m, 40 ⁇ m, 45 ⁇ m, 50 ⁇ m, 100 ⁇ m, 200 ⁇ m, 500 ⁇ m, etc. If the diffusion depth of the elements in the core material to the composite layer is too small, the composite layer and the core material will have obvious element distribution boundaries, and it is impossible to form a sacrificial anode from outside to inside to protect the effect of the core material.
  • Elements in the core material can diffuse throughout the composite layer.
  • the element diffused from the core material to the composite layer is Cu and/or Zn.
  • the diffusion depth of Cu and/or Zn in the core material to the composite layer is more than 10 ⁇ m, preferably more than 20 ⁇ m, such as 10 ⁇ m, 15 ⁇ m, 20 ⁇ m, 25 ⁇ m, 30 ⁇ m, 35 ⁇ m, 40 ⁇ m, 45 ⁇ m, 50 ⁇ m, 100 ⁇ m , 200 ⁇ m, 500 ⁇ m, etc.
  • the aluminum tube can have high strength (pressure resistance) and excellent corrosion resistance.
  • the present invention also relates to a heat exchanger, wherein the heat exchange tube included in the heat exchanger is the aluminum tube of the present invention.
  • the heat exchanger also usually includes fins (as shown in Figure 8).
  • the potential of the heat exchanger is: fins ⁇ aluminum tube outer surface ⁇ aluminum tube core material, which can strengthen the exchange rate. Corrosion resistance of heaters in corrosive environments.
  • the potential of the heat exchanger fins is -850 mV to -740 mV.
  • composition of a fin is an important factor affecting its potential.
  • materials that can be used for fins include but not limited to AA8011, AA3102, and AA1100.
  • the material of the fins is AA8011.
  • the present invention also relates to a method for manufacturing the aluminum pipe of the present invention, comprising the steps of: obtaining a multilayer composite material of target size; The internal thread structure is pressed on the composite material to obtain a multilayer composite material with internal thread; high-frequency induction welding is performed on the multilayer composite material with internal thread to form an aluminum tube; the aluminum tube is wound into a coil and annealed.
  • the multi-layer composite material may be composed of suitable composite layers and a core material, the composite layer is prepared from the above-mentioned composite layer alloy, and the core material is prepared from the above-mentioned core material alloy.
  • Multilayer composites can consist of a single composite layer and a core material, such as that shown in the left panel of Figure 6.
  • a multi-layer composite can consist of a two-layer composite layer and a core material, where the core material is positioned between an outer composite layer and an inner composite layer, such as that shown in the right panel of Figure 6.
  • the preparation process of multilayer composite materials usually includes a series of steps such as alloy casting, rolling into plates, hot rolling and rolling to a certain thickness of plates or strips.
  • the multilayer composite is produced by: melting and casting of aluminum ingots, wherein the proportions of the different elements are optimized; sawing; special homogenization; face milling; compounding; hot rolling; billet cold rolling; special heat treatment ; Finish rolling to target thickness (for example 0.7mm).
  • the element ratio of the alloy is optimized.
  • the content of Si, Cu, Mn, Ti, etc. is further optimized and adjusted.
  • the target size (such as thickness, size, etc.) of the multilayer composite material can be reasonably selected according to the size of the aluminum tube and the size of the internal thread roller.
  • composite materials of larger size are usually obtained, and then composite materials of target size are obtained by online mechanical cutting.
  • an aluminum alloy strip wound into a roll which is composed of a core material and an anti-corrosion layer, and its width is usually 15mm-50mm, and its thickness is usually 0.3-1.0mm.
  • the aluminum alloy coils are uncoiled sequentially after being installed in the pipe making equipment. The aluminum alloy strip is then leveled to facilitate subsequent internal thread pressing.
  • the step of pressing the internal thread in the present invention is carried out during the pipe making process.
  • the internal threads are formed on a tubing machine.
  • the composite material is installed on the pipe-making equipment and uncoiled, and the internal thread structure is pressed on the multi-layer composite material through a threaded die. This approach reduces tooling costs and provides greater flexibility while avoiding subdivision of multilayer composites with internal threads, thereby maintaining thread integrity.
  • Multilayer composite material with internal threads that can be obtained by high frequency induction welding.
  • the obtained multilayer composite material with internal threads is subjected to high-frequency induction welding to obtain an aluminum tube with a high-frequency weld.
  • the pipe making method adopts high-frequency induction welding process, which has the technical advantages of high production efficiency and good yield rate.
  • the production efficiency can reach 100-150m/min, and the yield rate is higher than 92%.
  • the whole pipe-making process is carried out in an oil-free and chip-free manner, and the interior of the aluminum pipe has a high degree of cleanliness.
  • Fig. 2 shows the basic production flow of the aluminum pipe of the present invention.
  • the aluminum alloy coil is installed in the tube making equipment, it is uncoiled in sequence, the internal thread is rolled into shape, high-frequency induction welding, and finally wound into a coil and annealed to produce a refrigeration tube that can be used in a heat exchanger.
  • This kind of aluminum tube forming method has a wide range of tube diameters.
  • By flexibly replacing different internal thread rollers different types of thread structures can be pressed on the composite aluminum strip (such as shown in Figure 3).
  • the production efficiency and yield are high, and the cost is low.
  • the cleanliness of the tube is good, which is convenient for the subsequent manufacture of heat exchangers.
  • the high-frequency high-frequency welded aluminum pipe with high corrosion resistance of the present invention through the material design of multi-layer composite aluminum alloy, the aluminum pipe has good corrosion resistance, which can improve the corrosion resistance of the finless protection (such as elbows, etc.), thereby Reduce or avoid the use of anti-corrosion coating, which has the advantages of low carbon and environmental protection.
  • the coordinated balance of the strength (pressure resistance) and corrosion resistance of the aluminum tube is realized.
  • the invention adopts multi-layer composite material to roll thread on-line, and forms it through high-frequency induction welding, which overcomes the disadvantages of single material, poor wall thickness uniformity and limited internal thread form of the existing extruded pipe.
  • the high-frequency welding pipe-making method has the technical advantages of high production efficiency and good yield.
  • the whole pipe making process is carried out in an oil-free and chip-free manner, and the internal cleanliness is high.
  • the alloy composition for preparing the core material is shown in Table 1
  • the alloy composition for preparing the composite layer is shown in Table 2, and the balance is Al.
  • Examples 1-6 were prepared according to the preparation method of the present invention by selecting a multi-layer composite aluminum alloy strip, the alloy composition of the core material and the composite layer of which is shown in Table 3.
  • Core-1 is selected as the core material alloy, and Clad-A is used as the composite layer alloy.
  • the core material and the single-layer composite layer are hot-rolled and composited to make an aluminum alloy strip wound into a coil.
  • the width is 21.8mm and the thickness is 0.7mm.
  • the thickness of the composite layer accounts for 10% of the total thickness of the strip.
  • the roller with internal thread form 1 (see Figure 3) is selected to roll on the surface of the core material of the strip to form an internal thread.
  • the preparation method is the same as that of Example 1, except that the ratio of core material alloy, composite layer alloy and composite layer thickness is different. Specifically as shown in Table 3.
  • the core material is hot-rolled and compounded with the double-layer clad layer, wherein the core material is located between the outer clad layer (Clad-A) and the inner clad layer (Clad-B), and is made into an aluminum alloy strip wound into a roll, and the outer clad layer
  • the thickness accounts for 10% of the total thickness of the strip
  • the inner composite layer accounts for 15% of the total thickness of the strip.
  • Example 5 the aluminum tube of Example 5 was produced.
  • the preparation method is the same as that of Example 5, except that Core-2 is selected as the core material alloy.
  • Core-1 is selected as the core material alloy, and Clad-A is used as the composite layer alloy.
  • the core material and the single-layer composite layer are hot-rolled and composited to make an aluminum alloy strip wound into a coil.
  • the width is 21.8mm and the thickness is 0.7mm.
  • the thickness of the composite layer accounts for 10% of the total thickness of the strip.
  • the roller with internal thread form 1 (see Figure 3) is selected to roll on the surface of the core material of the strip to form an internal thread.
  • the pipe is welded by high-frequency induction, and then sized and finished to form an aluminum round tube with an outer diameter of 7mm and a wall thickness of 0.45mm.
  • the inner thread is located on the inner side of the aluminum round tube, and the tooth height of the inner thread is: 0.18mm, tooth width of internal thread: 0.35mm; height of high-frequency weld: 0.16mm, width of high-frequency weld: 0.32mm. Annealing was performed after being wound into a disc to obtain the aluminum tube of Example 7.
  • Comparative example 1 An aluminum tube made of AA3102 with an internal thread and an outer diameter of 7 mm was prepared by extrusion. Comparative example 1 was obtained by the following method: continuous extrusion processing of aluminum alloy round pipe, the friction between the aluminum pipe and the extrusion wheel groove caused the aluminum to be continuously extruded into the mold cavity, and the thread core was carried out under high pressure and high temperature. Coating and filling of the head to form an internally threaded aluminum tube that fits the threaded core head.
  • a copper tube made of C11000 with an internal thread and an outer diameter of 7 mm was prepared by extrusion.
  • the comparative example 2 was obtained by the following method: after the copper ingots were successively rolled, double-drawn, coil-drawn, online annealed, internally threaded, horizontally wound, coil-formed and annealed, copper tubes for air-conditioning heat exchangers were formed. .
  • Core-1 is selected as the core material alloy, and Clad-A is used as the composite layer alloy.
  • the core material and the single-layer composite layer are hot-rolled and composited to make an aluminum alloy strip wound into a coil.
  • the width is 21.8mm and the thickness is 0.7mm.
  • the thickness of the composite layer accounts for 10% of the total thickness of the strip.
  • the roller with internal thread form 1 (see Figure 3) is selected to roll on the surface of the core material of the strip to form an internal thread.
  • the tube is welded by high-frequency induction, sizing and finishing forming to make an aluminum round tube with an outer diameter of 7mm.
  • the inner thread is located on the inner side of the aluminum round tube.
  • the tooth width 0.35mm; the height of the high-frequency weld: 0.25mm, the width of the high-frequency weld: 0.9mm.
  • Annealing was carried out after being wound into a disc, and the aluminum tube of Comparative Example 3 was obtained.
  • Element diffusion combined with the element distribution of the composite layer and core material obtained by scanning electron microscopy, to determine the element diffusion between the composite layer and the core material. For example, it will be described in detail with reference to Fig. 10, wherein the total thickness of the tube wall material of the aluminum tube is 700 ⁇ m, and the thickness of the composite layer is 80 ⁇ m.
  • the Zn element contained in the composite layer alloy diffuses to the core material.
  • the distance difference from the outer surface of the aluminum tube in Figure 10 is about 130 ⁇ m
  • the distance it diffuses in the core material is the Zn element
  • the diffusion depth from the composite layer to the core material, the diffusion depth of the Zn element from the composite layer to the core material in Figure 10 is about 50 ⁇ m.
  • the Cu element contained in the core material layer diffuses to the composite layer.
  • the distance difference from the outer surface of the aluminum tube in Figure 10 is about 70 ⁇ m
  • the distance it diffuses in the composite layer is the Cu element
  • the diffusion depth from the composite layer to the core material, the diffusion depth of Cu element from the composite layer to the core material in Figure 10 is about 10 ⁇ m.
  • the elements Zn and Cu in the composite layer diffuse to the core material to a depth of 20-65 ⁇ m; the elements Zn and Cu in the core material diffuse to the composite layer to a depth of 20-40 ⁇ m.
  • the depth that outer composite layer (Clad A) element diffuses to core material accounts for 20-45 ⁇ m of core material thickness; Inner composite layer (Clad B) element diffuses depth 25-40 ⁇ m to core material; Core material The depth of element diffusion into the composite layer is 15-35 ⁇ m. The depth of diffusion of core material elements to the outer composite layer is 15-30 ⁇ m; the depth of diffusion of core material elements to the inner composite layer is 13-27 ⁇ m.
  • the data in Table 4 shows that the tensile strength of Examples 1-6 is 135MPa-160MPa, compared with the existing extruded aluminum tube Comparative Example 1, the tensile strength of the examples is about 42%-78% higher. This shows that, compared with the aluminum tube produced by extrusion in the prior art, the aluminum tube of the present invention has higher strength and better pressure resistance.
  • Corrosion resistance tests were carried out on composite materials comprising composite layers and core materials with different Zn contents, and the results are shown in FIG. 11 .
  • the results show that for composites with an initial thickness of 600 ⁇ m, and for composites with a Zn content of more than 2% by weight in the composite layer, the main element composition of the composite layer is: 0.29% by weight of Si, 0.20% by weight of Fe, 2.5% by weight % Zn, after 70 days of corrosion resistance test, the thickness of the composite material remains 259.3 ⁇ m; for the composite material with Zn content below 2% by weight in the composite layer, wherein the composite layer is the above-mentioned Clad B, after 120 days of corrosion resistance After testing, the thickness of the composite material remained at 474.3 ⁇ m. From the above results, it can be concluded that the Zn content has a significant impact on the corrosion resistance of the material, and the composite layer containing an appropriate content of Zn is beneficial to improve its corrosion resistance.
  • the size and strength of high-frequency welds affect the practical application of aluminum pipes.
  • the aluminum tube of Example 7 has good processability and low tube expansion cracking rate.
  • the yield of the heat exchanger is relatively high.
  • the burst pressure of the aluminum tube in Example 7 is greater than 17.5 MPa, which meets practical applications, such as heat exchangers used in the field of refrigeration and air conditioning.
  • the processability of Comparative Example 3 is poorer, and the expansion tube is easier to crack.
  • the yield of the heat exchanger is lower.
  • the above experimental data show that the height of the high-frequency welded seam is controlled to be smaller than the tooth height, and the width is smaller than the tooth width, and the obtained high-frequency welded aluminum pipe has better performance.
  • Expansion tube cracking rate of aluminum round tube product verification stage* refers to the proportion of cracking in aluminum tube expansion operation: less than 5%: low; 5%-10%: medium; 10%-15%: high; More than 15%: High.
  • Aluminum tube product verification stage heat exchanger yield rate below 85%: low; 85%-90%: medium; 90%-95%: high; above 95%: high.
  • the aluminum tube of the invention is used to prepare a corrosion-resistant aluminum heat exchanger.
  • the material of the fin is AA8011.
  • the measured potential range of each position is shown in Table 6 below.
  • Potential value fins Aluminum tube composite layer Aluminum core material Aluminum heat exchanger -850mV to -740mV -850mV to -730mV -730mV to -600mV
  • the fin potential of the prepared aluminum heat exchanger is lower than the potential of the outer surface of the aluminum tube (that is, the outer surface of the aluminum tube composite layer), and the potential of the core material of the aluminum tube is higher than that of the outer surface of the aluminum tube. According to the corrosion resistance results, Due to the protective effect of the fins, the corrosion of aluminum tubes without fin protection is reduced. Finally, while avoiding the use of anti-corrosion coatings, the anti-corrosion performance of the heat exchanger in the corrosive environment is enhanced.
  • the cost comparison between the aluminum tube of the present invention and the existing copper tube condenser shows that the two condensers have the same heat transfer performance.
  • the material cost of the aluminum tube is 33% of the material cost of the copper.
  • the cost of the aluminum condenser is 20%-30% lower than that of the copper tube condenser.
  • Test method for corrosion resistance performance of heat exchanger standard ASTM-G85-A3
  • the aluminum tubes of the present invention in Examples 1-6, the extruded aluminum tubes in Comparative Example 1, and the copper tubes in Comparative Example 2 were respectively used as heat exchanger cores to prepare the obtained heat exchangers.
  • the corrosion performance test of the prepared heat exchanger was carried out by ASTM G85 Annex A3 corrosion test method. The test results are shown in Table 7 below.
  • the aluminum heat exchanger made by using the aluminum tubes of Examples 1-6 of the present invention as the core body of the heat exchanger has excellent corrosion resistance. After 30 days of corrosion testing, none of the aluminum tubes in Examples 1-6 were corroded, there was no perforation and leakage, and the fins were not corroded.
  • FIG. 13 shows the state of the aluminum heat exchanger using the aluminum tube of Example 1 after a 30-day corrosion test. It can be seen from Figure 13(a) that there is no corrosion on the aluminum tubes and fins of the aluminum heat exchanger, and Figure 13(b) shows the cross-section of the aluminum tube without fin protection (in the circle of Figure 13(a)) In the picture, you can see that the aluminum tube is intact and has not been corroded.
  • FIG. 14 shows the state of the heat exchanger using the aluminum tube of Example 1 after a 90-day corrosion test. It can be seen from Figure 14 that the aluminum tube of the aluminum heat exchanger has no corrosion, no perforation leakage, and the fins are only slightly corroded, and no fins have fallen off, which does not affect the actual performance of the aluminum heat exchanger.
  • the aluminum tube of the invention can not only improve the corrosion resistance, but also can strengthen the heat exchange in the tube and improve the heat exchange efficiency by combining the designs of different internal threads.
  • the aluminum tube of the present invention can replace the copper tubes used in heat exchangers in the application fields of household/commercial air conditioners and refrigeration/refrigeration, and can reduce the cost of heat exchangers and facilitate use on the premise of meeting the heat transfer performance and corrosion resistance performance requirements of the products. The final products are recycled as a whole.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Laminated Bodies (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

本发明涉及一种具有内螺纹的铝管,其中,所述铝管的材质为多层复合材料,所述多层复合材料包含芯材和复合层,所述芯材的合金包含:0.5至2.0重量%的Si,0.5至1.5重量%的Mn,0.06至0.60重量%的Fe,0.1至1.0重量%的Cu,<0.5重量%的Mg,<1.0重量%的Zn,<0.2重量%的Ti,<0.2重量%的Zr,单种含量≤0.05重量%且总含量≤0.15重量%的其他元素,余量为铝;所述复合层的合金包含:<1.0重量%的Si,<1.5重量%的Mn,<0.5重量%的Fe,<0.25重量%的Cu,<0.25重量%的Mg,0.01-2重量%的Zn,<0.1重量%的Ti,<0.1重量%的Zr,单种含量≤0.05重量%且总含量≤0.15重量%的其他元素,余量为铝;其中,所述复合层中元素向所述芯材扩散的深度为10-100μm;所述芯材中元素向所述复合层的扩散深度为10μm以上。本发明还涉及所述铝管的制备方法以及包括本发明铝管的换热器。

Description

一种铝管、其制造方法及全铝换热器 技术领域
本发明涉及铝管以及换热器领域,具体涉及一种带内螺纹的铝管、其制造方法,以及使用该铝管的换热器。
背景技术
《绿色高效制冷行动方案》和“碳中和”目标的双重压力下,实现节能、环保已经成为暖通空调行业发展的必经之路。换热器作为暖通空调系统中的重要部件,提高换热器效率,降低换热器成本,降低制冷剂充注量一直是暖通空调行业重点研究课题。随着铜管材料价格的大幅上涨,使用铝代替铜来降低成本的呼声越来越高。
目前,制冷空调换热器主要以铜管铝翅片(RTPF)为主,管内制冷剂通过管壁和翅片与外侧空气进行换热。全铝换热器应用较少,其主要以两类为主:一种为钎焊式平行流微通道换热器,另一种为挤压铝管铝翅片换热器。平行流换热器因采用扁管,冷凝水不易排出,该种换热器在制热工况室外换热器或制冷工况蒸发器的应用仍没有量产应用。挤压铝管铝翅片换热器的挤压管因受生产工艺的限制,管材耐腐蚀性能差,内部强化传热螺纹加工困难,很难获得高耐腐蚀性,高换热效率的产品。
传热管是换热器的主要部件,重量占换热器的30%-50%,成本占换热器的40%以上。传统传热管采用铜作为原材料,由于铜资源紧缺,其价格上涨。地球上具有丰富的铝资源,因此,采用传热性能好、耐腐蚀性能优异且易于加工的铝换热管,不但可以降低空调行业的生产成本,而且便于全换热器回收利用,降低换热器整个生命周期的碳排放。
CN201527144提出了一种采用铝合金U型管的空调换热器,在与铜管换热器具有相同换热性能的情况下,该换热器可以减少制冷剂的充注量。CN112254563A提出了具有高耐腐蚀性的长寿命铝合金和由该合金生产的螺旋槽管,该扁管采用现有的挤出工艺,通过合金成分的设计,提高扁管的耐腐蚀性能。
发明内容
在一方面,本发明涉及一种具有内螺纹的铝管,其中,所述铝管的材质为多层复合材料,所述多层复合材料包含芯材和复合层,所述芯材的合金包含:0.5至2.0重量%的Si,0.5至1.5重量%的Mn,0.06至0.60重量%的Fe,0.1至1.0重量%的Cu,<0.5重量%的Mg,<1.0重量%的Zn,<0.2重量%的Ti,<0.2重量%的Zr,单种含量≤0.05重 量%且总含量≤0.15重量%的其他元素,余量为铝;所述复合层的合金包含:<1.0重量%的Si,<1.5重量%的Mn,<0.5重量%的Fe,<0.25重量%的Cu,<0.25重量%的Mg,0.01-2重量%的Zn,<0.1重量%的Ti,<0.1重量%的Zr,单种含量≤0.05重量%且总含量≤0.15重量%的其他元素,余量为铝;其中,复合层中元素向所述芯材扩散的深度为10-100μm;芯材中元素向所述复合层的扩散深度为10μm以上。
在一个实施方案中,铝管中复合层中元素向芯材扩散的深度为20-80μm。在另一个实施方案中,铝管中芯材中元素向所述复合层的扩散深度为20μm以上。
在一个实施方案中,铝管中复合层至少包括位于芯材外表面的外复合层。在一个任选的实施方案中,复合层还包括位于芯材内表面的内复合层。
在一个实施方案中,铝管中外复合层和内复合层的厚度分别为多层复合材料的厚度的5%-20%。在一个优选的实施方案中,铝管中外复合层和内复合层的厚度分别为多层复合材料的厚度的10%-15%。
在一个实施方案中,铝管具有高频焊缝,高频焊缝的高度小于或等于内螺纹的齿高。
在一个实施方案中,铝管具有高频焊缝,铝管具有高频焊缝的宽度小于或等于内螺纹的齿宽。
在一个实施方案中,铝管中复合层的电位为-850mV至-730mV,并且芯材的电位为-730mV至-600mV。
在另一方面,本发明还涉及一种换热器,其包括本发明的铝管换热管。
在又一方面,本发明还涉及一种制造铝管的方法,其可以至少包括以下步骤:步骤1:获得目标尺寸的多层复合材料;步骤2:将复合材料安装于制管设备上开卷,通过螺纹模具在多层复合材料上压制内螺纹结构,以获得具有内螺纹的多层复合材料;步骤3:对步骤2获得的具有内螺纹的多层复合材料进行高频感应焊接,以形成高频焊缝内侧焊筋的高度小于或等于所述内螺纹的齿高的铝管;步骤4:将步骤3获得的铝管缠绕成盘并进行退火处理。
附图说明
图1:本发明铝管示意图;
图2:本发明铝管的生产工艺流程;
图3:本发明的复合材料上螺纹的类型;
图4:(a)一种本发明的内螺纹的结构示意图;
(b)另一种本发明的内螺纹的结构示意图;
图5:本发明一种椭圆形铝管及本发明铝管的高频焊缝位置的金相显微镜图片;
图6:本发明铝管的复合材料的结构示意图;
图7:本发明铝管的复合材料的耐腐蚀机理;
图8:本发明换热器的局部示意图;
图9:本发明换热器与铜管换热器的换热管成本对比;
图10:复合层与芯材之间的元素扩散;
图11:复合层中Zn含量对性能的影响;
图12:芯材中Mn含量对性能的影响;
图13:经过30天腐蚀测试后,(a)本发明的换热器的结果图(b)无翅片保护处的铝管的横截面图;
图14:经过90天腐蚀测试后,本发明的换热器的结果图;
图15:经过30天腐蚀测试后,(a)采用现有技术的挤压铝管的换热器的照片(b)无翅片保护处的挤压铝管的横截面图
图16:经过30天腐蚀测试后,使用铜管的换热器的结果图。
具体实施方式
一般定义和术语
如果没有另行指出,在此所提及的所有出版物、专利申请、专利和其它参考文献通过援引以其全部并入本文。
除非另有定义,本文使用的所有技术和科学术语具有与本发明所属领域技术人员通常理解的相同的含义。若存在矛盾,则以本文提供的定义为准。
除非另有说明,所有的百分比、份数、比例等都是按重量计的。
当给出数量、浓度或其它值或参数作为范围、优选范围或优选的上限值和下限值或者具体的值时,应将其理解为特定公开了从任意上限范围或优选值与任意下限范围或优选值的成对数值所形成的所有范围,而无论范围是否单独地被公开。除非另有说明,当本文引用数值范围时,所述的范围是指包括其端点、以及所有该范围内的整数和分数。本发明的范围并不限制于当定义范围时所引用的特定数值。例如“1-8”涵盖1、2、3、4、5、6、7、8以及由其中任何两个值组成的任何亚范围,例如2-6、3-5。
术语“约”、“大约”当与数值变量并用时,通常指该变量的数值和该变量的所有数值在实验误差内(例如对于平均值95%的置信区间内)或在指定数值的±10%内,或更宽范围内。
术语“包括”、“包含”、“具有”、“含有”或“涉及”及其在本文中的其它变体形式为包含性的或开放式的,且不排除其它未列举的元素或方法步骤。本领域技术人员应当理解,上述术语如“包括”涵盖“由…组成”的含义。表述“由…组成”排除未指明的任何元素、步骤或成分。表述“基本上由…组成”指范围限制在指定的元素、步骤或成分,加上任选存在的不会实质上影响所要求保护的主题的基本和新的特征的元素、步骤或成分。应当理解,表述“包含”涵盖表述“基本上由…组成”和“由…组成”。
术语“选自…”是指在后面所列的组中的一个或多个元素,独立地加以选择,并且可以包括两个或更多个元素的组合。
当在本文中描述数值或范围端值时,应理解所公开的内容包括所引用的特定值或端值。
本文所使用的术语“一种或多种”或“至少一种”指一种、两种、三种、四种、五种、六种、七种、八种、九种或更多种。
此外,本发明的部件或组分之前未标明个数的,表示对于部件或组分的出现(或存在)数是没有限制的。因此,应当解读为包括一个或至少一个,并且部件或组分的单数词形式也包括复数,除非该数值明显地表示单数。
本文所使用的术语“任选”或“任选地”是指随后描述的事件或情况可能发生或可能不发生,该描述包括发生所述事件或情况和不发生所述事件或情况。
本文所使用的术语“铝管内腔”是指铝管内部的管状空腔。
术语“芯材外表面”是指靠近铝管外侧的芯材表面。“芯材内表面”是指靠近铝管内腔侧的芯材表面。
在一方面,本发明涉及一种具有内螺纹的铝管,铝管的材质为多层复合材料,多层复合材料包含芯材和复合层。
铝管的形状可以为圆管或椭圆管。在一个实施方案中,铝管为铝圆管。通过成熟的加工制作工艺,可以将铝圆管用于换热器中,以制造圆管换热器。在另一个实施方案中,铝管为铝椭圆管。与铝圆管相比,椭圆形结构可降低使用所述铝管的换热器空气侧压降,降低使用所述换热器的空调系统的能耗。
内螺纹
本发明中,“内螺纹”指在铝管内腔侧的螺纹结构。内螺纹可以增加铝管与换热介质的接触面积,也可使得换热介质在铝管内流动时,呈现紊流状态,有助于提高热量交换的效率。
通过在多层复合材料上轧制螺纹,然后通过本发明的铝管的制造方法(在后续说明书中进行描述),可以获得具有内螺纹的铝管。多层复合材料上的螺纹可以通过任何适用的方法来获得。在一个实施方案中,多层复合材料上的螺纹通过辊压成型获得。
螺纹的类型可以根据实际需要进行选择,通过灵活更换不同的内螺纹滚轮,可以在多层复合材料上压制出不同类型的内螺纹形式,例如,参见图3所示。通过后续工艺获得的铝管也具有相应的不同类型的内螺纹。
内螺纹具体结构可以根据实际进行选择。图4(a)示出一种内螺纹的结构示意图,在材料带压制图3中内螺纹形式1,为单螺旋结构。内螺纹铝管的外径为5mm-15mm,优选5mm-9mm。底壁厚为0.3mm-1.0mm,优选0.3mm-0.5mm。齿高为0.05mm-0.5mm,优选0.1mm-0.25mm。齿数为20-70个。齿顶角α为10°-70°,优选20°-50°。螺旋角为0°-40°,优选10°-30°。
图4(b)示出另一种内螺纹结构,在材料带上压制图3中内螺纹样式3形成。该内螺纹包含2种不同螺旋角的内螺纹,交替压制在材料带上,因此该种螺纹很难采用常规的拉拔方式生产,可通过本发明的制备方法,通过内螺纹滚轮的灵活调整来制备。该种内螺纹管的外径为5mm-15mm,优选5mm-9mm。底壁厚为0.3mm-1.0mm,优选0.3mm-0.5mm。齿高为0.05mm-0.5mm,优选0.1mm-0.25mm。总齿数为20-70个。齿顶角α为10°-70°,优选20°-50°。螺旋包括左旋和右旋两种,其角度为0°-40°,优选10°-30°。
高频焊缝
通过高频感应焊接获得具有高频焊缝的铝管。本文中,术语“高频感应焊接”具有如本领域技术人员通常理解的含义,可指利用高频电流所产生的集肤效应和邻近效应,将材料(如铝材)对接起来的焊接工艺。通常地,高频焊接的频率可以为约300-450kHz。高频焊缝的结构如图5的金相显微照片所示。通过控制焊缝的高度和宽度可使铝管具有更加优良的机械性能。通过对焊缝的高度和宽度的调整,可以使铝管具有更低的胀管开裂率,并且,将所制得的铝管用于换热器时,成品率更高。本文中,高频焊缝的高度即指铝管内侧的高频焊缝的焊筋的高度。
在一个实施方案中,焊缝高度小于或等于内螺纹齿高。高频焊缝的高度可以为内螺纹齿高的50%-100%,优选为75%-100%,更优选为85%-100%,例如为约50%、55%、60%、65%、70%、75%、80%、85%、89%、90%、95%、100%等。
在一个实施方案中,焊缝宽度小于或等于内螺纹齿宽。高频焊缝的宽度可以为齿宽的50%-100%,优选为75%-100%,更优选为85%-100%,例如为约50%、55%、60%、65%、70%、75%、80%、85%、90%、91%、95%、100%等。
铝管还需进行胀管操作以用于换热器。因此,高频焊缝处需要具有一定的机械强度,以使得再后续胀时具有较好的工艺性,避免管壁开裂。
多层复合材料
铝管的材质为多层复合材料。多层复合材料的形式可以为板材或带材。在一个实施方案中,多层复合材料为多层复合材料带。
多层复合材料包含芯材和复合层。利用复合层作为牺牲阳极保护层,以提高铝管的抗腐蚀性能。芯材具有高强度,以满足铝管的强度及成形性的要求。
在一个实施方案中,多层复合材料由芯材和复合层组成。根据需要,多层复合材料还可以包括额外的层以实现不同的功能。例如,还可以包括钎焊层。
目前电解铝的能耗较高,不利于环保。本发明通过生产中废料和从换热器回收的铝合金材料,进行重新熔铸,获得铝管的原材料。相比于电解铝,本发明的方法可减少能耗,降低铝管材料生产过程中的碳排放,更绿色环保。
复合层可以为单层复合层。在一个实施方案中,多层复合材料由芯材和位于芯材外 表面的外复合层组成,该情况下,复合层即为外复合层。通过后续工艺获得的铝管,铝管外侧为复合层,铝管内腔侧为芯材,且芯材内表面上具有内螺纹。
复合层可以为双层复合层。在一个实施方案中,多层复合材料由芯材、位于芯材外表面的外复合层和位于芯材内表面的内复合层组成。通过后续工艺获得的铝管,铝管外侧为外复合层,铝管内腔侧为内复合层,外复合层和内复合层之间为芯材,内复合层靠近铝管内腔的表面上具有内螺纹。
外复合层和内复合层各自的厚度与多层复合材料的厚度的比例需保持在一定的范围内。当厚度占比过高,铝管的强度及成形性下降。复合层的厚度占比过低,通过牺牲复合层来保护芯材效果会变差,进而导致产品耐腐蚀性能变差。在一个实施方案中,外复合层的厚度为多层复合材料的厚度的5-20%,优选5%-15%,例如10%、15%。在一个实施方案中,内复合层的厚度为多层复合材料的厚度的5-20%,优选5%-15%,例如:15%。
铝管中复合层的电位需要低于芯材电位,以使得铝管具有优秀的耐腐蚀性能。在一个实施方案中,复合层的电位为-850mV至-730mV,并且芯材的电位为-730mV至-600mV。
芯材合金的组成会影响铝管芯材的电位。因此,需要合理控制芯材合金的组成,以使得芯材具有相对于复合层更高的电位,使得复合层能作为保护层,以避免芯材被腐蚀。
芯材的合金包含:
0.5至2.0重量%的Si、
0.5至1.5重量%的Mn、
0.06至0.60重量%的Fe、
0.1至1.0重量%的Cu
<0.5重量%的Mg、
<1.0重量%的Zn、
<0.2重量%的Ti、
<0.2重量%的Zr、
单种含量≤0.05重量%且总含量≤0.15重量%的其他元素、余量为铝。
芯材的合金中包含:
0.005重量%以上的Mg,
0.01重量%以上的Zn,
0.002重量%以上的Ti,
0.002重量%以上的Zr。
在制备多层复合材料时,芯材合金中的Mn含量对获得的多层复合材料的电位分布和机械强度等存在显著的影响,从而会进一步影响铝管的耐腐蚀性、强度等。当芯材合金中的Mn含量在1.5重量%以上时,铸造过程中容易造成材料出现大颗粒状态,不利 于获得合适的均匀电位梯度分布,进而导致材料耐腐蚀能力降低。在本发明的实施方案中,芯材合金包含小于1.5重量%的Mn,优选包含0.5-1.5重量%的Mn,例如包含重量1.21%或1.13重量%的Mn。
在一个实施方案中,制备芯材的合金包含:0.72重量%的Si、1.21重量%的Mn、0.45重量%的Fe、0.51重量%的Cu、0.02重量%的Mg、0.03重量%的Zn、0.14重量%的Ti、0.01重量%的Zr、余量为铝,应当理解,其中还可能含有单种含量≤0.05重量%且总含量≤0.15重量%的其他元素。在另一个实施方案中,制备芯材的合金组成为:1.37重量%的Si、1.13重量%的Mn、0.36重量%的Fe、0.43重量%的Cu、0.16重量%的Mg、0.24重量%的Zn、0.08重量%的Ti、0.04重量%的Zr、余量为铝,应当理解,其中还可能含有单种含量≤0.05重量%且总含量≤0.15重量%的其他元素。
复合层合金的组成会影响铝管复合层的电位。因此,需要合理控制复合层合金的组成,以使得复合层具有相对于芯材更低的电位,其能作为保护层,从而铝管具有耐腐蚀效果。
复合层的合金包含:
<1.0重量%的Si、
<1.5重量%的Mn、
<0.5重量%的Fe、
<0.25重量%的Cu、
<0.25重量%的Mg、
0.01-2重量%的Zn、
<0.1重量%的Ti、
<0.1重量%的Zr、
单种含量≤0.05重量%且总含量≤0.15重量%的其他元素、余量为铝。
复合层的合金包含:
0.01重量%以上的Si,
0.001重量%以上的Mn,
0.005重量%以上的Fe,
0.0025重量%以上的Cu,
0.0025重量%以上的Mg,
0.001重量%以上的Ti,
0.001重量%以上的Zr。
在一个实施方案中,制备复合层的合金包含:0.08重量%的Si、0.02重量%的Mn、0.26重量%的Fe、0.01重量%的Cu、0.01重量%的Mg、0.01重量%的Zn、0.01重量%的Ti、<0.1重量%的Zr、余量为铝,应当理解,其中还可能含有单种含量≤0.05重量%且总含量≤0.15重量%的其他元素。在另一个实施方案中,制备复合层的合金组成为: 0.18重量%的Si、0.05重量%的Mn、0.32重量%的Fe、0.02重量%的Cu、0.01重量%的Mg、1.15重量%的Zn、0.02重量%的Ti、<0.1重量%的Zr、余量为铝,应当理解,其中还可能含有单种含量≤0.05重量%且总含量≤0.15重量%的其他元素。在又一个实施方案中,制备复合层的合金组成为:0.7重量%的Si、1.2重量%的Mn、0.25重量%的Fe、0.03重量%的Cu、0.02重量%的Mg、0.7重量%的Zn、0.02重量%的Ti、0.02重量%的Zr、余量为铝,应当理解,其中还可能含有单种含量≤0.05重量%且总含量≤0.15重量%的其他元素。
复合层的合金包含有合适含量的元素,以使铝管获得优秀的性能。
复合层的合金包含小于1.0重量%的Si。优选地,复合层的合金包含0.01重量%以上且小于1.0重量%的Si。
复合层的合金包含小于0.5重量%的Fe。优选地,复合层的合金包含0.005重量%以上且小于0.5重量%的Fe。
复合层的合金包含小于0.25重量%的Cu。优选地,复合层的合金包含0.0025重量%以上且小于0.25重量%的Cu。
复合层的合金包含小于0.25重量%的Mg。优选地,复合层的合金包含0.0025重量%以上且小于0.25重量%的Mg,
复合层的合金包含小于0.1重量%的Ti。优选地,复合层的合金包含0.001重量%以上且小于0.1重量%的Ti。
复合层的合金包含小于0.1重量%的Zr。优选地,复合层的合金包含0.001重量%以上且小于0.1重量%的Zr。
在制备复合层的合金中,Zn含量会影响铝管的耐腐蚀性、强度等。当Zn的含量超过2重量%时,复合层中Zn含量过高,会导致材料腐蚀速度增大,使得产品使用寿命缩短。在本发明的实施方案中,复合层的合金包含0.01-2重量%的Zn,优选包含0.01-1.5重量%的Zn,例如包含0.01重量%、1.15重量%或0.7重量%的Zn。
在复合层和芯材的结构基础上,通过控制复合层和芯材的晶粒组织搭配,以及控制复合层和芯材之间的元素互扩散,可进一步提高材料自腐蚀和电偶腐蚀的性能。复合层和芯材中元素互相扩散的深度需要控制在合适的范围内以使得铝管获得期望的性能。这样的扩散过程例如可以通过制备过程来实现。
如图7所示,当材料因某种原因导致局部腐蚀,产生深度上的缺失,电位1、电位2和电位3会因为元素在不同深度的浓度的差异形成电位差异。本发明中,电位1>电位2>电位3。此时,电位最低的位置3(复合层的外表面)会优先腐蚀,从而保护位置2和1,接着腐蚀位置2保护1。从而使先期出现的缺失位置3不会继续向下形成点蚀坑,而是向平行方向延伸,避免了铝管快速腐蚀导致穿孔泄漏,达到耐腐蚀的效果。
元素扩散情况通常可以借助元素(如Si、Mn、Fe、Cu、Mg、Zn、Ti和/或Zr等)的分布情况来进行确定。通过扫描电镜获得的复合层和芯材的元素分布,来确定复合层和 芯材之间的元素扩散情况。本领域技术人员应当理解,当指元素扩散深度时,其由所考虑的元素决定。当考虑多于一种元素时,所指的扩散范围由扩散最深的元素与最浅的元素共同决定。在一实施方案中,所用的元素为Cu和/或Zn。
下结合图10进行详细说明,其中,铝管的管壁材料的总厚度为700μm,其中复合层厚度为80μm。复合层合金包含的Zn元素扩散至芯材,当芯材中Zn含量稳定时(图10中与铝管外侧表面距离差为约130μm的位置),其在芯材中扩散的距离即为Zn元素从复合层向芯材的扩散深度,根据芯材和复合层的厚度,可知图10中Zn元素从复合层向芯材的扩散深度为约50μm。芯材层包含的Cu元素向复合层扩散,当复合层中Cu含量稳定时(图10中与铝管外侧表面距离差为约70μm的位置),其在复合层中扩散的距离即为Cu元素从复合层向芯材的扩散深度,同样可知,图10中Cu元素从复合层向芯材的扩散深度为约10μm。
在一个实施方案中,复合层中元素(如Si、Mn、Fe、Cu、Mg、Zn、Ti和/或Zr等)向芯材扩散的深度10-100μm,优选20-80μm,例如为10μm、15μm、20μm、25μm、30μm、35μm、40μm、45μm、50μm、55μm、60μm、65μm、70μm、75μm、80μm、85μm、90μm、95μm、100μm。复合层中元素向芯材扩散的深度过大,材料整体电位梯度小,无法形成较好的牺牲阳极以保护芯材的效果。深度过小,复合层与芯材存在明显的元素分布界限,无法形成由外向内的牺牲阳极来保护芯材的效果。在一个示例性实施方案中,复合层向芯材扩散的元素为Cu和/或Zn。在又一实施方案中,Cu和/或Zn向芯材扩散的深度为10-100μm,优选20-80μm,例如为10μm、15μm、20μm、25μm、30μm、35μm、40μm、45μm、50μm、55μm、60μm、65μm、70μm、75μm、80μm、85μm、90μm、95μm、100μm。
在一个实施方案中,芯材中元素(如Si、Mn、Fe、Cu、Mg、Zn、Ti和/或Zr等)向复合层的扩散深度10μm以上,优选20μm以上,例如10μm、15μm、20μm、25μm、30μm、35μm、40μm、45μm、50μm、100μm、200μm、500μm等。芯材中元素向复合层扩散的深度过小,则复合层与芯材将产生明显的元素分布界限,无法形成由外向内的牺牲阳极以保护芯材效果。芯材中的元素可以扩散到整个复合层中。在一个示例性实施方案中,芯材向复合层扩散的元素为Cu和/或Zn。在又一实施方案中,芯材中元素的Cu和/或Zn向复合层的扩散深度10μm以上,优选20μm以上,例如10μm、15μm、20μm、25μm、30μm、35μm、40μm、45μm、50μm、100μm、200μm、500μm等。
通过芯材和复合层的结构、成分等合理搭配和适当的工艺控制,可使得铝管具有较高强度(耐压),同时具有优秀的抗腐蚀性能。
换热器
在另一方面,本发明还涉及一种换热器,其中,换热器中包括的换热管为本发明的铝管。换热器还通常包括翅片(如图8所示),通过对翅片、铝管的合理设计,换热器的 电位为:翅片<铝管外表面<铝管芯材,可以加强换热器在腐蚀性环境中的抗腐蚀性能。
在一个实施方案中,换热器翅片的电位为-850mV至-740mV。
翅片的组成是影响其电位的重要因素。本发明中,可用于翅片的材料包括但不限于AA8011、AA3102、AA1100。在一个实施方案中,翅片的材料为AA8011。
铝管的制造方法
在另一方面,本发明还涉及一种制造本发明的铝管的方法,包括以下步骤:获得目标尺寸的多层复合材料;将多层复合材料安装于制管设备,通过螺纹模具在多层复合材料上压制内螺纹结构,以获得具有内螺纹的多层复合材料;对具有内螺纹的多层复合材料进行高频感应焊接,以形成铝管;将铝管缠绕成盘并进行退火处理。
多层复合材料可以由合适的复合层和芯材组成,复合层由如上文所述的复合层合金制备获得,芯材由如上文所述的芯材合金制备获得。
多层复合材料可由单层复合层和芯材组成,例如图6左图中所示。多层复合材料可由双层复合层和芯材组成,其中芯材位于外复合层和内复合层之间,例如图6右图中所示。
多层复合材料的制备过程通常包括合金铸造、轧制成板、热轧复合后轧制至一定厚度的板材或带材等一系列步骤。
在一个实施方案中,多层复合材料通过如下方法制备:铝锭的熔铸,其中优化不同元素的比例;锯切;特殊均质化;铣面;复合;热轧;开坯冷轧;特殊热处理;精轧到目标厚度(例如0.7mm)。整个工艺过程中,优化合金的元素比例,在目前普通AA3003的基础上,进一步对Si、Cu、Mn、Ti等的含量进行优化调整,通过芯材结合耐腐蚀复合层的组合,得到高强度耐腐蚀的复合材料。
多层复合材料的目标尺寸(例如厚度、大小等)可根据铝管的尺寸、内螺纹滚轮尺寸进行合理选择。多层复合材料在制备的过程中通常获得较大尺寸的复合材料,然后采用在线机械切割的方式获得目标尺寸的复合材料。
在一个实施方案中,采用缠绕成卷的铝合金带材,其由芯材和防腐层复合而成,其宽度通常为15mm-50mm,厚度通常为0.3-1.0mm。将铝合金卷材安装于制管设备后依次进行开卷。然后对铝合金带材进行校平,以方便后续的内螺纹压制。
灵活选用不同的内螺纹滚轮,可在多层复合材料上压制上不同类型的内螺纹结构,从而使制得的铝管具有不同类型的内螺纹,例如图3所示。
本发明压制内螺纹的步骤在制管过程中进行。在一个实施方案中,在制管机上压制内螺纹。具体地,将复合材料安装于制管设备上开卷,通过螺纹模具在多层复合材料上压制内螺纹结构。该方法可降低模具成本,且具有更高的灵活度,同时避免对具有内螺纹的多层复合材料再进行分割,从而能够保持螺纹的完整度。
可以采用高频感应焊接获得的具有内螺纹的多层复合材料。在一个实施方案中,对 获得的具有内螺纹的多层复合材料进行高频感应焊接,获得具有高频焊缝的铝管。采用高频感应焊接工艺的制管方式,具有生产效率高,成品率好的技术优势,生产效率可达100-150m/min,成品率高于92%。整个制管过程采用无油、无切屑的方式进行,铝管内部清洁度高。
图2示出了本发明铝管的基本的生产流程。铝合金卷材安装于制管设备后依次进行开卷,内螺纹辊压成型,高频感应焊接,最后缠绕成盘退火,制得可用于换热器的制冷管。此种铝管成型方法,具有管径范围大,通过灵活更换不同内螺纹滚轮,可在复合铝带上压制不同种类的螺纹结构(例如图3所示),生产效率及成品率高,成本低,制管清洁度好,方便后续换热器制造。
有益效果
本发明的高耐腐蚀性高频焊铝管,通过多层复合铝合金的材料设计,铝管具有良好的耐腐蚀性能,可提高无翅片保护处(如弯头等)的耐腐蚀性能,从而减少或避免使用防腐涂层,具有低碳环保的优点。同时,通过芯材和复合层的搭配组合,实现了铝管强度(耐压)与抗腐蚀性能的协调平衡。
本发明采用多层复合材料在线辊制螺纹,通过高频感应焊接成型,克服了现有挤压管材料单一,壁厚均匀性差、内螺纹形式有限等缺点。高频焊的制管方式具有生产效率高,成品率好的技术优势。整个制管过程采用无油、无切屑的方式进行,内部清洁度高。
实施例
下面结合具体实施例对本发明的方案做进一步详细的描述。
需要说明的是,以下实施例仅是为清楚地说明本发明的技术方案所作的举例,而并非对本发明的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无需也无法对所有的实施方式予以穷举,而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。除非另外指明,本文所用的仪器设备和试剂材料都是可以商购的。
制备芯材的合金成分如表1所示,制备复合层的合金成分如表2所示,余量为Al。
表1
Figure PCTCN2022123385-appb-000001
表2
Figure PCTCN2022123385-appb-000002
通过选用多层复合铝合金带,其芯材、复合层的合金成分如表3中所示,根据本发明的制备方法制备实施例1-6。
实施例1:
选用Core-1作为芯材合金、Clad-A作为复合层合金,芯材与单层的复合层进行热轧复合,制成缠绕成卷的铝合金带材,其宽度为21.8mm,厚度0.7mm,复合层厚度占带材总厚度的10%。
将铝合金带材安装于制管设备后依次进行开卷、校平后,选用内螺纹形式1(参见图3)的滚轮,在带材的芯材表面辊压形成内螺纹。
随后通过高频感应焊接成管,对进行定径和精整成型,制成外径为7mm的铝圆管,其中内螺纹位于铝圆管内腔侧,并且其中,高频焊缝的高度不超过内螺纹的齿高,高频焊缝的宽度不超过内螺纹的齿宽。缠绕成盘后进行退火,获得实施例1的铝管。
实施例2-4
制备方法与实施例1相同,区别在于芯材合金、复合层合金和复合层厚度占比不同。具体如表3中所示。
实施例5:
选用Core-1作为芯材合金、Clad-A作为外复合层的合金,Clad-B作为内复合层的合金。芯材与双层复合层进行热轧复合,其中芯材位于外复合层(Clad-A)和内复合层(Clad-B)之间,制成缠绕成卷的铝合金带材,外复合层厚度占带材总厚度的10%,内复合层占带材总厚度的15%。
随后通过与实施例1相同的方式,制得实施例5的铝管。
实施例6
制备方式与实施例5相同,区别在于选用Core-2作为芯材合金。
实施例7
选用Core-1作为芯材合金、Clad-A作为复合层合金,芯材与单层的复合层进行热轧复合,制成缠绕成卷的铝合金带材,其宽度为21.8mm,厚度0.7mm,复合层厚度占带材总厚度的10%。
将铝合金带材安装于制管设备后依次进行开卷、校平后,选用内螺纹形式1(参见图3)的滚轮,在带材的芯材表面辊压形成内螺纹。
随后通过高频感应焊接成管,对进行定径和精整成型,制成外径为7mm、壁厚0.45mm的铝圆管,其中内螺纹位于铝圆管内腔侧,内螺纹的齿高:0.18mm,内螺纹的齿宽:0.35mm;高频焊缝的高度:0.16mm,高频焊缝的宽度:0.32mm。缠绕成盘后进行退火,获得实施例7的铝管。
对比例1:
通过挤压方式制备材质为AA3102、带内螺纹、外径为7mm的铝管。通过如下方法获得对比例1:对铝合金圆管材进行连续挤压加工,铝管材与挤压轮槽相互间的摩擦力导致铝材连续挤入模腔中,并在高压高温状态下进行螺纹芯头的包覆和填充,从而形成与螺纹芯头相吻合的内螺纹铝管。
对比例2:
通过挤压方式制备材质为C11000、带内螺纹、外径为7mm的铜管。通过如下方法获得对比例2:铜铸锭依次经过轧制,二联拉,盘拉,在线退火,内螺纹成型,水平缠绕,成盘退火等工艺后,形成用于空调换热器的铜管。
对比例3
选用Core-1作为芯材合金、Clad-A作为复合层合金,芯材与单层的复合层进行热轧复合,制成缠绕成卷的铝合金带材,其宽度为21.8mm,厚度0.7mm,复合层厚度占带材总厚度的10%。
将铝合金带材安装于制管设备后依次进行开卷、校平后,选用内螺纹形式1(参见图3)的滚轮,在带材的芯材表面辊压形成内螺纹。
随后通过高频感应焊接成管,对进行定径和精整成型,制成外径为7mm的铝圆管,其中内螺纹位于铝圆管内腔侧,内螺纹的齿高:0.18mm,内螺纹的齿宽:0.35mm;高频焊缝的高度:0.25mm,高频焊缝的宽度:0.9mm。缠绕成盘后进行退火,获得对比例3的铝管。
实验例
元素扩散:结合通过扫描电镜获得的复合层和芯材的元素分布,来确定复合层和芯材之间的元素扩散情况。例如,结合图10进行详细说明,其中,铝管的管壁材料的总 厚度为700μm,其中复合层厚度为80μm。复合层合金包含的Zn元素扩散至芯材,当芯材中Zn含量稳定时(图10中与铝管外侧表面距离差为约130μm的位置),其在芯材中扩散的距离即为Zn元素从复合层向芯材的扩散深度,图10中Zn元素从复合层向芯材的扩散深度为约50μm。芯材层包含的Cu元素向复合层扩散,当复合层中Cu含量稳定时(图10中与铝管外侧表面距离差为约70μm的位置),其在复合层中扩散的距离即为Cu元素从复合层向芯材的扩散深度,图10中Cu元素从复合层向芯材的扩散深度为约10μm。
根据上述测定方法,测得实施例1-4中,复合层中元素Zn和Cu向芯材扩散的深度为20-65μm;芯材中元素Zn和Cu向复合层扩散的深度为20-40μm。
实施例5-6中,外复合层(Clad A)元素向芯材扩散的深度占芯材厚度的20-45μm;内复合层(Clad B)元素向芯材扩散的深度25-40μm;芯材元素向复合层扩散的深度15-35μm。芯材元素向外复合层扩散的深度15-30μm;芯材元素向内复合层扩散的深度13-27μm。
通过如下方法测定实施例和对比例的电位、机械性能、芯材消耗废料百分比,结果如表3-4中所示。材料机械性能测定方法:国标GB/T228-2002金属材料室温拉伸试验方法。芯材消耗废料占比%=制备芯材使用的废料重量/制备芯材使用的全部合金重量×100%。其中,回收废料占比%=使用来自回收的废料重量/使用的全部废料重量×100%。
表3
Figure PCTCN2022123385-appb-000003
表4
  机械性能MPa 芯材消耗废料占比% 回收废料占比%
实施例1 142 63% 100%
实施例2 145 63% 100%
实施例3 155 100% 100%
实施例4 160 100% 100%
实施例5 135 63% 100%
实施例6 146 100% 100%
对比例1 95 <10% <10%
对比例2 225 - -
表4数据表明,实施例1-6的抗拉强度为135MPa-160MPa,与现有的挤压铝管对比例1相比,实施例的抗拉强度高42%-78%左右。这表明,与现有技术通过挤压制得的铝管相比,本发明的铝管具有更高的强度,耐压性更好。
耐腐蚀测试测试方法:标准ASTM-G85-A3
对包含不同Zn含量的复合层与芯材的复合材料进行耐腐蚀测试,结果在图11中示出。结果显示,对于初始厚度均为600μm的复合材料,对于复合层中Zn含量超过2重量%的复合材料,其中复合层的主要元素组成为:0.29重量%的Si,0.20重量%的Fe,2.5重量%的Zn,在经过70天的耐腐蚀测试之后,复合材料的厚度剩余259.3μm;对于复合层中Zn的含量在2重量%以下的复合材料,其中复合层为上述Clad B,经过120天的测试后,复合材料厚度剩余474.3μm。从上述结果可得,Zn含量对材料的耐腐蚀性能具有显著的影响,复合层包含合适含量的Zn有利于提升其耐腐蚀性能。
芯材合金中Mn含量对性能的影响
铸造包含的Mn含量在1.5重量%以上的复合材料,其中芯材合金的主要元素组成为:0.31重量%的Si,0.25重量%的Fe,0.46重量%的Cu,1.68重量%的Mn,材料的金相显微镜图片见图12。结果显示,该材料中存在大颗粒的结构(见图12中圆圈内指出的结构),出现大颗粒状态的材料不能获得合适的均匀的电位梯度分布,材料耐腐蚀能力较差。
高频焊缝对铝管的影响
高频焊缝的尺寸和强度影响铝管的实际应用。如下表5所示,实施例7的铝管,其 加工性能好,胀管开裂率低,当应用于换热器时,换热器的成品率较高。实施例7的铝管的爆破压力大于17.5MPa,满足实际应用,如用于制冷空调领域的换热器。对比例3的相比于实施例7,其加工性能较差,较易胀管开裂,当应用于换热器时,换热器的成品率较低。上述实验数据表明,控制高频焊缝的高度小于齿高,宽度小于齿宽,获得的高频焊铝管具有更好的性能。
表5
Figure PCTCN2022123385-appb-000004
铝圆管产品验证阶段胀管开裂率*:指对铝管进行胀管操作,出现开裂情况的比例:5%以下:低;5%-10%:中等;10%-15%:较高;15%以上:高。
铝圆管产品验证阶段换热器成品率**:85%以下:低;85%-90%:中等;90%-95%:较高;95%以上:高。
铝换热器
采用本发明的铝管来制备耐腐蚀铝换热器。其中,翅片的材料为AA8011。测得其各位置的电位范围如下表6所示。
表6
电位值 翅片 铝管复合层 铝管芯材
铝换热器 -850mV至-740mV -850mV至-730mV -730mV至-600mV
制备获得铝换热器的翅片电位低于铝管外表面(即铝管复合层的外表面)的电位,铝管芯材的电位高于铝管外表面的电位,根据耐腐蚀性结果,由于翅片的保护作用,降低无翅片保护处的铝管的腐蚀情况。最终实现避免使用防腐涂层的同时,加强换热器在腐蚀性环境中的抗腐蚀性能。
图9所示,对于家用空调1.5P室外机冷凝器,采用本发明的铝管和现有铜管冷凝器的成本对比,两种冷凝器具有相同的换热性能。其中,铝管的材料成本为铜的材料成本的33%,连同制作工艺带来的成本差异,铝冷凝器的成本与铜管冷凝器相比,降低20%-30%。
换热器耐腐蚀性能测试测试方法:标准ASTM-G85-A3
分别采用实施例1-6的本发明的铝管、对比例1的挤压铝管、对比例2的铜管作为换热器芯体,制备获得的换热器。采用ASTM G85 Annex A3腐蚀测试方法,对制备获得的换热器进行腐蚀性能测试。测试结果如下表7所示。
表7
Figure PCTCN2022123385-appb-000005
采用本发明实施例1-6的铝管作为换热器芯体制成的铝换热器,具有优秀的耐腐蚀性能。经过30天的腐蚀测试,实施例1-6的铝管均未出现腐蚀,无任何穿孔泄漏的现象,翅片未出现腐蚀。
图13示出使用实施例1的铝管的铝换热器经过30天的腐蚀测试后的状态。从图13(a)可见,铝换热器的铝管、翅片均未出现腐蚀,图13(b)示出无翅片保护处的铝管(图13(a)圆圈内)的横截面图,可以看到铝管完整,未被腐蚀。
图14示出使用实施例1的铝管的换热器经过90天的腐蚀测试后的状态。从图14可以看出,铝换热器的铝管未出现腐蚀,无穿孔泄漏,翅片仅出现轻微腐蚀,并未出现翅片脱落,不影响铝换热器的实际使用性能。
采用对比例1的挤压铝管制成的换热器,如图15所示,经过30天的腐蚀测试后,挤压铝管被严重腐蚀,出现穿孔泄露。
采用对比例2的铜管制成的铜管换热器,如图16所示,经过30天的腐蚀测试后,虽然铜管未出现腐蚀,无穿孔泄漏现象,但是翅片出现严重的腐蚀,出现翅片脱落的现象,导致铜管换热器失效,影响换热器的实际使用性能。
本发明的铝管不仅可以提高耐腐蚀性能,同时结合不同内螺纹的设计,可强化管内换热,提高换热效率。本发明的铝管可以代替现有家用/商用空调及冷冻/冷藏等应用领域的换热器用铜管,在满足产品换热性能和耐腐蚀性能要求的前提下,降低换热器成本,便于使用末期的产品整体回收利用。

Claims (9)

  1. 一种具有内螺纹的铝管,其中,所述铝管的材质为多层复合材料,所述多层复合材料包含芯材和复合层,
    所述芯材的合金包含:
    0.5至2.0重量%的Si,
    0.5至1.5重量%的Mn,
    0.06至0.60重量%的Fe,
    0.1至1.0重量%的Cu,
    <0.5重量%的Mg,
    <1.0重量%的Zn,
    <0.2重量%的Ti,
    <0.2重量%的Zr,
    单种含量≤0.05重量%且总含量≤0.15重量%的其他元素,余量为铝;
    所述复合层的合金包含:
    <1.0重量%的Si,
    <1.5重量%的Mn,
    <0.5重量%的Fe,
    <0.25重量%的Cu,
    <0.25重量%的Mg,
    0.01-2重量%的Zn,
    <0.1重量%的Ti,
    <0.1重量%的Zr,
    单种含量≤0.05重量%且总含量≤0.15重量%的其他元素,余量为铝;其中,
    所述复合层中元素向所述芯材扩散的深度为10-100μm;
    所述芯材中元素向所述复合层的扩散深度为10μm以上。
  2. 权利要求1所述的铝管,其中,
    所述芯材的合金包含:
    0.005重量%以上的Mg,
    0.01重量%以上的Zn,
    0.002重量%以上的Ti,
    0.002重量%以上的Zr;
    所述复合层的合金包含:
    0.01重量%以上的Si,
    0.001重量%以上的Mn,
    0.005重量%以上的Fe,
    0.0025重量%以上的Cu,
    0.0025重量%以上的Mg,
    0.001重量%以上的Ti,
    0.001重量%以上的Zr。
  3. 权利要求1或2所述的铝管,其中,
    所述复合层中元素向所述芯材扩散的深度为20-80μm;和/或
    所述芯材中元素向所述复合层的扩散深度为20μm以上。
  4. 权利要求1-3中任一项所述的铝管,其中,
    所述复合层至少包括位于芯材外表面的外复合层,
    任选地,所述复合层还包括位于芯材内表面的内复合层。
  5. 权利要求1-4中任一项所述的铝管,其中,
    所述外复合层和内复合层的厚度分别为所述多层复合材料的厚度的5%-20%,优选10%-15%。
  6. 权利要求1-5中任一项所述的铝管,其中,
    所述复合层的电位为-850mV至-730mV,并且所述芯材的电位为-730mV至-600mV。
  7. 权利要求1-6中任一项所述的铝管,其中,
    所述铝管具有高频焊缝,其中,
    所述高频焊缝的高度小于或等于所述内螺纹的齿高;和/或
    所述高频焊缝的宽度小于或等于所述内螺纹的齿宽。
  8. 一种换热器,其包括换热管,其中,
    所述换热管为权利要求1-7中任一项所述的铝管。
  9. 一种制造权利要求1-7中任一项所述的铝管的方法,其中,所述方法包括以下步骤:
    获得目标尺寸的多层复合材料;
    将复合材料安装于制管设备上开卷,通过螺纹模具在多层复合材料上压制内螺纹结 构,以获得具有内螺纹的多层复合材料;
    对具有内螺纹的多层复合材料进行高频感应焊接,以形成高频焊缝内侧焊筋的高度小于或等于所述内螺纹的齿高的铝管;
    将铝管缠绕成盘并进行退火处理。
PCT/CN2022/123385 2021-11-18 2022-09-30 一种铝管、其制造方法及全铝换热器 WO2023087957A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111367615.4 2021-11-18
CN202111367615 2021-11-18

Publications (1)

Publication Number Publication Date
WO2023087957A1 true WO2023087957A1 (zh) 2023-05-25

Family

ID=84730660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/123385 WO2023087957A1 (zh) 2021-11-18 2022-09-30 一种铝管、其制造方法及全铝换热器

Country Status (2)

Country Link
CN (1) CN115537608B (zh)
WO (1) WO2023087957A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1132552A (zh) * 1993-08-04 1996-10-02 因西尔科公司热部件部门 散热管及其制造方法和设备
JP2001170793A (ja) * 1999-12-15 2001-06-26 Sumitomo Light Metal Ind Ltd 造管性および耐食性に優れた熱交換器用高強度アルミニウム合金クラッド材
CN104101246A (zh) * 2014-06-26 2014-10-15 江苏天潭科技材料有限公司 一种热交换内螺纹管及其生产方法
CN109988946A (zh) * 2017-12-29 2019-07-09 格朗吉斯铝业(上海)有限公司 一种真空钎焊翅片材料及其制备方法
CN112292470A (zh) * 2018-06-21 2021-01-29 日本轻金属株式会社 耐压曲性优良的热交换器用铝合金翅片材料及其制造方法
CN112605147A (zh) * 2020-11-27 2021-04-06 江苏鼎胜新能源材料股份有限公司 一种高耐腐、低电位热交换器器用翅片铝箔及其制造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3683443B2 (ja) * 1999-09-30 2005-08-17 三菱アルミニウム株式会社 熱交換器用アルミニウム合金複合材料とその製造方法
JP4424569B2 (ja) * 1999-12-15 2010-03-03 住友軽金属工業株式会社 造管性および耐食性に優れた熱交換器用高強度アルミニウム合金クラッド材およびその製造方法
JP5614829B2 (ja) * 2009-06-24 2014-10-29 株式会社Uacj アルミニウム合金製熱交換器
CN102534319B (zh) * 2012-01-05 2014-09-10 乳源东阳光精箔有限公司 汽车空调层叠式换热器用铝合金复合材料及制备方法
MX2018005942A (es) * 2015-11-13 2018-08-14 Graenges Ab Hoja de soldadura fuerte.
WO2018049585A1 (zh) * 2016-09-14 2018-03-22 银邦金属复合材料股份有限公司 内螺纹换热管用铝合金复合带材及其制造方法
CN109797323B (zh) * 2018-12-29 2021-02-02 上海华峰铝业股份有限公司 一种高耐腐蚀多层复合铝合金管材及其生产方法
DE102020208138A1 (de) * 2019-07-03 2021-01-07 Denso Corporation Aluminiumlegierungs-Plattiermaterial
CN111421013B (zh) * 2020-04-10 2022-05-24 江苏鼎胜新能源材料股份有限公司 一种高频焊接用钎焊扁管复合铝带及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1132552A (zh) * 1993-08-04 1996-10-02 因西尔科公司热部件部门 散热管及其制造方法和设备
JP2001170793A (ja) * 1999-12-15 2001-06-26 Sumitomo Light Metal Ind Ltd 造管性および耐食性に優れた熱交換器用高強度アルミニウム合金クラッド材
CN104101246A (zh) * 2014-06-26 2014-10-15 江苏天潭科技材料有限公司 一种热交换内螺纹管及其生产方法
CN109988946A (zh) * 2017-12-29 2019-07-09 格朗吉斯铝业(上海)有限公司 一种真空钎焊翅片材料及其制备方法
CN112292470A (zh) * 2018-06-21 2021-01-29 日本轻金属株式会社 耐压曲性优良的热交换器用铝合金翅片材料及其制造方法
CN112605147A (zh) * 2020-11-27 2021-04-06 江苏鼎胜新能源材料股份有限公司 一种高耐腐、低电位热交换器器用翅片铝箔及其制造方法

Also Published As

Publication number Publication date
CN115537608A (zh) 2022-12-30
CN115537608B (zh) 2023-07-14

Similar Documents

Publication Publication Date Title
US20090308481A1 (en) Cu/Al COMPOSITE PIPE AND A MANUFACTURING METHOD THEREOF
US9976200B2 (en) Cladded aluminum-alloy material and production method therefor, and heat exchanger using said cladded aluminum-alloy material and production method therefor
WO2015056669A1 (ja) アルミニウム合金製熱交換器
JP6154610B2 (ja) アルミニウム合金製内面溝付き伝熱管
CN107739880A (zh) 用于热交换器管的铜合金
JP2007152421A (ja) アルミニウム合金ブレージングシート
JP2007152422A (ja) アルミニウム合金ブレージングシートの製造方法
CN104246417B (zh) 内面带有沟槽的铝合金制导热管
JP6154611B2 (ja) アルミニウム合金製内面溝付き伝熱管
JP2002161323A (ja) 成形性及びろう付け性に優れた熱交換器用アルミニウム合金フィン材
WO2015002315A1 (ja) 熱交換器用ブレージングシート及びその製造方法
CN112955280B (zh) 铝合金硬钎焊板及其制造方法
CN104822855A (zh) 铝合金包覆材料以及由对该包覆材料进行成型而成的管组装成的热交换器
JPH10265881A (ja) オイルクーラーの内管用複合パイプとその製造方法及びこのパイプを用いた二重管式オイルクーラーと一体型熱交換器
WO2023087957A1 (zh) 一种铝管、其制造方法及全铝换热器
JPWO2019181768A1 (ja) 熱交換器用アルミニウム合金フィン材、その製造方法及び熱交換器
JP2012057183A (ja) アルミニウム合金製クラッド材およびそれを用いた熱交換器
EP1716266B1 (en) Tube for use in heat exchanger, method for manufacturing said tube, and heat exchanger
CN115103922A (zh) 用于生产耐腐蚀和耐高温铝合金挤出材料的方法
JP2002161324A (ja) 成形性及びろう付け性に優れた熱交換器用アルミニウム合金フィン材
JPS60215729A (ja) アルミニウム合金熱交換器用フイン材とその製造方法
JPH09295089A (ja) 熱交換器用薄肉扁平チューブ
CN206803836U (zh) 一种用于装配式汽车水箱的铝‑铝复合管和散热器
JP2002155332A (ja) 成形性及びろう付け性に優れた熱交換器用アルミニウム合金フィン材
CN110257671B (zh) 一种铝合金、铝扁管和铝扁管生产工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894495

Country of ref document: EP

Kind code of ref document: A1