WO2023087952A1 - 一种超高球形度纳米氧化钇弥散强化钛合金粉末的制备方法 - Google Patents

一种超高球形度纳米氧化钇弥散强化钛合金粉末的制备方法 Download PDF

Info

Publication number
WO2023087952A1
WO2023087952A1 PCT/CN2022/122964 CN2022122964W WO2023087952A1 WO 2023087952 A1 WO2023087952 A1 WO 2023087952A1 CN 2022122964 W CN2022122964 W CN 2022122964W WO 2023087952 A1 WO2023087952 A1 WO 2023087952A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
titanium alloy
yttrium oxide
alloy powder
oxide dispersion
Prior art date
Application number
PCT/CN2022/122964
Other languages
English (en)
French (fr)
Inventor
徐轶
张成阳
何思逸
陈辉
Original Assignee
西南交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西南交通大学 filed Critical 西南交通大学
Publication of WO2023087952A1 publication Critical patent/WO2023087952A1/zh
Priority to US18/630,802 priority Critical patent/US12083602B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/14Making metallic powder or suspensions thereof using physical processes using electric discharge
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/10Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying using centrifugal force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0031Matrix based on refractory metals, W, Mo, Nb, Hf, Ta, Zr, Ti, V or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2202/00Treatment under specific physical conditions
    • B22F2202/13Use of plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • B22F2301/205Titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to a method for preparing ultra-high sphericity nano-yttrium oxide dispersion-strengthened titanium alloy powder, which belongs to the technical field of titanium alloy powder preparation.
  • Plasma atomization technology can produce micron-sized powder materials. In theory, it can produce all material powders, including high-temperature metals, such as tungsten, molybdenum, niobium, tantalum, etc., and some ceramic material powders, involving aerospace, military, vehicles, medical care, etc. field.
  • high-temperature metals such as tungsten, molybdenum, niobium, tantalum, etc.
  • ceramic material powders involving aerospace, military, vehicles, medical care, etc. field.
  • the currently developed additive manufacturing powders are difficult to meet the large-scale application of additive manufacturing technology in terms of powder sphericity, powder purity, powder uniformity, powder bulk density, and powder self-sufficiency rate.
  • High-end titanium alloy powder basically relies on imports, and the cost is high (up to 4,000-5,000 yuan/kg).
  • Domestic titanium alloy powder is small in quantity and poor in quality, making it difficult to meet the current demand.
  • the development and application of titanium alloy powder in special fields is still in its infancy. How to further improve the quality and performance of high-end titanium alloy powder is worthy of in-depth research and exploration.
  • the purpose of the present invention is to provide a method for preparing ultra-high sphericity nanometer yttrium oxide dispersion-strengthened titanium alloy powder.
  • This method introduces yttrium (Y) into titanium alloy uniformly through multiple vacuum melting techniques.
  • Titanium alloy powder is prepared by plasma rotating electrode atomization.
  • the prepared titanium alloy powder has excellent properties such as low oxygen content, ultra-high sphericity, high strength and high hardness.
  • the technical solution adopted by the present invention to realize the purpose of the invention is: a method for preparing ultra-high sphericity nano-yttrium oxide dispersion-strengthened titanium alloy powder, comprising the following steps:
  • the preparation parameters are: the rotation speed of the alloy bar is 25000-35000r/min, the feed speed of the alloy bar is 1.0-2.0mm/s, the power of the plasma gun is 60-140kw, and the inert gas is used as the protective gas during the pulverization process.
  • the temperature of the inert gas in the atomization chamber is controlled at 200-400°C, and the oxygen content in the atomization chamber is monitored in real time during the pulverization process to ensure that the oxygen content in the atomization chamber is not greater than 100ppm.
  • the proportioning of alloying elements is carried out according to the ratio of 0.3-0.5wt% Y; 5.8-6.2wt% Al; 3.8%-4.2wt% V, and the balance is Ti, and the alloy block is prepared by vacuum melting ingots, and forging and rolling.
  • the addition form of element Y in step S1 of the present invention is elemental powder, and the particle size of the powder is not greater than 40 ⁇ m.
  • the vacuum smelting step S1 of the present invention includes vacuum arc consumable smelting or vacuum induction smelting, and the number of vacuum smelting is not less than 2 times; the temperature of the forging and rolling is 800-1100°C, and the holding time is 80-140minm, The degree of deformation of the forging during forging and rolling is 30%-50%.
  • the alloy bar processed in step S2 of the present invention has a length of 150-200 mm, a diameter of 30 mm, and a surface roughness Ra of not greater than 1.6 ⁇ m.
  • the preparation parameters of the step S3 of the present invention using the plasma rotating electrode method to prepare the nano-yttrium oxide dispersion-strengthened titanium alloy powder are as follows: the rotating speed of the alloy bar is 30000-35000r/min, and the feed rate of the alloy bar is 1.5-2.0 mm/s, the plasma gun power is 100-120kw.
  • step S3 of the present invention during the preparation of nano-yttrium oxide dispersion-strengthened titanium alloy powder by the plasma rotating electrode method, the temperature of the inert gas in the atomization chamber is controlled at 200-280°C to ensure that the oxygen content in the atomization chamber is not greater than 50ppm .
  • the specific method for preparing nano-yttrium oxide dispersion-strengthened titanium alloy powder by adopting the plasma rotating electrode method described in the present invention is:
  • step S31 Put the alloy bar prepared in step S2 into the rotary feeding device, vacuumize the atomization chamber to a vacuum degree of 1 ⁇ 10 -3 -1 ⁇ 10 -2 Pa, and fill the atomization chamber with inert gas to The air pressure in the spray chamber reaches 1.6 ⁇ 10 5 -1.8 ⁇ 10 5 Pa, monitor the oxygen content in the spray chamber to ensure that the oxygen content in the spray chamber is not more than 100ppm;
  • the spindle current of the rotating electrode of the rotary feeding device is 600-800A, and the working current of the plasma gun is 80-120A.
  • the spindle current of the rotating electrode of the rotary feeding device is 600-700A, and the working current of the plasma gun is 100-120A.
  • the principle that the preparation method of the present invention can obtain ultra-high sphericity, high strength and high hardness titanium alloy powder is:
  • the liquid droplets produced after the alloy liquid flow is broken will be cooled and solidified into powder particles during the subsequent centrifugal movement.
  • the added rare earth element Y generates Y 2 O 3 in the titanium alloy matrix, thereby reducing the oxygen content in the matrix.
  • the strengthening phase yttrium oxide in the titanium alloy powder is evenly distributed in the matrix, and the dispersion strengthening improves the strength and hardness of the alloy powder.
  • the melt is more likely to undergo centrifugal movement to cool and solidify, which promotes the distribution of the dispersed phase yttrium oxide, and the dispersion distribution is more uniform.
  • the yttrium element added in the present invention reacts in-situ with the oxygen in the matrix during the pulverization process to generate nanoscale yttrium oxide and reduce the oxygen content of the titanium alloy powder;
  • the strengthening phase yttrium oxide generated in the titanium alloy powder is evenly distributed in the matrix, and the dispersion strengthening improves the strength and hardness of the alloy powder, which further improves the application field of the titanium alloy powder.
  • the process of the alloy powder involved in the present invention is simple and can be completed on the existing atomization production line without any adjustment. Therefore, the present invention has very good prospect of popularization and application.
  • Fig. 1 is a 200-fold scanning electron microscope image of titanium alloy powder prepared in comparative examples and examples of the present invention.
  • Fig. 2 is a scanning electron microscope image at 5000 times of the titanium alloy powder prepared in the comparative example and the embodiment of the present invention.
  • Fig. 3 is a comparative diagram of the microhardness of titanium alloy powders prepared in the comparative examples and examples of the present invention.
  • Fig. 4 is a scanning electron microscope image at 50,000 times of the dispersed phase in the trititanium alloy powder of the embodiment of the present invention.
  • Fig. 5 is an XRD pattern of the titanium alloy powder prepared in Example 3 of the present invention.
  • a method for preparing ultra-high sphericity nanometer yttrium oxide dispersion strengthened titanium alloy powder comprising the following steps:
  • the preparation parameters are: the rotation speed of the alloy bar is 25000-35000r/min, the feed speed of the alloy bar is 1.0-2.0mm/s, the power of the plasma gun is 60-140kw, and the inert gas is used as the protective gas during the pulverization process. Control the temperature of the inert gas in the atomization chamber at 200°C-400°C, and monitor the oxygen content in the atomization chamber in real time during the powder making process to ensure that the oxygen content in the atomization chamber is not greater than 50ppm.
  • the ingredients are prepared according to the ratio of alloying elements of 0.3-0.5wt% Y; 5.8-6.2wt% Al; 3.8%-4.2wt% V, and the balance is Ti, and the alloy ingot is prepared by vacuum melting .
  • the element Y is added in the form of elemental powder in the step S1, and the particle size of the powder is not greater than 40 ⁇ m.
  • the step S1 vacuum smelting includes vacuum arc consumable smelting or vacuum induction smelting, the number of vacuum smelting is not less than 2 times; the temperature of the forging and rolling is 800-1100°C, the holding time is 80-140minm, forging During the rolling process, the degree of deformation of the forging is 30%-50%. More preferably, the temperature of forging and rolling is 800-960° C., and the holding time is 80-100 minutes.
  • the alloy bar processed in the step S2 has a length of 150-200 mm, a diameter of 30 mm, and a surface roughness Ra of not greater than 1.6 ⁇ m.
  • the preparation parameters of the step S3 using the plasma rotating electrode method to prepare the nano-yttrium oxide dispersion-strengthened titanium alloy powder are as follows: the rotating speed of the alloy bar is 30000-35000r/min, and the feeding speed of the alloy bar is 1.5-2.0mm /s, the plasma gun power is 100-120kw.
  • the temperature of the inert gas in the atomization chamber is controlled at 200-280° C. to ensure that the oxygen content in the atomization chamber is not greater than 50ppm.
  • the specific method for preparing nano-yttrium oxide dispersion-strengthened titanium alloy powder by using the plasma rotating electrode method is:
  • step S31 Put the alloy bar prepared in step S2 into the rotary feeding device, vacuumize the atomization chamber to a vacuum degree of 1 ⁇ 10 -3 -1 ⁇ 10 -2 Pa, and fill the atomization chamber with inert gas to The air pressure in the spray chamber reaches 1.6 ⁇ 10 5 -1.8 ⁇ 10 5 Pa, monitor the oxygen content in the spray chamber to ensure that the oxygen content in the spray chamber is not more than 100ppm;
  • the spindle current of the rotating electrode of the rotary feeding device is 600-800A, preferably 600-700A, and the working current of the plasma gun is 80-120A, preferably 100-120A.
  • a preparation method of titanium alloy powder comprising the following steps:
  • the vacuum melting times are not less than 2 times, the temperature of forging and rolling is 960°C, the holding time is 100minm, and the degree of deformation of the forging during the forging process is 50%.
  • the processed alloy bar has a length of 160 mm, a diameter of 30 mm, and a surface roughness Ra of not greater than 1.6 ⁇ m.
  • step S31 Put the alloy bar prepared in step S2 into the rotary feeding device, vacuumize the atomization chamber to a vacuum degree of 8.6 ⁇ 10 -3 Pa, and fill in argon until the air pressure in the atomization chamber reaches 1.6 ⁇ 10 5 Pa, monitor the oxygen content in the spray chamber to ensure that the oxygen content in the spray chamber is not greater than 50ppm;
  • the preparation parameters of nano-yttrium oxide dispersion strengthened titanium alloy powder prepared by plasma rotating electrode method are as follows: the rotating speed of the alloy rod is 30000r/min, the feed speed of the alloy rod is 1.5mm/s, the power of the plasma gun is 120kw, and the rotating feed The spindle current of the rotating electrode to the device is 600A, and the working current of the plasma gun is 100A.
  • a method for preparing ultra-high sphericity nanometer yttrium oxide dispersion strengthened titanium alloy powder comprising the following steps:
  • Ti alloying element proportioning (denoted as Ti6Al4V-0.1Y or TC4-0.1Y), vacuum arc consumable melting Prepare an alloy ingot, and carry out forging and rolling; wherein the Y element is added in the form of elemental powder, and the particle size of the powder is not greater than 40 ⁇ m;
  • the vacuum melting times are not less than 2 times, the temperature of forging and rolling is 960°C, the holding time is 100minm, and the degree of deformation of the forging during the forging process is 50%.
  • the processed alloy bar has a length of 160 mm, a diameter of 30 mm, and a surface roughness Ra of not greater than 1.6 ⁇ m.
  • step S31 Put the alloy bar prepared in step S2 into the rotary feeding device, evacuate the atomization chamber to a vacuum degree of 8.6 ⁇ 10 -3 , and fill in argon so that the air pressure in the atomization chamber reaches 1.6 ⁇ 10 5 Pa, monitor the oxygen content in the spray chamber to ensure that the oxygen content in the spray chamber is not greater than 50ppm;
  • the preparation parameters of titanium alloy powder prepared by plasma rotating electrode method are as follows: the rotating speed of the alloy bar is 30000r/min, the feed speed of the alloy bar is 1.5mm/s, the power of the plasma gun is 120kw, the rotating electrode spindle of the rotary feeding device The current is 600A, and the working current of the plasma gun is 100A.
  • the technical solution of this embodiment is basically the same as that of Embodiment 1.
  • the only difference lies in the ratio of alloying elements prepared in step S1 in this embodiment.
  • the ratio of alloying elements in this embodiment is 0.304wt% Y, 5.95wt% %Al, 3.99wt%V, the balance being Ti, Ti6Al4V-0.3Y or TC4-0.3Y.
  • the technical solution of this embodiment is basically the same as that of Embodiment 1.
  • the only difference lies in the ratio of alloying elements prepared in step S1 in this embodiment.
  • the ratio of alloying elements in this embodiment is 0.505wt% Y, 5.96wt %Al, 4.04wt%V, the balance is Ti, recorded as Ti6Al4V-0.5Y or TC4-0.5Y.
  • Fig. 1 is the 200 times scanning electron microscope picture of the titanium alloy powder prepared in comparative example, embodiment one, embodiment two, embodiment three, observes by scanning electron microscope, the average height of powder particle in the case is regular, and particle surface is smooth and round, rarely exists satellite ball. The overall sphericity of powder particles is higher, and other irregular particles are less.
  • Fig. 2 is the 5000 times scanning electron microscope picture of the titanium alloy powder prepared by comparative example, embodiment one, embodiment two, embodiment three, as can be seen from the figure, the titanium alloy powder prepared by comparative example does not find the presence of yttrium oxide in dispersed phase, A very small amount of yttrium oxide disperse phase was found in the titanium alloy powder prepared in Example 1, an obvious yttrium oxide disperse phase was found in the titanium alloy powder prepared in Example 2, and a large amount of yttrium oxide disperse phase was found in the titanium alloy powder prepared in Example 3.
  • Fig. 3 is the comparative picture of the titanium alloy powder microhardness prepared by comparative example, embodiment one, embodiment two, embodiment three, carries out micro Vickers hardness by the powder mosaic sample of the titanium alloy powder prepared by comparative example and embodiment
  • the test is obtained, as shown in Figure 3, the average Vickers hardness value of the titanium alloy powder inlaid sample prepared in the comparative example is 327HV, the average Vickers hardness value of the titanium alloy powder inlaid sample prepared in Example 1 is 336HV, and the titanium alloy powder inlaid sample prepared in Example 2 has an average Vickers hardness value of 336HV.
  • the average Vickers hardness value of the alloy powder inlaid sample is 343HV, and the average Vickers hardness value of the titanium alloy powder inlaid sample prepared in Example 3 is 347HV.
  • Figure 4 is a picture of the dispersed phase in the titanium alloy powder prepared in Example 3 of the present invention at 50,000 times the scanning electron microscope. It can be seen from the figure that there are nanoscale particles in the titanium alloy powder, and the average particle size is about 200nm. Higher yttrium and oxygen contents were detected in the dispersed phase.
  • Fig. 5 is an XRD diagram of the trititanium alloy powder in the embodiment of the present invention, and the peak of yttrium oxide is detected, so it is determined that the dispersion should be nanoscale yttrium oxide.
  • the oxygen content of the titanium alloy powder of the comparative example was 490ppm
  • the oxygen content of the titanium alloy powder prepared in Example 1 was 420ppm
  • the oxygen content of the titanium alloy powder prepared in Example 2 was 390ppm
  • the oxygen content of the titanium alloy powder prepared in Example 3 was 390ppm.
  • the oxygen content of the titanium alloy powder is 390ppm.
  • the average circularity and the width-to-length ratio of the titanium alloy powder prepared by the comparative example are respectively 0.891 and 0.903; the average circularity and width-to-length ratio of the titanium alloy powder prepared in embodiment one are 0.911 and 0.926 respectively; the average circularity and width-to-length ratio of the titanium alloy powder prepared in embodiment two are 0.914 and 0.934 respectively; The average circularity and width-to-length ratio of the titanium alloy powder prepared in Example 3 are 0.926 and 0.954, respectively.
  • a method for preparing ultra-high sphericity nanometer yttrium oxide dispersion strengthened titanium alloy powder comprising the following steps:
  • the alloy element proportion is carried out, and the alloy ingot is prepared by vacuum arc self-consumption melting, and forged and rolled; wherein the Y element
  • the added form of the powder is elemental powder, and the particle size of the powder is not greater than 40 ⁇ m;
  • the vacuum smelting times are not less than 2 times, the forging and rolling temperature is 800°C, the holding time is 140minm, and the deformation degree of the forging is 30% during the forging process.
  • the processed alloy bar has a length of 160 mm, a diameter of 30 mm, and a surface roughness Ra of not greater than 1.6 ⁇ m.
  • step S31 Put the alloy bar prepared in step S2 into the rotary feeding device, evacuate the atomization chamber to a vacuum degree of 8.6 ⁇ 10 -3 , and fill in argon to make the air pressure in the atomization chamber reach 1.7 ⁇ 10 5 Pa, monitor the oxygen content in the spray chamber to ensure that the oxygen content in the spray chamber is not more than 100ppm;
  • the preparation parameters of titanium alloy powder prepared by plasma rotating electrode method are as follows: the rotating speed of the alloy bar is 35000r/min, the feed speed of the alloy bar is 2.0mm/s, the power of the plasma gun is 140kw, the rotating electrode spindle of the rotary feeding device The current is 700A, and the working current of the plasma gun is 80A.
  • a method for preparing ultra-high sphericity nanometer yttrium oxide dispersion strengthened titanium alloy powder comprising the following steps:
  • the alloy elements are proportioned, and the alloy block ingot is prepared by vacuum arc self-consumption melting, and forged and rolled; wherein the Y element
  • the added form of the powder is elemental powder, and the particle size of the powder is not greater than 40 ⁇ m;
  • the vacuum smelting times are not less than 2 times, the temperature of forging and rolling is 1100° C., the holding time is 80 minutes, and the degree of deformation of the forging during the forging process is 40%.
  • the processed alloy bar has a length of 160 mm, a diameter of 30 mm, and a surface roughness Ra of not greater than 1.6 ⁇ m.
  • step S31 Put the alloy bar prepared in step S2 into the rotary feeding device, evacuate the atomization chamber to a vacuum degree of 8.6 ⁇ 10 -3 , and fill in argon to make the air pressure in the atomization chamber reach 1.7 ⁇ 10 5 Pa, monitor the oxygen content in the spray chamber to ensure that the oxygen content in the spray chamber is not more than 100ppm;
  • the preparation parameters of titanium alloy powder prepared by plasma rotating electrode method are as follows: the rotating speed of the alloy bar is 25000r/min, the feed speed of the alloy bar is 1.0mm/s, the power of the plasma gun is 60kw, the rotating electrode spindle of the rotary feeding device The current is 800A, and the working current of the plasma gun is 120A.
  • the technical solution of this embodiment is basically the same as that of Embodiment 5, the only difference is that in the step S1 of this embodiment, the ratio of alloying elements is prepared in the alloy block ingot, and the ratio of alloying elements in this embodiment is 0.4wt%Y, 5.5wt% %Al, 4.5wt%V, the balance being Ti.
  • the technical scheme of this embodiment is basically the same as that of Embodiment 5, the only difference is that the alloy element ratio of the alloy block ingot prepared in step S1 in this embodiment is 0.4wt%Y, 6.8wt% %Al, 3.5wt%V, the balance being Ti.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Thermal Sciences (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

一种超高球形度纳米氧化钇弥散强化钛合金粉末的制备方法,包括以下步骤:S1、按照0.1-1.0wt%Y,5.5-6.8wt%Al,3.5-4.5wt%V,余量为Ti的合金元素配比进行配料,采用真空熔炼制备合金块锭,并进行锻造轧制;S2、对合金块锭进行机械加工,加工成满足等离子旋转电极法尺寸要求的合金棒料;S3、采用等离子旋转电极法制备钛合金粉末;制备参数为:合金棒料的转速为25000-35000r/min,合金棒料的进给速度为1.0-2.0mm/s,等离子枪功率为60-140kw,制粉过程中控制雾化室中惰性气体的温度在200-400℃,保证雾化室中氧气含量不大于100ppm。

Description

一种超高球形度纳米氧化钇弥散强化钛合金粉末的制备方法 技术领域
本发明涉及一种超高球形度纳米氧化钇弥散强化钛合金粉末的制备方法,属于钛合金粉末制备技术领域。
背景技术
等离子雾化技术可以生产微米级粉末材料,理论上能生产所有的材料粉末,包括高温金属,如钨、钼、铌、钽等,以及一些陶瓷材料粉末,涉及航空航天、军工、车辆、医疗等领域。
目前研制的增材制造粉末,从粉末球形度、粉末纯度、粉末均匀性、粉末松装密度、粉末自给率等方面均难以满足增材制造技术的大规模应用。高端钛合金粉末基本依赖进口,成本高昂(高达4000-5000元/kg),国产钛合金粉末量少质差,难以满足目前需求。而目前对于特殊领域的钛合金粉末开发和应用,仍然处于起步阶段。如何进一步提高高端钛合金粉末的质量与性能,值得深入研究和探索。
发明内容
本发明的发明目的是提供一种超高球形度纳米氧化钇弥散强化钛合金粉末的制备方法,本方法通过多次真空熔炼技术将钇(Y)均匀的引入钛合金中,锻造轧制后,由等离子旋转电极雾化制备钛合金粉末,制备的钛合金粉末具有低氧含量、超高球形度、高强度和高硬度等优异性能。
本发明实现其发明目的所采取的技术方案是:一种超高球形度纳米氧化钇弥散强化钛合金粉末的制备方法,包括以下步骤:
S1、按照0.1-1.0wt%Y,5.5-6.8wt%Al,3.5-4.5wt%V,余量为Ti的合金元素配比进行配料,采用真空熔炼制备合金块锭,并进行锻造轧制;
S2、将锻造轧制的合金块锭进行机械加工,加工成满足等离子旋转电极法尺寸要求的合金棒料;
S3、采用等离子旋转电极法制备纳米氧化钇弥散强化钛合金粉末;
制备参数为:合金棒料的转速为25000-35000r/min,合金棒料的进给速度为1.0-2.0mm/s,等离子枪功率为60-140kw,制粉过程中采用惰性气体作为保护气体,控制雾化室中惰性气体的温度在200-400℃,制粉过程中实时监测雾化室中氧气含量,保证雾化室中氧气含量不大于100ppm。
进一步,本发明所述步骤S1中按照0.3-0.5wt%Y;5.8-6.2wt%Al;3.8%-4.2wt%V,余量为Ti的合金元素配比进行配料,采用真空熔炼制备合金块锭,并进行锻造轧制。
进一步,本发明所述步骤S1中Y元素的添加形式为单质粉末,粉末的粒径不大于40μm。
进一步,本发明所述步骤S1真空熔炼包括真空电弧自耗熔炼或真空感应熔炼,真空熔炼次数不少于2次;所述锻造轧制的温度为800-1100℃,保温时间为80-140minm,锻造轧制过程中锻件的变形度为30%-50%。
进一步,本发明所述步骤S2加工的合金棒料长度为150-200mm,直径为30mm,表面粗糙度Ra不大于1.6μm。
进一步,本发明所述步骤S3采用等离子旋转电极法制备纳米氧化钇弥散强化钛合金粉末的制备参数为:合金棒料的转速为30000-35000r/min,合金棒料的进给速度为1.5-2.0mm/s,等离子枪功率为100-120kw。
进一步,本发明所述步骤S3采用等离子旋转电极法制备纳米氧化钇弥散强化钛合金粉末过程中,控制雾化室中惰性气体的温度在200-280℃,保证雾化室中氧气含量不大于50ppm。
进一步,本发明所述采用等离子旋转电极法制备纳米氧化钇弥散强化钛合金粉末的具体方法是:
S31、将步骤S2制备的合金棒料装入旋转进给装置中,对雾化室进行抽真空至1×10 -3-1×10 -2Pa真空度,充入惰性气体至使得雾化室中的气压达到1.6×10 5-1.8×10 5Pa,监测雾化室中氧含量,保证雾化室中氧气含量不大于100ppm;
S32、启动冷却系统,控制雾化室中惰性气体的温度在200-400℃;
S32、启动旋转进给装置和等离子枪电源进行雾化制粉,合金棒料与等离子枪间产生高温等离子弧,在离心力和表面张力的共同作用下棒料熔化并形成微小液滴,并凝固成金属粉末,等待粉末完全冷却后,将粉末收集装置内的粉末进行真空封装保存。
更进一步,本发明所述雾化制粉过程中,旋转进给装置的旋转电极主轴电流为600-800A,等离子枪的工作电流为80-120A。
再进一步,本发明所述雾化制粉过程中,旋转进给装置的旋转电极主轴电流为600-700A,等离子枪的工作电流为100-120A。
本发明制备方法可获得超高球形度、高强度和高硬度钛合金粉末的原理是:
金属表面张力和熔点之间存在经验公式:σ=3.5T m/V 2/3,其中σ为金属液表面张力,T m为金属熔点;V 2/3为金属原子表面积。因此可知,在当金属原子表面积一定的情况下,降低金属熔点可以降低金属液表面张力。本发明通过多次真空熔炼技术将钇均匀的引入钛合金,使得合金粉末的熔点会有所降低,也即Y原子加入降低了合金熔液的表面张力。
当等离子旋转电极雾化制粉时,合金液流破碎后产生的的液滴会在随后的离心运动过程中冷却凝固成粉末颗粒。加入的稀土元素Y在钛合金基体中生成Y 2O 3,从而降低基体中的氧含量。作为非均匀形核的晶核,促进晶粒的生长,并且整体晶粒尺寸细化。钛合金粉末中强化相氧化钇均匀分布在 基体中,弥散强化使得合金粉末强度和硬度得到提高。并且随着表面张力的降低,熔液更容易发生离心运动而冷却凝固,促进弥散相氧化钇的分布,弥散分布更加均匀。
与现有技术相比,本发明的有益效果是:
1、本发明中添加的钇元素,在制粉过程中,与基体中的氧发生原位反应,生成纳米尺度的氧化钇,降低钛合金粉末的氧含量;
2、钛合金粉末中生成的强化相氧化钇均匀分布在基体中,弥散强化使得合金粉末强度和硬度得到提高,使得该钛合金粉末应用的领域进一步得到提升。
3、本发明涉及的合金粉末的工艺简单,可以在现有雾化生产线上完成而无需做任何调整。因此,本发明具有很好的推广应用前景。
附图说明
图1为本发明对比例及实施例制备的钛合金粉末扫描电镜200倍图。
图2为本发明对比例及实施例制备的钛合金粉末扫描电镜5000倍图。
图3为本发明对比例及实施例制备的钛合金粉末显微硬度对比图。
图4为本发明实施例三钛合金粉末中弥散相的扫描电镜50000倍图。
图5为本发明实施例三制备的钛合金粉末的XRD图。
具体实施方式
一种超高球形度纳米氧化钇弥散强化钛合金粉末的制备方法,包括以下步骤:
S1、按照0.1-1.0wt%Y,5.5-6.8wt%Al,3.5-4.5wt%V,余量为Ti的合金元素配比进行配料,采用真空熔炼制备合金块锭,并进行锻造轧制;
S2、将锻造轧制的合金块锭进行机械加工,加工成满足等离子旋转电极法尺寸要求的合金棒料;
S3、采用等离子旋转电极法制备纳米氧化钇弥散强化钛合金粉末;
制备参数为:合金棒料的转速为25000-35000r/min,合金棒料的进给速度为1.0-2.0mm/s,等离子枪功率为60-140kw,制粉过程中采用惰性气体作为保护气体,控制雾化室中惰性气体的温度在200℃-400℃,制粉过程中实时监测雾化室中氧气含量,保证雾化室中氧气含量不大于50ppm。
优选的,所述步骤S1中按照0.3-0.5wt%Y;5.8-6.2wt%Al;3.8%-4.2wt%V,余量为Ti的合金元素配比进行配料,采用真空熔炼制备合金块锭。
优选的,所述步骤S1中Y元素的添加形式为单质粉末,粉末的粒径不大于40μm。
优选的,所述步骤S1真空熔炼包括真空电弧自耗熔炼或真空感应熔炼,真空熔炼次数不少于2次;所述锻造轧制的温度为800-1100℃,保温时间为80-140minm,锻造轧制过程中锻件的变形度为30%-50%,更为优选的,锻造轧制的温度为800-960℃,保温时间为80-100min。
优选的,所述步骤S2加工的合金棒料长度为150-200mm,直径为30mm,表面粗糙度Ra不大于1.6μm。
优选的,所述步骤S3采用等离子旋转电极法制备纳米氧化钇弥散强化钛合金粉末的制备参数为:合金棒料的转速为30000-35000r/min,合金棒料的进给速度为1.5-2.0mm/s,等离子枪功率为100-120kw。
更为优选的,所述步骤S3采用等离子旋转电极法制备纳米氧化钇弥散强化钛合金粉末过程中,控制雾化室中惰性气体的温度在200-280℃,保证雾化室中氧气含量不大于50ppm。
优选的,所述采用等离子旋转电极法制备纳米氧化钇弥散强化钛合金粉末的具体方法是:
S31、将步骤S2制备的合金棒料装入旋转进给装置中,对雾化室进行抽真空至1×10 -3-1×10 -2Pa真空度,充入惰性气体至使得雾化室中的气压达到1.6×10 5-1.8×10 5Pa,监测雾化室中氧含量,保证雾化室中氧气含量不大于100ppm;
S32、启动冷却系统,控制雾化室中惰性气体的温度在200℃-400℃;
S32、启动旋转进给装置和等离子枪电源进行雾化制粉,合金棒料与等离子枪间产生高温等离子弧,在离心力和表面张力的共同作用下棒料熔化并形成微小液滴,并凝固成金属粉末,等待粉末完全冷却后,将粉末收集装置内的粉末进行真空封装保存。
更为优选的,所述雾化制粉过程中,旋转进给装置的旋转电极主轴电流为600-800A,优选为600-700A,等离子枪的工作电流为80-120A,优选为100-120A。
对比例一
一种钛合金粉末的制备方法,包括以下步骤:
S1、按照6wt%Al,4wt%V,余量为Ti的合金元素配比进行配料(记为,Ti6Al4V或TC4),采用真空电弧自耗熔炼制备合金块锭,并进行锻造轧制;
所述真空熔炼次数不少于2次,锻造轧制的温度为960℃,保温时间为100minm,锻造过程中锻件的变形度为50%。
S2、将锻造轧制的合金块锭进行机械加工,加工成满足等离子旋转电极法尺寸要求的合金棒料;所述加工的合金棒料长度为160mm,直径为30mm,表面粗糙度Ra不大于1.6μm。
S3、采用等离子旋转电极法制备钛合金粉末,具体制备方法是:
S31、将步骤S2制备的合金棒料装入旋转进给装置中,对雾化室进行抽真空至8.6×10 -3Pa真空度,充入氩气至使得雾化室中的气压达到1.6×10 5Pa,监测雾化室中氧含量,保证雾化室中氧气含量不大于50ppm;
S32、启动冷却系统,控制雾化室中氩气的温度在280℃;
S32、启动旋转进给装置和等离子枪电源进行雾化制粉,合金棒料与等离子枪间产生高温等离子弧,在离心力和表面张力的共同作用下棒料熔化并形成微小液滴,并凝固成金属粉末,等待粉末完全冷却后,将粉末收集装置内的粉末进行真空封装保存。
采用等离子旋转电极法制备纳米氧化钇弥散强化钛合金粉末的制备参数为:合金棒料的转速为30000r/min,合金棒料的进给速度为1.5mm/s,等离子枪功率为120kw,旋转进给装置的旋转电极主轴电流为600A,等离子枪的工作电流为100A。
实施例一
一种超高球形度纳米氧化钇弥散强化钛合金粉末的制备方法,包括以下步骤:
S1、按照0.1wt%Y,6.01wt%Al,3.95wt%V,余量为Ti的合金元素配比进行配料(记为,Ti6Al4V-0.1Y或TC4-0.1Y),采用真空电弧自耗熔炼制备合金块锭,并进行锻造轧制;其中Y元素的添加形式为单质粉末,粉末的粒径不大于40μm;
所述真空熔炼次数不少于2次,锻造轧制的温度为960℃,保温时间为100minm,锻造过程中锻件的变形度为50%。
S2、将锻造轧制的合金块锭进行机械加工,加工成满足等离子旋转电极法尺寸要求的合金棒料;所述加工的合金棒料长度为160mm,直径为30mm,表面粗糙度Ra不大于1.6μm。
S3、采用等离子旋转电极法制备纳米氧化钇弥散强化钛合金粉末,具体制备方法是:
S31、将步骤S2制备的合金棒料装入旋转进给装置中,对雾化室进行抽真空至8.6×10 -3真空度,充入氩气使得雾化室中的气压达到1.6×10 5Pa,监测雾化室中氧含量,保证雾化室中氧气含量不大于50ppm;
S32、启动冷却系统,控制雾化室中氩气的温度在280℃;
S32、启动旋转进给装置和等离子枪电源进行雾化制粉,合金棒料与等离子枪间产生高温等离子弧,在离心力和表面张力的共同作用下棒料熔化并形成微小液滴,并凝固成金属粉末,等待粉末完全冷却后,将粉末收集装置内的粉末进行真空封装保存。
等离子旋转电极法制备钛合金粉末的制备参数为:合金棒料的转速为30000r/min,合金棒料的进给速度为1.5mm/s,等离子枪功率为120kw,旋转进给装置的旋转电极主轴电流为600A,等离子枪的工作电流为100A。
实施例二
本实施例与实施例一的技术方案基本相同,唯一不同之处在于本实施例中步骤S1中制备合金块锭的合金元素配比,本实施例合金元素配比为0.304wt%Y,5.95wt%Al,3.99wt%V,余量为Ti,Ti6Al4V-0.3Y或TC4-0.3Y。
实施例三
本实施例与实施例一的技术方案基本相同,唯一不同之处在于本实施例中步骤S1中制备合金块锭的合金元素配比,本实施例合金元素配比为0.505wt%Y,5.96wt%Al,4.04wt%V,余量为Ti,记为Ti6Al4V-0.5Y或TC4-0.5Y。
图1为对比例、实施例一、实施例二、实施例三制备的钛合金粉末的200倍扫描电镜图,通过扫描电镜观察,案例中粉末颗粒均高度规则,颗粒表面光滑圆润,很少存在卫星球。粉末颗粒总体的球形度较高,其他不规则颗粒较少。
图2为对比例、实施例一、实施例二、实施例三制备的钛合金粉末的5000倍扫描电镜图,图中可以看出,对比例制备的钛合金粉末未发现弥散相氧化钇存在,实施例一制备的钛合金粉末发现极少量氧化钇弥散相,实施例二制备的钛合金粉末发现明显弥散相氧化钇存在,实施例三制备的钛合金粉末发现大量氧化钇弥散相。
图3为对比例、实施例一、实施例二、实施例三制备的钛合金粉末显微硬度对比图片,通过对对比例和实施例制备的钛合金粉末的粉末镶嵌样进行显微维氏硬度测试得到,如图3所示,对比例制备的钛合金粉末镶嵌样平均维氏硬度值为327HV,实施例一制备的钛合金粉末镶嵌样平均维氏硬度值为336HV,实施例二制备的钛合金粉末镶嵌样平均维氏硬度值为343HV,实施例三制备的钛合金粉末镶嵌样平均维氏硬度值为347HV。
图4为本发明实施例三制备的钛合金粉末中弥散相在扫描电镜50000倍图片,图中可以看出钛合金粉末中存在纳米尺度颗粒,平均粒径在200nm左右,能谱仪通过点扫检测到弥撒相中钇和氧含量较高。图5为本发明实施例三钛合金粉末中XRD图,检测到氧化钇的峰,因此确定弥散物应该为纳米尺度的氧化钇。
经氮氧含量分析仪检测,对比例钛合金粉末含氧量为490ppm,实施例一制备的钛合金粉末氧含量为420ppm,实施例二制备的钛合金粉末氧含量为390ppm,实施例三制备的钛合金粉末氧含量为390ppm。
通过动态图像分析仪测得对比例、实施例一、实施例二、实施例三制备的钛合金粉末的粒度粒形情况,对比例制备的钛合金粉末的平均圆形度和宽长比分别为0.891和0.903;实施例一制备的钛合金粉末的平均圆形度和宽长比分别为0.911和0.926;实施例二制备的钛合金粉末的平均圆形度和宽长比分别为0.914和0.934;实施例三制备的钛合金粉末的平均圆形度和宽长比分别为0.926和0.954。通过霍尔流速计记录50g对比例、实施例一、实施例二、实施例三制备的钛合金粉末的流动时间,对比例制备的钛合金粉末的流动时间为25.1s,实施例一制备的钛合金粉末的流动时间为24.8s,实施例 二制备的钛合金粉末的流动时间为24.7s,实施例三制备的钛合金粉末的流动时间为24.1s,钛合金粉末的平均球形度、平均长宽比和流动性的数据总结如表1:
表1对比例和实施案例制备的钛合金粉末的流动性和粒形参数对比
Figure PCTCN2022122964-appb-000001
实施例四
一种超高球形度纳米氧化钇弥散强化钛合金粉末的制备方法,包括以下步骤:
S1、按照1.0wt%Y,5.8wt%Al,3.8wt%V,余量为Ti的合金元素配比进行配料,采用真空电弧自耗熔炼制备合金块锭,并进行锻造轧制;其中Y元素的添加形式为单质粉末,粉末的粒径不大于40μm;
所述真空熔炼次数不少于2次,锻造轧制的温度为800℃,保温时间为140minm,锻造过程中锻件的变形度为30%。
S2、将锻造轧制的合金块锭进行机械加工,加工成满足等离子旋转电极法尺寸要求的合金棒料;所述加工的合金棒料长度为160mm,直径为30mm,表面粗糙度Ra不大于1.6μm。
S3、采用等离子旋转电极法制备纳米氧化钇弥散强化钛合金粉末,具体制备方法是:
S31、将步骤S2制备的合金棒料装入旋转进给装置中,对雾化室进行抽真空至8.6×10 -3真空度,充入氩气使得雾化室中的气压达到1.7×10 5Pa,监测雾化室中氧含量,保证雾化室中氧气含量不大于100ppm;
S32、启动冷却系统,控制雾化室中氩气的温度在400℃;
S32、启动旋转进给装置和等离子枪电源进行雾化制粉,合金棒料与等离子枪间产生高温等离子弧,在离心力和表面张力的共同作用下棒料熔化并形成微小液滴,并凝固成金属粉末,等待粉末完全冷却后,将粉末收集装置内的粉末进行真空封装保存。
等离子旋转电极法制备钛合金粉末的制备参数为:合金棒料的转速为35000r/min,合金棒料的进给速度为2.0mm/s,等离子枪功率为140kw,旋转进给装置的旋转电极主轴电流为700A,等离子枪的工作电流为80A。
实施例五
一种超高球形度纳米氧化钇弥散强化钛合金粉末的制备方法,包括以下步骤:
S1、按照0.7wt%Y,6.2wt%Al,4.2wt%V,余量为Ti的合金元素配比进行配料,采用真空电弧自耗熔炼制备合金块锭,并进行锻造轧制;其中Y元素的添加形式为单质粉末,粉末的粒径不大于40μm;
所述真空熔炼次数不少于2次,锻造轧制的温度为1100℃,保温时间为80min,锻造过程中锻件的变形度为40%。
S2、将锻造轧制的合金块锭进行机械加工,加工成满足等离子旋转电极法尺寸要求的合金棒料;所述加工的合金棒料长度为160mm,直径为30mm,表面粗糙度Ra不大于1.6μm。
S3、采用等离子旋转电极法制备纳米氧化钇弥散强化钛合金粉末,具体制备方法是:
S31、将步骤S2制备的合金棒料装入旋转进给装置中,对雾化室进行抽真空至8.6×10 -3真空度,充入氩气使得雾化室中的气压达到1.7×10 5Pa,监测雾化室中氧含量,保证雾化室中氧气含量不大于100ppm;
S32、启动冷却系统,控制雾化室中氩气的温度在200℃;
S32、启动旋转进给装置和等离子枪电源进行雾化制粉,合金棒料与等离子枪间产生高温等离子弧,在离心力和表面张力的共同作用下棒料熔化并形成微小液滴,并凝固成金属粉末,等待粉末完全冷却后,将粉末收集装置内的粉末进行真空封装保存。
等离子旋转电极法制备钛合金粉末的制备参数为:合金棒料的转速为25000r/min,合金棒料的进给速度为1.0mm/s,等离子枪功率为60kw,旋转进给装置的旋转电极主轴电流为800A,等离子枪的工作电流为120A。
实施例六
本实施例与实施例五的技术方案基本相同,唯一不同之处在于本实施例中步骤S1中制备合金块锭的合金元素配比,本实施例合金元素配比为0.4wt%Y,5.5wt%Al,4.5wt%V,余量为Ti。
实施例七
本实施例与实施例五的技术方案基本相同,唯一不同之处在于本实施例中步骤S1中制备合金块锭的合金元素配比,本实施例合金元素配比为0.4wt%Y,6.8wt%Al,3.5wt%V,余量为Ti。

Claims (10)

  1. 一种超高球形度纳米氧化钇弥散强化钛合金粉末的制备方法,其特征在于,包括以下步骤:
    S1、按照0.1-1.0wt%Y,5.5-6.8wt%Al,3.5-4.5wt%V,余量为Ti的合金元素配比进行配料,采用真空熔炼制备合金块锭,并进行锻造轧制;
    S2、将锻造轧制的合金块锭进行机械加工,加工成满足等离子旋转电极法尺寸要求的合金棒料;
    S3、采用等离子旋转电极法制备纳米氧化钇弥散强化钛合金粉末;
    制备参数为:合金棒料的转速为25000-35000r/min,合金棒料的进给速度为1.0-2.0mm/s,等离子枪功率为60-140kw,制粉过程中采用惰性气体作为保护气体,控制雾化室中惰性气体的温度在200-400℃,制粉过程中实时监测雾化室中氧气含量,保证雾化室中氧气含量不大于100ppm。
  2. 根据权利要求1所述一种超高球形度纳米氧化钇弥散强化钛合金粉末的制备方法,其特征在于:所述步骤S1中按照0.3-0.5wt%Y;5.8-6.2wt%Al;3.8%-4.2wt%V,余量为Ti的合金元素配比进行配料,采用真空熔炼制备合金块锭,并进行锻造轧制。
  3. 根据权利要求1所述一种超高球形度纳米氧化钇弥散强化钛合金粉末的制备方法,其特征在于:所述步骤S1中Y元素的添加形式为单质粉末,粉末的粒径不大于40μm。
  4. 根据权利要求1所述一种超高球形度纳米氧化钇弥散强化钛合金粉末的制备方法,其特征在于:所述步骤S1真空熔炼包括真空电弧自耗熔炼或真空感应熔炼,真空熔炼次数不少于2次;所述锻造轧制的温度为800-1100℃,保温时间为80-140minm,锻造轧制过程中锻件的变形度为30%-50%。
  5. 根据权利要求1所述一种超高球形度纳米氧化钇弥散强化钛合金粉末的制备方法,其特征在于:所述步骤S2加工的合金棒料长度为150-200mm,直径为30mm,表面粗糙度Ra不大于1.6μm。
  6. 根据权利要求1所述一种超高球形度纳米氧化钇弥散强化钛合金粉末的制备方法,其特征在于:所述步骤S3采用等离子旋转电极法制备纳米氧化钇弥散强化钛合金粉末的制备参数为:合金棒料的转速为30000-35000r/min,合金棒料的进给速度为1.5-2.0mm/s,等离子枪功率为100-120kw。
  7. 根据权利要求6所述一种超高球形度纳米氧化钇弥散强化钛合金粉末的制备方法,其特征在于:所述步骤S3采用等离子旋转电极法制备纳米氧化钇弥散强化钛合金粉末过程中,控制雾化室中惰性气体的温度在200-280℃,保证雾化室中氧气含量不大于50ppm。
  8. 根据权利要求1所述一种超高球形度纳米氧化钇弥散强化钛合金粉末的制备方法,其特征在于:所述采用等离子旋转电极法制备纳米氧化钇弥散强化钛合金粉末的具体方法是:
    S31、将步骤S2制备的合金棒料装入旋转进给装置中,对雾化室进行抽真空至1×10 -3-1×10 -2Pa真空度,充入惰性气体至使得雾化室中的气压达到1.6×10 5-1.8×10 5Pa,监测雾化室中氧含量,保证雾化室中氧气含量不大于100ppm;
    S32、启动冷却系统,控制雾化室中惰性气体的温度在200-400℃;
    S32、启动旋转进给装置和等离子枪电源进行雾化制粉,合金棒料与等离子枪间产生高温等离子弧,在离心力和表面张力的共同作用下棒料熔化并形成微小液滴,并凝固成金属粉末,等待粉末完全冷却后,将粉末收集装置内的粉末进行真空封装保存。
  9. 根据权利要求8所述一种超高球形度纳米氧化钇弥散强化钛合金粉末的制备方法,其特征在于:所述雾化制粉过程中,旋转进给装置的旋转电极主轴电流为600-800A,等离子枪的工作电流为80-120A。
  10. 根据权利要求9所述一种超高球形度纳米氧化钇弥散强化钛合金粉末的制备方法,其特征在于:所述雾化制粉过程中,旋转进给装置的旋转电极主轴电流为600-700A,等离子枪的工作电流为100-120A。
PCT/CN2022/122964 2021-11-19 2022-09-30 一种超高球形度纳米氧化钇弥散强化钛合金粉末的制备方法 WO2023087952A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/630,802 US12083602B2 (en) 2021-11-19 2024-04-09 Preparation method of titanium alloy powders

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111374069.7 2021-11-19
CN202111374069.7A CN114178538B (zh) 2021-11-19 2021-11-19 一种超高球形度纳米氧化钇弥散强化钛合金粉末的制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/630,802 Continuation US12083602B2 (en) 2021-11-19 2024-04-09 Preparation method of titanium alloy powders

Publications (1)

Publication Number Publication Date
WO2023087952A1 true WO2023087952A1 (zh) 2023-05-25

Family

ID=80602210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/122964 WO2023087952A1 (zh) 2021-11-19 2022-09-30 一种超高球形度纳米氧化钇弥散强化钛合金粉末的制备方法

Country Status (3)

Country Link
US (1) US12083602B2 (zh)
CN (1) CN114178538B (zh)
WO (1) WO2023087952A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117102490A (zh) * 2023-10-24 2023-11-24 北京航空航天大学宁波创新研究院 锶钛复合材料制备方法、基于复合材料的靶材及薄膜
CN117987687A (zh) * 2024-02-06 2024-05-07 宁波尚材三维科技有限公司 一种球形钛合金粉末及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114178538B (zh) * 2021-11-19 2023-02-21 西南交通大学 一种超高球形度纳米氧化钇弥散强化钛合金粉末的制备方法
CN115094269A (zh) * 2022-06-28 2022-09-23 南京铖联激光科技有限公司 钛合金粉末、制备方法以及制取工具
CN115090891A (zh) * 2022-08-25 2022-09-23 西安赛隆增材技术股份有限公司 一种等离子旋转电极雾化制粉设备与制粉方法
CN115740489A (zh) * 2022-12-08 2023-03-07 宜宾上交大新材料研究中心 一种协同提升激光增材钛合金强塑性能的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105689730A (zh) * 2016-02-24 2016-06-22 西安欧中材料科技有限公司 一种制备Inconel 625合金球形粉末的方法
CN106853535A (zh) * 2016-12-19 2017-06-16 西安欧中材料科技有限公司 一种高品质γ‑TiAl球形粉末的制备方法
CN110625112A (zh) * 2019-10-25 2019-12-31 西北有色金属研究院 表面分布稀土氧化物的钛或钛合金球形粉末及其制备方法
KR20200019387A (ko) * 2018-08-14 2020-02-24 서울대학교산학협력단 분산강화 금속 소결체의 제조방법
CN113059172A (zh) * 2021-03-17 2021-07-02 东北大学 一种纳米多相增强钛基复合材料增材制造专用球形粉末的制造方法
CN114178538A (zh) * 2021-11-19 2022-03-15 西南交通大学 一种超高球形度纳米氧化钇弥散强化钛合金粉末的制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2311997A (en) * 1996-04-10 1997-10-15 Sanyo Special Steel Co Ltd Oxide-dispersed powder metallurgically produced alloys.
GB201706715D0 (en) * 2017-04-27 2017-06-14 Renishaw Plc Manufacture of metal articles
CN107824771B (zh) * 2017-11-13 2019-01-15 北京科技大学 一种熔炼铸造工艺制备氧化物弥散强化f/m钢的方法
FR3080786A1 (fr) * 2018-05-03 2019-11-08 Commissariat A L'energie Atomique Et Aux Energies Alternatives Poudre d'alliage ods et son procede de fabrication par traitement plasma
CN112654444A (zh) * 2018-06-19 2021-04-13 6K有限公司 由原材料制造球化粉末的方法
WO2020041726A1 (en) * 2018-08-24 2020-02-27 Oregon State University Additive-containing alloy embodiments and methods of making and using the same
CN110524001A (zh) * 2019-10-15 2019-12-03 江苏思睿迪快速制造科技有限公司 一种包晶钛合金粉末的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105689730A (zh) * 2016-02-24 2016-06-22 西安欧中材料科技有限公司 一种制备Inconel 625合金球形粉末的方法
CN106853535A (zh) * 2016-12-19 2017-06-16 西安欧中材料科技有限公司 一种高品质γ‑TiAl球形粉末的制备方法
KR20200019387A (ko) * 2018-08-14 2020-02-24 서울대학교산학협력단 분산강화 금속 소결체의 제조방법
CN110625112A (zh) * 2019-10-25 2019-12-31 西北有色金属研究院 表面分布稀土氧化物的钛或钛合金球形粉末及其制备方法
CN113059172A (zh) * 2021-03-17 2021-07-02 东北大学 一种纳米多相增强钛基复合材料增材制造专用球形粉末的制造方法
CN114178538A (zh) * 2021-11-19 2022-03-15 西南交通大学 一种超高球形度纳米氧化钇弥散强化钛合金粉末的制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117102490A (zh) * 2023-10-24 2023-11-24 北京航空航天大学宁波创新研究院 锶钛复合材料制备方法、基于复合材料的靶材及薄膜
CN117102490B (zh) * 2023-10-24 2024-02-27 北京航空航天大学宁波创新研究院 锶钛合金制备方法、基于合金的靶材及磁控溅射薄膜
CN117987687A (zh) * 2024-02-06 2024-05-07 宁波尚材三维科技有限公司 一种球形钛合金粉末及其制备方法

Also Published As

Publication number Publication date
CN114178538A (zh) 2022-03-15
US20240253122A1 (en) 2024-08-01
CN114178538B (zh) 2023-02-21
US12083602B2 (en) 2024-09-10

Similar Documents

Publication Publication Date Title
WO2023087952A1 (zh) 一种超高球形度纳米氧化钇弥散强化钛合金粉末的制备方法
Sun et al. Review of the methods for production of spherical Ti and Ti alloy powder
KR102490248B1 (ko) 분말 야금 스퍼터링 표적 및 그의 생성 방법
US11090718B2 (en) Method based on fluidizing for modifying and preparing low-cost titanium powders for 3D printing
CN105642879A (zh) 用于激光3d打印的球形tc4钛合金粉末及其制备方法
CN105624447B (zh) 一种超细晶硬质合金晶粒细化及尺寸分布均匀化的方法
CN110625112B (zh) 表面分布稀土氧化物的钛或钛合金球形粉末及其制备方法
CN112317752A (zh) 一种可用于3D打印的TiZrNbTa高熵合金及其制备方法和应用
KR20220106184A (ko) 알루미늄 합금 함유 분말체의 제조 방법 및 이의 응용과 합금 스트립
CN102248171A (zh) 氧过饱和铁基合金粉末的气体雾化制备方法
US4981512A (en) Methods are producing composite materials of metal matrix containing tungsten grain
CN111004959A (zh) 一种FeNiCrCuCoBx纳米高熵合金及其制备方法
CN111702181B (zh) 钛铝合金粉末的制备方法、钛铝合金粉末及应用
CN114367669B (zh) 一种3D打印用TaW10合金球形粉末的制备方法
CN110605401B (zh) 一种钛铝合金粉末的制备方法
CN104588669B (zh) 一种微米级纯锆或锆合金球形粉末的制备方法
CN114703391A (zh) 一种纳米氧化物弥散强化铜合金及其制备方法
CN111515408B (zh) NiTi合金粉及其制备方法和应用
CN110014161B (zh) 一种制备球形钨基粉末的方法
CN110014162B (zh) 一种制备球形钼基粉末的方法
CN114990383B (zh) 一种提高电极感应熔炼惰性气体雾化粉末细粉收得比例的钛合金及其雾化粉末制备方法
CN113020605B (zh) 一种面向激光3d打印专用原位增韧高性能球形钨粉及其制备方法
CN115194169B (zh) 一种3d打印用铂或铂铑合金球形粉及其制备方法和应用
CN114309621B (zh) 一种含有难熔金属元素的微细TiAl合金球形粉体的制备方法
JP2012102394A (ja) 多成分チタン合金の熱特性および電気特性を変更する方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894490

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE