WO2023087382A1 - 触控显示面板及其触控点测量方法 - Google Patents

触控显示面板及其触控点测量方法 Download PDF

Info

Publication number
WO2023087382A1
WO2023087382A1 PCT/CN2021/134202 CN2021134202W WO2023087382A1 WO 2023087382 A1 WO2023087382 A1 WO 2023087382A1 CN 2021134202 W CN2021134202 W CN 2021134202W WO 2023087382 A1 WO2023087382 A1 WO 2023087382A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
display area
sub
chip
point
Prior art date
Application number
PCT/CN2021/134202
Other languages
English (en)
French (fr)
Inventor
靳增建
马亚龙
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US17/618,945 priority Critical patent/US20240061528A1/en
Publication of WO2023087382A1 publication Critical patent/WO2023087382A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • G06F3/04186Touch location disambiguation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0447Position sensing using the local deformation of sensor cells
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04104Multi-touch detection in digitiser, i.e. details about the simultaneous detection of a plurality of touching locations, e.g. multiple fingers or pen and finger

Definitions

  • the invention relates to the field of display technology, in particular to a touch display panel and a method for measuring touch points thereof.
  • touch display panels are no longer limited to the use of A single touch chip is used to collect the touch point coordinates of the touch display panel, but two or more touch chips are used to collect the touch point coordinates of different areas in the display panel respectively.
  • the coverage area of a finger is much larger than the area of a single touch point, when a finger touches a single touch point, other touch points around the touch point will also have a small change in capacitance value, so in order to improve the touch point Coordinate acquisition accuracy.
  • the coordinates of a certain touch point need to be jointly calculated according to the capacitance value change corresponding to itself and other surrounding touch points, that is, according to the capacitance value change corresponding to the touch point, and the average value of the sum of capacitance value changes corresponding to other touch points around the touch point to determine the final capacitance value change corresponding to the touch point, thereby determining the coordinates of the touch point.
  • Fig. 1 is a schematic structural diagram of a self-capacitive touch display panel in the prior art
  • Fig. 2 is a schematic structural diagram of a double-layer mutual capacitive touch display panel in the prior art
  • Fig. 1 is a schematic structural diagram of a self-capacitive touch display panel in the prior art
  • Fig. 2 is a schematic structural diagram of a double-layer mutual capacitive touch display panel in the prior art
  • Fig. 1 is a schematic structural diagram of a self-capacitive touch display panel in the prior art
  • Fig. 2 is a schematic structural diagram of a double-layer mutual capacitive touch display panel in the prior art
  • FIG. 3 is a single-layer mutual capacitive touch display panel in the prior art Schematic diagram of the structure of the touch display panel, as shown in Figure 1, Figure 2 or Figure 3, the coordinates of area A are collected by the touch chip TIC-A, the coordinates of area B are collected by the touch chip TIC-B, and the coordinates of point A2 It is necessary to average the capacitance value changes corresponding to points A1, A2, and A3, and then obtain it based on the average value.
  • an embodiment of the present invention provides a touch display panel and a method for measuring touch points thereof, so as to improve the inaccurate collection of touch point coordinates of the adjacent areas of the touch display panel due to different errors of different touch chips. exact question.
  • an embodiment of the present invention provides a touch display panel, including a first display area and a second display area adjacently arranged, the first sub-display area located in the first display area and the first sub-display area located in the second display area The second sub-display area in the second display area is adjacently set;
  • a touch layer including a plurality of touch electrodes, and a plurality of the touch electrodes are located in the first display area and the second display area;
  • At least two touch-control chips including a first touch-control chip and a second touch-control chip
  • the first touch-control chip is respectively connected to the plurality of the first display area and the second sub-display area
  • the touch electrodes are connected
  • the second touch chip is respectively connected to the plurality of touch electrodes located in the second display area and the first sub-display area.
  • the touch display panel is a self-capacitive touch display panel.
  • the touch electrodes include first touch electrodes, and the first touch chips are respectively connected to the plurality of first touch electrodes located in the first display area and the second sub-display area.
  • the touch electrodes are electrically connected, and the second touch chip is respectively connected to a plurality of the first touch electrodes located in the second display area and the first sub-display area.
  • the touch display panel is a mutual capacitive touch display panel.
  • the touch electrodes further include second touch electrodes, mutual capacitance touch capacitors are formed between the first touch electrodes and the second touch electrodes, and each of the second touch electrodes
  • the control electrode is connected to at least one of the first touch chip and the second touch chip.
  • the touch display panel is a double-layer mutual capacitive touch display panel.
  • the first touch electrodes and the second touch electrodes are arranged in different layers, a plurality of the first touch electrodes and a plurality of the second touch electrodes are intersected, and each The second touch electrode is electrically connected to the first touch chip and the second touch chip.
  • the touch display panel is a single-layer mutual capacitive touch display panel.
  • the first touch electrodes and the second touch electrodes are arranged on the same layer, and the first touch chip is also connected to a plurality of the second touch electrodes located in the first display area. control electrodes, and the second touch chip is also connected to a plurality of second touch electrodes located in the second display area.
  • the first sub-display area and the second sub-display area are flexible display areas, and the touch electrodes located in the first sub-display area and the second sub-display area have flexible.
  • an embodiment of the present invention further provides a touch point measurement method for the above-mentioned touch display panel, the touch point measurement method includes:
  • the touch points in the first sub-display area are obtained.
  • the capacitance change of the touch point in the first sub-display area and the capacitance change corresponding to the touch point in the second display area acquired by the second touch chip determine the coordinates of the target touch point in the second sub-display area.
  • the touch point measurement method also includes:
  • the touch points in the second sub-display area are obtained.
  • the capacitance change of the touch point in the second sub-display area and the capacitance change corresponding to the touch point in the first display area acquired by the first touch chip determine the The coordinates of the target touch point in the first sub-display area.
  • the first touch control chip and the second touch control chip obtain the capacitance value corresponding to the touch point in the first sub-display area.
  • the actual capacitance value variation of the touch point in a sub-display area specifically including:
  • the difference between the capacitance value changes corresponding to the touch points in the first sub-display area obtained by the first touch chip and the second touch chip respectively is not greater than a preset threshold, then the The capacitance variation corresponding to the touch point in the first sub-display area obtained by the second touch control chip is used as the actual capacitance variation of the touch point in the first sub-display area.
  • the first touch control chip and the second touch control chip obtain the capacitance value corresponding to the touch point in the first sub-display area.
  • the actual capacitance value variation of the touch point in a sub-display area specifically including:
  • the difference between the capacitance value changes corresponding to the touch points in the first sub-display area obtained by the first touch chip and the second touch chip respectively is greater than a preset threshold, the The average value of the capacitance value change corresponding to the touch point in the first sub-display area obtained by the first touch chip and the second touch chip respectively, as the touch point in the first sub-display area The actual capacitance value change of the control point.
  • the The coordinates of the target touch point in the second sub-display area specifically include:
  • the average value of the capacitance variation of the target touch point and the capacitance variation of the second adjacent touch point determine the The final capacitance value variation corresponding to the target touch point
  • the coordinates of the target touch point in the second sub-display area are determined according to the final capacitance value variation corresponding to the target touch point.
  • the first touch control chip and the second touch control chip respectively obtain the capacitance value change corresponding to the touch point in the second sub-display area to obtain the first touch control chip.
  • the actual capacitance value change of the touch point in the second sub-display area specifically including:
  • the difference between the capacitance value changes corresponding to the touch points in the second sub-display area obtained by the first touch chip and the second touch chip respectively is not greater than the preset threshold, then the The capacitance variation corresponding to the touch point in the second sub-display area acquired by the first touch control chip is used as the actual capacitance variation of the touch point in the second sub-display area.
  • the first touch control chip and the second touch control chip respectively obtain the capacitance value change corresponding to the touch point in the second sub-display area to obtain the first touch control chip.
  • the actual capacitance value change of the touch point in the second sub-display area specifically including:
  • the difference between the capacitance value changes corresponding to the touch points in the second sub-display area obtained by the first touch chip and the second touch chip respectively is greater than a preset threshold, the The average value of the capacitance value change corresponding to the touch point in the second sub-display area obtained by the first touch chip and the second touch chip respectively, as the touch point in the second sub-display area The actual capacitance value change of the control point.
  • the The coordinates of the target touch point in the first sub-display area specifically include:
  • the average value of the capacitance variation of the target touch point and the capacitance variation of the third adjacent touch point determine the The final capacitance value variation corresponding to the target touch point
  • the coordinates of the target touch point in the first sub-display area are determined according to the final capacitance value variation corresponding to the target touch point.
  • the touch display panel includes a first display area and a second display area adjacently arranged in the display area, and in the first display area there is A first sub-display area adjacent to the second display area, and a second sub-display area adjacent to the first display area exists in the second display area, wherein both the first display area and the second sub-display area are connected to the first touch screen
  • the second display area and the first sub-display area are both connected to the second touch chip, so that the coordinates of the touch points in the first sub-display area and the second sub-display area can be respectively passed through the first touch
  • the control chip and the second touch chip are used for measurement, so that when the touch point coordinates in the first sub-display area need to be jointly calculated by using the touch point coordinates in the second sub-display area, the data can be obtained through the first touch point Similarly, when obtaining the coordinates of the touch points in the second sub-display area needs to be jointly calculated by
  • the coordinates of the touch points in the first sub-display area and the second sub-display area can be double-measured by the first touch chip and the second touch chip, avoiding the need for the first touch chip or the second touch point
  • the touch chip performs a single measurement, if the error of the single measurement value is large, it will cause a large error in the coordinates of the touch points in the first sub-display area and the second sub-display area, which enhances data redundancy and improves data quality. accuracy.
  • FIG. 1 is a schematic structural diagram of a self-capacitive touch display panel in the prior art
  • FIG. 2 is a schematic structural diagram of a double-layer mutual capacitive touch display panel in the prior art
  • FIG. 3 is a schematic structural diagram of a single-layer mutual capacitance touch display panel in the prior art
  • FIG. 4 is a schematic structural diagram of a self-capacitive touch display panel provided by an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a double-layer mutual capacitive touch display panel provided by an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a single-layer mutual-capacitance touch display panel provided by an embodiment of the present invention.
  • FIG. 7 is a schematic flowchart of a method for measuring touch points of a touch display panel according to an embodiment of the present invention.
  • Figure 4 is a schematic structural view of a touch display panel provided by an embodiment of the present invention
  • Figure 5 is a schematic structural view of a double-layer mutual capacitance touch display panel provided by an embodiment of the present invention
  • Figure 6 is a schematic view of a single-layer touch display panel provided by an embodiment of the present invention
  • the first sub-display area 30 in the area 10 is adjacent to the second sub-display area 40 located in the second display area 20;
  • At least two touch chips including a first touch chip 101 and a second touch chip 102
  • the first touch chip 101 is respectively connected to a plurality of touch controls located in the first display area 10 and the second sub-display area 40
  • the second touch chip 102 is respectively connected to a plurality of touch electrodes located in the second display area 20 and the first sub-display area 30 .
  • the touch display panel includes a first display area 10 and a second display area 20 arranged adjacently, and in the first display area 10 there is an area adjacent to the second display area 20
  • the second display area 20 there is a second sub-display area 40 adjacent to the first display area 10, wherein the first display area 10 and the second sub-display area 40 are both connected to the first touch screen connected to the control chip 101, the second display area 20 and the first sub-display area 30 are both connected to the second touch-control chip 102, thus, the coordinates of the touch points in the first sub-display area 30 and the second sub-display area 40 are the same
  • the measurement can be carried out by the first touch chip 101 and the second touch chip 102 respectively, so that to obtain the coordinates of the touch points in the first sub-display area 30, it is necessary to use the coordinates of the touch points in the second sub-display area 40 to jointly When calculating, the data can be obtained through the first touch chip 101.
  • the data can be acquired through the second touch chip 102, thereby ensuring the unity of data sources, making data errors consistent, and improving the linearity of calculation.
  • the coordinates of touch points in the first sub-display area 30 and the second sub-display area 40 can be double-measured by the first touch chip 101 and the second touch chip 102, avoiding the need
  • the chip 101 or the second touch chip 102 performs a single measurement, if the error of the single measurement value is large, the problem of the coordinate error of the touch point in the first sub-display area 30 and the second sub-display area 40 is relatively large, which enhances the Data redundancy improves data accuracy.
  • the touch display panel includes a plurality of touch electrodes arranged in an array, and each touch electrode is connected to a corresponding touch chip through a single signal line, wherein: located in the first display area 10 and not located in The touch electrodes in the first sub-display area 30 are connected to the first touch chip 101; the touch electrodes located in the first sub-display area 30 are respectively connected to the first touch chip 101 and the second touch chip 102; The touch electrodes in the display area 20 and not located in the second sub-display area 40 are connected to the second touch chip 102; the touch electrodes located in the second sub-display area 40 are respectively connected to the first touch chip 101 and the second touch chip 102 connections.
  • the coordinates of the touch points in the touch electrodes in the first display area 10 and not in the first sub-display area 30 are measured by the first touch chip 101 , and the touch points in the touch electrodes in the first sub-display area 30
  • the point coordinates are respectively measured by the first touch chip 101 and the second touch chip 102, and the coordinates of the touch electrodes in the touch electrodes of the second sub-display area 40 are also respectively measured by the first touch chip 101 and the second touch chip 101.
  • the chip 102 performs measurement, and the coordinates of touch points in the touch electrodes in the second display area 20 and not in the second sub-display area 40 are measured by the second touch chip 102 .
  • the first touch chip 101 can also measure the touch point coordinates of the touch electrodes in the second sub-display area 40
  • the second touch chip 102 can measure the coordinates of the touch points in the touch electrodes of the first sub-display area 30 in addition to measuring the coordinates of the touch points in the touch electrodes of the second display area 20 .
  • the touch display panel is a self-capacitive touch display panel, or a mutual-capacitance touch display panel, or a display panel compatible with both self-capacitance and mutual capacitance.
  • the self-capacitive touch display panel uses the change of the capacitance value of a single electrode itself to transmit charges, one end of a single electrode is grounded, and the other end is connected to an excitation circuit or a sampling circuit to realize the identification of capacitance value changes.
  • the advantage of the panel is that the amount of calculation is small, and the disadvantage is that it can only realize single-point touch, and ghost points will appear in multi-touch; the mutual-capacitance touch display panel uses charge transmission between two electrodes, and one electrode is connected to the excitation circuit.
  • the other electrode is connected to the sampling circuit to realize the identification of the change of the capacitance value.
  • the advantage of the mutual capacitive touch display panel is that it has high touch precision and can realize multi-touch.
  • the disadvantage is that the calculation amount is complicated and the power consumption is large.
  • FIG. 4 is a schematic structural diagram of a self-capacitive touch display panel provided by an embodiment of the present invention.
  • the touch electrodes include first touch electrodes 11, and the first touch chips 101 are respectively located in the first display area 10. It is electrically connected to multiple first touch electrodes 11 in the second sub-display area 40, and the second touch chip 102 is respectively connected to multiple first touch electrodes 11 located in the second display area 20 and the first sub-display area 30. Electrode 11 is connected.
  • the first touch electrode 11 and the ground form a self-capacitance touch capacitor.
  • the touch chip When the touch chip outputs a scan signal to the first touch electrode 11 or when a finger touches the first touch electrode 11, the touch chip detects the first The capacitance value of the touch electrode 11 to the ground changes to confirm the touch position and report the position.
  • the touch electrode also includes a second touch electrode 12, a mutual capacitance touch capacitance is formed between the first touch electrode 11 and the second touch electrode 12, and each second touch electrode 12 is connected to the first touch electrode 12. At least one of the chip 101 and the second touch chip 102 .
  • FIG. 5 is a schematic structural diagram of a double-layer mutual-capacitance touch display panel provided by an embodiment of the present invention.
  • the touch electrodes include first touch electrodes 11 and second touch electrodes 12 arranged in different layers.
  • a touch electrode 11 and a second touch electrode 12 form a mutual capacitance touch capacitance, wherein, a plurality of first touch electrodes 11 and a plurality of second touch electrodes 12 are intersected, and each second touch electrode 12 is electrically Connected to the first touch chip 101 and the second touch chip 102.
  • the second touch electrode 12 If the second touch electrode 12 is arranged on the first touch electrode 11, the second touch electrode 12 outputs a scanning signal through the touch chip or when the finger touches the second touch electrode 12, the first touch electrode The capacitance value between 11 and the second touch electrode 12 changes to confirm the touch position and report the position.
  • FIG. 6 is a schematic structural diagram of a single-layer mutual-capacitance touch display panel provided by an embodiment of the present invention.
  • the touch electrodes include first touch electrodes 11 and second touch electrodes 12 arranged on the same layer (surrounding In the L-shaped electrode outside the first touch electrode 11), the first touch electrode 11 and the second touch electrode 12 form a mutual capacitance touch capacitance, wherein the first touch chip 101 is also connected to the first display area 10
  • the second touch chip 102 is also connected to the plurality of second touch electrodes 12 located in the second display area 20 .
  • first touch electrode 11 is a receiving electrode
  • second touch electrode 12 is a sending electrode
  • one second touch electrode 12 is used as a sending electrode in each row of electrodes, and a plurality of first touch electrodes 11 are receiving electrodes
  • the touch chip outputs a scanning signal to the second touch electrode 12 or the finger touches the second touch electrode 12
  • the capacitance value between the first touch electrode 11 and the second touch electrode 12 changes, and the touch control is confirmed.
  • Position to report the position.
  • first touch electrode 11 and the second touch electrode 12 are arranged on the same layer, an insulating region (not shown in the figure) is arranged between the first touch electrode 11 and the second touch electrode 12; A touch electrode 11 and the second touch electrode 12 are arranged in different layers, and an insulating layer (not shown in the figure) is arranged between the first touch electrode 11 and the second touch electrode 12 .
  • the distribution positions between the first touch electrodes 11 and the second touch electrodes 12 should be set correspondingly, That is, the distribution position between the first touch electrodes 11 and the second touch electrodes 12 should make a mutual touch capacitance formed between the first touch electrodes 11 and the second touch electrodes 12 .
  • the first sub-display area 30 and the second sub-display area 40 are flexible display areas, and the second sub-display area located in the first sub-display area 30 and 40 The touch electrodes in the area are flexible.
  • FIG. 7 is a schematic flowchart of a method for measuring a touch point of a touch display panel provided by an embodiment of the present invention. As shown in FIG. 7 , the method for measuring a touch point includes the following steps:
  • the first touch chip 101 in addition to the capacitance change corresponding to the touch point in the first display area 10, the first touch chip 101 also obtains the capacitance change corresponding to the touch point in the second sub-display area 40, At the same time, in addition to the capacitance variation corresponding to the touch point in the second display area 20 , the capacitance variation corresponding to the touch point in the first sub-display area 30 is obtained through the second touch chip 102 .
  • the target touch point in the second sub-display area 40 when acquiring the coordinates of the target touch point in the second sub-display area 40, in order to improve the accuracy of the measured coordinates of the target touch point, it is necessary to combine at least two adjacent touch points of the target touch point with The capacitance value variation corresponding to the target touch point is used to calculate the coordinates of the target touch point.
  • One of the two adjacent touch points is selected as the touch point in the first sub-display area 30, and the other is selected as Points in the second display area 20 that are not in the second sub-display area 40 .
  • both the first touch chip 101 and the second touch chip 102 can respectively measure the capacitance value variation corresponding to the touch point in the first sub-display area 30, by comparing the first touch chip 101 and the second touch The touch chip 102 respectively measures the variation of the capacitance corresponding to the touch point in the first sub-display area 30 , and finally obtains the actual variation of the touch point in the first sub-display area 30 .
  • an adjacent touch point is selected in the first sub-display area 30, and is not displayed in the second sub-display area 20.
  • Select another adjacent touch point in the area 40 wherein the capacitance value variation corresponding to the other adjacent touch point and the target touch point is measured by the second touch chip 102, and then the two adjacent touch points
  • the capacitance value variation corresponding to the point and the target touch point are jointly used to calculate the coordinates of the target touch point.
  • A2 and B1 are involved, wherein, B1 and B2 are acquired by the second touch chip 102, and A2 can be obtained by the first touch chip 101 and the second touch chip 102 respectively.
  • the capacitance value variation corresponding to the target touch point in the first sub-display area 30 can also be measured by the first touch chip 101 and the second touch chip 102 respectively, however, for the first sub-display area 30
  • the capacitance value change corresponding to the target touch point in the display area 30 is generally more accurate measured by the first touch chip 101 than the second touch chip 102. Therefore, the capacitance value change corresponding to the target touch point is generally It is directly measured by the first touch chip 101, and in this way, the capacitance value variation corresponding to the target touch point and the capacitance value variation corresponding to its adjacent points in the first display area 10 are both determined by the first touch chip 101. measurement, improving the consistency of data errors.
  • S2 further includes: Acquire the actual capacitance value change of the touch point in the second sub-display area 40 according to the capacitance value change corresponding to the touch point; step S3 also includes: according to the actual capacitance value of the touch point in the second sub-display area 40
  • the variation, and the capacitance variation corresponding to the touch point in the first display area 10 obtained by the first touch chip 101 determine the coordinates of the target touch point in the first sub-display area 30 .
  • A1 and B2 are involved, wherein A1 and A2 are acquired by the first touch chip 101, and B2 can be obtained by the first touch chip 101 and the second touch chip 102 respectively.
  • the first touch chip 101 is used to obtain the capacitance value change corresponding to the touch point of the first display area 10 and the second display sub-area 40, and at the same time, the The second touch chip 102 obtains the capacitance value change corresponding to the touch points in the second display area 20 and the first display sub-area, and then according to the capacitance value change corresponding to the touch points in the first display area 10 acquired by the first touch chip 101 Capacitance value changes, and the capacitance value changes corresponding to the touch points in the second sub-display area 40 obtained by the first touch chip 101 and the second touch chip 102 respectively, to obtain target touch points in the first sub-display area 30
  • the capacitance value variation corresponding to a neighboring touch point in the first display area 10 by the first touch chip 101 , and the capacitance values in the second sub-display area 40 respectively by the first touch chip 101 and the second touch chip 102 The capacitance value variation corresponding to
  • the change of the capacitance value of the first touch chip 101 and the change of the capacitance value corresponding to the touch points in the first sub-display area 30 obtained by the first touch chip 101 and the second touch chip 102 respectively, to obtain the target touch point of the second sub-display area 40 Point through the second touch chip 102 in the second display area 20 corresponding to the capacitance value change of an adjacent touch point, and through the first touch chip 101 and the second touch chip 102 respectively in the first sub-display area 30
  • the capacitance value variation corresponding to another adjacent touch point of the second sub-display area 40 is obtained to obtain the target touch point coordinates.
  • the coordinates of the touch points in the first sub-display area 30 and the second sub-display area 40 can be measured by the first touch chip 101 and the second touch chip 102 respectively, so that when obtaining the first sub-display area When the touch point coordinates in 30 need to be jointly calculated by using the touch point coordinates in the second sub-display area 40, the data can be obtained through the first touch chip 101.
  • the data when obtaining the second sub-display area 40 When the coordinates of the touch points in the first sub-display area 30 need to be jointly calculated, the data can be obtained through the second touch chip 102, thus ensuring the unity of data sources.
  • the chip corrects the original data in the two sub-display areas, so that the errors of the data sources are consistent, and improves the accuracy and linearity of touch coordinate calculation in the middle boundary area of the touch display panel in the prior art.
  • the coordinates of touch points in the first sub-display area 30 and the second sub-display area 40 can be double-measured by the first touch chip 101 and the second touch chip 102, avoiding the need
  • the chip 101 or the second touch chip 102 performs a single measurement, if the error of the single measurement value is large, the problem of the coordinate error of the touch point in the first sub-display area 30 and the second sub-display area 40 is relatively large, which enhances the Data redundancy improves data accuracy.
  • step S2 specifically includes the following steps:
  • step S3 specifically includes the following steps:
  • B2 when B2 is used as the target touch point, A2 and B1 are used as two adjacent touch points of B2, that is, A2 is the first adjacent touch point, and B1 is the second adjacent touch point.
  • A2 and B1 are used as two adjacent touch points of B2, that is, A2 is the first adjacent touch point, and B1 is the second adjacent touch point.
  • the second touch chip 102 can measure the capacitance value changes ⁇ A2', ⁇ B2', and ⁇ B1' corresponding to A2, B2, and B1, and the first touch chip 101 can measure the capacitance value changes corresponding to A2 and B2.
  • ⁇ A2 and ⁇ B2 generally speaking, the capacitance change ⁇ B2' corresponding to B2 measured by the second touch chip 102 is more accurate than the capacitance change ⁇ B2 corresponding to B2 measured by the first touch chip 101, Therefore, the capacitance variation ⁇ B2 corresponding to B2 measured by the second touch chip 102 is directly selected, and in this way, both ⁇ B2 and ⁇ B1 can be measured by the second touch chip 102 , improving the consistency of data errors.
  • step S2 also specifically includes the following steps:
  • step S3 also specifically includes the following steps:
  • A2 is used as the target touch point
  • A1 and B2 are used as the two adjacent touch points of A2, that is, A1 is the third adjacent touch point
  • B2 is the fourth adjacent touch point, according to A1, A2 and Calculate the coordinates of A2 according to the capacitance value changes corresponding to B2 respectively.
  • the first touch chip 101 can measure the capacitance value changes ⁇ A1, ⁇ A2, and ⁇ B2 corresponding to A1, A2, and B2, and the second touch chip 102 can measure the capacitance value changes ⁇ A2 corresponding to A2 and B2.
  • the capacitance value variation ⁇ A2 corresponding to A2 measured by the first touch chip 101 is more accurate than the capacitance value variation ⁇ A2' corresponding to A2 measured by the second touch chip 102, so Directly select the capacitance variation ⁇ A2 corresponding to A2 measured by the first touch chip 101 , and in this way, both ⁇ A1 and ⁇ A2 can be measured by the first touch chip 101 , improving the consistency of data errors.
  • the capacitance value change ⁇ B2 corresponding to B2 measured by the first touch chip 101 and the capacitance value change ⁇ B2' corresponding to B2 measured by the second touch chip 102 it is also desirable to use the first touch chip 101 to measure ⁇ B2 is used to calculate the coordinates of A2, thereby enhancing the consistency of data errors, but ⁇ B2' measured by the second touch chip 102 is generally more accurate than ⁇ B2 measured by the first touch chip 101, so it is necessary to compare ⁇ B2 and ⁇ B2', if the difference between ⁇ B2 and ⁇ B2' is not greater than the preset threshold, it means that ⁇ B2 and ⁇ B2' are not much different, and ⁇ B2 measured directly by the first touch chip 101, That is, at this time, the coordinates of A1 are calculated by ⁇ A1, ⁇ A2 and ⁇ B2; if the difference between ⁇ B2 and ⁇ B2' is greater than the preset threshold, it means that ⁇ B2 and ⁇
  • the touch display panel includes a first display area and a second display area adjacently arranged in the display area, and in the first display area there is A first sub-display area adjacent to the second display area, and a second sub-display area adjacent to the first display area exists in the second display area, wherein both the first display area and the second sub-display area are connected to the first touch screen
  • the second display area and the first sub-display area are both connected to the second touch chip, so that the coordinates of the touch points in the first sub-display area and the second sub-display area can be respectively passed through the first touch
  • the control chip and the second touch chip are used for measurement, so that when the touch point coordinates in the first sub-display area need to be jointly calculated by using the touch point coordinates in the second sub-display area, the data can be obtained through the first touch point Similarly, when obtaining the coordinates of the touch points in the second sub-display area needs to be jointly calculated by
  • the coordinates of the touch points in the first sub-display area and the second sub-display area can be double-measured by the first touch chip and the second touch chip, avoiding the need for the first touch chip or the second touch point
  • the touch chip performs a single measurement, if the error of the single measurement value is large, it will cause a large error in the coordinates of the touch points in the first sub-display area and the second sub-display area, which enhances data redundancy and improves data quality. accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Position Input By Displaying (AREA)

Abstract

本发明提供一种触控显示面板及其触控点测量方法,在获取第一子显示区域的触控点坐标,需要第二子显示区域的触控点坐标共同计算时,数据可以均由第一触控芯片获取,而在获取第二子显示区域的触控点坐标,需要第一子显示区域的触控点坐标共同计算时,数据可以均由第二触控芯片获取,以保证数据来源的统一性,使数据误差一致。

Description

触控显示面板及其触控点测量方法 技术领域
本发明涉及显示技术领域,尤其涉及一种触控显示面板及其触控点测量方法。
背景技术
目前,随着触控显示面板尺寸和分辨率的不断增大,由于显示面板的像素数量、制备复杂度及驱动能力能因素的限制,很多大尺寸、高分辨率的显示面板不再限制于采用单颗触控芯片来采集触控显示面板的触控点坐标,而是采用两颗以上的触控芯片分别采集显示面板中的不同区域的触控点坐标。
由于手指的覆盖面积远大于单个触控点的面积,因此当手指触摸到单个触控点时,该触控点周围的其他触控点也会有微小的电容值变化,因此为了提高触控点坐标的采集精度,一般某个触控点坐标需要根据其本身及其周围的其他触控点分别对应的电容值变化量来共同计算,即,需要根据该触控点对应的电容值变化量,以及该触控点周围的其他触控点对应的电容值变化量之和的平均值,确定该触控点最终对应的电容值变化量,从而确定该触控点坐标。因此,计算这两颗触控芯片对应的显示面板的不同区域的邻接处的触控点坐标时,除了需要用到其中一颗触控芯片采集的触控点对应的电容值变化量以外,还需要用到另外一颗触控芯片采集的触控点对应的电容值变化量。图1为现有技术的自容式触控显示面板的结构示意图,图2为现有技术的双层互容式触控显示面板的结构示意图,图3为现有技术的单层互容式触控显示面板的结构示意图,如图1、图2或图3所示,区域A的坐标由触控芯片TIC-A采集,区域B的坐标由触控芯片TIC-B采集,A2点的坐标需要将A1点、A2点和A3点分别对应的电容值变化量求平均值,然后根据平均值获得。但是,由于这两颗触控芯片本身的工艺和性能的差异,所处环境的差异,以及驱动电压的差异等,在采集触控点对应的电容值变化量时会存在不同的误差,因此邻接处的触控点坐标会由于两颗触控芯片采集误差的不同而不准确,即,由于触控芯片TIC-A和触控芯片TIC-B的采集误差的区别,使得由触控芯片TIC-A得到A2点坐标的误差与由与触控芯片TIC-B得到B2点坐标的误差不统一,因此导致获得的A2点的坐标不准确,这样会降低触控屏显示面板的触控精度和触控线性度。另外,还可能由于显示面板需要在该邻接处弯折,使得邻接处的触控点坐标容易出现测量不准确的情况,因此如果邻接处的触控点坐标仅由一颗芯片测量,可能会出现该颗芯片测量不准确也无法修复的情况。
技术问题
因此,亟需提出一种触控显示面板及其触控点测量方法,以改善分别采用不同的触控芯片测量触控显示面板的不同区域中的触控点坐标时,由于不同触控芯片的误差不同导致触控显示面板的不同区域之间的邻接区的触控点坐标采集不准确的问题。
技术解决方案
为了解决上述问题,本发明实施例提供一种触控显示面板及其触控点测量方法,以改善由于不同触控芯片的误差不同导致的触控显示面板的邻接区的触控点坐标采集不准确的问题。
第一方面,本发明实施例提供一种触控显示面板,包括相邻设置的第一显示区域和第二显示区域,位于所述第一显示区域中的第一子显示区域与位于所述第二显示区域中的第二子显示区域相邻设置;
触控层,包括多个触控电极,多个所述触控电极位于所述第一显示区域和所述第二显示区域中;以及
至少两个触控芯片,包括第一触控芯片和第二触控芯片,所述第一触控芯片分别与位于所述第一显示区域和所述第二子显示区域中的多个所述触控电极连接,所述第二触控芯片分别与位于所述第二显示区域和所述第一子显示区域中的多个所述触控电极连接。
在一些实施例中,所述触控显示面板为自容式触控显示面板。
在一些实施例中,所述触控电极包括第一触控电极,所述第一触控芯片分别与位于所述第一显示区域和所述第二子显示区域中的多个所述第一触控电极电性连接,所述第二触控芯片分别与位于所述第二显示区域和所述第一子显示区域中的多个所述第一触控电极连接。
在一些实施例中,所述触控显示面板为互容式触控显示面板。
在一些实施例中,所述触控电极还包括第二触控电极,所述第一触控电极与所述第二触控电极之间形成互容触控电容,每个所述第二触控电极连接所述第一触控芯片和所述第二触控芯片中的至少一个。
在一些实施例中,所述触控显示面板为双层互容式触控显示面板。
在一些实施例中,所述第一触控电极与所述第二触控电极异层设置,多个所述第一触控电极和多个所述第二触控电极交叉设置,每一所述第二触控电极电性连接于所述第一触控芯片和所述第二触控芯片。
在一些实施例中,所述触控显示面板为单层互容式触控显示面板。
在一些实施例中,所述第一触控电极与所述第二触控电极同层设置,所述第一触控芯片还连接位于所述第一显示区域中的多个所述第二触控电极,所述第二触控芯片还连接位于所述第二显示区域中的多个所述第二触控电极。
在一些实施例中,所述第一子显示区域和所述第二子显示区域为柔性显示区域,位于所述第一子显示区域和所述第二子显示区域中的所述触控电极具有柔性。
第二方面,本发明实施例还提供一种触控点测量方法,用于如上所述的触控显示面板,所述触控点测量方法包括:
通过第一触控芯片获取第一显示区域和第二子显示区域中的触控点对应的电容值变化量,并通过第二触控芯片获取第二显示区域和第一子显示区域中的触控点对应的电容值变化量;
根据所述第一触控芯片和所述第二触控芯片分别获取的所述第一子显示区域中的触控点对应的电容值变化量,获取所述第一子显示区域中的触控点的实际电容值变化量;
根据所述第一子显示区域中的触控点的实际电容值变化量,以及所述第二触控芯片获取的所述第二显示区域中的触控点对应的电容值变化量,确定所述第二子显示区域中的目标触控点的坐标。
在一些实施例中,该触控点测量方法还包括:
根据所述第一触控芯片和所述第二触控芯片分别获取的所述第二子显示区域中的触控点对应的电容值变化量,获取所述第二子显示区域中的触控点的实际电容值变化量;
根据所述第二子显示区域中的触控点的实际电容值变化量,以及所述第一触控芯片获取的所述第一显示区域中的触控点对应的电容值变化量,确定所述第一子显示区域中的目标触控点的坐标。
在一些实施例中,所述根据所述第一触控芯片和所述第二触控芯片分别获取的所述第一子显示区域中的触控点对应的电容值变化量,获取所述第一子显示区域中的触控点的实际电容值变化量,具体包括:
若所述第一触控芯片和所述第二触控芯片分别获取的所述第一子显示区域中的触控点对应的电容值变化量之间的差值不大于预设阈值,则将所述第二触控芯片获取的所述第一子显示区域中的触控点对应的电容值变化量,作为所述第一子显示区域中的触控点的实际电容值变化量。
在一些实施例中,所述根据所述第一触控芯片和所述第二触控芯片分别获取的所述第一子显示区域中的触控点对应的电容值变化量,获取所述第一子显示区域中的触控点的实际电容值变化量,具体包括:
若所述第一触控芯片和所述第二触控芯片分别获取的所述第一子显示区域中的触控点对应的电容值变化量之间的差值大于预设阈值,则将所述第一触控芯片和所述第二触控芯片分别获取的所述第一子显示区域中的触控点对应的电容值变化量的平均值,作为所述第一子显示区域中的触控点的实际电容值变化量。
在一些实施例中,所述根据所述第一子显示区域中的触控点的实际电容值变化量,以及所述第二显示区域中的触控点对应的电容值变化量,确定所述第二子显示区域中的目标触控点的坐标,具体包括:
选择所述第二子显示区域中的目标触控点在所述第一子显示区域中的第一邻近触控点和在所述第二显示区域内且非所述第二子显示区域中的第二邻近触控点;
根据所述第一邻近触控点的实际电容值变化量,所述目标触控点的电容值变化量和所述的第二邻近触控点的电容值变化量三者的平均值,确定所述目标触控点对应的最终电容值变化量;
根据目标触控点对应的最终电容值变化量,确定所述第二子显示区域中的目标触控点的坐标。
在一些实施例中,所述根据所述第一触控芯片和所述第二触控芯片分别获取的所述第二子显示区域中的触控点对应的电容值变化量,获取所述第二子显示区域中的触控点的实际电容值变化量,具体包括:
若所述第一触控芯片和所述第二触控芯片分别获取的所述第二子显示区域中的触控点对应的电容值变化量之间的差值不大于预设阈值,则将所述第一触控芯片获取的所述第二子显示区域中的触控点对应的电容值变化量,作为所述第二子显示区域中的触控点的实际电容值变化量。
在一些实施例中,所述根据所述第一触控芯片和所述第二触控芯片分别获取的所述第二子显示区域中的触控点对应的电容值变化量,获取所述第二子显示区域中的触控点的实际电容值变化量,具体包括:
若所述第一触控芯片和所述第二触控芯片分别获取的所述第二子显示区域中的触控点对应的电容值变化量之间的差值大于预设阈值,则将所述第一触控芯片和所述第二触控芯片分别获取的所述第二子显示区域中的触控点对应的电容值变化量的平均值,作为所述第二子显示区域中的触控点的实际电容值变化量。
在一些实施例中,所述根据所述第一子显示区域中的触控点的实际电容值变化量,以及所述第二显示区域中的触控点对应的电容值变化量,确定所述第一子显示区域中的目标触控点的坐标,具体包括:
选择所述第一子显示区域中的目标触控点在所述第一显示区域且非所述第一子显示区域中的第三邻近触控点和在所述第二子显示区域中的第四邻近触控点;
根据所述第四邻近触控点的实际电容值变化量,所述目标触控点的电容值变化量和所述的第三邻近触控点的电容值变化量三者的平均值,确定所述目标触控点对应的最终电容值变化量;
根据目标触控点对应的最终电容值变化量,确定所述第一子显示区域中的目标触控点的坐标。
有益效果
本发明实施例提供的触控显示面板及其触控点测量方法中,该触控显示面板在显示区包括相邻设置的第一显示区域和第二显示区域,且在第一显示区域中存在与第二显示区域邻近的第一子显示区域,在第二显示区域中存在与第一显示区域邻近的第二子显示区域,其中,第一显示区域和第二子显示区域均与第一触控芯片连接,第二显示区域和第一子显示区域均与第二触控芯片连接,由此,第一子显示区域和第二子显示区域中的触控点坐标均可以分别通过第一触控芯片和第二触控芯片进行测量,这样在获取第一子显示区域中的触控点坐标,需要利用第二子显示区域中的触控点坐标共同计算时,数据可以均通过第一触控芯片获取,同理,在获取第二子显示区域中的触控点坐标,需要利用第一子显示区域中的触控点坐标共同计算时,数据可以均通过第二触控芯片获取,从而保证了数据来源的统一性,通过两个触控芯片校正两个子显示区域中的原始数据,使得数据来源的误差一致,提高了现有技术的触控显示面板的中间分界区域的触控坐标计算的精准度和线性度。另外,这样还可以使第一子显示区域和第二子显示区域中的触控点坐标由第一触控芯片和第二触控芯片进行双重测量,避免了由第一触控芯片或第二触控芯片单一进行测量时,若单一测量数值误差较大,导致第一子显示区域和第二子显示区域中的触控点坐标误差较大的问题,增强了数据冗余性,提高了数据准确性。
附图说明
图1为现有技术的自容式触控显示面板的结构示意图;
图2为现有技术的双层互容式触控显示面板的结构示意图;
图3为现有技术的单层互容式触控显示面板的结构示意图;
图4为本发明实施例提供的自容式触控显示面板的结构示意图;
图5为本发明实施例提供的双层互容式触控显示面板的结构示意图;
图6为本发明实施例提供的单层互容式触控显示面板的结构示意图;
图7为本发明实施例提供的触控显示面板的触控点测量方法的流程示意图。
本发明的实施方式
为使本发明的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
图4为本发明实施例提供的触控显示面板的结构示意图,图5为本发明实施例提供的双层互容式触控显示面板的结构示意图,图6为本发明实施例提供的单层互容式触控显示面板的结构示意图,如图4、图5或图6所示,该触控显示面板包括:相邻设置的第一显示区域10和第二显示区域20,位于第一显示区域10中的第一子显示区域30与位于第二显示区域20中的第二子显示区域40相邻设置;
至少两个触控芯片,包括第一触控芯片101和第二触控芯片102,第一触控芯片101分别与位于第一显示区域10和第二子显示区域40内的多个所述触控电极连接,第二触控芯片102分别与位于第二显示区域20和第一子显示区域30内的多个触控电极连接。
本发明实施例提供的触控显示面板中,该触控显示面板包括相邻设置的第一显示区域10和第二显示区域20,且在第一显示区域10中存在与第二显示区域20邻近的第一子显示区域30,在第二显示区域20中存在与第一显示区域10邻近的第二子显示区域40,其中,第一显示区域10和第二子显示区域40均与第一触控芯片101连接,第二显示区域20和第一子显示区域30均与第二触控芯片102连接,由此,第一子显示区域30和第二子显示区域40中的触控点坐标均可以分别通过第一触控芯片101和第二触控芯片102进行测量,这样在获取第一子显示区域30中的触控点坐标,需要利用第二子显示区域40中的触控点坐标共同计算时,数据可以均通过第一触控芯片101获取,同理,在获取第二子显示区域40中的触控点坐标,需要利用第一子显示区域30中的触控点坐标共同计算时,数据可以均通过第二触控芯片102获取,从而保证了数据来源的统一性,使得数据误差一致,提高了计算的线性度。另外,这样还可以使第一子显示区域30和第二子显示区域40中的触控点坐标由第一触控芯片101和第二触控芯片102进行双重测量,避免了由第一触控芯片101或第二触控芯片102单一进行测量时,若单一测量数值误差较大,导致第一子显示区域30和第二子显示区域40中的触控点坐标误差较大的问题,增强了数据冗余性,提高了数据准确性。
基于上述实施例,该触控显示面板包括多个呈阵列排布的触控电极,每个触控电极通过单一信号线与对应的触控芯片连接,其中:位于第一显示区域10且不位于第一子显示区域30的触控电极与第一触控芯片101连接;位于第一子显示区域30的触控电极分别与第一触控芯片101和第二触控芯片102连接;位于第二显示区域20且不位于第二子显示区域40的触控电极与第二触控芯片102连接;位于第二子显示区域40的触控电极分别与第一触控芯片101和第二触控芯片102连接。
具体地,第一显示区域10且非第一子显示区域30的触控电极中的触控点坐标通过第一触控芯片101进行测量,第一子显示区域30的触控电极中的触控点坐标分别通过第一触控芯片101和第二触控芯片102进行测量,第二子显示区域40的触控电极中的触控电极坐标也分别通过第一触控芯片101和第二触控芯片102进行测量,第二显示区域20内且非第二子显示区域40的触控电极中的触控点坐标通过第二触控芯片102进行测量。
也就是说,第一触控芯片101除了测量第一显示区域10的触控电极中的触控点坐标之外,还能测量第二子显示区域40的触控电极中的触控点坐标,而第二触控芯片102除了测量第二显示区域20的触控电极中的触控点坐标之外,还能测量第一子显示区域30的触控电极中的触控点坐标。
需要说明的是,该触控显示面板为自容式触控显示面板,或者互容式触控显示面板,或者还可以为兼容自容式和互容式的显示面板。其中,自容式触控显示面板是利用单个电极自身的电容值变化传输电荷,将单个电极的一端接地,另一端接激励电路或采样电路来实现电容值变化的识别,自容式触控显示面板的优点是计算量小,缺点是只能实现单点触控,多点触控会出现鬼点;互容式触控显示面板是利用两个电极之间进行电荷传输,一个电极接激励电路,另一个电极接采样电路来实现电容值变化的识别,互容式触控显示面板的优点是触控精度高,能实现多点触控,缺点是计算量复杂,功耗大。
与图1对应,图4为本发明实施例提供的自容式触控显示面板的结构示意图,触控电极包括第一触控电极11,第一触控芯片101分别与位于第一显示区域10和第二子显示区域40内的多个第一触控电极11电性连接,第二触控芯片102分别与位于第二显示区域20和第一子显示区域30内的多个第一触控电极11连接。
具体地,第一触控电极11与地形成自容触控电容,通过触控芯片给第一触控电极11输出扫描信号或手指触摸第一触控电极11时,触控芯片通过检测第一触控电极11对地的电容值变化,确认触控位置,进行位置报点。
进一步地,触控电极还包括第二触控电极12,第一触控电极11与第二触控电极12之间形成互容触控电容,每个第二触控电极12连接第一触控芯片101和第二触控芯片102中的至少一个。
与图2对应,图5为本发明实施例提供的双层互容式触控显示面板的结构示意图,触控电极包括异层设置的第一触控电极11和第二触控电极12,第一触控电极11与第二触控电极12形成互容触控电容,其中,多个第一触控电极11和多个第二触控电极12交叉设置,每一第二触控电极12电性连接于第一触控芯片101和所述第二触控芯片102。若第二触控电极12设于第一触控电极11之上,则通过触控芯片给第二触控电极12输出扫描信号或者手指触摸到第二触控电极12时,第一触控电极11和第二触控电极12之间的电容值变化,确认触控位置,进行位置报点。
与图3对应,图6为本发明实施例提供的单层互容式触控显示面板的结构示意图,触控电极包括同层设置的第一触控电极11和第二触控电极12(围绕在第一触控电极11外的L型电极),第一触控电极11与第二触控电极12形成互容触控电容,其中,第一触控芯片101还连接位于第一显示区域10内的多个第二触控电极12,第二触控芯片102还连接位于第二显示区域20内的多个第二触控电极12。若第一触控电极11为接收电极,第二触控电极12为发送电极,则每列电极中采用一个第二触控电极12作为发送电极,多个第一触控电极11为接收电极,通过触控芯片给该第二触控电极12输出扫描信号或者手指触摸该第二触控电极12时,第一触控电极11和第二触控电极12之间的电容值变化,确认触控位置,进行位置报点。
其中,当第一触控电极11与第二触控电极12同层设置时,第一触控电极11与第二触控电极12之间设置有绝缘区(图中未示出);当第一触控电极11与第二触控电极12异层设置,且第一触控电极11和第二触控电极12之间设置有绝缘层(图中未示出)。
可以理解的是,无论第一触控电极11和第二触控电极12是同层设置还是异层设置,第一触控电极11和第二触控电极12之间的分布位置应当对应设置,即,第一触控电极11和第二触控电极12之间的分布位置应当使第一触控电极11和第二触控电极12之间形成互容触控电容。
在一些实施例中,例如该触控显示面板为折叠屏的场景中,第一子显示区域30和第二子显示区域40为柔性显示区域,位于第一子显示区域30和40第二子显示区域中的触控电极具有柔性。
另外,图7为本发明实施例提供的触控显示面板的触控点测量方法的流程示意图,如图7所示,该触控点测量方法包括以下步骤:
S1、通过第一触控芯片101获取第一显示区域10和第二子显示区域40中的触控点对应的电容值变化量,并通过第二触控芯片102获取第二显示区域20和第一子显示区域30中的触控点对应的电容值变化量。
具体地,通过第一触控芯片101获取除第一显示区域10中的触控点对应的电容值变化量以外,还获取第二子显示区域40中的触控点对应的电容值变化量,同时,通过第二触控芯片102获取除第二显示区域20中的触控点对应的电容值变化量以外,还获取第一子显示区域30中的触控点对应的电容值变化量。
S2、根据第一触控芯片101和第二触控芯片102分别获取的第一子显示区域30中的触控点对应的电容值变化量,获取第一子显示区域30中的触控点的实际电容值变化量。
需要说明的是,获取第二子显示区域40中的目标触控点坐标时,为了提高测量的目标触控点坐标的准确性,需要将该目标触控点的至少两个邻近触控点与该目标触控点对应的电容值变化量共同用于计算该目标触控点坐标,这两个邻近触控点中的一个选取为第一子显示区域30中的触控点,另一个选取为第二显示区域20中非第二子显示区域40内的点。
而由于第一触控芯片101和第二触控芯片102均能分别测量第一子显示区域30中的触控点对应的电容值变化量,因此通过比较第一触控芯片101和第二胡触控芯片102分别测量的第一子显示区域30中的触控点对应的电容值变化量,最终获取第一子显示区域30中的触控点的实际变化量。
S3、根据第一子显示区域30中的触控点的实际电容值变化量,以及第二触控芯片102获取的第二显示区域20中的触控点对应的电容值变化量,确定第二子显示区域40中的目标触控点的坐标。
具体地,若需要确定第二子显示区域40中的目标触控点的坐标,则在第一子显示区域30中选择一个邻近触控点,并在第二显示区域20中非第二子显示区域40内选择另一个邻近触控点,其中,另一个邻近触控点和该目标触控点对应的电容值变化量均由第二触控芯片102测量,然后,将这两个邻近触控点和目标触控点对应的电容值变化量共同用于计算该目标触控点的坐标。例如,图2中,需要计算B2坐标时,要涉及A2和B1,其中,B1和B2由第二触控芯片102获取,A2由第一触控芯片101和第二触控芯片102都能分别获取。
需要强调的是,第一子显示区域30中的目标触控点对应的电容值变化量,虽然也可以由第一触控芯片101和第二触控芯片102分别测量,但是,针对第一子显示区域30中的目标触控点对应的电容值变化量,一般第一触控芯片101测量的比第二触控芯片102测量的准确,因此,目标触控点对应的电容值变化量一般就直接由第一触控芯片101测量,且这样可以使得目标触控点对应的电容值变化量和其在第一显示区域10中的邻近点对应的电容值变化量均由第一触控芯片101测量,提高数据误差的一致性。
同理,为了确定第一子显示区域30中的目标触控点的坐标时,S2还包括:根据第一触控芯片101和第二触控芯片102分别获取的第二子显示区域40中的触控点对应的电容值变化量,获取第二子显示区域40中的触控点的实际电容值变化量;步骤S3还包括:根据第二子显示区域40中的触控点的实际电容值变化量,以及第一触控芯片101获取的第一显示区域10中的触控点对应的电容值变化量,确定第一子显示区域30中的目标触控点的坐标。例如,图2中,需要计算A2坐标时,要涉及A1和B2,其中,A1和A2由第一触控芯片101获取,B2由第一触控芯片101和第二触控芯片102都能分别获取。
本发明实施例提供的触控显示面板的触控点测量方法,首先通过第一触控芯片101获取第一显示区域10和第二显示子区域40的触控点对应的电容值变化,同时通过第二触控芯片102获取第二显示区域20和第一显示子区域的触控点对应的电容值变化,然后根据第一触控芯片101获取的第一显示区域10中的触控点对应的电容值变化,以及第一触控芯片101和第二触控芯片102分别获取的第二子显示区域40中的触控点对应的电容值变化,获取第一子显示区域30的目标触控点通过第一触控芯片101在第一显示区域10的一个邻近触控点对应的电容值变化量,以及通过第一触控芯片101和第二触控芯片102分别在第二子显示区域40的另一个邻近触控点对应的电容值变化量,获取第一子显示区域30的目标触控点坐标,同理,根据第二触控芯片102获取的第二显示区域20中的触控点对应的电容值变化,以及第一触控芯片101和第二触控芯片102分别获取的第一子显示区域30中的触控点对应的电容值变化,获取第二子显示区域40的目标触控点通过第二触控芯片102在第二显示区域20的一个邻近触控点对应的电容值变化量,以及通过第一触控芯片101和第二触控芯片102分别在第一子显示区域30的另一个邻近触控点对应的电容值变化量,获取第二子显示区域40的目标触控点坐标。
由此,第一子显示区域30和第二子显示区域40中的触控点坐标均可以分别通过第一触控芯片101和第二触控芯片102进行测量,这样在获取第一子显示区域30中的触控点坐标,需要利用第二子显示区域40中的触控点坐标共同计算时,数据可以均通过第一触控芯片101获取,同理,在获取第二子显示区域40中的触控点坐标,需要利用第一子显示区域30中的触控点坐标共同计算时,数据可以均通过第二触控芯片102获取,从而保证了数据来源的统一性,通过两个触控芯片校正两个子显示区域中的原始数据,使得数据来源的误差一致,提高了现有技术的触控显示面板的中间分界区域的触控坐标计算的精准度和线性度。另外,这样还可以使第一子显示区域30和第二子显示区域40中的触控点坐标由第一触控芯片101和第二触控芯片102进行双重测量,避免了由第一触控芯片101或第二触控芯片102单一进行测量时,若单一测量数值误差较大,导致第一子显示区域30和第二子显示区域40中的触控点坐标误差较大的问题,增强了数据冗余性,提高了数据准确性。
基于上述实施例,步骤S2具体包括以下步骤:
S21、若第一触控芯片101和第二触控芯片102分别获取的第一子显示区域30中的触控点对应的电容值变化量之间的差值不大于预设阈值,则将第二触控芯片102获取的第一子显示区域30中的触控点对应的电容值变化量,作为第一子显示区域30中的触控点的实际电容值变化量;
S22、若第一触控芯片101和第二触控芯片102分别获取的第一子显示区域30中的触控点对应的电容值变化量之间的差值大于预设阈值,则将第一触控芯片101和第二触控芯片102分别获取的第一子显示区域30中的触控点对应的电容值变化量的平均值,作为第一子显示区域30中的触控点的实际电容值变化量。
基于上述实施例,步骤S3具体包括以下步骤:
S31、选择第二子显示区域40中的目标触控点在第一子显示区域30中的第一邻近触控点和在第二显示区域20内且非第二子显示区域40中的第二邻近触控点;
S32、根据第一邻近触控点的实际电容值变化量,目标触控点的电容值变化量和的第二邻近触控点的电容值变化量三者的平均值,确定目标触控点对应的最终电容值变化量;
S33、根据目标触控点对应的最终电容值变化量,确定第二子显示区域40中的目标触控点的坐标。
例如,将B2作为目标触控点时,将A2和B1作为B2的两个邻近触控点,即,A2为第一邻近触控点,B1为第二邻近触控点,根据A2、B2和B1分别对应的电容值变化计算B2的坐标。
具体地,第二触控芯片102能测量A2、B2和B1对应的电容值变化量△A2’、△B2’和△B1’,第一触控芯片101能测量A2和B2对应的电容值变化量△A2和△B2,一般来说,第二触控芯片102测量的B2对应的电容值变化量△B2’比第一触控芯片101测量的B2对应的电容值变化量△B2更准确,因此直接选择第二触控芯片102测量的B2对应的电容值变化量△B2,且这样可以使△B2和△B1均由第二触控芯片102测量,提高数据误差的一致性。但是,针对第一触控芯片101测量的A2对应的电容值变化量△A2和第二触控芯片102测量的A2对应的电容值变化量△A2’,也想采用第二触控芯片102测量的△A2’用于计算B2的坐标,从而增强数据误差的一致性,但是第一触控芯片101测量的△A2一般比第二触控芯片102测量的△A2’更准确,因此此时需要比较△A2和△A2’,若△A2和△A2’之间的差值不大于预设阈值,则说明△A2和△A2’相差不大,直接利用第二触控芯片102测量的△A2’,即,此时通过△A2’、△B2’和△B1’计算B2的坐标;若△A2和△A2’之间的差值大于预设阈值,则说明△A2和△A2’相差较大,则取△A2和△A2’的平均值作为A2对应的电容值变化量,能通过△A2对△A2’进行修正,此时通过(△A2+△A2’)/2、△B2和△B1三者的平均值,作为B2对应的最终电容值变化量,再根据该最终电容值变化量,计算B2的坐标。
基于上述实施例,同理,步骤S2还具体包括以下步骤:
S21’、若第一触控芯片101和第二触控芯片102分别获取的第二子显示区域40中的触控点对应的电容值变化量之间的差值不大于预设阈值,则将第一触控芯片101获取的第二子显示区域40中的触控点对应的电容值变化量,作为第二子显示区域40中的触控点的实际电容值变化量;
S22’、若第一触控芯片101和第二触控芯片102分别获取的第二子显示区域40中的触控点对应的电容值变化量之间的差值大于预设阈值,则将第一触控芯片101和第二触控芯片102分别获取的第二子显示区域40中的触控点对应的电容值变化量的平均值,作为第二子显示区域40中的触控点的实际电容值变化量。
基于上述实施例,步骤S3还具体包括以下步骤:
S31’、选择第一子显示区域30中的目标触控点在第一显示区域10且非第一子显示区域30中的第三邻近触控点和在第二子显示区域40中的第四邻近触控点;
S32’、根据第四邻近触控点的实际电容值变化量,目标触控点的电容值变化量和的第三邻近触控点的电容值变化量三者的平均值,确定目标触控点对应的最终电容值变化量;
S33’、根据目标触控点对应的最终电容值变化量,确定第一子显示区域30中的目标触控点的坐标。
例如,将A2作为目标触控点时,将A1和B2作为A2的两个邻近触控点,即,A1为第三邻近触控点,B2为第四邻近触控点,根据A1、A2和B2分别对应的电容值变化计算A2的坐标。
具体地,第一触控芯片101能测量A1、A2和B2对应的电容值变化量△A1、△A2和△B2,第二触控芯片102能测量A2和B2对应的电容值变化量△A2’和△B2’,一般来说,第一触控芯片101测量的A2对应的电容值变化量△A2比第二触控芯片102测量的A2对应的电容值变化量△A2’更准确,因此直接选择第一触控芯片101测量的A2对应的电容值变化量△A2,且这样可以使△A1和△A2均由第一触控芯片101测量,提高数据误差的一致性。但是,针对第一触控芯片101测量的B2对应的电容值变化量△B2和第二触控芯片102测量的B2对应的电容值变化量△B2’,也想采用第一触控芯片101测量的△B2用于计算A2的坐标,从而增强数据误差的一致性,但是第二触控芯片102测量的△B2’一般比第一触控芯片101测量的△B2更准确,因此此时需要比较△B2和△B2’,若△B2和△B2’之间的差值不大于预设阈值,则说明△B2和△B2’相差不大,直接利用第一触控芯片101测量的△B2,即,此时通过△A1、△A2和△B2计算A1的坐标;若△B2和△B2’之间的差值大于预设阈值,则说明△B2和△B2’相差较大,则取△B2和△B2’的平均值作为B2对应的电容值变化量,由此通过△B2’对△B2进行修正,能通过△A1、△A2和(△B2+△B2’)/2三者的平均值,作为A2对应的最终电容值变化量,再根据该最终电容值变化量,计算A2的坐标。
本发明实施例提供的触控显示面板及其触控点测量方法中,该触控显示面板在显示区包括相邻设置的第一显示区域和第二显示区域,且在第一显示区域中存在与第二显示区域邻近的第一子显示区域,在第二显示区域中存在与第一显示区域邻近的第二子显示区域,其中,第一显示区域和第二子显示区域均与第一触控芯片连接,第二显示区域和第一子显示区域均与第二触控芯片连接,由此,第一子显示区域和第二子显示区域中的触控点坐标均可以分别通过第一触控芯片和第二触控芯片进行测量,这样在获取第一子显示区域中的触控点坐标,需要利用第二子显示区域中的触控点坐标共同计算时,数据可以均通过第一触控芯片获取,同理,在获取第二子显示区域中的触控点坐标,需要利用第一子显示区域中的触控点坐标共同计算时,数据可以均通过第二触控芯片获取,从而保证了数据来源的统一性,使得数据误差一致,提高了计算的线性度。另外,这样还可以使第一子显示区域和第二子显示区域中的触控点坐标由第一触控芯片和第二触控芯片进行双重测量,避免了由第一触控芯片或第二触控芯片单一进行测量时,若单一测量数值误差较大,导致第一子显示区域和第二子显示区域中的触控点坐标误差较大的问题,增强了数据冗余性,提高了数据准确性。
可以理解的是,对本领域普通技术人员来说,可以根据本发明的技术方案及其发明构思加以等同替换或改变,而所有这些改变或替换都应属于本发明所附的权利要求的保护范围。

Claims (18)

  1. 一种触控显示面板,其包括:
    相邻设置的第一显示区域和第二显示区域,位于所述第一显示区域中的第一子显示区域与位于所述第二显示区域中的第二子显示区域相邻设置;
    触控层,包括多个触控电极,多个所述触控电极位于所述第一显示区域和所述第二显示区域中;以及
    至少两个触控芯片,包括第一触控芯片和第二触控芯片,所述第一触控芯片分别与位于所述第一显示区域和所述第二子显示区域中的多个所述触控电极连接,所述第二触控芯片分别与位于所述第二显示区域和所述第一子显示区域中的多个所述触控电极连接。
  2. 如权利要求1所述的触控显示面板,其中,所述触控显示面板为自容式触控显示面板。
  3. 如权利要求1所述的触控显示面板,其中,所述触控电极包括第一触控电极,所述第一触控芯片分别与位于所述第一显示区域和所述第二子显示区域中的多个所述第一触控电极电性连接,所述第二触控芯片分别与位于所述第二显示区域和所述第一子显示区域中的多个所述第一触控电极连接。
  4. 如权利要求1所述的触控显示面板,其中,所述触控显示面板为互容式触控显示面板。
  5. 如权利要求3所述的触控显示面板,其中,所述触控电极还包括第二触控电极,所述第一触控电极与所述第二触控电极之间形成互容触控电容,每个所述第二触控电极连接所述第一触控芯片和所述第二触控芯片中的至少一个。
  6. 如权利要求4所述的触控显示面板,其中,所述触控显示面板为双层互容式触控显示面板。
  7. 如权利要求5所述的触控显示面板,其中,所述第一触控电极与所述第二触控电极异层设置,多个所述第一触控电极和多个所述第二触控电极交叉设置,每一所述第二触控电极电性连接于所述第一触控芯片和所述第二触控芯片。
  8. 如权利要求4所述的触控显示面板,其中,所述触控显示面板为单层互容式触控显示面板。
  9. 如权利要求5所述的触控显示面板,其中,所述第一触控电极与所述第二触控电极同层设置,所述第一触控芯片还连接位于所述第一显示区域中的多个所述第二触控电极,所述第二触控芯片还连接位于所述第二显示区域中的多个所述第二触控电极。
  10. 如权利要求1所述的触控显示面板,其中,所述第一子显示区域和所述第二子显示区域为柔性显示区域,位于所述第一子显示区域和所述第二子显示区域中的所述触控电极具有柔性。
  11. 一种触控点测量方法,用于权利要求1所述的触控显示面板,其中,所述触控点测量方法包括:
    通过第一触控芯片获取第一显示区域和第二子显示区域中的触控点对应的电容值变化量,并通过第二触控芯片获取第二显示区域和第一子显示区域中的触控点对应的电容值变化量;
    根据所述第一触控芯片和所述第二触控芯片分别获取的所述第一子显示区域中的触控点对应的电容值变化量,获取所述第一子显示区域中的触控点的实际电容值变化量;
    根据所述第一子显示区域中的触控点的实际电容值变化量,以及所述第二触控芯片获取的所述第二显示区域中的触控点对应的电容值变化量,确定所述第二子显示区域中的目标触控点的坐标。
  12. 如权利要求11所述的触控点测量方法,其中,还包括:
    根据所述第一触控芯片和所述第二触控芯片分别获取的所述第二子显示区域中的触控点对应的电容值变化量,获取所述第二子显示区域中的触控点的实际电容值变化量;
    根据所述第二子显示区域中的触控点的实际电容值变化量,以及第一触控芯片获取的所述第一显示区域中的触控点对应的电容值变化量,确定所述第一子显示区域中的目标触控点的坐标。
  13. 如权利要求11所述的触控点测量方法,其中,所述根据所述第一触控芯片和所述第二触控芯片分别获取的所述第一子显示区域中的触控点对应的电容值变化量,获取所述第一子显示区域中的触控点的实际电容值变化量,具体包括:
    若所述第一触控芯片和所述第二触控芯片分别获取的所述第一子显示区域中的触控点对应的电容值变化量之间的差值不大于预设阈值,则将所述第二触控芯片获取的所述第一子显示区域中的触控点对应的电容值变化量,作为所述第一子显示区域中的触控点的实际电容值变化量。
  14. 如权利要求11所述的触控点测量方法,其中,所述根据所述第一触控芯片和所述第二触控芯片分别获取的所述第一子显示区域中的触控点对应的电容值变化量,获取所述第一子显示区域中的触控点的实际电容值变化量,具体包括:
    若所述第一触控芯片和所述第二触控芯片分别获取的所述第一子显示区域中的触控点对应的电容值变化量之间的差值大于预设阈值,则将所述第一触控芯片和所述第二触控芯片分别获取的所述第一子显示区域中的触控点对应的电容值变化量的平均值,作为所述第一子显示区域中的触控点的实际电容值变化量。
  15. 如权利要求11所述的触控点测量方法,其中,所述根据所述第一子显示区域中的触控点的实际电容值变化量,以及所述第二触控芯片获取的所述第二显示区域中的触控点对应的电容值变化量,确定所述第二子显示区域中的目标触控点的坐标,具体包括:
    选择所述第二子显示区域中的目标触控点在所述第一子显示区域中的第一邻近触控点和在所述第二显示区域内且非所述第二子显示区域中的第二邻近触控点;
    根据所述第一邻近触控点的实际电容值变化量,所述目标触控点的电容值变化量和所述的第二邻近触控点的电容值变化量三者的平均值,确定所述目标触控点对应的最终电容值变化量;
    根据目标触控点对应的最终电容值变化量,确定所述第二子显示区域中的目标触控点的坐标。
  16. 如权利要求12所述的触控点测量方法,其中,所述根据所述第一触控芯片和所述第二触控芯片分别获取的所述第二子显示区域中的触控点对应的电容值变化量,获取所述第二子显示区域中的触控点的实际电容值变化量,具体包括:
    若所述第一触控芯片和所述第二触控芯片分别获取的所述第二子显示区域中的触控点对应的电容值变化量之间的差值不大于预设阈值,则将所述第一触控芯片获取的所述第二子显示区域中的触控点对应的电容值变化量,作为所述第二子显示区域中的触控点的实际电容值变化量。
  17. 如权利要求12所述的触控点测量方法,其中,所述根据所述第一触控芯片和所述第二触控芯片分别获取的所述第二子显示区域中的触控点对应的电容值变化量,获取所述第二子显示区域中的触控点的实际电容值变化量,具体包括:
    若所述第一触控芯片和所述第二触控芯片分别获取的所述第二子显示区域中的触控点对应的电容值变化量之间的差值大于预设阈值,则将所述第一触控芯片和所述第二触控芯片分别获取的所述第二子显示区域中的触控点对应的电容值变化量的平均值,作为所述第二子显示区域中的触控点的实际电容值变化量。
  18. 如权利要求12所述的触控点测量方法,其中,所述根据所述第二子显示区域中的触控点的实际电容值变化量,以及第一触控芯片获取的所述第一显示区域中的触控点对应的电容值变化量,确定所述第一子显示区域中的目标触控点的坐标,具体包括:
    选择所述第一子显示区域中的目标触控点在所述第一显示区域且非所述第一子显示区域中的第三邻近触控点和在所述第二子显示区域中的第四邻近触控点;
    根据所述第四邻近触控点的实际电容值变化量,所述目标触控点的电容值变化量和所述的第三邻近触控点的电容值变化量三者的平均值,确定所述目标触控点对应的最终电容值变化量;
    根据目标触控点对应的最终电容值变化量,确定所述第一子显示区域中的目标触控点的坐标。
PCT/CN2021/134202 2021-11-19 2021-11-30 触控显示面板及其触控点测量方法 WO2023087382A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/618,945 US20240061528A1 (en) 2021-11-19 2021-11-30 Touch display panel and method for measuring touch point thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111373156.0A CN114089874B (zh) 2021-11-19 2021-11-19 触控显示面板及其触控点测量方法
CN202111373156.0 2021-11-19

Publications (1)

Publication Number Publication Date
WO2023087382A1 true WO2023087382A1 (zh) 2023-05-25

Family

ID=80301991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/134202 WO2023087382A1 (zh) 2021-11-19 2021-11-30 触控显示面板及其触控点测量方法

Country Status (3)

Country Link
US (1) US20240061528A1 (zh)
CN (1) CN114089874B (zh)
WO (1) WO2023087382A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104423705A (zh) * 2013-08-30 2015-03-18 硅工厂股份有限公司 触摸系统及其控制方法
WO2017054681A1 (zh) * 2015-09-28 2017-04-06 深圳贝特莱电子科技股份有限公司 一种基于大尺寸触摸屏的扫描方法及系统
CN109388290A (zh) * 2018-11-06 2019-02-26 上海天马有机发光显示技术有限公司 一种柔性显示装置、触控位置确定方法以及电子设备
CN111667791A (zh) * 2020-07-08 2020-09-15 Oppo广东移动通信有限公司 显示屏驱动电路、方法、电子设备及存储介质

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102023767B (zh) * 2009-09-14 2015-01-14 义隆电子股份有限公司 改善电容式触控板边缘定位的方法
CN103336635B (zh) * 2013-05-13 2016-08-10 京东方科技集团股份有限公司 一种电容式内嵌触摸屏及显示装置
US10209816B2 (en) * 2013-07-04 2019-02-19 Samsung Electronics Co., Ltd Coordinate measuring apparatus for measuring input position of a touch and a coordinate indicating apparatus and driving method thereof
US9218097B2 (en) * 2013-10-31 2015-12-22 Silicon Integrated Systems Corp Capacitive touch device capable of avoiding reduced frame rate and sensing method thereof
KR102112092B1 (ko) * 2013-12-31 2020-05-19 엘지디스플레이 주식회사 터치 센싱 시스템
KR102258597B1 (ko) * 2014-12-10 2021-06-01 삼성디스플레이 주식회사 터치 패널 및 이를 포함하는 표시장치
CN108595049A (zh) * 2018-04-24 2018-09-28 北京硬壳科技有限公司 一种触控方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104423705A (zh) * 2013-08-30 2015-03-18 硅工厂股份有限公司 触摸系统及其控制方法
WO2017054681A1 (zh) * 2015-09-28 2017-04-06 深圳贝特莱电子科技股份有限公司 一种基于大尺寸触摸屏的扫描方法及系统
CN109388290A (zh) * 2018-11-06 2019-02-26 上海天马有机发光显示技术有限公司 一种柔性显示装置、触控位置确定方法以及电子设备
CN111667791A (zh) * 2020-07-08 2020-09-15 Oppo广东移动通信有限公司 显示屏驱动电路、方法、电子设备及存储介质

Also Published As

Publication number Publication date
US20240061528A1 (en) 2024-02-22
CN114089874A (zh) 2022-02-25
CN114089874B (zh) 2023-09-26

Similar Documents

Publication Publication Date Title
CN101634914B (zh) 基于非均匀触摸屏三点校准方法
TWI571788B (zh) 觸控感測裝置及其掃描方法
TWI474248B (zh) 應用於電容式面板的控制點感測方法與裝置
US8519722B1 (en) Method and apparatus for testing projected capacitance matrices and determining the location and types of faults
US8487906B2 (en) Method for detecting a touched position on a touch device
TWI431293B (zh) 用於使用電感電容共振頻移之電容式觸摸屏面板的檢測裝置及其檢測方法
US20150199046A1 (en) Injected Touch Noise Analysis
EP0432365A2 (en) Low-power electromagnetic digitizer tablet
US9134870B2 (en) Capacitive touch-sensitive panel and mobile terminal using the same
CN101187845A (zh) 数模结合的网格式触控屏
CN102033637B (zh) 触摸屏位置检测方法
JP7189996B2 (ja) 検出装置
KR20110087758A (ko) 정밀도가 높은 정전용량방식 터치스크린 장치
JP2012509539A (ja) フライング・キャパシタを用いて、表面型静電容量方式タッチ・パネルの上の位置を測定する方法およびシステム
WO2023087382A1 (zh) 触控显示面板及其触控点测量方法
CN111220063A (zh) 一种检测物体接近距离的方法
CN103105984B (zh) 触摸屏的扫描方法
JPH0635608A (ja) タッチパネル装置の座標変換方法
CN106933400B (zh) 单层传感器图案和感测方法
CN102855043A (zh) 一种单导电层多点识别电容屏
TWM591653U (zh) 提高邊緣座標判讀準確度的觸控面板
TWI498781B (zh) 一種觸控裝置、觸控面板及其控制方法
CN102253751A (zh) 单层ito的布线结构及定位方法
CN101943976B (zh) 电容式触控面板的多点感测法
US11989373B2 (en) Signal compensation circuit for compensating unwanted electrical activity on touch sensors, touch control circuit, and display device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17618945

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21964527

Country of ref document: EP

Kind code of ref document: A1