WO2023087126A1 - 超大行程油泥铣削机 - Google Patents

超大行程油泥铣削机 Download PDF

Info

Publication number
WO2023087126A1
WO2023087126A1 PCT/CN2021/130809 CN2021130809W WO2023087126A1 WO 2023087126 A1 WO2023087126 A1 WO 2023087126A1 CN 2021130809 W CN2021130809 W CN 2021130809W WO 2023087126 A1 WO2023087126 A1 WO 2023087126A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
column
guide rail
rail
axis guide
Prior art date
Application number
PCT/CN2021/130809
Other languages
English (en)
French (fr)
Inventor
刘宁
周姝
李德维
Original Assignee
爱佩仪测量设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 爱佩仪测量设备有限公司 filed Critical 爱佩仪测量设备有限公司
Priority to CN202180102860.4A priority Critical patent/CN118055820A/zh
Priority to PCT/CN2021/130809 priority patent/WO2023087126A1/zh
Publication of WO2023087126A1 publication Critical patent/WO2023087126A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C9/00Details or accessories so far as specially adapted to milling machines or cutter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/01Frames, beds, pillars or like members; Arrangement of ways

Definitions

  • the invention relates to a processing equipment for a car mold oil sludge model, in particular to an oil sludge milling machine with a super-large stroke.
  • the clay model is a model that uses clay to sculpt the car body in traditional body design. It is mainly used to express the actual effect of automobile modeling; in the actual use of the current clay model, it is mainly through computer-aided design, and then three-coordinate milling equipment is used for modeling.
  • the sludge is made of a mixture of grease, fillers, modified additives and pigments. It is not only easy to process, but will not cause large wear to the processing equipment during the milling process. It is easy to modify, not easy to weather and dry or crack after processing, and has good stability in size and shape.
  • the oil mud milling machine for processing car models has a higher milling positioning accuracy, and the smaller the stroke range.
  • the stroke of the oil mud milling machine used for conventional car models is controlled within 8000 mm, and the milling height is usually within 2500 mm. If it exceeds the relevant stroke range , the tolerance factor will become larger, and at the same time, the machining process of the model will produce obvious deformation.
  • the load change of the equipment leads to the deviation of the accuracy of the equipment operation, and affects the stability of the sludge model forming.
  • the designer’s demand for the size of the clay model gradually increases, it is necessary to mill within a larger stroke, such as using a milling device to move between two clay models.
  • the height of the clay model of some special vehicles is 1 ratio. 1
  • the height of the sludge model is far greater than the milling height of conventional cars; under the current environment, generally increasing the stroke can only increase the volume of the equipment in proportion, resulting in a decrease in the area utilization of stroke components, causing inconvenience in transportation and installation , if the milling equipment is not enlarged according to the proportional volume, it may lead to uneven load distribution. Therefore, how to optimize the stroke of the milling machine is worth studying.
  • the object of the present invention is to provide a super-large stroke oil sludge milling machine to improve the problem that the stroke of the existing milling machine is limited. If the stroke is set too large, it may cause uneven load distribution.
  • the present invention adopts the following technical solutions:
  • a super-large stroke oil sludge milling machine including a casting rail and a column.
  • the above-mentioned column is placed above the casting rail.
  • the upper end of the above-mentioned casting rail is provided with an X-axis guide rail.
  • the upper end of the rail is provided with X-axis bar teeth, and the lower end of the above-mentioned column is provided with an X-axis helical gear meshed with the X-axis bar teeth.
  • the above-mentioned X-axis helical gear is used to drive the column to move on the cast rail;
  • the above-mentioned column is provided with a Z-axis Guide rail, the above-mentioned Z-axis guide rail and the X-axis guide rail are perpendicular to each other, the above-mentioned Z-axis guide rail is provided with a slide plate, and the above-mentioned slide plate is used to move on the Z-axis guide rail;
  • the above-mentioned slide plate is provided with a horizontal arm, and the head end of the above-mentioned horizontal arm is provided with a milling device .
  • the column includes a base and a bracket, the X-axis slider and the X-axis helical gear are installed at the lower end of the base, there is a gap between the base and the cast rail; a travel plate and an adjustment plate are provided on the bracket, and the Z-axis
  • the guide rail is installed on the stroke plate, and the above-mentioned adjusting plate is provided with a weight-reducing hole.
  • the above-mentioned support includes a vertical strut, a reinforcing rib is provided on the above-mentioned vertical strut, and a section bar is provided on one side of the above-mentioned reinforcing rib, and the above-mentioned section rib is used to increase the cross-sectional area of the lower end of the column.
  • a Z-axis slider corresponding to the Z-axis guide rail is provided on the above-mentioned slide plate
  • a Z-axis rack is provided on the above-mentioned column
  • a Z-axis helical gear meshed with the Z-axis rack is provided on the above-mentioned slide plate. Move on the column.
  • a further technical solution is that a pulley mechanism is provided at the upper end of the above-mentioned column, and a counterweight is provided in the above-mentioned column, and the above-mentioned pulley mechanism is used for sheathing a rope, and the two ends of the rope are respectively connected with a counterweight and a slide plate.
  • a Y-axis slide block is provided on the above-mentioned slide plate, a Y-axis guide rail corresponding to the Y-axis slide block is provided on the above-mentioned horizontal arm, a lead screw nut is provided on the above-mentioned slide plate, and a guide rail corresponding to the lead screw nut is provided on the above-mentioned horizontal arm.
  • the screw lever is used to drive the horizontal arm to move by the rotation of the screw lever.
  • a further technical solution is that the above-mentioned horizontal arm is provided with a bearing seat, the above-mentioned screw lever is fixed in the bearing seat, the above-mentioned horizontal arm is provided with a motor, the above-mentioned motor is connected to the head end of the screw lever, and the motor drives the screw lever to rotate.
  • the beneficial effects of the present invention are at least one of the following:
  • the milling device as a whole moves with the horizontal arm, the horizontal arm moves with the Z-axis of the slide plate, and the slide plate moves with the X-axis of the column, so that the equipment can build a coordinate system;
  • the cast rail ensures that the bottom load can act on the ground, when each component When the positions are relative, the local load distribution is guaranteed to be stable, thereby reducing the risk of shaking, which is conducive to the construction of a tolerance system, so that the load distribution is not easy to cause the deviation of the preset tolerance, so that the equipment can guarantee the high response speed under the premise Work is relatively stable.
  • the invention optimizes the shaking risk of the X coordinate system through the cooperation of the X-axis guide rail and the X-axis slider, and adopts the cooperation of the X-axis bar teeth and the X-axis helical gear, so that the movement process of the column forms a scale, and through the X-axis helical gear and the X-axis helical gear
  • the tooth pitch control accuracy of the X-axis bar teeth The Z-axis guide rail and the Z-axis slider reduce the shaking risk of the Z coordinate system.
  • the Z-axis helical gear meshed with the Z-axis rack can also meet the precision requirements of the Z-axis movement.
  • the deviation of the load direction of the column when the skateboard is raised and lowered is reduced, and it is beneficial to reduce the wear of the Z-axis rack and the Z-axis helical gear, and improve the reliability of precision control.
  • the present invention optimizes the support of the column by combining the vertical struts with the reinforcing ribs and cross-section ribs, so that when the column moves up and down on the Z axis, the load transmission will not cause the column to tilt.
  • the frame structure with a change in cross-sectional area is formed by using the base to cooperate with the bracket. , and then support the bottom through the base, so that when the equipment is working, the load can be evenly transmitted to the cast rail, ensuring the rigidity requirements under the super large stroke.
  • the invention realizes the construction of the Y coordinate system by moving the horizontal arm on the slide plate.
  • the whole milling device moves with the horizontal arm. Constrain the horizontal arm to avoid the risk of the horizontal arm tilting forward, so as to ensure the working accuracy of the equipment.
  • Fig. 1 is a schematic diagram of the structure distribution of the present invention.
  • FIG. 2 is a schematic diagram of the orientation of the X-axis bar teeth and the X-axis helical gear.
  • Fig. 3 is a schematic diagram of column installation of the present invention.
  • Fig. 4 is a schematic diagram of the operation of the skateboard of the present invention.
  • Fig. 5 is a top view of the present invention.
  • Fig. 6 is a schematic diagram of the installation of the pulley mechanism of the present invention.
  • Fig. 7 is a schematic diagram of the structure of the stent of the present invention.
  • Fig. 8 is a schematic diagram of the structure of the horizontal arm of the present invention.
  • Fig. 9 is a schematic diagram of the distribution of the horizontal arm and the slide plate of the present invention.
  • Fig. 10 is a side view of the horizontal arm of the present invention.
  • one embodiment of the present invention is a kind of super-large-stroke oil sludge milling machine, comprising a casting rail 1 and a column 2, the above-mentioned column 2 is placed above the casting rail 1, and the above-mentioned
  • the upper end of the casting rail 1 is provided with an X-axis guide rail 101
  • the lower end of the above-mentioned column 2 is provided with an X-axis slider 201 corresponding to the X-axis guide rail 101.
  • the upper end of the above-mentioned casting rail 1 is provided with an X-axis bar tooth 102.
  • the X-axis helical gear 202 meshing with the X-axis bar teeth 102, the above-mentioned X-axis helical gear 202 is used to drive the column 2 to move on the casting rail 1; the length of the casting rail 1 can be more than 80000 mm.
  • the cast rail 1 is used as the foundation of the X-axis, wherein the cast rail 1 can bear the load well, and there are at least two X-axis guide rails 101 on the cast rail 1, wherein the X-axis guide rail 101 and the X-axis slider 201 are mutually
  • the X-axis slider 201 is used as the load transfer point of the column 2, and its X-axis guide rail 101 directly bears the load of the column 2. Since the X-axis guide rail 101 is long and the X-axis guide rail 101 is fixed on the cast rail 1, thus The load of the column 2 can be transmitted to the ground through the cast rail 1.
  • the column 2 can be built at a high enough height, so that the column 2 itself has a larger moment than the existing equipment, making the column 2 easy to form a heavy load .
  • Heavy loads here refer to loads with shorter columns than existing milling machines.
  • the column 2 and the casting rail 1 adopt the X-axis bar teeth 102 and the X-axis helical gears 202 to cooperate, so that the control of the tooth pitch can be used to improve the movement accuracy.
  • the column 2 is precisely driven on the upper side by adopting the rotation of the X-axis helical gear 202, thus ensuring the stability of the column movement.
  • the above-mentioned column 2 is processed and formed by one-time clamping of a large-scale gantry machining center, which avoids the error of multiple conversion angle clamping in ordinary processing methods, and the overall precision of the parts is high; thereby improving the combination precision of the whole machine.
  • the length of the X-axis bar teeth 102 corresponds to the X-coordinate travel range
  • the lower end of the column 2 is provided with a drive motor
  • the drive motor is an existing motor with a reducer
  • the drive motor is connected through the output end of the existing reducer.
  • the X-axis helical gear 202 drives the X-axis helical gear 202 to rotate through the drive motor, so that the rotation speed of the X-axis helical gear 202 is directly controlled by the drive motor, thereby realizing the control of the moving speed.
  • the above-mentioned column 2 is provided with a Z-axis guide rail 203, the above-mentioned Z-axis guide rail 203 and the X-axis guide rail 101 are perpendicular to each other, and the above-mentioned Z-axis guide rail 203 is provided with a slide plate 3, and the above-mentioned slide plate 3 is used to move on the Z-axis guide rail 203; the above-mentioned slide plate 3 is provided with a horizontal arm 4, and the head end of the horizontal arm 4 is provided with a milling device 5.
  • the Z-axis guide rails 203 there are two Z-axis guide rails 203, and the Z-axis guide rails 203 are spliced by multiple linear guide rails.
  • the Z-axis guide rails 203 adopt the same specifications as the existing linear guide rails, so that the Z-axis guide rails 203 are distributed in a straight line, and the slide plate 3 is close to the column. 2.
  • One side is fitted with a Z-axis guide rail 203, and the moving path of the slide plate 3 is constrained by the Z-axis guide rail 203.
  • the sliding plate 3 is driven by the Z-axis guide rail 203 to move on the column 2, thereby providing a basis for the Z coordinate system of the component.
  • the horizontal arm 4 is installed on the skateboard 3, and its horizontal arm 4 is distributed along the Y coordinate, thereby by forming the Y coordinate on the horizontal arm 4, its horizontal arm 4 can be an existing movable arm, and its horizontal arm 4 is used for the front and rear of the skateboard 3 Movement, by installing the milling device 5 on the horizontal arm 4, so as to realize the movement in the three directions of X, Y, and Z, among which the milling device 5, the AB axis milling head designed for Ai Peiyi Measuring Equipment Co., Ltd., passes through the milling device 5 Adjust the feed angle of the milling cutter at different angles to realize five-axis milling, and for existing milling equipment, it can move between two stations, so that the device of this application can directly process large clay models For milling, for conventional automotive sludge model requirements, lift tables can be used at different stations to form a multi-station multi-layer model processing platform, and the equipment of this embodiment is used to process multiple sludges. This makes it easier for designers to compare
  • the above-mentioned column 2 includes a base 204 and a bracket 6, and the above-mentioned X-axis slider 201 and the X-axis helical gear 202 are installed on the lower end of the base 204, there is a gap between the base 204 and the cast rail 1;
  • the above-mentioned support 6 is provided with a travel plate 205 and an adjustment plate 206, the above-mentioned Z-axis guide rail 203 is installed on the travel plate 205, and the above-mentioned adjustment plate 206 Offer lightening hole 207 on.
  • the stroke plate 205 is a smooth panel arranged vertically, so that the Z-axis guide rail 203 installed on the stroke plate 205 can be placed in a vertical position, wherein the stroke plate 205 is directly fixed on the bracket 6, thereby ensuring the travel plate 205 through the bracket 6. Will not tilt.
  • the adjustment plates 206 are distributed around the support 6 , and the pressure center of the support 6 can be adjusted by setting the adjustment plates 206 , so as to improve the load distribution of the column 2 .
  • the base 204 adopts a steel structure, thereby improving the support strength of the base 204 and ensuring that the load can act on the cast rail 1; wherein there is a gap between the base 204 and the cast rail 1, and the gap can prevent the base 204 from directly contacting the cast rail 1,
  • An installation space is reserved for the X-axis slider 201 and the X-axis helical gear 202 at the lower end of the base 204 , so that the X-axis slider 201 can contact the X-axis guide rail 101 on the cast rail 1 .
  • the support 6 adopts an integral frame structure, thereby improving the overall load of the column 2, its base 204 and the support 6 are integrally welded, and the joint between the base 204 and the support 6 is provided with stiffeners, thereby ensuring The stability of the connection between the bracket 6 and the base 204.
  • the Z-direction travel of the column 2 can be set at more than 4500 mm, and the column 2 adopts a frame structure as a whole.
  • the CAE software is used for model analysis to determine the load distribution of the column 2 at different heights. Open the weight-reducing hole 207 on the adjustment plate 206.
  • the self-weight of the column 2 is reduced, so that the overall weight of the column 2 is reduced without affecting the strength and rigidity of the column 2 itself.
  • the local load can be improved according to the load distribution of the bracket 6. The uneven distribution improves the rigidity and stability of the bracket 6 .
  • the bracket 6 includes a vertical strut 601, a reinforcing rib 602 is provided on the vertical strut 601, and a section rib 603 is provided on one side of the reinforcing rib 602, and the section rib 603 is used for Increase the cross-sectional area of the column 2 lower ends.
  • another embodiment of the present invention is that the above-mentioned slide plate 3 is provided with a Z-axis slider 301 corresponding to the Z-axis guide rail 203, and the above-mentioned column 2 is provided with a Z-axis rack 209, and the above-mentioned slide plate 3 is provided with a Z-axis helical gear 302 meshing with the Z-axis rack 209, and the above-mentioned slide plate 3 is used to move on the column 2.
  • the Z-axis rack 209 has a length of at least 4500 mm.
  • the Z-axis guide rail 203 is used to form a Z coordinate system, and the Z-axis helical gear 302 meshed with the Z-axis rack 209 is used to form a rack-and-pinion drive.
  • the Z-axis guide rail 203 is made by German HIWIN company.
  • the heavy-duty linear guide rail specially produced for machine tools enables the Z-axis guide rail 203 to constrain the slide plate 3 in the vertical direction, and also has a good position-limiting effect when the slide plate 3 is under heavy load.
  • the horizontal arm 4 moves on the slide plate 3, so that the center of gravity on the slide plate 3 changes.
  • the structure of the column 2 can bear the risk of this change, the change of the center of gravity of the slide plate 3 may affect the horizontal position of the horizontal arm 4, so Z
  • Z There are at least two axis guide rails 203, and each Z-axis guide rail 203 has more than two Z-axis sliders 301, and its Z-axis sliders 301 are fastened on the slide plate 3, using the principle of two points forming a line, so that the slide plate 3 will not shake on the column 2, thereby ensuring that the movement of the horizontal arm 4 will not deflect.
  • the Z coordinate system and the X coordinate system adopt the same transmission mode, and the Z coordinate system adopts the cooperation mode of the Z axis rack 209 and the Z axis helical gear 302, so as to ensure the movement accuracy of the Z coordinate system.
  • the working stroke of the slide plate 3 is greater than 4500 mm, in addition to the stability, it is also necessary to ensure the accuracy requirements.
  • the upper end of the column 2 is provided with a pulley mechanism 208 , a counterweight is provided in the column 2 , the pulley mechanism 208 is used for sheathing a rope, and the two ends of the rope are respectively connected with the counterweight and the slide plate 3 .
  • the quality of horizontal arm 4 and milling device 5 is constant, and its counterweight is existing metal block, and guide post is adapted in its column 2, and its metal block is sleeved on the guide post, and the quality of its counterweight and slide plate 3 relative to each other, thereby reducing energy consumption when the Z-axis rack 209 cooperates with the Z-axis helical gear 302 .
  • the movement of the slide plate 3 on the column 2 is relatively smooth.
  • another embodiment of the present invention is that the above-mentioned slide plate 3 is provided with a Y-axis slider 303, and the above-mentioned horizontal arm 4 is provided with a The Y-axis guide rail 401 corresponding to the shaft slider 303, the above-mentioned slide plate 3 is provided with a screw nut 304, and the above-mentioned horizontal arm 4 is provided with a screw lever 402 corresponding to the screw nut 304, and the rotation of the screw lever 402 drives the horizontal arm 4 to move .
  • the Z-axis slider 301 inside the skateboard 3 has a Y-axis slider 303 installed on the outside of the skateboard 3 ,
  • Y-axis guide rails 401 there are at least two Y-axis guide rails 401, and the Y-axis guide rails 401 are evenly distributed on the upper and lower sides of the horizontal arm 4.
  • the Y-axis guide rails 401 are arranged symmetrically with the central axis of the horizontal arm 4, so that the Y-axis slider 303 and the Y-axis guide rails 401 cooperate with each other, have good stability, and effectively ensure that the slide plate 3 restricts the horizontal arm 4 in the horizontal direction, so that the horizontal arm 4 and the column 2 are kept perpendicular to each other.
  • a lead screw nut 304 is fixedly arranged on the slide plate 3, and its lead screw nut 304 is installed on the same side as the Y-axis slider 303.
  • the screw lever 402 on the above-mentioned horizontal arm 4 the screw lever 402 is located between the two Y-axis guide rails 401. During this period, the screw lever 402 of the horizontal arm 4 passes through the screw nut 304, and the screw lever 402 rotates by itself, so that the horizontal arm 4 moves in the Y direction.
  • the horizontal arm 4 can be further lengthened and the stroke can be improved.
  • the stroke in the Y direction Can be greater than or equal to 2000mm.
  • the horizontal arm 4 adopts an integral frame structure, and the strength and load distribution can also be analyzed through the existing CAE software. Through openings on the side of the horizontal arm 4, Thereby, the purpose of reducing the weight of the horizontal arm 4 is achieved.
  • the above-mentioned horizontal arm 4 is provided with a bearing seat 403, and the above-mentioned screw lever 402 is fixed in the bearing seat 403, wherein, the fixed end of the bearing seat 403 is connected to the frame body of the horizontal arm 4, and its The movable end of the bearing seat 403 is connected to the screw lever 402, so that the screw lever 402 and the bearing seat 403 are in a relatively fixed position, and the horizontal setting of the screw lever 402 is kept by the bearing seat 403, so that the screw lever 402 can rotate on the bearing seat 403.
  • the above-mentioned horizontal arm 4 is provided with a motor 404, and the above-mentioned motor 404 is connected to the head end of the screw lever 402, and the screw lever 402 is driven to rotate by the motor 404.
  • the motor 404 is connected with the screw lever 402 power
  • the motor 404 is an existing small variable speed motor
  • the screw lever 402 is driven to rotate by the motor 404, so that the screw lever 402 is in the process of rotation, because of the characteristics of the screw structure, the horizontal arm 4 is positioned on the slide plate. 3 on the move.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Machine Tool Units (AREA)

Abstract

本发明公开了一种超大行程油泥铣削机,包括铸轨和立柱,上述立柱置于铸轨上方,上述铸轨上端设有X轴导轨,上述立柱下端与X轴导轨对应的X轴滑块,上述铸轨上端设有X轴条形齿,上述立柱下端设有与X轴条形齿啮合的X轴斜齿轮,上述X轴斜齿轮用于带动立柱在铸轨上移动;上述立柱上设有Z轴导轨,上述Z轴导轨与X轴导轨相互垂直,上述Z轴导轨上设有滑板,上述滑板用于在Z轴导轨上移动;上述滑板上设有水平臂,上述水平臂首端设有铣削装置,以期望改善现有的铣削机行程受限,若行程设置较大,可能导致载荷分布不均匀的问题。

Description

超大行程油泥铣削机 技术领域
本发明涉及车模油泥模型加工设备,具体涉及超大行程油泥铣削机。
背景技术
油泥模型是传统车身设计中利用油泥雕塑汽车车身的模型。它主要用来表达汽车造型的实际效果;当前的油泥模型在实际使用过程中,主要是通过计算机辅助设计,随后采用三坐标的铣削设备进行造型。其油泥为了便于加工,其材质采用的是油脂、填料、改性添加剂和颜料等组成的混合物,不仅易于加工,在铣削过程中不会对加工设备造成较大的磨损,同时油泥模型后续还能便于修改,加工后不易风化干燥或龟裂,同时在尺寸形态上具有良好的稳定性。
一般加工车模的油泥铣削机,其铣削定位精度越高,则行程范围越小,常规车模使用的油泥铣削机的行程控制在8000毫米内,而铣削高度通常在2500毫米内,若超过相关行程范围,则公差因素变大,同时加模型加工过程会产生明显的变形量,基于力学分析,发现是设备载荷变化,导致设备运行的精度出现偏差,影响油泥模型成形的稳定性。然而随着设计师对于油泥模型尺寸的需求逐步提高,从而需要在较大行程内进行铣削,例如使用一个铣削设备在两个油泥模型之间移动,例如,部分特种车辆的油泥模型高度在1比1需求下,油泥模型的高度远远大于常规汽车的铣削高度;当前环境下,一般增大行程仅能按照比例增大设备体积,从而导致行程部件的面积利用率降低,造成运输和安装的不便,若不按照比例体积增大铣削设备,则可能导致载荷分布不均匀,因此,如何优化铣削机的行程是值得研究的。
发明内容
本发明的目的在于提供一种超大行程油泥铣削机,以改善现有的铣削机行程受限,若行程设置较大,可能导致载荷分布不均匀的问题。
为解决上述的技术问题,本发明采用以下技术方案:
一种超大行程油泥铣削机,包括铸轨和立柱,上述立柱置于铸轨上方,上述铸轨上端设有X轴导轨,上述立柱下端设有与X轴导轨对应的X轴滑块,上述铸轨上端设有X轴条形齿,上述立柱下端设有与X轴条形齿啮合的X轴斜齿轮,上述X轴斜齿轮用于带动立柱在铸轨上移动;上述立柱上设有Z轴导轨,上述Z轴导轨与X轴导轨相互垂直,上述Z轴导轨上设有滑板,上述滑板用于在Z轴导轨上移动;上述滑板上设有水平臂,上述水平臂首端设有铣削装置。
作为优选,上述立柱包括底座和支架,上述X轴滑块和X轴斜齿轮均安装在底座下端,上述底座与铸轨之间具有间隙;上述支架上设有行程板和调整板,上述Z轴导轨安装在行程板上,上述调整板上开设减重孔。
进一步的技术方案是,上述支架包括竖直支杆,上述竖直支杆上设有加强筋,上述加强筋一侧设有截面筋,上述截面筋用于增大立柱下端的横截面积。
作为优选,上述滑板上设有与Z轴导轨对应的Z轴滑块,上述立柱设有Z轴齿条,上述滑板上设有与Z轴齿条啮合的Z轴斜齿轮,上述滑板用于在立柱上移动。
进一步的技术方案是,上述立柱上端设有滑轮机构,上述立柱中设有配重,上述滑轮机构用于套设绳索,且绳索两端分别连接配重和滑板。
作为优选,上述滑板上设有Y轴滑块,上述水平臂上设有与Y轴滑块对应的Y轴导轨,上述滑板上设有丝杠螺母,上述水平臂上设有与丝杠螺母对应的丝杠杆,由丝杠杆转动带动水平臂移动。
进一步的技术方案是,上述水平臂上设有轴承座,上述丝杠杆固定在轴承座中,上述水平臂上设有电机,上述电机连接丝杠杆首端,由电机带动丝杠杆转动。
与现有技术相比,本发明的有益效果至少是如下之一:
本发明采用铣削装置整体随着水平臂移动,水平臂随着滑板Z轴移动,滑板随着立柱X轴移动,使得设备能够构建坐标体系;其铸轨确保底部载荷能够作用于地面,当各个部件之间位置相对时,保证局部的载荷分布稳定,从而降低抖动风险,有利于构建公差体系,从而载荷分布不易导致预设公差出现偏移,使得设备在较高的反应速度的前提下,能够保证工作相对稳定性。
本发明通过X轴导轨与X轴滑块配合优化X坐标系的晃动风险,采用X轴条形齿与X轴斜齿轮的配合,从而使得立柱的移动过程形成刻度,并通过X轴斜齿轮与X轴条形齿的齿距控制精度。通过Z轴导轨和Z轴滑块降低Z坐标系的晃动风险,同理,Z轴齿条啮合的Z轴斜齿轮,也能实现Z坐标移动的精度需求。同时通过滑轮机构和配重的设计,降低滑板升降时对立柱的载荷方向产生偏移,并且有利于降低Z轴齿条与Z轴斜齿轮的磨损,提高精度控制的可靠性。
本发明通过竖直支杆配合加强筋和截面筋,优化立柱的支架,从而使得立柱在Z轴升降时,载荷传递不会导致立柱倾斜,同时,利用底座配合支架形成截面面积变化的框架式结构,再通过底座进行托底,从而设备在工作时,载荷能够均匀传递到铸轨,确保在超大行程下的刚性要求。
本发明通过水平臂在滑板上移动,实现Y坐标系的搭建,铣削装置整体随着水平臂移动,水平臂与滑板在Z轴上,采用丝杠和滑轨配合的方式进行控制,利用滑轨约束水平臂,从而避免水平臂出现前倾风险,以便于保证设备工作精度。
附图说明
图1为本发明结构分布示意图。
图2为X轴条形齿与X轴斜齿轮方位示意图。
图3为本发明立柱安装示意图。
图4为本发明滑板工作示意图。
图5为本发明的俯视图。
图6为本发明滑轮机构安装示意图。
图7为本发明支架结构示意图。
图8为本发明水平臂结构示意图。
图9为本发明水平臂与滑板分布示意图。
图10为本发明水平臂侧视图。
附图标记说明:
1-铸轨、2-立柱、3-滑板、4-水平臂、5-铣削装置、6-支架、101-导轨、102-X轴条形齿、201-X轴滑块、202-X轴斜齿轮、203-Z轴导轨、204-底座、205-行程板、206-调整板、207-减重孔、208-滑轮机构、209-Z轴条形齿、301-Z轴滑块、302-Z轴斜齿轮、303-Y轴滑块、304-丝杠螺母、401-Y轴导轨、402-丝杠杆、403-轴承座、404-电机、601-竖直支杆、602-加强筋、603-截面筋。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例1:
参考图1、图2、图3和图4所示,本发明的一个实施例是,一种超大行程 油泥铣削机,包括铸轨1和立柱2,上述立柱2置于铸轨1上方,上述铸轨1上端设有X轴导轨101,上述立柱2下端设有与X轴导轨101对应的X轴滑块201,上述铸轨1上端设有X轴条形齿102,上述立柱2下端设有与X轴条形齿102啮合的X轴斜齿轮202,上述X轴斜齿轮202用于带动立柱2在铸轨1上移动;其中铸轨1长度可以是80000毫米以上。
其中,利用铸轨1作为X轴的搭建基础,其中铸轨1能良好的承受载荷,铸轨1上至少具有两个以上的X轴导轨101,其中X轴导轨101与X轴滑块201相互吻合,通过X轴滑块201作为立柱2的载荷传递点,其X轴导轨101直接承受立柱2的载荷,由于X轴导轨101长度较长,并且X轴导轨101固定在铸轨1上,从而使得立柱2的载荷能够通过铸轨1传递到地面。
当立柱2下端的X轴滑块201在X轴导轨101被限制时,使得立柱2能够搭建足够高的高度,从而立柱2本身具有比现有设备更大的力矩,使得立柱2容易构成重负载。此处的重负载是指相比现有铣削机立柱较短的负载而言。
其中,立柱2与铸轨1采用X轴条形齿102与X轴斜齿轮202配合,从而可以利用齿距的控制,达到移动精度的改善。在立柱2处于重负载的状态下,采用X轴斜齿轮202转动的方式,使立柱2在上精密驱动,从而保证了立柱移动运行的稳定型。上述立柱2通过大型龙门加工中心一次装夹加工成型,避免普通加工方式多次转换角度装夹的误差,零件整体精度高;从而提高整机组合精度。
其中,X轴条形齿102长度与X坐标行程范围对应,其中立柱2下端设置驱动电机,其中驱动电机为带减速器的现有电机,其驱动电机通过现有的减速器的输出端接入X轴斜齿轮202,通过驱动电机带动X轴斜齿轮202转动,从而通过驱动电机控直接控制X轴斜齿轮202的转速,从而实现移动速度的控制。
值得注意的是,齿轮啮合本身存在误差,基于齿距误差确定设备的误差补偿参数,从而计算机进行建模的过程中,通过三维软件设置误差值,从而提高铣削过程中的精度,有利于减小油泥模型的误差。
上述立柱2上设有Z轴导轨203,上述Z轴导轨203与X轴导轨101相互垂直,上述Z轴导轨203上设有滑板3,上述滑板3用于在Z轴导轨203上移动;上述滑板3上设有水平臂4,上述水平臂4首端设有铣削装置5。
其中,Z轴导轨203为两根,Z轴导轨203采用多个直线导轨拼接而成,其Z轴导轨203采用现有直线导轨规格一致,使得Z轴导轨203呈直线分布,其中滑板3靠近立柱2一侧适配Z轴导轨203,通过Z轴导轨203约束滑板3的移动路径。由Z轴导轨203带动滑板3在立柱2上进行移动,从而为构件Z坐标系提供基础。其中滑板3上安装水平臂4,其水平臂4沿Y坐标分布,从而通过在水平臂4构成Y坐标,其水平臂4可以是现有的活动臂,其水平臂4用于滑板3上前后移动,通过将铣削装置5安装在水平臂4上,从而实现X、Y、Z三个方向的移动,其中铣削装置5,为爱佩仪测量设备有限公司设计的AB轴铣削头,通过铣削装置5在不同角度调整铣刀的进刀角度,实现五轴铣削,并且对于现有的铣削设备而言,能够在2个工位之间移动,从而使用本申请的装置,能够直接对大型油泥模型进行铣削,对于常规的车用油泥模型需求,可以在不同工位使用升降台,形成形成多工位的多层的模型加工平台,并且使用本实施例的设备对多个油泥进行加工。从而便于设计师更直观的对比设计和审核。
实施例2:
基于上述实施例,参考图3、图4、图5、图6所示,本发明的另一个实施例是,上述立柱2包括底座204和支架6,上述X轴滑块201和X轴斜齿轮202均安装在底座204下端,上述底座204与铸轨1之间具有间隙;上述支架6上 设有行程板205和调整板206,上述Z轴导轨203安装在行程板205上,上述调整板206上开设减重孔207。
其中,行程板205为竖直设置的光滑面板,使得行程板205上安装的Z轴导轨203能够输处于竖直设置,其中行程板205直接固定在支架6上,从而通过支架6保证行程板205不会倾斜。其中调整板206分布在支架6周围,通过调整板206的设置,从而调节支架6的压力中心,以改善立柱2的载荷分布。
其中,底座204采用钢材结构,从而提高底座204的支撑强度,确保载荷能够作用于铸轨1;其中底座204与铸轨1之间具有间隙,该间隙能够避免底座204与铸轨1直接接触,并为底座204下端的X轴滑块201和X轴斜齿轮202预留安装空间,使得X轴滑块201与铸轨1上的X轴导轨101能够接触。
通过对支架6的强度设计分析,支架6采用整体框架式结构,从而改善立柱2的整体载荷,其底座204和支架6一体式焊接,其底座204与支架6的连接处设置加劲肋,从而确保支架6与底座204的连接稳定性。
具体的说,立柱2的Z向行程能够设置在4500毫米以上,其立柱2整体采用框架式结构,在设备安装之前通过CAE软件进行模型分析,从而确定立柱2在不同高度下的载荷分布,通过在调整板206上开设减重孔207,一方面降低立柱2的自重,使立柱2整体重量减少,而不影响立柱2本身的强度刚性,另一方能够根据支架6的载荷分布情况,改善局部载荷分布不均匀的情况,从而使得支架6刚性和稳定性得到改善。
进一步的,参考图7所示,上述支架6包括竖直支杆601,上述竖直支杆601上设有加强筋602,上述加强筋602一侧设有截面筋603,上述截面筋603用于增大立柱2下端的横截面积。
通过截面筋603加大支架6下端框架结构的截面面积,从而使得支架6在 整体刚性强度得到增强,有助于减小支架6在工作过程中的变形量,从而使铣削机加工精度得到保证。
实施例3:
基于上述实施例,参考图4、图5、图6和图10所示,本发明的另一个实施例是,上述滑板3上设有与Z轴导轨203对应的Z轴滑块301,上述立柱2设有Z轴齿条209,上述滑板3上设有与Z轴齿条209啮合的Z轴斜齿轮302,上述滑板3用于在立柱2上移动。
其中Z轴齿条209长度至少具有4500毫米,利用Z轴导轨203形成Z坐标体系,采用Z轴齿条209啮合的Z轴斜齿轮302形成齿轮齿条传动,其Z轴导轨203采用德国HIWIN公司生产的机床专用重载型直线导轨,从而使得Z轴导轨203在竖直方向上能够约束滑板3,并且在滑板3处于重载荷的状态下,也具有良好限位作用。
其中,水平臂4在滑板3上移动,使得滑板3上的重心发生变化,虽然立柱2的结构能够承载这种变化风险,但是滑板3的重心变化,可能影响水平臂4的水平位置,因此Z轴导轨203至少具有两条以上,每个Z轴导轨203上具有两个以上的Z轴滑块301,其Z轴滑块301紧固在滑板3上,利用两点成线的原理,使得滑板3在立柱2上不会晃动,从而保证水平臂4移动不会出现偏转。
值得注意的是,Z坐标系和X坐标系采用相同的传动方式,Z坐标系采用Z轴齿条209与Z轴斜齿轮302配合的方式,从而确保Z坐标系的移动精度。
对于滑板3工作行程大于4500毫米的情况下,除了稳定性外,还需要保证精度要求。
进一步的,上述立柱2上端设有滑轮机构208,上述立柱2中设有配重,上述滑轮机构208用于套设绳索,且绳索两端分别连接配重和滑板3。
其中,水平臂4和铣削装置5的质量是恒定的,其配重为现有金属块,其立柱2内适配导柱,其金属块套设在导柱上,其配重的质量与滑板3的质量相对,从而降低Z轴齿条209与Z轴斜齿轮302配合时的能耗。使滑板3在立柱2上的移动相对顺畅。
实施例4:
基于上述实施例,参考图4、图5、图8和图9所示,本发明的另一个实施例是,上述滑板3上设有Y轴滑块303,上述水平臂4上设有与Y轴滑块303对应的Y轴导轨401,上述滑板3上设有丝杠螺母304,上述水平臂4上设有与丝杠螺母304对应的丝杠杆402,由丝杠杆402转动带动水平臂4移动。
其中,滑板3内侧Z轴滑块301,其Y轴滑块303安装在滑板3外侧,
其中,Y轴导轨401至少两个,且Y轴导轨401均匀分布在水平臂4的上下两侧,Y轴导轨401以水平臂4中轴线做对称设置,从而Y轴滑块303和Y轴导轨401相互配合,具有良好的稳定性,有效的确保滑板3在水平方向上限制水平臂4,使水平臂4与立柱2保持相互垂直。
其中,滑板3上固定设置丝杠螺母304,其丝杠螺母304与Y轴滑块303同侧安装,其中,上述水平臂4上的丝杠杆402,丝杠杆402位于两个Y轴导轨401之间,其水平臂4的丝杠杆402穿过丝杠螺母304,通过丝杠杆402自转,使得水平臂4在Y向上进行移动。
值得注意的是,由于立柱2支撑性能良好,同时配重能够辅助滑板3移动的稳定性,故相比于现有铣削机的力臂,水平臂4能够进一步加长,提高行程,一般Y方向行程可以大于或等于2000毫米。为了降低水平臂4的载荷,并保证水平臂4的抗弯曲强度,水平臂4采用整体框架式结构,并且也能通过现有的CAE软件分析强度和载荷分布,通过在水平臂4侧面开口,从而对水平臂4达到 减重目的。
进一步的,参考图9和图10所示,上述水平臂4上设有轴承座403,上述丝杠杆402固定在轴承座403中,其中,轴承座403固定端连接水平臂4的架体,其轴承座403的活动端连接丝杠杆402,从而丝杠杆402与轴承座403处于相对固定位置,通过轴承座403保持丝杠杆402的水平设置,从而丝杠杆402可以在轴承座403上转动。
上述水平臂4上设有电机404,上述电机404连接丝杠杆402首端,由电机404带动丝杠杆402转动。其中电机404与丝杠杆402动力连接,电机404为现有小型变速电机,通过电机404带动丝杠杆402转动,从而丝杠杆402在自转过程中,理由丝杠结构的特性,使得水平臂4在滑板3上移动。
在本说明书中所谈到的“一个实施例”、“另一个实施例”、“实施例”、“优选实施例”等,指的是结合该实施例描述的具体特征、结构或者特点包括在本申请概括性描述的至少一个实施例中。在说明书中多个地方出现同种表述不是一定指的是同一个实施例。进一步来说,结合任一实施例描述一个具体特征、结构或者特点时,所要主张的是结合其他实施例来实现这种特征、结构或者特点也落在本发明的范围内。
尽管这里参照本发明的多个解释性实施例对本发明进行了描述,但是,应该理解,本领域技术人员可以设计出很多其他的修改和实施方式,这些修改和实施方式将落在本申请公开的原则范围和精神之内。更具体地说,在本申请公开、附图和权利要求的范围内,可以对主题组合布局的组成部件和/或布局进行多种变型和改进。除了对组成部件和/或布局进行的变形和改进外,对于本领域技术人员来说,其他的用途也将是明显的。

Claims (7)

  1. 一种超大行程油泥铣削机,其特征在于:包括铸轨(1)和立柱(2),所述立柱(2)置于铸轨(1)上方,所述铸轨(1)上端设有X轴导轨(101),所述立柱(2)下端设有与X轴导轨(101)对应的X轴滑块(201),所述铸轨(1)上端设有X轴条形齿(102),所述立柱(2)下端设有与X轴条形齿(102)啮合的X轴斜齿轮(202),所述X轴斜齿轮(202)用于带动立柱(2)在铸轨(1)上移动;所述立柱(2)上设有Z轴导轨(203),所述Z轴导轨(203)与X轴导轨(101)相互垂直,所述Z轴导轨(203)上设有滑板(3),所述滑板(3)用于在Z轴导轨(203)上移动;所述滑板(3)上设有水平臂(4),所述水平臂(4)首端设有铣削装置(5)。
  2. 根据权利要求1所述的超大行程油泥铣削机,其特征在于:所述立柱(2)包括底座(204)和支架(6),所述X轴滑块(201)和X轴斜齿轮(202)均安装在底座(204)下端,所述底座(204)与铸轨(1)之间具有间隙;所述支架(6)上设有行程板(205)和调整板(206),所述Z轴导轨(203)安装在行程板(205)上,所述调整板(206)上开设减重孔(207)。
  3. 根据权利要求2所述的超大行程油泥铣削机,其特征在于:所述支架(6)包括竖直支杆(601),所述竖直支杆(601)上设有加强筋(602),所述加强筋(602)一侧设有截面筋(603),所述截面筋(603)用于增大立柱(2)下端的横截面积。
  4. 根据权利要求1所述的超大行程油泥铣削机,其特征在于:所述滑板(3)上设有与Z轴导轨(203)对应的Z轴滑块(301),所述立柱(2)设有Z轴齿条(209),所述滑板(3)上设有与Z轴齿条(209)啮合的Z轴斜齿轮(302),所述滑板(3)用于在立柱(2)上移动。
  5. 根据权利要求4所述的超大行程油泥铣削机,其特征在于:所述立柱(2) 上端设有滑轮机构(208),所述立柱(2)中设有配重,所述滑轮机构(208)用于套设绳索,且绳索两端分别连接配重和滑板(3)。
  6. 根据权利要求1所述的超大行程油泥铣削机,其特征在于:所述滑板(3)上设有Y轴滑块(303),所述水平臂(4)上设有与Y轴滑块(303)对应的Y轴导轨(401),所述滑板(3)上设有丝杠螺母(304),所述水平臂(4)上设有与丝杠螺母(304)对应的丝杠杆(402),由丝杠杆(402)转动带动水平臂(4)移动。
  7. 根据权利要求6所述的超大行程油泥铣削机,其特征在于:所述水平臂(4)上设有轴承座(403),所述丝杠杆(402)固定在轴承座(403)中,所述水平臂(4)上设有电机(404),所述电机(404)连接丝杠杆(402)首端,由电机(404)带动丝杠杆(402)转动。
PCT/CN2021/130809 2021-11-16 2021-11-16 超大行程油泥铣削机 WO2023087126A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180102860.4A CN118055820A (zh) 2021-11-16 2021-11-16 超大行程油泥铣削机
PCT/CN2021/130809 WO2023087126A1 (zh) 2021-11-16 2021-11-16 超大行程油泥铣削机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/130809 WO2023087126A1 (zh) 2021-11-16 2021-11-16 超大行程油泥铣削机

Publications (1)

Publication Number Publication Date
WO2023087126A1 true WO2023087126A1 (zh) 2023-05-25

Family

ID=86396068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130809 WO2023087126A1 (zh) 2021-11-16 2021-11-16 超大行程油泥铣削机

Country Status (2)

Country Link
CN (1) CN118055820A (zh)
WO (1) WO2023087126A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0553735A1 (de) * 1992-01-25 1993-08-04 BAUGERÄTE-UNION GMBH & CO., MASCHINENHANDELS KG Tischfräsmaschine
CN2645827Y (zh) * 2003-10-20 2004-10-06 渤海船舶重工有限责任公司 船上大型设备基座面板现场加工铣床
CN201371268Y (zh) * 2009-01-14 2009-12-30 南通松野自动化设备有限公司 一种悬臂式泡沫雕铣机
CN103433755A (zh) * 2013-08-26 2013-12-11 爱佩仪中测(成都)精密仪器有限公司 三维软质模型切削成型机及三维软质模型切削成型方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0553735A1 (de) * 1992-01-25 1993-08-04 BAUGERÄTE-UNION GMBH & CO., MASCHINENHANDELS KG Tischfräsmaschine
CN2645827Y (zh) * 2003-10-20 2004-10-06 渤海船舶重工有限责任公司 船上大型设备基座面板现场加工铣床
CN201371268Y (zh) * 2009-01-14 2009-12-30 南通松野自动化设备有限公司 一种悬臂式泡沫雕铣机
CN103433755A (zh) * 2013-08-26 2013-12-11 爱佩仪中测(成都)精密仪器有限公司 三维软质模型切削成型机及三维软质模型切削成型方法

Also Published As

Publication number Publication date
CN118055820A (zh) 2024-05-17

Similar Documents

Publication Publication Date Title
CN106112566A (zh) 一种卧式加工中心滑枕的导轨结构
CN209652778U (zh) 涵洞施工可移动式模板台车
CN110253292A (zh) 一种用于板材辊弯成型的辊压机及其工作方法
WO2023087126A1 (zh) 超大行程油泥铣削机
CN207495723U (zh) 水泥管片圆弧面自动收水抹平装置
CN109108944A (zh) 一种带有辅助提升功能的双桁架机器人及其提升方法
CN210239589U (zh) 一种具有滑动支架的锚杆钻机
CN201295865Y (zh) 数控导轨磨床横梁的上下移动结构
CN111059422A (zh) 一种具有快速定位功能的vr定位器
CN212024598U (zh) 一种提升倾转转运车旋转平移机构
CN212525972U (zh) 一种可调整锭模支架
CN214193497U (zh) 一种电镀用浮架升降结构
CN216428186U (zh) 一种水工弧形闸门减振装置
CN213352907U (zh) 柱体自动成型装置
CN214611254U (zh) 一种道路桥梁施工用吊装装置
CN221543922U (zh) 一种柔性调高主梁结构
CN202527904U (zh) 桥梁板肋装配机升降机构
CN219102414U (zh) 一种新型多向移动的重型挤出机底座
CN220201310U (zh) 一种汽车摆臂安装支座
CN112045644A (zh) 一种工业设计用多功能工作台
CN207330235U (zh) 一种升降台机械装置
CN219379716U (zh) 一种龙门加工中心的顶置齿轮箱滑枕结构
CN212151352U (zh) 一种起重机的导向机构
CN216765609U (zh) 一种桥梁钢结构移动施工设备
CN215093278U (zh) 一种新型组装摩托车智能装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21964293

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180102860.4

Country of ref document: CN