WO2023085731A1 - 리튬 이차전지용 비수계 전해액 및 이를 포함하는 리튬 이차전지 - Google Patents

리튬 이차전지용 비수계 전해액 및 이를 포함하는 리튬 이차전지 Download PDF

Info

Publication number
WO2023085731A1
WO2023085731A1 PCT/KR2022/017454 KR2022017454W WO2023085731A1 WO 2023085731 A1 WO2023085731 A1 WO 2023085731A1 KR 2022017454 W KR2022017454 W KR 2022017454W WO 2023085731 A1 WO2023085731 A1 WO 2023085731A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
secondary battery
lithium secondary
lithium
Prior art date
Application number
PCT/KR2022/017454
Other languages
English (en)
French (fr)
Inventor
김하은
이철행
오정우
정진현
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220144896A external-priority patent/KR20230069831A/ko
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to JP2023551783A priority Critical patent/JP2024508446A/ja
Priority to US18/277,481 priority patent/US11978858B2/en
Priority to CA3212114A priority patent/CA3212114A1/en
Priority to CN202280013502.0A priority patent/CN116830338A/zh
Priority to EP22893151.5A priority patent/EP4293784A1/en
Publication of WO2023085731A1 publication Critical patent/WO2023085731A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte solution for a secondary battery capable of improving high-temperature storage characteristics and lifespan characteristics of a lithium secondary battery and a lithium secondary battery including the same.
  • a lithium secondary battery is generally composed of a cathode active material made of lithium-containing transition metal oxide or a mixture of a carbon material or silicon material that can occlude and release lithium ions, a cathode active material, and optionally a binder and a conductive material, respectively.
  • “negative electrode” is applied to the current collector to manufacture “positive electrode” and “negative electrode”, and then laminated on both sides of the separator to form an electrode current collector of a predetermined shape, and then the electrode current collector and the non-aqueous electrolyte are inserted into the "battery” case.
  • it in order to secure the performance of the battery, it almost inevitably undergoes formation (formation) and aging (aging) processes.
  • the formation process is a step of activating a secondary battery by repeating charging and discharging after assembling the battery, and during the charging, lithium ions from a lithium-containing transition metal oxide used as a positive electrode move to and insert into a carbonaceous negative electrode active material used as a negative electrode. do.
  • highly reactive lithium ions react with the electrolyte to generate compounds such as Li 2 CO 3 , Li 2 O, LiOH, and LiF, and these compounds form a solid electrolyte interface (SEI) layer on the electrode surface. .
  • SEI solid electrolyte interface
  • the formation of the SEI layer is an important factor because the SEI layer closely affects lifespan and capacity retention.
  • the positive electrode active material with high energy density but low stability is used on the side of the positive electrode, so it is necessary to form an active material-electrolyte interface that can stabilize the positive electrode active material by protecting the surface of the positive electrode active material.
  • the surface paper of the cathode is decomposed into the electrolyte and causes side reactions.
  • lithium ion batteries often use high-voltage and high-content nickel cathodes in order to secure current energy density.
  • electrochemical side reactions on the surface of the cathode increase, and nickel-cobalt-manganese ( In the case of the NCM) cathode, as the nickel content increases, structural instability increases, which may promote decomposition of the electrolyte.
  • the solvent is decomposed to generate gas or resistance is increased, and HF is generated by salt decomposition to accelerate the elution of the transition metal from the cathode active material, which is a metal oxide.
  • problems such as increased resistance and deterioration of battery life may occur. Side reactions at additional electrodes may occur.
  • Patent Document 1 Republic of Korea Patent Publication No. 10-2011-0116019
  • Patent Document 2 Republic of Korea Patent Publication No. 10-2015-0089712
  • the present invention is to solve the conventional problems, and as an additive to a non-aqueous electrolyte solution for lithium secondary batteries, it is possible to form a film capable of effectively suppressing side reactions on the surfaces of positive and negative electrodes that inevitably occur in lithium secondary batteries. It is intended to provide an electrolyte solution for a lithium secondary battery capable of improving high-temperature storage characteristics and lifespan characteristics of a lithium secondary battery including the phosphoric acid-based additive having an excellent specific structure.
  • the present invention is intended to provide a lithium secondary battery having significantly improved battery durability, that is, high-temperature storage characteristics and lifespan characteristics, by including the non-aqueous electrolyte solution for a lithium secondary battery, so that a film can be formed on the surfaces of the positive electrode and the negative electrode. .
  • the present invention provides a non-aqueous electrolyte solution for a lithium secondary battery including a lithium salt, an organic solvent, and a phosphoric acid-based additive represented by Formula 1 below.
  • R is a functional group that helps film formation, and is a functional group having a chain or cyclic structure containing at least one element selected from H, C, N, O, F, P, S, and Si.
  • R in Formula 1 is the same as or different from each other, and each independently represents hydrogen, halogen, hydroxy, cyano, nitro, substituted or unsubstituted amino, substituted or unsubstituted mer Capto, substituted or unsubstituted carbamoyl, substituted or unsubstituted C 1-7 alkyl, substituted or unsubstituted C 1-7 halogenated alkyl, substituted or unsubstituted C 2-7 alkenyl, substituted or unsubstituted C 2-7 alkynyl, substituted or unsubstituted C 1-7 alkoxy, substituted or unsubstituted C 1-4 alkoxy-C 1-4 alkoxy, substituted or unsubstituted C 6-10 aryl-C 1-4 Alkoxy, substituted or unsubstituted C 2-7 alkenyloxy, substituted or unsubstituted C 2-7 alkynyloxy, substituted or
  • R in Formula 1 is the same as or different from each other, and each independently represents hydrogen, halogen, hydroxy, cyano, nitro, substituted or unsubstituted amino, substituted or unsubstituted C 1 -4 alkyl, substituted or unsubstituted C 1-4 halogenated alkyl, substituted or unsubstituted C 2-4 alkenyl, and substituted or unsubstituted C 2-4 alkynyl, substituted or unsubstituted C 1-4 selected from the group consisting of alkoxy, substituted or unsubstituted mono- or di-C 1-4 alkylamino, substituted or unsubstituted C 1-4 alkylcarbonyl, and substituted or unsubstituted C 1-4 alkoxycarbonyl It provides a non-aqueous electrolyte solution for a lithium secondary battery.
  • R in Formula 1 is the same as or different from each other, and each independently hydrogen, halogen, substituted or unsubstituted C 1-4 alkyl, substituted or unsubstituted C 1-4 halogenated alkyl , And a substituted or unsubstituted C 2-4 It provides a non-aqueous electrolyte solution for a secondary battery selected from the group consisting of alkenyl.
  • One embodiment of the present invention provides a non-aqueous electrolyte solution for a lithium secondary battery, wherein the phosphoric acid-based additive is included in an amount of 0.01% to 10% by weight based on the total weight of the electrolyte solution.
  • the lithium salt is LiCl, LiBr, LiI, LiBF 4 , LiClO 4 , LiB 10 Cl 10 , LiAlCl 4 , LiAlO 4 , LiPF 6 , LiCF 3 SO 3 , LiCH 3 CO 2 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiCH 3 SO 3 , LiSO 3 F, LiN(SO 2 F) 2 , LiN(SO 2 CF 2 CF 3 ) 2 and LiN(SO 2 CF 3 ) 2 selected from the group consisting of Provided is a non-aqueous electrolyte solution for phosphorus and lithium secondary batteries.
  • One embodiment of the present invention provides a non-aqueous electrolyte solution for a lithium secondary battery in which the concentration of the lithium salt is 0.1M to 3M.
  • One embodiment of the present invention provides a non-aqueous electrolyte solution for a lithium secondary battery, wherein the organic solvent includes at least one selected from the group consisting of ether, ester, amide, linear carbonate, and cyclic carbonate.
  • One embodiment of the present invention provides a lithium secondary battery including a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and the non-aqueous electrolyte for the lithium secondary battery.
  • An embodiment of the present invention provides a lithium secondary battery in which the positive electrode includes a lithium composite transition metal oxide having a layered structure as a positive electrode active material and having a nickel content of 60 atm% or more among the total transition metals.
  • the non-aqueous electrolyte for a lithium secondary battery according to the present invention includes a phosphoric acid-based additive having a specific structure, thereby suppressing the decomposition reaction of the non-aqueous electrolyte itself and forming a film on the surface of the positive and negative electrodes, which inevitably occurs in the lithium secondary battery. It shows the effect of effectively suppressing side reactions on the surface of the anode and cathode.
  • the durability of the lithium secondary battery including the non-aqueous electrolyte solution for lithium secondary battery that is, the effect of improving high-temperature storage characteristics and lifespan characteristics is exhibited.
  • C n1-n2 means that the number of carbon atoms in the functional group is n1 to n2.
  • alkyl refers to a straight-chain or branched-chain saturated hydrocarbon containing one radical, and one radical determines the binding site as a functional group, and the binding site is not particularly limited.
  • alkyl include, but are not limited to, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, t-butyl, n-pentyl, i-pentyl, and hexyl. don't
  • alkylene refers to a straight-chain or branched-chain saturated hydrocarbon containing two radicals, each of the two radicals determining a binding site as a functional group, and the binding site is not particularly limited.
  • alkylene include, but are not limited to, methylene and ethylene.
  • alkenyl includes one radical and refers to a straight or branched chain hydrocarbon having at least one carbon-carbon double bond, one radical as a functional group determining the bonding site, and the bonding site is not particularly limited.
  • alkenyl include, but are not necessarily limited to, ethenyl and propenyl, and the like.
  • alkynyl includes one radical and means a straight or branched chain hydrocarbon having at least one carbon-carbon triple bond, one radical as a functional group determining the bonding site, and the bonding site is not particularly limited.
  • alkynyl include, but are not necessarily limited to, acetylenyl and 1-propynyl.
  • halogen means fluorine (F), chlorine (Cl), bromine (Br) or iodine (I).
  • halogenated alkyl means that one or more hydrogens in an alkyl are replaced with a halogen.
  • cycloalkyl includes one radical and means a saturated hydrocarbon having one or more rings, and one radical determines the binding site as a functional group, and the binding site is not particularly limited.
  • examples of the term “cycloalkyl” include, but are not necessarily limited to, cyclopentyl, cyclohexyl, and cycloheptyl.
  • cycloalkenyl refers to a hydrocarbon containing one radical, having one or more rings, and having one or more carbon-carbon double bonds in the ring, wherein one radical is a functional group, indicating a bonding position. determined, and the binding site is not particularly limited.
  • examples of the term “cycloalkenyl” include, but are not necessarily limited to, cyclopentenyl, cyclohexenyl, and cycloheptenyl.
  • n 1 -n 2 member means that the sum of the number of carbon atoms and the number of hetero atoms is n 1 to n 2 .
  • a hetero element broadly means an element other than carbon, but in this specification, the term “n 1 -n 2 member” is used in front of a cyclic functional group to indicate the number of elements constituting the ring.
  • heterocycloalkyl refers to a saturated hydrocarbon containing one radical, having one or more rings, and having one or more heteroatoms in the ring, wherein one radical determines the bonding site as a functional group and , the bonding position is not particularly limited.
  • the hetero element may form a ring, and exemplarily includes O, N, S, P, and the like.
  • heterocycloalkyl include, but are not necessarily limited to, piperidinyl and tetrahydropyranyl.
  • aryl includes one radical and refers to an aromatic cyclic hydrocarbon having one or more rings, and one radical determines the binding site as a functional group, and the binding site is not particularly limited.
  • examples of the term “aryl” include, but are not necessarily limited to, phenyl and naphthyl, and the like.
  • arylene includes two radicals and refers to an aromatic cyclic hydrocarbon having at least one ring, each of the two radicals determining a bonding site as a functional group, and the bonding position is not particularly limited.
  • arylene include, but are not limited to, phenylene and naphthylene.
  • alkylene and arylene may be combined and used in the form of, for example, methylene-phenylene.
  • heteroaryl refers to an aromatic cyclic hydrocarbon containing one radical, having one or more rings, and one or more heteroatoms in the ring, one radical being a functional group, determining the bonding site. And, the bonding position is not particularly limited.
  • the hetero element may form a ring, and exemplarily includes O, N, S, and the like. Examples of the term “heteroaryl” include, but are not necessarily limited to, pyrrolyl and furanyl.
  • alkoxy refers to a functional group of the form -OR a where R a is an alkyl as described above.
  • alkoxy include, but are not necessarily limited to, methoxy, difluoromethoxy, trifluoromethoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy and t-butoxy, and the like It doesn't work.
  • alkoxy-alkoxy refers to a functional group of the form -OR a -OR b where R a is alkylene and R b is the aforementioned alkyl.
  • alkoxy-alkoxy include, but are not necessarily limited to, methoxy-methoxy, methoxy-ethoxy, and ethoxy-ethoxy.
  • aryl-alkoxy refers to a functional group of the form -OR a -R b where R a is alkylene and R b is the aforementioned aryl.
  • R a is alkylene
  • R b is the aforementioned aryl.
  • aryl-alkoxy include, but are not necessarily limited to, phenyl-methoxy and phenyl-ethoxy.
  • alkenyloxy refers to a functional group of the form —OR a where R a is alkenyl as described above.
  • alkenyloxy include, but are not necessarily limited to, ethenyloxy and propenyloxy.
  • alkynyloxy refers to a functional group of the form —OR a where R a is alkynyl as described above.
  • R a is alkynyl as described above.
  • alkynyloxy include, but are not necessarily limited to, ethynyloxy and propynyloxy.
  • cycloalkyloxy refers to a functional group of the form —OR a where R a is a cycloalkyl as described above.
  • R a is a cycloalkyl as described above.
  • examples of the term “cycloalkyloxy” include, but are not necessarily limited to, cyclopentyloxy and cyclohexyloxy.
  • cycloalkenyloxy refers to a functional group of the form -OR a where R a is the aforementioned cycloalkenyl.
  • examples of the term “cycloalkenyloxy” include, but are not necessarily limited to, cyclopentenyloxy and cyclohexenyloxy.
  • heterocycloalkyloxy refers to a functional group of the form —OR a where R a is the aforementioned heterocycloalkyl.
  • heterocycloalkyloxy include, but are not necessarily limited to, piperidinyloxy and tetrahydropyranyloxy.
  • aryloxy refers to a functional group of the form —OR a where R a is the aforementioned aryl.
  • R a is the aforementioned aryl.
  • aryloxy include, but are not necessarily limited to, phenyloxy and naphthyloxy.
  • heteroaryloxy refers to a functional group of the form —OR a where R a is the aforementioned heteroaryl.
  • heteroaryloxy include, but are not necessarily limited to, pyrrolyloxy and furanyloxy.
  • mercapto refers to a functional group of the form -SH.
  • hydroxy refers to a functional group in the form of -OH.
  • amino refers to a functional group of the form -NH 2 .
  • the amino may be substituted with one or more hydrogens such as the aforementioned alkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl.
  • one hydrogen in the amino is substituted with an alkyl, it is termed a mono-alkylamino, and when two hydrogens in the amino are substituted with an alkyl, it is termed a di-alkylamino.
  • carbonylamino refers to a functional group of the form -NHC(O ) R a where R a is an alkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl, etc. as described above.
  • R a is an alkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl, etc. as described above.
  • hydrogen may also be substituted with an alkyl or the like.
  • cyano refers to a functional group of the form -CN.
  • carbamoyl refers to a functional group in the form of —C(O)NH 2 .
  • one or more hydrogens may also be substituted with alkyl or the like.
  • nitro refers to a functional group in the form of —NO 2 .
  • carbonyl refers to a compound of the form -C(O ) R a where R a is an alkyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, alkoxy, alkenyloxy, alkynyloxy, etc., as described above. means a functional group.
  • R a is alkyl
  • alkylcarbonyl when R a is alkyl, it is also termed “alkylcarbonyl”, and when R a is alkoxy, it is also termed “alkoxycarbonyl”.
  • R a is alkenyloxy, it is also named “alkenyloxycarbonyl”, and when R a is alkynyloxy, it is also named “alkynyloxycarbonyl”.
  • substituted or unsubstituted means that the corresponding functional group exists in a substituted or unsubstituted state, and substitution means that a hydrogen atom bonded to a carbon atom of a compound is changed to another substituent, and the substituted
  • the position is not limited as long as it is a position where a hydrogen atom is substituted, that is, a position where a substituent can be substituted, and when two or more substituents are substituted, two or more substituents may be the same or different from each other.
  • substituent is a substituent commonly used in the art, it may be used without particular limitation.
  • the substituents are, for example, halogen, hydroxy, cyano, nitro, amino, C 1-4 alkyl, C 1-4 halogenated alkyl, C 1-4 alkoxy, C 1-4 alkoxy-C 1-4 alkoxy, C 3-7 cycloalkyl, C 3-7 cycloalkenyl, C 3-7 cycloalkyloxy, 3-7 membered heterocycloalkyl, C 6-10 aryl, 5-10 membered heteroaryl, mono- or di-C 1-4 alkylamino, mono- or di-C 6-10 arylamino, carbonylamino, C 1-4 alkylcarbonyl, C 1-4 alkoxycarbonyl, C 2-4 alkenyloxycarbonyl, and C 2-4 alkynyloxycarbonyl and the like.
  • the present invention provides a non-aqueous electrolyte solution for a lithium secondary battery including a lithium salt, an organic solvent, and a phosphoric acid-based additive represented by Formula 1 below.
  • R is a functional group that helps film formation, and is a functional group having a chain or cyclic structure containing at least one element selected from H, C, N, O, F, P, S, and Si.
  • R in Formula 1 is the same as or different from each other, and each independently represents hydrogen, halogen, hydroxy, cyano, nitro, substituted or unsubstituted amino, substituted or unsubstituted mer, Capto, substituted or unsubstituted carbamoyl, substituted or unsubstituted C 1-7 alkyl, substituted or unsubstituted C 1-7 halogenated alkyl, substituted or unsubstituted C 2-7 alkenyl, substituted or unsubstituted C 2-7 alkynyl, substituted or unsubstituted C 1-7 alkoxy, substituted or unsubstituted C 1-4 alkoxy-C 1-4 alkoxy, substituted or unsubstituted C 6-10 aryl-C 1-4 Alkoxy, substituted or unsubstituted C 2-7 alkenyloxy, substituted or unsubstituted C 2-7 alkynyloxy, substituted
  • R in Formula 1 is the same as or different from each other, and each independently represents hydrogen, halogen, hydroxy, cyano, nitro, substituted or unsubstituted amino, substituted or unsubstituted C 1-4 alkyl, substituted or unsubstituted C 1-4 halogenated alkyl, substituted or unsubstituted C 2-4 alkenyl, and substituted or unsubstituted C 2-4 alkynyl, substituted or unsubstituted C 1- 4 from the group consisting of alkoxy, substituted or unsubstituted mono- or di-C 1-4 alkylamino, substituted or unsubstituted C 1-4 alkylcarbonyl, and substituted or unsubstituted C 1-4 alkoxycarbonyl may be selected.
  • R is the same as or different from each other, and each independently hydrogen, halogen, substituted or unsubstituted C 1-4 Alkyl, substituted or unsubstituted C 1-4 It may be selected from the group consisting of halogenated alkyl and substituted or unsubstituted C 2-4 alkenyl.
  • the phosphoric acid-based additive may be included in an amount of 0.01% to 10% by weight based on the total weight of the electrolyte solution.
  • the phosphoric acid-based additive is 0.01% by weight or more, 0.05% by weight or more, 0.1% by weight or more, 0.5% by weight or more, 1% by weight or more, 2% by weight or more, 10% by weight or less, 9% by weight or more, based on the total weight of the electrolyte.
  • the content of the phosphoric acid-based additive When the content of the phosphoric acid-based additive is less than the above range, there is no effect of addition, such as suppressing swelling of the battery or insignificant improvement in the capacity retention rate during high-temperature storage or long-term battery operation, and the resistance increase rate of the lithium secondary battery
  • the content of the phosphoric acid-based additive exceeds the above range, the resistance increases excessively, resulting in a rapid deterioration in life, and the characteristics of the lithium secondary battery are rather deteriorated. do. Therefore, it is preferable that the content of the phosphoric acid-based additive satisfies the above range.
  • the non-aqueous electrolyte solution for a lithium secondary battery lithium difluoro oxalate borate (LiDFOB), lithium bisoxalate borate (LiB (C 2 O 4 ) 2 , LiBOB), lithium tetrafluoro Roborate (LiBF 4 ), lithium difluorooxalatophosphate (LiDFOP), lithium tetrafluoro oxalatophosphate (LiTFOP), lithium difluorophosphate (LiPO 2 F 2 ), fluoroethylene carbonate (FEC), vinyl Ren carbonate (VC), vinyl ethylene carbonate (VEC), divinyl sulfone, ethylene sulfite, ethylene sulfate, propylene sulfite, diallyl sulfonate sulfonate), ethane sultone, propane sulton (PS), butane sultone (butane sulton), ethene
  • LiDFOB lithium difluor
  • the non-aqueous electrolyte for a lithium secondary battery may include a lithium salt, and the lithium salt is LiCl, LiBr, LiI, LiBF 4 , LiClO 4 , LiB 10 Cl 10 , LiAlCl 4 , LiAlO 4 , LiPF 6 , LiCF 3 SO 3 , LiCH 3 CO 2 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiCH 3 SO 3 , LiSO 3 F, LiFSI(Lithium bis(fluorosulfonyl)imide, LiN(SO 2 F) 2 ), LiBETI (lithium bisperfluoroethanesulfonimide, LiN (SO 2 CF 2 CF 3 ) 2 and LiTFSI (lithium (bis) trifluoromethanesulfonimide, LiN (SO 2 CF 3 ) 2 ) It may include one or more selected from the group consisting of.
  • the concentration of the lithium salt may be 0.1M to 3.0M, preferably 0.5M to 2.5M, more preferably 0.8M to 2.0M.
  • the concentration of the lithium salt is 0.1M or more, 0.2M or more, 0.3M or more, 0.4M or more, 0.5M or more, 0.6M or more, 0.7M or more, 0.8M or more, 0.9M or more, 1.0M or more, 3.0M It may be less than or equal to 2.5M, less than or equal to 2.0M, or less than or equal to 1.5M. If the concentration of the lithium salt is less than 0.1 M, the conductivity of the electrolyte solution is lowered and the performance of the electrolyte solution is deteriorated.
  • the concentration of the lithium salt preferably satisfies the above range.
  • the lithium salt acts as a source of lithium ions in the battery, enabling basic operation of the lithium secondary battery.
  • the non-aqueous electrolyte for a lithium secondary battery may be used by mixing LiPF 6 and other types of lithium salts other than LiPF 6 .
  • Lithium salts other than LiPF 6 include LiCl, LiBr, LiI, LiBF 4 , LiClO 4 , LiB 10 Cl 10 , LiAlCl 4 , LiAlO 4 , LiPF 6 , LiCF 3 SO 3 , LiCH 3 CO 2 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiCH 3 SO 3 , LiSO 3 F, LiFSI (Lithium bis(fluorosulfonyl)imide, LiN(SO 2 F) 2 ), LiBETI (lithium bisperfluoroethanesulfonimide, LiN(SO 2 CF 2 CF 3 ) 2 And LiTFSI (lithium (bis) trifluoromethanesulfonimide, LiN (SO 2 CF 3 ) 2 ) It may be one or more selected from the group consisting of.
  • the molar ratio between LiPF 6 and a lithium salt other than LiPF 6 may be 1:1 to 10:1, preferably 4:1 to 10:1, and more preferably 6:1 to 10:1. It may be 10:1.
  • the molar ratio between LiPF 6 and a type of lithium salt other than LiPF 6 it is possible to stably form a film capable of suppressing corrosion of a current collector while suppressing a side reaction of the electrolyte solution.
  • the non-aqueous electrolyte for a lithium secondary battery may include an organic solvent, and the organic solvent is a solvent commonly used in lithium secondary batteries, for example, ether compounds, esters (Acetates , Propionates) compounds, amide compounds, linear carbonate or cyclic carbonate compounds, etc. may be used alone or in combination of two or more.
  • organic solvent is a solvent commonly used in lithium secondary batteries, for example, ether compounds, esters (Acetates , Propionates) compounds, amide compounds, linear carbonate or cyclic carbonate compounds, etc. may be used alone or in combination of two or more.
  • a mixture of linear carbonate and cyclic carbonate can be used as an organic solvent.
  • the organic solvent when linear carbonate and cyclic carbonate are mixed and used, dissociation and movement of the lithium salt can be smoothly performed.
  • the cyclic carbonate-based compound and the linear carbonate-based compound may be mixed in a volume ratio of 1:9 to 6:4, preferably 1:9 to 4:6, and more preferably 2:8 to 4:6 can
  • linear carbonate compound examples include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), ethylmethyl carbonate (EMC), methylpropyl carbonate (MPC) and ethylpropyl carbonate (EPC).
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • DPC dipropyl carbonate
  • EMC ethylmethyl carbonate
  • MPC methylpropyl carbonate
  • EPC methylpropyl carbonate
  • EPC ethylpropyl carbonate
  • EPC ethylpropyl carbonate
  • cyclic carbonate compound examples include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3- and a single compound selected from the group consisting of pentylene carbonate, vinylene carbonate, and halides thereof, or a mixture of at least two or more thereof.
  • the lithium secondary battery including the non-aqueous electrolyte for lithium secondary battery may have an operating voltage of 4.0V or more, preferably 4.1V or more, more preferably It may have an operating voltage of 4.2V or higher.
  • the operating voltage of the lithium secondary battery is less than 4.0V, the difference according to the addition of the phosphoric acid-based additive of the present invention is not large, but in the lithium secondary battery having an operating voltage of 4.0V or more, high temperature storage safety and capacity according to the addition of the additive It shows the effect of rapidly increasing the characteristics.
  • the lithium secondary battery of the present invention includes a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte solution for a lithium secondary battery. More specifically, it includes at least one positive electrode, at least one negative electrode, a separator that can be selectively interposed between the positive electrode and the negative electrode, and the non-aqueous electrolyte for a lithium secondary battery. At this time, since the content of the non-aqueous electrolyte for a lithium secondary battery is the same as the above, a detailed description thereof will be omitted.
  • the cathode may be prepared by coating a cathode active material slurry including a cathode active material, an electrode binder, an electrode conductive material, and a solvent on a cathode current collector.
  • the positive electrode may have a layered structure as a positive electrode active material.
  • the cathode current collector is not particularly limited as long as it does not cause chemical change in the battery and has conductivity.
  • the positive electrode current collector may form fine irregularities on the surface to enhance the bonding strength of the positive electrode active material, and may be used in various forms such as a film, sheet, foil, net, porous body, foam, or nonwoven fabric.
  • the cathode active material is a compound capable of reversible intercalation and deintercalation of lithium, and specifically, may include a lithium composite metal oxide containing lithium and at least one metal such as cobalt, manganese, nickel, or aluminum. there is.
  • the lithium composite metal oxide is lithium-manganese-based oxide (eg, LiMnO 2 , LiMn 2 O 4 , etc.), lithium-cobalt-based oxide (eg, LiCoO 2 , etc.), lithium-nickel-based oxide (eg, LiNiO 2 , etc.), lithium-nickel-manganese oxide (eg, LiNi 1-Y1 Mn Y1 O 2 (where 0 ⁇ Y1 ⁇ 1), LiMn 2-z1 Ni z1 O 4 ( Here, 0 ⁇ Z1 ⁇ 2), etc.), lithium-nickel-cobalt-based oxide (eg, LiNi 1-Y2 Co Y2 O 2 (here, 0 ⁇ Y2 ⁇ 1), etc.), lithium-manganese-cobalt based oxides (e.g., LiCo 1-Y3 Mn Y3 O 2 (where 0 ⁇ Y3 ⁇ 1), LiMn 2-z2 Co z2 O 4 (where 0 ⁇ Z2 ⁇ 2), etc.),
  • the lithium composite metal oxide is LiCoO 2 , LiMnO 2 , LiNiO 2 , lithium nickel manganese cobalt oxide (eg, Li(Ni 0.6 Mn 0.2 Co 0.2 )O 2 , Li(Ni 0.5 Mn 0.3 Co 0.2 )O 2 , or Li(Ni 0.8 Mn 0.1 Co 0.1 )O 2 , etc.), or lithium nickel cobalt aluminum oxide (eg, LiNi 0.8 Co 0.15 Al 0.05 O 2 etc.), etc.
  • the lithium composite metal oxide is Li(Ni 0.6 Mn 0.2 Co 0.2 )O 2 ,Li(Ni 0.5 Mn 0.3 Co 0.2 )O 2 , Li(Ni 0.7 Mn 0.15 Co 0.15 )O 2 , Li(Ni 0.8 Mn 0.1 Co 0.1 )O 2 or Li(Ni 0.85 Mn 0.08 Co 0.05 Al 0.02 )O 2 , and the like, these Any one or a mixture of two or more may be used.
  • the cathode active material may include a lithium composite transition metal oxide having a nickel content of 60 atm% or more of the total transition metal.
  • a lithium composite transition metal oxide having a nickel content of 60 atm% or more of the total transition metal.
  • it may be 60atm% or more, 65atm% or more, 70atm% or more, 75atm% or more, 80atm% or more, 85atm% or more, or 90atm% or more.
  • the binder for the electrode is a component that assists in the bonding of the positive electrode active material and the electrode conductive material and the bonding to the current collector.
  • polyvinylidene fluoride polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene (PE) , polypropylene, ethylene-propylene-dienter polymer (EPDM), sulfonated EPDM, styrene-butadiene rubber, fluororubber, various copolymers, and the like.
  • the electrode conductive material is a component for further improving the conductivity of the cathode active material.
  • the electrode conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite; carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, and carbon nanotubes; conductive fibers such as carbon fibers and metal fibers; metal powders such as carbon fluoride, aluminum, and nickel powder; conductive whiskeys such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives may be used.
  • conductive materials include Chevron Chemical Company (Chevron Chemical Company), Denka Black (Denka Singapore Private Limited), Gulf Oil Company products, etc.), Ketjenblack, and EC series (Armak Company), Vulcan XC-72 (Cabot Company) and Super P (Timcal).
  • the solvent may include an organic solvent such as NMP (N-methyl-2-pyrrolidone), and may be used in an amount that provides a desired viscosity when including the cathode active material, and optionally a binder for a cathode and a cathode conductive material. there is.
  • NMP N-methyl-2-pyrrolidone
  • the negative electrode may be prepared by coating a negative electrode active material slurry including a negative electrode active material, an electrode binder, an electrode conductive material, and a solvent on a negative electrode current collector. Meanwhile, the negative electrode may use a metal negative current collector itself as an electrode.
  • the anode current collector is not particularly limited as long as it does not cause chemical change in the battery and has high conductivity.
  • copper, stainless steel, aluminum, nickel, titanium, fired carbon, copper or stainless steel A surface treated with carbon, nickel, titanium, silver, or the like, an aluminum-cadmium alloy, or the like may be used.
  • fine irregularities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as films, sheets, foils, nets, porous bodies, foams, and nonwoven fabrics.
  • anode active material examples include natural graphite, artificial graphite, and carbonaceous materials; lithium-containing titanium composite oxide (LTO), metals (Me) that are Si, Sn, Li, Zn, Mg, Cd, Ce, Ni or Fe; alloys composed of the metals (Me); an oxide (MeOx) of the metal (Me); and at least one negative electrode active material selected from the group consisting of a composite of the metal (Me) and carbon.
  • LTO lithium-containing titanium composite oxide
  • metals (Me) that are Si, Sn, Li, Zn, Mg, Cd, Ce, Ni or Fe
  • an oxide (MeOx) of the metal (Me) examples include at least one negative electrode active material selected from the group consisting of a composite of the metal (Me) and carbon.
  • a conventional porous polymer film conventionally used as a separator for example, polyolefins such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer
  • a porous polymer film made of a polymer may be used alone or by laminating them, or a conventional porous nonwoven fabric, for example, a nonwoven fabric made of high melting point glass fiber, polyethylene terephthalate fiber, etc. may be used, but is not limited thereto. no.
  • N-methyl A positive electrode active material slurry was prepared by mixing in a pyrrolidone solvent. After applying the prepared cathode active material slurry to one side of an aluminum current collector (15 ⁇ m) (loading amount: 0.40-0.55 mg/25cm2), drying at 130 ° C for more than 20 minutes, 1-2 times to achieve a porosity of 24% A positive electrode was prepared by rolling.
  • An electrode in which natural graphite and artificial graphite were mixed at a ratio of 2:8 was used as the negative electrode, and an electrode assembly was prepared by interposing a porous polyethylene separator between the positive electrode and the negative electrode. After placing the electrode assembly inside the battery case, a lithium secondary battery was manufactured by injecting an electrolyte into the case.
  • LiPF 6 lithium hexafluorophosphate
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that 1% by weight of a phosphoric acid-based additive was added to the electrolyte.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that 3% by weight of a phosphoric acid-based additive was added to the electrolyte.
  • a lithium secondary battery was manufactured in the same manner as in Example 2, except for using a phosphoric acid-based additive in which R in Formula 1 is all F in the electrolyte solution.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that 5% by weight of a phosphoric acid-based additive was added to the electrolyte.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the phosphoric acid-based additive was not added to the electrolyte.
  • the lithium secondary batteries prepared in Examples 1 to 5 and Comparative Example 1 were fully charged to 100% (2000 mAh) of SOC under a voltage condition of 4.2 V. Thereafter, after storage at a high temperature in a constant temperature chamber at 60 ° C. for 8 weeks, the capacity retention rate (%), resistance retention rate (%) and volume increase rate (%) were measured, and are shown in Table 1 below.
  • Example 1 Capacity retention rate (%) Resistance retention rate (%) Volume increase rate (%)
  • Capacity retention rate (%) (N parking capacity) / (initial capacity) ⁇ 100
  • Resistance retention rate (%) Using PEBC0506 from PNEsolution, after setting SOC 50 based on discharge capacity, resistance was measured during CC pulse discharge with a current of 2.5C.
  • Resistance increase rate (%) (N parking resistance - initial resistance) / (initial resistance) ⁇ 100
  • volume increase rate (%) Using TWD-PLS, TWD-150DM, the initial volume was measured after setting at SOC 100 before high temperature storage, and the volume was measured after cooling at room temperature immediately after high temperature storage.
  • Volume increase rate (%) (Volume at week N - Initial volume) / (Initial volume) ⁇ 100
  • the lithium secondary batteries (Examples 1 to 5) in which the phosphoric acid-based additive according to the present invention was added to the electrolyte not only had a high capacity retention rate even after storage at a high temperature, but also had a low resistance retention rate and a low volume increase rate, so that the phosphoric acid-based additive It can be seen that the high-temperature stability is significantly improved compared to the lithium secondary battery (Comparative Example 1) not added to the electrolyte.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

리튬염, 유기 용매 및 특정 구조의 인산계 첨가제를 포함하는 리튬 이차전지용 비수계 전해액이 제공된다. 본 발명의 일 구체예에 따른 인산계 첨가제를 전해액에 첨가함으로써, 리튬 이차전지는 고온 안정성이 현저하게 개선될 수 있다.

Description

리튬 이차전지용 비수계 전해액 및 이를 포함하는 리튬 이차전지
본 발명은 리튬 이차전지의 고온 저장 특성 및 수명 특성을 향상시킬 수 있는 이차전지용 비수계 전해액 및 이를 포함하는 리튬 이차전지에 관한 것이다.
본 출원은 2021년 11월 12일자 한국 특허 출원 제10-2021-0155296호 및 2022년 11월 3일자 한국 특허 출원 제10-2022-0144896호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.
최근 리튬 이차전지의 응용 영역이 전기, 전자, 통신, 컴퓨터와 같은 전자 기기의 전력 공급뿐만 아니라, 자동차나 전력 저장 장치와 같은 대면적 기기의 전력 저장 공급까지 급속히 확대됨에 따라, 고용량, 고출력이면서도 고안정성인 이차전지에 대한 요구가 늘어나고 있다.
리튬 이차전지는 일반적으로 리튬 함유 전이금속 산화물 등으로 된 양극 활물질 또는 리튬 이온을 흡장 및 방출할 수 있는 탄소재 혹은 실리콘재 음극 활물질과, 선택적으로 바인더 및 도전재를 혼합한 물질을 각각 양극 집전체 및 음극 집전체에 도포하여 양극과 음극을 제조하고, 이를 세퍼레이터의 양측에 적층하여 소정 형상의 전극 집전체를 형성한 다음, 이 전극 집전체와 비수 전해액을 전지 케이스에 삽입하여 제조된다. 여기에 전지의 성능을 확보하고자 거의 필수적으로 포메이션(formation, 화성) 및 에이징(aging) 공정을 거치게 된다.
상기 포메이션 공정은 전지 조립 후 충전과 방전을 되풀이하여 이차전지를 활성화하는 단계로, 상기 충전시 양극으로 사용되는 리튬 함유 전이금속 산화물로부터 나온 리튬 이온이 음극으로 사용되는 탄소재 음극 활물질로 이동하여 삽입된다. 이때 반응성이 강한 리튬 이온은 전해질과 반응하여 Li2CO3, Li2O, LiOH, LiF 등의 화합물을 생성하고, 이 화합물들은 전극 표면에 고체 전해질 계면(Solid Electrolyte Interface: SEI) 층을 형성한다. 상기 SEI 층은 수명 및 용량 유지에 밀접하게 영향을 주므로 SEI 층 형성은 중요한 인자이다.
최근, 특히 자동차용 리튬 이차전지에서는 고용량, 고출력, 장기 수명 특성이 중요해지고 있다. 고용량화를 위하여 양극의 측면에서는 에너지 밀도가 높으나 안정성이 낮은 양극 활물질을 사용하므로, 이에 따라, 양극 활물질의 표면을 보호하여 양극 활물질을 안정화시킬 수 있는 활물질-전해질 계면의 형성이 필요하며, 음극의 측면에서는 음극의 표면종이 전해액에 분해되어 부반응을 일으키는 문제점 등이 보고되고 있다.
구체적으로, 리튬 이온 전지는 현재 에너지 밀도를 확보하기 위하여, 고전압 및 고함량 니켈 양극을 사용하는 경우가 많은데, 전지의 전압이 증가할수록 양극 표면에 전기 화학적 부반응이 증가하고, 니켈-코발트-망간(NCM) 양극의 경우 니켈 함량이 증가할수록 구조 불안정성이 증가하여 전해액의 분해가 촉진될 수 있다. 이 때, 용매가 분해되어 가스가 발생하거나 저항이 증가하고 염 분해에 의해 HF가 생성되어 금속 산화물인 양극 활물질의 전이금속 용출을 가속화시킬 수 있다. 또한, 활물질 표면 위에 형성되는 SEI 층을 파괴시켜 전지의 저항 증가, 수명 열화 등의 문제를 발생시킬 수 있으며, 고온에서 저장 시 전해액 내 발생한 HF, PF5 등에 의하여 양극 구조와 SEI 층이 서서히 붕괴되어 추가적인 전극에서의 부반응을 발생시킬 수 있다.
따라서, 상술한 문제를 해결하기 위하여, 해당 기술분야에서는 고온 저장 시 부반응을 억제할 수 있는 견고한 SEI 층을 형성하기 위한 연구가 지속되고 있으며, 그의 일환으로 전해액 내 첨가제에 대한 연구도 지속되고 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 대한민국 공개특허공보 제10-2011-0116019호
(특허문헌 2) 대한민국 공개특허공보 제10-2015-0089712호
본 발명은 종래 문제점을 해결하기 위한 것으로, 리튬 이차전지용 비수계 전해액에 첨가제로서 리튬 이차전지에서 필연적으로 발생하게 되는 양극 및 음극 표면에서의 부반응을 효과적으로 억제할 수 있는 피막을 형성하는 것이 가능한 전도성이 우수한 특정 구조의 인산계 첨가제를 포함함으로써, 이를 포함하는 리튬 이차전지의 고온 저장 특성 및 수명 특성을 향상시킬 수 있는 리튬 이차전지용 전해액을 제공하고자 한다.
또한, 본 발명은 상기 리튬 이차전지용 비수계 전해액을 포함함으로써, 양극 및 음극의 표면에 피막 형성이 가능하여 전지의 내구성, 즉, 고온 저장 특성 및 수명 특성이 현저하게 향상된 리튬 이차전지를 제공하고자 한다.
상기 목적을 달성하기 위하여, 본 발명은, 리튬염, 유기 용매 및 하기 화학식 1로 표시되는 인산계 첨가제를 포함하는 리튬 이차전지용 비수계 전해액을 제공한다.
[화학식 1]
Figure PCTKR2022017454-appb-img-000001
상기 화학식 1에 있어서,
상기 R은 피막형성에 도움을 주는 작용기로, H, C, N, O, F, P, S 및 Si 중 하나 이상의 원소를 포함하는 사슬형 또는 고리형 구조의 작용기이다.
본 발명의 일 실시형태는, 상기 화학식 1 중 상기 R이, 서로 같거나 상이하고, 각각 독립적으로 수소, 할로겐, 하이드록시, 시아노, 니트로, 치환 또는 비치환된 아미노, 치환 또는 비치환된 머캅토, 치환 또는 비치환된 카바모일, 치환 또는 비치환된 C1-7 알킬, 치환 또는 비치환된 C1-7 할로겐화 알킬, 치환 또는 비치환된 C2-7 알케닐, 치환 또는 비치환된 C2-7 알키닐, 치환 또는 비치환된 C1-7 알콕시, 치환 또는 비치환된 C1-4 알콕시-C1-4 알콕시, 치환 또는 비치환된 C6-10 아릴-C1-4 알콕시, 치환 또는 비치환된 C2-7 알케닐옥시, 치환 또는 비치환된 C2-7 알키닐옥시, 치환 또는 비치환된 C3-7 사이클로알킬, 치환 또는 비치환된 C3-7 사이클로알케닐, 치환 또는 비치환된 3-7원 헤테로사이클로알킬, 치환 또는 비치환된 C3-7 사이클로알킬옥시, 치환 또는 비치환된 C3-7 사이클로알케닐옥시, 치환 또는 비치환된 3-7원 헤테로사이클로알킬옥시, 치환 또는 비치환된 C6-10 아릴, 치환 또는 비치환된 5-10원 헤테로아릴, 치환 또는 비치환된 C6-10 아릴옥시, 치환 또는 비치환된 5-10원 헤테로아릴옥시, 치환 또는 비치환된 모노- 또는 다이-C1-4 알킬아미노, 치환 또는 비치환된 모노- 또는 다이-C6-10 아릴아미노, 치환 또는 비치환된 C1-4 알킬카보닐아미노, 치환 또는 비치환된 C1-4 알킬카보닐, 치환 또는 비치환된 C1-4 알콕시카보닐, 치환 또는 비치환된 C2-4 알케닐옥시카보닐, 및 치환 또는 비치환된 C2-4 알키닐옥시카보닐로 이루어진 군으로부터 선택된 것인, 리튬 이차전지용 비수계 전해액을 제공한다.
본 발명의 일 실시형태는, 상기 화학식 1 중 상기 R이 서로 같거나 상이하고, 각각 독립적으로 수소, 할로겐, 하이드록시, 시아노, 니트로, 치환 또는 비치환된 아미노, 치환 또는 비치환된 C1-4 알킬, 치환 또는 비치환된 C1-4 할로겐화 알킬, 치환 또는 비치환된 C2-4 알케닐, 및 치환 또는 비치환된 C2-4 알키닐, 치환 또는 비치환된 C1-4 알콕시, 치환 또는 비치환된 모노- 또는 다이-C1-4 알킬아미노, 치환 또는 비치환된 C1-4 알킬카보닐, 및 치환 또는 비치환된 C1-4 알콕시카보닐로 이루어진 군으로부터 선택된 것인, 리튬 이차전지용 비수계 전해액을 제공한다.
본 발명의 일 실시형태는, 상기 화학식 1 중 상기 R이 서로 같거나 상이하고, 각각 독립적으로 수소, 할로겐, 치환 또는 비치환된 C1-4 알킬, 치환 또는 비치환된 C1-4 할로겐화 알킬, 및 치환 또는 비치환된 C2-4 알케닐로 이루어진 군으로부터 선택된 것인, 리튬 이차전지용 비수계 전해액을 제공한다.
본 발명의 일 실시형태는, 상기 인산계 첨가제가 전해액 전체 중량에 대하여 0.01중량% 내지 10중량%를 포함되는, 리튬 이차전지용 비수계 전해액을 제공한다.
본 발명의 실시형태는, 상기 리튬염이 LiCl, LiBr, LiI, LiBF4, LiClO4, LiB10Cl10, LiAlCl4, LiAlO4, LiPF6, LiCF3SO3, LiCH3CO2, LiCF3CO2, LiAsF6, LiSbF6, LiCH3SO3, LiSO3F, LiN(SO2F)2, LiN(SO2CF2CF3)2 및 LiN(SO2CF3)2로 이루어진 군으로부터 선택된 것인, 리튬 이차 전지용 비수계 전해액을 제공한다.
본 발명의 일 실시형태는, 상기 리튬염의 농도가 0.1M 내지 3M인, 리튬 이차전지용 비수계 전해액을 제공한다.
본 발명의 일 실시형태는, 상기 유기 용매가 에테르, 에스테르, 아미드, 선형 카보네이트, 환형 카보네이트로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것인, 리튬 이차전지용 비수계 전해액을 제공한다.
본 발명의 일 실시형태는, 양극, 음극, 상기 양극과 음극 사이에 개재되는 분리막 및 상기 리튬 이차전지용 비수계 전해액을 포함하는 리튬 이차전지를 제공한다.
본 발명의 일 실시형태는, 상기 양극이 양극 활물질로 층상 구조를 가지며, 전체 전이 금속 중 니켈의 함유량이 60atm% 이상인 리튬 복합 전이금속 산화물을 포함하는 것인, 리튬 이차전지를 제공한다.
본 발명에 따른 리튬 이차전지용 비수계 전해액은 특정 구조의 인산계 첨가제를 포함함으로써, 비수전해액 자체의 분해반응을 억제할 뿐만 아니라, 양극 및 음극 표면에 피막을 형성하여, 리튬 이차전지에서 필연적으로 발생하게 되는 양극 및 음극 표면에서의 부반응을 효과적으로 억제하는 효과를 나타낸다.
이로 인하여, 상기 리튬 이차전지용 비수계 전해액을 포함하는 리튬 이차전지의 내구성, 즉, 고온 저장 특성 및 수명 특성을 향상시키는 효과를 나타낸다.
본 발명에 따라 제공되는 구체예는 하기의 설명에 의하여 모두 달성될 수 있다. 하기의 설명은 본 발명의 바람직한 구체예를 기술하는 것으로 이해되어야 하며, 본 발명이 반드시 이에 한정되는 것은 아님을 이해해야 한다.
본 명세서에서 사용된 용어 “Cn1-n2”는 작용기에서 탄소 수가 n1 내지 n2개인 것을 의미한다.
본 명세서에서 사용된 용어 “알킬”은 하나의 라디칼을 포함하는 직쇄 또는 분지쇄 포화 탄화수소를 의미하고, 하나의 라디칼은 작용기로서 결합 위치를 결정하며, 결합 위치는 특별히 제한되지 않는다. 상기 용어 “알킬”의 예는 메틸, 에틸, n-프로필, i-프로필, n-부틸, i-부틸, t-부틸, n-펜틸, i-펜틸 및 헥실 등을 포함하나, 반드시 이에 제한되지 않는다.
본 명세서에 사용된 용어 “알킬렌”은 두개의 라디칼을 포함하는 직쇄 또는 분지쇄 포화 탄화수소를 의미하고, 두개의 라디칼 각각은 작용기로서 결합 위치를 결정하며, 결합 위치는 특별히 제한되지 않는다. 상기 용어 “알킬렌”의 예는 메틸렌 및 에틸렌 등을 포함하나, 반드시 이에 제한되지 않는다.
본 명세서에서 사용된 용어 "알케닐"은 하나의 라디칼을 포함하며, 하나 이상의 탄소-탄소 이중 결합을 갖는 직쇄 또는 분지쇄 탄화수소를 의미하고, 하나의 라디칼은 작용기로서 결합 위치를 결정하며, 결합 위치는 특별히 제한되지 않는다. 상기 용어 "알케닐"의 예는 에테닐 및 프로페닐 등을 포함하나, 반드시 이에 제한되지 않는다.
본 명세서에 사용된 용어 "알키닐"은 하나의 라디칼을 포함하며, 하나 이상의 탄소-탄소 삼중 결합을 갖는 직쇄 또는 분지쇄 탄화수소를 의미하고, 하나의 라디칼은 작용기로서 결합 위치를 결정하며, 결합 위치는 특별히 제한되지 않는다. 상기 용어 "알키닐"의 예는 아세틸레닐 및 1-프로피닐 등을 포함하나, 반드시 이에 제한되지 않는다.
본 명세서에 사용된 용어 "할로겐"은 불소(F), 염소(Cl), 브롬(Br) 또는 요오드(I)를 의미한다.
본 명세서에 사용된 용어 “할로겐화 알킬”은 알킬에서 하나 이상의 수소가 할로겐으로 치환된 것을 의미한다.
본 명세서에 사용된 용어 “사이클로알킬”은 하나의 라디칼을 포함하며, 하나 이상의 고리를 갖는 포화 탄화수소를 의미하고, 하나의 라디칼은 작용기로서 결합 위치를 결정하며, 결합 위치는 특별히 제한되지 않는다. 상기 용어 “사이클로알킬”의 예는 사이클로펜틸, 사이클로헥실 및 사이클로헵틸 등을 포함하나, 반드시 이에 제한되지 않는다.
본 명세서에 사용된 용어 “사이클로알케닐”은 하나의 라디칼을 포함하며, 하나 이상의 고리를 갖고, 고리 내 하나 이상의 탄소-탄소 이중 결합을 갖는 탄화수소를 의미하고, 하나의 라디칼은 작용기로서 결합 위치를 결정하며, 결합 위치는 특별히 제한되지 않는다. 상기 용어 “사이클로알케닐”의 예는 사이클로펜테닐, 사이클로헥세닐 및 사이클로헵테닐 등을 포함하나, 반드시 이에 제한되지 않는다.
본 명세서에서 사용된 용어 “n1-n2원”는 탄소 수와 헤테로 원소 수를 합친 수가 n1 내지 n2개인 것을 의미한다. 헤테로 원소는 넓게는 탄소가 아닌 다른 원소를 의미하지만, 본 명세서에서 용어 “n1-n2원”은 고리형 작용기 앞에 사용되어 고리를 구성하는 원소 수를 의미한다.
본 명세서에 사용된 용어 “헤테로사이클로알킬”은 하나의 라디칼을 포함하며, 하나 이상의 고리를 갖고, 고리 내 하나 이상의 헤테로 원소를 갖는 포화 탄화수소를 의미하고, 하나의 라디칼은 작용기로서 결합 위치를 결정하며, 결합 위치는 특별히 제한되지 않는다. 상기 헤테로 원소는 고리를 형성할 수 있는 것으로, 예시적으로, O, N, S, P 등이 있다. 상기 용어 “헤테로사이클로알킬”의 예는 피페리디닐 및 테트라하이드로피라닐을 포함하나, 반드시 이에 제한되지 않는다.
본 명세서에 사용된 용어 "아릴"은 하나의 라디칼을 포함하며, 하나 이상의 고리를 갖는 방향족 고리계 탄화수소를 의미하고, 하나의 라디칼은 작용기로서 결합 위치를 결정하며, 결합 위치는 특별히 제한되지 않는다. 상기 용어 “아릴”의 예는 페닐 및 나프틸 등을 포함하나, 반드시 이에 제한되지 않는다.
본 명세서에 사용된 용어 "아릴렌"은 두개의 라디칼을 포함하며, 하나 이상의 고리를 갖는 방향족 고리계 탄화수소를 의미하고, 두개의 라디칼 각각은 작용기로서 결합 위치를 결정하며, 결합 위치는 특별히 제한되지 않는다. 상기 용어 “아릴렌”의 예는 페닐렌 및 나프틸렌 등을 포함하나, 반드시 이에 제한되지 않는다. 상술한 “알킬렌” 및 “아릴렌”은 조합하여, 예를 들면, 메틸렌-페닐렌 등과 같은 형태로 사용할 수 있다.
본 명세서에 사용된 용어 “헤테로아릴”은 하나의 라디칼을 포함하며, 하나 이상의 고리를 갖고, 고리 내 하나 이상의 헤테로 원소를 갖는 방향족 고리계 탄화수소를 의미하고, 하나의 라디칼은 작용기로서 결합 위치를 결정하며, 결합 위치는 특별히 제한되지 않는다. 상기 헤테로 원소는 고리를 형성할 수 있는 것으로, 예시적으로, O, N, S 등이 있다. 상기 용어 “헤테로아릴”의 예는 피롤릴 및 푸라닐 등을 포함하나, 반드시 이에 제한되지 않는다.
본 명세서에 사용된 용어 "알콕시"는 Ra가 상술한 알킬인 -ORa 형태의 작용기를 의미한다. 상기 용어 “알콕시”의 예는 메톡시, 다이플루오로메톡시, 트라이플루오로메톡시, 에톡시, n-프로폭시, 이소프로폭시, n-부톡시 및 t-부톡시 등을 포함하나, 반드시 이에 제한되지 않는다.
본 명세서에 사용된 용어 “알콕시-알콕시”는 Ra가 알킬렌이고, Rb가 상술한 알킬인 -ORa-ORb 형태의 작용기를 의미한다. 상기 용어 “알콕시-알콕시”의 예는 메톡시-메톡시, 메톡시-에톡시 및 에톡시-에톡시 등을 포함하나, 반드시 이에 제한되지 않는다.
본 명세서에 사용된 용어 “아릴-알콕시”는 Ra가 알킬렌이고, Rb가 상술한 아릴인 -ORa-Rb 형태의 작용기를 의미한다. 상기 용어 “아릴-알콕시”의 예는 페닐-메톡시 및 페닐-에톡시 등을 포함하나, 반드시 이에 제한되지 않는다.
본 명세서에 사용된 용어 “알케닐옥시”는 Ra가 상술한 알케닐인 -ORa 형태의 작용기를 의미한다. 상기 용어 “알케닐옥시”의 예는 에테닐옥시 및 프로페닐옥시 등을 포함하나, 반드시 이에 제한되지 않는다.
본 명세서에 사용된 용어 “알키닐옥시”는 Ra가 상술한 알키닐인 -ORa 형태의 작용기를 의미한다. 상기 용어 “알키닐옥시”의 예는 에티닐옥시 및 프로피닐옥시 등을 포함하나, 반드시 이에 제한되지 않는다.
본 명세서에 사용된 용어 “사이클로알킬옥시”는 Ra가 상술한 사이클로알킬인 -ORa 형태의 작용기를 의미한다. 상기 용어 “사이클로알킬옥시”의 예는 사이클로펜틸옥시 및 사이클로헥실옥시 등을 포함하나, 반드시 이에 제한되지 않는다.
본 명세서에 사용된 용어 “사이클로알케닐옥시”는 Ra가 상술한 사이클로알케닐인 -ORa 형태의 작용기를 의미한다. 상기 용어 “사이클로알케닐옥시”의 예는 사이클로펜테닐옥시 및 사이클로헥세닐옥시 등을 포함하나, 반드시 이에 제한되지 않는다.
본 명세서에 사용된 용어 “헤테로사이클로알킬옥시”는 Ra가 상술한 헤테로사이클로알킬인 -ORa 형태의 작용기를 의미한다. 상기 용어 “헤테로사이클로알킬옥시”의 예는 피페리디닐옥시 및 테트라하이드로피라닐옥시 등을 포함하나, 반드시 이에 제한되지 않는다.
본 명세서에 사용된 용어 “아릴옥시”는 Ra가 상술한 아릴인 -ORa 형태의 작용기를 의미한다. 상기 용어 “아릴옥시”의 예는 페닐옥시 및 나프틸옥시 등을 포함하나, 반드시 이에 제한되지 않는다.
본 명세서에 사용된 용어 “헤테로아릴옥시”는 Ra가 상술한 헤테로아릴인 -ORa 형태의 작용기를 의미한다. 상기 용어 “헤테로아릴옥시”의 예는 피롤릴옥시 및 푸라닐옥시 등을 포함하나, 반드시 이에 제한되지 않는다.
본 명세서에 사용된 용어 "머캅토"는 -SH 형태의 작용기를 의미한다.
본 명세서에 사용된 용어 "하이드록시"는 -OH 형태의 작용기를 의미한다.
본 명세서에 사용된 용어 "아미노"는 -NH2 형태의 작용기를 의미한다. 상기 아미노는 하나 이상의 수소가 상술한 알킬, 사이클로알킬, 헤테로사이클로알킬, 아릴 또는 헤테로아릴 등으로 치환될 수 있다. 예를 들어, 상기 아미노에서 하나의 수소가 알킬로 치환되면, 모노-알킬아미노로 명명되고, 상기 아미노에서 두개의 수소가 알킬로 치환되면, 다이-알킬아미노로 명명된다.
본 명세서에 사용된 용어 "카보닐아미노"는 Ra가 상술한 알킬, 사이클로알킬, 헤테로사이클로알킬, 아릴 또는 헤테로아릴 등인 -NHC(O)Ra 형태의 작용기를 의미한다. 여기서, 수소도 알킬 등으로 치환될 수 있다.
본 명세서에 사용된 용어 "시아노"는 -CN 형태의 작용기를 의미한다.
본 명세서에 사용된 용어 “카바모일”은 -C(O)NH2 형태의 작용기를 의미한다. 여기서, 하나 이상의 수소도 알킬 등으로 치환될 수 있다.
본 명세서에 사용된 용어 “니트로”는 -NO2 형태의 작용기를 의미한다.
본 명세서에 사용된 용어 "카보닐"은, Ra가 상술한 알킬, 사이클로알킬, 헤테로사이클로알킬, 아릴, 헤테로아릴, 알콕시, 알케닐옥시, 알키닐옥시 등인 -C(O)Ra 형태의 작용기를 의미한다. 예를 들어, Ra가 알킬인 경우, “알킬카보닐”로도 명명되고, Ra가 알콕시인 경우, “알콕시카보닐”로도 명명된다. 또한, Ra가 알케닐옥시인 경우, “알케닐옥시카보닐”로도 명명되고, Ra가 알키닐옥시인 경우, “알키닐옥시카보닐”로도 명명된다.
본 명세서에서 사용된 용어 “치환 또는 비치환”이란 해당 작용기가 치환되거나 비치환된 상태로 존재하는 것을 의미하며, 치환은 화합물의 탄소 원자에 결합된 수소 원자가 다른 치환기로 바뀌는 것을 의미하며, 치환되는 위치는 수소 원자가 치환되는 위치 즉, 치환기가 치환 가능한 위치라면 한정하지 않으며, 2 이상 치환되는 경우, 2 이상의 치환기는 서로 동일하거나 상이할 수 있다.
상기 치환기는 해당 기술분야에서 일반적으로 사용되는 치환기라면, 특별히 제한 없이 사용될 수 있다. 상기 치환기는 예를 들면, 할로겐, 하이드록시, 시아노, 니트로, 아미노, C1-4 알킬, C1-4 할로겐화 알킬, C1-4 알콕시, C1-4 알콕시-C1-4 알콕시, C3-7 사이클로알킬, C3-7 사이클로알케닐, C3-7 사이클로알킬옥시, 3-7원 헤테로사이클로알킬, C6-10 아릴, 5-10원 헤테로아릴, 모노- 또는 다이-C1-4 알킬아미노, 모노- 또는 다이-C6-10 아릴아미노, 카보닐아미노, C1-4 알킬카보닐, C1-4 알콕시카보닐, C2-4 알케닐옥시카보닐, 및 C2-4 알키닐옥시카보닐 등을 포함할 수 있다.
본 발명에 있어서, "화학식 또는 화합물 구조에 치환기가 표시되지 않은 경우"는 탄소 원자에 수소 원자가 결합된 것을 의미한다. 다만, 중수소(2H, Deuterium)는 수소의 동위원소이므로, 일부 수소 원자는 중수소일 수 있다.
본 발명은, 리튬염, 유기 용매 및 하기 화학식 1로 표시되는 인산계 첨가제를 포함하는 리튬 이차전지용 비수계 전해액을 제공한다.
[화학식 1]
Figure PCTKR2022017454-appb-img-000002
상기 화학식 1에 있어서,
상기 R은 피막형성에 도움을 주는 작용기로, H, C, N, O, F, P, S 및 Si 중 하나 이상의 원소를 포함하는 사슬형 또는 고리형 구조의 작용기이다.
본 발명의 일 실시형태에 있어서, 상기 화학식 1 중 상기 R은 서로 같거나 상이하고, 각각 독립적으로 수소, 할로겐, 하이드록시, 시아노, 니트로, 치환 또는 비치환된 아미노, 치환 또는 비치환된 머캅토, 치환 또는 비치환된 카바모일, 치환 또는 비치환된 C1-7 알킬, 치환 또는 비치환된 C1-7 할로겐화 알킬, 치환 또는 비치환된 C2-7 알케닐, 치환 또는 비치환된 C2-7 알키닐, 치환 또는 비치환된 C1-7 알콕시, 치환 또는 비치환된 C1-4 알콕시-C1-4 알콕시, 치환 또는 비치환된 C6-10 아릴-C1-4 알콕시, 치환 또는 비치환된 C2-7 알케닐옥시, 치환 또는 비치환된 C2-7 알키닐옥시, 치환 또는 비치환된 C3-7 사이클로알킬, 치환 또는 비치환된 C3-7 사이클로알케닐, 치환 또는 비치환된 3-7원 헤테로사이클로알킬, 치환 또는 비치환된 C3-7 사이클로알킬옥시, 치환 또는 비치환된 C3-7 사이클로알케닐옥시, 치환 또는 비치환된 3-7원 헤테로사이클로알킬옥시, 치환 또는 비치환된 C6-10 아릴, 치환 또는 비치환된 5-10원 헤테로아릴, 치환 또는 비치환된 C6-10 아릴옥시, 치환 또는 비치환된 5-10원 헤테로아릴옥시, 치환 또는 비치환된 모노- 또는 다이-C1-4 알킬아미노, 치환 또는 비치환된 모노- 또는 다이-C6-10 아릴아미노, 치환 또는 비치환된 C1-4 알킬카보닐아미노, 치환 또는 비치환된 C1-4 알킬카보닐, 치환 또는 비치환된 C1-4 알콕시카보닐, 치환 또는 비치환된 C2-4 알케닐옥시카보닐, 및 치환 또는 비치환된 C2-4 알키닐옥시카보닐로 이루어진 군으로부터 선택된 것일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 화학식 1 중 상기 R이 서로 같거나 상이하고, 각각 독립적으로 수소, 할로겐, 하이드록시, 시아노, 니트로, 치환 또는 비치환된 아미노, 치환 또는 비치환된 C1-4 알킬, 치환 또는 비치환된 C1-4 할로겐화 알킬, 치환 또는 비치환된 C2-4 알케닐, 및 치환 또는 비치환된 C2-4 알키닐, 치환 또는 비치환된 C1-4 알콕시, 치환 또는 비치환된 모노- 또는 다이-C1-4 알킬아미노, 치환 또는 비치환된 C1-4 알킬카보닐, 및 치환 또는 비치환된 C1-4 알콕시카보닐로 이루어진 군으로부터 선택된 것일 수 있다.
본 발명의 또 다른 실시형태에 있어서, 상기 화학식 1 중 상기 R이 서로 같거나 상이하고, 각각 독립적으로 수소, 할로겐, 치환 또는 비치환된 C1-4 알킬, 치환 또는 비치환된 C1-4 할로겐화 알킬, 및 치환 또는 비치환된 C2-4 알케닐로 이루어진 군으로부터 선택된 것일 수 있다.
본 발명의 일 실시형태에 있어서, 상기 인산계 첨가제는 전해액 전체 중량에 대하여 0.01중량% 내지 10중량%로 포함될 수 있다. 구체적으로, 상기 인산계 첨가제는 전해액 전체 중량에 대하여 0.01중량% 이상, 0.05중량% 이상, 0.1중량% 이상, 0.5중량% 이상, 1중량% 이상, 2중량% 이상이고, 10중량% 이하, 9중량% 이하, 8중량% 이하, 7중량% 이하, 6중량% 이하, 5중량% 이하, 4중량% 이하, 3중량% 이하이며, 0.01중량% 내지 10중량%, 0.1중량% 내지 5중량%, 0.5중량% 내지 3중량%, 1중량% 내지 3중량% 일 수 있다. 상기 인산계 첨가제의 함유량이 상기 범위 미만인 경우, 고온 저장이나 장시간 전지 구동 시 전지가 부푸는 현상(swelling)을 억제하거나 용량 유지율의 개선이 미미한 등 첨가 효과가 나타나지 않으며, 리튬 이차전지의 저항 증가율이 개선되는 등의 향상 효과가 미미하고, 상기 인산계 첨가제의 함유량이 상기 범위를 초과하는 경우에는 과도하게 저항이 증가하여 급격한 수명 열화가 발생되는 등, 오히려 리튬 이차전지의 특성이 저하되는 문제점이 존재한다. 따라서, 상기 인산계 첨가제의 함유량이 상기 범위를 만족하는 것이 바람직하다.
본 발명의 일 실시형태에 있어서, 상기 리튬 이차 전지용 비수계 전해액은, 리튬 디플루오로 옥살레이토보레이트(LiDFOB), 리튬 비스옥살레이토보레이트(LiB(C2O4)2, LiBOB), 리튬 테트라플루오로보레이트(LiBF4), 리튬 디플루오로옥살레이토포스페이트(LiDFOP), 리튬 테트라플루오로 옥살레이토포스페이트(LiTFOP), 리튬 디플루오로포스페이트(LiPO2F2), 플루오로에틸렌카보네이트(FEC), 비닐렌 카보네이트(VC), 비닐에틸렌 카보네이트(VEC), 다이비닐 설폰(divinyl sulfone), 에틸렌 설파이트(ethylene sulfite), 에틸렌 설페이트(ethylene sulfate), 프로필렌 설파이트(propylene sulfite), 다이알릴 설포네이트 (diallyl sulfonate), 에탄 설톤, 프로판 설톤(propane sulton, PS), 부탄 설톤(butane sulton), 에텐 설톤, 부텐 설톤 및 프로펜 설톤(propene sultone, PRS)으로 이루어진 군으로부터 선택된 첨가제를 더 포함할 수 있다.
본 발명의 일 실시형태에 있어서, 상기 리튬 이차 전지용 비수계 전해액은 리튬염을 포함할 수 있고, 상기 리튬염은 LiCl, LiBr, LiI, LiBF4, LiClO4, LiB10Cl10, LiAlCl4, LiAlO4, LiPF6, LiCF3SO3, LiCH3CO2, LiCF3CO2, LiAsF6, LiSbF6, LiCH3SO3, LiSO3F, LiFSI(Lithium bis(fluorosulfonyl)imide, LiN(SO2F)2), LiBETI(lithium bisperfluoroethanesulfonimide, LiN(SO2CF2CF3)2 및 LiTFSI(lithium (bis)trifluoromethanesulfonimide, LiN(SO2CF3)2)로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.
본 발명의 일 실시형태에 있어서, 상기 리튬염의 농도는 0.1M 내지 3.0M일 수 있고, 바람직하게는 0.5M 내지 2.5M일 수 있고, 보다 바람직하게는 0.8M 내지 2.0M일 수 있다. 구체적으로, 상기 리튬염의 농도는 0.1M 이상, 0.2M 이상, 0.3M 이상, 0.4M 이상, 0.5M 이상, 0.6M 이상, 0.7M 이상, 0.8M 이상, 0.9M 이상, 1.0M 이상, 3.0M 이하, 2.5M 이하, 2.0M 이하, 1.5M 이하일 수 있다. 상기 리튬염의 농도가 0.1 M 미만이면 전해액의 전도도가 낮아져 전해액 성능이 떨어지고, 3.0 M을 초과하는 경우에는 전해액의 점도가 증가하여 리튬 이온의 이동성이 감소하는 문제점이 있다. 따라서, 리튬염의 농도는 상기 범위를 만족하는 것이 바람직하다. 상기 리튬염은 전지 내에서 리튬 이온의 공급원으로 작용하여 기본적인 리튬 이차전지의 작동을 가능하게 한다.
본 발명의 다른 실시형태에 있어서, 상기 리튬 이차전지용 비수계 전해액은 LiPF6와 LiPF6이 아닌 다른 종류의 리튬염을 혼합하여 사용할 수 있다.
상기 LiPF6이 아닌 다른 종류의 리튬염은 LiCl, LiBr, LiI, LiBF4, LiClO4, LiB10Cl10, LiAlCl4, LiAlO4, LiPF6, LiCF3SO3, LiCH3CO2, LiCF3CO2, LiAsF6, LiSbF6, LiCH3SO3, LiSO3F, LiFSI(Lithium bis(fluorosulfonyl)imide, LiN(SO2F)2), LiBETI(lithium bisperfluoroethanesulfonimide, LiN(SO2CF2CF3)2 및 LiTFSI(lithium (bis)trifluoromethanesulfonimide, LiN(SO2CF3)2)로 이루어진 군에서 선택되는 1종 이상일 수 있다.
또한, 상기 LiPF6과 LiPF6이 아닌 다른 종류의 리튬염의 몰비는 1:1 내지 10:1일 수 있고, 바람직하게는 4:1 내지 10:1일 수 있으며, 보다 바람직하게는 6:1 내지 10:1일 수 있다. 상기 LiPF6과 LiPF6이 아닌 다른 종류의 리튬염은 몰비를 만족함으로써, 전해액 부반응을 억제시키면서도, 집전체 부식 현상을 억제할 수 있는 피막을 안정적으로 형성할 수 있다.
본 발명의 일 실시형태에 있어서, 상기 리튬 이차전지용 비수계 전해액은 유기용매를 포함할 수 있고, 상기 유기용매는 리튬 이차전지에 통상적으로 사용되는 용매로서, 예를 들면 에테르 화합물, 에스테르(Acetate류, Propionate류) 화합물, 아미드 화합물, 선형 카보네이트 또는 환형 카보네이트 화합물 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있다.
상기 나열된 화합물들 중에서도, 바람직하게는 유기용매로서, 선형 카보네이트 및 환형 카보네이트를 혼합하여 사용할 수 있다. 유기용매로서, 선형 카보네이트 및 환형 카보네이트를 혼합하여 사용하는 경우, 리튬염의 해리 및 이동을 원활하게 할 수 있다. 이때, 상기 환형 카보네이트계 화합물 및 선형 카보네이트계 화합물은 1:9 내지 6:4 부피비, 바람직하게는 1:9 내지 4:6 부피비, 보다 바람직하게는 2:8 내지 4:6 부피비로 혼합된 것일 수 있다.
한편, 상기 선형 카보네이트 화합물은 그 구체적인 예로 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트(MPC) 및 에틸프로필 카보네이트(EPC)로 이루어진 군에서 선택되는 1종의 화합물 또는 적어도 2종 이상의 혼합물 등을 들 수 있으며, 이에 한정되는 것은 아니다.
또한, 상기 환형 카보네이트 화합물은 그 구체적인 예로 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌 카보네이트, 2,3-펜틸렌 카보네이트, 비닐렌 카보네이트, 및 이들의 할로겐화물로 이루어진 군에서 선택되는 1종의 화합물 또는 적어도 2종 이상의 혼합물을 들 수 있다.
본 발명의 일 실시형태에 있어서, 상기 리튬 이차전지용 비수계 전해액을 포함하는 리튬 이차전지는 4.0V 이상의 작동 전압을 가질 수 있고, 바람직하게는 4.1V 이상의 작동 전압을 가질 수 있으며, 보다 바람직하게는 4.2V 이상의 작동 전압을 가질 수 있다. 리튬 이차전지의 작동 전압이 4.0V 미만인 경우에는 본 발명의 상기 인산계 첨가제의 첨가에 따른 차이가 크지 않으나, 4.0V 이상의 작동 전압을 갖는 리튬 이차전지에서는 상기 첨가제의 첨가에 따라 고온 저장 안전성 및 용량 특성이 급격히 상승하는 효과를 나타낸다.
리튬 이차전지
이하에서는, 본 발명에 따른 리튬 이차전지에 대해 설명한다.
본 발명의 리튬 이차전지는, 양극, 음극, 분리막 및 리튬 이차전지용 비수계 전해액을 포함한다. 보다 구체적으로, 적어도 하나 이상의 양극, 적어도 하나 이상의 음극 및 상기 양극과 음극 사이에 선택적으로 게재될 수 있는 분리막 및 상기 리튬 이차전지용 비수계 전해액을 포함한다. 이때, 상기 리튬 이차전지용 비수계 전해액에 대해서는 상술한 내용과 동일하므로, 구체적인 설명을 생략한다.
(1) 양극
상기 양극은 양극 집전체 상에 양극 활물질, 전극용 바인더, 전극 도전재 및 용매 등을 포함하는 양극 활물질 슬러리를 코팅하여 제조할 수 있다. 또한, 상기 양극은 양극 활물질로 층상 구조를 가질 수 있다.
상기 양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 이때, 양극 집전체는, 표면에 미세한 요철을 형성하여 양극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 양극 활물질은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물로서, 구체적으로는 코발트, 망간, 니켈 또는 알루미늄과 같은 1종 이상의 금속과 리튬을 포함하는 리튬 복합금속 산화물을 포함할 수 있다. 보다 구체적으로, 상기 리튬 복합금속 산화물은 리튬-망간계 산화물(예를 들면, LiMnO2, LiMn2O4 등), 리튬-코발트계 산화물(예를 들면, LiCoO2 등), 리튬-니켈계 산화물(예를 들면, LiNiO2 등), 리튬-니켈-망간계 산화물(예를 들면, LiNi1-Y1MnY1O2(여기에서, 0<Y1<1), LiMn2-z1Niz1O4(여기에서, 0<Z1<2) 등), 리튬-니켈-코발트계 산화물(예를 들면, LiNi1-Y2CoY2O2(여기에서, 0<Y2<1) 등), 리튬-망간-코발트계 산화물(예를 들면, LiCo1-Y3MnY3O2(여기에서, 0<Y3<1), LiMn2-z2Coz2O4(여기에서, 0<Z2<2) 등), 리튬-니켈-망간-코발트계 산화물(예를 들면, Li(Nip1Coq1Mnr1)O2(여기에서, 0<p1<1, 0<q1<1, 0<r1<1, p1+q1+r1=1) 또는 Li(Nip2Coq2Mnr2)O4(여기에서, 0<p2<2, 0<q2<2, 0<r2<2, p2+q2+r2=2) 등), 또는 리튬-니켈-코발트-전이금속(M) 산화물(예를 들면, Li(Nip3Coq3Mnr3MS1)O2(여기에서, M은 Al, Fe, V, Cr, Ti, Ta, Mg 및 Mo로 이루어지는 군에서 선택되고, p3, q3, r3 및 s1은 각각 독립적인 원소들의 원자 분율로서, 0<p3<1, 0<q3<1, 0<r3<1, 0<s1<1, p3+q3+r3+s1=1이다) 등) 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 화합물이 포함될 수 있다.
이중에서도 전지의 용량 특성 및 안정성을 높일 수 있다는 점에서 상기 리튬 복합금속 산화물은 LiCoO2, LiMnO2, LiNiO2, 리튬 니켈망간코발트 산화물(예를 들면, Li(Ni0.6Mn0.2Co0.2)O2,Li(Ni0.5Mn0.3Co0.2)O2, 또는 Li(Ni0.8Mn0.1Co0.1)O2 등), 또는 리튬 니켈코발트알루미늄 산화물(예를 들면, LiNi0.8Co0.15Al0.05O2 등) 등일 수 있으며, 리튬 복합금속 산화물을 형성하는 구성원소의 종류 및 함량비 제어에 따른 개선 효과의 현저함을 고려할 때 상기 리튬 복합금속 산화물은 Li(Ni0.6Mn0.2Co0.2)O2,Li(Ni0.5Mn0.3Co0.2)O2, Li(Ni0.7Mn0.15Co0.15)O2, Li(Ni0.8Mn0.1Co0.1)O2 또는 Li(Ni0.85Mn0.08Co0.05Al0.02)O2 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또한, 상기 양극 활물질은 전체 전이 금속 중 니켈의 함유량이 60atm% 이상인 리튬 복합 전이금속 산화물을 포함할 수 있다. 예를 들면, 60atm% 이상, 65atm% 이상, 70atm% 이상, 75atm% 이상, 80atm% 이상, 85atm% 이상, 90atm% 이상일 수 있다.
상기 전극용 바인더는 양극 활물질과 전극 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분이다. 구체적으로, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌(PE), 폴리프로필렌, 에틸렌-프로필렌-디엔테르 폴리머(EPDM), 술폰화 EPDM, 스티렌-부타디엔 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
상기 전극 도전재는 양극 활물질의 도전성을 더욱 향상시키기 위한 성분이다. 상기 전극 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 그라파이트; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 서멀 블랙, 탄소 나노 튜브 등의 탄소계 물질; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다. 시판되고 있는 도전재의 구체적인 예로는 아세틸렌 블랙 계열인 쉐브론 케미칼 컴퍼니(Chevron Chemical Company)나 덴카 블랙(Denka Singapore Private Limited), 걸프 오일 컴퍼니(Gulf Oil Company) 제품 등), 케첸블랙(Ketjenblack), EC 계열(아르막 컴퍼니(Armak Company) 제품), 불칸(Vulcan) XC-72(캐보트 컴퍼니(Cabot Company) 제품) 및 수퍼(Super) P(Timcal 사 제품) 등이 있다.
상기 용매는 NMP(N-methyl-2-pyrrolidone) 등의 유기용매를 포함할 수 있으며, 상기 양극 활물질, 및 선택적으로 양극용 바인더 및 양극 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다.
(2) 음극
또한, 상기 음극은, 음극 집전체 상에 음극 활물질, 전극용 바인더, 전극 도전재 및 용매 등을 포함하는 음극 활물질 슬러리를 코팅하여 제조할 수 있다. 한편, 상기 음극은 금속 음극 집전체 자체를 전극으로 사용할 수 있다.
상기 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극 활물질로는 천연흑연, 인조흑연, 탄소질재료; 리튬 함유 티타늄 복합 산화물(LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni 또는 Fe인 금속류(Me); 상기 금속류(Me)로 구성된 합금류; 상기 금속류(Me)의 산화물(MeOx); 및 상기 금속류(Me)와 탄소와의 복합체로 이루어진 군에서 선택된 1종 이상의 음극 활물질을 들 수 있다.
상기 전극용 바인더, 전극 도전재 및 용매에 대한 내용은 상술한 내용과 동일하므로, 구체적인 설명을 생략한다.
(3) 분리막
상기 분리막으로는 종래에 분리막으로 사용된 통상적인 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.
이하, 본 발명의 이해를 돕기 위해 바람직한 실시예를 제시하지만, 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐 본 발명이 이에 한정되는 것은 아니다.
실시예
실시예 1
양극 활물질로 Li(Ni0.85Mn0.08Co0.05Al0.02)O2, 도전재로 카본 블랙, 바인더로 PVDF를 97.6:1.2:1.2(양극 활물질:도전재:바인더)의 중량비로 준비한 후, N-메틸피롤리돈 용매 중에서 혼합하여 양극 활물질 슬러리를 제조하였다. 제조된 양극 활물질 슬러리를 알루미늄 집전체(15㎛)의 일면에 도포한 후(로딩량: 0.40~0.55 mg/25㎠), 130℃에서 20분 이상 건조 후, 공극률 24%가 되도록 1~2회 압연하여 양극을 제조하였다.
음극은 천연흑연과 인조흑연이 2:8로 혼합된 전극을 사용하였고, 양극과 음극 사이에 다공성 폴리에틸렌의 분리막을 개재하여 전극 조립체를 제조하였다. 상기 전극 조립체를 전지 케이스 내부에 위치시킨 후, 케이스 내부로 전해질을 주입하여 리튬 이차전지를 제조하였다. 이 때, 전해액은 에틸렌카보네이트/에틸메틸카보네이트(EC/EMC의 혼합 부피비=3/7)로 이루어진 유기 용매에 1M 농도의 리튬헥사플루오로포스페이트(LiPF6)를 용해시키고, 0.5 중량%의 비닐렌 카보네이트(VC), 0.5 중량%의 프로판 설톤(PS) 및 1 중량%의 에틸렌 설페이트(ESa)를 첨가하고, 추가적으로, 화학식 1에서 R이 모두 CF3인 인산계 첨가제를 0.5 중량% 첨가하여 제조하였다.
실시예 2
전해액에서 인산계 첨가제를 1 중량% 첨가한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.
실시예 3
전해액에서 인산계 첨가제를 3 중량% 첨가한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.
실시예 4
전해액에서 화학식 1에서 R이 모두 F인 인산계 첨가제를 사용한 것을 제외하고는 실시예 2와 동일한 방법으로 리튬 이차전지를 제조하였다.
실시예 5
전해액에서 인산계 첨가제를 5 중량% 첨가한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.
비교예 1
전해액에서 인산계 첨가제를 첨가하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.
실험예
실험예: 고온 성능 측정
실시예 1 내지 5와 비교예 1에서 제조된 리튬 이차전지를 4.2 V 전압 조건 하에서, SOC 100%(2000mAh)까지 만충전을 실시하였다. 이후, 60℃ 항온 챔버에 8주 동안 고온 저장한 후, 용량 유지율(%), 저항 유지율(%) 및 부피 증가율(%)을 측정하여, 하기 표 1에 나타내었다.
용량 유지율(%) 저항 유지율(%) 부피 증가율(%)
실시예 1(R=CF3, 0.5 중량%) 78.8 21.8 16.0
실시예 2(R=CF3, 1 중량%) 84.9 14.0 11.2
실시예 3(R=CF3, 3 중량%) 89.1 10.3 9.6
실시예 4(R=F, 1 중량%) 82.2 19.5 8.9
실시예 5(R=CF3, 5 중량%) 71.0 41.5 15.3
비교예 1(무첨가) 56.3 90.1 31.1
* 용량 유지율(%): PNEsolution 사, PEBC0506을 사용하여, CC/CV로 충전(0.33C CC/ 4.2V 0.05C Current- cut CV) 30분 휴식 후 CC로 방전(0.33)을 3회 반복 후 3번째 방전용량을 용량으로 반영하였다.
용량 유지율(%) = (N주차 용량)/(초기 용량)×100
* 저항 유지율(%): PNEsolution 사, PEBC0506을 사용하여, 방전 용량 기준 SOC 50에 세팅하고 나서 2.5C의 전류로 CC 펄스(pulse) 방전 시 저항을 측정하였다.
저항 = (방전 펄스 전후 전압 차이)/(방전 시 전류)
저항 증가율(%) = (N주차 저항 - 초기 저항)/(초기 저항)×100
* 부피 증가율(%): TWD-PLS 사, TWD-150DM을 사용하여, 고온 저장 전 SOC 100에 세팅하고 나서 초기 부피를 측정하고, 고온 저장 직후 상온에서 식힌 후 부피를 측정하였다.
부피 증가율(%) = (N주차 부피 - 초기 부피)/(초기 부피)×100
상기 표 1에 따르면, 본 발명에 따른 인산계 첨가제를 전해액에 첨가한 리튬 이차전지(실시예 1 내지 5)는 고온 저장 후에도 용량 유지율이 높을 뿐만 아니라, 저항 유지율 및 부피 증가율이 낮아 인산계 첨가제를 전해액에 첨가하지 않은 리튬 이차전지(비교예 1)에 비해 고온 안정성이 현저하게 개선된 것을 확인할 수 있다.
본 발명의 단순한 변형 내지 변경은 모두 본 발명의 영역에 속하는 것이며, 본 발명의 구체적인 보호 범위는 첨부된 특허청구범위에 의하여 명확해질 것이다.

Claims (10)

  1. 리튬염, 유기 용매 및 하기 화학식 1로 표시되는 인산계 첨가제를 포함하는 것을 특징으로 하는 리튬 이차전지용 비수계 전해액:
    [화학식 1]
    Figure PCTKR2022017454-appb-img-000003
    상기 화학식 1에 있어서,
    상기 R은 피막형성에 도움을 주는 작용기로, H, C, N, O, F, P, S 및 Si 중 하나 이상의 원소를 포함하는 사슬형 또는 고리형 구조의 작용기이다.
  2. 제1항에 있어서,
    상기 R이, 서로 같거나 상이하고, 각각 독립적으로 수소, 할로겐, 하이드록시, 시아노, 니트로, 치환 또는 비치환된 아미노, 치환 또는 비치환된 머캅토, 치환 또는 비치환된 카바모일, 치환 또는 비치환된 C1-7 알킬, 치환 또는 비치환된 C1-7 할로겐화 알킬, 치환 또는 비치환된 C2-7 알케닐, 치환 또는 비치환된 C2-7 알키닐, 치환 또는 비치환된 C1-7 알콕시, 치환 또는 비치환된 C1-4 알콕시-C1-4 알콕시, 치환 또는 비치환된 C6-10 아릴-C1-4 알콕시, 치환 또는 비치환된 C2-7 알케닐옥시, 치환 또는 비치환된 C2-7 알키닐옥시, 치환 또는 비치환된 C3-7 사이클로알킬, 치환 또는 비치환된 C3-7 사이클로알케닐, 치환 또는 비치환된 3-7원 헤테로사이클로알킬, 치환 또는 비치환된 C3-7 사이클로알킬옥시, 치환 또는 비치환된 C3-7 사이클로알케닐옥시, 치환 또는 비치환된 3-7원 헤테로사이클로알킬옥시, 치환 또는 비치환된 C6-10 아릴, 치환 또는 비치환된 5-10원 헤테로아릴, 치환 또는 비치환된 C6-10 아릴옥시, 치환 또는 비치환된 5-10원 헤테로아릴옥시, 치환 또는 비치환된 모노- 또는 다이-C1-4 알킬아미노, 치환 또는 비치환된 모노- 또는 다이-C6-10 아릴아미노, 치환 또는 비치환된 C1-4 알킬카보닐아미노, 치환 또는 비치환된 C1-4 알킬카보닐, 치환 또는 비치환된 C1-4 알콕시카보닐, 치환 또는 비치환된 C2-4 알케닐옥시카보닐, 및 치환 또는 비치환된 C2-4 알키닐옥시카보닐로 이루어진 군으로부터 선택된 것을 특징으로 하는 리튬 이차전지용 비수계 전해액.
  3. 제2항에 있어서,
    상기 R이 서로 같거나 상이하고, 각각 독립적으로 수소, 할로겐, 하이드록시, 시아노, 니트로, 치환 또는 비치환된 아미노, 치환 또는 비치환된 C1-4 알킬, 치환 또는 비치환된 C1-4 할로겐화 알킬, 치환 또는 비치환된 C2-4 알케닐, 및 치환 또는 비치환된 C2-4 알키닐, 치환 또는 비치환된 C1-4 알콕시, 치환 또는 비치환된 모노- 또는 다이-C1-4 알킬아미노, 치환 또는 비치환된 C1-4 알킬카보닐, 및 치환 또는 비치환된 C1-4 알콕시카보닐로 이루어진 군으로부터 선택된 것을 특징으로 하는 리튬 이차전지용 비수계 전해액.
  4. 제3항에 있어서,
    상기 R이 서로 같거나 상이하고, 각각 독립적으로 수소, 할로겐, 치환 또는 비치환된 C1-4 알킬, 치환 또는 비치환된 C1-4 할로겐화 알킬, 및 치환 또는 비치환된 C2-4 알케닐로 이루어진 군으로부터 선택된 것을 특징으로 하는 리튬 이차전지용 비수계 전해액.
  5. 제1항에 있어서,
    상기 인산계 첨가제가 전해액 전체 중량에 대하여 0.01중량% 내지 10중량%를 포함되는 것을 특징으로 하는 리튬 이차전지용 비수계 전해액.
  6. 제1항에 있어서,
    상기 리튬염이 LiCl, LiBr, LiI, LiBF4, LiClO4, LiB10Cl10, LiAlCl4, LiAlO4, LiPF6, LiCF3SO3, LiCH3CO2, LiCF3CO2, LiAsF6, LiSbF6, LiCH3SO3, LiSO3F, LiN(SO2F)2, LiN(SO2CF2CF3)2 및 LiN(SO2CF3)2로 이루어진 군으로부터 선택된 것을 특징으로 하는 리튬 이차 전지용 비수계 전해액.
  7. 제1항에 있어서,
    상기 리튬염의 농도가 0.1M 내지 3M인 것을 특징으로 하는 리튬 이차전지용 비수계 전해액.
  8. 제1항에 있어서,
    상기 유기 용매가 에테르, 에스테르, 아미드, 선형 카보네이트, 환형 카보네이트로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는 리튬 이차전지용 비수계 전해액.
  9. 양극, 음극, 상기 양극과 음극 사이에 개재되는 분리막, 및 제1항 내지 제8항 중 어느 한 항에 따른 리튬 이차전지용 비수계 전해액을 포함하는 리튬 이차전지.
  10. 제9항에 있어서,
    상기 양극이 양극 활물질로 층상 구조를 가지며, 전체 전이 금속 중 니켈의 함유량이 60atm% 이상인 리튬 복합 전이금속 산화물을 포함하는 것을 특징으로 하는 리튬 이차전지.
PCT/KR2022/017454 2021-11-12 2022-11-08 리튬 이차전지용 비수계 전해액 및 이를 포함하는 리튬 이차전지 WO2023085731A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2023551783A JP2024508446A (ja) 2021-11-12 2022-11-08 リチウム二次電池用非水系電解液及びこれを含むリチウム二次電池
US18/277,481 US11978858B2 (en) 2021-11-12 2022-11-08 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising same
CA3212114A CA3212114A1 (en) 2021-11-12 2022-11-08 Non-aqueous electrolyte solution for lithium secondary battery, and lithium secondary battery comprising same
CN202280013502.0A CN116830338A (zh) 2021-11-12 2022-11-08 锂二次电池用非水性电解液和包含其的锂二次电池
EP22893151.5A EP4293784A1 (en) 2021-11-12 2022-11-08 Non-aqueous electrolyte solution for lithium secondary battery, and lithium secondary battery comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20210155296 2021-11-12
KR10-2021-0155296 2021-11-12
KR1020220144896A KR20230069831A (ko) 2021-11-12 2022-11-03 리튬 이차전지용 비수계 전해액 및 이를 포함하는 리튬 이차전지
KR10-2022-0144896 2022-11-03

Publications (1)

Publication Number Publication Date
WO2023085731A1 true WO2023085731A1 (ko) 2023-05-19

Family

ID=86336070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/017454 WO2023085731A1 (ko) 2021-11-12 2022-11-08 리튬 이차전지용 비수계 전해액 및 이를 포함하는 리튬 이차전지

Country Status (5)

Country Link
US (1) US11978858B2 (ko)
EP (1) EP4293784A1 (ko)
JP (1) JP2024508446A (ko)
CA (1) CA3212114A1 (ko)
WO (1) WO2023085731A1 (ko)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011049153A (ja) * 2009-07-28 2011-03-10 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いた非水系電解液二次電池
KR20110116019A (ko) 2008-12-23 2011-10-24 다우 글로벌 테크놀로지스 엘엘씨 방향족 인 화합물을 함유하는 전지 전해액
KR20150089712A (ko) 2014-01-28 2015-08-05 파낙스 이텍(주) 이차전지 전해액 및 이를 함유하는 이차전지
CN109273764A (zh) * 2018-09-14 2019-01-25 东莞市杉杉电池材料有限公司 一种锂离子电池电解液及含有该电解液的锂离子电池
KR20200070802A (ko) * 2018-12-10 2020-06-18 에스케이이노베이션 주식회사 리튬 이차전지 전해액 및 이를 포함하는 리튬 이차전지
CN112531210A (zh) * 2020-12-03 2021-03-19 天津市捷威动力工业有限公司 电解液添加剂及应用和包括该添加剂的非水电解液
KR20210155296A (ko) 2020-06-15 2021-12-22 (주)파트론 웨이브가이드 필터
KR20220144896A (ko) 2021-04-20 2022-10-28 최창용 친환경 라디칼 수 생성 시스템

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102244059B1 (ko) 2018-04-23 2021-04-22 삼성에스디아이 주식회사 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
DE102018116475B4 (de) 2018-07-06 2020-11-05 Forschungszentrum Jülich GmbH Elektrolyt umfassend wenigstens ein Lithiumsalz sowie Lithium-Sekundärbatterie
CN110563764A (zh) 2019-09-10 2019-12-13 恒大新能源科技集团有限公司 一种电解液阻燃添加剂及其制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110116019A (ko) 2008-12-23 2011-10-24 다우 글로벌 테크놀로지스 엘엘씨 방향족 인 화합물을 함유하는 전지 전해액
JP2011049153A (ja) * 2009-07-28 2011-03-10 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いた非水系電解液二次電池
KR20150089712A (ko) 2014-01-28 2015-08-05 파낙스 이텍(주) 이차전지 전해액 및 이를 함유하는 이차전지
CN109273764A (zh) * 2018-09-14 2019-01-25 东莞市杉杉电池材料有限公司 一种锂离子电池电解液及含有该电解液的锂离子电池
KR20200070802A (ko) * 2018-12-10 2020-06-18 에스케이이노베이션 주식회사 리튬 이차전지 전해액 및 이를 포함하는 리튬 이차전지
KR20210155296A (ko) 2020-06-15 2021-12-22 (주)파트론 웨이브가이드 필터
CN112531210A (zh) * 2020-12-03 2021-03-19 天津市捷威动力工业有限公司 电解液添加剂及应用和包括该添加剂的非水电解液
KR20220144896A (ko) 2021-04-20 2022-10-28 최창용 친환경 라디칼 수 생성 시스템

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CYRANSKI, M.K. SCHLEYER, P.V.R. KRYGOWSKI, T.M. JIAO, H. HOHLNEICHER, G.: "Facts and artifacts about aromatic stability estimation", TETRAHEDRON, ELSEVIER SIENCE PUBLISHERS, AMSTERDAM, NL, vol. 59, no. 10, 3 March 2003 (2003-03-03), AMSTERDAM, NL , pages 1657 - 1665, XP004410939, ISSN: 0040-4020, DOI: 10.1016/S0040-4020(03)00137-6 *

Also Published As

Publication number Publication date
US11978858B2 (en) 2024-05-07
EP4293784A1 (en) 2023-12-20
JP2024508446A (ja) 2024-02-27
US20240113335A1 (en) 2024-04-04
CA3212114A1 (en) 2023-05-19

Similar Documents

Publication Publication Date Title
WO2016159702A1 (ko) 비수 전해액 및 이를 구비한 리튬 이차전지
WO2017086672A1 (ko) 비수전해액 및 이를 포함하는 리튬 이차전지
WO2013012248A2 (ko) 비수 전해액 및 이를 이용한 리튬 이차전지
WO2019168301A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2013012250A2 (ko) 비수 전해액 및 이를 이용한 리튬 이차전지
WO2019103434A1 (ko) 첨가제, 이를 포함하는 리튬 이차 전지용 비수 전해액 및 이를 포함하는 리튬 이차 전지
WO2020153822A1 (ko) 리튬 이차 전지
WO2019216695A1 (ko) 리튬 이차 전지
WO2013009155A2 (ko) 비수 전해액 및 이를 이용한 리튬 이차전지
WO2017030416A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2021133125A1 (ko) 비수계 전해액 및 이를 포함하는 리튬 이차전지
WO2017057963A1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차전지
WO2020204607A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2023085731A1 (ko) 리튬 이차전지용 비수계 전해액 및 이를 포함하는 리튬 이차전지
WO2023085733A1 (ko) 리튬 이차 전지용 비수계 전해액 및 이를 포함하는 리튬 이차 전지
WO2023085734A1 (ko) 리튬 이차 전지용 비수계 전해액 및 이를 포함하는 리튬 이차 전지
WO2023085737A1 (ko) 리튬 이차 전지용 비수계 전해액 및 이를 포함하는 리튬 이차 전지
WO2020138865A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2022149875A1 (ko) 리튬 이차전지용 비수계 전해액 및 이를 포함하는 리튬 이차전지
WO2019240465A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2023191541A1 (ko) 비수 전해질 및 이를 포함하는 리튬 이차 전지
KR20230069831A (ko) 리튬 이차전지용 비수계 전해액 및 이를 포함하는 리튬 이차전지
WO2022030781A1 (ko) 리튬 이차 전지
WO2024147478A1 (ko) 리튬 이차전지 전해액 및 이를 포함하는 리튬 이차전지
KR20230069830A (ko) 리튬 이차 전지용 비수계 전해액 및 이를 포함하는 리튬 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22893151

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280013502.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18277481

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023551783

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 3212114

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2022893151

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022893151

Country of ref document: EP

Effective date: 20230911