WO2023083287A1 - 一种低银含量的高性能导电浆料及其制备方法 - Google Patents

一种低银含量的高性能导电浆料及其制备方法 Download PDF

Info

Publication number
WO2023083287A1
WO2023083287A1 PCT/CN2022/131294 CN2022131294W WO2023083287A1 WO 2023083287 A1 WO2023083287 A1 WO 2023083287A1 CN 2022131294 W CN2022131294 W CN 2022131294W WO 2023083287 A1 WO2023083287 A1 WO 2023083287A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
conductive paste
conductive
silver powder
low
Prior art date
Application number
PCT/CN2022/131294
Other languages
English (en)
French (fr)
Inventor
孙文贤
邱羽
熊浩
李平
康臻菁
Original Assignee
福建江夏学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福建江夏学院 filed Critical 福建江夏学院
Publication of WO2023083287A1 publication Critical patent/WO2023083287A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables

Definitions

  • the invention relates to a high-performance conductive paste with low silver content and a preparation method thereof.
  • conductive adhesive can be made into slurry to achieve high line resolution, and conductive adhesive is easy to operate and can improve production efficiency. Therefore, conductive adhesive has been widely used in various optoelectronics In the field, it is an ideal choice to replace lead-tin soldering and realize conductive connection.
  • the current annual output value is about 45 billion US dollars.
  • the existing silver nanowire-doped conductive material has a high total doping amount of silver and high cost.
  • the Chinese patent whose publication number is CN102676102A discloses a silver nanowire-doped conductive silver glue and a preparation method thereof. % ⁇ 30%; epoxy resin 20% ⁇ 50%; curing agent 1.6% ⁇ 4%; solvent 5.8% ⁇ 9.2%; accelerator 0.4% ⁇ 1.6%; toughening agent 0.04% ⁇ 0.16%; additive 0.8% ⁇ 2.4%; the resistivity of the silver nanowire-doped conductive silver glue is below 10 -4 ⁇ cm; the total silver doping amount is 35%-45%.
  • the Chinese patent whose publication number is CN103000252A discloses a solar cell back silver paste with an ultra-low silver content.
  • Fork silver powder 10-15% flake silver powder, 15-25% spherical or spherical silver powder, 1-8% glass powder, 10-15% organic binder, 22-59% solvent, 0-5% additive
  • the sum of the percentages by weight of each component is 100%, and the sum of the percentages by weight of the star-shaped multi-branched silver powder, flake silver powder and spherical silver powder is 30-50%;
  • the average branch of the star-shaped multi-branched silver powder The number of forks is 5-8, and the branches on a single silver powder are arranged in three dimensions, showing a three-dimensional shape emitted from a central point.
  • the average length of a single fork is 2-5 ⁇ m, and the average width is 0.5-2 ⁇ m , the average cluster size of the entire silver powder particle is 5-10 ⁇ m; its silver content is 35-50%.
  • a kind of high-performance conductive paste with low silver content the raw material components and weight percentages thereof in the described conductive paste are as follows:
  • the content of the silver nano wire is 8-12.32%, the content of at least one of the spherical silver powder and the flake silver powder is 22-4.55%, and the balance is a cross-linking agent.
  • the raw material components and their weight percentages in the conductive paste are as follows: 8.62-10.43% for silver nanowires, and 21.23-6.55% for at least one of spherical silver powder and flake silver powder.
  • the raw material components in the conductive paste and their weight percentages are as follows: 8.62-10.43% for silver nanowires, 1-10% for spherical silver powder, and 3-15% for flaky silver powder.
  • the raw material components and their weight percentages in the conductive paste are as follows: 9-10.5% of silver nanowires, 1.3-7% of spherical silver powder, and 3-15% of flake silver powder.
  • the spherical silver powder is spherical silver-coated copper particles.
  • the aspect ratio of the silver nanowires is 10-500.
  • crosslinking agent is: at least one of polyurethane, epoxy resin, polymethyl methacrylate, polyvinyl chloride and polystyrene.
  • the second technical problem to be solved by the present invention is to provide a method for preparing a high-performance conductive material with low silver content, the total silver content in the conductive paste is as low as 16.87%, and the conductive metal made of the conductive paste
  • a method for preparing a high-performance conductive material with low silver content the method steps are as follows:
  • step 2) Ultrasonic vibration or stirring treatment for 0.5-1h, so that the silver nanowires in the mixture obtained in step 1) are in a homogeneous state, and a uniformly dispersed silver nanowire conductive ink is obtained;
  • step 4) Put the conductive metal layer obtained in step 3) into an oven to dry, and finally cure and shape the conductive metal layer to obtain a high-performance conductive material.
  • the mass percentages of various raw materials in the step 1) are as follows: silver nanowires are 8-12.32%, at least one of spherical silver powder and flake silver powder is 22-4.55%, and the balance is alternating joint agent.
  • the mass percentages of various raw materials in the step 1) are as follows: silver nanowires are 8.62-10.43%, and at least one of spherical silver powder and flake silver powder is 21.23-6.55%.
  • the aspect ratio of the silver nanowires is 10-500.
  • crosslinking agent is: at least one of polyurethane, epoxy resin, polymethyl methacrylate, polyvinyl chloride and polystyrene.
  • drying temperature in step 4) is above 150°C.
  • the reasonable ratio of silver nanowires and spherical/flake silver powder in the conductive paste of the present invention will reduce the total silver content in the conductive paste from the existing 80% to 16.87%, and at the same time it is made of the conductive paste
  • the invention relates to a high-performance conductive paste with low silver content.
  • the raw material components and weight percentages of the conductive paste are as follows:
  • the content of the silver nano wire is 8-12.32%, the content of at least one of the spherical silver powder and the flake silver powder is 22-4.55%, and the balance is a cross-linking agent.
  • the raw material components in the conductive paste and their weight percentages are as follows: 8.62-10.43% for silver nanowires, and 21.23-6.55% for at least one of spherical silver powder and flake silver powder.
  • the aspect ratio of the silver nanowires is 10-500.
  • the crosslinking agent is: at least one of polyurethane, epoxy resin, polymethyl methacrylate, polyvinyl chloride and polystyrene.
  • the present invention also relates to a method for preparing a high-performance conductive material with a low silver content, the method steps are as follows:
  • step 2) Ultrasonic vibration or stirring treatment for 0.5-1h, so that the silver nanowires in the mixture obtained in step 1) are in a homogeneous state, and a uniformly dispersed silver nanowire conductive ink is obtained;
  • step 4) Put the conductive metal layer obtained in step 3) into an oven to dry, and finally cure and shape the conductive metal layer to obtain a high-performance conductive material.
  • the mass percentages of various raw materials in the step 1) are as follows: 8-12.32% of silver nanowires, 22-4.55% of at least one of spherical silver powder and flake silver powder, and the balance is cross-linking agent.
  • the mass percentages of various raw materials are as follows: silver nanowires are 8.62-10.43%, and at least one of spherical silver powder and flake silver powder is 21.23-6.55%.
  • the aspect ratio of the silver nanowires is 10-500.
  • the crosslinking agent is: at least one of polyurethane, epoxy resin, polymethyl methacrylate, polyvinyl chloride and polystyrene.
  • the drying temperature in step 4) is above 150°C.
  • a method for preparing a high-performance conductive material with low silver content the method steps are as follows:
  • step 2) using an ultrasonic oscillator for 0.5-1h, so that the silver nanowires in the mixture obtained in step 1) are in a homogeneous state, and a uniformly dispersed silver nanowire conductive ink is obtained;
  • Silver nanowire conductive ink is formed on a substrate by screen printing to form a conductive metal layer, and the production of the conductive ink is completed;
  • step 4) Put the conductive metal layer obtained in step 3) into an oven to dry (drying temperatures are 150°C, 250°C, and 350°C respectively), so as to solidify and shape the conductive metal layer;
  • Table 1 shows the composition and content of raw materials in the conductive pastes of Examples and Comparative Examples prepared according to the above method;
  • Table 2 shows the performance parameters of the components of each Example and Comparative Examples at different drying temperatures.
  • the reasonable ratio of silver nanowires and spherical/flaky silver powder in the conductive paste of the present invention will reduce the total silver content in the conductive paste from the existing 80% to 16.87%.

Abstract

本发明提供一种低银含量的高性能导电浆料及其制备方法,导电浆料中的原料组分及其重量百分比如下:银纳米线为8~12.32%,球状银粉和片状银粉末中的至少一种为22~4.55%,余量为交联剂;所述银纳米线的长径比值为10~500;所述方法步骤如下:1)取银纳米线和球状/片状银粉末,加到交联剂中;2)用超音波震荡或搅拌处理0.5-1h,制得分散均匀的银纳米线导电油墨;3)将所述导电油墨附着于一基板上,形成一导电金属层;4)放进烘箱中干燥,最后将导电金属层固化成型得到高性能导电材料。本发明导电浆料中的总银含量低至16.87%,同时由该导电浆料制成的导电金属层还具有电学性能稳定、高导电率(ρ<52μΩ·m)、优良附着性(附着度=5B、硬度=5H)的优异性能。

Description

一种低银含量的高性能导电浆料及其制备方法
本申请要求于2021年11月12日提交中国专利局、申请号为202111338627.4、发明名称为“一种低银含量的高性能导电浆料及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种低银含量的高性能导电浆料及其制备方法。
背景技术
由于电子元件的微型化及高密度化迅速发展,导电胶可以制成浆料,实现很高的线分辨率,而且导电胶易于操作,可提高生产效率,因此导电胶已被广泛应用于各光电领域中,是替代铅锡焊接,实现导电连接的理想选择,目前一年的产值约450亿美金。
据IDTechEx报告指出,2015年导电油墨及浆料市场将达23亿美元,并且还将继续增长。到2025年,这一市场有望增长至32亿美元左右,10年中复合年均增长率达3.26%。
据SEMI和AEI-Linx Consulting发布报告指出,目前导电浆和导电油墨约占硅晶太阳能电池总材料成本的四分之一,未来几年内,推动降低成本和技术创新都是太阳能领域的主要发展目标。
现有的银纳米线掺杂导电材料银总掺杂量高,成本高。
例如公开号为CN102676102A的中国专利,公开了一种银纳米线掺杂导电银胶及其制备方法,其原料包括如下重量百分含量的组份:微米银粉25%~60%;银纳米线5%~30%;环氧树脂20%~50%;固化剂1.6%~4%;溶剂5.8%~9.2%;促进剂0.4%~1.6%;增韧剂0.04%~0.16%;添加剂0.8%~2.4%;银纳米线掺杂导电银胶电阻率在10 -4Ω·cm以下;其银总掺杂量在35%~45%。
例如,公开号为CN103000252A的中国专利,公开了一种具有超低含银量的太阳能电池背银浆料,该背银浆料的组份及其重量百分数为:5-10%星状多 枝叉银粉、10-15%片状银粉、15-25%球状或类球类银粉、1-8%玻璃粉、10-15%有机粘合剂、22-59%溶剂、助剂0-5%;其中,各组分的重量百分数之和为100%,星状多枝叉银粉、片状银粉和球形银粉的重量百分数之和为30-50%;所述星状多枝叉银粉的平均枝叉数为5-8个,单个银粉上的各枝叉成三维排布,呈现出由一个中心点向外发射的三维形态,单枝叉的平均长度为2-5μm,平均宽度为0.5-2μm,整个银粉颗粒的平均团簇尺寸为5-10μm;其含银量为35-50%。
发明内容
本发明要解决的技术问题之一,在于提供一种低银含量的高性能导电浆料,该导电浆料中的总银含量低至16.87%,同时由该导电浆料制成的导电金属层还具有电学性能稳定、高导电率(ρ<52μΩ·m)、优良附着性(附着度=5B、硬度=5H)的优异性能。
本发明是这样实现上述技术问题之一的:
一种低银含量的高性能导电浆料,所述导电浆料中的原料组分及其重量百分比如下:
银纳米线为8~12.32%,球状银粉和片状银粉末中的至少一种为22~4.55%,余量为交联剂。
进一步地,具体的,所述导电浆料中的原料组分及其重量百分比如下:银纳米线为8.62~10.43%,球状银粉和片状银粉末中的至少一种为21.23~6.55%。
进一步,具体的,所述导电浆料中的原料组分及其重量百分比如下:银纳米线为8.62~10.43%,球状银粉为1~10%,片状银粉末为3~15%。
进一步,具体的,所述导电浆料中的原料组分及其重量百分比如下:银纳米线为9~10.5%,球状银粉为1.3~7%,片状银粉末为3~15%。
进一步的,球状银粉为球状银包铜粒子。
进一步地,所述银纳米线的长径比值为10~500。
进一步地,所述交联剂为:聚胺基甲酸酯、环氧树脂、聚甲基丙烯酸甲酯、聚氯乙烯和聚苯乙烯中的至少一种。
本发明要解决的技术问题之二,在于提供一种低银含量的高性能导电材料制备方法,其导电浆料中的总银含量低至16.87%,同时由该导电浆料制成的 导电金属层还具有电学性能稳定、高导电率(ρ<52μΩ·m)、优良附着性(附着度=5B、硬度=5H)的优异性能。
本发明是这样实现上述技术问题之二的:
一种低银含量的高性能导电材料制备方法,所述方法步骤如下:
1)取一定量的银纳米线和球状/片状银粉末,加到适量的交联剂中;
2)用超音波震荡或搅拌处理0.5-1h,使得步骤1)得到的混合物中的银纳米线处于均质状态,制得分散均匀的银纳米线导电油墨;
3)将所述导电油墨附着于一基板上,形成一导电金属层;
4)将步骤3)得到的导电金属层放进烘箱中干燥,最后将导电金属层固化成型得到高性能导电材料。
进一步地,所述步骤1)中各种原料的质量百分含量如下:银纳米线为8~12.32%,球状银粉和片状银粉末中的至少一种为22~4.55%,余量为交联剂。
进一步地,具体的,所述步骤1)中各种原料的质量百分含量如下:银纳米线为8.62~10.43%,球状银粉和片状银粉末中的至少一种为21.23~6.55%。
进一步地,所述银纳米线的长径比值为10~500。
进一步地,所述交联剂为:聚胺基甲酸酯、环氧树脂、聚甲基丙烯酸甲酯、聚氯乙烯和聚苯乙烯中的至少一种。
进一步地,所述步骤4)中的干燥温度为150℃以上。
本发明具有如下优点:
本发明导电浆料中的银纳米线与球状/片状银粉末的合理比例,将使得导电浆料中的总银含量由现有的80%降低至16.87%,同时由该导电浆料制成的导电金属层还具有电学性能稳定、高导电率(ρ<52μΩ·m)、优良附着性(附着度=5B、硬度=5H)的优异性能。
具体实施方式
下面将结合具体实施方式对本发明的技术方案进行清楚、完整地描述。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者, 均为可以通过市售购买获得的常规产品。
本发明涉及一种低银含量的高性能导电浆料,所述导电浆料中的原料组分及其重量百分比如下:
银纳米线为8~12.32%,球状银粉和片状银粉末中的至少一种为22~4.55%,余量为交联剂。
较优的,所述导电浆料中的原料组分及其重量百分比如下:银纳米线为8.62~10.43%,球状银粉和片状银粉末中的至少一种为21.23~6.55%。
所述银纳米线的长径比值为10~500。
所述交联剂为:聚胺基甲酸酯、环氧树脂、聚甲基丙烯酸甲酯、聚氯乙烯和聚苯乙烯中的至少一种。
本发明还涉及一种低银含量的高性能导电材料制备方法,所述方法步骤如下:
1)取一定量的银纳米线和球状/片状银粉末,加到适量的交联剂中;
2)用超音波震荡或搅拌处理0.5-1h,使得步骤1)得到的混合物中的银纳米线处于均质状态,制得分散均匀的银纳米线导电油墨;
3)将所述导电油墨附着于一基板上,形成一导电金属层;
4)将步骤3)得到的导电金属层放进烘箱中干燥,最后将导电金属层固化成型得到高性能导电材料。
所述步骤1)中各种原料的质量百分含量如下:银纳米线为8~12.32%,球状银粉和片状银粉末中的至少一种为22~4.55%,余量为交联剂。
较优的,各种原料的质量百分含量如下:银纳米线为8.62~10.43%,球状银粉和片状银粉末中的至少一种为21.23~6.55%.
所述银纳米线的长径比值为10~500。所述交联剂为:聚胺基甲酸酯、环氧树脂、聚甲基丙烯酸甲酯、聚氯乙烯和聚苯乙烯中的至少一种。
所述步骤4)中的干燥温度为150℃以上。
下面结合实施例和对比例对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
一种低银含量的高性能导电材料制备方法,所述方法步骤如下:
1)取一定比例的银纳米线、球状银包铜粒子、片状银粉末,加到适量的 聚胺基甲酸酯(polyurethane,PU)溶液中;
2)采用超音波震荡机处理0.5-1h,使得步骤1)得到的混合物中的银纳米线处于均质状态,制得分散均匀的银纳米线导电油墨;
3)以丝印方式银纳米线导电油墨形成于一基板上,以形成一导电金属层,即完成该导电油墨之制作;
4)将步骤3)得到的导电金属层放进烘箱中干燥(干燥温度分别为150℃、250℃、350℃),以固化成型该导电金属层;
5)最后测量基板上导电金属层电阻率、附着度、硬度。
下表1为按上述方法制备的实施例和对比例的导电浆料中原料组成和含量;表2为各实施例和对比例组分在不同干燥温度下的性能参数。
表1
Figure PCTCN2022131294-appb-000001
表2
Figure PCTCN2022131294-appb-000002
Figure PCTCN2022131294-appb-000003
综上,本发明导电浆料中的银纳米线与球状/片状银粉末的合理比例,将使得导电浆料中的总银含量由现有的80%降低至16.87%,同时由该导电浆料制成的导电金属层还具有电学性能稳定、高导电率(ρ<52μΩ·m)、优良附着性(附着度=5B、硬度=5H)的优异性能。
虽然以上描述了本发明的具体实施方式,但是熟悉本技术领域的技术人员应当理解,我们所描述的具体的实施例只是说明性的,而不是用于对本发明的范围的限定,熟悉本领域的技术人员在依照本发明的精神所作的等效的修饰以及变化,都应当涵盖在本发明的权利要求所保护的范围内。

Claims (10)

  1. 一种低银含量的高性能导电浆料,其特征在于:所述导电浆料中的原料组分及其重量百分比如下:
    银纳米线为8~12.32%,球状银粉和片状银粉末中的至少一种为22~4.55%,余量为交联剂。
  2. 根据权利要求1所述的一种低银含量的高性能导电浆料,其特征在于:具体的,所述导电浆料中的原料组分及其重量百分比如下:银纳米线为8.62~10.43%,球状银粉和片状银粉末中的至少一种为21.23~6.55%。
  3. 根据权利要求1所述的一种低银含量的高性能导电浆料,其特征在于:具体的,所述导电浆料中的原料组分及其重量百分比如下:银纳米线为8.62~10.43%,球状银粉为1~10%,片状银粉末为3~15%。
  4. 根据权利要求1所述的一种低银含量的高性能导电浆料,其特征在于:所述银纳米线的长径比值为10~500。
  5. 根据权利要求1所述的一种低银含量的高性能导电浆料,其特征在于:所述交联剂为:聚胺基甲酸酯、环氧树脂、聚甲基丙烯酸甲酯、聚氯乙烯和聚苯乙烯中的至少一种。
  6. 一种低银含量的高性能导电材料制备方法,其特征在于:所述方法步骤如下:
    1)取一定量的银纳米线和球状/片状银粉末,加到适量的交联剂中;
    2)用超音波震荡或搅拌处理0.5-1h,使得步骤1)得到的混合物中的银纳米线处于均质状态,制得分散均匀的银纳米线导电油墨;
    3)将所述导电油墨附着于一基板上,形成一导电金属层;
    4)将步骤3)得到的导电金属层放进烘箱中干燥,最后将导电金属层固化成型得到高性能导电材料。
  7. 根据权利要求6所述的一种低银含量的高性能导电材料制备方法,其特征在于:所述步骤1)中各种原料的质量百分含量如下:银纳米线为8~12.32%,球状银粉和片状银粉末中的至少一种为22~4.55%,余量为交联剂。
  8. 根据权利要求7所述的一种低银含量的高性能导电材料制备方法,其 特征在于:具体的,所述步骤1)中各种原料的质量百分含量如下:银纳米线为8.62~10.43%,球状银粉和片状银粉末中的至少一种为21.23~6.55%。
  9. 根据权利要求6所述的一种低银含量的高性能导电材料制备方法,其特征在于:所述交联剂为:聚胺基甲酸酯、环氧树脂、聚甲基丙烯酸甲酯、聚氯乙烯和聚苯乙烯中的至少一种。
  10. 根据权利要求6所述的一种低银含量的高性能导电材料制备方法,其特征在于:所述步骤4)中的干燥温度为150℃以上。
PCT/CN2022/131294 2021-11-12 2022-11-11 一种低银含量的高性能导电浆料及其制备方法 WO2023083287A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111338627.4 2021-11-12
CN202111338627.4A CN114023491A (zh) 2021-11-12 2021-11-12 一种低银含量的高性能导电浆料及其制备方法

Publications (1)

Publication Number Publication Date
WO2023083287A1 true WO2023083287A1 (zh) 2023-05-19

Family

ID=80063956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131294 WO2023083287A1 (zh) 2021-11-12 2022-11-11 一种低银含量的高性能导电浆料及其制备方法

Country Status (2)

Country Link
CN (1) CN114023491A (zh)
WO (1) WO2023083287A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114023491A (zh) * 2021-11-12 2022-02-08 福建江夏学院 一种低银含量的高性能导电浆料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1873838A (zh) * 2006-04-26 2006-12-06 浙江大学 加入银纳米线的导电复合材料及其制备方法
CN102676102A (zh) * 2011-03-16 2012-09-19 上海富信新能源科技有限公司 一种银纳米线掺杂导电银胶及其制备方法
CN105469849A (zh) * 2015-12-28 2016-04-06 上海产业技术研究院 一种可低温烧结的导电银浆及其制备方法
CN110079266A (zh) * 2019-03-26 2019-08-02 昆明理工大学 一种纳米银修饰碳纳米管制备高导热导电胶及其制备方法
CN112852111A (zh) * 2021-03-02 2021-05-28 广东工业大学 一种纳米银线的制备方法和环氧树脂型导电膏
US20210202126A1 (en) * 2019-12-31 2021-07-01 Industrial Technology Research Institute Conductive material composition and conductive material prepared therefrom
CN114023491A (zh) * 2021-11-12 2022-02-08 福建江夏学院 一种低银含量的高性能导电浆料及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103258584B (zh) * 2013-01-09 2018-04-10 深圳市创智材料科技有限公司 一种导电银浆及其制备方法
KR101812531B1 (ko) * 2013-08-22 2017-12-27 쇼와 덴코 가부시키가이샤 투명 전극 및 그 제조 방법
CN105702320A (zh) * 2014-11-28 2016-06-22 湖南利德电子浆料股份有限公司 一种射频识别标签用银导电浆料及其制备方法
CN106098147B (zh) * 2016-07-08 2018-04-10 合肥微晶材料科技有限公司 一种油性导电银浆及其制备方法
CN109801735A (zh) * 2018-12-24 2019-05-24 上海银浆科技有限公司 一种异质结电池低温银浆及制备方法
CN110136863B (zh) * 2019-04-29 2020-09-15 南通天盛新能源股份有限公司 一种用于hit太阳能电池的低温导电银浆及其制备方法
CN113241210A (zh) * 2021-05-08 2021-08-10 安徽中科元贞科技有限责任公司 一种导电银浆及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1873838A (zh) * 2006-04-26 2006-12-06 浙江大学 加入银纳米线的导电复合材料及其制备方法
CN102676102A (zh) * 2011-03-16 2012-09-19 上海富信新能源科技有限公司 一种银纳米线掺杂导电银胶及其制备方法
CN105469849A (zh) * 2015-12-28 2016-04-06 上海产业技术研究院 一种可低温烧结的导电银浆及其制备方法
CN110079266A (zh) * 2019-03-26 2019-08-02 昆明理工大学 一种纳米银修饰碳纳米管制备高导热导电胶及其制备方法
US20210202126A1 (en) * 2019-12-31 2021-07-01 Industrial Technology Research Institute Conductive material composition and conductive material prepared therefrom
CN112852111A (zh) * 2021-03-02 2021-05-28 广东工业大学 一种纳米银线的制备方法和环氧树脂型导电膏
CN114023491A (zh) * 2021-11-12 2022-02-08 福建江夏学院 一种低银含量的高性能导电浆料及其制备方法

Also Published As

Publication number Publication date
CN114023491A (zh) 2022-02-08

Similar Documents

Publication Publication Date Title
CN101271928B (zh) 一种高粘度太阳能电池正面银浆的制备方法
CN101271929B (zh) 无铅太阳能电池银浆及其制备方法
JP6110311B2 (ja) 導電性ペースト組成物ならびにそれらから形成される太陽電池電極および接点
CN104021842B (zh) 一种石墨烯复合铜厚膜导电浆料及其制备方法
CN107502257B (zh) 一种银/石墨烯低温固化导电胶、导电薄膜、导体及其制备方法
CN102568645A (zh) 太阳能电池的电极用的糊剂组合物及太阳能电池
CN106128555A (zh) 一种高导电晶硅太阳能电池正面电极银浆及其制备方法
JP2010109334A (ja) 導電性インク組成物及び該組成物を用いて形成された太陽電池モジュール
WO2023083287A1 (zh) 一种低银含量的高性能导电浆料及其制备方法
CN113257458B (zh) 一种用于片式电阻器电极的导体浆料
CN104464882B (zh) 一种光伏电池银浆及其烧结方法
CN103915130B (zh) 用于太阳能电池电极的组合物和使用其制作的电极
CN105655009A (zh) 一种晶体硅太阳能电池用银浆
CN109273136A (zh) 一种能够低温快速固化的可焊接导电银浆及其制备方法
CN103177793A (zh) 太阳能电池正面电极用导电浆料及其制备方法
Wang et al. Isotropical conductive adhesives with very-long silver nanowires as conductive fillers
CN108417291A (zh) 用于太阳能电池的导电银浆及其制备方法、以及太阳能电池
CN108877990A (zh) 一种石墨烯纳米银导电浆料及其制备方法
CN113284672B (zh) 一种银纳米线导电浆料的制备方法
CN104575667B (zh) 晶体硅太阳能电池正面用导电银浆
CN113547116B (zh) 一种棒状银粉及其制备方法
CN105655416A (zh) 一种硅太阳能电池用电极浆料
CN113436782B (zh) 一种轻质高导电水性导电浆料及其制备方法
CN106611625A (zh) 一种低银含量高效背钝化太阳能电池背银浆料
CN104465875B (zh) 一种光伏电池银栅线的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22892080

Country of ref document: EP

Kind code of ref document: A1