WO2023083011A1 - 极耳焊接方法、焊接工具、电池单体、电池及用电装置 - Google Patents

极耳焊接方法、焊接工具、电池单体、电池及用电装置 Download PDF

Info

Publication number
WO2023083011A1
WO2023083011A1 PCT/CN2022/127902 CN2022127902W WO2023083011A1 WO 2023083011 A1 WO2023083011 A1 WO 2023083011A1 CN 2022127902 W CN2022127902 W CN 2022127902W WO 2023083011 A1 WO2023083011 A1 WO 2023083011A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
tab
head
toothless
toothed
Prior art date
Application number
PCT/CN2022/127902
Other languages
English (en)
French (fr)
Inventor
林传冬
林江
薛飞
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2023083011A1 publication Critical patent/WO2023083011A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/10Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating making use of vibrations, e.g. ultrasonic welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/26Auxiliary equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K28/00Welding or cutting not covered by any of the preceding groups, e.g. electrolytic welding
    • B23K28/02Combined welding or cutting procedures or apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, in particular to a tab welding method, a welding tool, a battery cell, a battery and an electrical device.
  • a battery cell is the smallest unit that makes up a battery.
  • the battery cell includes an end cover, a casing and an electrode assembly.
  • the end cap and the casing are used to jointly form an inner space for accommodating the electrode assembly.
  • the electrode assembly usually includes a positive and negative electrode sheet and a separator located therebetween.
  • the active material on the positive and negative electrode sheet forms a pole, and the inactive material forms a tab.
  • the present application provides a tab welding method, comprising steps:
  • S10 forming tabs, stacking multi-layer positive pole pieces and multi-layer negative pole pieces respectively to form multi-layer stacked positive pole tabs and negative pole tabs;
  • S30 second welding, using a toothless welding head to perform second welding on the main body of the lug to form a second welding print area.
  • the toothless welding head is used to shape and flatten the uneven first welding print area formed after welding with the toothed welding head, so that it does not slip during ultrasonic vibration, and at the same time eliminates the excess of the lug body. Gaps between layer tabs.
  • the size of the toothed horn is 5mm ⁇ 30mm.
  • the height of the welding teeth of the toothed welding head is 0.45mm.
  • the radius of the welding teeth of the toothed welding head is 0.8 mm, and the distance between the welding teeth is 0.32 mm.
  • the welding surface of the toothless welding head is a smooth surface.
  • the uneven area after the first welding is shaped and flattened by the toothless welding head, so that it does not slip during ultrasonic vibration, and at the same time eliminates the gap between the multi-layered tabs of the tab body. gap.
  • step S30 the size of the toothless horn is 4mm ⁇ 20mm.
  • the area of the first welding mark area of the toothed welding head is 5mm ⁇ 30mm, and the welding is formed by the toothless welding head
  • the area of the second solder print area is 4mm ⁇ 20mm, so that the second solder print area is located in the first solder print area.
  • the solid phase connection between the tabs is stronger than that of the flat toothed welding head, which makes the welding in the second welding Parts are not easily dispersed by ultrasonic vibrations.
  • the toothless horn has rounded corners with a radius of 1 mm.
  • the contact between the welding head and the welding mark area can be made closer during the welding process, and the welding effect can be improved.
  • the second solder print area is smaller than the first solder print area, and the central point of the first solder print area coincides with the central point of the second solder print area.
  • the second welding mark area is smaller than the first welding mark area, and the second welding mark area is located above the first welding mark area, it is possible to avoid the occurrence of toothless welding head welding on a smooth surface.
  • the slipping phenomenon can shape and flatten the uneven part and eliminate the gap between layers.
  • both the first welding and the second welding are ultrasonic welding.
  • the present application provides a tab welding tool for operating the above-mentioned tab welding method
  • the tab welding tool includes a toothless welding head
  • the welding surface of the toothless welding head is a smooth surface.
  • the uneven area after the first welding is shaped and flattened by the toothless welding head, so that it does not slip during ultrasonic vibration, and at the same time eliminates the gap between the multi-layered tabs of the tab body. gap.
  • the size of the toothless horn is 4 mm x 20 mm.
  • the toothless horn has rounded corners with a radius of 1 mm.
  • the contact between the welding head and the welding mark area can be made closer during the welding process, and the welding effect can be improved.
  • the tab welding tool includes a toothed welding head, the welding area of the toothed welding head is the first welding mark area, and the welding area of the toothless welding head is the second welding mark area;
  • the second solder print area is smaller than the first solder print area, and the central point of the first solder print area coincides with the central point of the second solder print area.
  • the toothed horn has dimensions of 5mm x 30mm.
  • the toothed horn has a tooth height of 0.45 mm.
  • the toothed horn has a tooth radius of 0.8 mm and a tooth spacing of 0.32 mm.
  • the present application provides a battery cell, which is prepared by the above-mentioned tab welding method.
  • the present application provides a battery, including a casing and the above-mentioned battery cells, and the battery cells are arranged in the casing.
  • the present application provides an electrical device, including an electrical main body and the above-mentioned battery.
  • the stacked positive tab and the negative tab are welded for the first time using a toothed welding head, so that the stacked positive tab and negative tab are Carry out solid-phase connection, and then carry out flat welding through the toothless welding head to shape and flatten the uneven area after the first welding, and eliminate the gap between the stacked positive and negative tabs.
  • Fig. 1 is the rendering after ultrasonic pre-welding in some cases
  • Fig. 2 is the rendering after ultrasonic pre-welding in some cases
  • FIG. 3 is a schematic structural view of a vehicle in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of an exploded structure of a battery in an embodiment of the present application.
  • FIG. 5 is a schematic diagram of an exploded structure of a battery cell in an embodiment of the present application.
  • FIG. 6 is a flowchart of a tab welding method in an embodiment of the present application.
  • Fig. 7 is a schematic diagram after the first welding in an embodiment of the present application.
  • Fig. 8 is a structural schematic diagram after the second welding in an embodiment of the present application.
  • Fig. 9 is a structural schematic diagram of a toothless welding head in an embodiment of the present application.
  • Fig. 10 is a schematic diagram of the effect after ultrasonic pre-welding in an embodiment of the present application.
  • Figure 11 is a partially enlarged view in Figure 10;
  • FIG. 12 is a schematic diagram of the effect after laser welding in an embodiment of the present application.
  • multiple refers to more than two (including two), similarly, “multiple groups” refers to more than two groups (including two), and “multiple pieces” refers to More than two pieces (including two pieces).
  • lithium-ion batteries are widely used in electric vehicles and consumer electronics products due to their advantages such as high energy density, high output power, long cycle life and low environmental pollution. With the continuous expansion of lithium-ion battery application fields, its market demand is also constantly expanding.
  • the production process of lithium-ion batteries usually includes the following steps: the first step, electrode slurry preparation, mainly mixing electrode active materials, binders, solvents, etc., and fully stirring and dispersing to form a slurry; the second step , coating, the slurry prepared in the first step is uniformly coated on the current collector (aluminum foil or copper foil, etc.) with a specified thickness, and the solvent is dried; the third step is die-cutting of the pole piece, and the The pole piece is punched into the specified size and shape; the fourth step is lamination, the positive and negative pole pieces and the diaphragm are assembled together, and after the glue is pasted, the pole core is formed; the fifth step is to assemble the hard shell battery cell, and the upper The pole core produced in one step is put into the shell that has been punched, and the top seal, side seal, etc.
  • the sixth step is to inject liquid.
  • a specified amount of electrolyte is injected into the hard-shell battery cell;
  • the seventh step the battery is sealed, and the gas inside the battery cell is pumped out in a vacuum environment to complete the seal.
  • the active material on them forms the positive pole pole
  • the inactive material forms the positive pole ear.
  • the active material on them forms the negative pole pole
  • the inactive material forms the negative pole lug.
  • the positive electrode lug and the negative electrode lug need to be laminated and welded, and then fixed to the pole post by welding again.
  • ultrasonic pre-welding is usually performed on the stacked positive and negative tabs, and then laser welding is used to fix the pre-welded multi-layered tabs to the pole.
  • a toothed welding head is used for welding.
  • the gap will generate a large number of pores during the laser welding process, and a large amount of heat will accumulate and cause the fusion zone to crack. . A large number of pores will lead to a smaller effective connection area, thereby affecting the flow capacity.
  • the battery cell uses ultrasonic waves to pre-weld the positive tab and the negative tab, combined with the welding technology that the finished tab and the pole are fixed by laser welding, resulting in tabs
  • the finished tab and the pole are fixed by laser welding, resulting in tabs
  • There are cracks on both sides of the laser weld between the finished product and the pole which affects the flow capacity and structural strength.
  • there are air holes and gaps in the finished tab product which makes the effective connection area smaller, thereby affecting the flow-through capacity.
  • the battery cell material is made of aluminum foil, and some physical properties of aluminum foil and copper foil are compared. The results are shown in Table 1. Table 1 is a comparison of some physical properties of aluminum foil and copper foil.
  • the applicant has designed a tab welding method after in-depth research.
  • the special pre-welding method combining the toothed welding head and the toothless welding head makes the stacked positive tab and negative tab form a tight overall structure after two times of ultrasonic welding, eliminating the gap between layers, so that the finished tab is In the process of laser welding with poles, the problems of welding porosity and fusion zone cracking are solved.
  • the battery cells disclosed in the embodiments of the present application can be used, but not limited to, in electric devices such as vehicles, ships or aircrafts.
  • a vehicle 1000 as an electric device according to an embodiment of the present application is taken as an example for description.
  • FIG. 3 is a schematic structural diagram of a vehicle 1000 provided by some embodiments of the present application.
  • the interior of the vehicle 1000 is provided with a battery 100 , and the battery 100 may be provided at the bottom, head or tail of the vehicle 1000 .
  • the battery 100 can be used for power supply of the vehicle 1000 , for example, the battery 100 can be used as an operating power source of the vehicle 1000 .
  • the vehicle 1000 may further include a controller 200 and a motor 300 , the controller 200 is used to control the battery 100 to supply power to the motor 300 , for example, for starting, navigating and running the vehicle 1000 .
  • the battery 100 can not only be used as an operating power source for the vehicle 1000 , but can also be used as a driving power source for the vehicle 1000 , replacing or partially replacing fuel oil or natural gas to provide driving power for the vehicle 1000 .
  • FIG. 4 is an exploded view of a battery 100 provided by some embodiments of the present application.
  • the battery 100 includes a case 10 and battery cells 20 housed in the case 10 .
  • the box body 10 is used to provide accommodating space for the battery cells 20 , and the box body 10 may adopt various structures.
  • the box body 10 may include a first part 11 and a second part 12, the first part 11 and the second part 12 cover each other, the first part 11 and the second part 12 jointly define a of accommodation space.
  • the second part 12 can be a hollow structure with one end open, the first part 11 can be a plate-shaped structure, and the first part 11 covers the opening side of the second part 12, so that the first part 11 and the second part 12 jointly define an accommodation space ;
  • the first part 11 and the second part 12 can also be hollow structures with one side opening, and the opening side of the first part 11 is covered by the opening side of the second part 12 .
  • the box body 10 formed by the first part 11 and the second part 12 can be in various shapes, such as a cylinder, a cuboid and the like.
  • the battery 100 there may be multiple battery cells 20 , and the multiple battery cells 20 may be connected in series, in parallel or in parallel.
  • the mixed connection means that the multiple battery cells 20 are connected in series and in parallel.
  • a plurality of battery cells 20 can be directly connected in series, in parallel or mixed together, and then the whole composed of a plurality of battery cells 20 is housed in the box 10; of course, the battery 100 can also be a plurality of battery cells 20
  • the battery modules are firstly connected in series or parallel or in combination, and then multiple battery modules are connected in series or in parallel or in combination to form a whole, which is accommodated in the case 10 .
  • the battery 100 may also include other structures, for example, the battery 100 may also include a bus component for realizing electrical connection between multiple battery cells 20 .
  • each battery cell 20 may be a secondary battery or a primary battery; it may also be a lithium-sulfur battery, a sodium-ion battery or a magnesium-ion battery, but not limited thereto.
  • FIG. 5 is a schematic diagram of an exploded structure of a battery cell 20 provided in some embodiments of the present application.
  • the battery cell 20 refers to the smallest unit constituting a battery.
  • the battery cell 20 includes an end cover 21 , a casing 22 , a battery cell assembly 23 and other functional components.
  • the end cap 21 refers to a component that covers the opening of the casing 22 to isolate the internal environment of the battery cell 20 from the external environment.
  • the shape of the end cap 21 can be adapted to the shape of the housing 22 to fit the housing 22 .
  • the end cap 21 can be made of a material (such as aluminum alloy) with a certain hardness and strength, so that the end cap 21 is not easy to deform when being squeezed and collided, so that the battery cell 20 can have a higher Structural strength and safety performance can also be improved.
  • Functional components such as electrode terminals 21 a may be provided on the end cap 21 .
  • the electrode terminal 21 a can be used to be electrically connected with the battery cell assembly 23 for outputting or inputting electric energy of the battery cell 20 .
  • the end cover 21 may also be provided with a pressure relief mechanism for releasing the internal pressure when the internal pressure or temperature of the battery cell 20 reaches a threshold value.
  • the material of the end cap 21 can also be various, for example, copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., which is not particularly limited in this embodiment of the present application.
  • an insulator can be provided inside the end cover 21 , and the insulator can be used to isolate the electrical connection components in the housing 22 from the end cover 21 to reduce the risk of short circuit.
  • the insulating member may be plastic, rubber or the like.
  • the housing 22 is a component for matching the end cap 21 to form the internal environment of the battery cell 20 , wherein the formed internal environment can be used to accommodate the battery cell assembly 23 , electrolyte and other components.
  • the housing 22 and the end cover 21 can be independent components, and an opening can be provided on the housing 22 , and the internal environment of the battery cell 20 can be formed by making the end cover 21 cover the opening at the opening.
  • the end cover 21 and the housing 22 can also be integrated. Specifically, the end cover 21 and the housing 22 can form a common connection surface before other components are inserted into the housing. When the inside of the housing 22 needs to be encapsulated , then make the end cover 21 cover the housing 22.
  • the housing 22 can be in various shapes and sizes, such as cuboid, cylinder, hexagonal prism and so on. Specifically, the shape of the casing 22 can be determined according to the specific shape and size of the electrode assembly 23 .
  • the housing 22 can be made of various materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., which is not particularly limited in this embodiment of the present application.
  • the electrode assembly 23 is a part where the electrochemical reaction occurs in the battery cell 20 .
  • One or more electrode assemblies 23 may be contained within the housing 22.
  • the electrode assembly 23 is mainly formed by winding or stacking positive electrode sheets and negative electrode sheets, and a separator is usually provided between the positive electrode sheets and the negative electrode sheets.
  • the parts of the positive electrode sheet and the negative electrode sheet with the active material constitute the main body of the electrode assembly 23 , and the parts of the positive electrode sheet and the negative electrode sheet without the active material respectively constitute tabs.
  • the positive pole tab and the negative pole tab can be located at one end of the main body together or at two ends of the main body respectively.
  • the positive electrode active material and the negative electrode active material react with the electrolyte, and the tabs are connected to the electrode terminal 21a to form a current loop.
  • an embodiment of the present application provides a tab welding method, including steps:
  • S10 forming tabs, stacking multi-layer positive pole pieces and multi-layer negative pole pieces respectively to form multi-layer stacked positive pole tabs and negative pole tabs.
  • the size of the toothed welding head used for the first welding is 5 millimeters (mm) ⁇ 30 millimeters (mm), thus, the area of the first welded area 31 welded by the toothed welding head is 5 mm ⁇ 30 millimeters (mm). 30mm.
  • the height of the welding teeth of the toothed welding head is 0.45 mm, and the toothed welding head is a spherical tooth with a welding tooth radius of 0.8 mm and a welding tooth spacing of 0.32 mm.
  • the welding surface of the toothless welding head 40 is a smooth surface. Therefore, the uneven first welding area 31 is shaped and flattened by the toothless welding head 40 , without slipping during ultrasonic vibration, and at the same time, the gap between the positive and negative tabs welded to each other in the tab main body 30 is eliminated.
  • the toothless horn 40 has dimensions of 4mm x 20mm.
  • the area of the second solder print area 32 formed by welding with the toothless welding head 40 is 4 mm ⁇ 20 mm, so that the second solder print area 32 is located in the first solder print area 31 .
  • the second solder print area 32 is smaller than the first solder print area 31 , and the center point of the first solder print area 31 coincides with the center point of the second solder print area 32 .
  • both the first welding and the second welding are ultrasonic welding.
  • the first welding uses a higher toothed welding head to perform ultrasonic pre-welding on the stacked positive and negative tabs, so that the stacked positive and negative tabs are connected in solid phase, compared with flat teeth
  • the strength of the welding head is higher, so that the welding part is not easy to be scattered by ultrasonic vibration during the second welding.
  • the second welding adopts toothless welding head 40 to carry out ultrasonic vibration, and the second welding print area 32 is smaller than the first welding printing area 31, and the second welding printing area 32 is located on the first welding printing area 31, thereby avoiding unnecessary
  • the toothed welding head 40 is welded on a smooth surface, slippage occurs, and the uneven part can be shaped and flattened to eliminate the gap between layers.
  • the toothless horn 40 has rounded corners with a radius of 1 mm. By setting the arc chamfer, the contact between the welding head and the welding print area can be made closer during the welding process, and the welding effect can be improved.
  • Table 2 shows the parameter values of two times of ultrasonic pre-welding
  • Table 3 shows the parameter results of laser welding.
  • the present application also provides a tab welding tool for operating the above-mentioned tab welding method
  • the tab welding tool includes a toothless welding head 40 and a toothed welding head (not shown in the figure).
  • the welding tooth height of the toothed welding head is 0.45 mm
  • the toothed welding head is a spherical tooth with a welding tooth radius of 0.8 mm and a welding tooth spacing of 0.32 mm.
  • the welding surface of the toothless welding head 40 is a smooth surface. Therefore, the uneven area after the first welding is shaped and flattened by the toothless welding head 40 , so that it does not slip during ultrasonic vibration, and at the same time eliminates the gaps between the multi-layer tabs of the tab main body 30 .
  • the welding area of the welding head with teeth is the first printing area 31
  • the welding area of the welding head without teeth 40 is the second printing area 32
  • the second solder print area 32 is smaller than the first solder print area 31
  • the center point of the first solder print area 31 coincides with the center point of the second solder print area 32 .
  • the toothless horn 40 measures 4mm x 20mm, while the toothed horn measures 5mm x 30mm.
  • the area of the first welded area 31 welded by the toothed welding head is 5 mm ⁇ 30 mm
  • the area of the second welded area 32 formed by welding with the toothed welding head 40 is 4 mm ⁇ 20 mm, so that the area of the first welding area 31 is 4 mm ⁇ 20 mm.
  • the second solder print area 32 is located in the first solder print area 31 .
  • the first welding uses a higher toothed welding head to weld the stacked positive and negative tabs
  • the stacked positive and negative tabs are connected in solid phase, which is stronger than the flat-toothed welding head. , so that the welded part is not easily dispersed by ultrasonic vibration during the second welding.
  • the second welding adopts toothless welding head 40 to carry out ultrasonic vibration, and the second welding print area 32 is smaller than the first welding printing area 31, and the second welding printing area 32 is located on the first welding printing area 31, thereby avoiding unnecessary
  • the toothed welding head 40 is welded on a smooth surface, slippage occurs, and the uneven part can be shaped and flattened to eliminate the gap between layers.
  • the toothless horn 40 has rounded corners with a radius of 1 mm. By setting the arc chamfer, the contact between the welding head and the welding print area can be made closer during the welding process, and the welding effect can be improved.
  • the present application also provides a battery cell, which is prepared by the above-mentioned tab welding method.
  • the present application also provides a battery, including a casing and the above-mentioned battery cell, and the battery cell is arranged in the casing.
  • the present application also provides an electrical device, including an electrical main body and the above-mentioned battery.
  • the multi-layer positive pole pieces and the multi-layer negative pole pieces are respectively stacked to form multi-layer stacked positive tabs and negative tabs.
  • a toothed welding head to ultrasonically weld the stacked positive and negative tabs to form the tab main body 30 with the first welded area 31 .
  • a smooth toothless welding head 40 to ultrasonically weld the lug main body 30 to form a second weld print area 32, and make the second weld print area 32 be located in the first weld print area 31, so that the first weld print area 32 The center point of the area 31 coincides with the center point of the second solder print area 32 .
  • the pre-welded tab main body 30 and the pole post are fixedly connected by laser welding, thereby completing the entire welding process.
  • the tab welding method, welding tool, battery cell, battery and electrical device in the above embodiments have at least the following advantages:
  • the toothless welding head 40 can shape and flatten the uneven welding surface formed after welding with the toothed welding head, and can prevent the toothless welding head 40 from slipping when welding on a smooth surface, thereby eliminating the interlayer gap, Solve the cracking problem;
  • the toothless welding head 40 is provided with an arc chamfer with a radius of 1mm, which can make the contact between the welding head and the welding print area more closely during the welding process, and improve the welding effect;
  • the structure of the toothless welding head 40 is simple and easy to operate, which is conducive to popularization and use.

Abstract

一种极耳焊接方法,首先使用带齿焊头对层叠设置的正极耳与负极耳进行第一次焊接,形成具有第一焊印区域(31)的极耳主体(30),使得层叠设置的正极耳与负极耳进行固相连接;再通过无齿焊头(40)进行平焊,形成第二焊印区域(32),以对第一次焊接后的凹凸不平的区域进行整形压平。以及一种通过该极耳焊接方法制备的电池单体,具有该电池单体的电池和具有该电池的用电装置。通过该方法可消除多层层叠的极耳间的间隙。

Description

极耳焊接方法、焊接工具、电池单体、电池及用电装置
交叉引用
本申请引用于2021年11月09日递交的名称为“一种极耳焊接方法、焊接工具、电池单体、电池以及用电装置”的第202111318931.2号中国专利申请,其通过引用被全部并入本申请。
技术领域
本申请涉及电池技术领域,特别是涉及一种极耳焊接方法、焊接工具、电池单体、电池及用电装置。
背景技术
电池单体是组成电池的最小单元。其中,电池单体包括端盖、壳体以及电极组件。端盖与壳体用于共同构成一容纳电极组件的内部空间,电极组件通常包括正负极片及位于其间的隔膜,正负极片上的活性物质形成极柱,非活性物质形成极耳。
然而,将层叠设置的正极耳与负极耳进行焊接时,焊合后的正极耳与负极耳之间存在层间间隙。因此,将焊合后的极耳再次通过焊接固定至极柱上时,易产生大量气孔,且焊接过程中热量大量堆积导致熔合区开裂,影响过流能力及结构强度。
发明内容
基于此,有必要针对极耳与极柱焊接固定时易产生气孔及开裂现象的问题,提供一种极耳焊接方法、焊接工具、电池单体、电池以及用电装置。
第一方面,本申请提供了一种极耳焊接方法,包括步骤:
S10:形成极耳,将多层正极极片及多层负极极片分别层叠设置,形成多层层叠的正极耳与负极耳;
S20:第一次焊接,使用带齿焊头对多层层叠的正极耳与负极耳进行焊接,以形成具有第一焊印区域的极耳主体;
S30:第二次焊接,使用无齿焊头对极耳主体进行第二次焊接,以形成第二焊印区域。
本申请实施例的技术方案中,通过无齿焊头对经过带齿焊头焊接后形成的凹凸不平的第一焊印区域进行整形压平,在超声振动时不打滑,同时消除极耳主体多层极耳之间的间隙。
在一些实施例中,在S20步骤中,带齿焊头的尺寸为5mm×30mm。
在一些实施例中,在S20步骤中,带齿焊头的焊齿高度为0.45mm。
在一些实施例中,在S20步骤中,带齿焊头的焊齿半径为0.8mm,焊齿间距为0.32mm。
在一些实施例中,在S30步骤中,无齿焊头的焊面为光滑面。
本申请实施例的技术方案中,通过无齿焊头对经过第一次焊接之后的凹凸不平的区域进行整形压平,在超声振动时不打滑,同时消除极耳主体多层极耳之间的间隙。
在一些实施例中,在S30步骤中,无齿焊头的尺寸为4mm×20mm。
本申请实施例的技术方案中,通过上述带齿焊头与无齿焊头的结构,得到带齿焊头焊接的第一焊印区域面积为5mm×30mm,而通过无齿焊头进行焊接形成的第二焊印区域的面积为4mm×20mm,使得第二焊印区域位于第一焊印区域内。
而由于第一次焊接采用较高的带齿焊头对层叠极耳结构进行焊合,极耳之间固相连接,相比于平齿焊头强度更高,使得第二次焊接时焊合部分不易被超声波振动散开。
在一些实施例中,无齿焊头具有圆弧倒角,圆弧倒角半径为1mm。
本申请实施例的技术方案中,通过设置圆弧倒角,可以使得焊接过程中焊头与焊印区域的接触更加紧密,提高焊接效果。
在一些实施例中,第二焊印区域小于第一焊印区域,且第一焊印区域的中心点与第二焊印区域的中心点重合。
本申请实施例的技术方案中,由于第二焊印区域小于第一焊印区域,且第二焊印区域位于第一焊印区域之上,从而能够避免无齿焊头在光滑表面焊接时而产生打滑现象,能够将不平整部分进行整形压平,消除层间间隙。
在一些实施例中,第一次焊接及第二次焊接均为超声波焊接。
第二方面,本申请提供了一种极耳焊接工具,用于操作如上所述的极耳焊接方法,极耳焊接工具包括无齿焊头,无齿焊头的焊面为光滑面。
本申请实施例的技术方案中,通过无齿焊头对经过第一次焊接之后的凹凸不平的区域进行整形压平,在超声振动时不打滑,同时消除极耳主体多层极耳之间的间隙。
在一些实施例中,无齿焊头的尺寸为4mm×20mm。
在一些实施例中,无齿焊头具有圆弧倒角,圆弧倒角半径为1mm。
本申请实施例的技术方案中,通过设置圆弧倒角,可以使得焊接过程中焊头与焊印区域的接触更加紧密,提高焊接效果。
在一些实施例中,极耳焊接工具包括带齿焊头,带齿焊头的焊接区域为第一焊印区域,无齿焊头的焊接区域为第二焊印区域;
其中,第二焊印区域小于第一焊印区域,且第一焊印区域的中心点与第二焊印区域的中心点重合。
在一些实施例中,带齿焊头的尺寸为5mm×30mm。
在一些实施例中,带齿焊头的焊齿高度为0.45mm。
在一些实施例中,带齿焊头的焊齿半径为0.8mm,焊齿间距为0.32mm。
第三方面,本申请提供了一种电池单体,电池单体通过如上所述的极耳焊接方法制备而成。
第四方面,本申请提供了一种电池,包括壳体及如上所述的电池单体,电池单体设置于壳体内。
第五方面,本申请提供了一种用电装置,包括用电主体及如上所述的电池。
上述的极耳焊接方法、焊接工具、电池单体、电池以及用电装置,首先使用带齿焊头对层叠设置的正极耳与负极耳进行第一次焊接,使得层叠设置的正极耳与负极耳进行固相连接,再通过无齿焊头进行平焊,以对第一次焊接后的凹凸不平的区域进行整形压平,消除层叠设置的正极耳及负极耳之间的间隙。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
通过阅读对下文实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出实施方式的目的,而并不认为是对本申请的限制。而且在全部附图中,用相同的附图标号表示相同的部件。在附图中:
图1为在一些情形下的超声波预焊之后的效果图;
图2为在一些情形下的超声波预焊之后的效果图;
图3为本申请一实施例中车辆的结构示意图;
图4为本申请一实施例中电池的分解结构示意图;
图5为本申请一实施例中电池单体的分解结构示意图;
图6为本申请一实施例中极耳焊接方法的流程图;
图7为本申请一实施例中第一次焊接后的示意图;
图8为本申请一实施例中第二次焊接后的结构示意图;
图9为本申请一实施例中无齿焊头的结构示意图;
图10为本申请一实施例中超声波预焊后的效果示意图;
图11为图10中的局部放大图;
图12为本申请一实施例中激光焊接后的效果示意图。
1000、车辆;100、电池;200、控制器;300、马达;10、箱体;20、电池单体;30、极耳主体;40、无齿焊头;11、第一部分;12、第二部分;21、端盖;22、壳体;23、电极组件;31、第一焊印区域;32、第二焊印区域;21a、电极端子。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
目前,从市场形势的发展来看,锂离子电池由于具备能量密度大、输出功率高、循环寿命长和环境污染小等优点而被广泛应用于电动汽车以及消费类电子产品中。随着锂离子电池应用领域的不断扩大,其市场的需求量也在不断地扩增。
锂离子电池的生产工艺流程通常包含如下步骤:第一步,电极浆料制备,主要是将电 极活性材料、粘结剂、溶剂等混合在一起,充分搅拌分散后,形成浆料;第二步,涂布,将第一步制备的浆料以指定厚度均匀涂布到集流体(铝箔或铜箔等)上,并烘干溶剂;第三步,极片冲切,将上一步制作出来的极片冲切成指定的尺寸形状;第四步,叠片,将正负极片、隔膜装配到一起,完成贴胶后,形成极芯;第五步,组装硬壳电池单体,将上一步生产的极芯装入已经冲好坑的壳体,并完成顶封、侧封等(预留注液口),形成未注液的硬壳电池单体;第六步,注液,将指定量的电解液注入硬壳电池单体内部;第七步,电池密封,在真空环境中将电池单体内部的气体抽出并完成密封。
在上述叠片的过程中,多层正极极片层叠后,其上的活性物质形成正极极柱,非活性物质形成正极极耳。同样的,多层负极极片层叠后,其上的活性物质形成负极极柱,非活性物质形成负极极耳。需要将正极极耳与负极极耳层叠设置后并进行焊接,进而通过再次焊接固定至极柱上。
目前,通常采用对层叠设置的正极耳与负极耳进行超声波预焊,再通过激光焊接将预焊之后的多层极耳固定至极柱上。其中,对层叠设置的正极耳与负极耳进行超声波预焊时,均采用带齿焊头进行焊接。经过长期的观察,申请人注意到,采用上述方法进行预焊后,在后续将焊接完成的极耳成品(即通过两次超声波焊接完成的正极耳与负极耳形成的整体,为了简单起见,后续统称为极耳成品)与极柱的激光焊接过程中,很容易导致熔合区开裂,从而影响过流能力及结构强度。
发现上述问题后,申请人进行了大量的实验与分析,得出可能导致上述问题的如下原因:
经过带齿焊头预焊之后的极耳成品存在层间间隙,在后续极耳成品与极柱的激光焊接时,该间隙将会在激光焊接过程中产生大量气孔,热量大量堆积导致熔合区开裂。大量气孔将导致有效连接区域变小,从而影响过流能力。
如图1及图2所示,具体地,在一些情形下,电池单体采用超声波对正极耳与负极耳进行预焊,结合极耳成品与极柱通过激光焊接固定的焊接技术,导致极耳成品与极柱激光焊缝两侧存在开裂,从而影响过流能力及结构强度。进一步使得激光焊接时极耳成品内部存在气孔及间隙,使得有效连接区域变小,从而影响过流能力。
此外,申请人还针对电池单体的材料进行了进一步地实验及验证。电池单体材料采用铝箔制作,将铝箔与铜箔的部分物理性能进行对比,结果如表1所示,表1为铝箔与铜箔的部分物理性能对比。
表1:
Figure PCTCN2022127902-appb-000001
由表1可知,由于金属铝凝固时收缩率大,导致极耳熔池界面中液态金属颈缩。极耳经过焊接在层间隙产生气孔,而间隙的存在导致颈缩后与极柱焊接时液态金属无法填充,从而导致焊缝开裂。
至此,申请人发现,若需要提高极耳成品与极柱之间的焊接效果,需要消除正极耳与负极耳在经过预焊之后的层间间隙。而需要消除层间间隙,则需要对超声波预焊的方式进行优化改善。
基于以上考虑,为了改善极耳成品与极柱焊接时的开裂现象,解决多层极耳预焊时易产生层间间隙的问题,申请人经过深入研究,设计了一种极耳焊接方法,采用带齿焊头与无齿焊头相结合的特殊预焊方式,使得层叠设置的正极耳与负极耳经过两次超声波焊合而形成紧密的整体结构,消除层间间隙,从而使得极耳成品在与极柱进行激光焊接的过程中,解决焊接气孔及熔合区开裂问题。
本申请实施例公开的电池单体可以但不限用于车辆、船舶或飞行器等用电装置中。
以下实施例为了方便说明,以本申请一实施例的一种用电装置为车辆1000为例进行说明。
请参照图3,图3为本申请一些实施例提供的车辆1000的结构示意图。车辆1000的内部设置有电池100,电池100可以设置在车辆1000的底部或头部或尾部。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源。车辆1000还可以包括控制器200和马达300,控制器200用来控制电池100为马达300供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池100不仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
请参照图4,图4为本申请一些实施例提供的电池100的爆炸图。电池100包括箱体10和电池单体20,电池单体20容纳于箱体10内。其中,箱体10用于为电池单体20提供容纳空间,箱体10可以采用多种结构。在一些实施例中,箱体10可以包括第一部分11和第二部分12,第一部分11与第二部分12相互盖合,第一部分11和第二部分12共同限定出用于容纳电池单体20的容纳空间。第二部分12可以为一端开口的空心结构,第一部分11可以为板状结构,第一部分11盖合于第二部分12的开口侧,以使第一部分11与第二部分12共同限定出容纳空间;第一部分11和第二部分12也可以是均为一侧开口的空心结构,第一部分 11的开口侧盖合于第二部分12的开口侧。当然,第一部分11和第二部分12形成的箱体10可以是多种形状,比如,圆柱体、长方体等。
在电池100中,电池单体20可以是多个,多个电池单体20之间可串联或并联或混联,混联是指多个电池单体20中既有串联又有并联。多个电池单体20之间可直接串联或并联或混联在一起,再将多个电池单体20构成的整体容纳于箱体10内;当然,电池100也可以是多个电池单体20先串联或并联或混联组成电池模块形式,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体10内。电池100还可以包括其他结构,例如,该电池100还可以包括汇流部件,用于实现多个电池单体20之间的电连接。
其中,每个电池单体20可以为二次电池或一次电池;还可以是锂硫电池、钠离子电池或镁离子电池,但不局限于此。
请参照图5,图5为本申请一些实施例提供的电池单体20的分解结构示意图。电池单体20是指组成电池的最小单元。电池单体20包括有端盖21、壳体22、电池单体组件23以及其他的功能性部件。
端盖21是指盖合于壳体22的开口处以将电池单体20的内部环境隔绝于外部环境的部件。不限地,端盖21的形状可以与壳体22的形状相适应以配合壳体22。可选地,端盖21可以由具有一定硬度和强度的材质(如铝合金)制成,这样,端盖21在受挤压碰撞时就不易发生形变,使电池单体20能够具备更高的结构强度,安全性能也可以有所提高。端盖21上可以设置有如电极端子21a等的功能性部件。电极端子21a可以用于与电池单体组件23电连接,以用于输出或输入电池单体20的电能。在一些实施例中,端盖21上还可以设置有用于在电池单体20的内部压力或温度达到阈值时泄放内部压力的泄压机构。端盖21的材质也可以是多种的,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。在一些实施例中,在端盖21的内侧还可以设置有绝缘件,绝缘件可以用于隔离壳体22内的电连接部件与端盖21,以降低短路的风险。示例性的,绝缘件可以是塑料、橡胶等。
壳体22是用于配合端盖21以形成电池单体20的内部环境的组件,其中,形成的内部环境可以用于容纳电池单体组件23、电解液以及其他部件。壳体22和端盖21可以是独立的部件,可以于壳体22上设置开口,通过在开口处使端盖21盖合开口以形成电池单体20的内部环境。不限地,也可以使端盖21和壳体22一体化,具体地,端盖21和壳体22可以在其他部件入壳前先形成一个共同的连接面,当需要封装壳体22的内部时,再使端盖21盖合壳体22。壳体22可以是多种形状和多种尺寸的,例如长方体形、圆柱体形、六棱柱形等。具体地,壳体22的形状可以根据电极组件23的具体形状和尺寸大小来确定。壳体22的材质可以是多种,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。
电极组件23是电池单体20中发生电化学反应的部件。壳体22内可以包含一个或更 多个电极组件23。电极组件23主要由正极片和负极片卷绕或层叠放置形成,并且通常在正极片与负极片之间设有隔膜。正极片和负极片具有活性物质的部分构成电极组件23的主体部,正极片和负极片不具有活性物质的部分各自构成极耳。正极极耳和负极极耳可以共同位于主体部的一端或是分别位于主体部的两端。在电池的充放电过程中,正极活性物质和负极活性物质与电解液发生反应,极耳连接电极端子21a以形成电流回路。
参阅图6、图7以及图8,本申请一实施例提供了一种极耳焊接方法,包括步骤:
S10:形成极耳,将多层正极极片及多层负极极片分别层叠设置,形成多层层叠的正极耳与负极耳。
S20:第一次焊接,使用带齿焊头(图中未示出)对层叠设置的正极耳与负极耳进行焊接,以形成具有第一焊印区域31的极耳主体30。
其中,第一次焊接所使用的带齿焊头的尺寸为5毫米(mm)×30毫米(mm),由此,通过带齿焊头所焊接的第一焊印区域31的面积为5mm×30mm。此外,带齿焊头的焊齿高度为0.45mm,且带齿焊头为焊齿半径为0.8mm、焊齿间距为0.32mm的球形齿。经过带齿焊头焊接之后,形成凹凸不平的第一焊印区域31,使得极耳主体30进行固相连接。
S30:第二次焊接,使用无齿焊头40对极耳主体30进行第二次焊接,以形成第二焊印区域32。
如图9所示,需要说明的是,无齿焊头40的焊面为光滑面。因此,通过无齿焊头40对凹凸不平的第一焊印区域31进行整形压平,在超声振动时不打滑,同时消除极耳主体30中相互焊接的正极耳与负极耳之间的间隙。
在一些实施例中,无齿焊头40的尺寸为4mm×20mm。由此,通过无齿焊头40进行焊接形成的第二焊印区域32的面积为4mm×20mm,使得第二焊印区域32位于第一焊印区域31内。此外,第二焊印区域32小于第一焊印区域31,且第一焊印区域31的中心点与第二焊印区域32的中心点重合。
在一些实施例中,第一次焊接及第二次焊接均为超声波焊接。
具体地,由于第一次焊接采用较高的带齿焊头对层叠设置的正极耳与负极耳进行超声波预焊,使得层叠设置的正极耳与负极耳之间固相连接,相比于平齿焊头强度更高,使得第二次焊接时焊合部分不易被超声波振动散开。而第二次焊接采用无齿焊头40进行超声振动,且第二焊印区域32小于第一焊印区域31,第二焊印区域32位于第一焊印区域31之上,从而能够避免无齿焊头40在光滑表面焊接时而产生打滑现象,能够将不平整部分进行整形压平,消除层间间隙。
在一些实施例中,无齿焊头40具有圆弧倒角,圆弧倒角半径为1mm。通过设置圆弧倒角,可以使得焊接过程中焊头与焊印区域的接触更加紧密,提高焊接效果。
S40:将经过两次焊接之后的极耳主体30通过激光焊接与极柱固定连接。
根据如下表2所示的数据进行两次超声波预焊后,进行激光焊接,并得出如下表3所示的结果。表2为两次超声波预焊的参数值,表3为激光焊接的参数结果。
表2:
Figure PCTCN2022127902-appb-000002
表3:
Figure PCTCN2022127902-appb-000003
由表2及表3可以得出如下结论:采用上述极耳焊接方法对层叠设置的正极耳与负极耳进行焊接后,层叠设置的正极耳与负极耳之间无气孔,无开裂,如图10及图11所示。且经过两次超声波预焊之后的极耳主体30与极柱通过激光焊接之后,同样无气孔,无开裂,如图12所示。由此可知,通过上述极耳焊接方法能够有效消除层间间隙及气孔,从而解决极耳与极柱焊接时易开裂的问题。
基于与上述极耳焊接方法相同的构思,本申请还提供一种用于操作如上所述的极耳焊接方法的极耳焊接工具,极耳焊接工具包括无齿焊头40与带齿焊头(图中未示出)。其中,带齿焊头的焊齿高度为0.45mm,且带齿焊头为焊齿半径为0.8mm、焊齿间距为0.32mm的球形齿。无齿焊头40的焊面为光滑面。因此,通过无齿焊头40对经过第一次焊接之后的凹凸不平的区域进行整形压平,在超声振动时不打滑,同时消除极耳主体30多层极耳之间的间隙。
在一些实施例中,带齿焊头的焊接区域为第一焊印区域31,无齿焊头40的焊接区域为所述第二焊印区域32。其中,第二焊印区域32小于第一焊印区域31,且第一焊印区域31的中心点与第二焊印区域32的中心点重合。
在一些实施例中,无齿焊头40的尺寸为4mm×20mm,而带齿焊头的尺寸为5mm×30mm。由此,通过带齿焊头所焊接的第一焊印区域31的面积为5mm×30mm,而通过无齿焊头40进行焊接形成的第二焊印区域32的面积为4mm×20mm,使得第二焊印区域32位于第一焊印区域31内。
由于第一次焊接采用较高的带齿焊头对层叠设置的正极耳与负极耳进行焊合,层叠设置的正极耳与负极耳之间固相连接,相比于平齿焊头强度更高,使得第二次焊接时焊合部分不易被超声波振动散开。而第二次焊接采用无齿焊头40进行超声振动,且第二焊印区域32小于第一焊印区域31,第二焊印区域32位于第一焊印区域31之上,从而能够避免无齿焊头 40在光滑表面焊接时而产生打滑现象,能够将不平整部分进行整形压平,消除层间间隙。
在一些实施例中,无齿焊头40具有圆弧倒角,圆弧倒角半径为1mm。通过设置圆弧倒角,可以使得焊接过程中焊头与焊印区域的接触更加紧密,提高焊接效果。
基于与上述极耳焊接方法相同的构思,本申请还提供一种电池单体,通过如上所述的极耳焊接方法制备而成。
基于与上述电池单体相同的构思,本申请还提供一种电池,包括壳体及如上所述的电池单体,所述电池单体设置于所述壳体内。
基于与上述电池相同的构思,本申请还提供一种用电装置,包括用电主体及如上所述的电池。
本申请具体使用时,首先将多层正极极片及多层负极极片分别层叠设置,形成多层层叠的正极耳与负极耳。然后使用带齿焊头对层叠设置的正极耳与负极耳进行超声波焊接,以形成具有第一焊印区域31的极耳主体30。进一步地,使用光滑的无齿焊头40对极耳主体30进行超声波焊接,形成第二焊印区域32,并且使第二焊印区域32位于第一焊印区域31内,使第一焊印区域31的中心点与第二焊印区域32的中心点重合。
对层叠设置的正极耳与负极耳经过两次超声波焊接后,将预焊完成的极耳主体30与极柱通过激光焊接进行固定连接,由此,完成整个焊接过程。
上述实施例中的极耳焊接方法、焊接工具、电池单体、电池以及用电装置,至少具有以下优点:
其一,无齿焊头40能够对经过带齿焊头焊接后形成的凹凸不平的焊面进行整形压平,能够避免无齿焊头40在光滑表面上焊接时打滑,从而消除层间间隙,解决开裂问题;
其二,无齿焊头40设置半径为1mm的圆弧倒角,能够使得焊接过程中焊头与焊印区域之间的接触更加紧密,提高焊接效果;
其三,无齿焊头40的结构简单,操作方便,有利于推广使用。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (19)

  1. 一种极耳焊接方法,包括步骤:
    S10:形成极耳,将多层正极极片及多层负极极片分别层叠设置,形成多层层叠的正极耳与负极耳;
    S20:第一次焊接,使用带齿焊头对层叠设置的所述正极耳与所述负极耳进行焊接,以形成具有第一焊印区域的极耳主体;
    S30:第二次焊接,使用无齿焊头对所述极耳主体进行第二次焊接,以形成第二焊印区域。
  2. 根据权利要求1所述的极耳焊接方法,其中,在S20步骤中,所述带齿焊头的尺寸为5mm×30mm。
  3. 根据权利要求1或2所述的极耳焊接方法,其中,在S20步骤中,所述带齿焊头的焊齿高度为0.45mm。
  4. 根据权利要求1-3任一项所述的极耳焊接方法,其中,在S20步骤中,所述带齿焊头的焊齿半径为0.8mm,焊齿间距为0.32mm。
  5. 根据权利要求1-4任一项所述的极耳焊接方法,其中,在S30步骤中,所述无齿焊头的焊面为光滑面。
  6. 根据权利要求1-5任一项所述的极耳焊接方法,其中,在S30步骤中,所述无齿焊头的尺寸为4mm×20mm。
  7. 根据权利要求5或6所述的极耳焊接方法,其中,所述无齿焊头具有圆弧倒角,所述圆弧倒角半径为1mm。
  8. 根据权利要求1-7任一项所述的极耳焊接方法,其中,所述第二焊印区域小于所述第一焊印区域,且所述第一焊印区域的中心点与所述第二焊印区域的中心点重合。
  9. 根据权利要求1-8任一项所述的极耳焊接方法,其中,所述第一次焊接及所述第二次焊接均为超声波焊接。
  10. 一种极耳焊接工具,用于操作如权利要求1-9任一项所述的极耳焊接方法,所述极耳焊接工具包括所述无齿焊头,所述无齿焊头的焊面为光滑面。
  11. 根据权利要求10所述的极耳焊接工具,其中,所述无齿焊头的尺寸为4mm×20mm。
  12. 根据权利要求10或11所述的极耳焊接工具,其中,所述无齿焊头具有圆弧倒角,所述圆弧倒角半径为1mm。
  13. 根据权利要求10-12任一项所述的极耳焊接工具,其中,所述极耳焊接工具包括所述带齿焊头,所述带齿焊头的焊接区域为所述第一焊印区域,所述无齿焊头的焊接区域为所述第二焊印区域;
    其中,所述第二焊印区域小于所述第一焊印区域,且所述第一焊印区域的中心点与所述 第二焊印区域的中心点重合。
  14. 根据权利要求13所述的极耳焊接工具,其中,所述带齿焊头的尺寸为5mm×30mm。
  15. 根据权利要求13或14所述的极耳焊接工具,其中,所述带齿焊头的焊齿高度为0.45mm。
  16. 根据权利要求13-15任一项所述的极耳焊接工具,其中,所述带齿焊头的焊齿半径为0.8mm,焊齿间距为0.32mm。
  17. 一种电池单体,通过如权利要求1-9任一项所述的极耳焊接方法制备而成。
  18. 一种电池,包括壳体及如权利要求17所述的电池单体,所述电池单体设置于所述壳体内。
  19. 一种用电装置,包括用电主体及如权利要求18所述的电池。
PCT/CN2022/127902 2021-11-09 2022-10-27 极耳焊接方法、焊接工具、电池单体、电池及用电装置 WO2023083011A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111318931.2A CN115837510B (zh) 2021-11-09 2021-11-09 一种极耳焊接方法、焊接工具、电池单体、电池以及用电装置
CN202111318931.2 2021-11-09

Publications (1)

Publication Number Publication Date
WO2023083011A1 true WO2023083011A1 (zh) 2023-05-19

Family

ID=85574605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127902 WO2023083011A1 (zh) 2021-11-09 2022-10-27 极耳焊接方法、焊接工具、电池单体、电池及用电装置

Country Status (2)

Country Link
CN (1) CN115837510B (zh)
WO (1) WO2023083011A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116598561B (zh) * 2023-05-09 2024-04-16 深圳欣界能源科技有限公司 一种叠片电芯的封装方法及叠片电池
CN116586851B (zh) * 2023-07-17 2023-11-21 宁德时代新能源科技股份有限公司 结构件及其制备方法、电池单体、电池及用电设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013105361A1 (ja) * 2012-01-12 2013-07-18 日立マクセル株式会社 超音波溶接用チップ、超音波溶接機、及び電池の製造方法
CN104396050A (zh) * 2012-06-28 2015-03-04 丰田自动车株式会社 电池的制造方法以及电池
JP2015199095A (ja) * 2014-04-08 2015-11-12 株式会社デンソー 超音波溶接装置、及び電池の製造方法
JP2016219274A (ja) * 2015-05-21 2016-12-22 株式会社豊田自動織機 電極組立体の製造方法及び電極積層体
CN111554960A (zh) * 2019-02-08 2020-08-18 三洋电机株式会社 蓄电元件的制造方法、蓄电元件、接合方法以及接合体
CN111867775A (zh) * 2019-02-01 2020-10-30 株式会社Lg化学 具有不同尺寸的电极接头焊接接合面的压力焊接部分的电极组件及制造电极组件的超声波焊接设备
CN112453735A (zh) * 2020-10-09 2021-03-09 湖北亿纬动力有限公司 一种极耳焊接方法、电池制造方法及电池
CN113042874A (zh) * 2021-03-10 2021-06-29 昆山聚创新能源科技有限公司 超声波焊头

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102513686A (zh) * 2011-12-02 2012-06-27 苏州冠硕新能源有限公司 超声波焊头、具有超声波焊头的超声波焊接设备及使用该超声波焊接设备焊接电池极耳的方法
CN209786103U (zh) * 2019-06-11 2019-12-13 宁德时代新能源科技股份有限公司 二次电池
CN110936010B (zh) * 2019-10-25 2021-12-14 合肥国轩高科动力能源有限公司 一种锂电池复合集流体极耳焊接的方法
CN211072230U (zh) * 2019-11-06 2020-07-24 恒大新能源技术(深圳)有限公司 极耳组件及其超声波焊接装置
CN111785903A (zh) * 2020-07-15 2020-10-16 中航锂电(洛阳)有限公司 电池及电池制造方法
CN112421188A (zh) * 2020-10-30 2021-02-26 蜂巢能源科技有限公司 极耳与盖板的焊接方法、电池模组、电池包和车辆

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013105361A1 (ja) * 2012-01-12 2013-07-18 日立マクセル株式会社 超音波溶接用チップ、超音波溶接機、及び電池の製造方法
CN104396050A (zh) * 2012-06-28 2015-03-04 丰田自动车株式会社 电池的制造方法以及电池
JP2015199095A (ja) * 2014-04-08 2015-11-12 株式会社デンソー 超音波溶接装置、及び電池の製造方法
JP2016219274A (ja) * 2015-05-21 2016-12-22 株式会社豊田自動織機 電極組立体の製造方法及び電極積層体
CN111867775A (zh) * 2019-02-01 2020-10-30 株式会社Lg化学 具有不同尺寸的电极接头焊接接合面的压力焊接部分的电极组件及制造电极组件的超声波焊接设备
CN111554960A (zh) * 2019-02-08 2020-08-18 三洋电机株式会社 蓄电元件的制造方法、蓄电元件、接合方法以及接合体
CN112453735A (zh) * 2020-10-09 2021-03-09 湖北亿纬动力有限公司 一种极耳焊接方法、电池制造方法及电池
CN113042874A (zh) * 2021-03-10 2021-06-29 昆山聚创新能源科技有限公司 超声波焊头

Also Published As

Publication number Publication date
CN115837510B (zh) 2024-01-16
CN115837510A (zh) 2023-03-24

Similar Documents

Publication Publication Date Title
WO2023083011A1 (zh) 极耳焊接方法、焊接工具、电池单体、电池及用电装置
JP4433650B2 (ja) リチウム二次単電池及びリチウム二次単電池の接続構造体
CN103155226B (zh) 集成式电池极耳
JP6230543B2 (ja) 電気コネクタおよびそれを備える電池
CN112768845B (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
CN215989120U (zh) 方形电池单体、电池及用电设备
WO2022052120A1 (zh) 电化学装置及电子装置
JP2008053102A (ja) 蓄電装置
CN217903385U (zh) 电池单体、电池及用电装置
WO2023186034A1 (zh) 端盖、电池单体、电池及用电设备
WO2024093100A1 (zh) 电极极片、电极组件、电池单体、电池和用电设备
JP2012204179A (ja) 非水電解液二次電池
EP3972042A1 (en) Terminal for secondary battery and method for manufacturing terminal for secondary battery
JP2018060599A (ja) 角形二次電池
JP2003007346A (ja) リチウム二次電池及びその製造方法
CN218731657U (zh) 电芯及电池模组
WO2023025104A1 (zh) 电池单体、电池以及用电装置
CN208078114U (zh) 一种电池
CN216750197U (zh) 电池顶盖、顶盖组件、电池单体、电池及用电装置
JP2015103420A (ja) 角形二次電池
JP2013251123A (ja) 角形二次電池
CN205944301U (zh) 电芯结构及扣式二次锂离子电池
WO2023231457A1 (zh) 电极组件、电池单体、电池及用电装置
CN218160451U (zh) 一种极片和电池
CN114614210B (zh) 电化学装置、电池模组及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22891807

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022891807

Country of ref document: EP

Effective date: 20240306