WO2023082775A1 - 参考信号的传输方法和装置 - Google Patents

参考信号的传输方法和装置 Download PDF

Info

Publication number
WO2023082775A1
WO2023082775A1 PCT/CN2022/115251 CN2022115251W WO2023082775A1 WO 2023082775 A1 WO2023082775 A1 WO 2023082775A1 CN 2022115251 W CN2022115251 W CN 2022115251W WO 2023082775 A1 WO2023082775 A1 WO 2023082775A1
Authority
WO
WIPO (PCT)
Prior art keywords
res
antenna ports
reference signals
phase shifter
antenna
Prior art date
Application number
PCT/CN2022/115251
Other languages
English (en)
French (fr)
Inventor
王丰
陈凯
杨烨
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023082775A1 publication Critical patent/WO2023082775A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the present application relates to the communication field, and more specifically, to a reference signal transmission method and device.
  • a large amount of idle bandwidth in the millimeter wave (mmWave) frequency band can be utilized, which can greatly improve the transmission capacity of the communication system. Due to the small wavelength of the millimeter wave, the device can be equipped with more (for example, hundreds of) antenna elements to form a large-scale multiple-input multiple-output (massive multiple-input multiple-output, massive MIMO) antenna array, thereby greatly improving the frequency spectrum. efficiency.
  • hybrid beam-forming hybrid beam-forming
  • the present application provides a reference signal transmission method and device, which can realize full-channel channel state information (channel state information, CSI) measurement under a hybrid beamforming architecture.
  • channel state information channel state information, CSI
  • a method for transmitting a reference signal may be executed by a network device, or may be executed by a component of the network device (such as a processor, a chip, or a chip system, etc.), or may be implemented by a device capable of implementing all or part of the network Logical modules or software implementations of device functions.
  • the method includes: using N ⁇ M antenna ports to output N ⁇ M reference signals on N ⁇ M resource elements (resource element, RE), the N ⁇ M reference signals correspond to N ⁇ M REs one by one, the Each of the N ⁇ M antenna ports is connected to each of the N radio frequency links, and the N ⁇ M reference signals are used to measure the downlink channel information of the N ⁇ M antenna ports, where N and M are positive integers; N ⁇ M REs include M groups of REs, each group of REs includes N REs, each group of REs occupies N subcarriers and one symbol, and the reference signal output on the nth RE of the mth group
  • the weight w m ⁇ N+n is:
  • w m ⁇ N+n is a vector of N ⁇ M dimensions, It is an N ⁇ M-dimensional vector, one of am,n, i is equal to 1, and the rest of am,n,i are equal to 0, 0 ⁇ m ⁇ M-1, 0 ⁇ n ⁇ N-1 , 0 ⁇ i ⁇ N-1; receive downlink channel information of the N ⁇ M antenna ports.
  • the reference signal may be a channel state information reference signal (reference signal, RS), that is, a CSI-RS.
  • reference signal reference signal
  • the network device (base station) sends N ⁇ M reference signals to the terminal device through N ⁇ M antenna ports, which can achieve N ⁇ M
  • the downlink channel corresponding to each antenna port is measured to obtain the CSI information of the whole channel.
  • the vectors corresponding to n with different values [a m,n,0 ,...,a m,n,i ,...,a m,n,N-1 ] are orthogonal; or, when the value of n is constant, the vectors corresponding to m with different values are orthogonal between them.
  • the weights w m ⁇ N+n of reference signals corresponding to different REs are orthogonal, which can better distinguish reference signals on different REs, and further improve the receiving performance of the receiving end/terminal device.
  • N ⁇ M REs occupy N subcarriers and M symbols. Sending different reference signals in different REs can enable the terminal equipment to distinguish different reference signals.
  • w 0 , w 1 , w 2 , w 3 , w 4 , w 5 , w 6 and w 7 are weight values corresponding to the 8 reference signals output by the 8 antenna ports.
  • the weights of the 8 reference signals output at the 8 antenna ports are orthogonal, which can improve the receiving performance of the terminal equipment, thereby realizing full-channel CSI measurement.
  • w 0 , w 1 , w 2 and w 3 are weights corresponding to the four reference signals output by the four antenna ports respectively.
  • the weights of the four reference signals output at the four antenna ports are orthogonal, which can improve the receiving performance of the terminal equipment, thereby realizing full-channel CSI measurement.
  • the weight used by the network device when weighting the amplitude and phase of the reference signal can be negotiated between the network device and the terminal device in advance, or specified in the wireless communication protocol, or determined by the network device itself and notify the terminal device.
  • the method further includes: correcting downlink channel information. Due to the HBF architecture, the analog part is realized by using a phase shifter. Since the phase shifter is an analog device, there will be non-ideal factors, which will make the phase shifter deviate. Performing non-ideal correction on the channel information fed back by the terminal equipment can improve the accuracy of channel measurement.
  • a communication device configured to be a network device, or a device or component in the network device, or a logic module capable of realizing all or part of the functions of the network device.
  • the device includes: a sending module, configured to use N ⁇ M antenna ports to output N ⁇ M reference signals on N ⁇ M resource elements RE, where N ⁇ M reference signals correspond to N ⁇ M REs one by one, and the N Each of the ⁇ M antenna ports is connected to each of the N radio frequency links, and the N ⁇ M reference signals are used to measure the downlink channel information of the N ⁇ M antenna ports, where N and M is a positive integer;
  • N ⁇ M REs include M groups of REs, each group of REs includes N REs, each group of REs occupies N subcarriers and one symbol, and the reference signal output on the nth RE of the mth group
  • the weight w m ⁇ N+n is:
  • w m ⁇ N+n is a vector of N ⁇ M dimensions, It is an N ⁇ M-dimensional vector, one of am,n, i is equal to 1, and the rest of am,n,i are equal to 0, 0 ⁇ m ⁇ M-1, 0 ⁇ n ⁇ N-1 , 0 ⁇ i ⁇ N-1; the receiving module is configured to receive downlink channel information of the N ⁇ M antenna ports.
  • the vectors corresponding to n with different values [a m,n,0 ,...,a m,n,i ,...,a m,n,N-1 ] are orthogonal; or, when the value of n is constant, the vectors corresponding to m with different values are orthogonal between them.
  • N ⁇ M REs occupy N subcarriers and M symbols.
  • N is equal to 2
  • w 0 , w 1 , w 2 , w 3 , w 4 , w 5 , w 6 and w 7 are weight values corresponding to the 8 reference signals output by the 8 antenna ports.
  • N is equal to 2
  • M is equal to 2
  • w 0 , w 1 , w 2 and w 3 are weights corresponding to the four reference signals output by the four antenna ports respectively.
  • the device further includes a processing module, where the processing module is configured to: modify downlink channel information.
  • a communication device including a processor and a transceiver, the transceiver is used to receive computer codes or instructions, and transmit them to the processor, and the processor runs the computer codes or instructions to implement The method for transmitting a reference signal in the first aspect above or in any possible implementation manner of the first aspect.
  • a communication device including: an input-output interface and a logic circuit, the input-output interface is used to obtain input information and/or output information; the logic circuit is used to implement the above-mentioned first aspect or the first aspect In the method described in any possible implementation manner, the input information is processed and/or the output information is generated.
  • a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a communication device, the communication device realizes any one of the above-mentioned first aspect or any possible implementation of the first aspect
  • the transmission method of the reference signal in the method is provided.
  • a computer program product including instructions, and when the instructions are executed by a computer, the communication device implements the reference signal transmission method in the first aspect or any possible implementation manner of the first aspect.
  • FIG. 1 is a schematic diagram of a system architecture applicable to an embodiment of the present application.
  • Fig. 2 is an example diagram of the architecture of the digital beamforming technology.
  • FIG. 3 is an example diagram of an architecture of a hybrid beamforming technology.
  • Fig. 4 is a schematic diagram of downlink full-channel CSI measurement.
  • Fig. 5 is a schematic diagram of beam domain CSI measurement based on the HBF system.
  • FIG. 6 is an example diagram of an architecture of a hybrid beamforming technology applicable to an embodiment of the present application.
  • Fig. 7 is a schematic interactive flowchart of a reference signal transmission method according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a frequency domain and a time domain occupied by 8 REs according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a frequency domain and a time domain occupied by four REs according to an embodiment of the present application.
  • Fig. 10 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • Fig. 11 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • the embodiments of the present application can be applied to various communication systems, such as a wireless local area network system (wireless local area network, WLAN), a narrowband Internet of Things system (narrow band-internet of things, NB-IoT), a global system for mobile communications (global system for mobile communications, GSM), enhanced data rate for GSM evolution system (enhanced data rate for gsm evolution, EDGE), wideband code division multiple access system (wideband code division multiple access, WCDMA), code division multiple access 2000 system (code division multiple access, CDMA2000), time division-synchronization code division multiple access system (time division-synchronization code division multiple access, TD-SCDMA), long term evolution system (long term evolution, LTE), satellite communication, fifth generation (5th generation, 5G) systems, and three major application scenarios of 5G communication systems: enhanced mobile broadband (eMBB), ultra reliable and low latency communications (URLLC), and massive machine type communications (massive machine type communications, mMTC).
  • eMBB enhanced mobile broadband
  • URLLC ultra reliable
  • a communication system applicable to this application includes one or more sending ends and one or more receiving ends.
  • the signal transmission between the sending end and the receiving end may be transmitted through radio waves, or may be transmitted through transmission media such as visible light, laser, infrared, and optical fiber.
  • one of the sending end and the receiving end may be a terminal device, and the other may be a network device.
  • the terminal devices involved in the embodiments of the present application may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems.
  • the terminal can be a mobile station (mobile station, MS), a subscriber unit (subscriber unit), a user equipment (user equipment, UE), a cellular phone (cellular phone), a smart phone (smart phone), a wireless data card, a personal digital assistant ( personal digital assistant (PDA) computer, tablet computer, wireless modem (modem), handheld device (handset), laptop computer (laptop computer), machine type communication (machine type communication, MTC) terminal, etc.
  • the user equipment includes vehicle user equipment.
  • the network device may be an evolved Node B (evolved Node B, eNB), a radio network controller (radio network controller, RNC), a Node B (Node B, NB), a base station controller (base station controller, BSC) ), base transceiver station (base transceiver station, BTS), home base station (home evolved NodeB, or home Node B, HNB), baseband unit (baseband unit, BBU), wireless fidelity (wireless fidelity, WIFI) system in the connection Access point (access point, AP), wireless relay node, wireless backhaul node, transmission point (transmission point, TP) or transmission and reception point (transmission and reception point, TRP), etc., can also be a new air interface (new radio, A gNB or transmission point (for example, TRP or TP) in NR), one or a group (including multiple) antenna panels of a base station in NR, or a network node constituting a gNB or a transmission point, such as
  • the BBU and radio frequency unit can be integrated in the same device, and the device is connected to the antenna array through a cable (such as but not limited to a feeder).
  • the BBU can also be set separately from the RFU, and the two are connected through an optical fiber, and communicate through, for example but not limited to, a common public radio interface (CPRI) protocol.
  • CPRI common public radio interface
  • the RFU is usually called a remote radio unit (RRU), which is connected to the antenna array by cables.
  • the RRU can also be integrated with the antenna array, for example, active antenna unit (active antenna unit, AAU) products currently on the market adopt this structure.
  • the BBU can be further decomposed into multiple parts.
  • the BBU can be further subdivided into a centralized unit (centralized unit, CU) and a distributed unit (distributed unit, DU) according to the real-time performance of the processed services.
  • CU is responsible for processing non-real-time protocols and services
  • DU is responsible for processing physical layer protocols and real-time services.
  • some physical layer functions can be separated from the BBU or DU and integrated in the AAU.
  • FIG. 1 a schematic diagram of a system architecture applicable to this embodiment of the present application is shown.
  • the system includes network equipment and terminal equipment, and the network equipment in this embodiment of the present application may be a base station.
  • Beamforming technology also known as beamforming and spatial filtering, is a signal processing technology for directional transmission and/or reception of signals by an array. It can be applied to both the signal transmitting end and the signal receiving end.
  • the beamforming technology adjusts the parameters of the basic unit of the phase array so that signals at certain angles obtain constructive interference, while signals at other angles obtain destructive interference, thereby generating beams.
  • beamforming can comprehensively improve the quality of received signals and increase system throughput.
  • beamforming technology can be divided into digital beamforming technology and analog beamforming technology.
  • Digital beamforming (digital beamforming, DBF) technology: it can also be called all-digital beamforming.
  • This technology refers to the arbitrary control of the weighting of the antenna amplitude and phase (ie, amplitude and/or phase) before the digital baseband (in the instant domain or in the digital domain), thereby generating beams.
  • each antenna also can be understood as antenna port, antenna unit, antenna sub-array, etc.
  • Digital beamforming uses a complex hardware structure, which can flexibly adjust the phase and amplitude to generate more accurate beams.
  • the hardware implementation of the entire system may be very complicated and costly.
  • Analog beamforming (ABF) technology refers to applying amplitude and phase weights to analog signals before the analog baseband (that is, in the frequency domain or in the analog domain) to generate beams.
  • analog baseband that is, in the frequency domain or in the analog domain
  • the use of a relatively low-cost analog phase shifter can only adjust the phase but is difficult or even impossible to adjust the amplitude, and the generated beam may not be accurate.
  • the analog beamforming technology has the advantages of simple hardware structure, low implementation cost, no multiple RF links, and only a single data stream can be transmitted.
  • Hybrid Beamforming is a technique that divides beamforming between the digital and analog domains to reduce the cost associated with the number of RF links.
  • the hybrid beamforming technology includes two parts: one part is implemented by low-dimensional digital beamforming (ie, digital part), and the other part is realized by high-dimensional analog beamforming (ie, analog part).
  • low-dimensional digital beamforming ie, digital part
  • high-dimensional analog beamforming ie, analog part
  • a hybrid precoder may be used to implement the HBF technology.
  • the hybrid precoder may include an analog precoder (for realizing the above analog part) and a digital precoder (for realizing the above digital part).
  • the analog precoder can be implemented by a phase shifter
  • the digital precoder can be implemented by a radio frequency link.
  • Channel state information measurement in the beam domain In a MIMO system, n antennas are configured on the base station side, and CSI-RSs of m ports are sent through beamforming), where m ⁇ n, UE measures CSI based on the CSI-RSs of m ports and Feedback relevant information to the base station. The UE can only observe the channel information of the m ports weighted by the beam, so it is part of the CSI measurement.
  • the base station is configured with n antennas, and each antenna is mapped to the CSI-RS of one port, and the CSI-RS of n ports is sent in total.
  • the UE measures and feeds back the CSI according to the CSI-RS of n ports. relevant information to the base station.
  • the UE side observes the channel information of n ports, so it is full-channel CSI measurement.
  • the digital signal is first digitally beamformed at the baseband 21, and then converted into an analog signal by a digital-to-analog converter (DAC) 22, an RF link
  • the analog signal corresponding to 23 is mapped to an antenna port 24 and transmitted by the antenna port 24 .
  • DAC digital-to-analog converter
  • a DAC needs to be set for each RF link.
  • the hardware implementation of the entire system may be very complicated and the cost is very high. High, power consumption is also greatly increased.
  • the number of antennas is often very large. If an all-digital MIMO system is adopted, the number of RF links is equal to the number of antennas, and its cost and power consumption are unaffordable.
  • FIG. 3 an example diagram of the architecture of the hybrid beamforming technology is shown.
  • Figure 3 includes the fully-connected structure shown in Figure 3(a) and the partially-connected structure shown in Figure 3(b).
  • N RF chains 31a are respectively connected to M antennas 33a through N ⁇ M phase shifters 32a, and each RF chain 31a is connected to each antenna 33a through a phase shifter 32a, and each antenna 33a is connected to a plurality of phase shifters 32a.
  • Fig. 3 (a) N RF chains 31a are respectively connected to M antennas 33a through N ⁇ M phase shifters 32a, and each RF chain 31a is connected to each antenna 33a through a phase shifter 32a, and each antenna 33a is connected to a plurality of phase shifters 32a.
  • N RF links 31b are respectively connected with N ⁇ M antennas 33b through N ⁇ M phase shifters 32b, and one RF link 31b is connected with multiple antennas 33b, and each antenna 33b only Connected to a phase shifter 32b.
  • the partial connection structure saves hardware overhead and is easier to implement in engineering.
  • a radio frequency link is often connected to multiple antennas, and an analog phase shifter that can be adjusted in time division is generally configured between the radio frequency output port and each antenna, so that the baseband digital precoding combined with the phase shifter configuration The analog precoding of the hybrid beamforming precoding is completed.
  • the base station can accurately transmit signals to the target user through multi-antenna beamforming technology, provided that the base station is required to obtain the downlink full channel state information of the user, that is, a corresponding CSI measurement scheme is required.
  • the beamforming technology can be applied to the base station.
  • the base station and the UE can perform downlink communication.
  • the HBF technology is applied to the base station and the communication between the base station and the UE.
  • CSI-RS such as S 1 , S 2 , S 3 ...S m
  • the base station generates CSI-RS, such as S 1 , S 2 , S 3 ...S m , and maps the weighted baseband digital precoding to each baseband channel, and transmits it to each antenna through the middle radio frequency link, such as antenna 1, antenna 2, Antenna 3...antenna m, finally launched.
  • the UE side receives the CSI-RS, completes the CSI measurement according to the CSI-RS, and feeds back the precoding matrix indication (precoding matrix indication, PMI), channel quality indication (channel quality indicator, CQI), rank indication (rank indication, RI) to the base station ) and other measurement information.
  • precoding matrix indication precoding matrix indication, PMI
  • channel quality indication channel quality indicator, CQI
  • rank indication rank indication
  • This measurement scheme is a conventional scheme of the DBF system, and the HBF system cannot support this scheme.
  • DBF needs 1 data channel/RF link to drive an antenna.
  • the number of antennas is large, the number of required RF links also increases sharply, and the data channel contains expensive mid-radio frequency devices, making the entire system Costs rise.
  • the increase in the number of data channels also requires an increase in the dimension of signal processing, resulting in a significant increase in computational complexity and energy consumption.
  • FIG. 5 a schematic diagram of beam domain CSI measurement based on the HBF system is shown.
  • the base station generates CSI-RS and adjusts the weight of the phase shifter to form an analog beam.
  • the CSI-RS is shaped by HBF, it is transmitted to the UE.
  • the UE performs CSI measurement on the beamformed reference signal and feeds it back to the base station.
  • this measurement scheme considers the beam domain measurement of the HBF system, it can only complete part of the channel CSI measurement.
  • the beamforming of the base station on the signal cannot be accurately aimed at the UE, resulting in a decrease in the receiving signal-to-noise ratio on the UE side and a decrease in the UE experience rate.
  • the effect of the multi-user interference cancellation algorithm of the base station will be deteriorated, and the average rate of multi-user communication will also decrease.
  • the embodiment of the present application proposes a method for channel measurement, which can realize full-channel CSI measurement under the HBF framework.
  • FIG. 6 it shows an example architecture diagram of a hybrid beamforming technology applicable to the embodiment of the present application.
  • each of the N ⁇ M antenna ports of the network device is connected to each of the N radio frequency links, and each radio frequency link is connected to each antenna through a phase
  • Each antenna is connected to N phase shifters.
  • FIG. 7 a schematic interaction flowchart of a reference signal transmission method 700 according to an embodiment of the present application is shown.
  • the network device and the terminal device are used as an example to illustrate the method, but the present application does not limit the subject of the interaction.
  • the network device in FIG. 7 may also be a chip, a chip system, or a processor that supports the network device to implement the method, and may also be a logic module or software that can realize all or part of the functions of the network device; the terminal in FIG. 7
  • the device may also be a chip, a chip system, or a processor that supports the terminal device to implement the method, and may also be a logic module or software that can realize all or part of the terminal functions.
  • the network device uses N ⁇ M antenna ports (ports) to output N ⁇ M reference signals to the terminal device on the N ⁇ M resource element REs, where the N ⁇ M reference signals are in one-to-one correspondence with the N ⁇ M REs, Each of the N ⁇ M antenna ports is connected to each of the N radio frequency links, and the N ⁇ M reference signals are used to measure the downlink channel information of the N ⁇ M antenna ports, where N and M are positive integers.
  • the N ⁇ M antenna ports are antenna ports corresponding to all transmit antennas of the network device.
  • the network device when the network device outputs one of the N ⁇ M reference signals to the terminal device using one of the N ⁇ M REs using N ⁇ M antenna ports, the network device uses the N ⁇ M antenna ports to simultaneously The reference signal is output to a terminal device.
  • the network device can measure downlink channel information corresponding to N ⁇ M antenna ports through N ⁇ M reference signals, so as to improve the accuracy of channel measurement and the capacity of the system.
  • the reference signal may be a channel state information reference signal, that is, CSI-RS.
  • the reference signal may also be other reference signals.
  • the reference signal sent by the network device to the terminal device is a weighted reference signal.
  • the network device can implement it by superimposing an orthogonal cover code (orthogonal cover codes, OCC) matrix w OCC .
  • a column vector in the reference signal weights w OCC .
  • the OCC matrix w OCC is obtained by calculating weights in the frequency domain and weights in the time domain. The weights in the frequency domain are weighted by digital channels, and the weights in the time domain are weighted by phase shifters.
  • any two w P, f are mutually orthogonal, similarly, any two w P, t are also mutually orthogonal.
  • the weight vector of the reference signal output by the antenna port P in all REs is The values of w P, f and w P, t are generally defined by the protocol, and if they exceed the definition of the protocol, they can be designed by themselves. in, Represents the Kronecker product operation.
  • N ⁇ M REs can be divided into M groups of REs, each group of REs occupies N subcarriers and one symbol, and the weight of the reference signal output on the nth RE of the mth group is w m ⁇ N+n It can be expressed by the following formula (1):
  • w m ⁇ N+n is a vector of N ⁇ M dimensions, It is an N ⁇ M-dimensional vector, one of am,n, i is equal to 1, and the rest of am,n,i are equal to 0, 0 ⁇ m ⁇ M-1, 0 ⁇ n ⁇ N-1 , 0 ⁇ i ⁇ N-1.
  • w m ⁇ N+n is an N ⁇ M-dimensional column vector, It is a column vector of N ⁇ M dimensions.
  • the weights w m ⁇ N+n of different reference signals sent in different REs are orthogonal. Specifically, when the value of m is constant, the vectors [ am,n,0 ,..., am,n,i ,..., am,n,N-1 ] corresponding to different values of n are positive Intersect; or, when n takes a certain value, the vectors corresponding to m with different values are orthogonal between them.
  • N ⁇ M REs may occupy N subcarriers and M symbols.
  • the 8 reference signals are mapped one by one to 8 REs corresponding to 4 adjacent symbols and 2 adjacent subcarriers.
  • the 8 REs include RE 0 , RE 1 , RE 2 , RE 3 , RE 4 , RE 5 , RE 6 and RE 7 , where RE 0 and RE 1 occupy the same symbol and 2 adjacent subcarriers, RE 2 and RE 3 occupy the same symbol and 2 adjacent subcarriers, RE 4 and RE 5 occupy the same symbol and 2 adjacent subcarriers, RE 6 and RE 7 occupy the same symbol and 2 adjacent subcarriers.
  • N ⁇ M REs may also occupy N ⁇ M symbols and one subcarrier.
  • N ⁇ M REs may also occupy one symbol and N ⁇ M subcarriers.
  • network devices can implement reference signal mapping through different orthogonal combination modes, that is, frequency division multiplexing (frequency division multiplexing, FDM), time division multiplexing (time division multiplexing, TDM) and code division multiplexing (code division multiplexing, CDM) combined implementation. This embodiment of the present application does not specifically limit it.
  • the weight used by the network device when using the OCC matrix to weight the reference signal may be pre-negotiated between the network device and the terminal device, or specified in the wireless communication protocol, or determined by the device itself and For notifying the terminal device, of course, other methods may also be used to determine the weight, which is not specifically limited in this embodiment of the present application.
  • the terminal device receives the N ⁇ M reference signals output by the N ⁇ M antenna ports of the network device on the N ⁇ M REs.
  • the terminal device determines downlink channel information of the N ⁇ M antenna ports according to the received N ⁇ M reference signals.
  • S 0 , S 1 ,..., S N ⁇ M-1 are N ⁇ M reference signals respectively sent in N ⁇ M REs;
  • w OCC [w 0 ,w 1 ,...,w N ⁇ M-1 ]
  • w 0 , w 1 ,...,w N ⁇ M-1 (w m ⁇ N+n ) are the weights of the reference signals transmitted in N ⁇ M REs respectively
  • w 0 ,w 1 ,...,w N ⁇ M-1 is an N ⁇ M-dimensional column vector;
  • the terminal device After the terminal device knows the CSI-RS configuration of N ⁇ M reference signals, it can know the OCC matrix w OCC used by the network device, and the terminal device also knows the N ⁇ M REs sent by the network device The reference signal, therefore, the terminal device can perform corresponding decoding of the OCC code, thereby deciphering the channel H.
  • the terminal device can solve the channel H corresponding to the N ⁇ M antenna ports according to the following formula (3).
  • the terminal device After deriving the channel, the terminal device quantizes the channel, and feeds back the quantized channel information to the terminal device. Specifically, the terminal device sends N ⁇ M antenna port downlink channel information to the network device.
  • the network device receives the downlink channel information of the N ⁇ M antenna ports sent/feedback by the terminal device.
  • the analog part is realized by using a phase shifter. Since the phase shifter is an analog device, there will be non-ideal factors, which will make the phase shifter deviate. In order to improve the accuracy of channel measurement, it is necessary to perform non-ideal correction on the channel information fed back by the terminal equipment.
  • the network device may modify the downlink channel information sent by the terminal device.
  • the channel information fed back by the terminal device after quantizing the channel is W pmi , where W pmi is a column vector of Rank ⁇ NM dimension, and Rank is the rank of the feedback.
  • the network device will further correct the received feedback information, the specific correction method is as formula (4):
  • W′ pmi is the corrected channel information
  • W corr is the corrected weight
  • the network device can further improve the accuracy of channel measurement by correcting the channel information fed back by the terminal device.
  • the device that outputs N ⁇ M reference signals in this embodiment of the application may also be a terminal device, and the device that receives N ⁇ M reference signals output by N ⁇ M antenna ports may also be a network device/base station.
  • the measured channel information is the uplink channel information.
  • the device that outputs N ⁇ M reference signals and the device that receives N ⁇ M reference signals output by N ⁇ M antenna ports can both be terminal devices or network devices. At this time, the measured It is not necessary to distinguish whether the channel information is uplink channel information or downlink channel information.
  • the network device under the HBF architecture (the number of RF links is much smaller than the number of antenna ports), the network device (base station) sends N ⁇ M reference signals to the terminal device through N ⁇ M antenna ports, It is possible to measure the downlink channels corresponding to N ⁇ M antenna ports, so as to obtain CSI information of all channels.
  • Each of the 8 antenna ports is connected to each of the 2 RF links , each RF chain is connected to each antenna through a phase shifter, and each antenna port is connected to 2 phase shifters.
  • Step 1 Sending a reference signal.
  • the network device In order to measure the channel information of the 8 antennas, the network device outputs 8 reference signals, such as CSI-RS, to the terminal device using 8 antenna ports on the 8 REs.
  • 8 reference signals such as CSI-RS
  • Network equipment can map 8 reference signals to 8 REs as shown in Figure 8.
  • the 8 REs occupy 2 subcarriers and 4 symbols respectively.
  • RE 0 and RE 1 are a group of REs
  • RE 2 and RE 3 is a group of REs
  • RE 4 and RE 5 are a group of REs
  • RE 6 and RE 7 are a group of REs.
  • the network device can use 8 ⁇ CDM once through 8 REs, that is, map 8 reference signals to 8 REs, and then perform TDM on 8 REs at the same time, so as to realize 8-port reference The sending of the signal.
  • the 8 REs need to superimpose an 8 ⁇ 8-dimensional OCC matrix w OCC in total, and weight a column of vectors in w OCC for the reference signal sent by each RE.
  • Table 1 shows the time domain weight and the frequency domain weight used by the reference signal output by each antenna port. Among them, [w f (0) w f (1)] corresponds to the weight of reference signals sent by two adjacent REs in the frequency domain, [w t (0) w t (1) w t (2) w t ( 3)] corresponds to the weights of the reference signals transmitted by two adjacent REs in the time domain.
  • Table 2 shows the OCC codes used in the 8 reference signals output from 8 REs using 8 antenna ports.
  • OCC code it is jointly realized by the weight value of the digital channel and the weight value of the phase shifter.
  • phase shifter 0t0 and phase shifter 1t0 phase shifter 0t1 and phase shifter 1t1
  • Phase shifter 0t2 and phase shifter 1t2 phase shifter 0t3 and phase shifter 1t3
  • phase shifter 0t4 and phase shifter 1t4 phase shifter 0t5 and phase shifter 1t5
  • phase shifter 0t6 and phase shifter 1t6 Phase shifter 0t7 and phase shifter 1t7
  • phase shifter ptq represents the phase shifter connected to the qth antenna port by the pth radio frequency link/digital channel
  • phase shifter 0t0 phase shifter 0t1, phase shifter 0t2, phase shifter 0t3, phase shifter 0t4, phase shifter 0t5, phase shifter 0t6, phase shifter 0t7, the corresponding phase is [0°,0°,0°,0°,0°,0°,0°]; phase shifter 1t0, phase shifter 1t1, phase shifter 1t2, phase shifter 1t3, phase shifter 1t4, phase shifter 1t5, phase shifter 1t6, phase shifter 1t7, the corresponding phase is [0°, 180°, 0°, 180°, 0°, 180°, 0°, 180°]; and on RE0
  • the digital channel weight of RE1 is [1 0]
  • the digital channel weight of RE1 is [0 1].
  • the weight of the reference signal S 1 transmitted by using 8 antenna ports in RE1 is:
  • the weight of the digital channel on RE3 is [1 0]
  • the weight of the digital channel on RE3 is [0 1].
  • the weight of the reference signal S3 transmitted by using 8 antenna ports in RE3 is:
  • the weight of the digital channel on RE5 is [1 0]
  • the weight of the digital channel on RE5 is [0 1].
  • the weight of the digital channel on RE7 is [1 0]
  • the weight of the digital channel on RE7 is [0 1].
  • phase adjustment of the phase shifter is just an example of one of the implementation methods. In the embodiment of this application, it is assumed that the OCC code corresponds to 1, and the phase shifter phase is 0°. If the OCC code corresponds to -1, the phase shifter phase is 180°. However, other implementations are also equivalent. For example, if the OCC code corresponds to 1, the phase shifter phase is 180°; if the OCC code corresponds to -1, the phase shifter phase is 0°. This application does not limit this.
  • Step 2 The terminal device receives the 8 reference signals output by the 8 antenna ports of the network device in the 8 REs; and determines the downlink channel information from the 8 antenna ports to the terminal device according to the received reference signals.
  • the weights corresponding to phase shifters 0t0, 0t1, 0t2, 0t3, 0t4, 0t5, 0t6 and 0t7 are respectively and in and Both are 8-dimensional column vectors;
  • the weights corresponding to the phase shifters 1t0, 1t1, 1t2, 1t3, 1t4, 1t5, 1t6 and 1t7 are respectively and in and Both are 8-dimensional column vectors.
  • the weights corresponding to the reference signals sent on RE0, RE1, RE2, RE3, RE4, RE5, RE6 and RE7 are respectively:
  • Step 3 The terminal device sends the downlink channel information of the 8 antenna ports to the network device. Specifically, after the terminal device solves the channel H, it quantizes the channel H to obtain channel information (which may be recorded as W pmi ), and then the terminal device feeds back W pmi to the network device.
  • Step 4 The network device receives the downlink channel information of the 8 antenna ports sent/feedback by the terminal device.
  • the network device may also correct the W pmi fed back by the terminal device according to the above formula (4).
  • Each of the 4 antenna ports is connected to each of the 2 RF links , each RF chain is connected to each antenna through a phase shifter, and each antenna port is connected to 2 phase shifters.
  • Step 1 Sending a reference signal.
  • the network device In order to measure the channel information of the 4 antennas, the network device outputs 4 reference signals, such as CSI-RS, to the terminal device using 4 antenna ports on the 4 REs.
  • 4 reference signals such as CSI-RS
  • FIG. 9 a schematic diagram of a frequency domain and a time domain occupied by four REs is shown, where the abscissa is the interval in the time domain, and the ordinate is the interval in the frequency domain.
  • the network equipment can map the 4 reference signals to the 4 REs as shown in Figure 9.
  • the 4 REs occupy 2 subcarriers and 2 symbols respectively.
  • RE 0 and RE 1 are a group of REs, and RE 2 and RE 3 For a group of RE.
  • the network device can use 4 ⁇ CDM once through the 4 REs, that is, map the 4 reference signals to the 4 REs, and then perform TDM on the 4 REs at the same time, so as to realize the 4-port reference The sending of the signal.
  • the four REs need to superimpose a 4 ⁇ 4-dimensional OCC matrix w OCC in total, and weight a column of vectors in w OCC for the reference signal sent by each RE.
  • Table 3 shows the time-domain weights and frequency-domain weights used by the reference signals output by each antenna port. Among them, [w f (0) w f (1)] corresponds to the weights of the reference signals transmitted by two adjacent REs in the frequency domain, and [w t (0) w t (1)] corresponds to the weights of the reference signals transmitted by adjacent REs in the time domain The weight of the reference signals sent by the two REs.
  • Table 4 shows the OCC codes used for the 4 reference signals output from 4 REs using 4 antenna ports.
  • OCC code it is jointly realized by the weight value of the digital channel and the weight value of the phase shifter.
  • phase shifter ptq represents channel connected to the phase shifter of the qth antenna port
  • Time t0 phase shifter 0t0, phase shifter 0t1, phase shifter 0t2, phase shifter 0t3, the corresponding phase is [0°, 0°, 0°, 0°], phase shifter 1t0, phase shifter Phaser 1t1, phase shifter 1t2, phase shifter 1t3, the corresponding phase is [0°, 180°, 0°, 180°], and the weight of the digital channel on RE0 is [1 0], the digital channel on RE1 The channel weight is [0 1].
  • phase shifter 0t0, phase shifter 0t1, phase shifter 0t2, phase shifter 0t3, the corresponding phases are [0°, 0°, 180°, 180°]; phase shifter 1t0, Phase shifter 1t1, phase shifter 1t2, phase shifter 1t3, the corresponding phase is [0°, 180°, 180°, 0°]; and the weight of the digital channel on RE2 is [1 0], the weight of the digital channel on RE3 is [0°, 180°, 180°, 0°].
  • the digital channel weight is [0 1].
  • Step 2 The terminal device receives the 4 reference signals output by the 4 antenna ports of the network device in the 4 REs; and determines the downlink channel information from the 4 antenna ports to the terminal device according to the received reference signals.
  • H the channel from the 4 antenna ports to the terminal device
  • H the number of receiving antennas of the terminal device
  • h k is 2 ⁇ 1-dimensional matrix
  • k 0,1,2,3
  • h k represents the channel between the kth antenna port and the receiving antenna.
  • the weights corresponding to phase shifters 0t0, 0t1, 0t2 and 0t3 are respectively and in and Both are 4-dimensional column vectors; assuming time t 0 and t 1 , the weights corresponding to phase shifters 1t0, 1t1, 1t2 and 1t3 are respectively and in and Both are 4-dimensional column vectors. Then the weights corresponding to the reference signals sent on RE0, RE1, RE2 and RE3 are respectively:
  • Step 3 The terminal device sends the downlink channel information of the four antenna ports to the network device. Specifically, after the terminal device solves the channel H, it quantizes the channel H to obtain channel information (which may be recorded as W pmi ), and then the terminal device feeds back W pmi to the network device.
  • Step 4 The network device receives the downlink channel information of the 4 antenna ports sent/feedback by the terminal device.
  • the network device may also correct the W pmi fed back by the terminal device according to the above formula (4).
  • FIG. 10 shows a schematic block diagram of a communication device 1000 according to the embodiment of the present application.
  • the apparatus may be applied to the network device in the embodiment of the present application.
  • the communication device 1000 includes:
  • the sending module 1010 is configured to use N ⁇ M antenna ports to output N ⁇ M reference signals on N ⁇ M resource elements RE, where N ⁇ M reference signals correspond to N ⁇ M REs one by one, and the N ⁇ M Each of the antenna ports is connected to each of the N radio frequency links, and N ⁇ M reference signals are used to measure the downlink channel information of the N ⁇ M antenna ports, where N and M are positive integer;
  • N ⁇ M REs include M groups of REs, each group of REs includes N REs, each group of REs occupies N subcarriers and one symbol, and the weight of the reference signal output on the nth RE of the mth group is w m ⁇ N+n is:
  • w m ⁇ N+n is a vector of N ⁇ M dimensions, It is an N ⁇ M-dimensional vector, one of am,n, i is equal to 1, and the rest of am,n,i are equal to 0, 0 ⁇ m ⁇ M-1, 0 ⁇ n ⁇ N-1 , 0 ⁇ i ⁇ N-1;
  • the receiving module 1020 is configured to receive downlink channel information of the N ⁇ M antenna ports.
  • the vectors [a m,n,0 ,...,a m,n,i ,...,a m,n,N-1 ] corresponding to different values of n are positive Intersect; or, when n takes a certain value, the vectors corresponding to m with different values are orthogonal between them.
  • N ⁇ M REs occupy N subcarriers and M symbols.
  • N is equal to 2
  • M is equal to 4, 0 ⁇ n ⁇ 1, 0 ⁇ m ⁇ 3;
  • w 0 , w 1 , w 2 , w 3 , w 4 , w 5 , w 6 and w 7 are weight values corresponding to the 8 reference signals output by the 8 antenna ports.
  • N is equal to 2
  • M is equal to 2, 0 ⁇ n ⁇ 1, 0 ⁇ m ⁇ 1;
  • w 0 , w 1 , w 2 and w 3 are weights corresponding to the four reference signals output by the four antenna ports respectively.
  • the apparatus 1000 further includes a processing module 1030, and the processing module 1030 is configured to: modify downlink channel information.
  • FIG. 11 shows a schematic block diagram of the communication device 1100 according to the embodiment of the present application.
  • the communication device 1100 includes: a processor 1110 and a transceiver 1120, the transceiver 1120 is used to receive computer codes or instructions and transmit them to the processor 1110, and the processor 1110 runs the computer codes or instructions to Implement the method in the embodiment of this application.
  • the communication device may be a terminal device or a network device in the embodiment of the present application.
  • the above-mentioned processor 1110 may be an integrated circuit chip, which has a signal processing capability. In the implementation process, each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (digital signal processor, DSP), an application specific integrated circuit (application specific integrated circuit, ASIC), an off-the-shelf programmable gate array (field programmable gate array, FPGA) or other available Program logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • Program logic devices discrete gate or transistor logic devices, discrete hardware components.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the embodiment of the present application further provides a communication device, the communication device includes an input and output interface and a logic circuit, the input and output interface is used to obtain input information and/or output information; the logic circuit is used to perform the above-mentioned
  • the method in any method embodiment performs processing and/or generates output information according to input information.
  • the embodiment of the present application also provides a computer-readable storage medium, on which a computer program for implementing the method in the above method embodiment is stored.
  • a computer program for implementing the method in the above method embodiment is stored.
  • the computer program runs on the computer, the computer can implement the methods in the above method embodiments.
  • the embodiment of the present application also provides a computer program product, the computer program product includes computer program code, and when the computer program code is run on the computer, the method in the above method embodiment is executed.
  • the embodiment of the present application also provides a chip, including a processor, the processor is connected to a memory, the memory is used to store a computer program, and the processor is used to execute the computer program stored in the memory, so that the The chip executes the method in the above method embodiment.
  • the term "and/or” in this application is only an association relationship describing associated objects, indicating that there may be three relationships, for example, A and/or B may indicate: A exists alone, and A and B exist simultaneously , there are three cases of B alone.
  • the character "/" in this article generally means that the contextual objects are an "or” relationship; the term “at least one” in this application can mean “one” and "two or more", for example, A , B and C, can mean: A exists alone, B exists alone, C exists alone, A and B exist simultaneously, A and C exist simultaneously, C and B exist simultaneously, A, B and C exist simultaneously, these seven kinds Condition.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种参考信号的传输方法和装置,能够实现在混合波束成形架构下的全信道CSI测量。该方法包括:网络设备在N×M个资源元素RE利用N×M个天线端口输出N×M个参考信号,该N×M个参考信号与N×M个RE一一对应,N×M个天线端口中每个天线端口与N条射频链路中的每条射频链路连接,该N×M个参考信号用于测量N×M个天线端口的下行信道信息,其中,N和M为正整数;终端设备在N×M个RE接收网络设备的N×M个天线端口输出的N×M个参考信号,并根据接收到的N×M个参考信号确定N×M个天线端口的下行信道信息;终端设备向网络设备反馈N×M个天线端口的下行信道信息;网络设备接收终端设备反馈的N×M个天线端口的下行信道信息。

Description

参考信号的传输方法和装置
本申请要求于2021年11月10日提交中国专利局、申请号为202111324482.2、发明名称为“参考信号的传输方法和装置”的专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种参考信号的传输方法和装置。
背景技术
毫米波(millimeter wave,mmWave)频段中大量的闲置带宽可以被利用,从而可以极大地提高通信系统的传输容量。由于毫米波的波长较小,使得设备可以配备较多的(例如上百根)天线单元构成大规模多输入多输出(massive multiple-input multiple-output,massive MIMO)天线阵列,进而极大地提高频谱效率。
在传统MIMO系统中,采用全数字波束成形技术,每一根天线需要一个专用的射频链路(包括混频器、和/或数模转换器等等)来支持,射频链路数量等于天线数量。此时,链路开销很大,成本昂贵。为此,提出混合波束成形(hybrid beam-forming,HBF)技术。HBF技术应用在毫米波大规模天线系统中可以有效减少射频链路的开销与系统复杂度。因此,混合波束成形正在逐渐替代全数字波束成形。但是,由于目前对于混合波束成形的讨论还非常有限,使得在混合波束成形架构下如何进行信道测量成为亟待解决的问题。
发明内容
本申请提供了一种参考信号的传输方法和装置,能够实现在混合波束成形架构下的全信道信道状态信息(channel state information,CSI)测量。
第一方面,提供一种参考信号的传输方法,该方法可以由网络设备执行,也可以由网络设备的部件(例如处理器、芯片或芯片系统等)执行,还可以由能实现全部或部分网络设备功能的逻辑模块或软件实现。该方法包括:在N×M个资源元素(resource element,RE)利用N×M个天线端口输出N×M个参考信号,该N×M个参考信号与N×M个RE一一对应,该N×M个天线端口中每个天线端口与N条射频链路中的每条射频链路连接,该N×M个参考信号用于测量N×M个天线端口的下行信道信息,其中,N和M为正整数;N×M个RE包括M组RE,每组RE中包括N个RE,每组RE占用N个子载波和一个符号,在第m组的第n个RE上输出的参考信号的权值w m×N+n为:
Figure PCTCN2022115251-appb-000001
其中,w m×N+n为N×M维的向量,
Figure PCTCN2022115251-appb-000002
为N×M维的向量,a m,n,i中一个a m,n,i等于1、其余a m,n,i 等于0,0≤m≤M-1,0≤n≤N-1,0≤i≤N-1;接收该N×M个天线端口的下行信道信息。
示例性地,参考信号可以为信道状态信息参考信号(reference signal,RS),即CSI-RS。
基于上述技术方案,在HBF架构(RF链路数量远小于天线端口数量)下,网络设备(基站)通过N×M个天线端口向终端设备发送N×M个参考信号,可以实现对N×M个天线端口对应的下行信道进行测量,从而获得全信道的CSI信息。
结合第一方面,在第一方面的某些实现方式中,m取值一定时,不同取值的n对应的向量[a m,n,0,…,a m,n,i,…,a m,n,N-1]之间是正交的;或者,n取值一定时,不同取值的m对应的向量
Figure PCTCN2022115251-appb-000003
之间是正交的。通过该方法,不同RE对应的参考信号的权值w m×N+n正交,可以更好地区分不同RE上的参考信号,进而可以提高接收端/终端设备的接收性能。
结合第一方面,在第一方面的某些实现方式中,N×M个RE占用N个子载波和M个符号。在不同的RE发送不同的参考信号,可以使终端设备区分不同的参考信号。
结合第一方面,在第一方面的某些实现方式中,N=2、M=4,0≤n≤1,0≤m≤3;当m=0,n=0时,
Figure PCTCN2022115251-appb-000004
当m=0,n=1时,
Figure PCTCN2022115251-appb-000005
当m=1,n=0时,
Figure PCTCN2022115251-appb-000006
当m=1,n=1时,
Figure PCTCN2022115251-appb-000007
当m=2,n=0时,
Figure PCTCN2022115251-appb-000008
当m=2,n=1时,
Figure PCTCN2022115251-appb-000009
当m=3,n=0时,
Figure PCTCN2022115251-appb-000010
当m=3,n=1时,
Figure PCTCN2022115251-appb-000011
其中,w 0、w 1、w 2、w 3、w 4、w 5、w 6和w 7为8个天线端口输出的8个参考信号分别对应的权值。在8个天线端口输出的8个参考信号的权值是正交的,可以提高终端设备的接收性能,从而实现全信道CSI测量。
结合第一方面,在第一方面的某些实现方式中,当N=2、M=2时,0≤n≤1,0≤m≤1;当m=0,n=0时,
Figure PCTCN2022115251-appb-000012
当m=0,n=1时,
Figure PCTCN2022115251-appb-000013
当m=1,n=0时,
Figure PCTCN2022115251-appb-000014
当m=1,n=1时,
Figure PCTCN2022115251-appb-000015
其中,w 0、w 1、w 2和w 3为4个天线端口输出的4个参考信号分别对应的权值。在4个天线端口输出的4个参考信号的权值是正交的,可以提高终端设备的接收性能,从而实现全信道CSI测量。
需要说明的是,网络设备在对参考信号进行幅相加权时所使用的权值,可以是网络设备预先与终端设备协商好的,或者是无线通信协议中规定的,又或者是网络设备自身确定并通知终端设备的。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:对下行信道信息进行修正。由于HBF架构下,模拟部分是采用移相器实现的,由于移相器是模拟器件,会有非理想因素,使得移相器产生偏差。对终端设备反馈的信道信息进行非理想修正,可以提升信道测量的精度。
第二方面,提供了一种通信装置,该装置可以是网络设备,也可以是网络设备中的装置或部件,还可以是能实现全部或部分网络设备功能的逻辑模块。该装置包括:发送模块,用于在N×M个资源元素RE利用N×M个天线端口输出N×M个参考信号,N×M个参考信号与N×M个RE一一对应,该N×M个天线端口中每个天线端口与N条射频链路中的每条射频链路连接,该N×M个参考信号用于测量N×M个天线端口的下行信道信息,其中,N和M为正整数;N×M个RE包括M组RE,每组RE中包括N个RE,每组RE占用N个子载波和一个符号,在第m组的第n个RE上输出的参考信号的权值w m×N+n为:
Figure PCTCN2022115251-appb-000016
其中,w m×N+n为N×M维的向量,
Figure PCTCN2022115251-appb-000017
为N×M维的向量,a m,n,i中一个a m,n,i等于1、其余a m,n,i等于0,0≤m≤M-1,0≤n≤N-1,0≤i≤N-1;接收模块,用于接收该N×M个天线端口的下行信道信息。
结合第二方面,在第二方面的某些实现方式中,m取值一定时,不同取值的n对应的向量[a m,n,0,…,a m,n,i,…,a m,n,N-1]之间是正交的;或者,n取值一定时,不同取值的m对应的向量
Figure PCTCN2022115251-appb-000018
之间是正交的。
结合第二方面,在第二方面的某些实现方式中,N×M个RE占用N个子载波和M个符号。
结合第二方面,在第二方面的某些实现方式中,N等于2、M等于4,0≤n≤1,0≤m≤3;当m=0,n=0时,
Figure PCTCN2022115251-appb-000019
当m=0,n=1时,
Figure PCTCN2022115251-appb-000020
当m=1,n=0 时,
Figure PCTCN2022115251-appb-000021
当m=1,n=1时,
Figure PCTCN2022115251-appb-000022
当m=2,n=0时,
Figure PCTCN2022115251-appb-000023
当m=2,n=1时,
Figure PCTCN2022115251-appb-000024
当m=3,n=0时,
Figure PCTCN2022115251-appb-000025
当m=3,n=1时,
Figure PCTCN2022115251-appb-000026
其中,w 0、w 1、w 2、w 3、w 4、w 5、w 6和w 7为8个天线端口输出的8个参考信号分别对应的权值。
结合第二方面,在第二方面的某些实现方式中,N等于2、M等于2,0≤n≤1,0≤m≤1;当m=0,n=0时,
Figure PCTCN2022115251-appb-000027
当m=0,n=1时,
Figure PCTCN2022115251-appb-000028
当m=1,n=0时,
Figure PCTCN2022115251-appb-000029
当m=1,n=1时,
Figure PCTCN2022115251-appb-000030
其中,w 0、w 1、w 2和w 3为4个天线端口输出的4个参考信号分别对应的权值。
结合第二方面,在第二方面的某些实现方式中,该装置还包括处理模块,该处理模块用于:对下行信道信息进行修正。
第三方面,提供一种通信设备,包括处理器和收发器,所述收发器用于接收计算机代码或指令,并传输至所述处理器,所述处理器运行所述计算机代码或指令,以实现上述第一方面或第一方面中任一种可能实现方式中的参考信号的传输方法。
第四方面,提供了一种通信装置,包括:输入输出接口和逻辑电路,该输入输出接口,用于获取输入信息和/或输出信息;该逻辑电路用于执行上述第一方面或第一方面任意可能的实现方式所述的方法,根据输入信息进行处理和/或生成输出信息。
第五方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被通信装置执行时,使得所述通信装置实现上述第一方面或第一方面中任一种可能实现方式中的参考信号的传输方法。
第六方面,提供一种包含指令的计算机程序产品,所述指令被计算机执行时使得通信装置实现上述第一方面或第一方面中任一种可能实现方式中的参考信号的传输方法。
应当理解的是,本申请的第二方面至第六方面与本申请的第一方面的技术方案一致,各方面及对应的可行实现方式所取得的有益效果相似,不再赘述。
附图说明
图1是本申请实施例适用的系统架构示意图。
图2是数字波束成形技术的架构示例图。
图3是混合波束成形技术的架构示例图。
图4是一种下行全信道CSI测量的示意图。
图5是基于HBF系统的波束域CSI测量的示意图。
图6是本申请实施例适用的一种混合波束成形技术的架构示例图。
图7是本申请实施例的一种参考信号的传输方法的示意性交互流程图。
图8是本申请实施例的一种8个RE占用的频域和时域示意图。
图9是本申请实施例的一种4个RE占用的频域和时域示意图。
图10是本申请实施例的一种通信装置的示意性框图。
图11是本申请实施例的一种通信设备的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例可以应用于各种通信系统,例如无线局域网系统(wireless local area network,WLAN)、窄带物联网系统(narrow band-internet of things,NB-IoT)、全球移动通信系统(global system for mobile communications,GSM)、增强型数据速率GSM演进系统(enhanced data rate for gsm evolution,EDGE)、宽带码分多址系统(wideband code division multiple access,WCDMA)、码分多址2000系统(code division multiple access,CDMA2000)、时分同步码分多址系统(time division-synchronization code division multiple access,TD-SCDMA),长期演进系统(long term evolution,LTE)、卫星通信、第五代(5th generation,5G)系统、以及5G通信系统的三大类应用场景:增强型移动宽带(enhanced mobile broadband,eMBB)、高可靠低时延通信(ultra reliable and low latency communications,URLLC)以及海量机器类通信(massive machine type communications,mMTC)。
适用于本申请的通信系统,包括一个或多个发送端,以及一个或多个接收端。其中,发送端和接收端之间的信号传输,可以是通过无线电波来传输,也可以通过可见光、激光、红外以及光纤等传输媒介来传输。示例性地,发送端和接收端中的一个可以为终端设备,另一个可以为网络设备。
本申请实施例中所涉及到的终端设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。终端可以是移动台(mobile station,MS)、用户单元(subscriber unit)、用户设备(user equipment,UE)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handset)、膝上型电脑(laptop computer)、机器类型通信(machine type communication,MTC)终端等。其中,用户设备包括车辆用户设备。
示例性地,网络设备可以是演进型节点B(evolved Node B,eNB)、无线网络控制器 (radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为新空口(new radio,NR)中的gNB或传输点(例如,TRP或TP),NR中的基站的一个或一组(包括多个)天线面板,或者,还可以为构成gNB或传输点的网络节点,例如基带单元(building baseband unit,BBU)或分布式单元(distributed unit,DU)等,或者,网络设备还可以为车载设备、可穿戴设备以及5G网络中的网络设备,或者未来演进的PLMN网络中的网络设备等,不作限定。可以理解,本申请中的网络设备的全部或部分功能也可以通过在硬件上运行的软件功能来实现,或者通过平台(例如云平台)上实例化的虚拟化功能来实现。
网络设备的产品形态十分丰富。例如,在产品实现过程中,BBU可以与射频单元(radio frequency unit,RFU)集成在同一设备内,该设备通过线缆(例如但不限于馈线)连接至天线阵列。BBU还可以与RFU分离设置,二者之间通过光纤连接,通过例如但不限于,通用公共射频接口(common public radio interface,CPRI)协议进行通信。在这种情况下,RFU通常称为射频拉远单元(remote radio unit,RRU),其通过线缆连接至天线阵列。此外,RRU还可以与天线阵列集成在一起,例如,目前市场上的有源天线单元(active antenna unit,AAU)产品就采用了这种结构。
此外,BBU可以进一步分解为多个部分。例如,可以按照所处理业务的实时性将BBU进一步细分为集中单元(centralized unit,CU)和分布单元(distribute unit,DU)。CU负责处理非实时协议和服务,DU负责处理物理层协议和实时服务。更进一步的,部分物理层功能还可以从BBU或者DU中分离出来,集成在AAU中。
如图1所示,出示了本申请实施例适用的系统架构示意图。该系统中包括网络设备和终端设备,本申请实施例中的网络设备可以为基站。
为了便于对本申请实施例的理解,首先对本申请实施例中涉及的概念进行解释:
波束成形(beamforming)技术:又叫波束赋形、空域滤波,是一种阵列定向发送和/或接收信号的信号处理技术。它既可以应用于信号发射端,又可以应用于信号接收端。波束成形技术通过调整相位阵列的基本单元的参数,使得某些角度的信号获得相长干涉,而另一些角度的信号获得相消干涉,从而产生波束。在多输入多输出(multiple-input multiple-output,MIMO)系统中,波束成形能够全面改善接收信号的质量,并提升系统的吞吐量。根据波束成形在信号通路中发生位置的不同,波束成形技术可以分为数字波束成形技术和模拟波束成形技术。
数字波束成形(digital beamforming,DBF)技术:也可以称为全数字波束成形。该技术是指在数字基带之前(即时域范围或者数字域内)实现对天线幅相(即振幅和/或相位)加权的任意控制,从而产生波束。在数字波束成形技术中,每根天线(也可以理解为天线端口、天线单元、天线子阵等)对应一条射频(radio frequency,RF)链路或者射频发射通道或者数据通道,产生波束时多条RF链路共同参与,因此可以实现多个数据流共同传输。数字波束成形使用复杂的硬件结构,可以灵活的调整相位和幅度,产生比较准确的波 束。但是将DBF技术用于天线数量众多的MIMO系统时,可能导致整个系统的硬件实现非常复杂,成本很高。
模拟波束成形(analog beamforming,ABF)技术:是指在模拟基带之前(即频域范围或模拟域内)将幅度和相位权值作用于模拟信号,从而产生波束。在模拟波束成形技术中,使用成本比较低的模拟移相器,只能调整相位而难以甚至不能调整幅度,产生的波束不一定准确。模拟波束成形技术具有硬件结构简单、实现成本低、没有多条RF链路、只能传输单数据流。
混合波束成形技术:是一种在数字域和模拟域之间划分波束成形的技术,以降低与RF链路数量相关的成本。混合波束成形技术包括两部分:一部分由低维的数字波束成形实现(即数字部分),另一部分由高维的模拟波束成形实现(即模拟部分)。对于大规模MIMO系统,结合上述数字波束成形和模拟波束成形的优点,提出了混合波束成形技术,使得在满足硬件条件的情况下,其增益尽可能达到全数字波束成形的效果。
在具体实现中,可以采用混合预编码器实现HBF技术。混合预编码器可以包括模拟预编码器(用于实现上述模拟部分)和数字预编码器(用于实现上述数字部分)。其中,模拟预编码器可以由移相器实现,数字预编码器可以由射频链路实现。
波束域信道状态信息测量:一个MIMO系统,基站侧配置n个天线,经过波束赋形发送m个端口的CSI-RS),其中m<n,UE根据m个端口的CSI-RS,测量CSI并反馈相关信息给基站。UE只能观察到被波束加权后的m个端口的信道信息,因此是部分CSI测量。
全信道CSI测量:一个MIMO系统,基站配置n个天线,每个天线分别映射一个端口的CSI-RS,共发送n个端口的CSI-RS,UE根据n端口的CSI-RS,测量CSI并反馈相关信息给基站。UE侧观察到n个端口的信道信息,因此是全信道CSI测量。
随着无线通信技术的发展,大规模MIMO技术已经越来越受到重视,它能大规模提升无线通信系统的传输速率以及频谱效率。为了充分利用大规模天线阵列,往往采用全数字预编码技术/数字波束成形技术,它要求每个天线单独连接一条数据通道/射频链路。如图2所示,出示了数字波束成形技术的架构示例图。每个天线对应于一条RF链路。对于每一条RF链路,在信号发射时,先在基带21对数字信号进行数字波束成形,再经由数模转换器(digital-to-analog converter,DAC)22转换为模拟信号,一条RF链路23对应的模拟信号映射至一个天线端口24,并由天线端口24发射。可见,由于数字波束赋形是在DAC之前进行的,那么,对于每一条RF链路都需要设置一个DAC,对于天线数量众多的MIMO系统来说,可能导致整个系统的硬件实现非常复杂,成本很高、功耗也大大增加。除此之外,在大规模MIMO系统中,天线数目往往很大,如果采用全数字MIMO系统,RF链路的数量和天线数量相等,其成本和功耗都是无法承受的。
为了减少所需的射频链路,同时又为了获得更大的整列增益,可以采用一种折中的方案,即混合波束成形技术。如图3所示,出示了混合波束成形技术的架构示例图。图3包括图3(a)所示的全连接结构(fully-connected structure)和图3(b)所示的部分连接结构(partially-connected structure)。在图3(a)中,N条RF链路31a通过N×M个移相器32a分别与M根天线33a连接,每条RF链路31a与每根天线33a之间都通过一个相移器32a连接,每根天线33a与多个移相器32a连接。在图3(b)中,N条RF链路31b通过 N×M个移相器32b分别与N×M根天线33b连接,一条RF链路31b与多根天线33b连接,每根天线33b只与一个相移器32b相连。可见,在实际应用中,部分连接结构更节约硬件开销,更易于工程实现。在HBF系统中,一条射频链路往往连接到多个天线上,而射频输出口到每个天线之间一般都配置了可时分调整的模拟移相器,这样基带数字预编码结合移相器配置的模拟预编码,就完成了混合波束成形预编码。
基站能够通过多天线波束成形技术精准地向目标用户发射信号,前提是要求基站获得该用户的下行全信道状态信息,即要求相应的CSI测量方案。在上述无线通信系统中,为了改善接收信号的质量,并提升系统的吞吐量,可以将波束成形技术应用于基站。其中,该基站和UE可以进行下行通信。进一步地,为了有效减少射频链路的开销与系统复杂度,将HBF技术应用于基站、以及基站和UE之间的通信。但是,在进行信道测量时,由于在HBF架构下RF链路的数量远小于天线端口的数量,而在DBF架构下RF链路的数量与天线端口的数量几乎一致,可见,在HBF架构下无法复用DBF架构的下行信道测量方法。即使复用也无法获得所有天线端口对应的信道信息。
为了便于对本申请实施例的理解,对已有的CSI测量技术进行简单介绍。
如图4所示,出示了一种下行全信道CSI测量的示意图。基站生成CSI-RS,例如S 1、S 2、S 3…S m,并加权基带数字预编码映射到各基带通道上,经过中射频链路传递到各天线上,例如天线1、天线2、天线3…天线m,最终发射出去。UE侧接收到CSI-RS,根据CSI-RS完成CSI测量,并向基站反馈预编码矩阵指示(precoding matrix indication,PMI)、信道质量指示(channel quality indicator,CQI)、秩指示(rank indication,RI)等测量信息。
该测量方案是DBF系统的常规方案,HBF系统不能支持这个方案。该方案中,DBF需要1条数据通道/RF链路驱动一个天线,当天线数量很多时,需要的RF链路的条数也急剧增加,而数据通道中包含昂贵的中射频器件,使整个系统成本上升。另外,数据通道的条数增加,也需要增加信号处理的维度,导致计算复杂度和能耗都大大增加。
如图5所示,出示了基于HBF系统的波束域CSI测量的示意图。基站生成CSI-RS,并调整移相器权值,形成模拟波束,CSI-RS经过HBF成形后,向UE发射。UE对波束成形后的参考信号进行CSI测量并反馈给基站。
该测量方案虽然考虑了HBF系统的波束域测量,但是只能完成部分信道CSI测量。对比全信道CSI测量方案,当只有部分信道CSI信息时,基站对信号的波束成形不能精准地对准UE,使得UE侧接收信噪比下降、UE体验速率下降。另外,做多用户通信时,因为每个用户的CSI测量不准,导致基站的多用户干扰消除算法效果变差,也会导致多用户通信的平均速率下降。
目前,对HBF的讨论还非常有限,使得在HBF架构下如何实现信道测量成为一个亟待解决的问题。
为此,本申请实施例提出了一种信道测量的方法,能够实现在HBF架构下的全信道CSI测量。
如图6所示,出示了本申请实施例适用的一种混合波束成形技术的架构示例图。在图6中,网路设备的N×M个天线端口中每个天线端口与N条射频链路中的每条射频链路连接,每条射频链路与每个天线之间都通过一个相移器连接,每个天线与N个相移器相连。
如图7所示,出示了本申请实施例的一种参考信号的传输方法700的示意性交互流程图。图7中以网络设备和终端设备作为该交互示意的执行主体为例来示意该方法,但本申请并不限制该交互示意的执行主体。例如,图7中的网络设备也可以是支持该网络设备实现该方法的芯片、芯片系统、或处理器,还可以是能实现全部或部分网络设备功能的逻辑模块或软件;图7中的终端设备也可以是支持该终端设备实现该方法的芯片、芯片系统、或处理器,还可以是能实现全部或部分终端功设备能的逻辑模块或软件。
710,网络设备在N×M个资源元素RE利用N×M个天线端口(port)向终端设备输出N×M个参考信号,该N×M个参考信号与N×M个RE一一对应,N×M个天线端口中每个天线端口与N条射频链路中的每条射频链路连接,该N×M个参考信号用于测量N×M个天线端口的下行信道信息,其中,N和M为正整数。N×M个天线端口为该网络设备的所有发射天线对应的天线端口。
应理解,当网络设备在N×M个RE中的一个RE利用N×M个天线端口向终端设备输出N×M个参考信号中的一个参考信号时,网络设备使用N×M个天线端口同时向终端设备输出该参考信号。网络设备可以通过N×M个参考信号测量N×M个天线端口对应的下行信道信息,以此提升信道测量的精度以及系统的容量。
示例性地,该参考信号可以为信道状态信息参考信号,即CSI-RS。该参考信号还可以为其他参考信号。
网络设备向终端设备发送的参考信号是通过加权处理后的参考信号,具体地,网络设备可以通过叠加正交覆盖码(orthogonal cover codes,OCC)矩阵w OCC来实现,对在每个RE发送的参考信号加权w OCC中的一列矢量。OCC矩阵w OCC是通过频域权值和时域权值计算得到的,频域权值由数字通道加权实现,时域权值由移相器加权实现。
具体地,每个天线端口的参考信号使用的OCC矩阵的设计规则包括:w P,f=[w P,f(0) w P,f(1) … w P,f(Kf-1)]表示端口P在频域相邻的Kf个RE输出的参考信号的权值矢量,w P,t=[w P,t(0) w P,t(1) … w P,t(Kt-1)]表示端口P在时域相邻的Kt个RE输出的参考信号的权值矢量,其中Kf和Kt为正整数。为了保证终端设备正常解调,任意两个w P,f是互为正交的,同理,任意两个w P,t也互为正交。那么天线端口P在所有RE输出的参考信号的权值矢量为
Figure PCTCN2022115251-appb-000031
w P,f和w P,t的值一般由协议定义,如果超出协议定义,可以自己设计。其中,
Figure PCTCN2022115251-appb-000032
表示克罗内克乘积运算。
示例性地,N×M个RE可以划分为M组RE,每组RE占用N个子载波和一个符号,在第m组的第n个RE上输出的参考信号的权值w m×N+n可以通过如下公式(1)表示:
Figure PCTCN2022115251-appb-000033
其中,w m×N+n为N×M维的向量,
Figure PCTCN2022115251-appb-000034
为N×M维的向量,a m,n,i中一个a m,n,i等于1、其余a m,n,i等于0,0≤m≤M-1,0≤n≤N-1,0≤i≤N-1。当w m×N+n为N×M维的列向量时,
Figure PCTCN2022115251-appb-000035
为N×M维的列向量。
对于不同的N×M个RE,在不同RE发送的不同参考信号的权值w m×N+n是正交的。具 体地,当m取值一定时,不同取值的n对应的向量[a m,n,0,…,a m,n,i,…,a m,n,N-1]之间是正交的;或者,n取值一定时,不同取值的m对应的向量
Figure PCTCN2022115251-appb-000036
之间是正交的。
示例性地,N×M个RE可以占用N个子载波和M个符号。例如,N=2,M=4,如图8所示,出示了一种8个RE占用的频域和时域示意图,其中,横坐标为时域间隔,纵坐标为频域间隔。8个参考信号一一映射于4个相邻符号和2个相邻子载波对应的8个RE上,该8个RE包括RE 0、RE 1、RE 2、RE 3、RE 4、RE 5、RE 6和RE 7,其中,RE 0和RE 1占用同一个符号和2个相邻子载波,RE 2和RE 3占用同一个符号和2个相邻子载波,RE 4和RE 5占用同一个符号和2个相邻子载波,RE 6和RE 7占用同一个符号和2个相邻子载波。
示例性地,N×M个RE也可以占用N×M个符号和一个子载波。或者,N×M个RE也可以占用一个符号和N×M个子载波。也可以理解为,网络设备可以通过不同的正交组合模式实现参考信号的映射,即通过频分复用(frequency division multiplexing,FDM)、时分复用(time division multiplexing,TDM)以及码分复用(code division multiplexing,CDM)的组合实现。本申请实施例对此不做具体限定。
可选的,网络设备在利用OCC矩阵对参考信号进行加权时所使用的权值,可以是网络设备预先与终端设备协商好的,或者是无线通信协议中规定的,又或者是设备自身确定并通知终端设备的,当然,还可以通过其他方式确定权值,本申请实施例不做具体限定。
720,终端设备在N×M个RE,接收网络设备的N×M个天线端口输出的N×M个参考信号。具体地,终端设备在N×M个RE接收到的信号可以分别表示为Y=[y 0,y 1,y 2,…y N×M-1]。
730,终端设备根据接收到的N×M个参考信号,确定N×M个天线端口的下行信道信息。
记N×M个天线端口到终端设备的信道为H=[h 0,h 1,h 2,…,h N×M-1],h k为第k个天线端口到终端设备的信道,k为[0,N×M-1]的整数。则终端设备在N×M个RE接收到的信号可通过如下公式(2)表示:
Y=HW OCCS+N       (2)
其中,
Figure PCTCN2022115251-appb-000037
S 0、S 1、…、S N×M-1为在N×M个RE分别发送的N×M个参考信号;w OCC=[w 0,w 1,…,w N×M-1],w 0,w 1,…,w N×M-1(w m×N+n)分别为在N×M个RE发送的参考信号的权值,且w 0,w 1,…,w N×M-1都为N×M维的列向量;N为终端设备在N×M个RE接收参考信号的噪声,N=[n 0,n 1,…,n N×M-1]。
这里,终端设备在知道N×M个参考信号的CSI-RS配置后,就可以知道网络设备使用的OCC矩阵w OCC,并且终端设备也知道网络设备在N×M个RE发送的N×M个参考信号,因此,终端设备可以进行相应的解OCC码,从而解出信道H。
具体地,终端设备可以根据如下公式(3)解出N×M个天线端口对应的信道H。
Figure PCTCN2022115251-appb-000038
740,终端设备解出信道后,对信道进行量化,并将量化后的信道信息反馈给终端设备。具体地,终端设备向网络设备发送N×M个天线端口下行信道信息。
750,网络设备接收终端设备发送/反馈的N×M个天线端口的下行信道信息。
由于HBF架构下,模拟部分是采用移相器实现的,由于移相器是模拟器件,会有非理想因素,使得移相器产生偏差。为了提升信道测量的精度,需要对终端设备反馈的信道信息进行非理想修正。可选的,网络设备可以对终端设备发送的下行信道信息进行修正。
假设终端设备对信道量化后反馈的信道信息为W pmi,W pmi为Rank×NM维度的列向量,Rank为反馈的秩。网络设备会对接收到的反馈信息做进一步地修正,具体的修正方法如公式(4):
W′ pmi=W pmi*W corr      (4)
其中,W′ pmi为修正后的信道信息,W corr为修正后的权值,
Figure PCTCN2022115251-appb-000039
在本申请实施例中,网络设备通过对终端设备反馈的信道信息进行修正,可以进一步提升信道测量的精度。
可选的,本申请实施例中输出N×M个参考信号的设备也可以为终端设备,接收N×M个天线端口输出的N×M个参考信号的设备也可以是网络设备/基站,此时,测量的信道信息为上行信道信息。可选的,本申请实施例中输出N×M个参考信号的设备和接收N×M个天线端口输出的N×M个参考信号的设备都可以为终端设备或网络设备,此时,测量的信道信息不用区分是上行信道信息还是下行信道信息。
在本申请实施例提供的技术方案中,在HBF架构(RF链路数量远小于天线端口数量)下,网络设备(基站)通过N×M个天线端口向终端设备发送N×M个参考信号,可以实现对N×M个天线端口对应的下行信道进行测量,从而获得全信道的CSI信息。
下面通过具体的实现方式对本申请实施例进行更详细地介绍。
实现方式一:
以HBF架构包括:2个RF链路和8个天线端口为例,即N=2,M=4。8个天线端口中每个天线端口与2条RF链路中的每条射频链路连接,每条RF链路与每根天线之间都通过一个相移器连接,每个天线端口与2个移相器连接。
步骤一:参考信号的发送。
为了测量8个天线的信道信息,网络设备在8个RE利用8个天线端口向终端设备输出8个参考信号,如CSI-RS。网络设备可以把8个参考信号分别映射到如图8所示的8个RE上,8个RE分别占用2个子载波和4个符号,RE 0和RE 1为一组RE,RE 2和RE 3为一组RE,RE 4和RE 5为一组RE,RE 6和RE 7为一组RE。网络设备为了获取8个天线端口的信道信息,可以通过8个RE使用一次8×CDM,即将8个参考信号映射至8个RE,然后,再对8个RE同时进行TDM,从而实现8端口参考信号的发送。
这8个RE总共需要叠加8×8维度的OCC矩阵w OCC,对在每个RE发送的参考信号加权w OCC中的一列矢量。在每个天线端口输出的参考信号所使用的时域权值和频域权值如表1所示。其中,[w f(0) w f(1)]对应在频域相邻的两RE发送的参考信号的权值,[w t(0) w t(1) w t(2) w t(3)]对应在时域相邻的两RE发送的参考信号的权值。
表1 8个天线端口输出的参考信号的时域权值和频域权值
天线端口号 [w f(0) w f(1)] [w t(0) w t(1) w t(2) w t(3)]
0 [+1 +1] [+1 +1 +1 +1]
1 [+1 -1] [+1 +1 +1 +1]
2 [+1 +1] [+1 -1 +1 -1]
3 [+1 -1] [+1 -1 +1 -1]
4 [+1 +1] [+1 +1 -1 -1]
5 [+1 -1] [+1 +1 -1 -1]
6 [+1 +1] [+1 -1 -1 +1]
7 [+1 -1] [+1 -1 -1 +1]
表2表示在8个RE利用8个天线端口输出的8个参考信号所使用的OCC码。在实现OCC码时,由数字通道权值和移相器权值共同实现。
表2 8个天线端口和8个RE对应的OCC码
Figure PCTCN2022115251-appb-000040
记RE0/RE1对应的时刻为t 0,RE2/RE3对应的时刻为t 1,RE4/RE5对应的时刻为t 2,RE6/RE7对应的时刻为t 3,记天线端口0、天线端口1、天线端口2、天线端口3、天线端口4、天线端口5、天线端口6、天线端口7对应的移相器分别为移相器0t0和移相器1t0、移相器0t1和移相器1t1、移相器0t2和移相器1t2、移相器0t3和移相器1t3、移相器0t4和移相器1t4、移相器0t5和移相器1t5、移相器0t6和移相器1t6、移相器0t7和移相器1t7,其中,移相器ptq表示由第p条射频链路/数字通道连接到第q个天线端口的移相器,则有:
(1)t 0时刻:移相器0t0,移相器0t1,移相器0t2,移相器0t3,移相器0t4,移相器0t5,移相器0t6,移相器0t7,对应的相位为[0°,0°,0°,0°,0°,0°,0°,0°];移相器1t0,移相器1t1,移相器1t2,移相器1t3,移相器1t4,移相器1t5,移相器1t6,移相器1t7,对应的相位为[0°,180°,0°,180°,0°,180°,0°,180°];并且RE0上的数字通道权值为[1 0],RE1上的数字通道权值为[0 1]。
这样,公式(1)中0≤n≤1、0≤m≤3,当m=0,n=0时,在RE0利用8个天线端口发送的参考信号S 0的权值为:
Figure PCTCN2022115251-appb-000041
当m=0,n=1时,在RE1利用8个天线端口发送的参考信号S 1的权值为:
Figure PCTCN2022115251-appb-000042
可以看出,在RE0和RE1发送的参考信号的权值与表2中的权值匹配。
(2)t 1时刻:移相器0t0,移相器0t1,移相器0t2,移相器0t3,移相器0t4,移相器0t5,移相器0t6,移相器0t7,对应的相位为[0°,0°,180°,180°,0°,0°,180°,180°];移相器1t0,移相器1t1,移相器1t2,移相器1t3,移相器1t4,移相器1t5,移相器1t6,移相器1t7,对应的相位为[0°,180°,180°,0°,0°,180°,180°,0°];并且RE2上的数字通道权值为[1 0],RE3上的数字通道权值为[0 1]。
这样,当m=1,n=0时,在RE2利用8个天线端口发送的参考信号S 2的权值为:
Figure PCTCN2022115251-appb-000043
当m=1,n=1时,在RE3利用8个天线端口发送的参考信号S 3的权值为:
Figure PCTCN2022115251-appb-000044
可以看出,在RE2和RE3发送的参考信号的权值与表2中的权值匹配。
(3)t 2时刻:移相器0t0,移相器0t1,移相器0t2,移相器0t3,移相器0t4,移相器0t5,移相器0t6,移相器0t7,对应的相位为[0°,0°,0°,0°,180°,180°,180°,180°];移相器1t0,移相器1t1,移相器1t2,移相器1t3,移相器1t4,移相器1t5,移相器1t6,移相器1t7,对应的相位为[0°,180°,0°,180°,180°,0°,180°,0°];并且RE4上的数字通道权值为[1 0],RE5上的数字通道权值为[0 1]。
这样,当m=2,n=0时,在RE4利用8个天线端口发送的参考信号S 4的权值为:
Figure PCTCN2022115251-appb-000045
当m=2,n=1时,在RE5利用8个天线端口发送的参考信号S 5的权值为:
Figure PCTCN2022115251-appb-000046
可以看出,在RE4和RE5发送的参考信号的权值与表2中的权值匹配。
(4)t 3时刻:移相器0t0,移相器0t1,移相器0t2,移相器0t3,移相器0t4,移相器0t5,移相器0t6,移相器0t7,对应的相位为[0°,0°,180°,180°,180°,180°,0°,0°];移相器1t0,移相器1t1,移相器1t2,移相器1t3,移相器1t4,移相器1t5,移相器1t6,移相器1t7,对应的相位为[0°,180°,180°,0°,180°,0°,0°,180°];并且RE6上的数字通道权值为[1 0],RE7上的数字通道权值为[0 1]。
这样,当m=3,n=0时,在RE6利用8个天线端口发送的参考信号S 6的权值为:
Figure PCTCN2022115251-appb-000047
当m=3,n=1时,在RE7利用8个天线端口发送的参考信号S 7的权值为:
Figure PCTCN2022115251-appb-000048
可以看出,在RE6和RE7发送的参考信号的权值与表2中的权值匹配。
应理解,w OCC的真实矩阵数值由协议定义,该矩阵可以由网络设备和终端设备共享,这里只是举例说明。移相器的相位调整也只是举例其中一种实现方式,本申请实施例中假设了OCC码对应到1,则移相器相位为0°,如果OCC码对应到-1,则移相器相位为180°。但是其他实现方式也是等效的,比如OCC码对应到1,则移相器相位为180°;OCC码对应的-1,则移相器相位为0°。本申请对此不做限定。
步骤二:终端设备在8个RE接收网络设备的8个天线端口输出的8个参考信号;并根据接收到的参考信号,确定8个天线端口到该终端设备的下行信道信息。
假设终端设备的接收天线数为2,记8个天线端口到终端设备的信道为H=[h 0,h 1,h 2,h 3,h 4,h 5,h 6,h 7],其中H为2×8维矩阵,h k为2×1维矩阵,k=0,1,2,…,7,h k表示第k个天线端口到接收天线间的信道。终端设备在RE0,RE1,RE2,RE3,RE4,RE5,RE6,RE7接收到的信号为Y=[y 0,y 1,y 2,y 3,y 4,y 5,y 6,y 7],其中,y k为2×1维矩阵,k=0,1,2,…,7。假设t 0、t 1、t 2和t 3时刻,移相器0t0、0t1、0t2、0t3、0t4、0t5、0t6和0t7对应的权值分别为
Figure PCTCN2022115251-appb-000049
Figure PCTCN2022115251-appb-000050
其中
Figure PCTCN2022115251-appb-000051
Figure PCTCN2022115251-appb-000052
都为8维列向量;假设t 0、t 1、t 2和t 3时刻,移相器1t0、1t1、1t2、1t3、1t4、1t5、1t6和1t7对应的权值分别为
Figure PCTCN2022115251-appb-000053
Figure PCTCN2022115251-appb-000054
其中
Figure PCTCN2022115251-appb-000055
Figure PCTCN2022115251-appb-000056
都为8维列向量。则RE0、RE1、RE2、RE3、RE4、RE5、RE6和RE7上发送的参考信号对应的权值分别为:
Figure PCTCN2022115251-appb-000057
Figure PCTCN2022115251-appb-000058
Figure PCTCN2022115251-appb-000059
Figure PCTCN2022115251-appb-000060
Figure PCTCN2022115251-appb-000061
Figure PCTCN2022115251-appb-000062
Figure PCTCN2022115251-appb-000063
Figure PCTCN2022115251-appb-000064
终端设备已知w OCC=[w 0,w 1,w 2,w 3,w 4,w 5,w 6,w 7],
Figure PCTCN2022115251-appb-000065
S 0、S 1、…、S 7分别为在RE0、RE1、RE2、RE3、RE4、RE5、RE6和RE7上发送的8个参考信号。则终端设备可以根据已知的w OCC和S、接收到的Y以及上述公式(2)解出信道H=[h 0,h 1,h 2,h 3,h 4,h 5,h 6,h 7]。
步骤三:终端设备向网络设备发送8个天线端口的下行信道信息。具体地,终端设备解出信道H后,对信道H进行量化,获得信道信息(可以记为W pmi),然后,终端设备向网络设备反馈W pmi
步骤四:网络设备接收终端设备发送/反馈的8个天线端口的下行信道信息。可选的,网络设备还可以根据上述公式(4)对终端设备反馈的W pmi进行修正。
实现方式二:
以HBF架构包括:2个RF链路和4个天线端口为例,即N=2,M=2。4个天线端口中每个天线端口与2条RF链路中的每条射频链路连接,每条RF链路与每根天线之间都通过一个相移器连接,每个天线端口与2个移相器连接。
步骤一:参考信号的发送。
为了测量4个天线的信道信息,网络设备在4个RE利用4个天线端口向终端设备输出4个参考信号,如CSI-RS。如图9所示,出示了一种4个RE占用的频域和时域示意图,其中,横坐标为时域间隔,纵坐标为频域间隔。网络设备可以把4个参考信号分别映射到如图9所示的4个RE上,4个RE分别占用2个子载波和2个符号,RE 0和RE 1为一组RE,RE 2和RE 3为一组RE。网络设备为了获取4个天线端口的信道信息,可以通过4个RE使用一次4×CDM,即将4个参考信号映射至4个RE,然后,再对4个RE同时进行TDM,从而实现4端口参考信号的发送。
这4个RE总共需要叠加4×4维度的OCC矩阵w OCC,对在每个RE发送的参考信号加权w OCC中的一列矢量。在每个天线端口输出的参考信号所使用的时域权值和频域权值如表3所示。其中,[w f(0) w f(1)]对应在频域相邻的两RE发送的参考信号的权值,[w t(0) w t(1)]对应在时域相邻的两RE发送的参考信号的权值。
表3 4个天线端口输出的参考信号的时域权值和频域权值
天线端口号 [w f(0) w f(1)] [w t(0) w t(1)]
0 [+1 +1] [+1 +1]
1 [+1 -1] [+1 +1]
2 [+1 +1] [+1 -1]
3 [+1 -1] [+1 -1]
表4表示在4个RE利用4个天线端口输出的4个参考信号所使用的OCC码。在实现OCC码时,由数字通道权值和移相器权值共同实现。
表4 4个天线端口和4个RE对应的OCC码
Figure PCTCN2022115251-appb-000066
记RE0/RE1对应的时刻为t 0,RE2/RE3对应的时刻为t 1,记天线端口0、天线端口1、天线端口2和天线端口3对应的移相器分别为移相器0t0和移相器1t0、移相器0t1和移相器1t1、移相器0t2和移相器1t2、移相器0t3和移相器1t3,其中,移相器ptq表示由第p条射频链路/数字通道连接到第q个天线端口的移相器,则有:
(1)t0时刻:移相器0t0,移相器0t1,移相器0t2,移相器0t3,对应的相位为[0°,0°,0°,0°],移相器1t0,移相器1t1,移相器1t2,移相器1t3,对应的相位为[0°,180°,0°,180°],并且RE0上的数字通道权值为[1 0],RE1上的数字通道权值为[0 1]。
这样,公式(1)中0≤n≤1、0≤m≤1,当m=0,n=0时,在RE0利用4个天线端口发送的参考信号S 0的权值为:
Figure PCTCN2022115251-appb-000067
当m=0,n=1时,在RE1利用4个天线端口发送的参考信号S 1的权值为:
Figure PCTCN2022115251-appb-000068
可以看出,在RE0和RE1发送的参考信号的权值与表4中的权值匹配。
(2)t 1时刻:移相器0t0,移相器0t1,移相器0t2,移相器0t3,对应的相位为[0°,0°,180°,180°];移相器1t0,移相器1t1,移相器1t2,移相器1t3,对应的相位为[0°,180°,180°,0°];并且RE2上的数字通道权值为[1 0],RE3上的数字通道权值为[0 1]。
这样,当m=1,n=0时,在RE2利用4个天线端口发送的参考信号S 2的权值为:
Figure PCTCN2022115251-appb-000069
当m=1,n=1时,在RE3利用4个天线端口发送的参考信号S 3的权值为:
Figure PCTCN2022115251-appb-000070
可以看出,在RE2和RE3发送的参考信号的权值与表4中的权值匹配。
步骤二:终端设备在4个RE接收网络设备的4个天线端口输出的4个参考信号;并根据接收到的参考信号,确定4个天线端口到该终端设备的下行信道信息。
假设终端设备的接收天线数为2,记4个天线端口到终端设备的信道为H=[h 0,h 1,h 2,h 3],其中H为2×4维矩阵,h k为2×1维矩阵,k=0,1,2,3,h k表示第k个天线端口到接收天线间的信道。终端设备在RE0,RE1,RE2,RE3接收到的信号为Y=[y 0,y 1,y 2,y 3],其中,y k为2×1维矩阵,k=0,1,2,3。假设t 0、t 1时刻,移相器0t0、0t1、 0t2和0t3对应的权值分别为
Figure PCTCN2022115251-appb-000071
Figure PCTCN2022115251-appb-000072
其中
Figure PCTCN2022115251-appb-000073
Figure PCTCN2022115251-appb-000074
都为4维列向量;假设t 0、t 1时刻,移相器1t0、1t1、1t2和1t3对应的权值分别为
Figure PCTCN2022115251-appb-000075
Figure PCTCN2022115251-appb-000076
其中
Figure PCTCN2022115251-appb-000077
Figure PCTCN2022115251-appb-000078
都为4维列向量。则RE0、RE1、RE2和RE3上发送的参考信号对应的权值分别为:
Figure PCTCN2022115251-appb-000079
Figure PCTCN2022115251-appb-000080
Figure PCTCN2022115251-appb-000081
Figure PCTCN2022115251-appb-000082
终端设备已知w OCC=[w 0,w 1,w 2,w 3],
Figure PCTCN2022115251-appb-000083
S 0、S 1、S 2、S 3分别为在RE0、RE1、RE2、RE3上发送的4个参考信号。则终端设备可以根据已知的w OCC和S、接收到的Y以及上述公式(2)解出信道H=[h 0,h 1,h 2,h 3]。
步骤三:终端设备向网络设备发送4个天线端口的下行信道信息。具体地,终端设备解出信道H后,对信道H进行量化,获得信道信息(可以记为W pmi),然后,终端设备向网络设备反馈W pmi
步骤四:网络设备接收终端设备发送/反馈的4个天线端口的下行信道信息。可选的,网络设备还可以根据上述公式(4)对终端设备反馈的W pmi进行修正。
本申请实施例提出了一种通信装置,如图10所示,出示了本申请实施例的一种通信装置1000的示意性框图。该装置可以应用于本申请实施例中的网络设备。该通信装置1000包括:
发送模块1010,用于在N×M个资源元素RE利用N×M个天线端口输出N×M个参考信号,N×M个参考信号与N×M个RE一一对应,该N×M个天线端口中每个天线端口与N条射频链路中的每条射频链路连接,N×M个参考信号用于测量该N×M个天线端口的下行信道信息,其中,N和M为正整数;
N×M个RE包括M组RE,每组RE中包括N个RE,每组RE占用N个子载波和一个符号,在第m组的第n个RE上输出的参考信号的权值w m×N+n为:
Figure PCTCN2022115251-appb-000084
其中,w m×N+n为N×M维的向量,
Figure PCTCN2022115251-appb-000085
为N×M维的向量,a m,n,i中一个a m,n,i等于1、其余a m,n,i等于0,0≤m≤M-1,0≤n≤N-1,0≤i≤N-1;
接收模块1020,用于接收该N×M个天线端口的下行信道信息。
可选的,m取值一定时,不同取值的n对应的向量[a m,n,0,…,a m,n,i,…,a m,n,N-1]之间是正交的;或者,n取值一定时,不同取值的m对应的向量
Figure PCTCN2022115251-appb-000086
之间是正交的。
可选的,N×M个RE占用N个子载波和M个符号。
可选的,N等于2、M等于4,0≤n≤1,0≤m≤3;
当m=0,n=0时,
Figure PCTCN2022115251-appb-000087
当m=0,n=1时,
Figure PCTCN2022115251-appb-000088
当m=1,n=0时,
Figure PCTCN2022115251-appb-000089
当m=1,n=1时,
Figure PCTCN2022115251-appb-000090
当m=2,n=0时,
Figure PCTCN2022115251-appb-000091
当m=2,n=1时,
Figure PCTCN2022115251-appb-000092
当m=3,n=0时,
Figure PCTCN2022115251-appb-000093
当m=3,n=1时,
Figure PCTCN2022115251-appb-000094
其中,w 0、w 1、w 2、w 3、w 4、w 5、w 6和w 7为8个天线端口输出的8个参考信号分别对应的权值。
可选的,N等于2、M等于2,0≤n≤1,0≤m≤1;
当m=0,n=0时,
Figure PCTCN2022115251-appb-000095
当m=0,n=1时,
Figure PCTCN2022115251-appb-000096
当m=1,n=0时,
Figure PCTCN2022115251-appb-000097
当m=1,n=1时,
Figure PCTCN2022115251-appb-000098
其中,w 0、w 1、w 2和w 3为4个天线端口输出的4个参考信号分别对应的权值。
可选的,所述装置1000还包括处理模块1030,所述处理模块1030用于:对下行信道信息进行修正。
本申请实施例提供了一种通信设备1100,如图11所示,出示了本申请实施例的一种通信设备1100的示意性框图。
该通信设备1100包括:处理器1110和收发器1120,所述收发器1120用于接收计算机代码或指令,并传输至所述处理器1110,所述处理器1110运行所述计算机代码或指令,以实现本申请实施例中的方法。该通信设备可以是本申请实施例中的终端设备或网络设备。
上述的处理器1110可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可选的,本申请实施例还提供了一种通信设备,该通信设备包括输入输出接口和逻辑电路,该输入输出接口用于获取输入信息和/或输出信息;该逻辑电路,用于执行上述任一方法实施例中的方法,根据输入信息进行处理和/或生成输出信息。
本申请实施例还提供了一种计算机可读存储介质,其上存储有用于实现上述方法实施例中的方法的计算机程序。当该计算机程序在计算机上运行时,使得该计算机可以实现上述方法实施例中的方法。
本申请实施例还提供了一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得上述方法实施例中的方法被执行。
本申请实施例还提供了一种芯片,包括处理器,所述处理器与存储器相连,所述存储器用于存储计算机程序,所述处理器用于执行所述存储器中存储的计算机程序,以使得所述芯片执行上述方法实施例中的方法。
另外,本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系;本申请中术语“至少一个”,可以表示“一个”和“两个或两个以上”,例如,A、B和C中,可以表示:单独存在A,单独存在B,单独存在C、同时存在A和B,同时存在A和C,同时存在C和B,同时存在A和B和C,这七种情况。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (16)

  1. 一种参考信号的传输方法,其特征在于,包括:
    在N×M个资源元素RE利用N×M个天线端口输出N×M个参考信号,所述N×M个参考信号与所述N×M个RE一一对应,所述N×M个天线端口中每个天线端口与N条射频链路中的每条射频链路连接,所述N×M个参考信号用于测量所述N×M个天线端口的下行信道信息,其中,N和M为正整数;
    所述N×M个RE包括M组RE,每组RE中包括N个RE,每组RE占用N个子载波和一个符号,在第m组的第n个RE上输出的所述参考信号的权值w m×N+n为:
    Figure PCTCN2022115251-appb-100001
    其中,w m×N+n为N×M维的向量,
    Figure PCTCN2022115251-appb-100002
    为N×M维的向量,a m,n,i中一个a m,n,i等于1、其余a m,n,i等于0,0≤m≤M-1,0≤n≤N-1,0≤i≤N-1;
    接收所述N×M个天线端口的下行信道信息。
  2. 根据权利要求1所述的方法,其特征在于,
    m取值一定时,不同取值的n对应的向量[a m,n,0,…,a m,n,i,…,a m,n,N-1]之间是正交的;或者,
    n取值一定时,不同取值的m对应的向量
    Figure PCTCN2022115251-appb-100003
    之间是正交的。
  3. 根据权利要求1或2所述的方法,其特征在于,所述N×M个RE占用N个子载波和M个符号。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,
    N=2、M=4,0≤n≤1,0≤m≤3;
    当m=0,n=0时,
    Figure PCTCN2022115251-appb-100004
    当m=0,n=1时,
    Figure PCTCN2022115251-appb-100005
    当m=1,n=0时,
    Figure PCTCN2022115251-appb-100006
    当m=1,n=1时,
    Figure PCTCN2022115251-appb-100007
    当m=2,n=0时,
    Figure PCTCN2022115251-appb-100008
    当m=2,n=1时,
    Figure PCTCN2022115251-appb-100009
    当m=3,n=0时,
    Figure PCTCN2022115251-appb-100010
    当m=3,n=1时,
    Figure PCTCN2022115251-appb-100011
    其中,w 0、w 1、w 2、w 3、w 4、w 5、w 6和w 7为8个天线端口输出的8个参考信号分别对应的权值。
  5. 根据权利要求1至3中任一项所述的方法,其特征在于,
    N=2、M=2,0≤n≤1,0≤m≤1;
    当m=0,n=0时,
    Figure PCTCN2022115251-appb-100012
    当m=0,n=1时,
    Figure PCTCN2022115251-appb-100013
    当m=1,n=0时,
    Figure PCTCN2022115251-appb-100014
    当m=1,n=1时,
    Figure PCTCN2022115251-appb-100015
    其中,w 0、w 1、w 2和w 3为4个天线端口输出的4个参考信号分别对应的权值。
  6. 根据权利要求1至7中任一项所述的方法,其特征在于,所述方法还包括:
    对所述下行信道信息进行修正。
  7. 一种通信装置,其特征在于,包括:
    发送模块,用于在N×M个资源元素RE利用N×M个天线端口输出N×M个参考信号,所述N×M个参考信号与所述N×M个RE一一对应,所述N×M个天线端口中每个天线端口与N条射频链路中的每条射频链路连接,所述N×M个参考信号用于测量所述N×M个天线端口的下行信道信息,其中,N和M为正整数;
    所述N×M个RE包括M组RE,每组RE中包括N个RE,每组RE占用N个子载波和一个符号,在第m组的第n个RE上输出的所述参考信号的权值w m×N+n为:
    Figure PCTCN2022115251-appb-100016
    其中,w m×N+n为N×M维的向量,
    Figure PCTCN2022115251-appb-100017
    为N×M维的向量,a m,n,i中一个a m,n,i等于1、其余a m,n,i等于0,0≤m≤M-1,0≤n≤N-1,0≤i≤N-1;
    接收模块,用于接收所述N×M个天线端口的下行信道信息。
  8. 根据权利要求7所述的装置,其特征在于,
    m取值一定时,不同取值的n对应的向量[a m,n,0,…,a m,n,i,…,a m,n,N-1]之间是正交的;或者,
    n取值一定时,不同取值的m对应的向量
    Figure PCTCN2022115251-appb-100018
    之间是正交的。
  9. 根据权利要求7或8所述的装置,其特征在于,所述N×M个RE占用N个子载波和M个符号。
  10. 根据权利要求7至9中任一项所述的装置,其特征在于,
    N等于2、M等于4,0≤n≤1,0≤m≤3;
    当m=0,n=0时,
    Figure PCTCN2022115251-appb-100019
    当m=0,n=1时,
    Figure PCTCN2022115251-appb-100020
    当m=1,n=0时,
    Figure PCTCN2022115251-appb-100021
    当m=1,n=1时,
    Figure PCTCN2022115251-appb-100022
    当m=2,n=0时,
    Figure PCTCN2022115251-appb-100023
    当m=2,n=1时,
    Figure PCTCN2022115251-appb-100024
    当m=3,n=0时,
    Figure PCTCN2022115251-appb-100025
    当m=3,n=1时,
    Figure PCTCN2022115251-appb-100026
    其中,w 0、w 1、w 2、w 3、w 4、w 5、w 6和w 7为8个天线端口输出的8个参考信号分别对应的权值。
  11. 根据权利要求7至9中任一项所述的装置,其特征在于,
    N等于2、M等于2,0≤n≤1,0≤m≤1;
    当m=0,n=0时,
    Figure PCTCN2022115251-appb-100027
    当m=0,n=1时,
    Figure PCTCN2022115251-appb-100028
    当m=1,n=0时,
    Figure PCTCN2022115251-appb-100029
    当m=1,n=1时,
    Figure PCTCN2022115251-appb-100030
    其中,w 0、w 1、w 2和w 3为4个天线端口输出的4个参考信号分别对应的权值。
  12. 根据权利要求7至11中任一项所述的装置,其特征在于,所述装置还包括处理模块,所述处理模块用于:
    对所述下行信道信息进行修正。
  13. 一种通信设备,其特征在于,包括:处理器和收发器,所述收发器用于接收计算 机代码或指令,并传输至所述处理器,所述处理器运行所述计算机代码或指令,如权利要求1至6中任一项所述的方法。
  14. 一种通信设备,其特征在于,包括:输入输出接口和逻辑电路;
    所述输入输出接口,用于获取输入信息和/或输出信息;
    所述逻辑电路用于执行权利要求1-6中任一项所述的方法,根据所述输入信息进行处理和/或生成所述输出信息。
  15. 一种计算机可读存储介质,其特征在于,包括:
    所述计算机可读介质存储有计算机程序;
    所述计算机程序在计算机上运行时,使得计算机执行权利要求1至6中任一项所述的方法。
  16. 一种计算机程序产品,其特征在于,包括计算机程序,当所述计算机程序被执行时,使得如权利要求1至6任一项所述的方法被实现。
PCT/CN2022/115251 2021-11-10 2022-08-26 参考信号的传输方法和装置 WO2023082775A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111324482.2A CN116112046A (zh) 2021-11-10 2021-11-10 参考信号的传输方法和装置
CN202111324482.2 2021-11-10

Publications (1)

Publication Number Publication Date
WO2023082775A1 true WO2023082775A1 (zh) 2023-05-19

Family

ID=86262516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115251 WO2023082775A1 (zh) 2021-11-10 2022-08-26 参考信号的传输方法和装置

Country Status (2)

Country Link
CN (1) CN116112046A (zh)
WO (1) WO2023082775A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101924610A (zh) * 2010-08-02 2010-12-22 西安电子科技大学 Lte-a系统中信道状态信息参考信号csi-rs的设计方法
CN103181114A (zh) * 2012-09-04 2013-06-26 华为技术有限公司 一种参考信号的传输方法和装置
CN103687010A (zh) * 2012-08-30 2014-03-26 电信科学技术研究院 一种传输参考信号的方法、装置及系统
CN106982184A (zh) * 2016-01-15 2017-07-25 中兴通讯股份有限公司 一种实现测量参考符号传输的方法及装置
WO2017213295A1 (ko) * 2016-06-08 2017-12-14 엘지전자 주식회사 무선 통신 시스템에서 빔 상태 정보를 피드백하는 방법 및 장치
WO2018006417A1 (zh) * 2016-07-08 2018-01-11 富士通株式会社 波束传输方法、装置以及通信系统
CN109314592A (zh) * 2016-06-09 2019-02-05 三星电子株式会社 用于测量参考信号和同步的方法和装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101924610A (zh) * 2010-08-02 2010-12-22 西安电子科技大学 Lte-a系统中信道状态信息参考信号csi-rs的设计方法
CN103687010A (zh) * 2012-08-30 2014-03-26 电信科学技术研究院 一种传输参考信号的方法、装置及系统
CN103181114A (zh) * 2012-09-04 2013-06-26 华为技术有限公司 一种参考信号的传输方法和装置
CN106982184A (zh) * 2016-01-15 2017-07-25 中兴通讯股份有限公司 一种实现测量参考符号传输的方法及装置
WO2017213295A1 (ko) * 2016-06-08 2017-12-14 엘지전자 주식회사 무선 통신 시스템에서 빔 상태 정보를 피드백하는 방법 및 장치
CN109314592A (zh) * 2016-06-09 2019-02-05 三星电子株式会社 用于测量参考信号和同步的方法和装置
WO2018006417A1 (zh) * 2016-07-08 2018-01-11 富士通株式会社 波束传输方法、装置以及通信系统

Also Published As

Publication number Publication date
CN116112046A (zh) 2023-05-12

Similar Documents

Publication Publication Date Title
JP7453263B2 (ja) mmWAVE無線ネットワークのシングルユーザハイブリッドMIMOのためのシステムおよび方法
KR102497453B1 (ko) 무선 통신 시스템에서 하이브리드 프리코딩을 위한 장치 및 방법
JP6809748B2 (ja) 無線通信装置
WO2017133434A1 (zh) 无线通信方法和无线通信装置
Obara et al. Joint processing of analog fixed beamforming and CSI-based precoding for super high bit rate massive MIMO transmission using higher frequency bands
US11419105B2 (en) Methods, systems and units of distributed base station system for handling downlink communication
CN108092698B (zh) 一种波束训练方法及装置
WO2018171604A1 (zh) 信息的传输方法和设备
WO2020020283A1 (zh) 信号处理的方法和装置
WO2018028291A1 (zh) 一种波束赋形训练方法、终端和基站
US11374634B2 (en) Method and device for transmitting information
CN108463952B (zh) 方法、系统和装置
WO2019042258A1 (zh) 一种csi-rs测量反馈方法及设备
US11005541B2 (en) Method for transmitting feedback information and terminal therefor
CN115088224B (zh) 一种信道状态信息反馈方法及通信装置
JP7308152B2 (ja) 無線通信システムにおいてフィードバック情報を送信する方法及びそのための端末
WO2023082775A1 (zh) 参考信号的传输方法和装置
WO2022267853A1 (zh) 通道相位校正的方法和相关装置
WO2022204970A1 (zh) 一种参考信号的传输方法、装置及设备
WO2022267899A1 (zh) 一种信道状态信息反馈方法及通信装置
WO2018115974A2 (zh) 用于大规模mimo系统的波束形成的方法和设备
WO2024109633A1 (zh) 信道状态信息发送方法、信道状态信息接收方法和装置
WO2023125340A1 (zh) 数据处理方法及装置
WO2024016837A1 (zh) 一种通信方法及装置
WO2024045885A1 (zh) 信息测量的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22891581

Country of ref document: EP

Kind code of ref document: A1