WO2024045885A1 - 信息测量的方法和装置 - Google Patents

信息测量的方法和装置 Download PDF

Info

Publication number
WO2024045885A1
WO2024045885A1 PCT/CN2023/105346 CN2023105346W WO2024045885A1 WO 2024045885 A1 WO2024045885 A1 WO 2024045885A1 CN 2023105346 W CN2023105346 W CN 2023105346W WO 2024045885 A1 WO2024045885 A1 WO 2024045885A1
Authority
WO
WIPO (PCT)
Prior art keywords
configuration information
network device
model
power amplifier
terminal device
Prior art date
Application number
PCT/CN2023/105346
Other languages
English (en)
French (fr)
Inventor
彭中冲
刘凤威
乔浩
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024045885A1 publication Critical patent/WO2024045885A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the present application relates to the field of communications, and more specifically, to a method and device for information measurement.
  • Power amplifier can amplify low-power signals generated by network equipment or terminal equipment to a power level that can be transmitted over long distances.
  • PA is the core component of wireless communication equipment.
  • the PA will introduce nonlinear distortion, causing the performance indicators of the output signal to deteriorate.
  • the nonlinear distortion caused by the PA can cause the error vector magnitude (EVM) of the output signal and the adjacent channel leakage power.
  • EVM error vector magnitude
  • ACLR adjacent channel leakage power ratio
  • Digital predistortion (DPD) technology is an effective means to improve the linearity of the PA output signal. Its basic principle is to digitally preprocess the original signal before the PA amplifies the power of the original signal of the digital channel to improve the PA output signal. linearity. Theoretically, the DPD corresponding function should be the inverse function of the PA response function.
  • HBF hybrid beamforming
  • PCS partially connected structure
  • FCS fully connected structure
  • network equipment can add a DPD module to each digital channel to correct the nonlinear distortion of the PA amplified signal based on the original signal of each digital channel and the feedback signal of all physical antennas.
  • the network device reconstructs the received signal of the terminal device by obtaining the output signal of the physical antenna and the estimated channel response coefficient through wire feedback, and finally determines the DPD corresponding to the digital channel based on the original signal of the digital channel and the received signal of the terminal device. coefficient.
  • the error of the channel response coefficient estimated by the network equipment may be large, and there is a deviation between the reconstructed received signal of the terminal equipment and the actual received signal of the terminal equipment, resulting in low accuracy of the determined DPD coefficient; in addition, when the physical When the number of antennas is large, the hardware cost of wire feedback is relatively expensive, resulting in a higher cost of determining the DPD coefficient.
  • the network equipment compensates for the nonlinear effects of all PAs connected to a single digital channel to ensure the signal quality of the received signal of the remote device; however, in the actual NR system, the HBF architecture except for some connections There is also a fully connected structure. When correcting PA nonlinear distortion, the impact of intermodulation interference between different digital channels needs to be considered.
  • the present application provides an information measurement method and device, which can improve the accuracy of the determined DPD coefficient corresponding to the data channel or improve the flexibility of determining the DPD coefficient corresponding to the data channel.
  • the first aspect provides an information measurement method, which can be executed by a chip or chip system on the terminal device side.
  • the method includes: the terminal device receives first configuration information sent by the network device, the first configuration information indicates configuration information of Q reference signals, where Q is an integer greater than 1; the terminal device receives the first configuration information sent by the network device.
  • the second configuration information indicates the model parameters of equivalent power amplifiers connected to the Q digital channels of the network device; the terminal device receives the Q reference signals sent by the network device, Obtain a received signal; the terminal device determines the model coefficient of the equivalent power amplifier based on the received signal, the configuration information of the Q reference signals, and the model parameters of the equivalent power amplifier, and the equivalent power amplifier It is the equivalent power amplifier of the power amplifier connected to the digital channel corresponding to the received signal; the terminal device sends the model coefficient of the equivalent power amplifier to the network device.
  • the network device sends the first configuration information and the second configuration information to the terminal device.
  • the terminal device can reconstruct Q reference signals of the Q digital channels of the network device based on the first configuration information.
  • the terminal device can reconstruct Q reference signals of the Q digital channels of the network device based on the Q reference signals.
  • the reference signal and the model parameters of the equivalent power amplifier indicated by the second configuration information can determine and report the model coefficients of the equivalent power amplifier of the Q digital channels of the network device, and the network device can determine and report the equivalent power amplifier based on the Q digital channels connected to the network device.
  • the model coefficients of can determine the digital predistortion coefficients corresponding to Q digital channels.
  • the embodiment of the present application can obtain the output signal of each physical antenna without using wire feedback, which can reduce the cost; and the embodiment of the present application does not need to estimate the channel response coefficient between each physical antenna and the terminal device, and can improve the determined data
  • the channel corresponds to the accuracy of the DPD coefficient.
  • the terminal device determines an equivalent power amplifier based on the received signal, configuration information of the Q reference signals, and model parameters of the equivalent power amplifier.
  • the model coefficients of the power amplifier include: the terminal device determines the Q reference signals based on the configuration information of the Q reference signals; the terminal device determines the Q reference signals based on the received signal, the Q reference signals, and the The model parameters of the equivalent power amplifier are determined to determine the model coefficients of the equivalent power amplifier.
  • the configuration information of the Q reference signals includes one or more of the following: type information of the Q reference signals, the Q reference signals The sequence information of the Q reference signals, the time-frequency resource information of the Q reference signals, and the antenna port information for transmitting the Q reference signals, wherein the sequence information of the Q reference signals are different, and the time-frequency resource information is different from The antenna port information is in one-to-one correspondence.
  • the configuration information of the reference signal can be used by the Q terminal devices to determine (reconstruct) the reference signals of the Q digital channels.
  • the model parameters include at least one of nonlinear order, memory depth, cross term length, or model type.
  • the first configuration information further indicates bandwidth information of the Q reference signals. Based on the bandwidth information of the Q reference signals, the terminal equipment can fully obtain the out-of-band information of the Q reference signals amplified by the power amplifier or accurately set the band-pass filter width to implement the band-limited nonlinear model estimation algorithm, thereby improving Determine the accuracy of the model coefficients of the equivalent power amplifier.
  • the Q digital channels are connected to each of the power amplifiers. This method can be applied to FCS architecture.
  • the second aspect provides an information measurement method, which can be executed by a chip or chip system on the network device side.
  • the method includes: the network device sends first configuration information to Q terminal devices, the first configuration information indicating configuration information of Q reference signals, where Q is an integer greater than 1; the network device sends to the Q terminal devices send second configuration information, the second configuration information indicates the model parameters of equivalent power amplifiers connected to Q digital channels of the network device; the network device transmits data to the Q through P physical antennas
  • the terminal equipment sends the Q reference signals, and the power amplifier is connected to the physical antenna in a one-to-one correspondence, where P is an integer greater than or equal to Q; the network equipment receives the Q reference signals sent by the Q terminal equipment.
  • the model coefficient of the equivalent power amplifier which is the equivalent power amplifier of the power amplifier connected to the digital channel corresponding to the received signal of the terminal device, wherein the received signal is the The Q reference signals received.
  • the method provided in the second aspect is a method on the network device side corresponding to the first aspect, and its beneficial effects can be directly referred to the first aspect.
  • the configuration information of the Q reference signals includes one or more of the following: type information of the Q reference signals, the Q reference signals The sequence information of the Q reference signals, the time-frequency resource information of the Q reference signals, and the antenna port information for transmitting the Q reference signals, wherein the sequence information of the Q reference signals are different, and the time-frequency resource information is different from The antenna port information is in one-to-one correspondence.
  • the configuration information of the reference signal can be used by the Q terminal devices to determine (reconstruct) the reference signals of the Q digital channels.
  • the model parameters include at least one of nonlinear order, memory depth, cross term length, or model type.
  • the first configuration information also indicates bandwidth information of the Q reference signals. Based on the bandwidth information of the Q reference signals, the terminal equipment can fully obtain the out-of-band information of the Q reference signals amplified by the power amplifier or accurately set the band-pass filter width to implement the band-limited nonlinear model estimation algorithm, thereby improving The accuracy of the model coefficients of the equivalent power amplifier determined by the terminal equipment.
  • the method further includes: the network device determines, according to the model coefficients of the Q equivalent power amplifiers and the Q reference signals, the The digital predistortion coefficients corresponding to the Q digital channels respectively.
  • the network device determines that the Q digital channels respectively correspond to The digital predistortion coefficient includes: the network device determines the Q terminal devices based on the model coefficients of the Q equivalent power amplifiers, the Q reference signals, and the model parameters of the equivalent power amplifiers.
  • Q received signals, the received signals are in one-to-one correspondence with the terminal equipment; the network device determines the Qth received signal based on the Q received signals and the qth reference signal among the Q reference signals.
  • the digital predistortion coefficient corresponding to the qth digital channel among the Q digital channels, and the qth data channel is the data channel corresponding to the qth reference signal, where 1 ⁇ q ⁇ Q.
  • the Q digital channels are connected to each of the power amplifiers. This method can be applied to FCS architecture.
  • the third aspect provides an information measurement method, which can be executed by a chip or chip system on the terminal device side.
  • the method includes: a terminal device receiving first configuration information sent by a network device, the first configuration information indicating configuration information of a reference signal; the terminal device receiving second configuration information sent by the network device, the second configuration
  • the information indicates the model parameters of the equivalent power amplifier connected to the digital channel of the network device; the terminal device receives the reference signal sent by the network device to obtain a received signal; the terminal device obtains a received signal according to the received signal and the Determine the model coefficient of the equivalent power amplifier based on the configuration information of the reference signal and the model parameters of the equivalent power amplifier, where the equivalent power amplifier is the equivalent power amplifier of the power amplifier connected to the digital channel;
  • the terminal device sends the model coefficient of the equivalent power amplifier to the network device.
  • the network device sends the first configuration information and the second configuration information to the terminal device, and the terminal device can reconstruct the reference of the digital channel of the network device based on the first configuration information.
  • the terminal device can determine and report the model coefficient of the equivalent power amplifier connected to the digital channel according to the model parameters of the equivalent power amplifier of the digital channel indicated by the reference signal and the second configuration information
  • the network device can determine and report the model coefficient of the equivalent power amplifier connected to the digital channel according to the model parameters of the digital channel.
  • the model coefficients of the equivalent power amplifier can use a direct learning structure or an indirect learning structure to determine the digital predistortion coefficient corresponding to the digital channel.
  • the network device can flexibly determine the digital predetermined value corresponding to the digital channel based on the model coefficient of the equivalent power amplifier of the digital channel fed back by the remote device. Distortion coefficient, the terminal device cannot know the algorithm used by the network device to determine the DPD coefficient.
  • the terminal device determines an equivalent power amplifier based on the received signal, configuration information of the reference signal, and model parameters of the equivalent power amplifier.
  • the model coefficients include: the terminal device determines the reference signal according to the configuration information of the reference signal; the terminal device determines the reference signal according to the received signal, the reference signal, and the model parameters of the equivalent power amplifier , determine the model coefficients of the equivalent power amplifier.
  • the configuration information of the reference signal includes one or more of the following: type information of the reference signal, sequence information of the reference signal, the Time-frequency resource information of the reference signal and antenna port information for transmitting the reference signal, where the time-frequency resource information corresponds to the antenna port information.
  • the configuration information of the reference signal can be used by the terminal device to determine (reconstruct) the reference signal of the digital channel.
  • the model parameters include at least one of nonlinear order, memory depth, cross term length, or model type.
  • the first configuration information also indicates bandwidth information of the reference signal. Based on the bandwidth information of the reference signal, the terminal equipment can fully obtain the out-of-band information of the signal amplified by the power amplifier or accurately set the band-pass filter width to implement the band-limited nonlinear model estimation algorithm, thereby improving the determined equivalent Accuracy of the model coefficients of the power amplifier.
  • each of the power amplifiers is connected to a digital channel of the network device. This method can be applied to PCS architecture.
  • the fourth aspect provides an information measurement method, which can be executed by a chip or chip system on the network device side.
  • the method includes: a network device sending first configuration information to a terminal device, the first configuration information indicating configuration information of a reference signal; the network device sending second configuration information to the terminal device, the second configuration information indicating Model parameters of the equivalent power amplifier connected to the digital channel of the network device; the network device sends the reference signal to the terminal device through at least one physical antenna corresponding to the digital channel, and the power amplifier and the The physical antennas are connected in a one-to-one correspondence; the network device receives the model coefficient of the equivalent power amplifier sent by the terminal device, and the equivalent power amplifier is the equivalent of the power amplifier connected to the digital channel.
  • a power amplifier, wherein the received signal is the reference signal received by the terminal device.
  • the method provided in the fourth aspect is a method on the network device side corresponding to the third aspect, and its beneficial effects can be directly referred to the third aspect.
  • the configuration information of the reference signal includes one or more of the following: type information of the reference signal, sequence information of the reference signal, the Time-frequency resource information of the reference signal and antenna port information for transmitting the reference signal, where the time-frequency resource information corresponds to the antenna port information.
  • the configuration information of the reference signal can be used by the terminal device to determine (reconstruct) the reference signal of the digital channel.
  • the model parameters include at least one of nonlinear order, memory depth, cross term length, or model type.
  • the first configuration information also indicates bandwidth information of the reference signal. Based on the bandwidth information of the reference signal, the terminal equipment can fully obtain the out-of-band information of the signal amplified by the power amplifier or accurately set the band-pass filter width to implement the band-limited nonlinear model estimation algorithm, thus improving the accuracy determined by the terminal equipment. Accuracy of the model coefficients of the equivalent power amplifier.
  • the method further includes: the network device determines, according to the model coefficient of the equivalent power amplifier and the reference signal, the number corresponding to the digital channel. Digital predistortion coefficient.
  • the network device determines the digital predistortion coefficient corresponding to the digital channel according to the model coefficient of the equivalent power amplifier and the reference signal, including : The network device determines the received signal of the terminal device according to the model coefficient of the equivalent power amplifier, the reference signal, and the model parameter of the equivalent power amplifier; the network device determines the received signal of the terminal device according to the Receive the signal and the reference signal, and determine the digital predistortion coefficient corresponding to the digital channel.
  • each of the power amplifiers is connected to one digital channel of the network device. This method can be applied to PCS architecture.
  • a fifth aspect provides a communication device, which can be applied to the terminal device described in the first aspect.
  • the device includes: a transceiver unit, used to implement the receiving and sending functions of the method described in the first aspect; a processing unit , used to implement processing functions such as determining the model coefficients of the equivalent power amplifier of the method described in the first aspect.
  • a sixth aspect provides a communication device, which can be applied to the network equipment described in the second aspect.
  • the device includes: a transceiver unit, used to implement the receiving and sending functions of the method described in the second aspect; a processing unit , used to implement processing functions such as determining the digital predistortion coefficient corresponding to the digital channel in the method described in the second aspect.
  • a seventh aspect provides a communication device, which can be applied to the terminal device described in the third aspect.
  • the device includes: a transceiver unit, used to implement the receiving and sending functions of the method described in the third aspect; a processing unit , used to implement processing functions such as determining the model coefficients of the equivalent power amplifier of the method described in the third aspect.
  • An eighth aspect provides a communication device, which can be applied to the network equipment described in the fourth aspect.
  • the device includes: a transceiver unit, used to implement the receiving and sending functions of the method described in the fourth aspect; a processing unit , used to implement processing functions such as determining the digital predistortion coefficient corresponding to the digital channel in the method described in the fourth aspect.
  • a communication device including: a processor and an interface circuit, the interface circuit being used to receive signals from other communication devices and transmit them to the processor or to send signals from the processor to other devices.
  • the processor executes code instructions through logic circuits to implement the method in any possible implementation manner of the first to fourth aspects or the first to fourth aspects.
  • a communication system including: a terminal device in the method described in the first aspect and other communication devices communicating with the terminal device; a network device in the method described in the second aspect and a network device communicating with the network device.
  • Other communications equipment for device communications including: a terminal device in the method described in the first aspect and other communication devices communicating with the terminal device; a network device in the method described in the second aspect and a network device communicating with the network device.
  • Other communications equipment for device communications including: a terminal device in the method described in the first aspect and other communication devices communicating with the terminal device; a network device in the method described in the second aspect and a network device communicating with the network device.
  • Other communications equipment for device communications including: a terminal device in the method described in the first aspect and other communication devices communicating with the terminal device; a network device in the method described in the second aspect and a network device communicating with the network device.
  • Other communications equipment for device communications including: a terminal device in the method described in the first aspect and other communication devices communicating with the terminal device; a network device in the
  • a communication system including: a terminal device in the method described in the third aspect and other communication devices communicating with the terminal device; a network device in the method described in the fourth aspect and the network device communicating with the terminal device. Other communications equipment for network equipment communications.
  • a computer-readable storage medium stores a computer program; when the computer program is run on a computer, the above-mentioned first to fourth aspects and the first to The method in any possible implementation manner of the fourth aspect is executed.
  • a computer program product including a computer program that, when executed, enables any of the possible implementations of the first to fourth aspects and the first to fourth aspects. Communication methods are implemented.
  • Figure 1 is a schematic diagram of the network architecture applicable to the embodiment of this application.
  • FIG. 2 is the basic schematic diagram of DPD.
  • Figure 3 is a schematic diagram of obtaining DPD based on the feedback channel.
  • Figure 4 is a schematic diagram of PCS.
  • FIG. 5 is a schematic diagram of FCS.
  • Figure 6 is a schematic diagram of determining the DPD coefficient under a HBF FCS architecture.
  • Figure 7 is a schematic diagram of the remote device measuring the feedback DPD coefficient.
  • Figure 8 is a schematic diagram of the equivalent architecture of a PA connected to a digital channel in a PCS structure.
  • Figure 9 is a schematic flow interaction diagram of an information measurement method according to an embodiment of the present application.
  • Figure 10 is a schematic diagram of obtaining the DPD coefficient corresponding to the digital channel under the HBF FCS architecture of the embodiment of the present application.
  • Figure 11 is a schematic flow interaction diagram for obtaining the DPD coefficient corresponding to the digital channel under the HBF FCS architecture of the embodiment of the present application.
  • Figure 12 is a schematic diagram of the time-frequency structure of the reference signal according to the embodiment of the present application.
  • Figure 13 is a schematic diagram of periodically transmitting reference signals through different digital channels.
  • Figure 14 is a schematic flow interaction diagram of an information measurement method according to an embodiment of the present application.
  • Figure 15 is a schematic diagram of obtaining the DPD coefficient corresponding to the digital channel under the HBF PCS architecture of the embodiment of the present application.
  • Figure 16 is a schematic diagram of the terminal equipment performing model coefficient feedback of equivalent PA in different beam areas according to an embodiment of the present application.
  • Figure 17 is a schematic flow interaction diagram for obtaining the DPD coefficient of digital channel connection under the HBF PCS architecture of the embodiment of the present application.
  • Figure 18 is a schematic diagram of different digital channels transmitting the same reference signal according to an embodiment of the present application.
  • Figure 19 is another schematic diagram of different digital channels transmitting different reference signals according to an embodiment of the present application.
  • Figure 20 is a schematic diagram of the input signal passing through the DPD module and PA.
  • 21 to 25 are schematic block diagrams of communication devices according to embodiments of the present application.
  • Embodiments of the present application can be applied to various communication systems, such as wireless local area network (WLAN), narrowband-internet of things (NB-IoT), and global mobile communication systems (global system for mobile communications (GSM), enhanced data rate for gsm evolution (EDGE), wideband code division multiple access (WCDMA), code division multiple access 2000 system (code division multiple access (CDMA2000), time division-synchronization code division multiple access (TD-SCDMA), long term evolution (LTE), satellite communications, sidelink (SL) , fourth generation (4G) systems, fifth generation (5th generation, 5G) systems, or new communication systems that will appear in the future, etc.
  • the communication system includes communication equipment, and the communication equipment can use air interface resources to conduct wireless communication.
  • communication equipment may include network equipment and terminal equipment, and network equipment may also be called base station equipment; the structure of base station equipment includes: input device, output device, processor and memory; the structure of terminal equipment includes: input device, output device, Processor and memory.
  • the air interface resources may include at least one of time domain resources, frequency domain resources, code resources and space resources.
  • the terminal device may be a wireless terminal device capable of receiving network device scheduling and indication information.
  • a wireless end device may refer to a device that provides voice and/or data connectivity to a user, or a handheld device with wireless connectivity capabilities, or other processing device connected to a wireless modem.
  • the terminal devices involved in the embodiments of this application may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices, or other processing devices connected to wireless modems.
  • the terminal may be a subscriber unit (subscriber unit), user equipment (UE), cellular phone, smart phone, cordless phone, session initiation protocol (SIP), wireless data card , wireless local loop (WLL) station, personal digital assistant (PDA) computer, tablet computer, wireless modem (modulator demodulator, modem), laptop computer (laptop computer), machine type Communication (machine type communication, MTC) terminals and wireless terminals in self-driving (self driving), etc.
  • the user equipment includes vehicle user equipment.
  • IOT Internet of Things
  • the terminal device can also be a mobile station (MS), mobile device, mobile terminal, wireless terminal, handheld device (handset), client, virtual reality (VR) terminal device, augmented reality (augmented reality) , AR) terminal equipment, wireless terminals in industrial control, wireless terminals in the Internet of Vehicles, wireless terminals in remote medical surgery, wireless terminals in smart grids, transportation security ( Wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • wireless terminals in the Internet of Vehicles can be vehicle-mounted equipment, vehicle equipment, vehicle-mounted modules, vehicles, etc.
  • Wireless terminals in industrial control can be cameras, robots, etc.
  • Wireless terminals in smart homes can be TVs, air conditioners, sweepers, speakers, set-top boxes, etc.
  • the device for realizing the function of the terminal device may be a terminal device; it may also be a device that can support the terminal device to realize the function, such as a chip system, and the device may be installed in the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • Network devices can be devices in a wireless network.
  • a network device is a device deployed in a wireless access network to provide wireless communication functions for terminal devices.
  • the network device may be a radio access network (RAN) node that connects the terminal device to the wireless network, and may also be called an access network device.
  • RAN radio access network
  • Network equipment includes but is not limited to: global system for mobile communication (GSM), code division multiple access (code division multiple access, CDMA) base transceiver station (BTS) in the network, and can also It is a Node B (NB) in wideband code division multiple access (WCDMA); it can also be an evolved Node B (evolved Node B, eNB) or a radio network controller.
  • GSM global system for mobile communication
  • CDMA code division multiple access
  • BTS base transceiver station
  • NB Node B
  • WCDMA wideband code division multiple access
  • eNB evolved Node B
  • radio network controller evolved Node B
  • RNC radio network controller
  • BSC base station controller
  • BTS base transceiver station
  • HNB home base station
  • BBU baseband unit
  • AP access point
  • TP transmission point
  • TRP sending and receiving point
  • 5G mobile communication system can also be network equipment in the 5G mobile communication system.
  • next generation base station (next generation NodeB, gNB), transmission reception point (TRP), transmission point (TP) in the NR system; or one or more of the base stations in the 5G mobile communication system A group (including multiple antenna panels) of antenna panels; alternatively, the network device may also be a network node that constitutes a gNB or a transmission point.
  • baseband unit BBU
  • DU distributed unit
  • gNB may include centralized units (CUs) and DUs.
  • the gNB may also include an active antenna unit (AAU).
  • AAU active antenna unit
  • CU implements some functions of gNB
  • DU implements some functions of gNB.
  • CU is responsible for processing non-real-time protocols and services, implementing radio resource control (RRC), and packet data convergence protocol (PDCP) layer functions.
  • DU is responsible for processing physical layer protocols and real-time services, and implementing the functions of the radio link control (RLC) layer, media access control (MAC) layer and physical (physical, PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical (physical, PHY) layer.
  • AAU implements some physical layer processing functions, radio frequency processing and active antenna related functions.
  • the information of the RRC layer will eventually become the information of the PHY layer, or be transformed from the information of the PHY layer. Therefore, under this architecture, high-level signaling (such as RRC layer signaling) can also be considered to be sent by DU, or sent by DU and AAU.
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network equipment in the access network (radio access network, RAN), or the CU can be divided into network equipment in the core network (core network, CN), which is not limited in this application.
  • the embodiment in the NR protocol can be a spatial domain filter, or a spatial filter, or a spatial domain parameter, a spatial parameter, and a spatial setting. (spatial domain setting), spatial setting, or quasi-colocation (QCL) information, QCL assumptions, QCL instructions, etc.
  • the beam may be indicated by a transmission configuration indicator state (TCI-state) parameter, or by a spatial relation parameter. Therefore, in this application, beam can be replaced by spatial filter, spatial filter, spatial parameter, spatial parameter, spatial setting, spatial setting, QCL information, QCL hypothesis, QCL indication, TCI-state (including uplink TCI-state, downlink TCI-state), spatial relationship, etc.
  • TCI-state including uplink TCI-state, downlink TCI-state
  • Beam can also be replaced by other terms indicating beam, which is not limited in this application.
  • the beam used to transmit signals can be called a transmission beam (transmission beam, Tx beam), or a spatial domain transmission filter (spatial domain transmission filter), a spatial transmission filter (spatial transmission filter), and a spatial domain transmission parameter (spatial domain). transmission parameter) or spatial transmission parameter, spatial domain transmission setting or spatial transmission setting.
  • the downlink transmit beam can be indicated by TCI-state.
  • the beam used to receive signals can be called a reception beam (reception beam, Rx beam), or a spatial domain reception filter (spatial domain reception filter), a spatial reception filter (spatial reception filter), and a spatial domain reception parameter (spatial domain). reception parameter) or spatial reception parameter, spatial domain reception setting or spatial reception setting.
  • the uplink transmit beam can be indicated by spatial relationship, or uplink TCI-state, or channel sounding reference signal (sounding reference signal, SRS) resource (indicating the transmit beam using the SRS). Therefore, the uplink beam can also be replaced by SRS resources.
  • the transmitting beam may refer to the distribution of signal strength in different directions in space after the signal is emitted by the antenna
  • the receiving beam may refer to the signal strength distribution of the wireless signal received from the antenna in different directions in space.
  • the beam may be a wide beam, or a narrow beam, or other types of beams.
  • the beam forming technology may be beam forming technology or other technologies.
  • the beamforming technology may specifically be digital beamforming technology, analog beamforming technology, hybrid digital beamforming technology, or hybrid analog beamforming technology, etc.
  • the beam corresponds to the configuration information of the reference signal.
  • the network device can determine the quality of different beams through the quality of different reference signals.
  • the terminal device measures the reference signal and feeds back the quality of the reference signal to the network device.
  • the network device can determine the quality of the beam based on the quality of the reference signal.
  • reference signal configuration information please refer to the relevant introduction later.
  • the beam information is also indicated by the configuration information of its corresponding reference signal.
  • the network device indicates the information of the physical downlink sharing channel (PDSCH) beam of the terminal device through the TCI field in the downlink control information (DCI).
  • PDSCH physical downlink sharing channel
  • DCI downlink control information
  • the configuration information of the reference signal includes relevant parameters of the reference signal. For example, the reference signal transmission period, the time-frequency resources used, etc.
  • the reference signal may be an uplink reference signal or a downlink reference signal.
  • the uplink reference signal includes but is not limited to the sounding reference signal (SRS) and the demodulation reference signal (demodulation reference signal, DMRS).
  • Downlink reference signals include but are not limited to: channel state information reference signal (CSI-RS), cell specific reference signal (cell specific reference signal, CS-RS), UE specific reference signal (user equipment specific reference signal) , US-RS), demodulation reference signal (DMRS), and synchronization system/physical broadcast channel block (SS/PBCH block).
  • SS/PBCH block can be referred to as synchronization signal block (SSB).
  • the configuration information of the reference signal can be configured through RRC signaling.
  • the configuration information of the reference signal corresponds to a data structure, including the relevant parameters of the corresponding uplink reference signal or the relevant parameters of the downlink reference signal.
  • the configuration information of the reference signal includes at least one of the following: the type of the uplink reference signal, the resource element (also called time-frequency resource) carrying the uplink reference signal, the transmission time of the uplink channel and Period, antenna port used to send uplink reference signals, etc.
  • the configuration information of the reference signal includes at least one of the following: the type of the downlink reference signal, the resource element (also called time-frequency resource) that carries the downlink reference signal, and the transmission time and period of the downlink reference signal. , the antenna port used to send downlink reference signals, etc.
  • resources can be understood as time-frequency resources configured in the configuration information of the reference signal for carrying the reference signal. Each resource corresponds to a corresponding antenna port, and the specific antenna port is reflected by the configuration information of the reference signal.
  • resources can be understood as time-frequency resources configured in the configuration information of the reference signal for carrying the reference signal.
  • Models of power amplifiers include polynomial (P) models, memory polynomial (MP) models, and generalized memory polynomial (GMP) models.
  • P polynomial
  • MP memory polynomial
  • G generalized memory polynomial
  • x(n) represents the input signal of the power amplifier
  • r(n) represents the output signal of the power amplifier
  • c k , c km , a kmg , and b kmg represent the model coefficients of the power amplifier
  • K represents The highest nonlinear order
  • M represents the maximum memory depth
  • G represents the maximum cross term length
  • n represents the time.
  • the polynomial model can be expressed by the following formula (1):
  • c k is the model coefficient of the polynomial model
  • k is the nonlinear order.
  • the memory polynomial model can be expressed by the following formula (2):
  • c km is the model coefficient of the memory polynomial model
  • k is the nonlinear order
  • m is the memory depth.
  • the generalized memory polynomial model can be expressed by the following formula (3):
  • c km , a kmg , and b kmg are the model coefficients of the generalized memory polynomial model, k is the nonlinear order, m is the memory depth, and g is the cross term length.
  • FIG. 1 is a schematic diagram of the network architecture applicable to the embodiment of this application.
  • the network architecture includes one or more network devices and one or more terminal devices.
  • a network device can transmit data or control signaling to one or more terminal devices.
  • Multiple network devices can also transmit data or control signaling to a terminal device at the same time.
  • the transmitter of the network device may adopt an analog beamforming (ABF) or hybrid beamforming system architecture.
  • ABSF analog beamforming
  • the embodiments of this application are suitable for scenarios with strong coverage capabilities and low originating energy consumption, such as enhanced mobile broadband (eMBB) and massive machine-type communications (mMTC).
  • eMBB enhanced mobile broadband
  • mMTC massive machine-type communications
  • the embodiments of this application do not limit the waveform of the signal transmitted between the network device and the terminal device, and can be applied to cyclic prefix-orthogonal frequency division multiplexing (CP-OFDM) or discrete Fourier Transform spread orthogonal frequency division multiplexing (discrete fourier transform-spread-OFDM, DFT-s-OFDM) communication system.
  • CP-OFDM cyclic prefix-orthogonal frequency division multiplexing
  • DFT-s-OFDM discrete Fourier Transform spread orthogonal frequency division multiplexing
  • PA can amplify low-power signals generated by network equipment or terminal equipment to a power level that can be transmitted over long distances.
  • PA is the core component of wireless communication equipment.
  • the PA will introduce nonlinear distortion, causing the performance indicators of the output signal to deteriorate.
  • the nonlinear distortion caused by the PA can cause the EVM and ACLR performance of the output signal to degrade.
  • Digital predistortion technology is an effective means to improve the linearity of the PA output signal. Its basic principle is to digitally preprocess the original signal before the PA amplifies the power of the original signal of the digital channel to improve the linearity of the PA output signal. Theoretically, the DPD corresponding function should be the inverse function of the PA response function.
  • Figure 2 is the basic schematic diagram of DPD.
  • the transmitter of the network device Before performing digital predistortion, the transmitter of the network device needs to obtain the DPD coefficients from the pre-PA signal and the post-PA signal.
  • the pre-PA signal is the signal before amplification by the power amplifier, which can also be called the original signal of the digital channel;
  • the post-PA signal is the signal after amplification by the power amplifier.
  • the pre-PA signal can be obtained directly from the digital module, such as a digital to analog converter (DAC); in some scenarios, such as low-frequency scenarios, the transmitter can collect the post-PA signal through the feedback channel.
  • Figure 3 is a schematic diagram of obtaining DPD based on the feedback channel. When the transmitter has multiple PAs, each PA can have an independent feedback channel to obtain independent DPD coefficients.
  • network equipment In frequency bands such as millimeter waves, network equipment (transmitting equipment) will use more physical antennas to obtain array gain to combat the greater propagation loss of high-frequency signals. For example, the number of network devices in the 26-28GHz frequency band can reach hundreds or thousands, among which one A physical antenna consists of multiple elements. In order to avoid excessive cost and power consumption caused by large-scale arrays, network equipment can adopt the HBF architecture. In the HBF architecture, the number of digital channels is far less than the number of physical antennas. In the embodiment of this application, the digital channels can also be called for digital RF links.
  • the HBF architecture can usually be divided into two hardware design structures.
  • One is a partial connection structure.
  • Each digital channel is only connected to all physical antennas of a sub-array.
  • Figure 4 is a schematic diagram of PCS, in which the baseband module can Modulate, cell code, channel code and filter the signal. The other is a fully connected structure, where each digital channel is connected to all physical antennas of all sub-arrays;
  • Figure 5 is a schematic diagram of FCS. Obviously, each digital channel in the FCS structure has more physical antennas connected and the millimeter wave coverage capability is better, but it requires additional phase shifters and combiners, which will lead to increased hardware complexity and cost.
  • digital predistortion needs to be implemented at the digital channel, such as the IF module in Figure 4 or Figure 5.
  • the digital channel such as the IF module in Figure 4 or Figure 5.
  • the HBF PCS architecture one digital channel can correspond to multiple PAs, and DPD compensation for each PA cannot be achieved.
  • each PA is connected to all digital channels.
  • the output of the PA is a nonlinear combination of the signals of each digital channel, while the input of the DPD module needs to consider the signals of all digital channels. Therefore, the traditional DPD coefficient acquisition and compensation method cannot be directly applied to the HBF architecture, which will lead to problems such as large power backoff and poor linearity of the output signal.
  • FIG. 6 is a schematic diagram of determining the DPD coefficient under a HBF FCS architecture.
  • Q is a positive integer greater than 1
  • P is a positive integer greater than Q.
  • the channel response coefficient from the p-th physical antenna to the q-th terminal device is h pq .
  • This parameter is known by the sending end/network device by default, and can be determined through the sounding reference signal (SRS) or channel status.
  • the information reference signal (channel state information-reference signal, CSI-RS) estimates the channel response coefficient between the physical antenna and the terminal device.
  • the output signal of the pth physical antenna is S p (n)
  • the original signal of the qth digital channel is x q (n).
  • the received signal of the qth terminal device r q (n) can be expressed by the following formula (4):
  • w pq is the simulated beamforming coefficient from the p-th physical antenna to the q-th terminal device
  • k is the nonlinear order of the PA model
  • m is the memory depth of the PA model
  • n represents the time.
  • the purpose of analog beamforming is also to direct the corresponding beam of the digital channel signal to the corresponding target terminal equipment, so formula (4) can be written as the following formula (5):
  • the first Q terms are the main branch signals received by the terminal equipment. Assuming that the main branch signals do not interfere with each other, the main branch signal received by the q-th terminal equipment for The item Q+1 is the auxiliary branch signal.
  • the terminal equipment can only receive the auxiliary branch signal under certain conditions. In most cases, the auxiliary branch signal can be ignored.
  • the network device obtains the output signal of each physical antenna through wire feedback, and then obtains the received signals r 1 , r 2 ,..., of Q terminal devices based on the estimated channel response coefficient and the above formula (4) or (5). rQ .
  • the main branch signals in formula (5) are all generated by the nonlinear combination of x 1 , x 2 ,..., x Q.
  • the digital predistortion model is the inverse model of PA, then the digital predistortion of the qth digital channel
  • the input signals of the distortion model are r 1 , r 2 ,..., r Q respectively, and the output signal of the digital predistortion model of the q-th digital channel is x q
  • the least square (LS) algorithm can be used to estimate DPD coefficient, each digital channel corresponds to an independent
  • An independent digital predistortion module is used to correct the nonlinear distortion caused by the PA.
  • the network device reconstructs the received signal of the terminal device by obtaining the output signal of the physical antenna and the estimated channel response coefficient through wire feedback, and finally determines the digital channel based on the original signal of the digital channel and the received signal of the terminal device.
  • the corresponding DPD coefficient the error of the channel response coefficient estimated by the network device may be large, and there is a deviation between the reconstructed received signal of the terminal device and the actual received signal of the terminal device, resulting in low accuracy of the determined DPD coefficient.
  • the hardware cost of wire feedback is relatively expensive, resulting in a higher cost of determining DPD coefficients.
  • the DPD coefficient can be measured and fed back based on the remote device.
  • the DPD coefficient fed back by the remote device can be called the over the air (OTA) DPD coefficient
  • the remote device can be a terminal device.
  • Figure 7 is a schematic diagram of the remote device measuring the feedback DPD coefficient.
  • the remote device receives the signal transmitted by the physical antenna of the network device and obtains the DPD coefficient of the network device based on the received signal. Specifically, the remote device obtains the received signal through the air interface, and the received signal can obtain the equivalent PA after filtering, analog digital converter (ADC) analog-to-digital conversion, down-sampling, channel estimation and equalization.
  • ADC analog digital converter
  • the signal transmitted by the physical antenna of the network device is amplified by multiple PAs. Therefore, the received signal of the remote device includes the synthesis of the nonlinear effects of multiple PAs, so that the DPD coefficient obtained by the remote device can compensate for multiple The PA nonlinear effect corrects the nonlinear distortion caused by PA.
  • Figure 8 is a schematic diagram of the equivalent architecture of a PA connected to a digital channel in the PCS structure.
  • One digital channel is connected to one PA, and each PA is connected to a physical antenna in a one-to-one correspondence.
  • the pre- PA signal entering the digital channel is The model coefficient of road PA is Then the output signal y i (n) of the i-th PA can be expressed by the following formula (6):
  • the received signal r(n) of the remote device can be expressed by the following formula (7):
  • h i is the channel response coefficient between the i-th physical antenna of the network device and the receiving physical antenna of the remote device, Assume that the magnitude of weight w i is 1.
  • HBF PCS network equipment compensates for the nonlinear effects of all PAs connected to a single digital channel to ensure the signal quality of the received signal of the remote device.
  • the HBF architecture in addition to partial connection structures, the HBF architecture also has a fully connected structure. When correcting PA nonlinear distortion, the impact of intermodulation interference between different digital channels needs to be considered.
  • the number of PAs can reach hundreds to thousands.
  • Each PA is connected to all digital channels to improve the array gain of the system.
  • this will cause intermodulation interference between digital channels. Therefore, partial connections cannot be used.
  • a method to determine the DPD coefficient corresponding to each digital channel under the structure In the existing technical solution, to determine the DPD coefficient corresponding to each digital channel under the HBF FCS architecture, the network equipment needs to obtain the output signal of each physical antenna through wire feedback, and needs to estimate the distance between each physical antenna and the terminal device.
  • the channel response coefficient is used to determine the received signal of the terminal device based on the output signal of each physical antenna and the channel response coefficient between each physical antenna and the terminal device; the network device then determines the corresponding digital channel based on the received signal of the terminal device.
  • Digital predistortion coefficient The implementation cost of this technical solution is high, and the accuracy of the determined DPD coefficient is low.
  • the embodiment of the present application proposes an information measurement method, which can assist in obtaining the model coefficient of the equivalent PA of the PA connected to each digital channel of the network device through the terminal device.
  • Equivalent of connected PA The model coefficient of PA can determine the DPD coefficient corresponding to the digital channel. This method can reduce the cost of determining the DPD coefficient and improve the accuracy of the determined DPD coefficient.
  • the terminal device in the embodiment of the present application may also be other devices that can obtain the DPD coefficient corresponding to the digital channel of the network device.
  • the network device in the embodiment of this application may be a base station.
  • FIG. 9 is a schematic flow interaction diagram of an information measurement method 900 according to an embodiment of the present application, which can be used in the HBF architecture or the digital beam forming (digital beam forming, DBF) architecture.
  • the network equipment includes Q digital channels, and Q terminal devices are required to assist in obtaining the DPD coefficients corresponding to the Q digital channels.
  • Q is an integer greater than 1.
  • the network device sends the first configuration information to the Q terminal devices, where the first configuration information indicates the configuration information of the Q reference signals.
  • the first configuration information may be sent by the network device to the terminal device through radio resource control (RRC) signaling.
  • RRC radio resource control
  • the first configuration information includes one or more of the following: type information of Q reference signals, sequence information of Q reference signals, time-frequency resource information of Q reference signals, and antennas transmitting Q reference signals.
  • Port information one digital channel corresponds to one antenna port, and the time-frequency resource information and the antenna port information are in one-to-one correspondence; each terminal device only needs to know the antenna port information of the reference signal of its corresponding digital channel.
  • the Q reference signals are different reference signals.
  • the Q reference signals are of different types; or, the Q reference signals are of the same type, but the sequence information of the Q reference signals is different. Due to the intermodulation interference between digital channel signals under the fully connected architecture, the reference signals sent by each digital channel should be different to ensure the non-singularity of the model matrix when the terminal equipment performs PA model training, which helps to improve the accuracy of PA model training. Spend.
  • the time-frequency resource information of the reference signal includes time-frequency resources and frequency domain resources used to carry the reference signal.
  • the time domain resources include transmission time, transmission cycle, slot offset of the transmission time, and the number of occupied time domain symbols.
  • the time-frequency resources used to carry different reference signals correspond to different antenna ports, and the antenna port information can be reflected in the time-frequency resources of the reference signals.
  • Q terminal devices receive the first configuration information sent by the network device.
  • the terminal device can reconstruct reference signals of different digital channels according to the first configuration information.
  • the reference signals of the digital channels can be called the original signals of the digital channels or the signals before amplification by the power amplifier.
  • the network device sends the second configuration information to the Q terminal devices.
  • the second configuration information indicates the model parameters of the equivalent power amplifiers connected to the Q digital channels of the network device.
  • the model parameters of all power amplifiers of the network device are the same, and the model parameters of the equivalent power amplifier connected to each digital channel are the same as the model parameters of all power amplifiers of the network device.
  • the second configuration information indicates that the model parameters of the equivalent power amplifiers connected to the Q digital channels of the network device include at least one of nonlinear order, memory depth, cross term length, or model type.
  • the model type of the equivalent power amplifier may be predefined, or may be indicated by the network device to the terminal device through the second configuration information.
  • Model single PA common polynomial, memory polynomial and generalized memory polynomial models For a fully connected structure, considering the intermodulation interference between different channel signals, the PA model under the HBF FCS architecture is slightly different from the model of a single PA, and fully connected polynomial (FC-P) can be used. model, fully connected-memory polynomial (FC-MP) or fully connected-generalized memory polynomial (FC-GMP) model.
  • FC-P fully connected-memory polynomial
  • FC-GMP fully connected-generalized memory polynomial
  • Q digital channels of network equipment are connected to each power amplifier. It can also be understood that each digital channel is connected to all physical antennas of all sub-arrays. This embodiment can be used in HBF FCS architecture.
  • the second configuration information may be sent by the network device to the terminal device through RRC signaling.
  • the first configuration information and the second configuration information may be carried in the same RRC signaling and sent to the terminal device, or may be sent to the terminal device through different RRC signaling.
  • Q terminal devices receive the second configuration information sent by the network device.
  • the network device sends Q reference signals to Q terminal devices through P physical antennas.
  • the network device sends Q reference signals to Q terminal devices through P physical antennas according to the time-frequency resource information of the Q reference signals.
  • the power amplifier is connected to the physical antenna in a one-to-one correspondence, where P is an integer greater than or equal to Q, and the signal sent by the physical antenna is a power-amplified reference signal.
  • Q reference signals are sent simultaneously through Q digital channels, with each digital channel sending one reference signal.
  • Q terminal devices receive Q reference signals sent by the network device and obtain received signals. For example, Q terminal devices According to the time-frequency resource information of the Q reference signals, the Q reference signals sent by the network device are received to obtain the received signals.
  • the Q terminal devices determine the model coefficients of the equivalent power amplifier of the power amplifier connected to their respective corresponding digital channels based on their respective received signals, the configuration information of the Q reference signals, and the model parameters of the equivalent power amplifier.
  • the received signal of the terminal device is the Q reference signals received by the terminal device
  • the received signal received by the terminal device is the signal amplified by the PA connected to the digital channel of the Q reference signals.
  • the terminal device determines the Q reference signals based on the configuration information of the Q reference signals; specifically, the terminal device performs signal reconstruction based on the configuration information of the Q reference signals, and reconstructs the Q reference signals.
  • the terminal device determines the model coefficients of the equivalent power amplifier of the power amplifier connected to the corresponding digital channel based on the received signal, the reconstructed Q reference signals, and the model parameters of the equivalent power amplifier.
  • the terminal device can first process the received signal, such as filtering, converting the analog signal into a digital signal, etc., and then determine the model coefficient of the equivalent power amplifier of the corresponding digital channel.
  • the bandwidth of the reference signal can reach 800MHz.
  • the bandwidth of the reference signal occupies the entire channel bandwidth. After the reference signal passes through the PA, the spectrum will be broadened by 3 to 5 times.
  • the terminal equipment The accuracy of the model coefficients requires fully obtaining the out-of-band information of the signal after PA or accurately setting the band-pass filter width to implement the band-limited nonlinear model estimation algorithm.
  • the first configuration information sent by the network device to the Q terminal devices can also indicate the bandwidth information of the Q reference signals; the terminal devices can fully obtain the out-of-band information of the post-PA signal or accurately obtain the out-of-band information of the post-PA signal based on the bandwidth information of the reference signals.
  • the band-pass filter width is set to implement the band-limited nonlinear model estimation algorithm, thereby improving the accuracy of the determined model coefficients of the equivalent power amplifier.
  • the terminal device sends the model coefficient of the equivalent power amplifier of the power amplifier connected to the corresponding digital channel to the network device.
  • the Q terminal devices respectively send to the network device the model coefficients of the equivalent power amplifiers of the power amplifiers connected to their respective corresponding digital channels.
  • the terminal device may send the model coefficients of the equivalent power amplifier to the network device through RRC signaling or uplink control information (UCI).
  • RRC signaling or uplink control information (UCI).
  • UCI uplink control information
  • the network device receives the model coefficients of the Q equivalent power amplifiers sent by the Q terminal devices.
  • the model coefficient of the equivalent power amplifier sent by each terminal device is the equivalent power amplifier of the power amplifier connected to the digital channel corresponding to the received signal of the terminal device.
  • the network device determines the digital predistortion coefficients corresponding to the Q digital channels based on the model coefficients of the Q equivalent power amplifiers and the Q reference signals.
  • the network device determines the Q received signals of the Q terminal devices based on the model coefficients of the Q equivalent power amplifiers, the Q reference signals, and the model parameters of the equivalent power amplifiers, where the received signals and the terminal devices are corresponding. Taking the received signal of the first terminal device among the Q terminal devices as an example, the network device determines based on the model coefficients of the equivalent power amplifier sent by the first terminal device, the Q reference signals, and the model parameters of the equivalent power amplifier. The first received signal of the first terminal device. Taking the received signal of the q-th terminal device among the Q terminal devices as an example, the network device determines based on the model coefficients of the equivalent power amplifier sent by the q-th terminal device, the Q reference signals, and the model parameters of the equivalent power amplifier. The qth terminal device receives the signal.
  • the network equipment determines the digital predistortion coefficient corresponding to the qth digital channel among the Q digital channels based on the Q received signals of the Q terminal devices and the qth reference signal among the Q reference signals.
  • the qth data channel is the qth reference signal.
  • the corresponding data channel is the digital predistortion coefficient corresponding to the qth digital channel among the Q digital channels based on the Q received signals of the Q terminal devices and the qth reference signal among the Q reference signals.
  • the qth data channel is the qth reference signal.
  • the corresponding data channel is the digital predistortion coefficient corresponding to the qth digital channel among the Q digital channels based on the Q received signals of the Q terminal devices and the qth reference signal among the Q reference signals.
  • the network device sends the first configuration information and the second configuration information to the terminal device, and the terminal device can reconstruct Q reference signals of the Q digital channels of the network device based on the first configuration information.
  • the terminal device can determine and report the model coefficients of the equivalent power amplifier of the Q digital channels of the network device based on the Q reference signals and the model parameters of the equivalent power amplifier indicated by the second configuration information.
  • the network device can determine and report the model coefficients of the equivalent power amplifier of the Q digital channels based on the Q digital channels.
  • the model coefficients of the connected equivalent power amplifier can determine the digital predistortion coefficients corresponding to the Q digital channels.
  • the embodiment of the present application does not need to obtain the output signal of each physical antenna through wire feedback, which can reduce costs; and the embodiment of the present application does not need to estimate the channel response coefficient between each physical antenna and the terminal device, and can improve the determined DPD The precision of the coefficients.
  • the following uses specific examples to introduce the method for network equipment to obtain the model coefficients of PAs connected to digital channels under the HBF FCS architecture.
  • Figure 10 is a schematic diagram of obtaining DPD coefficients corresponding to digital channels under the HBF FCS architecture according to the embodiment of the present application.
  • Q for network equipment
  • Q digital channels corresponding to Q terminal devices
  • P physical antennas correspond to P power amplifiers.
  • Each terminal device feeds back the model coefficient of the equivalent PA corresponding to the digital channel, and the physical antennas and power amplifiers are connected in a one-to-one correspondence.
  • the q-th terminal device receives signals transmitted from P physical antennas of the network device, and the q-th terminal device performs signal processing on the received signals.
  • This process includes channel estimation, equalization and measurement signal merging. Among them, channel estimation includes obtaining the channel response coefficient, equalization includes removing the influence of the channel response coefficient on the received signal, and measurement signal merging includes obtaining multiple times.
  • the received signals are combined and processed; the q-th terminal device performs signal reconstruction (signal reconstruction) to reconstruct the reference signals (RS) x 1 , x 2 ,..., x Q sent by the Q digital channels respectively;
  • the q terminal devices perform model extraction based on r q and x 1 , x 2 ,..., x Q to determine the model coefficients of the equivalent power amplifier of the power amplifier connected to the q-th digital channel, where the q-th digital channel
  • the digital channel is the digital channel corresponding to the q-th terminal device; the q-th terminal device sends the determined model coefficient of the equivalent power amplifier to the network device; the network device sends the model coefficient of the equivalent power amplifier according to the q-th terminal device Coefficient, determines the DPD coefficient corresponding to the q-th digital channel.
  • the q-th terminal device performs model extraction based on r q and x 1 , x 2 ,..., x Q , which can be understood as, the q-th terminal device performs model training based on r q and x 1 , x 2 ,..., x Q , To obtain the model coefficient of the equivalent power amplifier of the power amplifier connected to the q-th digital channel.
  • the processing process of other terminal devices among the Q terminal devices is similar to the processing process of the q-th terminal device, and will not be described in detail here.
  • Figure 11 is a schematic flow interaction diagram for obtaining the DPD coefficient corresponding to the digital channel under the HBF FCS architecture of the embodiment of the present application.
  • the network device sends the first configuration information to the Q terminal devices, where the first configuration information is used to indicate the configuration information of the Q reference signals.
  • Q terminal devices receive the first configuration information sent by the network device.
  • the configuration information of the Q reference signals includes type information of the Q reference signals, sequence information of the Q reference signals, time-frequency resource information of the Q reference signals, and antenna port information for transmitting the Q reference signals.
  • one digital channel corresponds to one antenna port.
  • the first configuration information can be used by the Q terminal devices to determine the reference signals x 1 , x 2 , ..., x Q respectively sent by the Q digital channels of the network device through signal reconstruction.
  • the type of the reference signal includes gold sequence type, Zadoff-Chu (ZC) sequence type, etc.
  • the type of the reference signal can be represented by "seqN"; the type information of the reference signal can indicate whether the reference signal is a single carrier or a multi-carrier signal.
  • the sequence information of the reference signal is used to indicate the sequence parameter information for generating the reference signal.
  • Each terminal device only needs to know the antenna port information of its corresponding digital channel.
  • the Q reference signals are different reference signals.
  • the Q reference signals are of different types; or, the Q reference signals are of the same type, but the sequence information of the Q reference signals is different. Due to the intermodulation interference between digital channel signals under the fully connected architecture, the reference signals sent by each digital channel should be different to ensure the non-singularity of the model matrix when the terminal equipment performs PA model training, which helps to improve the accuracy of PA model training. Spend.
  • Figure 12 is a schematic diagram of the time-frequency structure of the reference signal according to the embodiment of the present application.
  • the reference signal in Figure 12(a) only occupies one OFDM or DFT-s-OFDM symbol in the time domain.
  • the symbols before the reference signal can be used to send signals such as demodulation reference signal (DMRS).
  • the reference signal in Figure 12(b) occupies multiple OFDM or DFT-s-OFDM symbols in the time domain.
  • the reference signal should occupy the entire channel bandwidth of the subsequent digital transmission signal in the frequency domain; for the time domain length occupied by the reference signal, the PA model can be trained A trade-off between performance and training complexity.
  • Figure 13 is a schematic diagram of periodically transmitting reference signals through different digital channels.
  • the reference signal sent through each digital channel can be periodic. Different reference signals are sent through different digital channels, for example, RS1 is sent through digital channel 1, RS2 is sent through digital channel 2, and RSQ is sent through digital channel Q.
  • the network device sends second configuration information to the Q terminal devices.
  • the second configuration information indicates the model parameters of the equivalent power amplifiers connected to the Q digital channels of the network device.
  • the model parameters of all power amplifiers of the network device are the same, and the model parameters of the equivalent power amplifier connected to each digital channel are the same as the model parameters of all power amplifiers of the network device.
  • Q terminal devices receive the second configuration information sent by the network device.
  • the second configuration information indicates that the model parameters of the equivalent power amplifiers connected to the Q digital channels of the network device include at least one of nonlinear order, memory depth, cross term length, or model type.
  • the model type of the PA indicated by the second configuration information may be any one of FC-P model, FC-MP model and FC-GMP model.
  • the network device can instruct the terminal device through modeltype1, modeltype2, or modeltype3 which full connection model to use to model the PA.
  • the received signal r q (n) received by the q-th terminal device can be expressed by the following formula (8):
  • r q (n) is obtained by the nonlinear combination superposition of x 1 , x 2 ,..., x Q ; n represents the time; K is the highest nonlinear order of the model; M is the maximum memory depth of the model, m is the memory depth; k is the nonlinear order; m q (m,k,...,k Q-1 ) is the model coefficient of the corresponding memory depth and linear order; k 1 , k 2 ,..., k Q are each The nonlinear order of the model for the digital channel connection PA.
  • FC-P model PA has no memory, and the output signal r q (n) at time n is only related to the input signal x 1 (n), x 2 (n),..., x Q (n) at time n. If the FC-GMP model is used, the value of m between the absolute value term on the right side of the equal sign in formula (8) and the non-absolute value term are different.
  • the network device sends Q reference signals to Q terminal devices through P physical antennas according to the time-frequency resource information of the Q reference signals in the first configuration information. Among them, Q reference signals are sent simultaneously through Q digital channels, and each digital channel sends a reference signal.
  • Q terminal devices receive Q reference signals sent by the network device based on the time-frequency resource information of the Q reference signals, and obtain Q received signals.
  • Q received signals are in one-to-one correspondence with Q terminal devices.
  • the Q terminal devices determine the model coefficients of the equivalent PAs of the PAs connected to their corresponding digital channels based on their respective received signals, the configuration information of the Q reference signals, and the model parameters of the equivalent power amplifiers.
  • the received signal of the terminal device is the Q reference signals received by the terminal device, and the received signal received by the terminal device is the signal amplified by the PA connected to the digital channel of the Q reference signals.
  • the terminal equipment performs signal reconstruction according to the configuration information of the Q reference signals, and reconstructs the reference signals x 1 , x 2 , ..., x Q of each digital channel before the PA.
  • the configuration information of the Q reference signals sent by the network device to the terminal device includes type information of the Q reference signals, sequence information of the Q reference signals, and antenna port information for sending the Q reference signals.
  • the terminal device can according to the Q reference signals
  • the configuration information of the signal is obtained, and the signal sequence of the reference signal of each digital channel is obtained; the terminal equipment reconstructs it through steps such as "signal sequence-subcarrier mapping-inverse fast fourier transform (IFFT)-upsampling"
  • IFFT signal sequence-subcarrier mapping-inverse fast fourier transform
  • the original signal sequence is placed at the corresponding frequency domain subcarrier position, transformed into a time domain signal by IFFT, and then upsampling.
  • the terminal equipment processes the received signal, such as filtering, converting analog signals into digital signals, etc.
  • the terminal device performs model extraction to obtain the model coefficients of the equivalent PA of the PA connected to the digital channel corresponding to the terminal device.
  • the terminal device determines the equivalent PA of the PA connected to the digital channel corresponding to the terminal device based on the received signal, the reconstructed reference signals x 1 , x 2 , ..., x Q of each digital channel, and the parameters of the PA. model coefficients.
  • the basis function matrix X q composed of the reference signals x 1 , x 2 ,..., x Q reconstructed by the qth terminal device, and the received signal r q of the qth terminal device constitutes a
  • the vector is represented by R q
  • the model coefficient of the equivalent PA to be estimated is represented by m q .
  • m q [m q (0,0,...,0),m q (0,0,...,1),...,m q (M,K,...,0)] T .
  • K is the highest nonlinear order of the model
  • M is the maximum memory depth of the model
  • the model coefficient of the equivalent PA when -1 0;
  • Q-1 1
  • the least squares algorithm can be used to determine the model coefficients of the equivalent PA.
  • the specific calculation formula is as follows: Formula (9):
  • the terminal equipment can also use the least mean square (LMS) or recursive least squares (RLS) algorithm to determine the model coefficients of the equivalent PA.
  • LMS least mean square
  • RLS recursive least squares
  • the first configuration information sent by the network device to the terminal device can also indicate the bandwidth information of the Q reference signals; the terminal device can fully obtain the out-of-band information of the post-PA signal or accurately set the band based on the bandwidth information of the reference signals.
  • the band-limited nonlinear model estimation algorithm is implemented through the filter width, thereby improving the accuracy of the determined model coefficients of the equivalent power amplifier.
  • the network device and the terminal device can agree on the bandwidth information of the reference signal.
  • the possible value is 30.72e 6 ⁇ [1,2,4,8,16,32,64]sps.
  • the network The device may indicate the bandwidth of the reference signal via the "modelBandwidth" field.
  • the terminal device After the terminal device determines the model coefficient of the equivalent PA of the PA connected to the corresponding digital channel, it sends the model coefficient of the equivalent PA to the network device. Specifically, the Q terminal devices respectively send to the network device the model coefficients of the equivalent PA of the PA connected to the corresponding digital channel.
  • the model coefficient of the equivalent PA sent by the first terminal device is m 1
  • the model coefficient of the equivalent PA sent by the second terminal device is m 2
  • the model coefficient of the equivalent PA sent by the qth terminal device is m q
  • the model coefficient of the equivalent PA sent by the Q-th terminal device is m Q .
  • the terminal device may send the model coefficient of the equivalent PA to the network device through RRC signaling or UCI.
  • the network device receives the model coefficients of Q equivalent PAs sent by Q terminal devices.
  • a terminal device sends the model coefficient of an equivalent PA, and the model coefficient of the equivalent PA is the model coefficient of the equivalent PA of the PA connected to the digital channel corresponding to the terminal device.
  • the network device After the network device receives the model coefficients m 1 , m 2 ... m Q of equivalent PAs fed back by Q terminal devices, it determines the reception of Q terminal devices based on the model coefficients of Q equivalent PAs and Q reference signals. signals; and then determine the DPD coefficients corresponding to the Q digital channels based on the received signals of the Q terminal devices.
  • the specific determination process is as follows:
  • the network device uses the above formula (8) Determine r 1 , r 2 ,..., r Q ;
  • the network device uses the LS algorithm to determine the corresponding DPD coefficients c 1 , c 2 ,..., c Q of each digital channel through the following formula (10):
  • c q represents the DPD coefficient of the q-th digital channel.
  • the network device may determine the DPD coefficient c 1 corresponding to the first digital channel based on Q received signals sent by Q terminal devices and the reference signal x 1 sent on the first digital channel.
  • the terminal device assists in obtaining the model coefficients of the equivalent PA of the PA connected to the digital channel.
  • the network device can determine the received signal of the terminal device based on the Q reference signals and the model coefficients of the equivalent PA.
  • Network equipment does not need to obtain the output signal of each physical antenna through wire feedback, and does not need to estimate the channel response coefficient between the physical antenna and the terminal device. This can reduce the implementation cost of obtaining DPD coefficients and improve the accuracy of the obtained DPD coefficients.
  • the embodiment of this application proposes another method of information measurement.
  • This method can assist in obtaining the model coefficient of the equivalent PA of the PA connected to each digital channel of the network device through the terminal device.
  • the network device can determine the number based on the model coefficient of the equivalent PA of the PA connected to the digital channel reported by the terminal device.
  • the DPD coefficient corresponding to the channel. The accuracy of the determined DPD coefficient can be improved.
  • FIG 14 is a schematic flow interaction diagram of an information measurement method 1400 according to an embodiment of the present application.
  • This method can be used for HBF architecture and DBF architecture.
  • the network equipment includes Q digital channels.
  • the DPD coefficients corresponding to the Q digital channels can be obtained through Q terminal equipment.
  • the DPD coefficients corresponding to the Q digital channels can also be obtained through a Q terminal equipment.
  • the DPD coefficients corresponding to the Q digital channels can also be obtained through S
  • Each terminal device assists in acquiring the DPD coefficients corresponding to the Q digital channels, which is not specifically limited in the embodiment of the present application.
  • Q is an integer greater than 1
  • S is an integer greater than 1 and less than Q.
  • the network device sends the reference signal in time division to obtain the DPD coefficients corresponding to the Q digital channels; when a signal is transmitted through one digital channel, other digital channels are closed.
  • the network device sends the first configuration information to the terminal device, where the first configuration information indicates the configuration information of the reference signal.
  • the first configuration information may be sent by the network device to the terminal device through radio resource control (RRC) signaling.
  • RRC radio resource control
  • the first configuration information includes one or more of the following: reference signal type information, reference signal sequence information, reference signal time-frequency resource information, and antenna port information for transmitting the reference signal, where the time-frequency resource The information corresponds to the antenna port information.
  • the time-frequency resource information of the reference signal includes time-frequency resources and frequency domain resources used to carry the reference signal.
  • Domain resources include transmission time, transmission cycle, time slot offset of the transmission time, and the number of occupied time domain symbols.
  • the time-frequency resources used to carry different reference signals correspond to different antenna ports, and the antenna port information can be reflected in the time-frequency resources of the reference signals.
  • the network device If the network device assists in obtaining the DPD coefficients corresponding to the Q digital channels through a terminal device, the network device sends the configuration information of the Q reference signals to the terminal device through the first configuration information.
  • the Q reference signals may be the same reference signal. , or it can be a different reference signal. Because under the PCS architecture, the pre-PA signals of different digital channels do not interfere with each other, and the signal output by the equivalent power amplifier of the power amplifier connected to each digital channel is a nonlinear combination of the pre-PA signals of the digital channel, and is mixed with other digital channels. Channel is irrelevant.
  • the network device assists in acquiring the DPD coefficients corresponding to Q digital channels through Q terminal devices, and each digital channel corresponds to a terminal device, the network device only sends the configuration information of one reference signal to the terminal device through the first configuration information.
  • the terminal device receives the first configuration information sent by the network device.
  • the terminal device can reconstruct the reference signal of the corresponding digital channel according to the first configuration information.
  • the reference signal of the digital channel can be called the original signal of the digital channel or the signal before amplification by the power amplifier.
  • the network device sends second configuration information to the terminal device.
  • the second configuration information indicates the model parameters of the equivalent power amplifier connected to the digital channel of the network device.
  • the model parameters of the equivalent power amplifiers connected to different digital channels of the network device can be the same or different.
  • the second configuration information sent by the network device to the terminal device indicates the model parameters of the equivalent power amplifier connected to the Q digital channels.
  • the network device When the network device assists in obtaining the DPD coefficients corresponding to the Q digital channels through Q terminal devices, the network device sends second configuration information to the Q terminal devices respectively, and the second configuration information received by each terminal device indicates that the terminal device Model parameters of the equivalent power amplifier of the corresponding (measured) digital channel connection.
  • the second configuration information indicates that the model parameters of the equivalent power amplifier connected to the digital channel of the network device include at least one of nonlinear order, memory depth, cross term length, or model type.
  • each power amplifier is connected to a digital channel of the network device. It can be understood that each digital channel is only connected to all physical antennas of one sub-array. This embodiment can be used in HBF PCS architecture.
  • the second configuration information may be sent by the network device to the terminal device through RRC signaling.
  • the first configuration information and the second configuration information may be carried in the same RRC signaling and sent to the terminal device, or may be sent to the terminal device through different RRC signaling.
  • the terminal device receives the second configuration information sent by the network device.
  • the network device sends the reference signal to the terminal device through at least one physical antenna corresponding to the digital channel.
  • the network device sends the reference signal to the terminal device through at least one physical antenna corresponding to the digital channel according to the time-frequency resource information of the reference signal.
  • the power amplifier is connected to the physical antenna in a one-to-one correspondence.
  • the terminal device receives the reference signal sent by the network device and obtains the received signal. For example, the terminal device receives the reference signal sent by the network device according to the time-frequency resource information of the reference signal, and obtains the received signal.
  • the terminal device receives the first reference signal sent by the network device through the first digital channel according to the time-frequency resource information of the first reference signal. At this time, the received signal received by the terminal device is the first reference signal after the first reference signal is sent.
  • the first digital channel is connected to the PA amplified signal.
  • the terminal device determines the model coefficient of the equivalent power amplifier of the power amplifier connected to the digital channel based on the received received signal, the configuration information of the reference signal, and the model parameters of the equivalent power amplifier connected to the digital channel. For example, the terminal device receives the first reference signal sent by the network device through the first digital channel in the time-frequency resource of the first reference signal; the terminal device receives the first reference signal based on the time-frequency resource of the first reference signal.
  • the configuration information of the reference signal and the model parameters of the equivalent power amplifier connected to the first digital channel are used to determine the model coefficient of the equivalent power amplifier of the first digital channel.
  • the terminal device determines the reference signal according to the configuration information of the reference signal; specifically, the terminal device performs signal reconstruction according to the configuration information of the reference signal to reconstruct the reference signal.
  • the terminal device determines the model coefficient of the equivalent power amplifier of the power amplifier connected to the corresponding digital channel based on the received signal, the reconstructed reference signal, and the model parameters of the equivalent power amplifier.
  • the terminal device can first process the received signal, such as filtering, converting the analog signal into a digital signal, etc., and then determine the model coefficient of the equivalent power amplifier of the corresponding digital channel.
  • the first configuration information sent by the network device to the terminal device also indicates the bandwidth information of the reference signal.
  • the terminal equipment can fully obtain the out-of-band information of the post-PA signal or accurately set the band-pass filter width to implement the band-limited nonlinear model estimation algorithm, thereby improving the accuracy of the determined model coefficients of the equivalent power amplifier. Accuracy.
  • the terminal device sends the model coefficient of the equivalent power amplifier of the power amplifier connected to the corresponding digital channel to the network device.
  • the terminal device may send the model coefficients of the equivalent power amplifier of the power amplifier connected to different digital channels to the network device through RRC signaling or UCI.
  • the network device receives the model coefficient of the equivalent power amplifier of the power amplifier connected to the digital channel sent by the terminal device.
  • the Q terminal devices respectively send to the network device the model coefficients of the equivalent power amplifier of the power amplifier connected to the corresponding digital channel;
  • network The device receives the model coefficients of the equivalent power amplifier sent by Q terminal devices respectively, wherein one terminal device sends the model coefficient of the equivalent power amplifier connected by a digital channel.
  • the terminal device When the network device assists in obtaining the DPD coefficients corresponding to the Q digital channels through a terminal device, the terminal device sends the model coefficients of the equivalent power amplifier of the power amplifier connected to the Q digital channels to the network device; the network device receives the Model coefficients of the equivalent power amplifier connected to Q digital channels sent by the terminal equipment.
  • the network device determines the digital predistortion coefficient corresponding to the digital channel based on the model coefficient of the equivalent power amplifier and the reference signal.
  • the network device determines the received signal of the terminal device according to the model coefficient of the equivalent power amplifier connected to the digital channel, the reference signal of the digital channel, and the model parameters of the equivalent power amplifier connected to the digital channel; the network device determines the received signal of the terminal device according to the model coefficient of the equivalent power amplifier connected to the digital channel.
  • the received signal of the terminal device and the reference signal of the digital channel can use a direct learning structure or an indirect learning structure to determine the digital predistortion coefficient corresponding to the digital channel.
  • the network device sends the first configuration information and the second configuration information to the terminal device.
  • the terminal device can reconstruct the reference signal of the digital channel of the network device according to the first configuration information.
  • the terminal device can reconstruct the reference signal of the digital channel of the network device according to the first configuration information.
  • the reference signal and the model parameters of the equivalent power amplifier of the digital channel indicated by the second configuration information can determine and report the model coefficient of the equivalent power amplifier connected to the digital channel.
  • the network device can determine and report the model coefficient of the equivalent power amplifier of the digital channel according to the model parameters of the equivalent power amplifier of the digital channel.
  • the model coefficients can use a direct learning structure or an indirect learning structure to determine the digital predistortion coefficient corresponding to the digital channel.
  • the network device can flexibly determine the digital predetermined value corresponding to the digital channel based on the model coefficient of the equivalent power amplifier of the digital channel fed back by the remote device. Distortion coefficient, the terminal device cannot know the algorithm used by the network device to determine the DPD coefficient.
  • the following uses specific examples to introduce the method for network equipment to obtain the model coefficients of PAs connected to digital channels under the HBF FCS architecture.
  • HBF PCS architecture all PAs connected to the same digital channel can be equivalent to an equivalent PA.
  • the terminal equipment can feed back the model coefficients of the equivalent PA of each digital channel one by one, and the network equipment can quickly obtain each digital channel. DPD coefficient.
  • Figure 15 is a schematic diagram of obtaining the DPD coefficient corresponding to the digital channel under the HBF PCS architecture according to the embodiment of the present application.
  • Different digital channels can be referred to as different polarization directions.
  • the Q digital channels of the network device can correspond to Q terminal devices, and the Q digital channels of the network device can also correspond to one terminal device.
  • each terminal device feeds back the model coefficient of the equivalent PA of the PA connected to its corresponding digital channel; when the Q digital channels of the network device correspond to one terminal device, The terminal equipment feeds back the model coefficients of the equivalent PA of the PAs connected to Q digital channels. Finally, the network equipment implements the calculation and application of the DPD coefficients of all digital channels.
  • FIG. 16 is a schematic diagram of a terminal device performing model coefficient feedback of equivalent PA in different beam areas according to an embodiment of the present application.
  • Figure 17 is a schematic flow interaction diagram for obtaining the DPD coefficient of digital channel connection under the HBF PCS architecture of the embodiment of the present application.
  • a terminal device assists the network device in obtaining the model coefficients of equivalent PAs connected to Q digital channels.
  • the network device sends the first configuration information to the terminal device, where the first configuration information indicates the configuration information of the Q reference signals.
  • Q reference signals are sent through Q digital channels, one reference signal per digital channel.
  • the terminal device receives the first configuration information sent by the network device.
  • the configuration information of the Q reference signals includes type information of the Q reference signals, sequence information of the Q reference signals, time-frequency resource information of the Q reference signals, and antenna port information for transmitting the Q reference signals.
  • one digital channel corresponds to one day line port.
  • the network device sends the configuration information of the Q reference signals to the terminal device, which is used by the terminal device to determine the reference signals x 1 , x 2 , ..., x Q respectively sent by the Q digital channels of the network device through signal reconstruction.
  • the type of the reference signal may be a gold sequence type, a ZC sequence type, or other sequence types.
  • the pre-PA signals of different digital channels do not interfere with each other, and the equivalent PA output signal of the PA connected to each digital channel is a nonlinear combination of the pre-PA signals of the digital channel, regardless of other digital channels.
  • the Q reference signals can be the same Q reference signals, or they can be different Q reference signals; it can be understood that the Q reference signals can be of the same type and sequence, and the Q reference signals can be of different types. The same, the sequence is also different.
  • FIG 18 is a schematic diagram of different digital channels transmitting the same reference signal according to an embodiment of the present application.
  • RS1 represents the reference signal sent by the network device.
  • the first two RS1 are the reference signals sent by digital channel 1/polarization direction 1
  • the last two RS1 are the reference signals sent by digital channel 2/polarization direction 2.
  • Multiple reference signals corresponding to the same digital channel sent by the network device cannot be interleaved. That is to say, after multiple reference signals of digital channel 1 are sent, multiple reference signals of digital channel 2 are sent.
  • the terminal device sequentially receives the RS1 sent by the network device.
  • the terminal device After receiving the RS1 sent by the digital channel 1, the terminal device determines the model coefficient of the equivalent PA of the PA connected to the digital channel 1 and reports it to the network device; the terminal device receives the RS1 sent by the digital channel 2. After RS1, determine the model coefficient of the equivalent PA of the PA connected to digital channel 2 and report it to the network device.
  • Figure 19 is another schematic diagram of different digital channels transmitting different reference signals according to an embodiment of the present application.
  • RS1 is the reference signal sent by digital channel 1/polarization direction 1
  • RS2 is the reference signal sent by digital channel 2/polarization direction 2. Since the two reference signals correspond to different time-frequency resources, the terminal equipment can identify and detect the difference. The post-PA signal of the digital channel, therefore, multiple reference signals corresponding to the same digital channel sent by the network equipment can be interleaved, without affecting the accuracy of the equivalent PA model coefficients determined by the terminal equipment.
  • the terminal equipment After the terminal equipment receives the RS1 sent by the digital channel 1, it determines the model coefficient of the equivalent PA of the PA connected to the digital channel 1; after the terminal equipment receives the RS2 sent by the digital channel 2, it determines the equivalent PA of the PA connected by the digital channel 2.
  • the terminal device can report the model coefficient of the equivalent PA of the PA connected to digital channel 1 together with the model coefficient of the equivalent PA of the PA connected to digital channel 2 to the network device.
  • the time-frequency resource information of the reference signal includes time-frequency resources and frequency domain resources used to carry the reference signal.
  • the time domain resources include transmission time, transmission cycle, slot offset of the transmission time, and the number of occupied time domain symbols.
  • the time-frequency resources used to carry different reference signals correspond to different antenna ports, and the antenna port information can be reflected in the time-frequency resources of the reference signals.
  • the network device sends second configuration information to the terminal device.
  • the second configuration information indicates the model parameters of the power amplifiers connected to the Q digital channels of the network device.
  • the model parameters of the equivalent power amplifiers connected to different digital channels of the network device can be the same or different.
  • the network device may indicate the model parameters of the equivalent PA for each digital channel connection.
  • the terminal device receives the second configuration information sent by the network device.
  • the model parameters indicated by the second configuration information include at least one of nonlinear order, memory depth, cross term length, or model type.
  • the model type of the PA indicated by the second configuration information may be any one or more of P model, MP model and GMP model.
  • the network device sends Q reference signals to the terminal device respectively according to the time-frequency resource information of the Q reference signals. For example, the network device sends the first reference signal to the terminal device in the time-frequency resource of the first reference signal; after the first reference signal is sent, the network device sends the second reference signal to the terminal device in the time-frequency resource of the second reference signal.
  • the Q reference signals include a first reference signal and a second reference signal.
  • the terminal device receives Q reference signals sent by the network device respectively according to the time-frequency resource information of the Q reference signals.
  • the terminal device receives the first reference signal sent by the network device through the first digital channel in the time-frequency resource of the first reference signal.
  • the received signal received by the terminal device is the first reference signal after the first reference signal is sent.
  • the first digital channel is connected to the PA amplified signal.
  • the terminal device receives the second reference signal sent by the network device through the second digital channel in the time-frequency resource of the second reference signal.
  • the received signal received by the terminal device is the second reference signal after the second reference signal is sent.
  • the signal amplified by the PA connected to the digital channel.
  • the terminal device determines the equivalent PA of the PA connected to different digital channels based on the received signals received in different time-frequency resources, the configuration information of the Q reference signals, and the model parameters of the equivalent power amplifiers connected to the Q digital channels. model coefficients.
  • the terminal device receives the first reference signal sent by the network device through the first digital channel in the time-frequency resource of the first reference signal; the terminal device receives the first reference signal based on the time-frequency resource of the first reference signal.
  • the configuration information of the reference signal and the model parameters of the equivalent PA connected to the first digital channel are used to determine the model coefficients of the equivalent PA of the PA connected to the first digital channel.
  • the terminal equipment performs signal reconstruction according to the configuration information of the first reference signal, and reconstructs the reference signal x 1 of the first digital channel before the PA; the terminal equipment receives the time-frequency resource of the first reference signal The signal is processed, such as filtering, converting the analog signal into a digital signal, etc.; the terminal device performs model extraction to obtain the model coefficients of the equivalent PA of the PA connected to the first digital channel.
  • the reference signal sent on the digital channel and the received signal received by the terminal device can be expressed by the following formula (11):
  • K is the highest nonlinear order of the model
  • M is the maximum memory depth of the model
  • b km is the model coefficient of the equivalent PA
  • m is the memory depth
  • k is the nonlinear order.
  • the reference signal of the digital channel reconstructed by the terminal equipment can be expressed as The algorithm determines the model coefficient of the equivalent PA of the PA connected to the digital channel.
  • the specific calculation formula is as follows: Formula (12):
  • argmin b represents the b corresponding to the minimum formula value
  • H represents the conjugate transpose.
  • R is the N-dimensional post-PA signal
  • the basis function matrix, R [r(n),r(n+1),...,r(n+N-1)] T ; basis function
  • the first configuration information sent by the network device to the terminal device also indicates bandwidth information of the Q reference signals.
  • the terminal equipment can fully obtain the out-of-band information of the signal after PA or accurately set the band-pass filter width to implement the band-limited nonlinear model estimation algorithm, thereby improving the accuracy of the determined model coefficients of the equivalent power amplifier.
  • the terminal device After determining the model coefficients of the equivalent PAs of the PAs connected by the Q digital channels, the terminal device sends the model coefficients of the equivalent PAs of the PAs connected by the Q digital channels to the network device.
  • the terminal device may send the model coefficient of the equivalent PA to the network device through RRC signaling or UCI.
  • the terminal device can only feed back the model coefficients of the equivalent PA whose nonlinear order is an odd number. As shown in Table 2, it is the model coefficient of the equivalent PA with an odd nonlinear order.
  • the PA model can also be well fitted by the model coefficients of the equivalent PA with an odd value of k, which helps to reduce the overhead caused by model coefficient feedback.
  • the network device receives the model coefficients of the equivalent PA of the Q digital channel-connected PAs sent by the terminal device.
  • the network device After receiving the model coefficients of the equivalent PAs of the PAs connected to the Q digital channels, the network device determines the DPD coefficients corresponding to the Q digital channels.
  • the network device can determine the DPD coefficient corresponding to the digital channel through direct learning structure or indirect learning structure.
  • the direct learning structure is to minimize the error e(n) between the output signal r(n) of the PA and the input signal u(n) of the DPD model.
  • the output signal of the PA is linearly related to the input signal of the DPD model, Figure 20 It is a schematic diagram of the input signal u(n) passing through the DPD module and PA.
  • G represents the multiple of PA amplification gain.
  • U represents the kernel matrix composed of u(n)
  • f[] represents the known PA nonlinear function
  • represents the DPD coefficient to be estimated.
  • 2
  • the value of ⁇ when J takes the smallest value is the determined DPD coefficient.
  • the indirect learning structure is a theory that equates the forward and inverse model of PA to the backward and inverse model of PA.
  • the DPD coefficients are directly calculated from the input signal and output signal of the equivalent PA, and are used in the predistortion module.
  • the specific determination process is as follows:
  • the network device is based on the model coefficient of the equivalent PA of the AP connected to a digital channel and the reference signal of the digital channel (pre-PA signal) [x(n), x(n+1),...,x(n+ N-1)], and formula (11) determines the received signal of the terminal device (equivalent PA rear signal) [r(n), r(n+1),..., r(n+N-1)];
  • the forward inverse model of PA is equivalent to the backward inverse model of PA. If the input signal and output signal positions of the PA model are replaced, the DPD model can be written as the following formula (16):
  • the network device uses the LS algorithm to determine the corresponding DPD coefficient of each digital channel through the following formula (17):
  • c q represents the DPD coefficient of the q-th digital channel.
  • the network device performs pre-distortion processing on the reference signal of the corresponding digital channel according to the determined DPD coefficient of the digital channel.
  • the network device can also obtain the DPD coefficient through the above steps, where the model coefficient of the equivalent PA under the band-limited model can be understood as, The model coefficients of the equivalent PA determined by the terminal equipment after filtering the received signal through a bandpass filter.
  • the information measurement method provided by the embodiment of the present application has been introduced above.
  • the execution subject for performing the above information measurement method will be introduced below.
  • FIG. 21 is a schematic structural diagram of a communication device 2100 according to an embodiment of the present application.
  • the device 2100 can be applied or deployed in the terminal equipment in the method embodiments of Figures 9 and 11.
  • the communication device 2100 includes:
  • the transceiver unit 2110 is configured to receive the first configuration information sent by the network device, where the first configuration information indicates the configuration information of Q reference signals, where Q is an integer greater than 1;
  • the transceiver unit 2110 is further configured to receive second configuration information sent by the network device, where the second configuration information indicates model parameters of equivalent power amplifiers connected to the Q digital channels of the network device;
  • the transceiver unit 2110 is also configured to receive the Q reference signals sent by the network device to obtain received signals;
  • the processing unit 2120 is configured to determine the model coefficient of the equivalent power amplifier according to the received signal, the configuration information of the Q reference signals, and the model parameters of the equivalent power amplifier, and the equivalent power amplifier is the The equivalent power amplifier of the power amplifier connected to the digital channel corresponding to the received signal;
  • the transceiver unit 2110 is also configured to send the model coefficient of the equivalent power amplifier to the network device.
  • processing unit 2120 is specifically used to:
  • the model coefficients of the equivalent power amplifier are determined according to the received signal, the Q reference signals, and the model parameters of the equivalent power amplifier.
  • the configuration information of the Q reference signals includes one or more of the following: type information of the Q reference signals, sequence information of the Q reference signals, and timing of the Q reference signals. frequency resource information and antenna port information for transmitting the Q reference signals, where the sequence information of the Q reference signals is different, and the time-frequency resource information and the antenna port information are in one-to-one correspondence.
  • model parameters include at least one of nonlinear order, memory depth, cross term length, or model type.
  • the first configuration information also indicates bandwidth information of the Q reference signals.
  • the Q digital channels are connected to each of the power amplifiers.
  • FIG. 22 is a schematic structural diagram of a communication device 2200 according to an embodiment of the present application.
  • the device 2200 can be applied or deployed in the network equipment in the method embodiments of Figures 9 and 11.
  • the communication device 2200 includes:
  • the transceiver unit 2210 is configured to send first configuration information to Q terminal devices, where the first configuration information indicates the configuration information of Q reference signals, where Q is an integer greater than 1;
  • the transceiver unit 2210 is also configured to send second configuration information to the Q terminal devices, where the second configuration information indicates the model parameters of the equivalent power amplifiers connected to the Q digital channels of the device 2100;
  • the transceiver unit 2210 is also configured to send the Q reference signals to the Q terminal devices through P physical antennas, and the power amplifiers are connected to the physical antennas in a one-to-one correspondence, where P is greater than or equal to Q is an integer;
  • the transceiver unit 2210 is also configured to receive model coefficients of Q equivalent power amplifiers sent by the Q terminal devices, where the equivalent power amplifiers are connected to the digital channels corresponding to the received signals of the terminal devices.
  • the equivalent power amplifier of the power amplifier, wherein the received signal is the Q reference signals received by the terminal device.
  • the configuration information of the Q reference signals includes one or more of the following: type information of the Q reference signals, sequence information of the Q reference signals, and timing of the Q reference signals. frequency resource information and antenna port information for transmitting the Q reference signals, where the sequence information of the Q reference signals is different, and the time-frequency resource information and the antenna port information are in one-to-one correspondence.
  • model parameters include at least one of nonlinear order, memory depth, cross term length, or model type.
  • the first configuration information also indicates bandwidth information of the Q reference signals.
  • the device 2200 also includes: a processing unit 2220;
  • the processing unit 2220 is configured to determine digital predistortion coefficients corresponding to the Q digital channels according to the model coefficients of the Q equivalent power amplifiers and the Q reference signals.
  • processing unit 2220 is specifically used to:
  • Q received signals of the Q terminal devices are determined, and the received signals There is a one-to-one correspondence with the terminal device;
  • the digital predistortion coefficient corresponding to the qth digital channel among the Q digital channels is determined, and the qth data channel is the qth data channel.
  • q is the data channel corresponding to the reference signal, where 1 ⁇ q ⁇ Q.
  • the Q digital channels are connected to each of the power amplifiers.
  • FIG. 23 is a schematic structural diagram of a communication device 2300 according to this embodiment of the present application.
  • the device 2300 can be applied to or deployed in the terminal equipment in the method embodiments of FIG. 14 and FIG. 17 .
  • the communication device 2300 includes:
  • the transceiver unit 2310 is configured to receive the first configuration information sent by the network device, where the first configuration information indicates the configuration information of the reference signal;
  • the transceiver unit 2310 is further configured to receive second configuration information sent by the network device, where the second configuration information indicates the model parameters of the equivalent power amplifier connected to the digital channel of the network device;
  • the transceiver unit 2310 is also configured to receive the reference signal sent by the network device to obtain a received signal;
  • the processing unit 2320 is configured to determine the model coefficient of the equivalent power amplifier according to the received signal, the configuration information of the reference signal, and the model parameters of the equivalent power amplifier.
  • the equivalent power amplifier is the digital The equivalent power amplifier of the power amplifier to which the channel is connected;
  • the transceiver unit 2310 is also configured to send the model coefficients of the equivalent power amplifier to the network device.
  • processing unit 2320 is specifically used to:
  • Model coefficients of the equivalent power amplifier are determined based on the received signal, the reference signal, and the model parameters of the equivalent power amplifier.
  • the configuration information of the reference signal includes one or more of the following: type information of the reference signal, sequence information of the reference signal, time-frequency resource information of the reference signal, sending the reference signal Antenna port information of the signal, wherein the time-frequency resource information corresponds to the antenna port information.
  • model parameters include at least one of nonlinear order, memory depth, cross term length, or model type.
  • the first configuration information also indicates bandwidth information of the reference signal.
  • each power amplifier is connected to a digital channel of the network device.
  • FIG. 24 is a schematic structural diagram of a communication device 2400 according to an embodiment of the present application.
  • the device 2400 may be applied or deployed in the network equipment in the method embodiments of FIG. 14 and FIG. 17 .
  • the communication device 2400 includes:
  • the transceiver unit 2410 is configured to send first configuration information to the terminal device, where the first configuration information indicates the configuration information of the reference signal;
  • the transceiver unit 2410 is also configured to send second configuration information to the terminal device, where the second configuration information indicates the model parameters of the equivalent power amplifier connected to the digital channel of the device 2400;
  • the processing unit 2420 sends the reference signal to the terminal device through at least one physical antenna corresponding to the digital channel, and the power amplifier is connected to the physical antenna in a one-to-one correspondence;
  • the transceiver unit 2410 is also configured to receive the model coefficient of the equivalent power amplifier sent by the terminal device, where the equivalent power amplifier is the equivalent power amplifier of the power amplifier connected to the digital channel, wherein, the The received signal is the reference signal received by the terminal device.
  • the configuration information of the reference signal includes one or more of the following: type information of the reference signal, sequence information of the reference signal, time-frequency resource information of the reference signal, sending the reference signal Antenna port information of the signal, wherein the time-frequency resource information corresponds to the antenna port information.
  • model parameters include at least one of nonlinear order, memory depth, cross term length, or model type.
  • the first configuration information also indicates bandwidth information of the reference signal.
  • the device 2400 further includes: a processing unit 2420; the processing unit 2420 is configured to determine the digital predistortion corresponding to the digital channel according to the model coefficient of the equivalent power amplifier and the reference signal. coefficient.
  • processing unit 2420 is specifically used to:
  • the digital predistortion coefficient corresponding to the digital channel is determined.
  • each power amplifier is connected to a digital channel of the device 2400 .
  • FIG. 25 is a schematic block diagram of a communication device 2500 according to an embodiment of the present application.
  • the communication device 2500 includes: a processor 2510 and an interface circuit 2520.
  • the processor 2510 and the interface circuit 2520 are coupled to each other.
  • the interface circuit 2520 may be a transceiver or an input-output interface.
  • the communication device 2500 may also include a memory 2530 for storing instructions executed by the processor 2410 or input data required for the processor 2510 to run the instructions or data generated after the processor 2510 executes the instructions.
  • the communication device 2500 When the communication device 2500 is applied in a terminal device, the communication device 2500 can implement the functions of the terminal device in the above method embodiment. When the communication device 2500 is applied in a network device, the communication device 2500 can implement the functions of the network device in the above method embodiment.
  • the above-mentioned processor 2510 may be an integrated circuit chip with signal processing capabilities. During the implementation process, each step of the above method embodiment can be completed through an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (field programmable gate array, FPGA), or other available processors.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • Programmd logic devices discrete gate or transistor logic devices, discrete hardware components.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or can be executed using a decoding processor.
  • the combination of hardware and software modules in the implementation is completed.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • Embodiments of the present application also provide a communication system, including a terminal device in the information measurement method provided by the embodiment of the present application and other communication devices that communicate with the terminal device, network devices, and other communications that communicate with the network device. equipment.
  • Embodiments of the present application also provide a computer-readable storage medium on which a computer program for implementing the method in the above method embodiment is stored.
  • the computer program When the computer program is run on a computer, the computer can implement the method in the above method embodiment.
  • Embodiments of the present application also provide a computer program product.
  • the computer program product includes computer program code.
  • the computer program code When the computer program code is run on a computer, the method in the above method embodiment is executed.
  • An embodiment of the present application also provides a chip, including a processor, the processor is connected to a memory, the memory is used to store a computer program, and the processor is used to execute the computer program stored in the memory, so that the The chip executes the method in the above method embodiment.
  • the term "and/or” in this application is only an association relationship describing related objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, and A and B exist simultaneously. , there are three situations of B alone.
  • the character "/" in this article generally indicates that the related objects are an "or” relationship; the term “at least one” in this application can mean “one” and "two or more", for example, A , B and C, it can mean: A exists alone, B exists alone, C exists alone, A and B exist at the same time, A and C exist at the same time, C and B exist at the same time, A, B and C exist at the same time, these seven kinds Condition.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nonlinear Science (AREA)
  • Power Engineering (AREA)
  • Transmitters (AREA)

Abstract

本申请提供了一种信息测量的方法和装置,能够提高确定的数据通道对应的DPD系数的精度。该方法包括:网络设备向终端设备发送第一配置信息和第二配置信息,第一配置信息指示Q个参考信号的配置信息,第二配置信息指示网络设备的Q个数字通道连接的等效功率放大器的模型参数;终端设备根据接收网络设备发送的Q个参考信号,得到接收信号;终端设备根据接收信号、Q个参考信号的配置信息、以及等效功率放大器的模型参数,确定等效功率放大器的模型系数;终端设备向网络设备发送等效功率放大器的模型系数;网络设备根据模型系数确定数字通道对应的预失真系数。

Description

信息测量的方法和装置
本申请要求于2022年08月31日提交中华人民共和国知识产权局、申请号为202211053928.7、发明名称为“信息测量的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种信息测量的方法和装置。
背景技术
功率放大器(power amplifier,PA)可以将网络设备或终端设备产生的低功率信号放大至可进行远距离传输的功率水平,PA是无线通信设备的核心器件。在进行功率放大时,PA会引入非线性失真,导致输出信号的性能指标发生恶化,例如,PA引起的非线性失真可导致输出信号的误差向量幅度(error vector magnitude,EVM)与邻道泄漏功率比(adjacent channel leakage power ratio,ACLR)性能下降。
数字预失真(digital predistortion,DPD)技术是提升PA输出信号线性度的有效手段,其基本原理是在PA对数字通道的原始信号进行功率放大前对原始信号进行数字预处理,以提升PA输出信号线性度。理论上,DPD对应函数应为PA响应函数的反函数。
在毫米波等频段,网络设备(发射设备)会采用更多的物理天线来获取阵列增益,用以对抗高频率信号的传播损耗。例如,26~28GHz频段的网络设备包括的阵子数目可达数百或数千。为了避免大规模阵列导致过高的成本与功耗,网络设备可采用混合波束成型(hybrid beamforming,HBF)架构,在HBF架构中数字通道的个数远少于物理天线的个数。在新空口(new radio,NR)中,HBF架构通常可分为两种硬件设计结构,一种是部分连接结构(partial connected structure,PCS),每一条数字通道只与一个子阵列的所有物理天线连接。另一种是全连接结构(fully connected structure,FCS),每一条数字通道与所有子阵列的所有物理天线连接。无论是HBF PCS架构还是HBF FCS架构,数字预失真需要在数字通道处实现。
目前,对于HBF PCS架构,网络设备可以根据每个数字通道的原始信号和全部物理天线的反馈信号,在每个数字通道上增添DPD模块来纠正PA放大后的信号的非线性失真。具体地,网络设备通过拉线反馈获取的物理天线的输出信号以及估计的信道响应系数,重构出终端设备的接收信号,最后根据数字通道的原始信号和终端设备的接收信号确定数字通道对应的DPD系数。该过程中网络设备估计的信道响应系数的误差可能较大,重构出的终端设备的接收信号与实际的终端设备的接收信号存在偏差,从而导致确定的DPD系数的精度低;此外,当物理天线的数目较大时,拉线反馈的硬件成本比较昂贵,导致确定DPD系数的成本较高。对于HBF FCS架构,网络设备对单个数字通道所连接的所有PA的非线性效应进行补偿,以保证远端设备的接收信号的信号质量;但是,在实际的NR系统中,HBF架构除了存在部分连接结构,还存在全连接结构,纠正PA非线性失真时需要考虑不同数字通道间的互调干扰的影响。
发明内容
本申请提供了一种信息测量的方法和装置,能够提高确定的数据通道对应的DPD系数的精度或提高确定数据通道对应的DPD系数的灵活度。
第一方面,提供一种信息测量的方法,该方法可以由终端设备侧的芯片或芯片系统执行。该方法包括:终端设备接收网络设备发送的第一配置信息,所述第一配置信息指示Q个参考信号的配置信息,其中,Q是大于1的整数;所述终端设备接收所述网络设备发送的第二配置信息,所述第二配置信息指示所述网络设备的Q个数字通道连接的等效功率放大器的模型参数;所述终端设备接收所述网络设备发送的所述Q个参考信号,得到接收信号;所述终端设备根据所述接收信号、所述Q个参考信号的配置信息、以及所述等效功率放大器的模型参数,确定等效功率放大器的模型系数,所述等效功率放大器为所述接收信号对应的所述数字通道所连接的功率放大器的等效功率放大器;所述终端设备向所述网络设备发送所述等效功率放大器的模型系数。
基于上述技术方案,网络设备向终端设备发送第一配置信息和第二配置信息,终端设备根据第一配置信息可以重构出网络设备的Q个数字通道的Q个参考信号,终端设备根据Q个参考信号和第二配置信息指示的等效功率放大器的模型参数,可以确定并上报网络设备的Q个数字通道的等效功率放大器的模型系数,网络设备根据Q个数字通道连接的等效功率放大器的模型系数可以确定Q个数字通道对应的数字预失真系数。相较于根据每个物理天线的输出信号和每个物理天线与终端设备之间的信道响应系数确定终端设备的接收信号,再根据终端设备的接收信号确定数字通道对应的数字预失真系数的方案,本申请实施例可以不用通过拉线反馈获取每个物理天线的输出信号,能够降低成本;且本申请实施例不需要估计每个物理天线与终端设备之间的信道响应系数,能够提高确定的数据通道对应DPD系数的精度。
结合第一方面,在第一方面的某些实现方式中,所述终端设备根据所述接收信号、所述Q个参考信号的配置信息、以及所述等效功率放大器的模型参数,确定等效功率放大器的模型系数,包括:所述终端设备根据所述Q个参考信号的配置信息,确定所述Q个参考信号;所述终端设备根据所述接收信号、所述Q个参考信号、以及所述等效功率放大器的模型参数,确定所述等效功率放大器的模型系数。
结合第一方面,在第一方面的某些实现方式中,所述Q个参考信号的配置信息中包括以下一项或多项:所述Q个参考信号的类型信息、所述Q个参考信号的序列信息、所述Q个参考信号的时频资源信息、发送所述Q个参考信号的天线端口信息,其中,所述Q个参考信号的序列信息是不同的,所述时频资源信息与所述天线端口信息是一一对应的。参考信号的配置信息可以用于Q个终端设备确定(重构出)Q个数字通道的参考信号。
结合第一方面,在第一方面的某些实现方式中,所述模型参数包括非线性阶数、记忆深度、交叉项长度、或模型类型中的至少一项。
结合第一方面,在第一方面的某些实现方式中,所述第一配置信息中还指示所述Q个参考信号的带宽信息。终端设备根据Q个参考信号的带宽信息,可以充分获取Q个参考信号经功率放大器放大后的信号的带外信息或准确地设置带通滤波器宽度来实现带限非线性模型估计算法,从而提高确定的等效功率放大器的模型系数的精度。
结合第一方面,在第一方面的某些实现方式中,所述Q个数字通道与每个所述功率放大器连接。该方法可以适用于FCS架构。
第二方面,提供一种信息测量的方法,该方法可以由网络设备侧的芯片或芯片系统执行。该方法包括:所述网络设备向Q个终端设备发送第一配置信息,所述第一配置信息指示Q个参考信号的配置信息,其中,Q是大于1的整数;所述网络设备向所述Q个终端设备发送第二配置信息,所述第二配置信息指示所述网络设备的Q个数字通道连接的等效功率放大器的模型参数;所述网络设备通过P个物理天线向所述Q个终端设备发送所述Q个参考信号,所述功率放大器与所述物理天线一一对应连接,其中,P是大于或等于Q的整数;所述网络设备接收所述Q个终端设备发送的Q个等效功率放大器的模型系数,所述等效功率放大器为所述终端设备的接收信号对应的所述数字通道所连接的功率放大器的等效功率放大器,其中,所述接收信号是所述终端设备接收到的所述Q个参考信号。
第二方面所提供的方法是与第一方面相对应的网络设备侧的方法,其有益效果可以直接参考第一方面。
结合第二方面,在第二方面的某些实现方式中,所述Q个参考信号的配置信息中包括以下一项或多项:所述Q个参考信号的类型信息、所述Q个参考信号的序列信息、所述Q个参考信号的时频资源信息、发送所述Q个参考信号的天线端口信息,其中,所述Q个参考信号的序列信息是不同的,所述时频资源信息与所述天线端口信息是一一对应的。参考信号的配置信息可以用于Q个终端设备确定(重构出)Q个数字通道的参考信号。
结合第二方面,在第二方面的某些实现方式中,所述模型参数包括非线性阶数、记忆深度、交叉项长度、或模型类型中的至少一项。
结合第二方面,在第二方面的某些实现方式中,所述第一配置信息中还指示所述Q个参考信号的带宽信息。终端设备根据Q个参考信号的带宽信息,可以充分获取Q个参考信号经功率放大器放大后的信号的带外信息或准确地设置带通滤波器宽度来实现带限非线性模型估计算法,从而提高终端设备确定的等效功率放大器的模型系数的精度。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:所述网络设备根据所述Q个等效功率放大器的模型系数、和所述Q个参考信号,确定所述Q个数字通道分别对应的数字预失真系数。
结合第二方面,在第二方面的某些实现方式中,所述网络设备根据所述Q个等效功率放大器的模型系数、和所述Q个参考信号,确定所述Q个数字通道分别对应的数字预失真系数,包括:所述网络设备根据所述Q个等效功率放大器的模型系数、所述Q个参考信号、以及所述等效功率放大器的模型参数,确定所述Q个终端设备的Q个所述接收信号,所述接收信号与所述终端设备是一一对应的;所述网络设备根据Q个所述接收信号和所述Q个参考信号中的第q参考信号,确定所述Q个数字通道中第q数字通道对应的数字预失真系数,所述第q数据通道是所述第q参考信号对应的数据通道,其中,1≤q≤Q。
结合第二方面,在第二方面的某些实现方式中,所述Q个数字通道与每个所述功率放大器连接。该方法可以适用于FCS架构。
第三方面,提供一种信息测量的方法,该方法可以由终端设备侧的芯片或芯片系统执行。该方法包括:终端设备接收网络设备发送的第一配置信息,所述第一配置信息指示参考信号的配置信息;所述终端设备接收所述网络设备发送的第二配置信息,所述第二配置信息指示所述网络设备的数字通道连接的等效功率放大器的模型参数;所述终端设备接收所述网络设备发送的所述参考信号,得到接收信号;所述终端设备根据所述接收信号、所述参考信号的配置信息、以及所述等效功率放大器的模型参数,确定等效功率放大器的模型系数,所述等效功率放大器为所述数字通道所连接的功率放大器的等效功率放大器,;所述终端设备向所述网络设备发送所述等效功率放大器的模型系数。
基于上述技术方案,在本申请实施例提供的技术方案中,网络设备向终端设备发送第一配置信息和第二配置信息,终端设备根据第一配置信息可以重构出网络设备的数字通道的参考信号,终端设备根据参考信号和第二配置信息指示的该数字通道的等效功率放大器的模型参数,可以确定并上报该数字通道连接的等效功率放大器的模型系数,网络设备根据该数字通道的等效功率放大器的模型系数可以采用直接学习结构或间接学习结构确定该数字通道对应的数字预失真系数。相较于基于远端设备测量直接反馈DPD系数的方案,本申请实施例中网络设备可以基于远端设备反馈的数字通道的等效功率放大器的模型系数,灵活地确定该数字通道对应的数字预失真系数,终端设备无法获知网络设备确定DPD系数的算法。
结合第三方面,在第三方面的某些实现方式中,所述终端设备根据所述接收信号、所述参考信号的配置信息、以及所述等效功率放大器的模型参数,确定等效功率放大器的模型系数,包括:所述终端设备根据所述参考信号的配置信息,确定所述参考信号;所述终端设备根据所述接收信号、所述参考信号、以及所述等效功率放大器的模型参数,确定所述等效功率放大器的模型系数。
结合第三方面,在第三方面的某些实现方式中,所述参考信号的配置信息中包括以下一项或多项:所述参考信号的类型信息、所述参考信号的序列信息、所述参考信号的时频资源信息、发送所述参考信号的天线端口信息,其中,所述时频资源信息与所述天线端口信息是对应的。参考信号的配置信息可以用于终端设备确定(重构出)数字通道的参考信号。
结合第三方面,在第三方面的某些实现方式中,所述模型参数包括非线性阶数、记忆深度、交叉项长度、或模型类型中的至少一项。
结合第三方面,在第三方面的某些实现方式中,所述第一配置信息中还指示所述参考信号的带宽信息。终端设备根据参考信号的带宽信息,可以充分获取参考信号经功率放大器放大后的信号的带外信息或准确地设置带通滤波器宽度来实现带限非线性模型估计算法,从而提高确定的等效功率放大器的模型系数的精度。
结合第三方面,在第三方面的某些实现方式中,每个所述功率放大器与所述网络设备的一个数字通道连接。该方法可以适用于PCS架构。
第四方面,提供一种信息测量的方法,该方法可以由网络设备侧的芯片或芯片系统执行。该方法包括:网络设备向终端设备发送第一配置信息,所述第一配置信息指示参考信号的配置信息;所述网络设备向所述终端设备发送第二配置信息,所述第二配置信息指示所述网络设备的数字通道连接的等效功率放大器的模型参数;所述网络设备通过所述数字通道对应的至少一个物理天线向所述终端设备发送所述参考信号,所述功率放大器与所述物理天线一一对应连接;所述网络设备接收所述终端设备发送的等效功率放大器的模型系数,所述等效功率放大器为所述数字通道所连接的功率放大器的等效 功率放大器,其中,所述接收信号是所述终端设备接收到的所述参考信号。
第四方面所提供的方法是与第三方面相对应的网络设备侧的方法,其有益效果可以直接参考第三方面。
结合第四方面,在第四方面的某些实现方式中,所述参考信号的配置信息中包括以下一项或多项:所述参考信号的类型信息、所述参考信号的序列信息、所述参考信号的时频资源信息、发送所述参考信号的天线端口信息,其中,所述时频资源信息与所述天线端口信息是对应的。参考信号的配置信息可以用于终端设备确定(重构出)数字通道的参考信号。
结合第四方面,在第四方面的某些实现方式中,所述模型参数包括非线性阶数、记忆深度、交叉项长度、或模型类型中的至少一项。
结合第四方面,在第四方面的某些实现方式中,所述第一配置信息中还指示所述参考信号的带宽信息。终端设备根据参考信号的带宽信息,可以充分获取参考信号经功率放大器放大后的信号的带外信息或准确地设置带通滤波器宽度来实现带限非线性模型估计算法,从而提高终端设备确定的等效功率放大器的模型系数的精度。
结合第四方面,在第四方面的某些实现方式中,所述方法还包括:所述网络设备根据所述等效功率放大器的模型系数、和所述参考信号,确定所述数字通道对应的数字预失真系数。
结合第四方面,在第四方面的某些实现方式中,所述网络设备根据所述等效功率放大器的模型系数、和所述参考信号,确定所述数字通道对应的数字预失真系数,包括:所述网络设备根据所述等效功率放大器的模型系数、所述参考信号、以及所述等效功率放大器的模型参数,确定所述终端设备的所述接收信号;所述网络设备根据所述接收信号和所述参考信号,确定所述数字通道对应的数字预失真系数。
结合第四方面,在第四方面的某些实现方式中,每个所述功率放大器与所述网络设备的一个数字通道连接。该方法可以适用于PCS架构。
第五方面,提供了一种通信装置,该装置可以应用于第一方面所述的终端设备中,该装置包括:收发单元,用于实现第一方面所述方法的接收和发送功能;处理单元,用于实现第一方面所述方法的确定等效功率放大器的模型系数等处理功能。
第六方面,提供了一种通信装置,该装置可以应用于第二方面所述的网络设备中,该装置包括:收发单元,用于实现第二方面所述方法的接收和发送功能;处理单元,用于实现第二方面所述方法的确定数字通道对应的数字预失真系数等处理功能。
第七方面,提供了一种通信装置,该装置可以应用于第三方面所述的终端设备中,该装置包括:收发单元,用于实现第三方面所述方法的接收和发送功能;处理单元,用于实现第三方面所述方法的确定等效功率放大器的模型系数等处理功能。
第八方面,提供了一种通信装置,该装置可以应用于第四方面所述的网络设备中,该装置包括:收发单元,用于实现第四方面所述方法的接收和发送功能;处理单元,用于实现第四方面所述方法的确定数字通道对应的数字预失真系数等处理功能。
第九方面,提供一种通信装置,包括:处理器和接口电路,所述接口电路用于接收来自其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给其它通信装置,所述处理器通过逻辑电路或执行代码指令,以实现如第一方面至第四方面或第一方面至第四方面任意可能的实现方式中的方法。
第十方面,提供了一种通信系统,包括:第一方面所述方法中的终端设备以及与所述终端设备通信的其他通信设备;第二方面所述方法中的网络设备以及与所述网络设备通信的其他通信设备。
第十一方面,提供了一种通信系统,包括:第三方面所述方法中的终端设备以及与所述终端设备通信的其他通信设备;第四方面所述方法中的网络设备以及与所述网络设备通信的其他通信设备。
第十二方面,提供了一种计算机可读存储介质,所述计算机可读介质存储有计算机程序;所述计算机程序在计算机上运行时,使得上述第一方面至第四方面以及第一方面至第四方面中任一种可能实现方式中的方法被执行。
第十三方面,提供一种计算机程序产品,包括计算机程序,当所述计算机程序被执行时使得上述第一方面至第四方面以及第一方面至第四方面中任一种可能实现方式中的通信方法被实现。
上述第五方面至第十三方面提供的方案,用于实现或配合实现上述第一方面至第四方面提供的方 法,因此能够与第一方面至第四方面达到相同或相应的有益效果,此处不再进行赘述。
附图说明
图1是本申请实施例适用的网络架构示意图。
图2是DPD的基本原理图。
图3是基于反馈通道获取DPD的示意图。
图4是PCS的示意图。
图5是FCS的示意图。
图6是一种HBF FCS架构下确定DPD系数的示意图。
图7是远端设备测量反馈DPD系数的示意图。
图8是PCS结构中一个数字通道连接的PA的等效架构示意图。
图9是本申请实施例的一种信息测量的方法的示意性流程交互图。
图10是本申请实施例的HBF FCS架构下获取数字通道对应的DPD系数的示意图。
图11是本申请实施例的HBF FCS架构下获取数字通道对应的DPD系数的示意性流程交互图。
图12是本申请实施例的参考信号的时频结构示意图。
图13是通过不同数字通道周期性发送参考信号的示意图。
图14是本申请实施例的一种信息测量的方法的示意性流程交互图。
图15是本申请实施例的HBF PCS架构下获取数字通道对应的DPD系数的示意图。
图16是本申请实施例的终端设备在不同波束区域进行等效PA的模型系数反馈的示意图。
图17是本申请实施例的HBF PCS架构下获取数字通道连接的DPD系数的示意性流程交互图。
图18是本申请实施例的一种不同数字通道发送相同参考信号的示意图。
图19是本申请实施例的另一种不同数字通道发送不同参考信号的示意图。
图20是输入信号经过DPD模块和PA的示意图。
图21至图25是本申请实施例的通信装置的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例可以应用于各种通信系统,例如无线局域网系统(wireless local area network,WLAN)、窄带物联网系统(narrow band-internet of things,NB-IoT)、全球移动通信系统(global system for mobile communications,GSM)、增强型数据速率GSM演进系统(enhanced data rate for gsm evolution,EDGE)、宽带码分多址系统(wideband code division multiple access,WCDMA)、码分多址2000系统(code division multiple access,CDMA2000)、时分同步码分多址系统(time division-synchronization code division multiple access,TD-SCDMA),长期演进系统(long term evolution,LTE)、卫星通信、侧行链路(sidelink,SL)、第四代(fourth generation,4G)系统、第五代(5th generation,5G)系统、或者将来出现的新的通信系统等。在通信系统中,包括通信设备,通信设备可以利用空口资源进行无线通信。其中,通信设备可以包括网络设备和终端设备,网络设备还可以称为基站设备;基站设备的结构包括:输入装置、输出装置、处理器和存储器;终端设备的结构包括:输入装置、输出装置、处理器和存储器。空口资源可以包括时域资源、频域资源、码资源和空间资源中至少一个。
终端设备可以是能够接收网络设备调度和指示信息的无线终端设备。无线终端设备可以是指向用户提供语音和/或数据连通性的设备,或具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。
本申请实施例中所涉及到的终端设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。终端可以是用户单元(subscriber unit)、用户设备(user equipment,UE)、蜂窝电话(cellular phone)、智能电话(smart phone)、无绳电话、会议启动协议(session initiation protocol,SIP)、无线数据卡、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、无线调制解调器(modulator demodulator,modem)、膝上型电脑(laptop computer)、机器类型通信(machine type communication,MTC)终端以及无人驾驶(self driving)中的无线终端等。其中,用户设备包括车辆用户设备。随着物 联网(internet of things,IOT)技术的兴起,越来越多之前不具备通信功能的设备,例如但不限于,家用电器、交通工具、工具设备、服务设备和服务设施,开始通过配置无线通信单元来获得无线通信功能,从而可以接入无线通信网络,接受远程控制。此类设备因配置有无线通信单元而具备无线通信功能,因此也属于无线通信设备的范畴。此外,终端设备还可以为移动台(mobile station,MS)、移动设备、移动终端、无线终端、手持设备(handset)、客户端、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、车联网中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。例如,车联网中的无线终端可以为车载设备、整车设备、车载模块、车辆等。工业控制中的无线终端可以为摄像头、机器人等。智慧家庭中的无线终端可以为电视、空调、扫地机、音箱、机顶盒等。本申请实施例中,用于实现终端设备的功能的装置可以是终端设备;也可以是能够支持终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在终端设备中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
网络设备可以无线网络中的设备。例如,网络设备是部署在无线接入网中为终端设备提供无线通信功能的设备。例如,网络设备可以为将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点,又可以称为接入网设备。
网络设备包括但不限于:全球移动通信系统(global system for mobile communication,GSM)、码分多址(code division multiple access,CDMA)网络中的基站收发信台(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)中的节点B(Node B,NB);还可以是演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、NB、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G移动通信系统中的网络设备。例如,NR系统中的下一代基站(next generation NodeB,gNB),传输接收点(transmission reception point,TRP),传输点(transmission point,TP);或者,5G移动通信系统中的基站的一个或一组(包括多个天线面板)天线面板;或者,网络设备还可以为构成gNB或传输点的网络节点。例如,基带单元(baseband unit,BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。
比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来。因此在该架构下,高层信令(如RRC层信令)也可以认为是由DU发送的,或者,由DU和AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一个或多个的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
为便于理解本申请实施例,下面首先对本申请中涉及的几个术语做简单介绍。
1、波束
波束:在NR协议中的体现可以是空域滤波器(spatial domain filter),或者称为空间滤波器(spatial filter),或者称为空域参数(spatial domain parameter),空间参数(spatial parameter),空域设置(spatial domain setting),空间设置(spatial setting),或准共址(quasi-colocation,QCL)信息,QCL假设,QCL指示等。波束可以通过传输配置指示状态(transmission configuration indicator state,TCI-state)参数来指示,或者通过空间关系(spatial relation)参数来指示。因此,本申请中,波束可以替换为空域滤波器,空间滤波器,空域参数,空间参数,空域设置,空间设置,QCL信息,QCL假设,QCL指示, TCI-state(包括上行TCI-state,下行TCI-state),空间关系等。上述术语之间也相互等效。波束也可以替换为其他表示波束的术语,本申请在此不作限定。
用于发送信号的波束可以称为发送波束(transmission beam,Tx beam),也可以称为空域发送滤波器(spatial domain transmission filter),空间发送滤波器(spatial transmission filter),空域发送参数(spatial domain transmission parameter)或者空间发送参数(spatial transmission parameter),空域发送设置(spatial domain transmission setting)或者空间发送设置(spatial transmission setting)。下行发送波束可以通过TCI-state来指示。
用于接收信号的波束可以称为接收波束(reception beam,Rx beam),也可以称为空域接收滤波器(spatial domain reception filter),空间接收滤波器(spatial reception filter),空域接收参数(spatial domain reception parameter)或者空间接收参数(spatial reception parameter),空域接收设置(spatial domain reception setting)或者空间接收设置(spatial reception setting)。上行发送波束可以通过空间关系,或者上行TCI-state,或者信道探测参考信号(sounding reference signal,SRS)资源(表示使用该SRS的发送波束)来指示。因此,上行波束还可以替换为SRS资源。
发送波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。
此外,波束可以是宽波束,或者窄波束,或者其他类型的波束。形成波束的技术可以是波束赋形技术或者其他技术。波束赋形技术具体可以为数字波束赋形技术、模拟波束赋形技术、混合数字波束赋形技术、或者混合模拟波束赋形技术等。
波束与参考信号的配置信息对应。例如,在进行波束测量时,网络设备可以通过不同参考信号的质量来确定不同的波束的质量。终端设备测量参考信号,并向网络设备反馈该参考信号的质量,网络设备通过该参考信号的质量可以确定该波束的质量。关于参考信号的配置信息可以参阅后文的相关介绍。当数据传输时,波束信息也是通过其对应的参考信号的配置信息来进行指示的。例如,网络设备通过下行控制信息(downlink control information,DCI)中的TCI字段指示终端设备物理下行共享信道(physical downlink sharing channel,PDSCH)波束的信息。在可能实现的一种方式中,将具有相同或者类似的通信特征的多个波束视为是一个波束。
2、参考信号的配置信息
参考信号的配置信息包括该参考信号的相关参数。例如,该参考信号的发送周期、采用的时频资源等。参考信号可以为上行参考信号,也可以是下行参考信号。上行参考信号包括但不限于探测参考信号(sounding reference signal,SRS),解调参考信号(demodulation reference signal,DMRS)。下行参考信号包括但不限于:信道状态信息参考信号(channel state information reference signal,CSI-RS)、小区专用参考信号(cell specific reference signal,CS-RS)、UE专用参考信号(user equipment specific reference signal,US-RS)、解调参考信号(demodulation reference signal,DMRS)、以及同步信号/物理广播信道块(synchronization system/physical broadcast channel block,SS/PBCH block)。其中,SS/PBCH block可以简称为同步信号块(synchronization signal block,SSB)。
参考信号的配置信息可以通过RRC信令配置。在配置结构上,参考信号的配置信息对应一个数据结构,包括其对应的上行参考信号的相关参数或下行参考信号的相关参数。例如,对于上行参考信号来说,该参考信号的配置信息包括以下至少一项:上行参考信号的类型、承载上行参考信号的资源粒(也可以称为时频资源),上行信道的发送时间和周期、发送上行参考信号所采用的天线端口等。对于下行参考信号来说,该参考信号的配置信息包括以下至少一项:下行参考信号的类型,承载下行参考信号的资源粒(也可以称为时频资源),下行参考信号的发送时间和周期,发送下行参考信号所采用的天线端口等。本申请中,资源可以理解为参考信号的配置信息中配置的用于承载参考信号的时频资源。每个资源都对应相应的天线端口,具体该天线端口通过该参考信号的配置信息体现。
本申请中,资源可以理解为参考信号的配置信息中配置的用于承载参考信号的时频资源。
3、功率放大器的模型
功率放大器的模型包括多项式(polynomial,P)模型、记忆多项式(memory polynomial,MP)模型和广义记忆多项式(generalized memory polynomial,GMP)模型。假设x(n)表示功率放大器的输入信号,r(n)表示功率放大器的输出信号,ck、ckm、akmg、bkmg表示功率放大器的模型系数;K表示 最高非线性阶数,M表示最大记忆深度,G表示最大交叉项长度,n表示时刻。
多项式模型可以通过如下公式(1)表示:
其中,ck为多项式模型的模型系数,k为非线性阶数。
记忆多项式模型可以通过如下公式(2)表示:
其中,ckm为记忆多项式模型的模型系数,k为非线性阶数,m为记忆深度。
广义记忆多项式模型可以通过如下公式(3)表示:
其中,ckm、akmg、bkmg为广义记忆多项式模型的模型系数,k为非线性阶数,m为记忆深度,g为交叉项长度。
以上介绍了本申请实施例所涉及的术语概念,以下将介绍本申请实施例提供信息测量的方法所应用的场景。
图1为本申请实施例适用的网络架构示意图。该网络架构中包括一个或多个网络设备,和一个或多个终端设备。一个网络设备可以向一个或多个终端设备传输数据或控制信令。多个网络设备也可以同时向一个终端设备传输数据或控制信令。
本申请实施例中,网络设备的发射机可以采用模拟波束成型(analog beamforming,ABF)或混合波束成型的系统架构。本申请实施例适用于增强移动宽带(enhanced mobile broadband,eMBB)、海量物联网通信(massive machine-type communications,mMTC)等覆盖能力强、发端能耗低的场景。本申请实施例也不限制网络设备和终端设备之间传输的信号的波形,可应用于循环前缀正交频分复用(cyclic prefix-orthogonal frequency division multiplexing,CP-OFDM)、或离散傅里叶变换扩展正交频分复用(discrete fourier transform-spread-OFDM,DFT-s-OFDM)的通信系统。
以上介绍了本申请实施例提供的信息测量的方法所应用的场景,以下将详细介绍与本申请实施例相关的技术方案。
PA可以将网络设备或终端设备产生的低功率信号放大至可进行远距离传输的功率水平,PA是无线通信设备的核心器件。在进行功率放大时,PA会引入非线性失真,导致输出信号的性能指标发生恶化,例如,PA引起的非线性失真可导致输出信号的EVM与ACLR性能下降。
数字预失真技术是提升PA输出信号线性度的有效手段,其基本原理是在PA对数字通道的原始信号进行功率放大前对原始信号进行数字预处理,以提升PA输出信号线性度。理论上,DPD对应函数应为PA响应函数的反函数。图2为DPD的基本原理图。
在执行数字预失真前,网络设备的发射机需要通过PA前信号和PA后信号获取DPD系数。其中,PA前信号为功率放大器放大前的信号,也可以称为数字通道的原始信号;PA后信号为功率放大器放大后的信号。PA前信号可以直接在数字模块获取,例如在数字模拟转换器(digital to analog converter,DAC)处获取;在一些场景下,例如低频场景,发射机可通过反馈通道采集PA后信号。图3为基于反馈通道获取DPD的示意图。当发射机有多个PA时,每个PA可以具有独立的反馈通道,从而获取到独立的DPD系数。
在毫米波等频段,网络设备(发射设备)会采用更多的物理天线来获取阵列增益,用以对抗高频率信号的更大传播损耗。例如,26~28GHz频段的网络设备包括的阵子数目可达数百或数千,其中,一 个物理天线包括多个阵子。为了避免大规模阵列导致过高的成本与功耗,网络设备可采用HBF架构,在HBF架构中数字通道的个数远少于物理天线的个数,在本申请实施例中数字通道也可以称为数字射频链路。
在NR中,HBF架构通常可分为两种硬件设计结构,一种是部分连接结构,每一条数字通道只与一个子阵列的所有物理天线连接;图4为PCS的示意图,其中,基带模块可以对信号进行调制、信元编码、信道编码以及滤波等。另一种是全连接结构,每一条数字通道与所有子阵列的所有物理天线连接;图5为FCS的示意图。很显然,FCS结构中每条数字通道连接的物理天线更多,毫米波的覆盖能力更好,但是其需要额外的移相器和合路器,会导致硬件复杂度和成本增高。
无论是哪种结构,数字预失真需要在数字通道处实现,如图4或图5中的中频模块。对于HBF PCS架构,一个数字通道可对应于多个PA,无法实现逐个PA的DPD补偿。对于HBF FCS架构,每个PA和所有数字通道相连接,PA的输出是各数字通道信号的非线性组合,而DPD模块的输入需考虑全部数字通道的信号。因此,传统的DPD系数获取与补偿方法无法直接应用于HBF架构,会导致功率回退大以及输出信号的线性度差等问题。
目前,对于HBF FCS架构,可以根据每个数字通道的原始信号和全部物理天线的反馈信号,在每个数字通道上增添DPD模块来纠正PA后信号的非线性失真。图6为一种HBF FCS架构下确定DPD系数的示意图。全连接结构中共有Q个数字通道,P个功率放大器中每个功率放大器与所有数字通道连接,P个物理天线与P个功率放大器一一对应连接,P个物理天线发射信号为Q个终端设备/用户服务,其中,Q是大于1的正整数,P是大于Q的正整数。
假设从第p个物理天线至第q个终端设备之间的信道响应系数为hpq,该参数默认发送端/网络设备已知,具体可通过探测参考信号(sounding reference signal,SRS)或信道状态信息参考信号(channl state information-reference signal,CSI-RS)估计物理天线至终端设备之间的信道响应系数。第p个物理天线的输出信号为Sp(n),第q个数字通道的原始信号为xq(n),使用记忆多项式模型对PA建模,则第q个终端设备的接收信号rq(n)可以通过如下公式(4)表示:
其中,wpq为第p个物理天线至第q个终端设备的模拟波束赋形系数,k为PA模型的非线性阶数,m为PA模型的记忆深度,为相应阶数的PA模型系数,n表示时刻。模拟波束赋形的目的也是将数字通道信号对应波束打向相应的目标终端设备,于是公式(4)可以写成如下公式(5):
该公式(5)的等号右端一共有Q+1项,前Q项是终端设备接收到的主分支信号,且假设各主分支信号互不干扰,第q个终端设备接收到的主分支信号为第Q+1项是辅助分支信号,终端设备仅在特定条件下可以接收到该辅助分支信号,大多数情况下可以忽略该辅助分支信号。
图6中网络设备通过拉线反馈获取每个物理天线的输出信号,然后根据估计的信道响应系数和上述公式(4)或(5)得到Q个终端设备的接收信号r1、r2、…、rQ。公式(5)中的主分支信号均由x1、x2、…、xQ非线性组合生成,根据间接学习思想,数字预失真模型是PA的逆模型,则第q个数字通道的数字预失真模型的输入信号分别是r1、r2、…、rQ,第q个数字通道的数字预失真模型的输出信号是xq,然后可以采用最小二乘(least square,LS)算法估计出DPD系数,每个数字通道分别对应独 立的数字预失真模块,以纠正PA导致的非线性失真。
在HBF FCS架构下,网络设备通过拉线反馈获取的物理天线的输出信号以及估计的信道响应系数,重构出终端设备的接收信号,最后根据数字通道的原始信号和终端设备的接收信号确定数字通道对应的DPD系数。该过程中网络设备估计的信道响应系数的误差可能较大,重构出的终端设备的接收信号与实际的终端设备的接收信号存在偏差,从而导致确定的DPD系数的精度低。此外,当物理天线的数目较大时,拉线反馈的硬件成本比较昂贵,导致确定DPD系数的成本较高。
目前,对于HBF PCS架构,可以基于远端设备测量反馈DPD系数,远端设备反馈的DPD系数可以称为空口(over the air,OTA)DPD系数,该远端设备可以为终端设备。图7为远端设备测量反馈DPD系数的示意图。远端设备接收网络设备的物理天线发射的信号,并根据接收信号获取网络设备的DPD系数。具体地,远端设备通过空口获取接收信号,该接收信号经过滤波、模数转换器(analog digital converter,ADC)的模数转换、下采样、信道估计和均衡等步骤可以得到等效的PA后信号,其中,信道估计包括获取信道响应系数,均衡包括对接收信号去除信道响应系数的影响;然后由等效的PA后信号和已知的PA前信号进行一个数字通道的DPD系数训练和参数获取。其中,网络设备的物理天线发射的信号是通过多个PA放大的,因此,远端设备的接收信号包括了多个PA非线性效应的合成,从而远端设备获取到的DPD系数可以补偿多个PA非线性效应,使得纠正PA导致的非线性失真。
图8为PCS结构中一个数字通道连接的PA的等效架构示意图。一个数字通道连接I个PA,每个PA与物理天线一一对应连接。假设进入数字通道的PA前信号为x(n),模拟波束赋形权重向量为W=[w1,w2,…,wI]T,可选记忆过多项式对PA进行建模,第i路PA的模型系数为则第i路PA的输出信号yi(n)可以通过如下公式(6)表示:
考虑远端设备通过一个物理天线来接收来自网络设备的信号,远端设备的接收信号r(n)可以通过如下公式(7)表示:
其中,hi为网络设备的第i个物理天线至远端设备的接收物理天线之间的信道响应系数,假设权值wi的幅值为1。
从公式(6)和公式(7)可以看出,在远端设备处,网络设备的一个数字通道的连接的多个PA可以等效为一个PA,单个PA的模型系数为一个数字通道连接的等效PA的模型系数为γkm
在HBF PCS架构下,网络设备对单个数字通道所连接的所有PA的非线性效应进行补偿,以保证远端设备的接收信号的信号质量。但是,在实际的NR系统中,HBF架构除了存在部分连接结构,还存在全连接结构,纠正PA非线性失真时需要考虑不同数字通道间的互调干扰的影响。
在HBF FCS架构下,PA的数量可达数百至上千个,每个PA和所有数字通道连接以提高系统的阵列增益,但会带来数字通道间的互调干扰,因此,不能采用部分连接结构下确定逐个数字通道对应的DPD系数的方法。在已有的技术方案中,确定HBF FCS架构下每个数字通道对应的DPD系数,网络设备需要通过拉线反馈获取每个物理天线的输出信号,且需要估计每个物理天线与终端设备之间的信道响应系数,并根据每个物理天线的输出信号和每个物理天线与终端设备之间的信道响应系数,来确定终端设备的接收信号;网络设备再根据终端设备的接收信号确定数字通道对应的数字预失真系数。该技术方案的实现成本较高,且确定的DPD系数的精度低。
为此,本申请实施例提出了一种信息测量的方法,可以通过终端设备辅助获取网络设备的每个数字通道所连接的PA的等效PA的模型系数,网络设备根据终端设备上报的数字通道连接的PA的等效 PA的模型系数,可以确定数字通道对应的DPD系数。该方法能够降低确定DPD系数的成本、提高确定的DPD系数的精度。本申请实施例中的终端设备也可以是能够获取网络设备的数字通道对应的DPD系数的其他设备。本申请实施例中的网络设备可以为基站。
图9为本申请实施例的一种信息测量的方法900的示意性流程交互图,可以用于HBF架构,也可以用于数字波束赋形(digital beam forming,DBF)架构。网络设备包括Q个数字通道,需要Q个终端设备辅助获取Q个数字通道分别对应的DPD系数。其中,Q是大于1的整数。
910,网络设备向Q个终端设备发送第一配置信息,第一配置信息指示Q个参考信号的配置信息。可选的,第一配置信息可以是网络设备通过无线资源控制(radio resource control,RRC)信令发送给终端设备的。
可选的,第一配置信息中包括以下一项或多项:Q个参考信号的类型信息、Q个参考信号的序列信息、Q个参考信号的时频资源信息、发送Q个参考信号的天线端口信息。其中,一个数字通道对应一个天线端口,时频资源信息与天线端口信息是一一对应的;每个终端设备仅需知道自身对应的数字通道的参考信号的天线端口信息即可。
Q个参考信号是不同的参考信号。示例性地,Q个参考信号的类型不同;或者,Q个参考信号的类型相同,但Q个参考信号的序列信息不同。由于全连接架构下数字通道信号间存在互调干扰,各数字通道发送的参考信号应存在差异,以保证终端设备进行PA模型训练时模型矩阵的非奇异性,有助于提升PA模型训练的准确度。
示例性地,参考信号的时频资源信息包括用于承载参考信号的时频资源和频域资源。具体地,时域资源包括发送时间、发送周期、发送时间的时隙偏移量以及占用的时域符号数。用于承载不同参考信号的时频资源对应不同的天线端口,天线端口信息可以通过参考信号的时频资源体现。
920,对应地,Q个终端设备接收网络设备发送的第一配置信息。终端设备根据第一配置信息可以重构出不同数字通道的参考信号,数字通道的参考信号可以称为数字通道的原始信号或功率放大器放大前的信号。
930,网络设备向Q个终端设备发送第二配置信息,第二配置信息指示网络设备的Q个数字通道连接的等效功率放大器的模型参数。网络设备的所有功率放大器的模型参数相同,且每个数字通道连接的等效功率放大器的模型参数与网络设备的所有功率放大器的模型参数相同。
可选的,第二配置信息指示网络设备的Q个数字通道连接的等效功率放大器的模型参数包括非线性阶数、记忆深度、交叉项长度、或模型类型中的至少一项。可选的,等效功率放大器的模型类型可以是预定义的,也可以是网络设备通过第二配置信息指示给终端设备的。
对单个PA常用多项式、记忆多项式和广义记忆多项式模型建模。而对全连接结构,考虑到不同通道信号间存在互调干扰,在HBF FCS架构下PA模型与单个PA的模型相比略有不同,可采用全连接多项式(fully connected-polynomial,FC-P)模型、全连接记忆多项式(fully connected-memory polynomial,FC-MP)或全连接广义记忆多项式(fully connected-generalized memory polynomial,FC-GMP)模型。第二配置信息指示的PA的模型类型可以是FC-P模型、FC-MP模型和FC-GMP模型中的任一种。若第二配置信息指示的模型类型是FC-P模型,则第二配置信息指示的模型参数还包括非线性阶数,M=G=0。若第二配置信息指示的模型类型是FC-MP模型,则第二配置信息指示的模型参数还包括非线性阶数和记忆深度,G=0。若第二配置信息指示的模型类型是FC-GMP模型,则第二配置信息指示的模型参数还包括非线性阶数、记忆深度和交叉项长度。
可选的,网络设备的Q个数字通道与每个功率放大器连接。也可以理解为,每个数字通道与所有子阵列的所有物理天线连接。该实施例可以用于HBF FCS架构。
第二配置信息可以是网络设备通过RRC信令发送给终端设备的。第一配置信息和第二配置信息可以是携带在同一RRC信令中发送给终端设备的,也可以是通过不同RRC信令发送给终端设备的。
940,对应地,Q个终端设备接收网络设备发送的第二配置信息。
950,网络设备通过P个物理天线向Q个终端设备发送Q个参考信号。示例性地,网络设备根据Q个参考信号的时频资源信息,通过P个物理天线向Q个终端设备发送Q个参考信号。功率放大器与物理天线一一对应连接,其中,P是大于或等于Q的整数,物理天线发送的信号是功率放大后的参考信号。Q个参考信号是通过Q个数字通道同时发送的,每个数字通道发送一个参考信号。
960,Q个终端设备接收网络设备发送的Q个参考信号,得到接收信号。示例性地,Q个终端设备 根据Q个参考信号的时频资源信息,接收网络设备发送的Q个参考信号,得到接收信号。
970,Q个终端设备分别根据各自的接收信号、Q个参考信号的配置信息、以及等效功率放大器的模型参数,确定各自对应的数字通道所连接的功率放大器的等效功率放大器的模型系数,其中,终端设备的接收信号是终端设备接收到的Q个参考信号,且终端设备接收到的接收信号是Q个参考信号经数字通道连接的PA放大后的信号。
具体地,终端设备根据Q个参考信号的配置信息,确定Q个参考信号;具体地,终端设备根据Q个参考信号的配置信息,进行信号重构,重构出Q个参考信号。终端设备根据接收信号、重构出的Q个参考信号、以及等效功率放大器的模型参数,确定对应的数字通道所连接的功率放大器的等效功率放大器的模型系数。可选的,终端设备可以先对接收到的接收信号进行处理,例如滤波处理、模拟信号转化为数字信号等,再确定对应的数字通道的等效功率放大器的模型系数。
在毫米波频段频段,参考信号的带宽可达到800MHz,参考信号的带宽占满全部信道带宽,参考信号经过PA后会发生3~5倍的频谱展宽,终端设备为了提高确定的等效功率放大器的模型系数的精度,需充分获取PA后信号的带外信息或准确地设置带通滤波器宽度来实现带限非线性模型估计算法。可选的,网络设备向Q个终端设备发送的第一配置信息还可以指示Q个参考信号的带宽信息;终端设备根据参考信号的带宽信息,可以充分获取PA后信号的带外信息或准确地设置带通滤波器宽度来实现带限非线性模型估计算法,从而提高确定的等效功率放大器的模型系数的精度。
980,终端设备向网络设备发送对应的数字通道所连接的功率放大器的等效功率放大器的模型系数。具体地,Q个终端设备分别向网络设备发送各自对应的数字通道所连接的功率放大器的等效功率放大器的模型系数。
示例性地,终端设备可以通过RRC信令或上行控制信息(uplink control information,UCI)向网络设备发送等效功率放大器的模型系数。
990,网络设备接收Q个终端设备发送的Q个等效功率放大器的模型系数。其中,每个终端设备发送的等效功率放大器的模型系数为该终端设备的接收信号对应的数字通道所连接的功率放大器的等效功率放大器。
可选的,网络设备根据Q个等效功率放大器的模型系数、和Q个参考信号,确定Q个数字通道分别对应的数字预失真系数。
示例性地,网络设备根据Q个等效功率放大器的模型系数、Q个参考信号、以及等效功率放大器的模型参数,确定Q个终端设备的Q个接收信号,其中,接收信号与终端设备是一一对应的。以确定Q个终端设备中的第一终端设备的接收信号为例,网络设备根据第一终端设备发送的等效功率放大器的模型系数、Q个参考信号、以及等效功率放大器的模型参数,确定第一终端设备的第一接收信号。以确定Q个终端设备中的第q终端设备的接收信号为例,网络设备根据第q终端设备发送的等效功率放大器的模型系数、Q个参考信号、以及等效功率放大器的模型参数,确定第q终端设备的第q接收信号。
网络设备根据Q个终端设备的Q个接收信号和Q个参考信号中的第q参考信号,确定Q个数字通道中第q数字通道对应的数字预失真系数,第q数据通道是第q参考信号对应的数据通道。
在本申请实施例提供的技术方案中,网络设备向终端设备发送第一配置信息和第二配置信息,终端设备根据第一配置信息可以重构出网络设备的Q个数字通道的Q个参考信号,终端设备根据Q个参考信号和第二配置信息指示的等效功率放大器的模型参数,可以确定并上报网络设备的Q个数字通道的等效功率放大器的模型系数,网络设备根据Q个数字通道连接的等效功率放大器的模型系数可以确定Q个数字通道对应的数字预失真系数。相较于根据每个物理天线的输出信号和每个物理天线与终端设备之间的信道响应系数确定终端设备的接收信号,再根据终端设备的接收信号确定数字通道对应的数字预失真系数的方案,本申请实施例可以不用通过拉线反馈获取每个物理天线的输出信号,能够降低成本;且本申请实施例不需要估计每个物理天线与终端设备之间的信道响应系数,能够提高确定的DPD系数的精度。
下面通过具体的示例,介绍在HBF FCS架构下,网络设备获取数字通道连接的PA的模型系数的方法。
图10为本申请实施例的HBF FCS架构下获取数字通道对应的DPD系数的示意图。网络设备的Q 个数字通道对应Q个终端设备,P个物理天线对应P个功率放大器,每个终端设备反馈对应数字通道的等效PA的模型系数,物理天线与功率放大器一一对应连接。
以Q个终端设备中的第q个终端设备为例,第q个终端设备接收来自网络设备的P个物理天线发射的信号,第q个终端设备对接收到的接收信号进行信号处理(processing)得到rq,该处理过程包括信道估计、均衡及测量信号合并等过程,其中,信道估计包括获取信道响应系数,均衡包括对接收信号去除信道响应系数的影响,测量信号合并包括对多次获得的接收信号进行合并处理;第q个终端设备进行信号重构(signal reconstruction),重构出Q个数字通道分别发送的参考信号(reference signal,RS)x1、x2、…、xQ;第q个终端设备根据rq和x1、x2、…、xQ进行模型提取(model extraction),确定第q个数字通道所连接的功率放大器的等效功率放大器的模型系数,其中,第q个数字通道为第q个终端设备对应的数字通道;第q个终端设备将确定的等效功率放大器的模型系数发送给网络设备;网络设备根据第q个终端设备发送的等效功率放大器的模型系数,确定第q个数字通道对应的DPD系数。第q个终端设备根据rq和x1、x2、…、xQ进行模型提取,可以理解为,第q个终端设备根据rq和x1、x2、…、xQ进行模型训练,以获取第q个数字通道所连接的功率放大器的等效功率放大器的模型系数。
Q个终端设备中其他终端设备的处理过程与第q个终端设备的处理过程类似,在此不做赘述。
图11为本申请实施例的HBF FCS架构下获取数字通道对应的DPD系数的示意性流程交互图。
1110,网络设备向Q个终端设备发送第一配置信息,第一配置信息用于指示Q个参考信号的配置信息。对应地,Q个终端设备接收网络设备发送的第一配置信息。
示例性地,Q个参考信号的配置信息中包括Q个参考信号的类型信息、Q个参考信号的序列信息、Q个参考信号的时频资源信息、发送Q个参考信号的天线端口信息。其中,一个数字通道对应一个天线端口。第一配置信息可以用于Q个终端设备通过信号重构,确定网络设备的Q个数字通道分别发送的参考信号x1、x2、…、xQ
其中,参考信号的类型包括gold序列类型、Zadoff-Chu(ZC)序列类型等,参考信号的类型可以通过“seqN”表示;参考信号的类型信息可以指示参考信号是单载波还是多载波信号。参考信号的序列信息用于指示生成参考信号的序列参数信息。每个终端设备仅需获知自身对应的数字通道的天线端口信息即可。
Q个参考信号是不同的参考信号。示例性地,Q个参考信号的类型不同;或者,Q个参考信号的类型相同,但Q个参考信号的序列信息不同。由于全连接架构下数字通道信号间存在互调干扰,各数字通道发送的参考信号应存在差异,以保证终端设备进行PA模型训练时模型矩阵的非奇异性,有助于提升PA模型训练的准确度。
图12为本申请实施例的参考信号的时频结构示意图。图12(a)中参考信号在时域上仅占据一个OFDM或DFT-s-OFDM符号,参考信号之前的符号可以用于发送解调参考信号(demodulation reference signal,DMRS)等信号。图12(b)中参考信号在时域上占据多个OFDM或DFT-s-OFDM符号。具体的,由于PA的非线性效应和PA的输入信号的带宽强相关,参考信号在频域上应占据后续数传信号的全部信道带宽;对于参考信号占据的时域长度,可在训练PA模型的性能和训练复杂度间折中考虑。
图13为通过不同数字通道周期性发送参考信号的示意图。通过每个数字通道发送的参考信号可以是周期性的。通过不同数字通道发送不同的参考信号,例如,通过数字通道1发送RS1、数字通道2发送RS2,数字通道Q发送RSQ。
1120,网络设备向Q个终端设备发送第二配置信息,第二配置信息指示网络设备的Q个数字通道连接的等效功率放大器的模型参数。网络设备的所有功率放大器的模型参数相同,且每个数字通道连接的等效功率放大器的模型参数与网络设备的所有功率放大器的模型参数相同。对应地,Q个终端设备接收网络设备发送的第二配置信息。
可选的,第二配置信息指示网络设备的Q个数字通道连接的等效功率放大器的模型参数包括非线性阶数、记忆深度、交叉项长度、或模型类型中的至少一项。
第二配置信息指示的PA的模型类型可以是FC-P模型、FC-MP模型和FC-GMP模型中的任一种。具体地,网络设备可以通过modeltype1、modeltype2或modeltype3指示终端设备使用何种全连接模型对PA进行建模。
以FC-MP模型为例,第q个终端设备接收到的接收信号rq(n)可以通过如下公式(8)表示:
其中,rq(n)是由x1、x2、…、xQ经非线性组合叠加得到的;n表示时刻;K为模型的最高非线性阶数;M为模型的最大记忆深度,m为记忆深度;k为非线性阶数;mq(m,k,…,kQ-1)为相应记忆深度和线性阶数的模型系数;k1、k2、…、kQ为每个数字通道连接的PA的模型的非线性阶数。
若使用FC-P模型,PA无记忆性,时刻n的输出信号rq(n)只和时刻n的输入信号x1(n)、x2(n)、…、xQ(n)相关。若使用FC-GMP模型,公式(8)等号右边的绝对值项与非绝对值项的m的取值不同。
1130,网络设备根据第一配置信息中Q个参考信号的时频资源信息,通过P个物理天线向Q个终端设备发送Q个参考信号。其中,Q个参考信号是通过Q个数字通道同时发送的,每个数字通道发送一个参考信号。
对应地,Q个终端设备根据Q个参考信号的时频资源信息,接收网络设备发送的Q个参考信号,得到Q个接收信号。其中,Q个接收信号与Q个终端设备是一一对应的。
1140,Q个终端设备根据各自的接收信号、Q个参考信号的配置信息、以及等效功率放大器的模型参数,确定各自对应的数字通道连接的PA的等效PA的模型系数。终端设备的接收信号是终端设备接收到的Q个参考信号,且终端设备接收到的接收信号是Q个参考信号经数字通道连接的PA放大后的信号。
具体地,终端设备根据Q个参考信号的配置信息,进行信号重构,重构出PA前各数字通道的参考信号x1、x2、…、xQ。网络设备向终端设备发送的Q个参考信号的配置信息中包括Q个参考信号的类型信息、Q个参考信号的序列信息、和发送Q个参考信号的天线端口信息,终端设备可根据Q个参考信号的配置信息,获知各数字通道的参考信号的信号序列;终端设备通过“信号序列-子载波映射-快速傅里叶逆变换(inverse fast fourier transform,IFFT)-上采样”等步骤重构出各数字通道的参考信号x1、x2、…、xQ(PA前信号),具体地,将原始的信号序列放到对应的频域子载波位置,经IFFT变换为时域信号,然后进行上采样。
终端设备对接收到的接收信号进行处理,例如滤波处理,模拟信号转化为数字信号等。
终端设备进行模型提取,获取该终端设备对应的数字通道连接的PA的等效PA的模型系数。终端设备根据接收到的接收信号、重构出的各数字通道的参考信号x1、x2、…、xQ,以及PA的参数,确定该终端设备对应的数字通道连接的PA的等效PA的模型系数。
以第q个终端设备为例,第q个终端设备重构出的参考信号x1、x2、…、xQ构成的基函数矩阵Xq,第q个终端设备的接收信号rq组成列向量表示为Rq,待估计的等效PA的模型系数表示为mq
mq=[mq(0,0,…,0),mq(0,0,…,1),…,mq(M,K,…,0)]T。其中,K为模型的最高非线性阶数;M为模型的最大记忆深度;mq(0,0,…,0)为对应公式(8)中m=0,k=0,…,kQ-1=0时等效PA的模型系数;mq(0,0,…,1)为对应公式(8)中m=0,k=0,…,kQ-1=1时等效PA的模型系数;mq(M,K,…,0)为对应公式(8)中m=M,k=K,…,kQ-1=0时等效PA的模型系数。
可以采用最小二乘算法确定等效PA的模型系数,具体的计算公式如公式(9):
其中,表示公式值最小时对应的mq,H表示共轭转置。
可选的,终端设备也可以采用最小均方(least mean square,LMS)或递归最小二乘(recursive least squares,RLS)算法确定等效PA的模型系数。本申请实施例对此不做限定。
可选的,网络设备向终端设备发送的第一配置信息还可以指示Q个参考信号的带宽信息;终端设备根据参考信号的带宽信息,可以充分获取PA后信号的带外信息或准确地设置带通滤波器宽度来实现带限非线性模型估计算法,从而提高确定的等效功率放大器的模型系数的精度。
在一种实现方式中,网络设备和终端设备可以约定参考信号的带宽信息,可能的取值为30.72e6×[1,2,4,8,16,32,64]sps,具体地,网络设备可以通过“modelBandwidth”字段指示参考信号的带宽。
1150,终端设备确定完对应的数字通道连接的PA的等效PA的模型系数后,向网络设备发送等效PA的模型系数。具体地,Q个终端设备分别向网络设备发送各自对应的数字通道连接的PA的等效PA的模型系数。例如,第一个终端设备发送的等效PA的模型系数为m1,第二个终端设备发送的等效PA的模型系数为m2,第q个终端设备发送的等效PA的模型系数为mq,第Q个终端设备发送的等效PA的模型系数为mQ
示例性地,终端设备可以通过RRC信令或UCI向网络设备发送等效PA的模型系数。
1160,网络设备接收Q个终端设备发送的Q个等效PA的模型系数。一个终端设备发送一个等效PA的模型系数,该等效PA的模型系数为该终端设备对应的数字通道连接的PA的等效PA的模型系数。
1170,网络设备接收到Q个终端设备反馈的等效PA的模型系数m1,m2…mQ之后,根据Q个等效PA的模型系数和Q个参考信号,确定Q个终端设备的接收信号;再根据Q个终端设备的接收信号,确定Q个数字通道对应的DPD系数。具体的确定过程如下:
(1)网络设备根据Q个等效PA的模型系数,参考信号x1、x2、…、xQ,以及通过第二配置信息指示的等效功率放大器的模型参数,通过如上公式(8)确定r1、r2、…、rQ
(2)网络设备使用LS算法通过如下公式(10)确定各数字通道的对应的DPD系数c1、c2、…、cQ
其中,cq表示第q个数字通道的DPD系数。
例如,网络设备可以根据Q个终端设备发送的Q个接收信号和在第一数字通道发送的参考信号x1,确定第一数字通道对应的DPD系数c1
该实施例中,在HBF FCS架构下通过终端设备辅助获取数字信道连接的PA的等效PA的模型系数,网络设备根据Q个参考信号和等效PA的模型系数可以确定终端设备的接收信号。网络设备无需通过拉线反馈获取每个物理天线的输出信号,且无需估计物理天线与终端设备之间的信道响应系数,能够降低获取DPD系数的的实现成本,且提高获取的DPD系数的精度。
本申请实施例提出了另一种信息测量的方法。该方法可以通过终端设备辅助获取网络设备的每个数字通道所连接的PA的等效PA的模型系数,网络设备根据终端设备上报的数字通道连接的PA的等效PA的模型系数,可以确定数字通道对应的DPD系数。能够提高确定的DPD系数的精度。
图14为本申请实施例的一种信息测量的方法1400的示意性流程交互图。该方法可以用于HBF架构,也用于DBF架构。网络设备包括Q个数字通道,可以通过Q个终端设备辅助获取Q个数字通道分别对应的DPD系数,也可以通过一个Q个终端设备辅助获取Q个数字通道分别对应的DPD系数,还可以通过S个终端设备辅助获取Q个数字通道分别对应的DPD系数,本申请实施例对此不做具体限定。其中,Q是大于1的整数,S是大于1、且小于Q的整数。该实施例中网络设备是分时发送参考信号,以获取的Q个数字通道分别对应的DPD系数;当通过一个数字通道发射信号时,其他数字通道是关闭的。
1410,网络设备向终端设备发送第一配置信息,第一配置信息指示参考信号的配置信息。可选的,第一配置信息可以是网络设备通过无线资源控制(radio resource control,RRC)信令发送给终端设备的。
可选的,第一配置信息中包括以下一项或多项:参考信号的类型信息、参考信号的序列信息、参考信号的时频资源信息、发送参考信号的天线端口信息,其中,时频资源信息与天线端口信息是对应。
示例性地,参考信号的时频资源信息包括用于承载参考信号的时频资源和频域资源。具体地,时 域资源包括发送时间、发送周期、发送时间的时隙偏移量以及占用的时域符号数。用于承载不同参考信号的时频资源对应不同的天线端口,天线端口信息可以通过参考信号的时频资源体现。
若网络设备通过一个终端设备辅助获取Q个数字通道分别对应的DPD系数,则网络设备通过第一配置信息向该终端设备发送Q个参考信号的配置信息,Q个参考信号可以是相同的参考信号、也可以是不同的参考信号。因为在PCS架构下,不同数字通道的PA前信号互不干扰,且每个数字通道连接的功率放大器的等效功率放大器输出的信号为该数字通道的PA前信号的非线性组合,与其他数字通道无关。
若网络设备通过Q个终端设备辅助获取Q个数字通道分别对应的DPD系数,每个数字通道对应一个终端设备,则网络设备通过第一配置信息向该终端设备仅发送一个参考信号的配置信息。
1420,对应地,终端设备接收网络设备发送的第一配置信息。终端设备根据第一配置信息可以重构出对应的数字通道的参考信号,数字通道的参考信号可以称为数字通道的原始信号或功率放大器放大前的信号。
1430,网络设备向终端设备发送第二配置信息,第二配置信息指示网络设备的数字通道连接的等效功率放大器的模型参数。网络设备的不同数字通道连接的等效功率放大器的模型参数可以相同、也可以不同。当网络设备通过一个终端设备辅助获取Q个数字通道分别对应的DPD系数时,网络设备给该终端设备发送的第二配置信息指示Q个数字通道连接的等效功率放大器的模型参数。当网络设备通过Q个终端设备辅助获取Q个数字通道分别对应的DPD系数时,网络设备向Q个终端设备分别发送第二配置信息,每个终端设备接收到的第二配置信息指示该终端设备对应的(测量的)数字通道连接的等效功率放大器的模型参数。
可选的,第二配置信息指示网络设备的数字通道连接的等效功率放大器的模型参数包括非线性阶数、记忆深度、交叉项长度、或模型类型中的至少一项。模型类型可以是P模型、MP模型和GMP模型中的任一种或多种。若某个数字通道的模型类型是P模型,则第二配置信息指示的模型参数还包括非线性阶数,M=G=0。若某个数字通道的模型类型是MP模型,则第二配置信息指示的模型参数还包括非线性阶数和记忆深度,G=0。若某个数字通道的模型类型是GMP模型,则第二配置信息指示的模型参数还包括非线性阶数、记忆深度和交叉项长度。
可选的,每个功率放大器与网络设备的一个数字通道连接。可以理解为,每个数字通道只与一个子阵列的所有物理天线连接。该实施例可以用于HBF PCS架构。
第二配置信息可以是网络设备通过RRC信令发送给终端设备的。第一配置信息和第二配置信息可以是携带在同一RRC信令中发送给终端设备的,也可以是通过不同RRC信令发送给终端设备的。
1440,终端设备接收网络设备发送的第二配置信息。
1450,网络设备通过数字通道对应的至少一个物理天线向终端设备发送参考信号。示例性地,网络设备根据参考信号的时频资源信息,通过数字通道对应的至少一个物理天线向终端设备发送参考信号。功率放大器与物理天线一一对应连接。
1460,终端设备,接收网络设备发送的参考信号,得到接收信号。示例性地,终端设备根据参考信号的时频资源信息,接收网络设备发送的参考信号,得到接收信号。
例如,终端设备根据第一参考信号的时频资源信息,接收网络设备通过第一数字通道发送的第一参考信号,此时终端设备接收到的接收信号为第一参考信号经发送第一参考信号的第一数字通道连接的PA放大后的信号。
1470,终端设备根据接收到的接收信号、参考信号的配置信息、以及数字通道连接的等效功率放大器的模型参数,确定数字通道连接的功率放大器的等效功率放大器的模型系数。例如,终端设备在第一参考信号的时频资源,接收到网络设备通过第一数字通道发送的第一参考信号;终端设备根据在第一参考信号的时频资源接收到的接收信号,第一参考信号的配置信息,以及第一数字通道连接的等效功率放大器的模型参数,确定第一数字通道的等效功率放大器的模型系数。
具体地,终端设备根据参考信号的配置信息,确定参考信号;具体地,终端设备根据参考信号的配置信息,进行信号重构,重构出参考信号。终端设备根据接收信号、重构出的参考信号、以及等效功率放大器的模型参数,确定对应的数字通道所连接的功率放大器的等效功率放大器的模型系数。可选的,终端设备可以先对接收到的接收信号进行处理,例如滤波处理、模拟信号转化为数字信号等,再确定对应的数字通道的等效功率放大器的模型系数。
可选的,网络设备向终端设备发送的第一配置信息中还指示参考信号的带宽信息。终端设备根据参考信号的带宽信息,可以充分获取PA后信号的带外信息或准确地设置带通滤波器宽度来实现带限非线性模型估计算法,从而提高确定的等效功率放大器的模型系数的精度。
1480,终端设备向网络设备发送对应的数字通道所连接的功率放大器的等效功率放大器的模型系数。
示例性地,终端设备可以通过RRC信令或UCI向网络设备发送不同数字通道连接的功率放大器的等效功率放大器的模型系数。
1490,网络设备接收终端设备发送的数字通道连接的功率放大器的等效功率放大器的模型系数。当网络设备通过Q个终端设备辅助获取Q个数字通道分别对应的DPD系数时,Q个终端设备分别向网络设备发送各自对应的数字通道所连接的功率放大器的等效功率放大器的模型系数;网络设备接收Q个终端设备分别发送的等效功率放大器的模型系数,其中,一个终端设备发送一个数字通道连接的等效功率放大器的模型系数。当网络设备通过1个终端设备辅助获取Q个数字通道分别对应的DPD系数时,该终端设备向网络设备发送Q个数字通道所连接的功率放大器的等效功率放大器的模型系数;网络设备接收该终端设备发送的Q个数字通道连接的等效功率放大器的模型系数。
可选的,网络设备根据等效功率放大器的模型系数、和参考信号,确定数字通道对应的数字预失真系数。
示例性地,网络设备根据数字通道连接的等效功率放大器的模型系数、该数字通道的参考信号、以及该数字通道连接的等效功率放大器的模型参数,确定终端设备的接收信号;网络设备根据终端设备的接收信号和该数字通道的参考信号,可以采用直接学习结构或间接学习结构确定该数字通道对应的数字预失真系数。
在本申请实施例提供的技术方案中,网络设备向终端设备发送第一配置信息和第二配置信息,终端设备根据第一配置信息可以重构出网络设备的数字通道的参考信号,终端设备根据参考信号和第二配置信息指示的该数字通道的等效功率放大器的模型参数,可以确定并上报该数字通道连接的等效功率放大器的模型系数,网络设备根据该数字通道的等效功率放大器的模型系数可以采用直接学习结构或间接学习结构确定该数字通道对应的数字预失真系数。相较于基于远端设备测量直接反馈DPD系数的方案,本申请实施例中网络设备可以基于远端设备反馈的数字通道的等效功率放大器的模型系数,灵活地确定该数字通道对应的数字预失真系数,终端设备无法获知网络设备确定DPD系数的算法。
下面通过具体的示例,介绍在HBF FCS架构下,网络设备获取数字通道连接的PA的模型系数的方法。在HBF PCS架构下,同一个数字通道连接的所有PA可以等效成一个等效PA,终端设备可以逐一反馈每个数字通道的等效PA的模型系数,网络设备便可快速得到每个数字通道的DPD系数。
图15为本申请实施例的HBF PCS架构下获取数字通道对应的DPD系数的示意图。不同数字通道可以称为不同极化方向。为避免不同数字通道/极化方向间的相互干扰,当通过一个数字通道发射信号时,其他数字通道是关闭的,分时发送参考信号。网络设备的Q个数字通道可以对应Q个终端设备,网络设备的Q个数字通道也可以对应一个终端设备。当网络设备的Q个数字通道对应Q个终端设备时,每个终端设备反馈各自对应的数字通道连接的PA的等效PA的模型系数;当网络设备的Q个数字通道对应一个终端设备时,该终端设备反馈Q个数字通道连接的PA的等效PA的模型系数。最后再由网络设备实现所有数字通道的DPD系数的计算与运用。
当网络设备的覆盖范围较大时,该网络设备会在不同波束区域可以寻找多个终端设备,多个终端设备完成相应数字通道连接的等效PA的模型系数的反馈。图16为本申请实施例的终端设备在不同波束区域进行等效PA的模型系数反馈的示意图。
图17为本申请实施例的HBF PCS架构下获取数字通道连接的DPD系数的示意性流程交互图。在该示例中以一个终端设备辅助网络设备获取Q个数字通道连接的等效PA的模型系数为例。
1710,网络设备向终端设备发送第一配置信息,第一配置信息指示Q个参考信号的配置信息。Q个参考信号是通过Q个数字通道发送的,每个数字通道发送一个参考信号。对应地,终端设备接收网络设备发送的第一配置信息。
示例性地,Q个参考信号的配置信息中包括Q个参考信号的类型信息、Q个参考信号的序列信息、Q个参考信号的时频资源信息、发送Q个参考信号的天线端口信息。其中,一个数字通道对应一个天 线端口。网络设备向终端设备发送Q个参考信号的配置信息,用于该终端设备通过信号重构,确定网络设备的Q个数字通道分别发送的参考信号x1、x2、…、xQ
参考信号的类型可以是gold序列类型、也可以是ZC序列类型,还可以是其他序列类型。
在HBF PCS架构下,不同数字通道的PA前信号互不干扰,且每个数字通道连接的PA的等效PA输出的信号为该数字通道的PA前信号的非线性组合,与其他数字通道无关。因此,Q个参考信号可以相同的Q个参考信号,也可以是不同的Q个参考信号;可以理解为,Q个参考信号的类型可以相同、序列也可以相同,Q个参考信号的类型可以不相同、序列也不相同。
图18为本申请实施例的一种不同数字通道发送相同参考信号的示意图。RS1代表网络设备发送的参考信号,前两个RS1为数字通道1/极化方向1发送的参考信号,后两个RS1为数字通道2/极化方向2发送的参考信号。网络设备发送的多个对应同一数字通道的参考信号不可交错,也就是说,数字通道1的多个参考信号发送完后,再发送数字通道2的多个参考信号。终端设备顺序接收网络设备发送的RS1,终端设备接收到数字通道1发送的RS1后,确定数字通道1连接的PA的等效PA的模型系数并上报给网络设备;终端设备接收到数字通道2发送的RS1后,确定数字通道2连接的PA的等效PA的模型系数并上报给网络设备。
图19为本申请实施例的另一种不同数字通道发送不同参考信号的示意图。RS1为数字通道1/极化方向1发送的参考信号,RS2为数字通道2/极化方向2发送的参考信号,由于两种参考信号对应的时频资源不同,终端设备可以识别、检测出不同数字通道的PA后信号,因此,网络设备发送的多个对应同一数字通道的参考信号可交错开,不影响终端设备确定的等效PA的模型系数的准确度。终端设备接收到数字通道1发送的RS1后,确定数字通道1连接的PA的等效PA的模型系数;终端设备接收到数字通道2发送的RS2后,确定数字通道2连接的PA的等效PA的模型系数,终端设备可以将数字通道1连接的PA的等效PA的模型系数与数字通道2连接的PA的等效PA的模型系数一起上报给网络设备。
示例性地,参考信号的时频资源信息包括用于承载参考信号的时频资源和频域资源。具体地,时域资源包括发送时间、发送周期、发送时间的时隙偏移量以及占用的时域符号数。用于承载不同参考信号的时频资源对应不同的天线端口,天线端口信息可以通过参考信号的时频资源体现。
1720,网络设备向终端设备发送第二配置信息,第二配置信息指示网络设备的Q个数字通道连接的功率放大器的模型参数。网络设备的不同数字通道连接的等效功率放大器的模型参数可以相同、也可以不同。具体地,网络设备可以指示每个数字通道连接的等效PA的模型参数。对应地,终端设备接收网络设备发送的第二配置信息。
第二配置信息指示的模型参数包括非线性阶数、记忆深度、交叉项长度、或模型类型中的至少一项。第二配置信息指示的PA的模型类型可以是P模型、MP模型和GMP模型中的任一种或多种。
若某个数字通道的模型类型是P模型,则第二配置信息指示的模型参数还包括非线性阶数,M=G=0。若某个数字通道的模型类型是MP模型,则第二配置信息指示的模型参数还包括非线性阶数和记忆深度,G=0。若某个数字通道的模型类型是GMP模型,则第二配置信息指示的模型参数还包括非线性阶数、记忆深度和交叉项长度。
1730,网络设备根据Q个参考信号的时频资源信息,分别向终端设备发送Q个参考信号。例如,网络设备在第一参考信号的时频资源,向终端设备发送第一参考信号;第一参考信号发送完成后,网络设备在第二参考信号的时频资源,向终端设备发送第二参考信号。Q个参考信号包括第一参考信号和第二参考信号。
对应地,终端设备根据Q个参考信号的时频资源信息,分别接收网络设备发送的Q个参考信号。例如,终端设备在第一参考信号的时频资源,接收网络设备通过第一数字通道发送的第一参考信号,此时终端设备接收到的接收信号为第一参考信号经发送第一参考信号的第一数字通道连接的PA放大后的信号。终端设备在第二参考信号的时频资源,接收网络设备通过第二数字通道发送的第二参考信号,此时终端设备接收到的接收信号为第二参考信号经发送第二参考信号的第二数字通道连接的PA放大后的信号。
1740,终端设备根据在不同时频资源接收到的接收信号、Q个参考信号的配置信息、以及Q个数字通道连接的等效功率放大器的模型参数,确定不同数字通道连接的PA的等效PA的模型系数。
例如,终端设备在第一参考信号的时频资源,接收到网络设备通过第一数字通道发送的第一参考信号;终端设备根据在第一参考信号的时频资源接收到的接收信号,第一参考信号的配置信息,以及第一数字通道连接的等效PA的模型参数,确定第一数字通道连接的PA的等效PA的模型系数。具体地,终端设备根据第一参考信号的配置信息,进行信号重构,重构出PA前第一数字通道的参考信号x1;终端设备对在第一参考信号的时频资源接收到的接收信号进行处理,例如滤波处理,模拟信号转化为数字信号等;终端设备进行模型提取,获取第一数字通道连接的PA的等效PA的模型系数。
以MP模型为例,在数字通道发送的参考信号与终端设备接收到的接收信号可以通过如下公式(11)表示:
其中,K为模型的最高非线性阶数;M为模型的最大记忆深度;bkm为等效PA的模型系数,m为记忆深度,k为非线性阶数。
终端设备重构出的数字通道的参考信号可以表示为X,终端设备接收到的接收信号(PA后信号)组成列向量R,待估计的等效PA的模型系数表示为b,采用最小二乘算法确定数字通道连接的PA的等效PA的模型系数,具体的计算公式如公式(12):
其中,argminb表示公式值最小时对应的b,H表示共轭转置。b是由等效PA的模型系数组成的列向量,b=[b1,0,b2,0,…,bK,M-1]T;X是N维PA前信号的基函数矩阵,N表示PA前信号和PA后信号的数据采样点数,X=[φ10(x),φ20(x),…,φK(M-1)(x)];R是N维PA后信号的基函数矩阵,R=[r(n),r(n+1),…,r(n+N-1)]T;基函数
可选的,网络设备向终端设备发送的第一配置信息中还指示Q个参考信号的带宽信息。可以使终端设备充分获取PA后信号的带外信息或准确地设置带通滤波器宽度来实现带限非线性模型估计算法,从而提高确定的等效功率放大器的模型系数的精度。
1750,终端设备确定完Q个数字通道连接的PA的等效PA的模型系数后,向网络设备发送Q个数字通道连接的PA的等效PA的模型系数。
示例性地,终端设备可以通过RRC信令或UCI向网络设备发送等效PA的模型系数。
如表1所示,为一种等效PA的模型系数的上报格式。同一记忆深度的等效PA的模型系数处于同一列,同一非线性阶数的等效PA的模型系数处于同一行。
表1
可选的,终端设备可以仅反馈非线性阶数为奇数的等效PA的模型系数。如表2所示,为非线性阶数为奇数的等效PA的模型系数。通过k取值为奇数的等效PA的模型系数也可以对PA模型进行很好地拟合,有助于减少模型系数反馈带来的开销。
表2
1760,网络设备接收终端设备发送的Q个数字通道连接的PA的等效PA的模型系数。
1770,网络设备接收到Q个数字通道连接的PA的等效PA的模型系数之后,确定Q个数字通道对应的DPD系数。网络设备可以通过直接学习结构或间接学习结构,确定数字通道对应的DPD系数。
直接学习结构是最小化PA的输出信号r(n)与DPD模型的输入信号u(n)之间的误差e(n),PA的输出信号与DPD模型的输入信号是线性相关的,图20为输入信号u(n)经过DPD模块和PA的示意图。r(n)和u(n)之间的关系可以通过如下公式(13)和公式(14)表示:
e(n)=r(n)/G-u(n)     (13)
其中,G表示PA放大增益的倍数。
r=f[Uα]      (14)
其中,U表示u(n)组成的核矩阵,f[]表示已知的PA非线性函数,α表示待估计的DPD系数。
若网络设备通过直接学习结构确定DPD系数,确定的DPD系数可以通过如下公式(15)表示:
J=||e||2=||r/G-u||2     (15)
其中,J取值最小时α的值为确定的DPD系数。
间接学习结构是将PA的前逆模型等效为PA的后逆模型理论,由等效PA的输入信号、输出信号直接计算得到DPD系数,用于预失真模块。具体的确定过程如下:
(1)网络设备根据一个数字通道连接的AP的等效PA的模型系数和该数字通道的参考信号(PA前信号)[x(n),x(n+1),…,x(n+N-1)],以及公式(11)确定终端设备的接收信号(等效PA的后信号)[r(n),r(n+1),…,r(n+N-1)];
(2)根据理论知识,PA的前逆模型等效为PA的后逆模型,更换PA模型的输入信号与输出信号位置,则DPD模型可写成如下公式(16):
(3)网络设备使用LS算法通过如下公式(17)确定各数字通道的对应的DPD系数:
其中,cq表示第q个数字通道的DPD系数。
网络设备根据确定的数字通道的DPD系数对相应数字通道的参考信号进行预失真处理。可选地,若终端设备反馈的是带限模型下的等效PA的模型系数,网络设备同样可由上述步骤得到DPD系数,其中,带限模型下的等效PA的模型系数,可以理解为,终端设备通过带通滤波器对接收信号进行滤波处理后确定的等效PA的模型系数。
以上介绍了本申请实施例提供的信息测量的方法,以下将介绍用于执行上述信息测量的方法的执行主体。
本申请实施例提出了一种通信装置,图21为本申请实施例的一种通信装置2100的结构示意图。该装置2100可以应用于或部署于图9和图11方法实施例中的终端设备中。该通信装置2100包括:
收发单元2110,用于接收网络设备发送的第一配置信息,所述第一配置信息指示Q个参考信号的配置信息,其中,Q是大于1的整数;
所述收发单元2110还用于,接收所述网络设备发送的第二配置信息,所述第二配置信息指示所述网络设备的Q个数字通道连接的等效功率放大器的模型参数;
所述收发单元2110还用于,接收所述网络设备发送的所述Q个参考信号,得到接收信号;
处理单元2120,用于根据所述接收信号、所述Q个参考信号的配置信息、以及所述等效功率放大器的模型参数,确定等效功率放大器的模型系数,所述等效功率放大器为所述接收信号对应的所述数字通道所连接的功率放大器的等效功率放大器;
所述收发单元2110还用于,向所述网络设备发送所述等效功率放大器的模型系数。
可选的,所述处理单元2120具体用于:
根据所述Q个参考信号的配置信息,确定所述Q个参考信号;
根据所述接收信号、所述Q个参考信号、以及所述等效功率放大器的模型参数,确定所述等效功率放大器的模型系数。
可选的,所述Q个参考信号的配置信息中包括以下一项或多项:所述Q个参考信号的类型信息、所述Q个参考信号的序列信息、所述Q个参考信号的时频资源信息、发送所述Q个参考信号的天线端口信息,其中,所述Q个参考信号的序列信息是不同的,所述时频资源信息与所述天线端口信息是一一对应的。
可选的,所述模型参数包括非线性阶数、记忆深度、交叉项长度、或模型类型中的至少一项。
可选的,所述第一配置信息中还指示所述Q个参考信号的带宽信息。
可选的,所述Q个数字通道与每个所述功率放大器连接。
本申请实施例提出了一种通信装置,图22为本申请实施例的一种通信装置2200的结构示意图。该装置2200可以应用于或部署于图9和图11方法实施例中的网络设备中。该通信装置2200包括:
收发单元2210,用于向Q个终端设备发送第一配置信息,所述第一配置信息指示Q个参考信号的配置信息,其中,Q是大于1的整数;
所述收发单元2210还用于,向所述Q个终端设备发送第二配置信息,所述第二配置信息指示所述装置2100的Q个数字通道连接的等效功率放大器的模型参数;
所述收发单元2210还用于,通过P个物理天线向所述Q个终端设备发送所述Q个参考信号,所述功率放大器与所述物理天线一一对应连接,其中,P是大于或等于Q的整数;
所述收发单元2210还用于,接收所述Q个终端设备发送的Q个等效功率放大器的模型系数,所述等效功率放大器为所述终端设备的接收信号对应的所述数字通道所连接的功率放大器的等效功率放大器,其中,所述接收信号是所述终端设备接收到的所述Q个参考信号。
可选的,所述Q个参考信号的配置信息中包括以下一项或多项:所述Q个参考信号的类型信息、所述Q个参考信号的序列信息、所述Q个参考信号的时频资源信息、发送所述Q个参考信号的天线端口信息,其中,所述Q个参考信号的序列信息是不同的,所述时频资源信息与所述天线端口信息是一一对应的。
可选的,所述模型参数包括非线性阶数、记忆深度、交叉项长度、或模型类型中的至少一项。
可选的,所述第一配置信息中还指示所述Q个参考信号的带宽信息。
可选的,所述装置2200还包括:处理单元2220;
所述处理单元2220,用于根据所述Q个等效功率放大器的模型系数、和所述Q个参考信号,确定所述Q个数字通道分别对应的数字预失真系数。
可选的,所述处理单元2220具体用于:
根据所述Q个等效功率放大器的模型系数、所述Q个参考信号、以及所述等效功率放大器的模型参数,确定所述Q个终端设备的Q个所述接收信号,所述接收信号与所述终端设备是一一对应的;
根据Q个所述接收信号和所述Q个参考信号中的第q参考信号,确定所述Q个数字通道中第q数字通道对应的数字预失真系数,所述第q数据通道是所述第q参考信号对应的数据通道,其中,1≤q≤Q。
可选的,所述Q个数字通道与每个所述功率放大器连接。
本申请实施例提出了一种通信装置,图23为本申请实施例的一种通信装置2300的结构示意图。该装置2300可以应用于或部署于图14和图17方法实施例中的终端设备中。该通信装置2300包括:
收发单元2310,用于接收网络设备发送的第一配置信息,所述第一配置信息指示参考信号的配置信息;
所述收发单元2310还用于,接收所述网络设备发送的第二配置信息,所述第二配置信息指示所述网络设备的数字通道连接的等效功率放大器的模型参数;
所述收发单元2310还用于,接收所述网络设备发送的所述参考信号,得到接收信号;
处理单元2320,用于根据所述接收信号、所述参考信号的配置信息、以及所述等效功率放大器的模型参数,确定等效功率放大器的模型系数,所述等效功率放大器为所述数字通道所连接的功率放大器的等效功率放大器;
所述收发单元2310还用于,向所述网络设备发送所述等效功率放大器的模型系数。
可选的,所述处理单元2320具体用于:
根据所述参考信号的配置信息,确定所述参考信号;
根据所述接收信号、所述参考信号、以及所述等效功率放大器的模型参数,确定所述等效功率放大器的模型系数。
可选的,所述参考信号的配置信息中包括以下一项或多项:所述参考信号的类型信息、所述参考信号的序列信息、所述参考信号的时频资源信息、发送所述参考信号的天线端口信息,其中,所述时频资源信息与所述天线端口信息是对应的。
可选的,所述模型参数包括非线性阶数、记忆深度、交叉项长度、或模型类型中的至少一项。
可选的,所述第一配置信息中还指示所述参考信号的带宽信息。
可选的,每个所述功率放大器与所述网络设备的一个数字通道连接。
本申请实施例提出了一种通信装置,图24为本申请实施例的一种通信装置2400的结构示意图。该装置2400可以应用于或部署于图14和图17方法实施例中的网络设备中。该通信装置2400包括:
收发单元2410,用于向终端设备发送第一配置信息,所述第一配置信息指示参考信号的配置信息;
所述收发单元2410还用于,向所述终端设备发送第二配置信息,所述第二配置信息指示所述装置2400的数字通道连接的等效功率放大器的模型参数;
处理单元2420,通过所述数字通道对应的至少一个物理天线向所述终端设备发送所述参考信号,所述功率放大器与所述物理天线一一对应连接;
所述收发单元2410还用于,接收所述终端设备发送的等效功率放大器的模型系数,所述等效功率放大器为所述数字通道所连接的功率放大器的等效功率放大器,其中,所述接收信号是所述终端设备接收到的所述参考信号。
可选的,所述参考信号的配置信息中包括以下一项或多项:所述参考信号的类型信息、所述参考信号的序列信息、所述参考信号的时频资源信息、发送所述参考信号的天线端口信息,其中,所述时频资源信息与所述天线端口信息是对应的。
可选的,所述模型参数包括非线性阶数、记忆深度、交叉项长度、或模型类型中的至少一项。
可选的,所述第一配置信息中还指示所述参考信号的带宽信息。
可选的,所述装置2400还包括:处理单元2420;所述处理单元2420,用于根据所述等效功率放大器的模型系数、和所述参考信号,确定所述数字通道对应的数字预失真系数。
可选的,所述处理单元2420具体用于:
根据所述等效功率放大器的模型系数、所述参考信号、以及所述等效功率放大器的模型参数,确定所述终端设备的所述接收信号;
根据所述接收信号和所述参考信号,确定所述数字通道对应的数字预失真系数。
可选的,每个所述功率放大器与所述装置2400的一个数字通道连接。
本申请实施例提供了一种通信装置2500,图25为本申请实施例的一种通信装置2500的示意性框图。
该通信装置2500包括:处理器2510和接口电路2520。处理器2510和接口电路2520之间相互耦合。可以理解的是,接口电路2520可以为收发器或输入输出接口。可选的,通信装置2500还可以包括存储器2530,用于存储处理器2410执行的指令或存储处理器2510运行指令所需要的输入数据或存储处理器2510运行指令后产生的数据。
当通信装置2500应用于终端设备中时,该通信装置2500可以实现上述方法实施例中终端设备的功能。当通信装置2500应用于网络设备中时,该通信装置2500可以实现上述方法实施例中网络设备的功能。
上述的处理器2510可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器 中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
本申请实施例还提供了一种通信系统,包括本申请实施例提供的信息测量方法中的终端设备以及与所述终端设备通信的其他通信设备、网络设备以及与所述网络设备通信的其他通信设备。
本申请实施例还提供了一种计算机可读存储介质,其上存储有用于实现上述方法实施例中的方法的计算机程序。当该计算机程序在计算机上运行时,使得该计算机可以实现上述方法实施例中的方法。
本申请实施例还提供了一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得上述方法实施例中的方法被执行。
本申请实施例还提供了一种芯片,包括处理器,所述处理器与存储器相连,所述存储器用于存储计算机程序,所述处理器用于执行所述存储器中存储的计算机程序,以使得所述芯片执行上述方法实施例中的方法。
应理解,在本申请实施例中,对于一种技术特征,通过“第一”、“第二”和“第三”等区分该种技术特征中的技术特征,该“第一”、“第二”和“第三”描述的技术特征间无先后顺序或者大小顺序。在本申请实施例中,至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。
另外,本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系;本申请中术语“至少一个”,可以表示“一个”和“两个或两个以上”,例如,A、B和C中,可以表示:单独存在A,单独存在B,单独存在C、同时存在A和B,同时存在A和C,同时存在C和B,同时存在A和B和C,这七种情况。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (30)

  1. 一种信息测量的方法,其特征在于,包括:
    终端设备接收网络设备发送的第一配置信息,所述第一配置信息指示Q个参考信号的配置信息,其中,Q是大于1的整数;
    所述终端设备接收所述网络设备发送的第二配置信息,所述第二配置信息指示所述网络设备的Q个数字通道连接的等效功率放大器的模型参数;
    所述终端设备接收所述网络设备发送的所述Q个参考信号,得到接收信号;
    所述终端设备根据所述接收信号、所述Q个参考信号的配置信息、以及所述等效功率放大器的模型参数,确定等效功率放大器的模型系数,所述等效功率放大器为所述接收信号对应的所述数字通道所连接的功率放大器的等效功率放大器;
    所述终端设备向所述网络设备发送所述等效功率放大器的模型系数。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备根据所述接收信号、所述Q个参考信号的配置信息、以及所述等效功率放大器的模型参数,确定等效功率放大器的模型系数,包括:
    所述终端设备根据所述Q个参考信号的配置信息,确定所述Q个参考信号;
    所述终端设备根据所述接收信号、所述Q个参考信号、以及所述等效功率放大器的模型参数,确定所述等效功率放大器的模型系数。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述Q个参考信号的配置信息中包括以下一项或多项:所述Q个参考信号的类型信息、所述Q个参考信号的序列信息、所述Q个参考信号的时频资源信息、发送所述Q个参考信号的天线端口信息,其中,所述Q个参考信号的序列信息是不同的,所述时频资源信息与所述天线端口信息是一一对应的。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,
    所述模型参数包括非线性阶数、记忆深度、交叉项长度、或模型类型中的至少一项。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,
    所述第一配置信息中还指示所述Q个参考信号的带宽信息。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,
    所述Q个数字通道与每个所述功率放大器连接。
  7. 一种信息测量的方法,其特征在于,包括:
    所述网络设备向Q个终端设备发送第一配置信息,所述第一配置信息指示Q个参考信号的配置信息,其中,Q是大于1的整数;
    所述网络设备向所述Q个终端设备发送第二配置信息,所述第二配置信息指示所述网络设备的Q个数字通道连接的等效功率放大器的模型参数;
    所述网络设备通过P个物理天线向所述Q个终端设备发送所述Q个参考信号,所述功率放大器与所述物理天线一一对应连接,其中,P是大于或等于Q的整数;
    所述网络设备接收所述Q个终端设备发送的Q个等效功率放大器的模型系数,所述等效功率放大器为所述终端设备的接收信号对应的所述数字通道所连接的功率放大器的等效功率放大器,其中,所述接收信号是所述终端设备接收到的所述Q个参考信号。
  8. 根据权利要求7所述的方法,其特征在于,
    所述Q个参考信号的配置信息中包括以下一项或多项:所述Q个参考信号的类型信息、所述Q个参考信号的序列信息、所述Q个参考信号的时频资源信息、发送所述Q个参考信号的天线端口信息,其中,所述Q个参考信号的序列信息是不同的,所述时频资源信息与所述天线端口信息是一一对应的。
  9. 根据权利要求7或8所述的方法,其特征在于,
    所述模型参数包括非线性阶数、记忆深度、交叉项长度、或模型类型中的至少一项。
  10. 根据权利要求7至9中任一项所述的方法,其特征在于,
    所述第一配置信息中还指示所述Q个参考信号的带宽信息。
  11. 根据权利要求7至10中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备根据所述Q个等效功率放大器的模型系数、和所述Q个参考信号,确定所述Q个数字通道分别对应的数字预失真系数。
  12. 根据权利要求11所述的方法,其特征在于,所述网络设备根据所述Q个等效功率放大器的模型系数、和所述Q个参考信号,确定所述Q个数字通道分别对应的数字预失真系数,包括:
    所述网络设备根据所述Q个等效功率放大器的模型系数、所述Q个参考信号、以及所述等效功率放大器的模型参数,确定所述Q个终端设备的Q个所述接收信号,所述接收信号与所述终端设备是一一对应的;
    所述网络设备根据Q个所述接收信号和所述Q个参考信号中的第q参考信号,确定所述Q个数字通道中第q数字通道对应的数字预失真系数,所述第q数据通道是所述第q参考信号对应的数据通道,其中,1≤q≤Q。
  13. 根据权利要求7至12中任一项所述的方法,其特征在于,
    所述Q个数字通道与每个所述功率放大器连接。
  14. 一种信息测量的方法,其特征在于,包括:
    终端设备接收网络设备发送的第一配置信息,所述第一配置信息指示参考信号的配置信息;
    所述终端设备接收所述网络设备发送的第二配置信息,所述第二配置信息指示所述网络设备的数字通道连接的等效功率放大器的模型参数;
    所述终端设备接收所述网络设备发送的所述参考信号,得到接收信号;
    所述终端设备根据所述接收信号、所述参考信号的配置信息、以及所述等效功率放大器的模型参数,确定等效功率放大器的模型系数,所述等效功率放大器为所述数字通道所连接的功率放大器的等效功率放大器;
    所述终端设备向所述网络设备发送所述等效功率放大器的模型系数。
  15. 根据权利要求14所述的方法,其特征在于,所述终端设备根据所述接收信号、所述参考信号的配置信息、以及所述等效功率放大器的模型参数,确定等效功率放大器的模型系数,包括:
    所述终端设备根据所述参考信号的配置信息,确定所述参考信号;
    所述终端设备根据所述接收信号、所述参考信号、以及所述等效功率放大器的模型参数,确定所述等效功率放大器的模型系数。
  16. 根据权利要求14或15所述的方法,其特征在于,
    所述参考信号的配置信息中包括以下一项或多项:所述参考信号的类型信息、所述参考信号的序列信息、所述参考信号的时频资源信息、发送所述参考信号的天线端口信息,其中,所述时频资源信息与所述天线端口信息是对应的。
  17. 根据权利要求14至16中任一项所述的方法,其特征在于,
    所述模型参数包括非线性阶数、记忆深度、交叉项长度、或模型类型中的至少一项。
  18. 根据权利要求14至17中任一项所述的方法,其特征在于,
    所述第一配置信息中还指示所述参考信号的带宽信息。
  19. 根据权利要求14至18中任一项所述的方法,其特征在于,
    每个所述功率放大器与所述网络设备的一个数字通道连接。
  20. 一种信息测量的方法,其特征在于,包括:
    网络设备向终端设备发送第一配置信息,所述第一配置信息指示参考信号的配置信息;
    所述网络设备向所述终端设备发送第二配置信息,所述第二配置信息指示所述网络设备的数字通道连接的等效功率放大器的模型参数;
    所述网络设备通过所述数字通道对应的至少一个物理天线向所述终端设备发送所述参考信号,所述功率放大器与所述物理天线一一对应连接;
    所述网络设备接收所述终端设备发送的等效功率放大器的模型系数,所述等效功率放大器为所述数字通道所连接的功率放大器的等效功率放大器,其中,所述接收信号是所述终端设备接收到的所述参考信号。
  21. 根据权利要求20所述的方法,其特征在于,
    所述参考信号的配置信息中包括以下一项或多项:所述参考信号的类型信息、所述参考信号的序列信息、所述参考信号的时频资源信息、发送所述参考信号的天线端口信息,其中,所述时频资源信息与所述天线端口信息是对应的。
  22. 根据权利要求20或21所述的方法,其特征在于,
    所述模型参数包括非线性阶数、记忆深度、交叉项长度、或模型类型中的至少一项。
  23. 根据权利要求20至22中任一项所述的方法,其特征在于,
    所述第一配置信息中还指示所述参考信号的带宽信息。
  24. 根据权利要求20至23中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备根据所述等效功率放大器的模型系数、和所述参考信号,确定所述数字通道对应的数字预失真系数。
  25. 根据权利要求24所述的方法,其特征在于,所述网络设备根据所述等效功率放大器的模型系数、和所述参考信号,确定所述数字通道对应的数字预失真系数,包括:
    所述网络设备根据所述等效功率放大器的模型系数、所述参考信号、以及所述等效功率放大器的模型参数,确定所述终端设备的所述接收信号;
    所述网络设备根据所述接收信号和所述参考信号,确定所述数字通道对应的数字预失真系数。
  26. 根据权利要求20至25中任一项所述的方法,其特征在于,
    每个所述功率放大器与所述网络设备的一个数字通道连接。
  27. 一种通信装置,其特征在于,包括用于执行如权利要求1至26中任一项所述方法的单元。
  28. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至26中任一项所述的方法。
  29. 一种计算机可读存储介质,其特征在于,包括:
    所述计算机可读介质存储有计算机代码或指令;
    所述计算机代码或指令被处理器运行时,使得权利要求1至26中任一项所述的方法被执行。
  30. 一种计算机程序产品,其特征在于,包括计算机代码或指令,当所述计算机代码或指令被执行时,使得如权利要求1至26中任一项所述的方法被实现。
PCT/CN2023/105346 2022-08-31 2023-06-30 信息测量的方法和装置 WO2024045885A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211053928.7A CN117676629A (zh) 2022-08-31 2022-08-31 信息测量的方法和装置
CN202211053928.7 2022-08-31

Publications (1)

Publication Number Publication Date
WO2024045885A1 true WO2024045885A1 (zh) 2024-03-07

Family

ID=90071968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/105346 WO2024045885A1 (zh) 2022-08-31 2023-06-30 信息测量的方法和装置

Country Status (2)

Country Link
CN (1) CN117676629A (zh)
WO (1) WO2024045885A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101977081A (zh) * 2010-10-26 2011-02-16 三维通信股份有限公司 一种高效率的数字光纤cdma直放站及实现方法
US8666336B1 (en) * 2012-08-16 2014-03-04 Xilinx, Inc. Digital pre-distortion with model-based order estimation
US20150043678A1 (en) * 2013-05-09 2015-02-12 King Fahd University Of Petroleum And Minerals Scalable digital predistortion system
CN111490737A (zh) * 2019-01-28 2020-08-04 中国移动通信有限公司研究院 一种用于功率放大器的非线性补偿方法和设备
CN111988250A (zh) * 2020-07-14 2020-11-24 清华大学 数字预失真结构、模拟全连接混合波束成形系统及发射机
CN113809992A (zh) * 2020-06-12 2021-12-17 诺基亚技术有限公司 用于功率放大器的基于机器学习的数字预失真

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101977081A (zh) * 2010-10-26 2011-02-16 三维通信股份有限公司 一种高效率的数字光纤cdma直放站及实现方法
US8666336B1 (en) * 2012-08-16 2014-03-04 Xilinx, Inc. Digital pre-distortion with model-based order estimation
US20150043678A1 (en) * 2013-05-09 2015-02-12 King Fahd University Of Petroleum And Minerals Scalable digital predistortion system
CN111490737A (zh) * 2019-01-28 2020-08-04 中国移动通信有限公司研究院 一种用于功率放大器的非线性补偿方法和设备
CN113809992A (zh) * 2020-06-12 2021-12-17 诺基亚技术有限公司 用于功率放大器的基于机器学习的数字预失真
CN111988250A (zh) * 2020-07-14 2020-11-24 清华大学 数字预失真结构、模拟全连接混合波束成形系统及发射机

Also Published As

Publication number Publication date
CN117676629A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
KR20190143733A (ko) 무선 통신 시스템에서 데이터를 송수신하는 방법 및 장치
WO2018076373A1 (zh) 一种塔顶设备及无源互调消除方法
CN101771450A (zh) Mimo无线通信系统中天线选择和功率控制的方法和装置
WO2011103767A1 (zh) 一种数字预失真处理方法及设备
US10749254B2 (en) Sideband-based self-calibration of an array antenna system
US11121734B2 (en) Passive intermodulation PIM elimination method, apparatus, and base station
US10790930B2 (en) Techniques for distortion correction at a receiver device
KR20190123442A (ko) 통신 시스템에서 자기 간섭 신호의 제거 방법 및 장치
CN108463952B (zh) 方法、系统和装置
Krone et al. Physical layer design, link budget analysis, and digital baseband implementation for 60 GHz short-range applications
WO2022037187A1 (zh) 一种无源互调故障点的检测方法及装置
WO2019170132A1 (zh) 全双工通信的方法和装置
WO2022037188A1 (zh) 一种无源互调源的定位方法及装置
WO2024045885A1 (zh) 信息测量的方法和装置
WO2006116453A1 (en) Antenna array calibration for wireless communication systems
WO2022206520A1 (zh) 一种信号转发方法和装置
WO2023185974A1 (zh) 通信方法以及相关装置
US20210204267A1 (en) Communication method and related apparatus
WO2023185973A1 (zh) 通信方法以及相关装置
WO2024104213A1 (zh) 通信方法以及相关装置
WO2023082775A1 (zh) 参考信号的传输方法和装置
WO2024061208A1 (zh) 通信方法和装置
WO2023143153A1 (zh) 管理波束的方法和装置
WO2023082171A1 (zh) 一种通信装置、通信方法及相关设备
WO2017088145A1 (zh) 用于进行mu-mimo传输的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23858923

Country of ref document: EP

Kind code of ref document: A1