WO2023125340A1 - 数据处理方法及装置 - Google Patents

数据处理方法及装置 Download PDF

Info

Publication number
WO2023125340A1
WO2023125340A1 PCT/CN2022/141713 CN2022141713W WO2023125340A1 WO 2023125340 A1 WO2023125340 A1 WO 2023125340A1 CN 2022141713 W CN2022141713 W CN 2022141713W WO 2023125340 A1 WO2023125340 A1 WO 2023125340A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
matrix
dimension
precoding
vector
Prior art date
Application number
PCT/CN2022/141713
Other languages
English (en)
French (fr)
Inventor
邱双
赵冠凯
姜玥
杨建强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023125340A1 publication Critical patent/WO2023125340A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • H04L25/0242Channel estimation channel estimation algorithms using matrix methods
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • H04L25/025Channel estimation channel estimation algorithms using least-mean-square [LMS] method
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • H04L25/0258Channel estimation using zero-forcing criteria
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the technical field of communications, and in particular to a data processing method and device.
  • the sounding reference signal (sounding reference signal, SRS) is a very important uplink signal.
  • the base station can allocate SRS resources for the UE, and then estimate the uplink channel quality through the SRS sent by the UE.
  • the base station can also estimate the quality of the downlink channel according to the SRS sent by the UE, and then perform downlink beamforming. Due to the time-varying characteristics of the wireless communication channel, if the sending period of the currently configured periodic SRS or semi-statically sent SRS is longer, the SRS signal-to-noise ratio will be weaker, which will affect the user's channel estimation and throughput. The shorter the cycle, the SRS resources are not enough to be allocated to each user.
  • the uplink and downlink channels are reciprocal. Therefore, the base station can estimate the uplink channel by using the SRS signal, and then obtain the downlink channel information through the channel reciprocity characteristic, and then calculate the downlink weight to allocate the transmit power.
  • the channel amplitude obtained by the base station based on the uplink SRS signal does not match the actual downlink channel amplitude, that is, the reciprocity of the uplink and downlink channels will be destroyed. Therefore, how to effectively correct the downlink channel amplitude deviation caused by SRS signal estimation has become an urgent problem to be solved.
  • Embodiments of the present application provide a data processing method and device.
  • the embodiment of the present application provides a data processing method
  • the execution body of the method is a first communication device
  • the first communication device may be a network device (such as a core network device, a wireless access network device, a WiFi router, or a WiFi access point), may also be a chip, a chip system, or a processor that supports the network device to implement the method, including: obtaining the reference signal fed back by the second communication device.
  • the H C is a matrix of dimension M ⁇ K
  • M represents the number of antennas of the first communication device
  • K represents the number of antennas of the second communication device
  • the H C satisfies:
  • the H 1 is a matrix of dimension K ⁇ M
  • the H 2 is a diagonal matrix of dimension K ⁇ K
  • the H C is precoded to obtain W C
  • the W C is a matrix of dimension M ⁇ K.
  • a second received energy vector a [a 1 , a 2 , . . . a K ] is obtained according to the H C and the W C , where a 1 , a 2 , . ⁇ and H 2 are obtained from a and b, H 1 is obtained from H 2 and H C , and the H 1 is used for channel estimation.
  • the downlink channel amplitude deviation caused by the estimation of the sounding reference signal (SRS) can be effectively corrected to obtain accurate downlink channel estimation, which can solve the problem that the reciprocity of the uplink and downlink channels will be destroyed, and improve the communication reliability.
  • SRS sounding reference signal
  • the second communication device may be a terminal, or may be a chip, a chip system, or a processor that supports the terminal to implement the method.
  • the reference signal is an SRS signal.
  • the SRS signal is sent by the second communication device to the first communication device.
  • the SRS signal may be sent periodically or semi-persistently scheduled, and the specific sending mode is not limited in this application.
  • the element values in b may be fed back to the first communication device through a physical uplink control channel (PUCCH).
  • PUCCH physical uplink control channel
  • the precoding is one of the following: zero-forcing precoding, minimum mean square error precoding, or regular zero-forcing precoding.
  • the W C may be obtained after precoding and normalizing the H C .
  • the precoding may be zero forcing (zero forcing, ZF) precoding or minimum mean square error (minimum mean square error, MMSE) precoding or regular zero forcing precoding.
  • ZF zero forcing
  • MMSE minimum mean square error
  • the relationship between W C and H C can be expressed as: in is the conjugate matrix of HC
  • H C conjugate matrix of H C
  • ⁇ 2 is a small fixed value, for example, it can go to the negative tenth power of 10
  • I is an identity matrix of dimension M ⁇ M.
  • the first communication device sequentially sends K measurement signals to the second communication device, and the received energies of the K measurement signals are related to the K measurement signals of b There is a one-to-one correspondence between elements.
  • the first communication device weights and sequentially sends K signals to the second communication device, and the weighting method of the kth signal may be realized by multiplying the transmitted data vector by a precoding matrix W k , where W k satisfies : W k is a matrix of dimension M ⁇ K, and the kth column of W k and the kth column of W C have the same elements, and the remaining elements are zero.
  • the second communication device may measure the RSRPs of the K signals to calculate sequentially received energies of the K signals, which are element values in the first received energy vector b.
  • obtaining ⁇ according to a and b includes:
  • is satisfied: k is a positive number and 1 ⁇ k ⁇ K.
  • H 1 is the estimated downlink channel matrix.
  • the embodiment of the present application provides a data processing method
  • the execution subject of the method is a first communication device
  • the first communication device may be a network device (such as a core network device, a wireless access network device, a WiFi router, or a WiFi access point), may also be a chip, a chip system, or a processor that supports the network device to implement the method, including: obtaining the reference signal fed back by the second communication device.
  • the H C is a matrix of dimension M ⁇ K
  • M represents the number of antennas of the first communication device
  • K represents the number of antennas of the second communication device
  • the H C satisfies:
  • the H 1 is a matrix of dimension K ⁇ M
  • the H 2 is a diagonal matrix of dimension K ⁇ K
  • ⁇ 1 , ⁇ 2 ,... ⁇ K are all rational numbers.
  • H 3 is obtained according to the H C
  • the H 3 is a matrix of dimension K ⁇ K.
  • b K fed back by the second communication device, where b, b 2 , . . . , b K are all positive numbers.
  • ⁇ and H 2 are obtained from H 3 and b
  • H 1 is obtained from H 2 and H C
  • the H 1 is used for channel estimation.
  • the second communication device may be a terminal, or may be a chip, a chip system, or a processor that supports the terminal to implement the method.
  • the reference signal is an SRS signal.
  • the SRS signal is sent by the second communication device to the first communication device.
  • the SRS signal may be sent periodically or semi-persistently scheduled, and the specific sending mode is not limited in this application.
  • the element values in b may be fed back to the first communication device through a physical uplink control channel (PUCCH).
  • PUCCH physical uplink control channel
  • the diagonal element of H3 is 1, and the element c m, n of the mth row and nth column satisfies the following mathematical relationship:
  • m is a positive integer and 1 ⁇ m ⁇ K
  • n is a positive integer and 1 ⁇ n ⁇ K
  • ⁇ 2 is the mathematical operator of the two-norm of the vector, that is, for the The sum of the squares and the square root of the absolute values of the vector elements.
  • the first communication device weights and sequentially sends K signals to the second communication device, and the weighting method of the kth signal may be realized by multiplying the transmitted data vector by a precoding matrix W C , where W C is A matrix of dimension K ⁇ M, W C can be obtained by performing maximum ratio transmission (MRT) precoding on H C.
  • W C is A matrix of dimension K ⁇ M
  • W C can be obtained by performing maximum ratio transmission (MRT) precoding on H C.
  • MRT maximum ratio transmission
  • the k-th column vector w C,k of W C can be expressed as: Where h C,k is the kth column vector of H C , is the conjugate transformation of h C, k , k is a positive integer and 1 ⁇ k ⁇ K, ⁇ is a mathematical operator of the vector norm, that is, the sum of the absolute values of the vector elements.
  • the second communication device may measure the RSRPs of the K signals to calculate sequentially received energies of the K signals, which are element values in the first received energy vector b.
  • the corresponding k-th element b k in the b vector can be expressed as: in Expressed as the conjugate transformation of w C, k , h 1, p is the p-th column vector of H 1 , p is a positive integer and 1 ⁇ p ⁇ K.
  • Generating K-element linear equations according to the corresponding relationship of matrix elements can obtain the values of ⁇ 1 , ⁇ 2 ,... ⁇ K , that is, obtain H 2 . combined with the above According to the mathematical relationship H 1 is obtained, and H 1 is the estimated downlink channel matrix. In this way, the downlink channel amplitude deviation caused by SRS estimation can be effectively corrected to obtain accurate downlink channel estimation, which can solve the problem that the reciprocity of uplink and downlink channels will be destroyed, and improve communication reliability.
  • the first communication device sequentially sends K measurement signals to the second communication device, and the received energies of the K measurement signals are related to the K measurement signals of b There is a one-to-one correspondence between elements.
  • the embodiments of the present application provide a device that can implement the method in the above-mentioned first aspect or any possible implementation manner of the first aspect.
  • the apparatus comprises corresponding units or components for performing the method described above.
  • the units included in the device may be implemented by software and/or hardware.
  • the apparatus may be, for example, a terminal, a network device, a server or a centralized controller, or a chip, a chip system, or a processor that can support the terminal, network device, server or centralized controller to implement the above method.
  • the embodiments of the present application provide a device that can implement the method in the above-mentioned second aspect or any possible implementation manner of the second aspect.
  • the apparatus comprises corresponding units or components for performing the method described above.
  • the units included in the device may be implemented by software and/or hardware.
  • the apparatus may be, for example, a terminal, a network device, a server or a centralized controller, or a chip, a chip system, or a processor that can support the terminal, network device, server or centralized controller to implement the above method.
  • the embodiment of the present application provides an apparatus, including: a processor, the processor is coupled to a memory, and the memory is used to store a program or an instruction, and when the program or instruction is executed by the processor,
  • the device is made to implement the method described in the above-mentioned first aspect or any possible implementation manner of the first aspect.
  • the embodiment of the present application provides an apparatus, including: a processor, the processor is coupled to a memory, and the memory is used to store a program or an instruction, and when the program or instruction is executed by the processor,
  • the device is made to implement the method described in the above-mentioned second aspect, or any possible implementation manner of the second aspect.
  • the embodiments of the present application provide a computer-readable medium on which computer programs or instructions are stored, and when the computer programs or instructions are executed, the computer executes the above-mentioned first aspect, or any possibility of the first aspect The method described in the implementation of .
  • the embodiments of the present application provide a computer-readable medium on which computer programs or instructions are stored, and when the computer programs or instructions are executed, the computer executes the second aspect above, or any possibility of the second aspect The method described in the implementation of .
  • the embodiment of the present application provides a computer program product, which includes computer program code, and when the computer program code runs on the computer, the computer executes the first aspect above, or any possible implementation of the first aspect method described in the method.
  • the embodiment of the present application provides a computer program product, which includes computer program code, and when the computer program code runs on the computer, the computer executes the second aspect above, or any possible implementation of the second aspect method described in the method.
  • the embodiment of the present application provides a chip, including: a processor, the processor is coupled to a memory, and the memory is used to store programs or instructions, and when the programs or instructions are executed by the processor , so that the chip implements the method described in the above first aspect or any possible implementation manner of the first aspect.
  • the embodiment of the present application provides a chip, including: a processor, the processor is coupled to a memory, and the memory is used to store programs or instructions, and when the programs or instructions are executed by the processor , so that the chip implements the method described in the above second aspect or any possible implementation manner of the second aspect.
  • FIG. 1 is a schematic diagram of a communication system applied in an embodiment provided by the present application
  • Fig. 2 shows a schematic diagram of an example architecture of a communication system
  • FIG. 3 shows a schematic flowchart of a data processing method provided by an embodiment of the present application
  • FIG. 4 shows a schematic flowchart of a data processing method provided by an embodiment of the present application
  • FIG. 5 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a terminal provided in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another communication device provided by an embodiment of the present application.
  • FIG. 1 shows a schematic structural diagram of a communication system.
  • the communication system 100 includes one or more network devices (a network device 110 and a network device 120 are shown in the figure), and one or more terminals communicating with the one or more network devices.
  • Terminal 114 and terminal 118 are shown in FIG. 1 in communication with network device 110
  • terminals 124 and 128 are shown in communication with network device 120 .
  • network devices and terminals may also be referred to as communication devices.
  • the technology described in the embodiments of the present invention can be used in various communication systems, such as the fourth generation (4th generation, 4G) communication system, 4.5G communication system, 5G communication system, a system where multiple communication systems are integrated, or a communication system that will evolve in the future (eg 6G communication system).
  • 4G fourth generation
  • 4G fourth generation
  • 5G communication system a system where multiple communication systems are integrated
  • 6G communication system a communication system that will evolve in the future
  • 6G communication system e.g 6G communication system.
  • long term evolution long term evolution, LTE
  • new radio interface new radio, NR
  • wireless fidelity wireless-fidelity
  • WiFi wireless fidelity
  • wireless ad hoc system wireless ad hoc system
  • device-to-device direct communication system wireless ad hoc system
  • 3GPP 3rd generation partnership project
  • Fig. 2 shows a schematic diagram of a possible architecture example of a communication system, as shown in Fig. unit, DU) base station (such as gNodeB or gNB) with separate architecture.
  • the RAN may be connected to the core network (for example, it may be the core network of LTE, or the core network of 5G, etc.).
  • CU and DU can be understood as the division of the base station from the perspective of logical functions.
  • CU and DU can be physically separated or deployed together. Multiple DUs can share one CU.
  • One DU can also be connected to multiple CUs (not shown in the figure).
  • the CU and the DU may be connected through an interface, such as an F1 interface.
  • CU and DU can be divided according to the protocol layer of the wireless network.
  • PDCP packet data convergence protocol
  • RRC radio resource control
  • RLC radio link control
  • MAC media access control
  • DU physical (physical) layer
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC media access control
  • DU physical (physical) layer
  • some functions of the RLC layer and functions of the protocol layers above the RLC layer are set in the CU, and the remaining functions of the RLC layer and functions of the protocol layers below the RLC layer are set in the DU.
  • the functions of the CU or DU may also be divided according to service types or other system requirements. For example, according to delay, the functions whose processing time needs to meet the delay requirement are set in the DU, and the functions that do not need to meet the delay requirement are set in the CU.
  • the network architecture shown in FIG. 2 can be applied to a 5G communication system, and it can also share one or more components or resources with the LTE system.
  • the CU may also have one or more functions of the core network.
  • One or more CUs can be set centrally or separately.
  • the CU can be set on the network side to facilitate centralized management.
  • the DU can have multiple radio functions, or the radio functions can be set remotely.
  • the function of the CU can be realized by one entity, or the control plane (CP) and the user plane (UP) can be further separated, that is, the control plane (CU-CP) and the user plane (CU-UP) of the CU can have different functions entity, and the CU-CP and CU-UP can be coupled with the DU to jointly complete the functions of the base station.
  • a network device may be any device with a wireless transceiver function. Including but not limited to: evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in LTE, base station (gNodeB or gNB) or transmission receiving point (transmission receiving point/transmission reception point, TRP) in NR, 3GPP Subsequent evolved base stations, access nodes in the WiFi system, wireless relay nodes, wireless backhaul nodes, core network equipment, etc.
  • the base station can be: a macro base station, a micro base station, a pico base station, a small station, a relay station, or a balloon station, etc.
  • Multiple base stations may support the aforementioned networks of the same technology, or may support the aforementioned networks of different technologies.
  • a base station may contain one or more co-sited or non-co-sited TRPs.
  • the network device may also be a server (such as a cloud server), a wireless controller, a CU, and/or a DU in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • Network devices can also be servers, wearable devices, machine communication devices, vehicle-mounted devices, or smart screens, etc.
  • a network device is used as an example for description.
  • the multiple network devices may be base stations of the same type, or base stations of different types.
  • the base station can communicate with the terminal equipment, and can also communicate with the terminal equipment through the relay station.
  • the terminal device can communicate with multiple base stations of different technologies.
  • the terminal device can communicate with the base station supporting the LTE network, and also can communicate with the base station supporting the 5G network. It can also support the communication between the base station of the LTE network and the base station of the 5G network. double connection.
  • the terminal is a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons, etc.) and satellites, etc.).
  • the terminal may be a mobile phone, a tablet computer (Pad), a computer with a wireless transceiver function, a VR terminal device, an AR terminal device, an MR terminal device, a terminal in an industrial control (industrial control), a vehicle-mounted terminal device, Terminals in self driving, terminals in assisted driving, terminals in remote medical, terminals in smart grid, terminals in transportation safety, smart cities ( terminals in a smart city, terminals in a smart home, and so on.
  • the embodiments of the present application do not limit the application scenarios.
  • a terminal may sometimes be referred to as terminal equipment, user equipment (UE), access terminal equipment, vehicle-mounted terminal, industrial control terminal, UE unit, UE station, mobile station, mobile station, remote station, remote terminal equipment, mobile equipment, UE terminal equipment, wireless communication equipment, machine terminal, UE proxy or UE device, etc.
  • Terminals can be fixed or mobile.
  • the terminal may be a wearable device.
  • Wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the terminal can be a terminal in the Internet of Things (IoT) system.
  • IoT Internet of Things
  • MTC machine type communication
  • the terminal of the present application may be a vehicle-mounted module, a vehicle-mounted module, a vehicle-mounted component, a vehicle-mounted chip, or a vehicle-mounted unit built into a vehicle as one or more components or units.
  • an on-board chip or an on-board unit can implement the method of the present application. Therefore, the embodiments of the present application can be applied to the Internet of Vehicles, such as vehicle to everything (V2X), long term evolution of vehicle communication (long term evolution vehicle, LTE-V), vehicle to vehicle (vehicle to vehicle, V2V) wait.
  • V2X vehicle to everything
  • LTE-V long term evolution vehicle
  • V2V vehicle to vehicle
  • V2V vehicle to vehicle
  • a terminal in this application may also be a VR terminal, an AR terminal, or an MR terminal.
  • VR terminals, AR terminals, and MR terminals can all be referred to as XR terminals.
  • an XR terminal can be a head-mounted device (such as a helmet or glasses), an all-in-one machine, a TV, a monitor, a car, a vehicle-mounted device, a tablet or a smart screen, etc.
  • XR terminals can present XR data to users, and users can experience diversified XR services by wearing or using XR terminals.
  • XR terminals can access the network through wireless or wired methods, such as accessing the network through WiFi or 5G systems.
  • the network device In order to establish an efficient communication link between the network device and the terminal, the network device will configure the time-frequency resources of the monitoring signal (such as sounding reference signal or SRS), and then according to the sounding reference signal (SRS) or channel sent by the terminal State information (channel-state information-reference signal, CSI-RS) measurement results to estimate the uplink channel quality of different frequency bands.
  • the network device can use the SRS sent by the terminal to estimate the quality of the downlink channel, or can send CSI to the terminal -RS to estimate the downlink channel quality, so as to assist network equipment to make a better downlink transmission strategy.
  • both LTE and NR already support SRS.
  • network equipment can also use SRS for beam management, including beam training and switching. It can be understood that the embodiment of the present application uses the SRS as an example to introduce the solution, but the solution is also applicable to other reference signals, and no limitation is made here.
  • the channel amplitude obtained by the base station based on the uplink SRS signal does not match the actual downlink channel amplitude, that is, the reciprocity of the uplink and downlink channels will be destroyed.
  • the non-reciprocity of the SRS amplitude there are two main reasons for the non-reciprocity of the SRS amplitude:
  • Terminal hardware design During the diversity transmission process of the terminal, the signal passes through different routings, so additional insertion loss will be added, which will affect the channel amplitude calculated based on the SRS signal;
  • the terminal reduces the electromagnetic wave absorption rate (specific absorption rate, SAR) operation: In order to ensure that the SAR does not exceed the standard, the terminal needs to judge the attitude according to the sensor, and then restrict the upper limit of the terminal transmission power according to the attitude. Since different antennas have different distances from different parts of the human body under different attitudes, the SAR reduction constraints of each antenna are different.
  • SAR specific absorption rate
  • Embodiments in the present application provide a data processing method, in which the terminal feedback diversity routing loss is used, channel state information reference signal (channel state information reference signal, CSI-RS) weighting and reference signal reception of the terminal are used Power (reference signal received power, RSRP) feedback to compensate for SRS amplitude differences.
  • the communication device can effectively correct the downlink channel amplitude deviation caused by SRS signal estimation.
  • SRS Sounding reference signal
  • the UE In the NR system, the UE periodically sends the SRS, and the transmission bandwidth covers the entire physical uplink shared channel (PUSCH) frequency band as much as possible.
  • the gNodeB receives and processes the SRS of all UEs, and measures the signal to interference plus noise ratio (SINR) and timing value of each UE on each subcarrier in the PUSCH frequency band.
  • SINR is used for functions such as frequency selection scheduling, link adaptation, and power control of the uplink channel.
  • eNB in addition to using SRS to estimate the uplink channel quality of different frequency bands, eNB can also use SRS to manage uplink beams, including beam training, beam switching, etc.
  • an induced electromagnetic field will be generated in the human body. Since various organs of the human body are lossy media, the electromagnetic field in the body will generate current, resulting in the absorption and dissipation of electromagnetic energy. SAR is the characterization of this physical process. Its meaning is the electromagnetic power absorbed or consumed by human tissue per unit mass, and the unit is W/kg. According to the international general standard, the electromagnetic radiation energy absorbed by each kilogram of brain tissue shall not exceed 2 watts when timed by 6 minutes. Standards vary from country to country.
  • FIG. 3 is a schematic flowchart of a communication method 300 provided in an embodiment of the present application.
  • the execution body of the method is the first communication device, and the first communication device may be a network device (such as a core network device, a wireless access network device, a WiFi router, or a WiFi access point), or it may be a network device that supports the implementation of the Method chips, chip systems, or processors, etc.
  • the execution bodies of the various parts in Fig. 3 may be the same or different.
  • the method 300 of this embodiment may include part 310, part 320, part 330, part 340, part 350 and part 360:
  • Part 310 Obtain a reference signal fed back by the second communication device.
  • the reference signal is an SRS signal.
  • the SRS signal is sent by the second communication device to the first communication device.
  • the SRS signal may be sent periodically or semi-persistently scheduled, and the specific sending mode is not limited in this application.
  • the second communication device may be a terminal, or may be a chip, a chip system, or a processor that supports the terminal to implement the method.
  • Part 320 Obtain HC based on the reference signal.
  • the H C is a matrix of dimension M ⁇ K, expressed as an uplink channel matrix.
  • M represents the number of antennas of the first communication device
  • K represents the number of antennas of the second communication device.
  • Section 330 precoding the H C to obtain W C .
  • said W C is a matrix of dimension M ⁇ K.
  • the W C may be obtained after precoding and normalizing the H C .
  • the precoding may be zero forcing (zero forcing, ZF) precoding or minimum mean square error (minimum mean square error, MMSE) precoding or regular zero forcing precoding.
  • ZF zero forcing
  • MMSE minimum mean square error
  • the relationship between W C and H C can be expressed as: in is the conjugate matrix of H C , is the conjugate matrix of H C .
  • the relationship between W C and H C can be expressed as: Among them, ⁇ 2 is a small fixed value, for example, it can go to the negative tenth power of 10, and I is an identity matrix of dimension M ⁇ M.
  • Part 340 Obtain the first received energy vector b fed back by the second communication device.
  • b [b 1 , b 2 ,...b K ], where b, b 2 ,..., b K are all positive numbers.
  • the first communication device weights and sequentially sends K signals to the second communication device, and the weighting method of the kth signal can be obtained by multiplying the transmitted data vector by a precoding matrix W k Realization, where W k satisfies: W k is a matrix of dimension M ⁇ K, and the kth column of W k and the kth column of W C have the same elements, and the remaining elements are zero.
  • the second communication device may measure the RSRPs of the K signals to calculate sequentially received energies of the K signals, which are element values in the first received energy vector b.
  • the element value in b may be fed back to the first communication device through a physical uplink control channel (physical uplink control channel, PUCCH).
  • a physical uplink control channel physical uplink control channel, PUCCH
  • Part 350 Obtain a second received energy vector a according to the H C and the W C .
  • a [a 1 , a 2 ,...a K ], where a 1 , a 2 ,..., a K are all positive numbers.
  • the second received energy vector a is the received power of the K signals received by the first communication device from the second communication device.
  • Part 360 Obtain the ⁇ and the H 2 according to the a and the b, obtain the H 1 according to the H 2 and the H C , and use the H 1 for channel estimation.
  • H 1 is the estimated downlink channel matrix.
  • method 300 also includes part 370:
  • Part 370 sending K measurement signals to the second communication device in sequence. There is a one-to-one correspondence between the received energies of the K measurement signals and the K elements of b.
  • the first communication device weights and sequentially sends K signals to the second communication device, and the weighting method of the kth signal may be by multiplying the transmitted data vector by a precoding matrix W k Realization, where W k satisfies: W k is a matrix of dimension M ⁇ K, and the kth column of W k and the kth column of W C have the same elements, and the remaining elements are zero.
  • W k is a matrix of dimension M ⁇ K
  • W k is a matrix of dimension M ⁇ K
  • the kth column of W k and the kth column of W C have the same elements, and the remaining elements are zero.
  • the one-to-one correspondence between the received energies of the K measurement signals and the K elements of b is the same as that described in part 340, and will not be repeated here.
  • execution sequence of part 370 is after 330 and before 340 .
  • Figure 4 shows a schematic diagram of the structure of the device.
  • the execution body of the method is the first communication device, and the first communication device may be a network device (such as a core network device, a wireless access network device, a WiFi router, or a WiFi access point), or it may be a network device that supports the implementation of the Method chips, chip systems, or processors, etc.
  • the method 400 of this embodiment may include part 410, part 420, part 430, part 440 and part 450:
  • Part 410 Obtain a reference signal fed back by the second communication device.
  • the reference signal is an SRS signal.
  • the SRS signal is sent by the second communication device to the first communication device.
  • the SRS signal may be sent periodically or semi-persistently scheduled, and the specific sending mode is not limited in this application.
  • the second communication device may be a terminal, or may be a chip, a chip system, or a processor that supports the terminal to implement the method.
  • Part 420 Obtain HC based on the reference signal.
  • the H C is a matrix of dimension M ⁇ K, expressed as an uplink channel matrix.
  • M represents the number of antennas of the first communication device
  • K represents the number of antennas of the second communication device.
  • Part 430 Obtain H3 from the HC described.
  • H 3 is a correlation matrix of dimension K ⁇ K, representing the correlation between antennas.
  • the diagonal element of H3 is 1, and the element c m, n of the mth row and nth column satisfies the following mathematical relationship:
  • m is a positive integer and 1 ⁇ m ⁇ K
  • n is a positive integer and 1 ⁇ n ⁇ K
  • ⁇ 2 is the mathematical operator of the two-norm of the vector, that is, for the The sum of the squares and the square root of the absolute values of the vector elements.
  • Part 440 Obtain the first received energy vector b fed back by the second communication device.
  • b [b 1 , b 2 ,...b K ], where b, b 2 ,..., b K are all positive numbers.
  • the first communication device weights and sequentially sends K signals to the second communication device, and the weighting method of the kth signal may be by multiplying the transmitted data vector by a precoding matrix W C Realization, wherein W C is a matrix of dimension K ⁇ M, and W C can be obtained by performing maximum ratio transmission (MRT) precoding on H C.
  • W C is a matrix of dimension K ⁇ M
  • W C can be obtained by performing maximum ratio transmission (MRT) precoding on H C.
  • MRT maximum ratio transmission
  • the k-th column vector w C,k of W C can be expressed as: Where h C,k is the kth column vector of H C , is the conjugate transformation of h C, k , k is a positive integer and 1 ⁇ k ⁇ K, ⁇ is a mathematical operator of the vector norm, that is, the sum of the absolute values of the vector elements.
  • the second communication device may measure the RSRPs of the K signals to calculate sequentially received energies of the K signals, which are element values in the first received energy vector b.
  • the corresponding k-th element b k in the b vector can be expressed as: in Expressed as the conjugate transformation of w C, k , h 1, p is the p-th column vector of H 1 , p is a positive integer and 1 ⁇ p ⁇ K.
  • the value of the element in b may be fed back to the first communication device through a physical uplink control channel PUCCH.
  • Part 450 Obtain the ⁇ and the H 2 according to the H 3 and the b, obtain the H 1 according to the H 2 and the H C , and use the H 1 for channel estimation.
  • section 450 in combination with the and in Section 440 The following mathematical relationship can be obtained:
  • Generating K-element linear equations according to the corresponding relationship of matrix elements can obtain the values of ⁇ 1 , ⁇ 2 ,... ⁇ K , that is, obtain H 2 .
  • Combined with Section 410 According to the mathematical relationship H 1 is obtained, and H 1 is the estimated downlink channel matrix.
  • method 400 also includes part 460:
  • Part 460 sending K measurement signals to the second communication device sequentially. There is a one-to-one correspondence between the received energies of the K measurement signals and the K elements of b.
  • the first communication device weights and sequentially sends K signals to the second communication device, and the weighting method of the kth signal can be obtained by multiplying the transmitted data vector by a precoding matrix W C Realization, where W C is a matrix of dimension K ⁇ M, which can be obtained by performing maximum ratio transmission (MRT) precoding on H C .
  • W C is a matrix of dimension K ⁇ M, which can be obtained by performing maximum ratio transmission (MRT) precoding on H C .
  • MRT maximum ratio transmission
  • part 460 is after 430 and before 440 .
  • FIG. 5 shows a schematic diagram of the structure of a device.
  • the apparatus 500 may be a network device, a terminal device, a server or a centralized controller, or may be a chip, a chip system, or a processor that supports the network device, terminal device, server or centralized controller to implement the above method.
  • the device can be used to implement the methods described in the above method embodiments, and for details, refer to the descriptions in the above method embodiments.
  • the apparatus 500 may include one or more processors 501, and the processors 501 may also be referred to as processing units, and may implement certain control functions.
  • the processor 501 may be a general-purpose processor or a special-purpose processor. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processing unit can be used to control communication devices (such as base stations, baseband chips, terminals, terminal chips, DU or CU, etc.), execute software programs, and process Data for Software Programs.
  • the processor 501 can also store instructions and/or data 503, and the instructions and/or data 503 can be executed by the processor, so that the device 500 executes the method described in the above-mentioned embodiment. described method.
  • the processor 501 may include a transceiver unit configured to implement receiving and sending functions.
  • the transceiver unit may be a transceiver circuit, or an interface, or an interface circuit, or a communication interface.
  • the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transfer.
  • the apparatus 500 may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the device 500 may include one or more memories 502, on which instructions 504 may be stored, and the instructions may be executed on the processor, so that the device 500 executes the method described in the above-mentioned embodiment. described method.
  • data may also be stored in the memory.
  • instructions and/or data may also be stored in the processor.
  • the processor and memory can be set separately or integrated together. For example, the corresponding relationships described in the foregoing method embodiments may be stored in a memory, or stored in a processor.
  • the apparatus 500 may further include a transceiver 505 and/or an antenna 506 .
  • the processor 501 may be called a processing unit, and controls the apparatus 500 .
  • the transceiver 505 may be called a transceiver unit, a transceiver, a transceiver circuit, a transceiver device, or a transceiver module, etc., and is used to implement a transceiver function.
  • the apparatus 500 in the embodiment of the present application may be used to execute the method described in FIG. 3 or FIG. 4 in the embodiment of the present application.
  • the processors and transceivers described in this application can be implemented in integrated circuits (integrated circuits, ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed-signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (Bipolar Junction Transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • the devices described in the above embodiments may be network devices or terminal devices, but the scope of the devices described in this application is not limited thereto, and the structure of the devices may not be limited by FIG. 5 .
  • a device may be a stand-alone device or may be part of a larger device.
  • the device may be:
  • a set of one or more ICs may also include a storage unit for storing data and/or instructions;
  • ASIC such as modem (MSM)
  • Fig. 6 provides a schematic structural diagram of a terminal device.
  • the terminal device is applicable to the scenario shown in FIG. 1 .
  • FIG. 6 only shows main components of the terminal device.
  • the terminal device 600 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process communication protocols and communication data, control the entire terminal, execute software programs, and process data of the software programs.
  • Memory is primarily used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the storage unit, analyze and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit processes the baseband signal to obtain a radio frequency signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves. .
  • the radio frequency circuit receives the radio frequency signal through the antenna, the radio frequency signal is further converted into a baseband signal, and the baseband signal is output to the processor, and the processor converts the baseband signal into data and processes the data deal with.
  • FIG. 6 shows only one memory and processor. In an actual terminal device, there may be multiple processors and memories.
  • a storage may also be called a storage medium or a storage device, which is not limited in this embodiment of the present invention.
  • the processor may include a baseband processor and a central processing unit, the baseband processor is mainly used to process communication protocols and communication data, and the central processor is mainly used to control the entire terminal device, execute A software program that processes data for a software program.
  • the processor in FIG. 6 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be independent processors, interconnected through technologies such as a bus.
  • a terminal device may include multiple baseband processors to adapt to different network standards, a terminal device may include multiple central processors to enhance its processing capability, and various components of the terminal device may be connected through various buses.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit may also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data can be built in the processor, or can be stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the antenna and the control circuit with the transceiver function may be regarded as the transceiver unit 611 of the terminal device 600
  • the processor with the processing function may be regarded as the processing unit 612 of the terminal device 600
  • a terminal device 600 includes a transceiver unit 611 and a processing unit 612 .
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver device, and the like.
  • the device in the transceiver unit 611 for realizing the receiving function can be regarded as a receiving unit
  • the device in the transceiver unit 611 for realizing the sending function can be regarded as a sending unit
  • the transceiver unit 611 includes a receiving unit and a sending unit.
  • the receiving unit may also be called a receiver, receiver, receiving circuit, etc.
  • the sending unit may be called a transmitter, transmitter, or transmitting circuit, etc.
  • the above-mentioned receiving unit and sending unit may be one integrated unit, or may be multiple independent units.
  • the above-mentioned receiving unit and sending unit may be located in one geographic location, or may be dispersed in multiple geographic locations.
  • the device may be a terminal, network device, server or centralized controller, and may also be a component (such as an integrated circuit, chip, etc.) of the terminal, network device, server or centralized controller.
  • the device may also be another communication module, which is used to implement the method in the method embodiment of the present application.
  • the apparatus 700 may include: a processing module 702 (or referred to as a processing unit).
  • a processing module 702 or referred to as a processing unit.
  • an interface module 701 or called a transceiver unit or a transceiver module
  • a storage module 703 or called a storage unit
  • the interface module 701 is used to implement communication with other devices.
  • the interface module 701 may be, for example, a transceiver module or an input/output module.
  • one or more modules in Figure 7 may be implemented by one or more processors, or by one or more processors and memory; or by one or more processors and a transceiver; or by one or more processors, memories, and a transceiver, which is not limited in this embodiment of the present application.
  • the processor, memory, and transceiver can be set independently or integrated.
  • the device has the function of implementing the terminal described in the embodiment of this application.
  • the device includes a module or unit or means (means) corresponding to the terminal performing the steps related to the terminal described in the embodiment of this application.
  • the function or unit or The means (means) can be implemented by software, or by hardware, or by executing corresponding software by hardware, or by a combination of software and hardware. For details, further reference may be made to the corresponding descriptions in the aforementioned corresponding method embodiments.
  • the device has the function of implementing the network device described in the embodiment of the present application, for example, the device includes a module or unit or means (means) corresponding to the network device performing the steps involved in the network device described in the embodiment of the present application , the function or unit or means (means) may be implemented by software, or by hardware, or by executing corresponding software by hardware, or by a combination of software and hardware.
  • the function or unit or means (means) may be implemented by software, or by hardware, or by executing corresponding software by hardware, or by a combination of software and hardware.
  • each module in the apparatus 700 in the embodiment of the present application may be used to execute the method described in FIG. 3 in the embodiment of the present application.
  • an apparatus 700 may include: a processing module 702 and an interface module 701 .
  • the interface module 701 is configured to obtain a reference signal fed back by the terminal.
  • the processing module 702 is further configured to perform precoding on H C to obtain W C , where W C is a matrix of dimension M ⁇ K.
  • the interface module 701 is further configured to obtain the first received energy vector b fed back by the terminal.
  • the processing module 702 is further configured to obtain a second received energy vector a according to H C and W C .
  • the processing module 702 is further configured to obtain ⁇ and H 2 according to a and b, obtain H 1 according to H 2 and H C , and the H 1 is used for channel estimation.
  • the interface module 701 is further configured to sequentially send K measurement signals to the terminal, and there is a one-to-one correspondence between the received energy of the K measurement signals and the K elements of b.
  • the precoding is one of the following:
  • is obtained according to a and b, including:
  • is satisfied: k is a positive number and 1 ⁇ k ⁇ K.
  • each module in the apparatus 700 in the embodiment of the present application may be used to execute the method described in FIG. 4 in the embodiment of the present application.
  • an apparatus 700 may include: a processing module 702 and an interface module 701 .
  • the interface module 701 is configured to obtain a reference signal fed back by the terminal.
  • the processing module 702 is further configured to obtain H 3 according to H C , where H 3 is a matrix of dimension K ⁇ K.
  • the interface module 701 is further configured to obtain the first received energy vector b fed back by the terminal.
  • the processing module 702 is further configured to obtain the ⁇ and the H 2 according to the H 3 and the b, obtain the H 1 according to the H 2 and the H C , and use the H 1 for channel estimation.
  • the interface module 701 is further configured to sequentially send K measurement signals to the terminal, and there is a one-to-one correspondence between the received energy of the K measurement signals and the K elements of b.
  • the processor in the embodiment of the present application may be an integrated circuit chip having a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (digital signal processor, DSP), an application specific integrated circuit (application specific integrated circuit, ASIC), a field programmable gate array (field programmable gate array, FPGA) or other possible Program logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • a processing unit for performing these techniques at a communication device may be implemented in one or more general-purpose processors, DSPs, digital signal processing devices, ASICs, Programmable logic device, FPGA, or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination of the foregoing.
  • the general-purpose processor may be a microprocessor, and optionally, the general-purpose processor may also be any conventional processor, controller, microcontroller or state machine.
  • a processor may also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, multiple microprocessors, one or more microprocessors combined with a digital signal processor core, or any other similar configuration to accomplish.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which acts as external cache memory.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM direct memory bus random access memory
  • direct rambus RAM direct rambus RAM
  • the present application also provides a computer-readable medium on which a computer program is stored, and when the computer program is executed by a computer, the functions of any one of the above method embodiments are realized.
  • the present application also provides a computer program product, which implements the functions of any one of the above method embodiments when executed by a computer.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)
  • references to "an embodiment” throughout the specification mean that a particular feature, structure, or characteristic related to the embodiment is included in at least one embodiment of the present application.
  • the various embodiments throughout the specification are not necessarily referring to the same embodiment.
  • the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • system and “network” are often used herein interchangeably.
  • the term “and/or” in this article is just an association relationship describing associated objects, which means that there can be three relationships, for example, A and/or B can mean: A exists alone, A and B exist simultaneously, and they exist alone The three cases of B, where A can be singular or plural, and B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an "or” relationship.
  • the term "at least one of” or “at least one of” means all or any combination of the listed items, for example, "at least one of A, B and C", It can mean: A alone exists, B exists alone, C exists alone, A and B exist at the same time, B and C exist at the same time, and A, B and C exist at the same time, where A can be singular or plural, and B can be Singular or plural, C can be singular or plural.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B according to A does not mean determining B only according to A, and B may also be determined according to A and/or other information.
  • the corresponding relationships shown in the tables in this application can be configured or predefined.
  • the values of the information in each table are just examples, and may be configured as other values, which are not limited in this application.
  • the corresponding relationship shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, for example, splitting, merging, and so on.
  • the names of the parameters shown in the titles of the above tables may also adopt other names understandable by the communication device, and the values or representations of the parameters may also be other values or representations understandable by the communication device.
  • other data structures can also be used, for example, arrays, queues, containers, stacks, linear tables, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables can be used wait.
  • Predefined in this application can be understood as defining, predefining, storing, prestoring, prenegotiating, preconfiguring, curing, or prefiring.
  • the systems, devices and methods described in this application can also be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本申请提供一种数据处理方法及装置。该方法包括:获得第二通信装置反馈的参考信号。基于该参考信号获得HC,该HC为维度M×K的矩阵,其中M表示第一通信装置的天线数目,K表示第二通信装置的天线数目,HC满足:HC=H1 TH2,其中H1为维度K×M的矩阵,H2为维度K×K的对角矩阵,对角向量为α=[α1,α2,…αK]。对HC作预编码获得WC,WC为维度M×K的矩阵。获得第二通信装置反馈的第一接收能量向量b=[b 1,b 2,…b K]。根据HC以及WC获得第二接收能量向量a=[a1,a2,…aK]。根据a以及b获得α和H2,根据H2与HC获得H1,其中H1用于信道估计。

Description

数据处理方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种数据处理方法及装置。
背景技术
随着无线通信技术的发展,各种新的业务层出不穷,不同业务对资源的需求也不同,这就要求在未来无线网络中各种业务要能够更加高效地使用有限的信道资源。在长期演进系统(long term evolution,LTE)和5G新无线技术(new radio,NR)系统中,探测参考信号(sounding reference signal,SRS)是很重要的上行信号。用户设备(user equipment,UE)与基站建立连接后,基站可以为UE分配SRS资源,然后通过UE发送的SRS来估计上行信道质量。特别的,在时分双工系统中,基于上下行信道的互易性,基站还可根据UE发送的SRS估计下行信道质量,进而进行下行波束赋形。由于无线通信信道的时变特征,若当前配置的周期发送的SRS或半静态发送的SRS的发送周期越长,则SRS信噪比会越弱,进而影响用户的信道估计及吞吐率,但是发送周期越短,则SRS资源不足以给每个用户都分配使用。
在时分双工(time division duplex,TDD)系统中,上下行信道具有互易性。因此,基站利用SRS信号可以估计上行信道,再通过信道互易特性获得下行信道信息,进而计算下行权值进行发射功率分配。然而,在实际TDD通信系统中,基站基于上行SRS信号获得的信道幅值与实际的下行信道幅值不符,即上下行信道互易性会被破坏。因此,如何能够有效修正基于SRS信号估计导致的下行信道幅值偏差,成为亟需解决的问题。
发明内容
本申请实施例提供一种数据处理方法及装置。
第一方面,本申请实施例提供一种数据处理方法,该方法的执行主体是第一通信装置,该第一通信装置可以是网络设备(例如核心网设备、无线接入网设备、WiFi路由器、或WiFi接入点),也可以是支持网络设备实现该方法的芯片、芯片系统、或处理器等,包括:获得第二通信装置反馈的参考信号。基于该参考信号获得H C,该H C为维度M×K的矩阵,M表示所述第一通信装置的天线数目,K表示所述第二通信装置的天线数目,该H C满足:
Figure PCTCN2022141713-appb-000001
其中该H 1为维度K×M的矩阵,
Figure PCTCN2022141713-appb-000002
为H 1的转置矩阵,该H 2为维度K×K的对角矩阵,对角向量为α=[α 12,…α K],α 12,…α K均为有理数。对该H C作预编码获得W C,该W C为维度M×K的矩阵。获得第二通信装置反馈的第一接收能量向量b=[b 1,b 2,…b K],其中b、b 2、…、b K均为正数。根据该H C以及该W C获得第二接收能量向量a=[a 1,a 2,…a K],其中a 1、a 2、…、a K均为正数。根据a以及b获得α和H 2,根据H 2与H C获得H 1,该H 1用于信道估计。通过该方法,能有效修正基于探测参考信号(sounding reference signal,SRS)估计导致的下行信道幅值偏差从而获得准确的下行信道估计,能够解决上下行信道互易性会被破坏的问题,提高了通信可靠性。
可以理解,该第二通信装置可以是终端,也可以是支持终端实现该方法的芯片、芯片系统、或处理器等。
可选地,该参考信号是SRS信号。SRS信号由第二通信装置发送给第一通信装置。可选地,该SRS信号可以是周期发送,也可以是半静态调度发送,具体发送模式本申请不做限制。
可选地,b里的元素值可以通过物理上行控制信道(physical uplink control channel,PUCCH)的方式反馈给第一通信装置。
结合第一方面,在第一方面的某些实施方式中,该预编码为下列中的一种:迫零预编码,最小均方差预编码,或正则迫零预编码预编码。
可选地,该W C可以是对所述H C作预编码并归一化后获得。
可选地,预编码可以是迫零(zero forcing,ZF)预编码或最小均方差(minimum mean square error,MMSE)预编码或正则迫零预编码。例如,当预编码是ZF时,W C与H C的关系可以表示为:
Figure PCTCN2022141713-appb-000003
其中
Figure PCTCN2022141713-appb-000004
为H C的共轭矩阵,
Figure PCTCN2022141713-appb-000005
为H C的共轭矩阵。又例如,当预编码是MMSE时,W C与H C的关系可以表示为:
Figure PCTCN2022141713-appb-000006
其中σ 2为一个很小的固定值,例如可以去10的负十次方,I为维度M×M的单位矩阵。
可选地,a里的元素值可以通过公示表示为:
Figure PCTCN2022141713-appb-000007
Figure PCTCN2022141713-appb-000008
结合第一方面,在第一方面的某些实施方式中,第一通信装置向所述第二通信装置依次发送K个测量信号,所述K个测量信号的接收能量与所述b的K个元素存在一一对应关系。
可选地,第一通信装置向第二通信装置加权依次发送K个信号,第k个信号的加权的方式可以是通过对发送数据向量乘以一个预编码矩阵W k来实现,其中W k满足:W k为维度M×K的矩阵,且W k的第k列和W C的第k列元素相同,余下元素则取零。对应的,第二通信装置在接收侧可以通过测量该K个信号的RSRP来计算K个信号的依次接收能量,即为第一接收能量向量b里的元素值。具体来说,b向量里对应的第k个元素b k可以表示为:b k=‖H 1w C,k2,其中w C,k表示为W C的第k列向量,k为正整数且1≤k≤K,‖‖ 2为向量二范数的数学运算符,即对该向量元素绝对值的平方和再开方。第二通信装置通过测量该K个信号的RSRP得到K个信号的依次接收能量后,会向第一通信装置反馈K个信号接收能量的值,即b里的元素值。
结合第一方面,在第一方面的某些实施方式中,根据a以及b获得α,包括:
根据a以及b获得α满足:
Figure PCTCN2022141713-appb-000009
k为正数且1≤k≤K。
可选地,结合上述b k=‖H 1w C,k2以及上述a k=α k 2‖H 1w C,k2可以得到a k=α k 2·b k,即
Figure PCTCN2022141713-appb-000010
1≤k≤K。结合上述
Figure PCTCN2022141713-appb-000011
则可以根据数学关系
Figure PCTCN2022141713-appb-000012
获得H 1,H 1即为估测的下行信道矩阵。通过该方式,能有效修正基于SRS估计导致的下行信道幅值偏差从而获得准确的下行信道估计,能够解决上下行信道互易性会被破坏的问题,提高了通信可靠性。
第二方面,本申请实施例提供一种数据处理方法,该方法的执行主体是第一通信装置,该第一通信装置可以是网络设备(例如核心网设备、无线接入网设备、WiFi路由器、或WiFi接入点),也可以是支持网络设备实现该方法的芯片、芯片系统、或处理器等,包括:获得第二通信装置反馈的参考信号。基于该参考信号获得H C,该H C为维度M×K的矩阵,M表示所述第一通信装置的天线数目,K表示所述第二通信装置的天线数目,该H C满足:
Figure PCTCN2022141713-appb-000013
其中该H 1为维度K×M的矩阵,
Figure PCTCN2022141713-appb-000014
为H 1的转置矩阵,该H 2为维度K×K的对角矩 阵,对角向量为α=[α 12,…α K],α 12,…α K均为有理数。根据所述H C获得H 3,所述H 3为维度K×K的矩阵。获得第二通信装置反馈的第一接收能量向量b=[b 1,b 2,…b K],其中b、b 2、…、b K均为正数。根据H 3以及b获得α和H 2,根据H 2与H C获得H 1,该H 1用于信道估计。通过该方法,能有效修正基于SRS估计导致的下行信道幅值偏差从而获得准确的下行信道估计,能够解决上下行信道互易性会被破坏的问题,提高了通信可靠性。
可以理解,该第二通信装置可以是终端,也可以是支持终端实现该方法的芯片、芯片系统、或处理器等。
可选地,该参考信号是SRS信号。SRS信号由第二通信装置发送给第一通信装置。可选地,该SRS信号可以是周期发送,也可以是半静态调度发送,具体发送模式本申请不做限制。
可选地,b里的元素值可以通过物理上行控制信道(physical uplink control channel,PUCCH)的方式反馈给第一通信装置。
在第二方面获得H 3的一种实施方式中,H 3的对角元素为1,第m行第n列的元素c m,n满足下列数学关系:
Figure PCTCN2022141713-appb-000015
其中m为正整数且1≤m≤K,n为正整数且1≤n≤K,
Figure PCTCN2022141713-appb-000016
为矩阵H C中的第m列向量h C,m的自共轭变换,h C,n为H C中的第n列向量,‖‖ 2为向量二范数的数学运算符,即对该向量元素绝对值的平方和再开方。
可选地,第一通信装置向第二通信装置加权依次发送K个信号,第k个信号的加权的方式可以是通过对发送数据向量乘以一个预编码矩阵W C来实现,其中W C为维度K×M的矩阵,W C可以通过对H C作最大比发送(maximum ratio transmission,MRT)预编码获得。例如:W C的第k列向量w C,k可以表示为:
Figure PCTCN2022141713-appb-000017
其中h C,k为H C的第k列向量,
Figure PCTCN2022141713-appb-000018
为h C,k的共轭变换,k为正整数且1≤k≤K,‖‖为向量一范数的数学运算符,即向量元素绝对值之和。对应的,第二通信装置在接收侧可以通过测量该K个信号的RSRP来计算K个信号的依次接收能量,即为第一接收能量向量b里的元素值。具体来说,b向量里对应的第k个元素b k可以表示为:
Figure PCTCN2022141713-appb-000019
Figure PCTCN2022141713-appb-000020
其中
Figure PCTCN2022141713-appb-000021
表示为w C,k的共轭变换,h 1,p为H 1的第p列向量,p为正整数且1≤p≤K。第二通信装置通过测量该K个信号的RSRP得到K个信号的依次接收能量后,会向第一通信装置反馈K个信号接收能量的值,即b里的元素值。
在第二方面根据H 3以及b获得α和H 1的一种实施方式中,结合上述
Figure PCTCN2022141713-appb-000022
Figure PCTCN2022141713-appb-000023
可以得到下列数学关系:
Figure PCTCN2022141713-appb-000024
根据矩阵元素对应关系生成K元一次方程可以求得α 12,…α K的值,即获得H 2。结合上述
Figure PCTCN2022141713-appb-000025
则可以根据数学关系
Figure PCTCN2022141713-appb-000026
获得H 1,H 1即为估测的下行信道矩阵。通过该方式,能有效修正基于SRS估计导致的下行信道幅值偏差从而获得准确的下行信道估计,能够解决上下行信道互易性会被破坏的问题,提高了通信可靠性。
结合第二方面,在第二方面的某些实施方式中,第一通信装置向所述第二通信装置依次发送K个测量信号,所述K个测量信号的接收能量与所述b的K个元素存在一一对应关系。
第三方面,本申请实施例提供一种装置,可以实现上述第一方面、或第一方面任一种可能的实施方式中的方法。该装置包括用于执行上述方法的相应的单元或部件。该装置包括的单元可以通过软件和/或硬件方式实现。该装置例如可以为终端、网络设备、服务器或集中控制器,或者为可支持终端、网络设备、服务器或集中控制器实现上述方法的芯片、芯片系统、或处理器等。
第四方面,本申请实施例提供一种装置,可以实现上述第二方面、或第二方面任一种可能的实施方式中的方法。该装置包括用于执行上述方法的相应的单元或部件。该装置包括的单元可以通过软件和/或硬件方式实现。该装置例如可以为终端、网络设备、服务器或集中控制器,或者为可支持终端、网络设备、服务器或集中控制器实现上述方法的芯片、芯片系统、或处理器等。
第五方面,本申请实施例提供一种装置,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得该装置实现上述第一方面、或第一方面任一种可能的实施方式中所述的方法。
第六方面,本申请实施例提供一种装置,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得该装置实现上述第二方面、或第二方面任一种可能的实施方式中所述的方法。
第七方面,本申请实施例提供一种计算机可读介质,其上存储有计算机程序或指令,所述计算机程序或指令被执行时使得计算机执行上述第一方面、或第一方面任一种可能的实施方式中所述的方法。
第八方面,本申请实施例提供一种计算机可读介质,其上存储有计算机程序或指令,所述计算机程序或指令被执行时使得计算机执行上述第二方面、或第二方面任一种可能的实施方式中所述的方法。
第九方面,本申请实施例提供一种计算机程序产品,其包括计算机程序代码,所述计算机程序代码在计算机上运行时,使得计算机执行上述第一方面、或第一方面任一种可能的实施方式中所述的方法。
第十方面,本申请实施例提供一种计算机程序产品,其包括计算机程序代码,所述计算机程序代码在计算机上运行时,使得计算机执行上述第二方面、或第二方面任一种可能的实施方式中所述的方法。
第十一方面,本申请实施例提供一种芯片,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得该芯片实现上述第一方面、或第一方面任一种可能的实施方式中所述的方法。
第十二方面,本申请实施例提供一种芯片,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得该芯片实现上述第二方面、或第二方面任一种可能的实施方式中所述的方法。
附图说明
图1为本申请提供的实施例应用的通信系统的示意图;
图2示出了通信系统的一种架构举例示意图;
图3示出了本申请一种实施例提供的数据处理方法的流程示意图;
图4示出了本申请一种实施例提供的数据处理方法的流程示意图;
图5为本申请实施例提供的一种通信装置的结构示意图;
图6为本申请实施例提供的一种终端的结构示意图;
图7为本申请实施例提供的另一种通信装置的示意图。
具体实施方式
本申请实施例提供的方法及装置可以应用于通信系统中。如图1示出了一种通信系统结构示意图。该通信系统100中包括一个或多个网络设备(图中示出网络设备110和网络设备120),以及与该一个或多个网络设备通信的一个或多个终端。图1中所示终端114和终端118与网络设备110通信,所示终端124和终端128与网络设备120通信。可以理解的是,网络设备和终端也可以被称为通信设备。
本发明实施例描述的技术可用于各种通信系统,例如第四代(4th generation,4G)通信系统,4.5G通信系统,5G通信系统,多种通信系统融合的系统,或者未来演进的通信系统(例如6G通信系统)。例如长期演进(long term evolution,LTE)系统,新空口(new radio,NR)系统,无线保真(wireless-fidelity,WiFi)系统,无线自组织系统,设备与设备直连通信系统,以及第三代合作伙伴计划(3rd generation partnership project,3GPP)相关的通信系统等,以及其他此类通信系统。
图2示出了通信系统的一种可能的架构举例示意图,如图2所示无线接入网(radio access network,RAN)中的网络设备包括集中单元(centralized unit,CU)和分布单元(distributed unit,DU)分离架构的基站(如gNodeB或gNB)。RAN可以与核心网相连(例如可以是LTE的核心网,也可以是5G的核心网等)。CU和DU可以理解为是对基站从逻辑功能角度的划分。CU和DU在物理上可以是分离的也可以部署在一起。多个DU可以共用一个CU。一个DU也可以连接多个CU(图中未示出)。CU和DU之间可以通过接口相连,例如可以是F1接口。CU和DU可以根据无线网络的协议层划分。例如分组数据汇聚层协议(packet data convergence protocol,PDCP)层及无线资源控制(radio resource control,RRC)层的功能设置在CU,而无线链路控制(radio link control,RLC),媒体接入控制(media access control,MAC)层,物理(physical)层等的功能设置在DU。可以理解对CU和DU处理功能按照这种协议层的划分仅仅是一种举例,也可以按照其他的方式进行划分。例如可以将CU或者DU划分为具有更多协议层的功能。例如,CU或DU还可以划分为具有协议层的部分处理功能。在一设计中,将RLC层的部分功能和RLC层以上的协议层的功能设置在CU,将RLC层的剩余功能和RLC层以下的协议层的功能设置在DU。在另一种设计中,还可以按照业务类型或者其他系统需求对CU或者DU的功能进行划分。例如按时延划分,将处理时间需要满足时延要求的功能设置在DU,不需要满足该时延要求的功能设置在CU。图2所示的网络架构可以应用于5G通信系统,其也可以与LTE系统共享一个或多个部件或资源。在另一种设计中,CU也可以具有核心网的一个或多个功能。一个或者多个CU可以集中设置,也分离设置。例如CU可以设置在网络侧方便集中管理。DU可以具有多个射频功能,也可以将射频功能拉远设置。
CU的功能可以由一个实体来实现,也可以进一步将控制面(CP)和用户面(UP)分离,即CU的控制面(CU-CP)和用户面(CU-UP)可以由不同的功能实体来实现,所述CU-CP和CU-UP可以与DU相耦合,共同完成基站的功能。
可以理解的是,本申请中提供的实施例也适用于CU和DU不分离的架构。
本申请中,网络设备可以是任意一种具有无线收发功能的设备。包括但不限于:LTE中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),NR中的基站(gNodeB或gNB)或收发点(transmission receiving point/transmission reception point,TRP),3GPP后续演进的基站,WiFi系统中的接入节点,无线中继节点,无线回传节点,核心网设备等。基站可以是:宏基站,微基站,微微基站,小站,中继站,或,气球站等。多个基站可以支持上述提及的同一种技术的网络,也可以支持上述提及的不同技术的网络。基站可以包含一个或多个共站或非共站的TRP。网络设备还可以是服务器(例如云服务器)、云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、CU,和/或,DU。网络设备还可以是服务器,可穿戴设备,机器通信设备、车载设备、或智慧屏幕等。以下以网络设备为基站为例进行说明。所述多个网络设备可以为同一类型的基站,也可以为不同类型的基站。基站可以与终端设备进行通信,也可以通过中继站与终端设备进行通信。终端设备可以与不同技术的多个基站进行通信,例如,终端设备可以与支持LTE网络的基站通信,也可以与支持5G网络的基站通信,还可以支持与LTE网络的基站以及5G网络的基站的双连接。
终端是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、VR终端设备、AR终端设备、MR终端设备、工业控制(industrial control)中的终端、车载终端设备、无人驾驶(self driving)中的终端、辅助驾驶中的终端、远程医疗(remote medical)中的终端、智能电网(smart grid)中的终端、运输安全(transportation safety)中的终端、智慧城市(smart city)中的终端、智慧家庭(smart home)中的终端等等。本申请的实施例对应用场景不做限定。终端有时也可以称为终端设备、用户设备(user equipment,UE)、接入终端设备、车载终端、工业控制终端、UE单元、UE站、移动站、移动台、远方站、远程终端设备、移动设备、UE终端设备、无线通信设备、机器终端、UE代理或UE装置等。终端可以是固定的,也可以是移动的。
作为示例而非限定,在本申请中,终端可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请中,终端可以是物联网(internet of things,IoT)系统中的终端,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。本申请中的终端可以是机器类型通信(machine type communication,MTC)中的终端。本申请的终端可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元,车辆通过内置的所述车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请的方法。因此,本申请实施例可以应用于车联网,例如车辆外联(vehicle to everything,V2X)、车间通信长期演进技术(long term evolution vehicle,LTE-V)、车到车(vehicle to vehicle,V2V)等。
在本申请中的终端还可以是VR终端、AR终端、或MR终端。VR终端、AR终端、和 MR终端都可称为XR终端。XR终端例如可以是头戴式设备(例如头盔或眼镜),也可以是一体机,还可以是电视、显示器、汽车、车载设备、平板或智慧屏等。XR终端能够将XR数据呈现给用户,用户通过佩戴或使用XR终端能够体验多样化的XR业务。XR终端可以通过无线或有线的方式接入网络,例如通过WiFi或5G系统接入网络。
为使网络设备和终端之间建立高效的通信链路,网络设备会配置监听信号(例如探测参考信号或)的时频资源,然后根据终端发送的探测参考信号(sounding reference signal,SRS)或信道状态信息(channel-state information-reference signal,CSI-RS)的测量结果来估计不同频段的上行信道质量。在假设上行/下行信道互易的前提下(例如时分双工time division duplex,TDD模式),利用信道对称性,网络设备可以利用终端发送的SRS来估计下行信道质量,或者可以通过向终端发送CSI-RS来估计下行信道质量,从而辅助网络设备做出更好的下行传输策略。其中,LTE和NR均已支持SRS,网络设备除了可以利用SRS评估上行/下行质量以外,还可以利用SRS进行波束管理,包括波束训练和切换等等。可以理解,本申请实施例以SRS为例进行方案介绍,但本方案同样适用于其它参考信号,在此不做限制。
然而,在实际TDD通信系统中,基站基于上行SRS信号获得的信道幅值与实际的下行信道幅值不符,即上下行信道互易性会被破坏。具体而言,造成SRS幅值不互易的原因主要有以下两点:
1)终端硬件设计:终端在分集发送过程中信号通过不同的走线,因此会增加额外的插损,导致基于SRS信号计算的信道幅值受到影响;
2)终端降电磁波吸收率(specific absorption rate,SAR)操作:为保证SAR不超标,终端需要根据传感器判断姿态,再根据姿态进行终端发送功率的上限约束。由于不同天线在不同姿态下与人体不同部位的距离不同,因此各天线的降SAR约束值不同。
信道互易性破坏会导致下行权值计算变化,但变化被约束在原始信道的子空间内,即子空间不变;因此,互易性破坏对单用户峰值速率影响较小,但对多用户峰值速率影响较大。另外,降SAR处理对单用户中远点性能影响很大,主要原因是SRS信号减弱,信道估计受损导致。因此,通信设备对SRS信道幅值进行补偿以恢复互易性至关重要。
本申请中的实施例提供了一种数据处理方法,在该方法中利用终端反馈分集走线损失、利用信道状态信息参考信号(channel state information reference signal,CSI-RS)加权和终端的参考信号接收功率(reference signal received power,RSRP)反馈来补偿SRS幅值差异系。通过该方法通信设备能够有效修正基于SRS信号估计导致的下行信道幅值偏差。
下面以具体实施例结合附图对本申请的技术方案进行详细说明。下述实施例和实施方式可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。应理解,本申请中所解释的功能可以通过独立硬件电路、使用结合处理器/微处理器或通用计算机而运行的软件、使用专用集成电路,和/或使用一个或多个数字信号处理器来实现。当本申请描述为方法时,其还可以在计算机处理器和被耦合到处理器的存储器中实现。应理解,本申请中黑体大写字母表示矩阵,黑体小写字母表示向量。
为易于理解本申请中的实施例,首先对本申请所涉及的一些概念或者术语作简要说明。
1、探测参考信号(sounding reference signal,SRS)
在NR系统中,UE周期性发送SRS,发送的带宽尽可能覆盖整个物理上行共享信道(physical uplink shared channel,PUSCH)频带。gNodeB接收所有UE的SRS并进行处理,测量出各UE在PUSCH频带内各子载波上的信号干扰噪声比(signal to interference plus noise ratio,SINR)及定时值。SINR用于上行信道的频选调度、链路自适应、功率控制等功能。其 中,eNB除了使用SRS来估计不同频段的上行信道质量外,还可以使用SRS进行上行波束的管理,包括波束训练,波束切换等。
2、降电磁波吸收率(specific absorption rate,SAR)
在外电磁场的作用下,人体内将产生感应电磁场,由于人体各种器官均为有耗介质,因此体内电磁场将会产生电流,导致吸收和耗散电磁能量,SAR为这一物理过程的表征。其意义为单位质量的人体组织所吸收或消耗的电磁功率,单位为W/kg。在国际普遍标准中,以6分钟计时,每公斤脑组织吸收的电磁辐射能量不得超过2瓦。不同国家标准有所差异。
图3为本申请实施例提供的一种通信方法300的流程示意图。该方法的执行主体是第一通信装置,该第一通信装置可以是网络设备(例如核心网设备、无线接入网设备、WiFi路由器、或WiFi接入点),也可以是支持网络设备实现该方法的芯片、芯片系统、或处理器等。图3中各部分的执行主体可以相同也可以不同。如图3所示,该实施例的方法300可包括310部分、320部分、330部分、340部分、350部分和360部分:
310部分:获得第二通信装置反馈的参考信号。
在310部分的一种实施方式中,该参考信号是SRS信号。SRS信号由第二通信装置发送给第一通信装置。可选地,该SRS信号可以是周期发送,也可以是半静态调度发送,具体发送模式本申请不做限制。
可以理解,该第二通信装置可以是终端,也可以是支持终端实现该方法的芯片、芯片系统、或处理器等。
320部分:基于所述参考信号获得H C
可选地,该H C为维度M×K的矩阵,表示为上行信道矩阵。其中M表示第一通信装置的天线数目,K表示第二通信装置的天线数目。并且该H C满足:
Figure PCTCN2022141713-appb-000027
其中H 1为维度K×M的矩阵并表示表示下行信道矩阵,
Figure PCTCN2022141713-appb-000028
为H 1的转置矩阵;H 2为维度K×K的对角矩阵,表示上下行信道的幅值功率偏置,其中对角向量为α=[α 12,…α K],α 12,…α K均为有理数。
330部分:对所述H C作预编码获得W C
在330部分的一种实施方式中,所述W C为维度M×K的矩阵。该W C可以是对所述H C作预编码并归一化后获得。可选地,预编码可以是迫零(zero forcing,ZF)预编码或最小均方差(minimum mean square error,MMSE)预编码或正则迫零预编码。例如,当预编码是ZF时,W C与H C的关系可以表示为:
Figure PCTCN2022141713-appb-000029
其中
Figure PCTCN2022141713-appb-000030
为H C的共轭矩阵,
Figure PCTCN2022141713-appb-000031
为H C的共轭矩阵。又例如,当预编码是MMSE时,W C与H C的关系可以表示为:
Figure PCTCN2022141713-appb-000032
其中σ 2为一个很小的固定值,例如可以去10的负十次方,I为维度M×M的单位矩阵。
340部分:获得所述第二通信装置反馈的第一接收能量向量b。其中b=[b 1,b 2,…b K],其中b、b 2、…、b K均为正数。
在340部分的一种实施方式中,第一通信装置向第二通信装置加权依次发送K个信号,第k个信号的加权的方式可以是通过对发送数据向量乘以一个预编码矩阵W k来实现,其中W k满足:W k为维度M×K的矩阵,且W k的第k列和W C的第k列元素相同,余下元素则取零。对应的,第二通信装置在接收侧可以通过测量该K个信号的RSRP来计算K个信号的依次接收能量,即为第一接收能量向量b里的元素值。具体来说,b向量里对应的第k个元素b k可以表示为:b k=‖H 1w C,k2,其中w C,k表示为W C的第k列向量,k为正整数且1≤k≤K,‖‖ 2为向量二范数的数学运算符,即对该向量元素绝对值的平方和再开方。第二通信装置通过测量该K个信号的RSRP得到K个信号的依次接收能量后,会向第一通信装置反馈K个信号接收 能量的值,即b里的元素值。
在340部分中,可选地,b里的元素值可以通过物理上行控制信道(physical uplink control channel,PUCCH)的方式反馈给第一通信装置。
350部分:根据所述H C以及所述W C获得第二接收能量向量a。a=[a 1,a 2,…a K],其中a 1、a 2、…、a K均为正数。其中第二接收能量向量a为第一通信装置接收的来自第二通信装置的K个信号的接收功率。
可选地,a里的元素值可以通过公示表示为:
Figure PCTCN2022141713-appb-000033
Figure PCTCN2022141713-appb-000034
360部分:根据所述a以及所述b获得所述α和所述H 2,根据所述H 2与所述H C获得所述H 1,所述H 1用于信道估计。
在360部分的一种实施方式中,结合340部分中的b k=‖H 1w C,k2以及350部分中的a k=α k 2‖H 1w C,k2可以得到a k=α k 2·b k,即
Figure PCTCN2022141713-appb-000035
1≤k≤K。结合310部分的
Figure PCTCN2022141713-appb-000036
则可以根据数学关系
Figure PCTCN2022141713-appb-000037
获得H 1,H 1即为估测的下行信道矩阵。
可选地,方法300还包括370部分:
370部分:向所述第二通信装置依次发送K个测量信号。所述K个测量信号的接收能量与所述b的K个元素存在一一对应关系。
在370部分的一种实施方式中,第一通信装置向第二通信装置加权依次发送K个信号,第k个信号的加权的方式可以是通过对发送数据向量乘以一个预编码矩阵W k来实现,其中W k满足:W k为维度M×K的矩阵,且W k的第k列和W C的第k列元素相同,余下元素则取零。所述K个测量信号的接收能量与所述b的K个元素之间的一一对应关系与340部分描述相同,在此不做赘述。
可以理解,370部分的执行顺序在330之后,340之前。
图4给出了一种装置的结构示意图。该方法的执行主体是第一通信装置,该第一通信装置可以是网络设备(例如核心网设备、无线接入网设备、WiFi路由器、或WiFi接入点),也可以是支持网络设备实现该方法的芯片、芯片系统、或处理器等。如图4所示,该实施例的方法400可包括410部分、420部分、430部分、440部分和450部分:
410部分:获得第二通信装置反馈的参考信号。
在410部分的一种实施方式中,该参考信号是SRS信号。SRS信号由第二通信装置发送给第一通信装置。可选地,该SRS信号可以是周期发送,也可以是半静态调度发送,具体发送模式本申请不做限制。
可以理解,该第二通信装置可以是终端,也可以是支持终端实现该方法的芯片、芯片系统、或处理器等。
420部分:基于所述参考信号获得H C
可选地,该H C为维度M×K的矩阵,表示为上行信道矩阵。其中M表示第一通信装置的天线数目,K表示第二通信装置的天线数目。并且该H C满足:
Figure PCTCN2022141713-appb-000038
其中H 1为维度K×M的矩阵并表示表示下行信道矩阵,
Figure PCTCN2022141713-appb-000039
为H 1的转置矩阵;H 2为维度K×K的对角矩阵,表示上下行信道的幅值功率偏置,其中对角向量为α=[α 12,…α K],α 12,…α K均为有理数。
430部分:根据所述H C获得H 3。H 3为维度K×K的相关性矩阵,表示天线间的相关性。
在430部分获得H 3的一种实施方式中,H 3的对角元素为1,第m行第n列的元素c m,n满 足下列数学关系:
Figure PCTCN2022141713-appb-000040
其中m为正整数且1≤m≤K,n为正整数且1≤n≤K,
Figure PCTCN2022141713-appb-000041
为矩阵H C中的第m列向量h C,m的自共轭变换,h C,n为H C中的第n列向量,‖‖ 2为向量二范数的数学运算符,即对该向量元素绝对值的平方和再开方。
440部分:获得所述第二通信装置反馈的第一接收能量向量b。其中b=[b 1,b 2,…b K],其中b、b 2、…、b K均为正数。
在440部分的一种实施方式中,第一通信装置向第二通信装置加权依次发送K个信号,第k个信号的加权的方式可以是通过对发送数据向量乘以一个预编码矩阵W C来实现,其中W C为维度K×M的矩阵,W C可以通过对H C作最大比发送(maximum ratio transmission,MRT)预编码获得。例如:W C的第k列向量w C,k可以表示为:
Figure PCTCN2022141713-appb-000042
其中h C,k为H C的第k列向量,
Figure PCTCN2022141713-appb-000043
为h C,k的共轭变换,k为正整数且1≤k≤K,‖‖为向量一范数的数学运算符,即向量元素绝对值之和。对应的,第二通信装置在接收侧可以通过测量该K个信号的RSRP来计算K个信号的依次接收能量,即为第一接收能量向量b里的元素值。具体来说,b向量里对应的第k个元素b k可以表示为:
Figure PCTCN2022141713-appb-000044
Figure PCTCN2022141713-appb-000045
其中
Figure PCTCN2022141713-appb-000046
表示为w C,k的共轭变换,h 1,p为H 1的第p列向量,p为正整数且1≤p≤K。第二通信装置通过测量该K个信号的RSRP得到K个信号的依次接收能量后,会向第一通信装置反馈K个信号接收能量的值,即b里的元素值。
在440部分中,可选地,b里的元素值可以通过物理上行控制信道PUCCH的方式反馈给第一通信装置。
450部分:根据所述H 3以及所述b获得所述α和所述H 2,根据所述H 2与所述H C获得所述H 1,所述H 1用于信道估计。
在450部分的一种实施方式中,结合430部分中的
Figure PCTCN2022141713-appb-000047
以及440部分中的
Figure PCTCN2022141713-appb-000048
可以得到下列数学关系:
Figure PCTCN2022141713-appb-000049
根据矩阵元素对应关系生成K元一次方程可以求得α 12,…α K的值,即获得H 2。结合410部分的
Figure PCTCN2022141713-appb-000050
则可以根据数学关系
Figure PCTCN2022141713-appb-000051
获得H 1,H 1即为估测的下行信道矩阵。
可选地,方法400还包括460部分:
460部分:向所述第二通信装置依次发送K个测量信号。所述K个测量信号的接收能量与所述b的K个元素存在一一对应关系。
在460部分的一种实施方式中,第一通信装置向第二通信装置加权依次发送K个信号,第k个信号的加权的方式可以是通过对发送数据向量乘以一个预编码矩阵W C来实现,其中W C为维度K×M的矩阵,可以通过对H C作最大比发送(maximum ratio transmission,MRT)预编码获得。所述K个测量信号的接收能量与所述b的K个元素之间的一一对应关系与440部分描述相同,在此不做赘述。
可以理解,460部分的执行顺序在430之后,440之前。
图5给出了一种装置的结构示意图。所述装置500可以是网络设备、终端设备、服务器或集中控制器,也可以是支持网络设备、终端设备、服务器或集中控制器实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
所述装置500可以包括一个或多个处理器501,所述处理器501也可以称为处理单元,可以实现一定的控制功能。所述处理器501可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端、终端芯片,DU或CU等)进行控制,执行软件程序,处理软件程序的数据。
在一种可选的设计中,处理器501也可以存有指令和/或数据503,所述指令和/或数据503可以被所述处理器运行,使得所述装置500执行上述方法实施例中描述的方法。
在另一种可选的设计中,处理器501中可以包括用于实现接收和发送功能的收发单元。例如该收发单元可以是收发电路,或者是接口,或者是接口电路,或者是通信接口。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在又一种可能的设计中,装置500可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。
可选的,所述装置500中可以包括一个或多个存储器502,其上可以存有指令504,所述指令可在所述处理器上被运行,使得所述装置500执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。可选的,处理器中也可以存储指令和/或数据。所述处理器和存储器可以单独设置,也可以集成在一起。例如,上述方法实施例中所描述的对应关系可以存储在存储器中,或者存储在处理器中。
可选的,所述装置500还可以包括收发器505和/或天线506。所述处理器501可以称为处理单元,对所述装置500进行控制。所述收发器505可以称为收发单元、收发机、收发电路、收发装置或收发模块等,用于实现收发功能。
可选的,本申请实施例中的装置500可以用于执行本申请实施例中图3中或图4描述的方法。
本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(Bipolar Junction Transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的装置可以是网络设备或者终端设备,但本申请中描述的装置的范围并不限于此,而且装置的结构可以不受图5的限制。装置可以是独立的设备或者可以是较大设备的一部分。例如所述装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据和/或指令的存储部件;
(3)ASIC,例如调制解调器(MSM);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端、智能终端、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备、机器设备、家居设备、医疗设备、工业设备等等;
(6)其他等等。
图6提供了一种终端设备的结构示意图。该终端设备可适用于图1所示出的场景中。为了便于说明,图6仅示出了终端设备的主要部件。如图6所示,终端设备600包括处理器、存储器、控制电路、天线、以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端进行控制,执行软件程序,处理软件程序的数据。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解析并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行处理后得到射频信号并将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,该射频信号被进一步转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
为了便于说明,图6仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本发明实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图6中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在一个例子中,可以将具有收发功能的天线和控制电路视为终端设备600的收发单元611,将具有处理功能的处理器视为终端设备600的处理单元612。如图6所示,终端设备600包括收发单元611和处理单元612。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元611中用于实现接收功能的器件视为接收单元,将收发单元611中用于实现发送功能的器件视为发送单元,即收发单元611包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。可选的,上述接收单元和发送单元可以是集成在一起的一个单元,也可以是各自独立的多个单元。上述接收单元和发送单元可以在一个地理位置,也可以分散在多个地理 位置。
如图7所示,本申请又一实施例提供了一种装置700。该装置可以是终端、网络设备、服务器或集中控制器,也可以是终端、网络设备、服务器或集中控制器的部件(例如,集成电路,芯片等等)。该装置也可以是其他通信模块,用于实现本申请方法实施例中的方法。该装置700可以包括:处理模块702(或称为处理单元)。可选的,还可以包括接口模块701(或称为收发单元或收发模块)和存储模块703(或称为存储单元)。接口模块701用于实现与其他设备进行通信。接口模块701例如可以是收发模块或输入输出模块。
在一种可能的设计中,如图7中的一个或者多个模块可能由一个或者多个处理器来实现,或者由一个或者多个处理器和存储器来实现;或者由一个或多个处理器和收发器实现;或者由一个或者多个处理器、存储器和收发器实现,本申请实施例对此不作限定。所述处理器、存储器、收发器可以单独设置,也可以集成。
所述装置具备实现本申请实施例描述的终端的功能,比如,所述装置包括终端执行本申请实施例描述的终端涉及步骤所对应的模块或单元或手段(means),所述功能或单元或手段(means)可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现,还可以通过软件和硬件结合的方式实现。详细可进一步参考前述对应方法实施例中的相应描述。或者,所述装置具备实现本申请实施例描述的网络设备的功能,比如,所述装置包括所述网络设备执行本申请实施例描述的网络设备涉及步骤所对应的模块或单元或手段(means),所述功能或单元或手段(means)可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现,还可以通过软件和硬件结合的方式实现。详细可进一步参考前述对应方法实施例中的相应描述。
可选的,本申请实施例中的装置700中各个模块可以用于执行本申请实施例中图3描述的方法。
在一种可能的设计中,一种装置700可包括:处理模块702和接口模块701。接口模块701用于获得终端反馈的参考信号。处理模块702用于基于所述参考信号获得H C,H C为维度M×K的矩阵,M表示所述网络设备的天线数目,K表示终端的天线数目,H C满足:
Figure PCTCN2022141713-appb-000052
其中H 1为维度K×M的矩阵,
Figure PCTCN2022141713-appb-000053
为H 1的转置矩阵,H 2为维度K×K的对角矩阵,对角向量为α=[α 12,…α K],α 12,…α K均为有理数。处理模块702还用于对H C作预编码获得W C,W C为维度M×K的矩阵。接口模块701还用于获得终端反馈的第一接收能量向量b。处理模块702还用于根据H C以及W C获得第二接收能量向量a。处理模块702还用于根据a以及b获得α和H 2,根据H 2与H C获得H 1,该H 1用于信道估计。
在上述装置700某些可能的实施方式中,接口模块701还用于向终端依次发送K个测量信号,K个测量信号的接收能量与所述b的K个元素存在一一对应关系。
在上述装置700某些可能的实施方式中,所述预编码为下列中的一种:
迫零预编码,
最小均方差预编码,或
正则迫零预编码预编码。
在上述装置700某些可能的实施方式中,根据a以及b获得α,包括:
根据a以及b获得α满足:
Figure PCTCN2022141713-appb-000054
k为正数且1≤k≤K。
可选的,本申请实施例中的装置700中各个模块可以用于执行本申请实施例中图4描述的方法。
在一种可能的设计中,一种装置700可包括:处理模块702和接口模块701。接口模块701用于获得终端反馈的参考信号。处理模块702用于基于所述参考信号获得H C,H C为维度M×K的矩阵,M表示所述网络设备的天线数目,K表示终端的天线数目,H C满足:
Figure PCTCN2022141713-appb-000055
其中H 1为维度K×M的矩阵,
Figure PCTCN2022141713-appb-000056
为H 1的转置矩阵,H 2为维度K×K的对角矩阵,对角向量为α=[α 12,…α K],α 12,…α K均为有理数。处理模块702还用于根据H C获得H 3,H 3为维度K×K的矩阵。接口模块701还用于获得终端反馈的第一接收能量向量b。处理模块702还用于根据所述H 3以及所述b获得所述α和所述H 2,根据所述H 2与所述H C获得所述H 1,所述H 1用于信道估计。
在上述装置700某些可能的实施方式中,接口模块701还用于向终端依次发送K个测量信号,K个测量信号的接收能量与所述b的K个元素存在一一对应关系。
可以理解的是,本申请实施例中的一些可选的特征,在某些场景下,可以不依赖于其他特征,比如其当前所基于的方案,而独立实施,解决相应的技术问题,达到相应的效果,也可以在某些场景下,依据需求与其他特征进行结合。相应的,本申请实施例中给出的装置也可以相应的实现这些特征或功能,在此不予赘述。
本领域技术人员还可以理解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员对于相应的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
可以理解,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。
本申请所描述的方案可通过各种方式来实现。例如,这些技术可以用硬件、软件或者硬件结合的方式来实现。对于硬件实现,用于在通信装置(例如,基站,终端、网络实体、或芯片)处执行这些技术的处理单元,可以实现在一个或多个通用处理器、DSP、数字信号处理器件、ASIC、可编程逻辑器件、FPGA、或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合中。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate  SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请还提供了一种计算机可读介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述任一方法实施例的功能。
本申请还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
可以理解,说明书通篇中提到的“实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各个实施例未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。可以理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
可以理解,在本申请中,“当…时”、“若”以及“如果”均指在某种客观情况下装置会做出相应的处理,并非是限定时间,且也不要求装置实现时一定要有判断的动作,也不意味着存在其它限定。
本申请中的“同时”可以理解为在相同的时间点,也可以理解为在一段时间段内,还可以理解为在同一个周期内。
本领域技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。本申请中的编号(也可被称为索引)的具体取值、数量的具体取值、以及位置仅作为示意的目的,并不是唯一的表示形式,也并不用来限制本申请实施例的范围。本申请中涉及的第一个、第二个等各种数字编号也仅为描述方便进行的区分,并不用来限制本申请实施例的范围。
本申请中对于使用单数表示的元素旨在用于表示“一个或多个”,而并非表示“一个且仅一个”,除非有特别说明。本申请中,在没有特别说明的情况下,“至少一个”旨在用于表示“一个或者多个”,“多个”旨在用于表示“两个或两个以上”。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示: 单独存在A,同时存在A和B,单独存在B这三种情况,其中A可以是单数或者复数,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
本文中术语“……中的至少一个”或“……中的至少一种”,表示所列出的各项的全部或任意组合,例如,“A、B和C中的至少一种”,可以表示:单独存在A,单独存在B,单独存在C,同时存在A和B,同时存在B和C,同时存在A、B和C这六种情况,其中A可以是单数或者复数,B可以是单数或者复数,C可以是单数或者复数。
可以理解,在本申请各实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以理解,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本领域普通技术人员可以理解,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
可以理解,本申请中描述的系统、装置和方法也可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储 介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请中各个实施例之间相同或相似的部分可以互相参考。在本申请中各个实施例、以及各实施例中的各个实施方式/实施方法/实现方法中,如果没有特殊说明以及逻辑冲突,不同的实施例之间、以及各实施例中的各个实施方式/实施方法/实现方法之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例、以及各实施例中的各个实施方式/实施方法/实现方法中的技术特征根据其内在的逻辑关系可以组合形成新的实施例、实施方式、实施方法、或实现方法。以上所述的本申请实施方式并不构成对本申请保护范围的限定。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。

Claims (14)

  1. 一种数据处理方法,应用于第一通信装置,其特征在于,包括:
    获得第二通信装置反馈的参考信号;
    基于所述参考信号获得H C,所述H C为维度M×K的矩阵,所述M表示所述第一通信装置的天线数目,所述K表示所述第二通信装置的天线数目,所述H C满足:
    Figure PCTCN2022141713-appb-100001
    其中所述H 1为维度K×M的矩阵,
    Figure PCTCN2022141713-appb-100002
    为H 1的转置矩阵,所述H 2为维度K×K的对角矩阵,对角向量为α=[α 12,…α K],α 12,…α K均为有理数;
    对所述H C作预编码获得W C,所述W C为维度M×K的矩阵;
    获得所述第二通信装置反馈的第一接收能量向量b=[b 1,b 2,…b K],其中b、b 2、…、b K均为正数;
    根据所述H C以及所述W C获得第二接收能量向量a=[a 1,a 2,…a K],其中a 1、a 2、…、a K均为正数;
    根据所述a以及所述b获得所述α和所述H 2,根据所述H 2与所述H C获得所述H 1,所述H 1用于信道估计。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    向所述第二通信装置依次发送K个测量信号,所述K个测量信号的接收能量与所述b的K个元素存在一一对应关系。
  3. 根据权利要求1或2所述的方法,其特征在于,所述预编码为下列中的一种:
    迫零预编码,
    最小均方差预编码,或
    正则迫零预编码预编码。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,根据所述a以及所述b获得所述α,包括:
    根据所述a以及所述b获得所述α满足:
    Figure PCTCN2022141713-appb-100003
    k为正数且1≤k≤K。
  5. 一种数据处理方法,应用于第一通信装置,其特征在于,包括:
    获得第二通信装置反馈的参考信号;
    基于所述参考信号获得H C,所述H C为维度M×K的矩阵,所述M表示所述第一通信装置的天线数目,所述K表示所述第二通信装置的天线数目,所述H C满足:
    Figure PCTCN2022141713-appb-100004
    其中所述H 1为维度K×M的矩阵,
    Figure PCTCN2022141713-appb-100005
    为H 1的转置矩阵,所述H 2为维度K×K的对角矩阵,对角向量为α=[α 12,…α K],α 12,…α K均为有理数;
    根据所述H C获得H 3,所述H 3为维度K×K的矩阵;
    获得所述第二通信装置反馈的第一接收能量向量b=[b 1,b 2,…b K],其中b、b 2、…、b K均为正数;
    根据所述H 3以及所述b获得所述α和所述H 2,根据所述H 2与所述H C获得所述H 1,所述H 1用于信道估计。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    向所述第二通信装置依次发送K个测量信号,所述K个测量信号的接收能量与所述b的K个元素存在一一对应关系。
  7. 一种通信装置,所述通信装置为第一通信装置,其特征在于,包括:接口模块和处理模块;
    所述接口模块用于获得第二通信装置反馈的参考信号;
    所述处理模块用于基于所述参考信号获得H C,所述H C为维度M×K的矩阵,所述M表示所述第一通信装置的天线数目,所述K表示所述第二通信装置的天线数目,所述H C满足:
    Figure PCTCN2022141713-appb-100006
    其中所述H 1为维度K×M的矩阵,
    Figure PCTCN2022141713-appb-100007
    为H 1的转置矩阵,所述H 2为维度K×K的对角矩阵,对角向量为α=[α 12,…α K],α 12,…α K均为有理数;
    所述处理模块还用于对所述H C作预编码获得W C,所述W C为维度M×K的矩阵;
    所述接口模块还用于获得所述第二通信装置反馈的第一接收能量向量b=[b 1,b 2,…b K],其中b、b 2、…、b K均为正数;
    所述处理模块还用于根据所述H C以及所述W C获得第二接收能量向量a=[a 1,a 2,…a K],其中a 1、a 2、…、a K均为正数;
    所述处理模块还用于根据所述a以及所述b获得所述α和所述H 2,根据所述H 2与所述H C获得所述H 1,所述H 1用于信道估计。
  8. 根据权利要求7所述的装置,其特征在于,
    所述接口模块还用于向所述第二通信装置依次发送K个测量信号,所述K个测量信号的接收能量与所述b的K个元素存在一一对应关系。
  9. 根据权利要求7或8所述的装置,其特征在于,所述预编码为下列中的一种:
    迫零预编码,
    最小均方差预编码,或
    正则迫零预编码预编码。
  10. 根据权利要求7-9中任一项所述的装置,其特征在于,所述处理模块还用于根据所述a以及所述b获得所述α,包括:
    所述处理模块还用于根据所述a以及所述b获得所述α满足:
    Figure PCTCN2022141713-appb-100008
    k为正数且1≤k≤K。
  11. 一种通信装置,所述通信装置为第一通信装置,其特征在于,包括:接口模块和处理模块;
    所述接口模块用于获得第二通信装置反馈的参考信号;
    所述处理模块用于基于所述参考信号获得H C,所述H C为维度M×K的矩阵,所述M表示所第一通信装置的天线数目,所述K表示所述第二通信装置的天线数目,所述H C满足:
    Figure PCTCN2022141713-appb-100009
    其中所述H 1为维度K×M的矩阵,
    Figure PCTCN2022141713-appb-100010
    为H 1的转置矩阵,所述H 2为维度K×K的对角矩阵,对角向量为α=[α 12,…α K],α 12,…α K均为有理数;
    所述处理模块还用于根据所述H C获得H 3,所述H 3为维度K×K的矩阵;
    所述处理模块还用于获得所述第二通信装置反馈的第一接收能量向量b=[b 1,b 2,…b K],其中b、b 2、…、b K均为正数;
    所述处理模块还用于根据所述H 3以及所述b获得所述α和所述H 2,根据所述H 2与所述H C获得所述H 1,所述H 1用于信道估计。
  12. 根据权利要求11所述的装置,其特征在于,
    所述接口模块还用于向所述第二通信装置依次发送K个测量信号,所述K个测量信号的接收能量与所述b的K个元素存在一一对应关系。
  13. 一种通信装置,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述装置执行如权利 要求1至4、或,5至6中任一项所述的方法。
  14. 一种计算机可读存储介质,其上存储有计算机程序或指令,其特征在于,所述计算机程序或指令被执行时使得计算机执行如权利要求1至4、或,5至6中任一项所述的方法。
PCT/CN2022/141713 2021-12-30 2022-12-24 数据处理方法及装置 WO2023125340A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111650614.0A CN116436735A (zh) 2021-12-30 2021-12-30 数据处理方法及装置
CN202111650614.0 2021-12-30

Publications (1)

Publication Number Publication Date
WO2023125340A1 true WO2023125340A1 (zh) 2023-07-06

Family

ID=86997867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/141713 WO2023125340A1 (zh) 2021-12-30 2022-12-24 数据处理方法及装置

Country Status (2)

Country Link
CN (1) CN116436735A (zh)
WO (1) WO2023125340A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160142115A1 (en) * 2014-11-17 2016-05-19 Samsung Electronics Co., Ltd. Method and apparatus for precoding channel state information reference signal
CN108352877A (zh) * 2015-10-23 2018-07-31 瑞典爱立信有限公司 共享参考信号的动态预编码
US20200252255A1 (en) * 2017-09-29 2020-08-06 Telefonaktiebolaget Lm Ericsson (Publ) Multi-Antenna Processing for Reference Signal
CN111835390A (zh) * 2019-04-16 2020-10-27 华为技术有限公司 一种信道测量方法和通信装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160142115A1 (en) * 2014-11-17 2016-05-19 Samsung Electronics Co., Ltd. Method and apparatus for precoding channel state information reference signal
CN108352877A (zh) * 2015-10-23 2018-07-31 瑞典爱立信有限公司 共享参考信号的动态预编码
US20200252255A1 (en) * 2017-09-29 2020-08-06 Telefonaktiebolaget Lm Ericsson (Publ) Multi-Antenna Processing for Reference Signal
CN111835390A (zh) * 2019-04-16 2020-10-27 华为技术有限公司 一种信道测量方法和通信装置

Also Published As

Publication number Publication date
CN116436735A (zh) 2023-07-14

Similar Documents

Publication Publication Date Title
JP7241707B2 (ja) データ伝送方法、装置、ネットワーク側機器およびユーザ機器
EP3403339B1 (en) Practical hybrid precoding scheme for multi-user massive mimo systems
US11303337B2 (en) Radiation pattern modification in the presence of interference sources in frequency division duplex (FDD) systems
US11438915B2 (en) SDMA carrier sharing
US20190123991A1 (en) Systems and Methods for a Sounding Frame in an IEEE 802.11AX Compliant Network
JP7371270B2 (ja) チャネル状態情報フィードバック方法及び通信装置
WO2022213780A1 (zh) 信息传输方法及装置
CN113196679A (zh) 深度学习特征波束成形
WO2021081847A1 (zh) 一种信道测量方法和通信装置
US20230379020A1 (en) Precoding method and apparatus
WO2021159309A1 (zh) 一种信道测量方法和通信装置
WO2022028711A1 (en) Apparatus for csi reporting overhead reduction via joint csi report quantization and encoding
US11411632B2 (en) Method to estimate SNR for MU-MIMO based on channel orthogonality
US20230019630A1 (en) Update Method and Communications Apparatus
WO2023125340A1 (zh) 数据处理方法及装置
US20230052506A1 (en) Method of sounding reference signal (srs)-assisted sd beam and fd vector reporting for type ii channel state information (csi)
WO2022082545A1 (zh) 信道信息反馈方法及相关设备
JP2023553432A (ja) チャネル情報フィードバック方法及び通信装置
WO2024149377A1 (zh) 一种信道状态信息报告确定方法、装置、芯片及模组设备
WO2024093867A1 (zh) 一种预编码的指示方法及通信装置
US20240187050A1 (en) Method for obtaining precoding matrix and apparatus
WO2024140409A1 (zh) 一种信道状态信息csi报告的配置方法及相关装置
WO2023082775A1 (zh) 参考信号的传输方法和装置
WO2024169803A1 (zh) 一种通信方法、装置、芯片及模组设备
WO2023011436A1 (zh) 通信处理方法和通信处理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914594

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE