WO2022082545A1 - 信道信息反馈方法及相关设备 - Google Patents

信道信息反馈方法及相关设备 Download PDF

Info

Publication number
WO2022082545A1
WO2022082545A1 PCT/CN2020/122612 CN2020122612W WO2022082545A1 WO 2022082545 A1 WO2022082545 A1 WO 2022082545A1 CN 2020122612 W CN2020122612 W CN 2020122612W WO 2022082545 A1 WO2022082545 A1 WO 2022082545A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency unit
port
frequency
complex coefficients
complex
Prior art date
Application number
PCT/CN2020/122612
Other languages
English (en)
French (fr)
Inventor
汪洁
范利
秦启波
葛士斌
种稚萌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/122612 priority Critical patent/WO2022082545A1/zh
Publication of WO2022082545A1 publication Critical patent/WO2022082545A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station

Definitions

  • the present invention relates to the field of communication technologies, and in particular, to a channel information feedback method and related equipment.
  • massive multi-input multi-output massive MIMO
  • the network device needs to precode the data before sending the data to the terminal device. How the network device precodes the data mainly depends on the channel state information (channel state information, CSI) of the downlink channel fed back by the terminal device to the network device.
  • channel state information channel state information, CSI
  • the reciprocity of the channel can be used to obtain the CSI of the downlink channel through the uplink channel, and then the codebook can be determined to carry out precoding.
  • the uplink and downlink channels do not have complete reciprocity, but have partial reciprocity, such as network
  • the device can obtain the reciprocity information between the uplink and downlink channels, such as angle, delay, etc., from the uplink channel, and load the reciprocity information into the channel state information-reference signal (CSI-RS), and the terminal
  • CSI-RS channel state information-reference signal
  • the device can feed back the non-reciprocal information between the uplink and downlink channels to the network device. Therefore, the network device can obtain the complete CSI of the downlink channel based on the non-reciprocal information.
  • one CSI-RS port can only load one angle-delay pair information, and the CSI-RS resource overhead of a cell will vary with the terminal.
  • the number of devices increases linearly. For example, if there are 30 terminal devices in a cell, and the network device configures 32 ports of CSI-RS resources for each terminal device, the CSI-RS resource overhead of the cell will be unbearable.
  • the embodiment of the present application provides a channel information feedback method, which can improve the port utilization rate of the reference signal and reduce the port resource overhead.
  • the present application provides a channel information feedback method, the method is applied to a first device, and the method may include: receiving a precoding reference signal; determining T of each of the P ports of the precoding reference signal complex coefficients, P ⁇ 1, T ⁇ 2; channel information is fed back according to the T complex coefficients of each port and the first codebook W; the first codebook W is determined based on the T, and the T Determined based on the number O of specific delay offsets corresponding to each port, or determined based on the number K of frequency unit groups corresponding to each port, or determined based on the specific delay offset corresponding to each port.
  • the number O of the set and the group number K of the frequency unit group corresponding to each specific delay offset are determined; O>1, K>1.
  • each port can determine at least two complex coefficients, that is, the complex coefficients corresponding to the two angle delay pair information can be obtained, and only one angle delay pair information can be loaded per port. , compared with the method of obtaining a complex coefficient, the port utilization rate can be improved, that is, the port resource overhead can be reduced.
  • the terminal device also needs to feed back the channel information in combination with the first codebook, so the related implementation manner of the first codebook will be described below.
  • the formula satisfied by the first codebook is:
  • the W 1 is the port selection matrix corresponding to the P ports
  • the W f is a frequency-domain selection matrix, used to indicate the positions of J complex coefficients selected by the first device from the T complex coefficients corresponding to each port, J ⁇ T.
  • the channel information is used to indicate at least one of the following: the W 1 , the and the W f ;
  • the W 1 is an integer matrix with a dimension of P*L, used to indicate the positions of the L ports selected by the first device from the P ports, L ⁇ P;
  • the Wf is an integer matrix of dimension T*J, each row in the Wf corresponds to each complex coefficient corresponding to the each port, and each row of the Wf has at most 1 value. a non-zero element of 1; each column of the W f corresponds to each of the J complex coefficients, and each column of the W f has only one non-zero element with a value of 1;
  • said is a complex number matrix with dimension L*J, used to indicate the B complex coefficients selected by the first device from the J complex coefficients corresponding to each of the L ports and their the position in; the Each row of corresponds to each of the L ports; the Each column of corresponds to each of the J complex coefficients; the The elements c l,j are zero, indicating that the B complex coefficients do not include the jth complex coefficient of the lth port; the The elements c l,j are non-zero elements, indicating that the B complex coefficients include the jth complex coefficient of the lth port; 1 ⁇ l ⁇ L, 1 ⁇ j ⁇ J.
  • the T complex coefficients are complex coefficients corresponding to the K frequency unit groups of each port, and the T is equal to the K;
  • the complex coefficients for each frequency bin group correspond.
  • the T complex coefficients are complex coefficients corresponding to O specific delay offsets of each port, and T is equal to the O;
  • the complex coefficients for each specific delay offset of each port correspond.
  • the O>1, the K>1; the T complex coefficients are the K frequencies of each specific delay offset in the O specific delay offsets of each port O*K complex coefficients corresponding to the unit group, the T is equal to the O*K; each row of the W f is the complex coefficient of each frequency unit group of each specific delay offset of each port. coefficients correspond.
  • the J complex coefficients can be freely selected from the T complex coefficients corresponding to each port; or, the J complex coefficients selected by each port are the M specific delay offsets selected by each port. M*V complex coefficients corresponding to V frequency unit groupings for each specific delay offset of .
  • the formula satisfied by the first codebook is:
  • the W 1 is a coefficient selection matrix, used to indicate the position of the B complex coefficients selected by the first device from the T complex coefficients corresponding to each of the P ports; B ⁇ P*T;
  • said is a matrix of complex coefficients indicating the B complex coefficients.
  • the channel information is used to indicate at least one of the following: the W 1 and the
  • the W 1 is an integer matrix of dimension (P*T)*B, each row of the W 1 corresponds to each complex coefficient corresponding to each of the P ports, and each row of the W 1 corresponds to each complex coefficient corresponding to each of the P ports. Rows have at most 1 non-zero element of value 1; each column of said W 1 corresponds to each of the B complex coefficients, and each column of said W 1 has only one non-zero value of 1 zero element;
  • the T complex coefficients are complex coefficients corresponding to the K frequency unit groups of each port, and the T is equal to the K;
  • the complex coefficient of each frequency unit group corresponds to K>1.
  • the T complex coefficients are complex coefficients corresponding to O specific delay offsets of each port, and T is equal to the O;
  • the complex coefficient of each specific delay offset of each port corresponds to, O>1.
  • the O>1, the K>1; the T complex coefficients are the K frequencies of each specific delay offset in the O specific delay offsets of each port O*K complex coefficients corresponding to the unit group, the T is equal to the O*K; each row of the W 1 and the complex coefficients of each frequency unit group of each specific delay offset of each port are coefficients correspond.
  • the formula satisfied by the first codebook W is:
  • the W 1 is a port selection matrix corresponding to the P ports, and is used to indicate the positions of the L ports selected by the first device from the P ports, L ⁇ P;
  • said is a complex coefficient matrix, used to indicate the B complex coefficients selected by the first device from the J complex coefficients corresponding to each of the L ports and their position in;
  • the J is the number of complex coefficients that the first device is allowed to select from the T complex coefficients corresponding to each port, where J ⁇ T.
  • the channel information is used to indicate at least one of the following: the W 1 and the
  • the W 1 is an integer matrix with a dimension of P*L, used to indicate the positions of the L ports selected by the first device from the P ports, L ⁇ P;
  • the formula satisfied by the first codebook W is:
  • said is a complex coefficient matrix, used to indicate B complex coefficients selected by the first device; the B complex coefficients are selected from T complex coefficients corresponding to each of the P ports.
  • the channel information is used to indicate the complex coefficient matrix
  • the channel information includes first indication information
  • the complex coefficient matrix is a complex matrix of dimension B*1, the Each row of is corresponding to each of the B complex coefficients selected by the first device;
  • the first indication information is used to indicate position information of the B complex coefficients.
  • the position information of the B complex coefficients includes the p-th port corresponding to each of the B complex coefficients; or, the o-th port of the p-th port corresponding to each of the B complex coefficients a specific delay offset; or, the k-th frequency unit group of the p-th port corresponding to each of the B complex coefficients; or, the p-th port corresponding to each of the B complex coefficients The kth frequency unit group of the oth specific delay offset;
  • the formula satisfied by the first codebook W is:
  • the W 1 is the port selection matrix corresponding to the P ports
  • the W f is a frequency domain basis matrix, used to indicate the frequency domain basis of the J frequency unit groups selected by the first device from the T frequency unit groups corresponding to each port.
  • the channel information is used to indicate at least one of the following: the W 1 , the and the W f , the W 1 is an integer matrix of dimension P*L, used to indicate the positions of the L ports selected by the first device from the P ports, L ⁇ P;
  • the W f is obtained by selecting J columns from the T columns of the frequency domain basis matrix W′ f ; the W′ f is a complex matrix with dimension N f *T, and each column of the W′ f is associated with a discrete number.
  • the Fourier transform DFT column vector corresponds, and each column is obtained by sampling the corresponding DFT column vector according to the frequency unit included in the corresponding frequency unit group; each row of the W′ f corresponds to the N f frequencies corresponds to each frequency unit in the unit; each column of the W′ f corresponds to each frequency unit group of the T frequency unit groups, and the number of non-zero elements in each column of the W′ f is equal to The number of frequency units included in the corresponding frequency unit group;
  • said is a complex number matrix with dimension L*J, used to indicate the B complex coefficients selected by the first device from the J frequency unit groups corresponding to each of the L ports and their the position in; the Each row of corresponds to each of the L ports; the Each column of corresponds to each of the J complex coefficients; the The elements c l,j are zero, indicating that the B complex coefficients do not include the jth complex coefficient of the lth port; the The elements c l,j are non-zero elements, indicating that the B complex coefficients include the jth complex coefficient of the lth port; 1 ⁇ l ⁇ L, 1 ⁇ j ⁇ J.
  • the T frequency unit groups are K frequency unit groups of each port, and the T is equal to K; each column of the W′ f and each of the K frequency unit groups are corresponding to each frequency unit group; the indices of the discrete Fourier transform DFT column vectors corresponding to each column of the W′ f are the same.
  • the T frequency unit groups are K frequency unit groups of each specific delay offset in the O specific delay offsets of each port, and the T is equal to the O*K;
  • the W′ Each column of f corresponds to each of the K frequency unit groups of each of the O specific delay offsets; each K column of the W′ f corresponds to the The DFT column vector corresponding to each specific delay offset, the index of the DFT column vector corresponding to each of the K columns is the same, and the index of the DFT column vector corresponding to each K column is the corresponding specific time Index of the DFT column vector of extension biases.
  • the J frequency unit groups can be freely selected from O*K frequency unit groups; in another way, the J frequency unit groups selected by each port are the M selected by each port. V frequency unit groups for each specific delay offset of a specific delay offset, the J is equal to M*V.
  • the formula satisfied by the first codebook W is:
  • the W 1 is the port selection matrix corresponding to the P ports
  • the Q f is a frequency unit selection matrix, used to indicate the position of each frequency unit in the J frequency unit groups selected by the first device from the T frequency unit groups corresponding to each port;
  • the W f is a frequency-domain basis matrix, used to instruct the first device to select J DFT column vectors from the T discrete Fourier transform DFT column vectors corresponding to each port.
  • the channel information includes the W 1 , the the Q f and the W f ;
  • the W 1 is used to indicate the positions of the L ports selected by the first device from the P ports, L ⁇ P;
  • the Q f is an integer matrix of dimension N f *J, and each row of the Q f corresponds to each frequency unit in the N f frequency units; each column of the Q f corresponds to the J frequencies. Each frequency unit group in the unit group corresponds to;
  • the W f is obtained by selecting J columns from the T columns of the frequency domain basis matrix W′ f ; the W′ f is a complex matrix with dimension N f *T, and each column of the W′ f is associated with a discrete number.
  • Fourier transform DFT column vector corresponds to; each row of the W′ f corresponds to each frequency unit of the N f frequency units; each column of the W′ f corresponds to the T DFT column vectors Each DFT column vector corresponds to;
  • said is a complex number matrix with dimension L*J, used to indicate the B complex coefficients selected by the first device from the J complex coefficients corresponding to each of the L ports and their the position in; the Each row of corresponds to each of the L ports; the Each column of is corresponding to each frequency unit group in the J frequency unit groups; the The elements c l,j are equal to zero, indicating that the complex coefficients corresponding to the jth frequency unit group of the lth port are not included in the B complex coefficients; the The elements c l,j are equal to non-zero, indicating that the B complex coefficients include the complex coefficients corresponding to the jth frequency unit group of the lth port, 1 ⁇ l ⁇ L, 1 ⁇ j ⁇ J.
  • the T frequency unit groups are K frequency unit groups of each port, and the T is equal to K;
  • Each column of the Q f corresponds to each frequency unit group in the K frequency unit groups
  • the indices of the discrete Fourier transform DFT column vectors of each column of the W′ f are the same.
  • the T frequency unit groups are K frequency unit groups of each specific delay offset in the O specific delay offsets of each port, and the T is equal to the O*K;
  • Each column of the Q f corresponds to each frequency unit group in the K frequency unit groups of each specific delay offset in the O specific delay offsets;
  • Each K column of the W′ f corresponds to a DFT column vector corresponding to each specific delay offset
  • the index of the DFT column vector of each of the K columns is the same
  • the DFT column of each K column The index of the vector is the index of the DFT column vector corresponding to the specific delay offset.
  • the J frequency unit groups can be freely selected from O*K frequency unit groups; in another way, the J frequency unit groups selected by each port are the M selected by each port. V frequency unit groups for each specific delay offset of a specific delay offset, the J is equal to M*V.
  • the terminal device further receives second indication information, where the second indication information is used to indicate each specific time used by each port.
  • the index of the discrete Fourier transform DFT vector corresponding to the delay offset in the DFT matrix and the number of frequency unit groups K divided by the N f frequency units corresponding to each specific delay offset, and the kth frequency unit group includes frequency unit and the index of the frequency unit in the kth frequency unit group is ⁇ k ; 1 ⁇ k ⁇ K; or, the second indication information is used to indicate the discrete Fourier transform DFT vector corresponding to each port
  • the index in the DFT matrix and the number K of frequency unit groups divided by the corresponding N f frequency units, and the kth frequency unit group include frequency bins and the index of the frequency bins in the kth frequency bin group is ⁇ k .
  • the terminal device may also determine the frequency domain basis matrix W′ f according to the second indication information.
  • the first device can receive the frequency domain basis matrix W′ f ; the frequency domain basis matrix W′ f is used to indicate the each port or each port.
  • the number K of frequency unit groups corresponding to each specific delay offset in the O specific delay offsets adopted, and the kth frequency unit group includes frequency unit and the index of the frequency unit in the k-th frequency unit group is ⁇ k ; 1 ⁇ k ⁇ K.
  • the first device may receive third indication information, where the third indication information is used to indicate the number B of complex coefficients to be selected by the first device.
  • the fourth indication information is used to indicate the corresponding first codebook W required by the first device to feed back the channel information; determine the first codebook W indicated by the fourth indication information, so as to know the above-mentioned specific first codebook , and then feed back channel information.
  • the present application further provides a channel information feedback method, the method is applied to a second device, and the method includes: sending a precoding reference signal, where each of the P ports of the precoding reference signal corresponds to T ports Precoding vector, P ⁇ 1, T ⁇ 2; receive the channel information fed back from the terminal equipment for the precoding reference signal; determine the precoding of the downlink channel according to the channel information and the first codebook W; A codebook W is determined based on the T, and the T is determined based on the number O of specific delay offsets corresponding to each port, or based on the number K of frequency unit groups corresponding to each port, Or determined based on the number O of specific delay offsets corresponding to each port and the group number K of frequency unit groups corresponding to each specific delay offset; O>1, K>1.
  • the precoding vector is determined based on the angle delay pair information; the T precoding vectors correspond to T complex coefficients.
  • each port can correspond to at least two precoding vectors, that is, at least two angle delay pair information can be loaded, and only one angle delay pair information can be loaded per port.
  • the port utilization rate can be improved, that is, the port resource overhead can be reduced.
  • the network device also needs to determine the precoding of the downlink channel in combination with the first codebook and the channel information. Therefore, in this aspect, reference may be made to the relevant content of the above-mentioned first aspect for the related implementation manner of the first codebook W and the channel information, which will not be described in detail here.
  • the terminal device needs to know the grouping mode of the frequency units and/or the index of the DFT column vector corresponding to the specific delay offset.
  • the second device may also send second indication information, where the second indication information is used to indicate the index of the discrete Fourier transform DFT vector corresponding to each specific delay offset adopted by each port in the DFT matrix and each specific delay offset.
  • the number of frequency unit groups K divided by the N f frequency units corresponding to the delay offset, and the kth frequency unit group includes frequency unit and the index of the frequency unit in the kth frequency unit group is ⁇ k ; 1 ⁇ k ⁇ K;
  • the second indication information is used to indicate the index of the discrete Fourier transform DFT vector corresponding to each port in the DFT matrix and the number of frequency unit groups K and the kth frequency unit divided by the corresponding N f frequency units. group includes frequency bins and the index of the frequency bins in the kth frequency bin group is ⁇ k .
  • the second device may send a frequency domain basis matrix W′ f ; the frequency domain basis matrix W′ f is used to indicate each port or each of the O specific delay offsets adopted by each port.
  • the number K of frequency unit groups corresponding to a specific delay offset, and the kth frequency unit group includes frequency unit and the index of the frequency unit in the k-th frequency unit group is ⁇ k ; 1 ⁇ k ⁇ K.
  • the method further includes: the second device sends third indication information, where the third indication information is used to indicate the complex coefficients to be selected by the first device the number B.
  • the method further includes: sending fourth indication information, where the fourth indication information is used to indicate the corresponding first device to feed back the channel information.
  • a codebook W for the above-mentioned implementation manner in which the number B of complex coefficients to be fed back needs to be known, the method further includes: sending fourth indication information, where the fourth indication information is used to indicate the corresponding first device to feed back the channel information.
  • the N f frequency units corresponding to each port or each specific delay offset of each port are divided into K frequency unit groups, and the kth frequency unit group includes: frequency units, the index of the frequency unit in the kth frequency unit group is ⁇ k ; 1 ⁇ k ⁇ K;
  • the ⁇ k is used to indicate that when the remainder of the N f to the K is not zero, the N f frequency units are not grouped.
  • the index of the frequency unit assigned to the kth frequency unit group in the frequency units; the index of the frequency unit in the kth frequency unit group is:
  • the N f frequency units corresponding to each specific delay offset adopted by each port or each port are divided into K frequency unit groups, and the kth frequency unit group includes frequency units, the index of the frequency unit in the kth frequency unit group is ⁇ k ; 1 ⁇ k ⁇ K;
  • the ⁇ k is used to indicate that when the remainder of the N f to the K is not zero, the N f frequency units are not grouped.
  • the present application further provides a communication device.
  • the communication device has part or all of the functions of the first device described in the first aspect, or part or all of the functions of the second device described in the second aspect.
  • the function of the communication device may have the function of some or all of the embodiments of the first device in the present application, and may also have the function of independently implementing any one of the embodiments of the present application.
  • the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a processing unit and a communication unit, and the processing unit is configured to support the communication device to perform the corresponding functions in the above method.
  • the communication unit is used to support communication between the communication device and other communication devices.
  • the communication device may also include a storage unit for coupling with the processing unit and the communication unit, which stores program instructions and data necessary for the communication device.
  • the communication device includes:
  • a communication unit configured to receive a precoding reference signal
  • a processing unit configured to determine T complex coefficients of each of the P ports of the precoding reference signal, where P ⁇ 1, T ⁇ 2;
  • the processing unit is further configured to feed back channel information according to the T complex coefficients and the first codebook W of each port;
  • the first codebook W is determined based on T, and T is determined based on the number O of specific delay offsets corresponding to each port, or based on the number K of frequency cell groups corresponding to each port, or based on each port.
  • the number O of the corresponding specific delay offsets and the number K of frequency unit groups corresponding to each specific delay offset are determined; O>1, K>1.
  • the communication device includes:
  • a communication unit configured to send a precoding reference signal, where each of the P ports of the precoding reference signal corresponds to T precoding vectors, P ⁇ 1, T ⁇ 2;
  • a communication unit further configured to receive channel information fed back from the first device for the precoding reference signal
  • a processing unit configured to determine the precoding of the downlink channel according to the channel information and the first codebook W;
  • the first codebook W is determined based on T, and T is determined based on the number O of specific delay offsets corresponding to each port, or based on the number K of frequency cell groups corresponding to each port, or based on each port.
  • the number O of the corresponding specific delay offsets and the number K of frequency unit groups corresponding to each specific delay offset are determined; O>1, K>1.
  • the communication unit may be a transceiver or an interface
  • the storage unit may be a memory
  • the processing unit may be a processor
  • the communication device includes:
  • a processor configured to determine T complex coefficients of each of the P ports of the precoding reference signal, where P ⁇ 1, T ⁇ 2;
  • the processor is further configured to feed back channel information according to the T complex coefficients and the first codebook W of each port;
  • the first codebook W is determined based on T, and T is determined based on the number O of specific delay offsets corresponding to each port, or based on the number K of frequency cell groups corresponding to each port, or based on each port.
  • the number O of the corresponding specific delay offsets and the number K of frequency unit groups corresponding to each specific delay offset are determined; O>1, K>1.
  • the communication device includes:
  • each of the P ports of the precoding reference signal corresponds to T precoding vectors, P ⁇ 1, T ⁇ 2;
  • an interface further configured to receive channel information fed back from the first device for the precoding reference signal
  • a processor configured to determine the precoding of the downlink channel according to the channel information and the first codebook W;
  • the first codebook W is determined based on T, and T is determined based on the number O of specific delay offsets corresponding to each port, or based on the number K of frequency cell groups corresponding to each port, or based on each port.
  • the number O of the corresponding specific delay offsets and the number K of frequency unit groups corresponding to each specific delay offset are determined; O>1, K>1.
  • the processor may be used to perform, for example but not limited to, baseband related processing
  • the transceiver may be used to perform, for example but not limited to, radio frequency transceiving.
  • the above-mentioned devices may be respectively arranged on chips that are independent of each other, or at least part or all of them may be arranged on the same chip.
  • processors can be further divided into analog baseband processors and digital baseband processors.
  • the analog baseband processor can be integrated with the transceiver on the same chip, and the digital baseband processor can be set on a separate chip. With the continuous development of integrated circuit technology, more and more devices can be integrated on the same chip.
  • a digital baseband processor can be integrated with a variety of application processors (such as but not limited to graphics processors, multimedia processors, etc.) on the same chip.
  • application processors such as but not limited to graphics processors, multimedia processors, etc.
  • Such a chip may be called a System on Chip. Whether each device is independently arranged on different chips or integrated on one or more chips often depends on the needs of product design. The embodiments of the present application do not limit the implementation form of the foregoing device.
  • the present application further provides a processor for executing the above-mentioned various methods.
  • the process of sending and receiving the above-mentioned information in the above-mentioned methods can be understood as the process of outputting the above-mentioned information by the processor and the process of receiving the above-mentioned input information by the processor.
  • the processor When outputting the above-mentioned information, the processor outputs the above-mentioned information to the transceiver for transmission by the transceiver. After the above-mentioned information is output by the processor, other processing may be required before reaching the transceiver.
  • the transceiver receives the above-mentioned information and inputs it into the processor. Furthermore, after the transceiver receives the above-mentioned information, the above-mentioned information may need to perform other processing before being input to the processor.
  • receiving the first indication information mentioned in the foregoing method may be understood as the processor receiving the inputted first indication information.
  • the above-mentioned processor may be a processor specially used to execute these methods, or may be a processor that executes computer instructions in a memory to execute these methods, such as a general-purpose processor.
  • the above-mentioned memory can be a non-transitory (non-transitory) memory, such as a read-only memory (Read Only Memory, ROM), which can be integrated with the processor on the same chip, or can be set on different chips respectively.
  • ROM read-only memory
  • the embodiment does not limit the type of the memory and the setting manner of the memory and the processor.
  • the present application further provides a communication system, the system includes at least one first device and at least one second device of the above aspect.
  • the system may further include other devices that interact with the first device and the second device in the solution provided in this application.
  • the present application provides a computer-readable storage medium for storing computer software instructions, and when the instructions are executed by a communication device, the method described in the first aspect above is implemented.
  • the present application provides a computer-readable storage medium for storing computer software instructions, and when the instructions are executed by a communication device, the method described in the second aspect above is implemented.
  • the present application further provides a computer program product comprising instructions, which, when executed on a communication device, cause the communication device to perform the method described in the first aspect above.
  • the present application further provides a computer program product comprising instructions, which, when executed on a communication device, cause the communication device to perform the method of the second aspect above.
  • the present application provides a chip system
  • the chip system includes a processor and an interface, the interface is used to obtain a program or an instruction, and the processor is used to call the program or instruction to implement or support a terminal to implement the first
  • the functions involved in one aspect for example, determine or process at least one of the data and information involved in the methods described above.
  • the chip system further includes a memory for storing necessary program instructions and data of the terminal.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the present application provides a chip system
  • the chip system includes a processor and an interface, the interface is used to obtain a program or an instruction, and the processor is used to call the program or instruction to implement or support terminal implementation
  • the functions involved in the second aspect for example, determine or process at least one of the data and information involved in the above method.
  • the chip system further includes a memory for storing necessary program instructions and data of the terminal.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • FIG. 1 shows a schematic diagram of a communication system 100 suitable for the method provided by this embodiment of the present application
  • FIG. 2 is a schematic diagram of a channel information feedback method
  • FIG. 3 is a schematic diagram of a method for loading information with an angle delay
  • FIG. 4 is a schematic flowchart of a channel information feedback method provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a method 100 for loading information with an angle delay
  • FIG. 6 is a schematic diagram of a method 200 for loading information with an angle delay provided by an embodiment of the present application
  • FIG. 7 is a schematic diagram of a DC component loading angle delay pair information provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a method 300 for loading information with an angle delay provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a Q f provided in an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a W′ f provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of another Q f provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of free selection in B complex coefficient matrices provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a communication apparatus 1400 provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a communication apparatus 1500 provided by an embodiment of the present application.
  • FIG. 16 is a schematic diagram of a chip 1600 provided by an embodiment of the present application.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems, such as: long term evolution (Long Term Evolution, LTE) system, LTE frequency division duplex (freq terminal equipment ncy division duplex, FDD) system, LTE time division duplex ( time division duplex, TDD), universal mobile telecommunication system (UMTS), worldwide interoperability for microwave access (WiMAX) communication system, 5G mobile communication system or new radio access technology (new radio access technology) Access Technology, NR).
  • the 5G mobile communication system may include a non-standalone (NSA, NSA) and/or an independent network (standalone, SA).
  • the technical solutions provided in this application can also be applied to machine type communication (MTC), Long Term Evolution-machine (LTE-M), device-to-device (D2D) Network, machine to machine (M2M) network, internet of things (IoT) network or other network.
  • the IoT network may include, for example, the Internet of Vehicles.
  • vehicle to X vehicle to X
  • V2X vehicle and vehicle Infrastructure
  • V2P vehicle to pedestrian
  • V2N vehicle to network
  • the network device may be any device with a wireless transceiver function.
  • the equipment includes but is not limited to: evolved Node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), Node B (Node B, NB), network equipment controller (base station controller, BSC) ), network equipment transceiver station (base transceiver station, BTS), home network equipment (for example, home evolved NodeB, or home Node B, HNB), baseband unit (baseband unit, BBU), wireless fidelity (wireless fidelity, WiFi)
  • the access point (AP), wireless relay node, wireless backhaul node, transmission point (TP) or transmission and reception point (TRP) in the system can also be 5G,
  • NR the gNB in the system, or, the transmission point (TRP or TP), one or a group (including multiple antenna panels) antenna panels of the network equipment in the 5G system, or, it can also constitute the gNB or transmission point network nodes
  • a gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (AAU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB.
  • CU is responsible for processing non-real-time protocols and services, implementing radio resource control (RRC), and packet data convergence protocol (PDCP) layer function.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing physical layer protocols and real-time services, and implementing the functions of the radio link control (RLC) layer, medium access control (MAC) layer, and physical (PHY) layer.
  • RLC radio link control
  • MAC medium access control
  • PHY physical layer.
  • AAU implements some physical layer processing functions, radio frequency processing and related functions of active antennas.
  • the higher-layer signaling such as the RRC layer signaling
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network devices in an access network (radio access network, RAN), and the CU can also be divided into network devices in a core network (core network, CN), which is not limited in this application.
  • the network equipment provides services for the cell, and the terminal equipment communicates with the cell through the transmission resources (for example, frequency domain resources, or spectrum resources) allocated by the network equipment, and the cell may belong to the macro network equipment (for example, macro eNB or macro gNB, etc. ), it can also belong to the network equipment corresponding to the small cell, where the small cell can include: urban cell (metro cell), micro cell (micro cell), pico cell (pico cell), femto cell (femto cell) ), etc. These small cells have the characteristics of small coverage and low transmit power, and are suitable for providing high-speed data transmission services.
  • the transmission resources for example, frequency domain resources, or spectrum resources allocated by the network equipment
  • the cell may belong to the macro network equipment (for example, macro eNB or macro gNB, etc. ), it can also belong to the network equipment corresponding to the small cell, where the small cell can include: urban cell (metro cell), micro cell (micro cell), pico cell (pico cell), femto cell (f
  • a terminal device may also be referred to as a user equipment (user equipment, terminal device), an access terminal device, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal device, a mobile device, User terminal equipment, terminal equipment, wireless communication equipment, user agent or user equipment.
  • user equipment user equipment, terminal device
  • access terminal device a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal device, a mobile device, User terminal equipment, terminal equipment, wireless communication equipment, user agent or user equipment.
  • the terminal device may be a device that provides voice/data connectivity to the user, such as a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • some examples of terminal equipment can be: mobile phone (mobile phone), tablet computer (pad), computer with wireless transceiver function (such as notebook computer, palmtop computer, etc.), mobile internet device (mobile internet device, MID), virtual Virtual reality (VR) equipment, augmented reality (AR) equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self-driving (self driving), remote medical (remote medical) wireless terminal equipment in smart grid, wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, wireless terminal equipment in smart home Wireless terminal equipment, cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital assistants (PDA), with wireless communication capabilities handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, end devices in 5G networks or end devices in the future evolved public land mobile network
  • wearable devices can also be called wearable smart devices, which is a general term for the intelligent design of daily wear and the development of wearable devices using wearable technology, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories.
  • Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones. Use, such as all kinds of smart bracelets, smart jewelry, etc. for physical sign monitoring.
  • the terminal device may also be a terminal device in an internet of things (Internet of things, IoT) system.
  • IoT Internet of things
  • IoT is an important part of the development of information technology in the future. Its main technical feature is to connect items to the network through communication technology, so as to realize the intelligent network of human-machine interconnection and interconnection of things. IoT technology can achieve massive connections, deep coverage, and power saving of terminal devices through, for example, narrowband NB technology.
  • terminal equipment can also include sensors such as smart printers, train detectors, and gas stations.
  • the main functions include collecting data (part of terminal equipment), receiving control information and downlink data of network equipment, and sending electromagnetic waves to transmit uplink data to network equipment. .
  • FIG. 1 shows a schematic diagram of a communication system 100 suitable for the method provided by this embodiment of the present application.
  • the communication system 100 may include at least one network device, such as the network device 101 in the 5G system as shown in FIG. 1 ; the communication system 100 may also include at least one terminal device, as shown in FIG. 1 .
  • Terminal devices 102 to 107 may be mobile or stationary.
  • Each of the network device 101 and one or more of the end devices 102 to 107 may communicate over a wireless link.
  • Each network device can provide communication coverage for a specific geographic area and can communicate with terminal devices located within that coverage area. For example, the network device may send configuration information to the terminal device, and the terminal device may send uplink data to the network device based on the configuration information; for another example, the network device may send downlink data to the terminal device. Therefore, the network device 101 and the terminal devices 102 to 107 in FIG. 1 constitute a communication system.
  • D2D technology can be used to realize direct communication between terminal devices.
  • D2D technology can be used for direct communication between terminal devices 105 and 106 and between terminal devices 105 and 107 .
  • Terminal device 106 and terminal device 107 may communicate with terminal device 105 individually or simultaneously.
  • the terminal devices 105 to 107 can also communicate with the network device 101, respectively. For example, it can communicate directly with the network device 101, as shown in the figure, the terminal devices 105 and 106 can directly communicate with the network device 101; it can also communicate with the network device 101 indirectly, as in the figure, the terminal device 107 communicates with the network device via the terminal device 106. 101 Communications.
  • FIG. 1 exemplarily shows a network device, a plurality of terminal devices, and communication links between the communication devices.
  • the communication system 100 may include multiple network devices, and the coverage of each network device may include other numbers of terminal devices, such as more or less terminal devices. This application does not limit this.
  • Each of the above communication devices may be configured with multiple antennas.
  • the plurality of antennas may include at least one transmit antenna for transmitting signals and at least one receive antenna for receiving signals.
  • each communication device additionally includes a transmitter chain and a receiver chain, which can be understood by those of ordinary skill in the art, all of which may include multiple components (eg, processors, modulators, multiplexers) related to signal transmission and reception. , demodulator, demultiplexer or antenna, etc.). Therefore, the network device and the terminal device can communicate through the multi-antenna technology.
  • the wireless communication system 100 may further include other network entities such as a network controller, a mobility management entity, and the like, which are not limited in this embodiment of the present application.
  • network entities such as a network controller, a mobility management entity, and the like, which are not limited in this embodiment of the present application.
  • P the number of reference signal ports configured by the network device for the terminal device, that is, the number of ports of the precoding reference signal described in this application, P ⁇ 1 and an integer;
  • the pth port represents the number of ports in the configured P ports One of the ports of , 1 ⁇ p ⁇ P;
  • L The number of ports that can be selected corresponding to the complex coefficient reported by the terminal device, 1 ⁇ L ⁇ P; the lth port represents one of the L ports selected by the terminal device from the P ports, 1 ⁇ l ⁇ L;
  • O The number of specific delay offsets to which the network device moves the complex coefficient of the angle-delay pair information loaded on each port to which O ⁇ 1 and is an integer, and the o-th specific delay offset represents the O-th specific delay offset.
  • M The number of specific delay offsets selected by the terminal equipment from the O specific delay offsets to which the network equipment moves, 1 ⁇ M ⁇ O, the mth specific delay offset indicates that the terminal equipment moves from this O specific delay offset
  • N f the number of frequency units included in the transmission bandwidth of the precoding reference signal
  • K The number of frequency unit groups divided by corresponding N f frequency units for each port, K ⁇ 1 and an integer; the kth frequency unit group represents one of the K frequency unit groups , 1 ⁇ k ⁇ K;
  • V the number of frequency unit groups selected by the terminal equipment from the K frequency unit groups used by each port, 1 ⁇ V ⁇ K and an integer
  • the vth frequency unit group represents the number of frequency unit groups in the V frequency unit group One of the frequency unit groups, 1 ⁇ v ⁇ V;
  • R the number of receiving antennas that the terminal device has, or the number of data streams that the terminal device can receive simultaneously, R ⁇ 1 and is an integer; the rth receiving antenna represents one of the R receiving antennas , or, the rth data stream represents one of the R data streams, 1 ⁇ r ⁇ R;
  • F frequency domain information matrix, which physically corresponds to the time delay of each multipath signal reaching the network device, which can be represented as a matrix with a dimension of N f ⁇ N f in this embodiment of the present application;
  • S Spatial domain information matrix, which may be represented as a matrix with a dimension of N tx ⁇ N tx in this embodiment of the present application, where N tx represents the number of transmit antennas possessed by the network device.
  • the numbering when numbering is involved, the numbering may start from 1 consecutively.
  • the N f frequency domain units may include the first frequency domain unit to the N f frequency domain unit
  • the K angular delay pair information may include the first angular delay pair information to the K th angular delay pair information
  • the P ports may include the 1st port to the Pth port and so on.
  • the specific implementation is not limited to this. For example, it can also be numbered consecutively from 0.
  • the N f frequency domain units may include the 0 th frequency domain unit to the N f -1 th frequency domain unit
  • the K angular delay pair information may include the 0 th angular delay pair information to the K - 1 th
  • the P ports may include the 0th port to the P-1th port, etc.
  • the corresponding index can be numbered from 1 or from 0, for example, the index of the 1st frequency unit is 1, and the index of the Nfth frequency unit is Nf ; or, the index of the 0th frequency unit is 0, the index of the Nf -1th frequency bin is Nf -1.
  • the superscript T represents the transpose, such as A T represents the transpose of the matrix (or vector) A.
  • the superscript H represents the conjugate transpose, for example, A H represents the conjugate transpose of the matrix (or vector) A.
  • the function A(:, p) represents taking the first row to the last row of the p-th column in the matrix A, that is, taking the p-th column in the matrix A.
  • A(q,:) means to take the first column to the last column of the qth row in the matrix A, that is, take the qth row in the matrix A.
  • the function A(a, Q, b:, p) indicates that in the p-th column of the matrix, the starting row is a, the ending row is b, and the value is taken as an incremental value of Q. That is to say, the difference between the row numbers corresponding to the obtained values in matrix A is Q or an integer multiple of Q.
  • the function diag() represents a diagonal matrix.
  • N%Q means to take the remainder of N/Q.
  • a ⁇ N Q ⁇ P means that A is an integer matrix of dimension Q ⁇ P, that is, the number of rows of the matrix A is Q, the number of columns is P, and the elements are all integers;
  • a ⁇ C Q ⁇ P indicates that A is a complex matrix with dimension Q ⁇ P, that is, the number of rows of the matrix A is Q, the number of columns is P, and the elements in it are all complex numbers.
  • the interval of K frequency domain units between two frequency units may refer to the number of frequency units separated by not including these two frequency domain units. For example, 4 RBs are spaced between RB#1 and RB#5. It will be appreciated that the number of intervals is different from the increment values described above. When the increment value is Q, the number of intervals is Q. where Q is just an example.
  • for indicating may include both for direct indication and for indirect indication.
  • the indication information may directly indicate A or indirectly indicate A, but it does not mean that A must be carried in the indication information.
  • the information indicated by the indication information is called the information to be indicated.
  • the information to be indicated can be directly indicated, such as the information to be indicated itself or the information to be indicated. Indicating the index of information, etc.
  • the information to be indicated may also be indirectly indicated by indicating other information, where there is an association relationship between the other information and the information to be indicated. It is also possible to indicate only a part of the information to be indicated, while other parts of the information to be indicated are known or agreed in advance.
  • the indication of specific information can also be implemented by means of a pre-agreed (for example, a protocol stipulated) arrangement order of various information, so as to reduce the indication overhead to a certain extent.
  • a pre-agreed for example, a protocol stipulated
  • the common part of each piece of information can also be identified and indicated uniformly, so as to reduce the indication overhead caused by indicating the same information separately.
  • a precoding matrix is composed of precoding vectors, and each precoding vector in the precoding matrix may have the same parts in terms of composition or other properties.
  • the specific indication manner may also be various existing indication manners, such as, but not limited to, the above indication manner and various combinations thereof.
  • the required indication mode can be selected according to specific needs.
  • the selected indication mode is not limited in this embodiment of the present application. In this way, the indication mode involved in the embodiment of the present application should be understood as covering the ability to make the indication to be indicated. Various methods for the party to learn the information to be indicated.
  • the information to be indicated may be sent together as a whole, or may be divided into multiple sub-information and sent separately, and the transmission periods and/or transmission timings of these sub-information may be the same or different.
  • the specific sending method is not limited in this application.
  • the sending period and/or sending timing of these sub-information may be predefined, for example, predefined according to a protocol, or configured by the transmitting end device by sending configuration information to the receiving end device.
  • the configuration information may include, for example, but not limited to, one or a combination of at least two of radio resource control signaling, medium access control (medium access control, MAC) layer signaling, and physical layer signaling.
  • the radio resource control signaling such as packet radio resource control (radio resource control, RRC) signaling; MAC layer signaling, for example, includes MAC control element (control element, CE); physical layer signaling, for example, includes downlink control information (downlink control information). information, DCI).
  • RRC radio resource control
  • MAC layer signaling for example, includes MAC control element (control element, CE)
  • CE control element
  • physical layer signaling for example, includes downlink control information (downlink control information). information, DCI).
  • saving may refer to saving in one or more memories.
  • the one or more memories may be provided separately, or may be integrated in an encoder or decoder, a processor, or a communication device.
  • the one or more memories may also be partially provided separately and partially integrated in the decoder, processor, or communication device.
  • the type of memory may be any form of storage medium, which is not limited in this application.
  • the "protocols" involved in the embodiments of this application may refer to standard protocols in the communication field, such as LTE protocols, NR protocols, and related protocols applied in future communication systems, which are not limited in this application.
  • At least one means one or more
  • plural means two or more.
  • “And/or” which describes the association relationship of the associated objects, indicates that there can be three kinds of relationships, for example, A and/or B, which can indicate: the existence of A alone, the existence of A and B at the same time, and the existence of B alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects are an “or” relationship.
  • “At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • At least one (a) of a, b and c can represent: a, or, b, or, c, or, a and b, or, a and c, or, b and c, or, a , b and c.
  • a, b and c can be single or multiple respectively.
  • Precoding technology Using precoding technology, the transmitting device and multiple receiving devices can transmit on the same time-frequency resources, that is, multi-user multiple input multiple output (MU-MIMO) ). It should be understood that the relevant descriptions of the precoding technology herein are only examples for ease of understanding, and are not used to limit the protection scope of the embodiments of the present application.
  • the network device mainly relies on the channel state information (channel state information, CSI) of the downlink channel fed back by the terminal device to the network device to determine.
  • channel state information channel state information
  • precoding may also be performed in other manners, for example, in the case where channel information (eg, but not limited to, channel matrix) cannot be obtained, precoding is performed by using a preset precoding matrix or a weighted processing manner. For the sake of brevity, the specific content will not be repeated here.
  • channel information eg, but not limited to, channel matrix
  • uplink and downlink channels transmit signals on the same frequency domain resources and different time domain resources.
  • the network device can use the uplink channel to obtain the CSI of the downlink channel, and this feature is called the reciprocity of the uplink and downlink channels.
  • the network device can measure the uplink channel according to an uplink reference signal (reference signal, RS), such as a sounding reference signal (sounding reference signal, SRS).
  • RS uplink reference signal
  • SRS sounding reference signal
  • Time delay, angle, angle time delay pair information When the signal is transmitted through the wireless channel, the transmitting antenna can go through multiple paths to the receiving antenna.
  • the multipath delay causes frequency selective fading, which is the change of the frequency domain channel.
  • Delay is the transmission time of wireless signals on different transmission paths, which is determined by distance and speed, and has nothing to do with the frequency domain of wireless signals. When signals are transmitted on different transmission paths, there are different transmission delays due to different distances. Since the physical locations between the network equipment and the terminal equipment are fixed, the multipath distribution of the uplink and downlink channels is the same in time delay. Therefore, the uplink and downlink channels in the FDD mode with time delay can be considered to be the same, or reciprocal.
  • the angle may refer to the angle of arrival (AOA) at which the signal reaches the receiving antenna via the wireless channel, or may refer to the angle of departure (AOD) of the signal transmitted through the transmitting antenna.
  • AOA angle of arrival
  • AOD angle of departure
  • the angle may refer to the arrival angle of the uplink signal reaching the network device, or may refer to the departure angle of the network device transmitting the downlink signal. Due to the reciprocity of the transmission paths of the uplink and downlink channels on different frequencies, the arrival angle of the uplink reference signal and the departure angle of the downlink reference signal can be considered to be reciprocal.
  • the angle-delay pair information may be information including an angle and a time delay, or may be an angle-delay pair, or may be a weight corresponding to an angle-delay pair.
  • the angle delay pair information may refer to the angle delay pair; when describing the complex coefficient corresponding to the angle delay pair information
  • the angle-delay pair information may refer to the weight of the angle-delay pair.
  • the angle described in this paper is actually an angle vector with dimension N tx *1, denoted as S( ⁇ k ); correspondingly, the delay is actually a delay vector with dimension N f *1, denoted as F( ⁇ l );
  • the angle delay pair information is actually a combination of an angle vector and a delay vector, and at least one of the angle vectors and delay vectors contained in any two angle delay pair information is different, that is, That is, each angle-delay pair information can be uniquely determined by an angle vector and a time-delay vector.
  • Reference signal (reference signal, RS) and precoding reference signal may also be referred to as a pilot (pilot), a reference sequence, and the like.
  • the reference signal may be a reference signal used for channel measurement.
  • the reference signal may be a channel state information reference signal (channel state information reference signal, CSI-RS) used for downlink channel measurement, or may be an SRS used for uplink channel measurement.
  • CSI-RS channel state information reference signal
  • the reference signal used to obtain the channel state information of the downlink channel may also be referred to as a downlink reference signal or CSI-RS.
  • the precoding reference signal may be a reference signal obtained by precoding the reference signal.
  • the precoding may specifically include beamforming (beamforming) and phase rotation.
  • the beamforming can be implemented by, for example, precoding the downlink reference signal based on one or more angle vectors
  • the phase rotation can be implemented by, for example, precoding the downlink reference signal with one or more delay vectors.
  • the precoding reference signal may be a reference signal obtained by precoding the information using an angular delay for the downlink reference signal.
  • a reference signal obtained by precoding such as beamforming and phase rotation
  • a reference signal without precoding is referred to as a reference signal for short.
  • precoding the downlink reference signal based on one or more angle vectors may also be referred to as loading one or more angle vectors onto the downlink reference signal to implement beamforming.
  • Precoding the downlink reference signal based on one or more delay vectors may also be referred to as loading one or more delay vectors onto the downlink reference signal to implement phase rotation.
  • Precoding the downlink reference signal based on one or more angular delay pair information may also be referred to as loading the one or more angular delay pair information onto the downlink reference signal to implement beamforming and phase rotation.
  • Precoding the reference signal based on the information based on each angle delay is equivalent to loading the weight vector corresponding to the information at each angle delay on the reference signal, where the weight vector is a certain column of the weight matrix ZH .
  • each port can load T weight vectors corresponding to T angle delay pair information.
  • the weight matrix Z H is:
  • the reference signal loaded with the angle delay pair information can be transmitted to the terminal device through the downlink channel
  • the channel measured by the terminal device according to the received precoding reference signal is equivalent to the angle delay pair information loaded Channel.
  • Port It can include a transmitting port and a receiving port.
  • the transmitting port can be understood as a virtual antenna recognized by the receiving device.
  • a port may refer to a transmit antenna port.
  • the reference signal for each transmit antenna port may be an unprecoded reference signal.
  • the transmit antenna port may refer to an actual independent transmit unit (transceiver unit, TxRU).
  • the port may also refer to the port after beamforming and phase rotation.
  • the reference signal of each port may be a precoded reference signal obtained by precoding the reference signal based on an angle vector and a delay vector. This port may also be referred to as the port of the precoding reference signal.
  • the reference signal of each port may be transmitted through one or more frequency domain units, and herein, it is assumed that the transmission bandwidth of the reference signal of each port is N f frequency units.
  • the N f frequency units may be frequency units with continuous or discontinuous frequencies.
  • the index of each frequency unit in the N f frequency units in this application it is based on the frequency size of the N f frequency units, etc.
  • the sorted order not the index in the system bandwidth.
  • the indices of the N f frequency units in the system bandwidth may also be used for description, but they are substantially the same. For ease of understanding and description, this application will not describe them here.
  • transmit antenna ports when referring to transmit antenna ports, it may refer to the number of ports that are not subjected to spatial precoding. That is, it is the actual number of independent transmission units.
  • the port when referring to the port, in different embodiments, it may refer to the port of the transmit antenna, or it may refer to the port of the precoding reference signal.
  • the specific meaning expressed by the port can be determined according to the specific embodiment.
  • the port of the precoding reference signal is referred to as a reference signal port.
  • the receiving port can be understood as the receiving antenna of the receiving device.
  • the receiving port may refer to the receiving antenna of the terminal device.
  • a frequency unit may also be called a frequency domain unit, which represents a unit of frequency domain resources and can represent different granularity of frequency domain resources.
  • the frequency unit may include, but is not limited to, one or more subbands (SB), one or more resource blocks (RB), one or more resource block groups (RBG), one or more Precoding resource block group (precoding resource block group, PRG), etc.
  • SB subbands
  • RB resource blocks
  • RBG resource block groups
  • PRG Precoding resource block group
  • the frequency unit group is obtained by dividing the N f frequency units of each port in a certain grouping manner. As described above, the N f frequency units may be divided into K frequency unit groups. Therefore, one frequency unit group may include one or more frequency units.
  • the terminal equipment reports information that is not reciprocal between the uplink and downlink channels, such as the difference between the angle delay and the information. complex coefficients, and further, the network device determines the precoding of the downlink channel based on the reported complex coefficients of each angle delay pair information and each angle delay pair information.
  • a current channel information feedback method can be shown in Figure 2 :
  • the network device estimates the angle delay according to the signal received from the uplink channel to obtain reciprocal angle delay pair information; for example, the uplink channel H UL can be expressed as:
  • S is the spatial information matrix with dimension N tx ⁇ N tx , which physically corresponds to the arrival angle/departure angle of network equipment
  • F is the frequency domain information matrix with dimension N f ⁇ N f , which physically corresponds to the arrival angle of network equipment.
  • Time delay of each multipath signal
  • C UL is a complex coefficient matrix with dimension N tx ⁇ N f , used to represent the complex coefficients (also called complex coefficients) corresponding to the information of each angle delay pair information of the uplink channel.
  • vec(C UL ) is a column vector composed of complex coefficients corresponding to each angle delay pair information of the uplink channel; therefore, based on formula (1), the corresponding angle delay pair information of each angle can be obtained.
  • the matrix Z H composed of the weights.
  • Z H is a complex matrix with dimension N f N tx ⁇ N f N tx , and each column of Z H is the weight corresponding to each angle delay pair information.
  • the network device loads the weight corresponding to each angle delay pair information on the frequency unit of each port of the downlink reference signal, and obtains and sends the precoding reference signal.
  • the network device loads the weight corresponding to each angle delay pair information to the reference signal transmitted by the frequency unit of each port, which may be referred to as the network device loading an angle delay pair information on the reference signal of each port.
  • the transmission bandwidth of the reference signal is 52 frequency units, and one frequency unit is one RB, and the network device can obtain 32 angle delay pair information through formula (1), as shown in Figure 3, the network device will One angular delay pair information is loaded on the reference signals in all resource blocks (RBs) corresponding to port 1, and the second angular delay pair information is loaded on all RBs corresponding to port 2, . . . The 32nd angle-delay pair information is loaded on all RBs corresponding to port 32.
  • the terminal device performs channel estimation according to the precoding reference signal, and obtains the equivalent channel of each frequency unit on each port, denoted as Among them, p represents the p-th port, and n represents the n-th frequency unit.
  • the terminal device accumulates the equivalent channels on the N f frequency units of each port, and obtains and reports a complex coefficient of the angular delay pair information corresponding to each port.
  • a complex coefficient of the downlink channel of the pth port Such as the complex coefficient of the downlink channel of the pth port
  • the network device can determine the precoding of the downlink channel based on the aforementioned weight vector of the delay pair information of each angle and the complex coefficient matrix C DL of the downlink channel.
  • the complex coefficient matrix C DL may be based on the R receive antennas of the terminal device and the complex coefficients of each port Sure.
  • each port can only load the weight of one angle-delay pair, that is to say Each port can only correspond to one precoding vector, and the number of ports that the network device needs to configure for the cell increases linearly with the increase of the number of terminal devices in the cell. For example, assuming that there are 30 terminal devices in a cell, and each terminal device is configured with 32 ports, the port overhead of the cell is too large.
  • the communication system limits the number of ports that the network device allows to configure for the terminal device, it also limits the number of angle-delay pair weights that the network device can load on the reference signal. Therefore, in the channel information feedback method, how to reduce the required port overhead becomes an urgent problem to be solved.
  • the present application provides a channel information feedback method.
  • a network device sends a precoding reference signal, and each port of the precoding reference signal corresponds to T precoding vectors, where T ⁇ 1; the terminal device receives the precoding reference signal; the terminal device Determine T complex coefficients of each port in the P ports of the precoding reference signal, T ⁇ 1; the terminal device feeds back channel parameters according to the T complex coefficients of each port and the first codebook W; and then , the network device can determine the precoding of the downlink channel based on the channel parameter and the first codebook. Wherein, the first codebook W is determined based on the T.
  • the precoding vector is determined based on the angle delay pair information. It can be seen that this method can carry two or more than two angle-delay pair information for each port, so that the utilization rate of the port can be improved, that is, the port overhead can be reduced.
  • the present application also provides three ways of loading the angle delay pair information, that is, how to load the T angle delay pair information corresponding to the T precoding vectors corresponding to each port, and how to load the information of the T angle delay pairs corresponding to the T precoding vectors corresponding to each port. How the port calculates the corresponding T complex coefficients is related to the loading method of the angle delay pair information of each port. Therefore, the angle-delay pair information loading method may also be referred to as a precoding vector loading method or a complex coefficient calculation method.
  • the T is determined based on the number O of specific delay offsets corresponding to each port.
  • each port can load O angle-delay pair information through O specific delay offsets, and each specific delay offset is equivalent to the network device moving the corresponding angle-delay pair to a specific delay position, Therefore, the terminal device can calculate complex coefficients corresponding to O angular delay pair information for the same port. O ⁇ 1.
  • T is determined based on the group number K of frequency unit groups corresponding to each port.
  • Each port can load K angle delay pair information by grouping frequency units, and each frequency unit group loads one angle delay pair information, so that the terminal device can calculate the corresponding K angle delay pair information for the same port complex coefficients. K ⁇ 1.
  • T is determined based on the number O of the specific delay offsets corresponding to each port and the number K of the frequency unit groups corresponding to each specific delay offset; O ⁇ 1, K ⁇ 1. That is to say, each port adopts O specific delay offsets, and the N f frequency units corresponding to each specific delay offset can be divided into K frequency unit groups. In this way, the corresponding Each frequency unit group is loaded with one angle-delay pair information, and each port can be loaded with O*K angle-delay pair information, which greatly improves port utilization.
  • the terminal device can feed back channel information based on the above-mentioned first codebook W and the T complex coefficients of each port. Therefore, the embodiments of the present application also provide implementations 100 to 100 of the first codebook W. Manner 600, wherein the channel information feedback method feeds back corresponding channel information in combination with formula constraints that the first codebook W needs to satisfy.
  • FIG. 4 is a schematic flowchart of a method for feeding back channel information provided by an embodiment of the present application.
  • the channel information feedback method may include but is not limited to the following steps:
  • the network device sends a precoding reference signal, where each of the P ports of the precoding reference signal corresponds to T precoding vectors, and T ⁇ 2;
  • the terminal device receives a precoding reference signal
  • the terminal device determines T complex coefficients of each of the P ports of the precoding reference signal, where T ⁇ 2;
  • the terminal device feeds back channel information according to the T complex coefficients and the first codebook W of each port;
  • the network device receives the channel information
  • the network device determines the precoding of the downlink channel according to the channel information and the first codebook W.
  • the first codebook W is determined based on the T, and the T is determined based on the number O of specific delay offsets corresponding to each port, or based on the frequency unit group corresponding to each port.
  • the number of groups K is determined, or determined based on the number O of specific delay offsets corresponding to each port and the number of groups K of frequency unit groups corresponding to each specific delay offset; O>1, K>1.
  • the network device may use T precoding vectors for each port to precode the reference signal to obtain a precoded reference signal.
  • the T precoding vectors are determined based on the T angular delay pair information. Three types of information loading methods 100 with angle delay to information loading method 300 with angle delay are described below.
  • Each port can load O angle-delay pair information through O specific delay offsets, each specific delay offset is equivalent to the network equipment moving the corresponding complex coefficient to a specific delay position, so that the terminal equipment can target The same port calculates the complex coefficients corresponding to the O angle delay pair information.
  • the network device can move the top two angular delay pair information to the delay positions of delay 0 and delay 6 based on two specific delay offsets, respectively. , the terminal device performs channel estimation only at the corresponding delay positions, such as delay 0 and delay 6, and for port 1, the complex coefficients of the pair information of the two angle delays can be obtained.
  • the network device moves the bottom two angular delay pair information to the delay positions of delay 0 and delay 6 respectively based on two specific delay offsets. Perform channel estimation at the corresponding delay positions, such as delay 0 and delay 6, and for port 2, the complex coefficients of the pair information of the two angle delays can be obtained.
  • Each port can load K angle delay pair information by grouping frequency units, and each frequency unit group loads one angle delay pair information, so that the terminal device can calculate the corresponding K angle delay pair information for the same port complex coefficients. K ⁇ 1.
  • the RB corresponding to each port is divided into 4 RB groups.
  • RBs with the same filling pattern belong to the same RB group.
  • RB1, RB5, RB9, ..., etc. every 4 RBs form a group, and so on.
  • the RB group can be loaded with the weight of the first angle delay pair; correspondingly, RB2, RB6, RB10 Every 4 RBs is an RB group; RB3, RB7, RB11, etc. every 4 RBs are an RB group; RB4, RB8, RB12, etc.
  • each port corresponds to 4 frequency unit groups can be loaded with 4 angle delay pair information, that is, 8 ports can be loaded with 32 angle delay pair information. That is to say, each port can use 4 precoding vectors to precode the reference signal.
  • the terminal device can calculate the complex coefficients for the precoding reference signals of each segment port on the 4 frequency unit groups, respectively, A total of 32 complex coefficients are available.
  • T may be equal to K in this embodiment.
  • the angular delay pair information can be loaded on the DC component.
  • the network device does not need to use a specific delay offset for each port. Accordingly, the terminal device can The complex coefficients for each port are obtained at extension position 0. That is, in this method, the terminal device calculates different complex coefficients through different frequency unit groups.
  • the complex coefficients of the angular delay pair information can also be loaded on other components, which is equivalent to moving all complex coefficients to a specific delay offset, and the terminal device is at the corresponding delay position.
  • the complex coefficients are calculated based on different ports and different frequency bin groupings.
  • Each port adopts O specific delay offsets, and the N f frequency units corresponding to each specific delay offset can be divided into K frequency unit groups. In this way, each frequency unit corresponding to each specific delay offset When a group loads one angle-delay pair information, each port can load O*K angle-delay pair information, which greatly improves port utilization.
  • T is determined based on the number O of specific delay offsets corresponding to each port and the number K of frequency unit groups corresponding to each specific delay offset; O ⁇ 1, K ⁇ 1.
  • the network device adopts two specific delay offsets, as shown in the row coordinates, corresponding to delay 0 and delay 6. Therefore, the terminal device can use delay 0 and delay 6 at the delay 0 and delay 6.
  • Different complex coefficients are calculated separately above, and in addition, the frequency unit is divided into 4 resource block groups, each minimum square represents a resource block, and resource blocks with the same filling pattern belong to the same resource block group. In this way, each resource fast group (referred to as delay-group) at each delay position can be loaded with one angle-delay pair information.
  • delay 0-group 1 is loaded with the first angle-delay pair information; delay 0-group 2 is loaded with the second angle-delay pair information; delay 0-group 3 is loaded with the third angle-delay pair information; Delay 0-group 4 load the 4th angle-delay pair information; delay 6-group 1 load the 5th angle-delay pair information; delay 6-group 2 load the 6th angle-delay pair information; delay 6-group 3 loads the 7th angle-delay pair information; delay 6-group 4 loads the 8th angle-delay pair information. It can be seen that port p can load 8 angle-delay pair information. Thus, the port overhead is greatly reduced, that is, the port utilization rate is improved.
  • the terminal device determines T complex coefficients of each of the P ports of the precoding reference signal, which may include: the terminal device determining each specific delay of each port of the P ports of the precoding reference signal By offsetting the equivalent channels of the corresponding frequency units, and then accumulating the equivalent channels, the complex coefficient of the angle delay pair information corresponding to the specific delay offset can be obtained; accordingly, load the above angle delay information
  • the terminal may obtain O complex coefficients for each port, where O may be greater than 1.
  • determining the T complex coefficients of each of the P ports of the precoding reference signal by the terminal device may include: the terminal device determining each frequency in each frequency unit group of each port of the P ports of the precoding reference signal.
  • the terminal may obtain K complex coefficients for each port, where K may be greater than 1.
  • the terminal device determining the T complex coefficients of each of the P ports of the precoding reference signal may include: the terminal device determining a The equivalent channels of each frequency unit in each frequency unit group, and then the equivalent channels are accumulated to obtain the complex coefficient of the angle delay pair information of the frequency unit group with the specific delay offset;
  • the terminal may obtain O*K complex coefficients for each port, where O may be greater than 1, and K may be greater than 1.
  • the terminal device feeds back channel information according to the T complex coefficients and the first codebook W of each port. That is to say, the channel information fed back by the terminal device is also related to the first codebook W.
  • the relevant contents of the first codebook W from Embodiment 100 to Embodiment 600 are described below.
  • Embodiment 100 of the first codebook W is a first codebook W
  • the W 1 is the port selection matrix corresponding to the P ports; each column of W 1 has only one non-zero element with a value of 1, indicating that the terminal device can select L ports from the P ports.
  • P and L can be controlled by network equipment through radio resource control (RRC), medium access control-control element (MAC-CE), downlink control information (DCI) signaling One or more of them can be configured, and can also be agreed by the protocol.
  • RRC radio resource control
  • MAC-CE medium access control-control element
  • DCI downlink control information
  • the W 1 is a frequency domain selection matrix, used to indicate the positions of J complex coefficients selected by the terminal device from the T complex coefficients corresponding to each port, J ⁇ T.
  • a complex coefficient matrix which can be used to indicate J complex coefficients corresponding to each of the L ports selected by the terminal device and their position information.
  • B complex coefficients are selected for reporting within the range of the L ⁇ J complex coefficients.
  • the channel information is used to indicate at least one of the following W 1 , the and the W f ;
  • the W 1 is an integer matrix with a dimension of P*L, used to indicate the positions of the L ports selected by the terminal device from the P ports, L ⁇ P; each row of the W 1 is the same as the Corresponding to each of the P ports, each row of the W 1 has at most one non-zero element with a value of 1; each column of the W 1 corresponds to each port selected by the terminal device, so Each column of the W 1 has only one non-zero element with a value of 1; when the element a p,l of the W 1 is equal to 1, it means that the lth port selected by the terminal device is one of the P ports.
  • the p th port when the element a p,l of the W 1 is equal to 0, it indicates that the p th port in the P ports is not the l th port selected by the terminal device, 1 ⁇ p ⁇ P,1 ⁇ l ⁇ L.
  • the W 1 can be expressed as:
  • the Wf is an integer matrix of dimension T*J, each row in the Wf corresponds to each complex coefficient corresponding to the each port, and each row of the Wf has at most 1 value.
  • Each column of the Wf corresponds to each of the J complex coefficients, and each column of the Wf has only one non-zero element with a value of 1.
  • the T complex coefficients are complex coefficients corresponding to the K frequency unit groups of each port, and the T is equal to the K; the W Each row of 1 corresponds to the complex coefficients for each frequency bin group of said each port. Specifically, each row of W 1 may firstly arrange T complex coefficients for one port, and then arrange T complex coefficients of other ports, or each row of W 1 may first arrange for a certain frequency unit group The P complex coefficients corresponding to the corresponding P ports are arranged, and then the P complex coefficients of the P ports corresponding to other frequency unit groups are arranged.
  • the T complex coefficients are the complex coefficients corresponding to the K frequency unit groups of each port, and the T is equal to the K; the W f Each row of corresponds to the complex coefficients for each frequency bin group of the each port.
  • the T complex coefficients corresponding to each port correspond to the angle-delay pair information corresponding to the K frequency unit groups corresponding to each port. Therefore, the t th complex coefficient may also be referred to as a complex coefficient corresponding to the angle delay pair information corresponding to the k th frequency unit group.
  • each row in the W f corresponds to the complex coefficient of the angle delay pair information corresponding to each frequency unit group corresponding to each port; the jth complex coefficient can be the terminal corresponding to each port.
  • the complex coefficient of the angular delay pair information corresponding to each frequency unit group is selected, and each column of the W f corresponds to the complex coefficient of the angular delay pair information corresponding to each frequency unit group selected by the terminal device.
  • the angular delay pair information loading method 300 is adopted, and the T complex coefficients are K frequency unit groups of each specific delay offset in the O specific delay offsets of each port.
  • the T is equal to the O*K; each row of W f corresponds to the complex coefficients of each frequency unit group of each specific delay offset of each port. Said O ⁇ 1, K ⁇ 1.
  • the T complex coefficients corresponding to each port are the angle times corresponding to each of the K frequency unit groups of each specific delay offset of the O specific delay offsets corresponding to each port. Corresponding to the information.
  • the t-th complex coefficient may also be referred to as a complex coefficient corresponding to the angle delay pair information corresponding to the k-th frequency unit group of the o-th specific delay offset.
  • each row in the W f corresponds to the complex coefficient of the angle delay pair information corresponding to each frequency unit group of each specific delay offset of each port;
  • the jth complex coefficient can be For the terminal to select the complex coefficients of O*K angle delay pair information corresponding to K frequency unit groups offset from O specific delays of each port, each column of the W f is the same as each column selected by the terminal equipment.
  • the complex coefficient of the angle delay pair information corresponding to each frequency unit group of a specific delay offset is the same as each column selected by the terminal equipment.
  • the J complex coefficients selected by each port are corresponding to the V frequency unit groups of each specific delay offset of the M specific delay offsets selected by each port. M*V complex coefficients.
  • said is a complex number matrix with dimension L*J, used to indicate the B complex coefficients selected by the terminal device from the J complex coefficients corresponding to each of the L ports and their values in the the position in; the Each row of corresponds to each of the L ports; the Each column of corresponds to each of the J complex coefficients; the The elements c l,j are zero, indicating that the B complex coefficients do not include the jth complex coefficient of the lth port; the The elements c l,j are non-zero elements, indicating that the B complex coefficients include the jth complex coefficient of the lth port; 1 ⁇ l ⁇ L, 1 ⁇ j ⁇ J.
  • Embodiment 200 of the first codebook W is a
  • the W 1 is a coefficient selection matrix, used to indicate the position of the B complex coefficients selected by the terminal device from the T complex coefficients corresponding to each of the P ports; B ⁇ P*T;
  • said is a matrix of complex coefficients indicating the B complex coefficients.
  • the channel information is used to indicate at least one of the following W 1 and the
  • the W 1 is an integer matrix of dimension (P*T)*B, each row of the W 1 corresponds to each complex coefficient corresponding to each of the P ports, and each row of the W 1 corresponds to each complex coefficient corresponding to each of the P ports. Rows have at most 1 non-zero element of value 1; each column of said W 1 corresponds to each of the B complex coefficients, and each column of said W 1 has only one non-zero value of 1 zero element;
  • the T complex coefficients are complex coefficients corresponding to the K frequency unit groups of each port, and the T is equal to the K; the W Each row of 1 corresponds to the complex coefficients for each frequency bin group of said each port. Specifically, each row of W 1 may firstly arrange T complex coefficients for one port, and then arrange T complex coefficients of other ports, or each row of W 1 may first arrange for a certain frequency unit group The P complex coefficients corresponding to the corresponding P ports are arranged, and then the P complex coefficients of the P ports corresponding to other frequency unit groups are arranged.
  • the T complex coefficients are complex coefficients corresponding to O specific delay offsets of each port, and the T is equal to the zero;
  • Each row of the W 1 corresponds to the complex coefficient of each specific delay offset of each port of the P ports, or each row of W 1 may first arrange the P corresponding to a specific delay offset. The P complex coefficients corresponding to the ports, and then the P complex coefficients of the P ports corresponding to other specific delay offsets are arranged.
  • the angular delay pair information loading method 300 is adopted, and the T complex coefficients are K frequency unit groups of each specific delay offset in the O specific delay offsets of each port.
  • the T is equal to the O*K; each row of the W 1 is in phase with the complex coefficients of each frequency unit group of each specific delay offset of each port.
  • the P complex coefficients corresponding to the P ports corresponding to a certain frequency unit group for a certain delay offset may be arranged first in each row of W1, and then the other The P complex coefficients of the P ports corresponding to the frequency unit, and then the P complex coefficients of the P ports corresponding to each frequency unit of other specific delay offsets are arranged, or each row of W 1 can be arranged first for a certain delay offset.
  • P complex coefficients corresponding to the P ports corresponding to a specific delay offset of a frequency unit group and then arrange the P complex coefficients of the P ports corresponding to each other specific delay offset of the frequency unit group, Then, the P complex coefficients of the P ports corresponding to each specific delay offset of the other frequency unit groups are arranged.
  • Embodiment 300 of the first codebook W is a first codebook W
  • the W 1 is a port selection matrix corresponding to the P ports, and is used to indicate the positions of the L ports selected by the first device from the P ports, L ⁇ P;
  • said is a complex coefficient matrix, used to indicate the B complex coefficients selected by the terminal device from the J complex coefficients corresponding to each of the L ports and their position in;
  • the J is the number of complex coefficients that the terminal device is allowed to select from the T complex coefficients corresponding to each port, and the J ⁇ T.
  • the channel information is used to indicate at least one of the following W 1 and the
  • the W 1 is an integer matrix with a dimension of P*L, used to indicate the positions of the L ports selected by the terminal device from the P ports, L ⁇ P;
  • Embodiment 400 of the first codebook W is a first codebook W
  • said is a complex coefficient matrix, used to indicate the B complex coefficients selected by the terminal device; the B complex coefficients are selected from the T complex coefficients corresponding to each of the P ports.
  • the channel information is used to indicate at least one of the following complex coefficient matrices and the first indication information
  • the complex coefficient matrix is a complex matrix of dimension B*1, the Each row of is corresponding to each of the B complex coefficients selected by the terminal device;
  • the first indication information is used to indicate position information of the B complex coefficients.
  • the position information of the B complex coefficients includes the p-th port corresponding to each of the B complex coefficients; or, the o-th port of the p-th port corresponding to each of the B complex coefficients a specific delay offset; or, the k-th frequency unit group of the p-th port corresponding to each of the B complex coefficients; or, the p-th port corresponding to each of the B complex coefficients
  • the kth frequency unit group of the oth specific delay offset 1 ⁇ p ⁇ P, 1 ⁇ o ⁇ O, 1 ⁇ k ⁇ K.
  • Embodiment 500 of the first codebook W is a codebook
  • the W 1 is the port selection matrix corresponding to the P ports
  • the W f is a frequency domain basis matrix, which is used to indicate the frequency domain basis of the J frequency unit groups selected by the terminal device from the T frequency unit groups corresponding to each port.
  • the channel information is used to indicate at least one of the following W 1 , the and the W f , the W 1 is an integer matrix with a dimension of P*L, used to indicate the positions of the L ports selected by the terminal device from the P ports, L ⁇ P;
  • the W f is obtained by selecting J columns from the T columns of the frequency domain basis matrix W′ f ; the W′ f is a complex matrix with dimension N f *T, and each column of the W′ f is associated with a discrete number.
  • the Fourier transform DFT column vector corresponds, and each column is obtained by sampling the corresponding DFT column vector according to the frequency unit included in the corresponding frequency unit group; each row of the W′ f corresponds to the N f frequencies corresponds to each frequency unit in the unit; each column of the W′ f corresponds to each frequency unit group of the T frequency unit groups, and the number of non-zero elements in each column of the W′ f is equal to The number of frequency units included in the corresponding frequency unit group;
  • said is a complex number matrix with dimension L*J, used to indicate the B complex coefficients selected by the terminal device from the J frequency unit groups corresponding to each of the L ports and their the position in; the Each row of corresponds to each of the L ports; the Each column of corresponds to each of the J complex coefficients; the The elements c l,j are zero, indicating that the B complex coefficients do not include the jth complex coefficient of the lth port; the The elements c l,j are non-zero elements, indicating that the B complex coefficients include the jth complex coefficient of the lth port; 1 ⁇ l ⁇ L, 1 ⁇ j ⁇ J.
  • the T frequency unit groups are K frequency unit groups of each port, and the T is equal to K; each column of the W′ f Corresponding to each frequency unit group in the K frequency unit groups; the index of the discrete Fourier transform DFT column vector corresponding to each column of the W′ f is the same.
  • the angular delay pair information loading method 300 is used, and the T frequency unit groups are K frequency unit groups of each specific delay offset in the O specific delay offsets of each port. , the T is equal to the O*K;
  • Each column of the W′ f corresponds to each frequency unit group in the K frequency unit groups of each specific delay offset in the O specific delay offsets;
  • Each K column of the W′ f corresponds to the DFT column vector of each specific delay offset
  • the index of the DFT column vector corresponding to each column in each of the K columns is the same
  • the index of the corresponding DFT column vector is the index of the DFT column vector corresponding to the specific delay offset.
  • the above-mentioned J frequency unit groups are arbitrarily selected from O*K frequency unit groups; in another way, the J frequency unit groups selected by each port are the V frequency unit groupings for each of the selected M specific delay offsets, where J equals M*V.
  • the information loading method 200 for the angle delay is the frequency domain basis matrix, the dimension of its basis vector is N f ⁇ 1, and N f is the number of CSI-RS frequency units, which can be equal to the number of RBs or subbands of its transmission bandwidth, or the number of RBs or subbands.
  • the function can also be notified by the network device or agreed by the protocol.
  • the N f frequency units of a CSI-RS port are divided into K groups, that is, when the CSI-RS port can correspond to K complex coefficients
  • the J column of W f indicates that the terminal equipment selects one of the loaded K complex coefficients. J are reported.
  • W f is a specific structure that satisfies the following constraints:
  • each column is a column of the DFT matrix (denoted Represents a certain column of the DFT matrix, such as the nth column);
  • the matrix Select a matrix for the frequency unit with a certain sparse structure.
  • the elements in the matrix are qi ,j ⁇ 0,1 ⁇ , and the kth column has a total of nonzero elements, and The positions of the non-zero elements are consistent with the frequency unit index ⁇ k contained in the kth frequency unit group; each row has at most one non-zero element, indicating that the frequency unit can only be divided into a certain frequency unit group at most, and at most Load a weight of delay angle to information or not load any angle delay information;
  • the complete frequency domain basis matrix W′ f of K columns can be expressed as Among them, ⁇ represents the Hada code product, that is, the corresponding elements are multiplied together;
  • the terminal device selects J from the K complex coefficients according to the agreement or signaling, and the frequency domain basis matrix is formed by the J columns corresponding to the V complex coefficients in W′ f and report.
  • Dividing N f frequency units into K groups is essentially a combinatorial problem, and there are many division methods, each of which corresponds to a frequency domain basis matrix W f (J in W′ f ) that satisfies the above constraints. column, the essence is to discuss the specific form of W′ f ). Since each divided group of frequency units is used to load a complex coefficient information, when the number of frequency units in the group is less, the estimation accuracy of the projection coefficient of the downlink channel on the complex coefficient decreases. In order to comprehensively consider the actual solution performance , the number of frequency units in the K group after division should be as close as possible.
  • This embodiment provides two frequency unit division methods, which are as follows:
  • the N f frequency units are divided into a group that are separated by K frequency units.
  • the frequency unit index corresponding to the kth group can be expressed as
  • mod(N f ,K) ⁇ 0 the kth frequency unit group contains frequency domain units, there are still The frequency units are not grouped, and these ungrouped frequency units can all be allocated to a certain frequency unit group, or can be separately allocated to multiple unit groups, or not allocated to any frequency unit group; after determining the remaining frequency units
  • the frequency unit index corresponding to the kth group can be expressed as ⁇ k represents the remaining ungrouped
  • G can be represented as (a DFT column vector with index n):
  • Frequency unit selection matrix It can be represented as the structure shown in FIG. 9 .
  • Frequency Domain Basis Matrix It can be represented as the structure shown in Figure 10.
  • N f frequency units the adjacent The frequency units are divided into a group.
  • the frequency unit index corresponding to the kth group can be expressed as
  • mod(N f ,K) ⁇ 0 the kth frequency unit group contains frequency domain units, there are still
  • the frequency units are not grouped, and these ungrouped frequency units can all be allocated to a certain frequency unit group, or can be separately allocated to multiple unit groups, or not allocated to any frequency unit group; after determining the remaining frequency units
  • the frequency unit index corresponding to the kth group can be expressed as ⁇ k represents the remaining ungrouped The index number of the frequency unit in which the frequency units are divided into the k-th group.
  • matrix G is consistent with the above method; the frequency unit selection matrix corresponding to this method It can be represented as shown in Figure 11.
  • Frequency Domain Basis Matrix It can be represented as shown in Figure 12.
  • the frequency domain basis matrix W f is composed of J selected from O ⁇ K, as described below.
  • the frequency domain basis matrix W f is a specific structure that satisfies the following constraints:
  • the kth frequency unit group index sequence after the marking group is ⁇ k
  • the number that includes the frequency unit is
  • Each specific delay offset can correspond to a division method of N f frequency units (frequency unit selection matrix), then the frequency unit selection matrix corresponding to a total of O specific delay offsets can be expressed as Among them, the frequency unit selection matrix corresponding to the oth specific delay offset
  • the frequency unit selection matrices corresponding to multiple specific delay offsets may be the same or different;
  • Embodiment 600 of the first codebook W is a first codebook W
  • the W 1 is the port selection matrix corresponding to the P ports
  • the Q f is a frequency unit selection matrix, used to indicate the position of each frequency unit in the J frequency unit groups selected by the terminal device from the T frequency unit groups corresponding to each port;
  • the W f is a frequency-domain basis matrix, used to instruct the terminal device to obtain J DFT column vectors from the T discrete Fourier transform DFT column vectors corresponding to each port.
  • the channel information is used to indicate at least one of the following W 1 , the the Q f and the W f ;
  • the W 1 is used to indicate the positions of the L ports selected by the terminal device from the P ports, L ⁇ P;
  • the Q f is an integer matrix of dimension N f *J, and each row of the Q f corresponds to each frequency unit in the N f frequency units; each column of the Q f corresponds to the J frequencies. Each frequency unit group in the unit group corresponds to;
  • the W f is obtained by selecting J columns from the T columns of the frequency domain basis matrix W′ f ; the W′ f is a complex matrix with dimension N f *T, and each column of the W′ f is associated with a discrete number.
  • Fourier transform DFT column vector corresponds to; each row of the W′ f corresponds to each frequency unit of the N f frequency units; each column of the W′ f corresponds to the T DFT column vectors Each DFT column vector corresponds to;
  • said is a complex number matrix with dimension L*J, used to indicate the B complex coefficients selected by the terminal device from the J complex coefficients corresponding to each of the L ports and their values in the the position in; the Each row of corresponds to each of the L ports; the Each column of is corresponding to each frequency unit group in the J frequency unit groups; the The elements c l,j are equal to zero, indicating that the complex coefficients corresponding to the jth frequency unit group of the lth port are not included in the B complex coefficients; the The elements c l,j are equal to non-zero, indicating that the B complex coefficients include the complex coefficients corresponding to the jth frequency unit group of the lth port, 1 ⁇ l ⁇ L, 1 ⁇ j ⁇ J.
  • the T frequency cell groups are K frequency cell groups of each port, and T is equal to K; Each of the K frequency unit groups corresponds to each other; the indices of the discrete Fourier transform DFT column vectors of each column of the W′ f are the same.
  • the angular delay pair information loading method 300 is used, and the T frequency unit groups are K frequency unit groups of each specific delay offset in the O specific delay offsets of each port.
  • the T is equal to the O*K; each column of the Q f is in phase with each of the K frequency cell groups of each of the O specific delay offsets Corresponding; each K column of the W′ f corresponds to the DFT column vector corresponding to each specific delay offset, the index of the DFT column vector of each column in each K column is the same, and the index of each K column is the same.
  • the index of the DFT column vector is the index of the DFT column vector corresponding to the specific delay offset.
  • the above-mentioned J frequency cell groups are arbitrarily selected from O*K frequency cell groups; in another way, the J frequency cell groups selected by each port are the M selected by each port. V frequency unit groupings for each specific delay offset of a specific delay offset, where J is equal to M*V.
  • the relevant parameters used by the terminal equipment can be obtained in the following ways, including but not limited to:
  • the grouping method of frequency units and the index of the DFT column vector corresponding to a specific delay offset can be obtained in the following ways:
  • the network device sends second indication information
  • the terminal device receives the second indication information
  • the second indication information is used to indicate the discrete Fourier transform DFT vector corresponding to each specific delay offset adopted by each port.
  • the index in the DFT matrix and the number K of frequency unit groups divided by N f frequency units corresponding to each specific delay offset, and the kth frequency unit group includes frequency unit and the index of the frequency unit in the kth frequency unit group is ⁇ k ; 1 ⁇ k ⁇ K;
  • the second indication information is used to indicate the index of the discrete Fourier transform DFT vector corresponding to each port in the DFT matrix and the number of frequency unit groups K and the kth frequency unit divided by the corresponding N f frequency units. group includes frequency bins and the index of the frequency bins in the kth frequency bin group is ⁇ k .
  • the terminal device may also determine the frequency domain basis matrix W′ f according to the second indication information.
  • the terminal device may also determine the frequency domain basis matrix W′ f according to the second indication information.
  • the network device may send the frequency domain basis matrix W′ f , and the terminal device receives the frequency domain basis matrix W′ f ; the frequency domain basis matrix W′ f is used to indicate the each port or each port
  • the number K of frequency unit groups corresponding to each specific delay offset in the O specific delay offsets adopted, and the kth frequency unit group includes frequency unit and the index of the frequency unit in the k-th frequency unit group is ⁇ k ; 1 ⁇ k ⁇ K.
  • the terminal device can receive third indication information from the network device, where the third indication information is used to indicate the number B of complex coefficients to be selected by the terminal device.
  • the terminal device receives fourth indication information, where the fourth indication information is used to indicate the corresponding first codebook W required by the terminal device to feed back the channel information; and then , the terminal device determines the first codebook W indicated by the fourth indication information. Therefore, the channel information is fed back in combination with the formula that the first codebook W needs to satisfy.
  • this application also provides two grouping methods including but not limited to:
  • the N f frequency units corresponding to each port or each specific delay offset of each port are divided into K frequency unit groups, and the kth frequency unit group includes: frequency units, the index of the frequency unit in the kth frequency unit group is ⁇ k ; 1 ⁇ k ⁇ K;
  • the ⁇ k is used to indicate that when the remainder of the N f to the K is not zero, the N f frequency units are not grouped.
  • the index of the frequency unit assigned to the kth frequency unit group in the frequency units; the index of the frequency unit in the kth frequency unit group is:
  • Mode 2 The N f frequency units corresponding to each specific delay offset adopted by each port or each port are divided into K frequency unit groups, and the kth frequency unit group includes frequency units, the index of the frequency unit in the kth frequency unit group is ⁇ k ; 1 ⁇ k ⁇ K;
  • the ⁇ k is used to indicate that when the remainder of the N f to the K is not zero, the N f frequency units are not grouped.
  • This embodiment mainly aims at all the above-mentioned embodiments, and supplementally describes the CSI-RS weight of the network device and the calculation and feedback method of the complex coefficient on the side of the terminal device.
  • W′ f (n, t) represents the element of the nth row and the t column of the matrix W′ f .
  • c p,t,r represents the complex coefficient of the t-th complex coefficient loaded on the p-th CSI-RS port of the r-th terminal equipment receiving antenna.
  • the t-th complex coefficient The serial number of the frequency unit group corresponding to the complex coefficient is k ⁇ 1,...,K ⁇ ; if the scheme of the angular delay pair information loading method 300 is adopted, the specific delay offset index corresponding to the t-th complex coefficient is The index of the frequency bin group is is the equivalent channel of all frequency units of the p-th CSI-RS port of the receiving antenna for the r-th terminal device.
  • the number of ports configured by the network equipment through signaling conventions is P CSI-RS , the number of specific delay offsets used O and its corresponding DFT index number, the frequency unit group is divided into the number of groups K, and the retaliation coefficient on the terminal equipment time parameters.
  • the network device informs the terminal device through signaling that the number of retaliatory coefficients on all ports is B, and the B complex coefficients can be offset and multiple at multiple specific delays on the selected ports. Randomly select from the frequency unit grouping (freely select elements to report in the complex coefficient matrix as shown in Figure 12);
  • the network device informs the terminal device through signaling that the number of retaliation coefficients on all ports is B, and it is also necessary to limit the terminal device to only select from O specific delay offsets on each port
  • Complex coefficients corresponding to M delay offsets, or only complex coefficients corresponding to V frequency unit groups can be selected from K frequency unit groups, or the constraints of M delay offsets and V frequency unit groups must be satisfied at the same time , that is, the terminal device can only select and report B complex coefficients according to this constraint (in the complex coefficient matrix shown in FIG. 13 , complex coefficients can only be selected and reported on a certain M and a certain V row).
  • Terminal equipment side complex coefficient feedback mode
  • the terminal device can calculate and obtain R ⁇ P CSI-RS ⁇ O ⁇ K complex coefficients, corresponding to the codebook structure in the above-mentioned embodiment. Specifically, there are the following two Feedback:
  • R ⁇ P CSI-RS ⁇ O ⁇ K complex coefficients can be obtained by calculation of R receiving antennas, and the terminal equipment selects B complex coefficients (such as the energy size of complex coefficients) according to certain constraints and according to certain criteria, and report according to certain rules (for example, the selected complex coefficients can be reported in sequence according to the frequency unit group index, specific delay offset index, port index, and antenna index, or can be extended to other agreed orders), where B ⁇ 2L 0 OKR, and report the location information of the selected element, such as bitmap, etc. (if all elements are reported, the location information can be omitted and not reported);
  • B complex coefficients such as the energy size of complex coefficients
  • the terminal device selects B complex coefficients from the Rank ⁇ OKP CSI-RS complex coefficients according to certain criteria (for example, the energy size of the complex coefficients, the Rank number
  • the total number of reported elements of the coefficient matrix is B), and reported according to certain rules (for example, the selected complex coefficients can be reported sequentially according to the frequency unit group index, specific delay offset index, port index, and antenna index, or can be expanded For other agreed order), where B ⁇ 2L 0 OKR, and report the location information of the selected element at the same time, such as bitmap (bitmap), etc. (if all elements are reported, the location information can be omitted and not reported).
  • the network device determines the precoding:
  • the network device obtains the superposition coefficient matrix fed back by the terminal device matrix, the port selection matrix W 1 , the frequency domain basis matrix W f and the position information of the elements selected and reported in the selected port and the selected frequency domain position range (this position information is After the position of the B reported elements in the matrix 2L 0 ⁇ J), the precoding reconstruction is performed according to the following formula:
  • g(i,j) is determined by the port selection matrix W 1 and the frequency domain basis matrix W f fed back by the terminal equipment
  • z g(i,j) is the weight corresponding to the complex coefficient of g(i,j) (a column in the weight matrix ZH).
  • an embodiment of the present application provides a communication apparatus 1400 .
  • the communication device 1400 may be a component of a first device (eg, an integrated circuit, a chip, etc.) and may be a component of a second device (eg, an integrated circuit, a chip, etc.).
  • the communication apparatus 1400 may also be other communication units, which are used to implement the methods in the method embodiments of the present application.
  • the communication apparatus 1400 may include: a communication unit 1401 , a processing unit 1402 , and optionally, a storage unit 1403 .
  • one or more units as in FIG. 14 may be implemented by one or more processors, or by one or more processors and memory; or by one or more processors and a transceiver; or implemented by one or more processors, a memory, and a transceiver, which is not limited in this embodiment of the present application.
  • the processor, memory, and transceiver can be set independently or integrated.
  • the communication apparatus 1400 may include, but is not limited to:
  • a communication unit 1401, configured to receive a precoding reference signal
  • a processing unit 1402 configured to determine T complex coefficients of each of the P ports of the precoding reference signal, where P ⁇ 1, T ⁇ 2;
  • the processing unit 1402 is further configured to feed back channel information according to the T complex coefficients of each port and the first codebook W;
  • the first codebook W is determined based on T, and T is determined based on the number O of specific delay offsets corresponding to each port, or based on the number K of frequency cell groups corresponding to each port, or based on each port.
  • the number O of the corresponding specific delay offsets and the number K of frequency unit groups corresponding to each specific delay offset are determined; O>1, K>1.
  • the communication apparatus 1400 also needs to feed back the channel information in combination with the first codebook. Therefore, in this aspect, for the related implementation of the first codebook W and the channel information, reference may be made to the related content of the foregoing method embodiments, which will not be described in detail here.
  • the communication unit 1401 is further configured to receive second indication information, where the second indication information is used to indicate that the discrete Fourier transform DFT vector corresponding to each specific delay offset adopted by each port is at:
  • the index in the DFT matrix and the number K of frequency unit groups divided by N f frequency units corresponding to each specific delay offset, and the kth frequency unit group includes frequency unit and the index of the frequency unit in the kth frequency unit group is ⁇ k ; 1 ⁇ k ⁇ K; or, the second indication information is used to indicate the discrete Fourier transform DFT vector corresponding to each port
  • the index in the DFT matrix and the number K of frequency unit groups divided by the corresponding N f frequency units, and the kth frequency unit group include frequency bins and the index of the frequency bins in the kth frequency bin group is ⁇ k .
  • the processing unit 1402 is further configured to determine the frequency domain basis matrix W′ f according to the second indication information.
  • the communication unit 1401 is further configured to receive the frequency domain basis matrix W′ f ; the frequency domain basis matrix W′ f is used to indicate the O specific delay offsets adopted by each port or each port.
  • the communication unit 1401 is further configured to receive third indication information, where the third indication information is used to indicate the number B of complex coefficients to be selected by the first device.
  • the communication unit 1401 is further configured to receive fourth indication information, where the fourth indication information is used to indicate the corresponding first codebook W required by the first device to feed back the channel information; the processing unit 1402 is further configured to: for determining the first codebook W indicated by the fourth indication information.
  • the communication apparatus 1400 may also perform related operations, implementations, and the like of the terminal device in the foregoing method embodiments, which will not be described in detail here.
  • the communication apparatus 1400 shown in FIG. 14 may execute the related implementations of the network device in the foregoing method embodiments.
  • the communication device 1400 may include, but is not limited to:
  • a communication unit 1401 configured to send a precoding reference signal, where each of the P ports of the precoding reference signal corresponds to T precoding vectors, P ⁇ 1, T ⁇ 2;
  • the communication unit 1401 is further configured to receive channel information fed back from the first device for the precoding reference signal;
  • a processing unit 1402 configured to determine the precoding of the downlink channel according to the channel information and the first codebook W;
  • the first codebook W is determined based on T, and T is determined based on the number O of specific delay offsets corresponding to each port, or based on the number K of frequency cell groups corresponding to each port, or based on each port.
  • the number O of the corresponding specific delay offsets and the number K of frequency unit groups corresponding to each specific delay offset are determined; O>1, K>1.
  • the communication apparatus 1400 also needs to determine the precoding of the downlink channel in combination with the first codebook and the channel information. Therefore, for the relevant implementation manner of the first codebook W and the channel information, reference may be made to the relevant content of the foregoing method embodiments, which will not be described in detail here.
  • the communication unit 1401 is further configured to send second indication information, where the second indication information is used to indicate that the discrete Fourier transform DFT vector corresponding to each specific delay offset adopted by each port is at: The index in the DFT matrix and the number K of frequency unit groups divided by N f frequency units corresponding to each specific delay offset, and the kth frequency unit group includes frequency unit and the index of the frequency unit in the kth frequency unit group is ⁇ k ; 1 ⁇ k ⁇ K;
  • the second indication information is used to indicate the index of the discrete Fourier transform DFT vector corresponding to each port in the DFT matrix and the number of frequency unit groups K and the kth frequency unit divided by the corresponding N f frequency units. group includes frequency bins and the index of the frequency bins in the kth frequency bin group is ⁇ k .
  • the communication unit 1401 is further configured to send the frequency domain basis matrix W′ f ; the frequency domain basis matrix W′ f is used to indicate the O specific time delays used by each port or each port
  • the number K of frequency unit groups corresponding to each specific delay offset in the offset, and the kth frequency unit group includes frequency unit and the index of the frequency unit in the k-th frequency unit group is ⁇ k ; 1 ⁇ k ⁇ K.
  • the communication unit 1401 is further configured to send third indication information, where the third indication information is used to indicate the number B of complex coefficients to be selected by the first device.
  • the communication unit 1401 is further configured to send fourth indication information, where the fourth indication information is used to indicate the corresponding first codebook W required by the first device to feed back the channel information.
  • FIG. 15 is a schematic structural diagram of a communication device.
  • the communication device 1500 may be a first device, a second device, a chip, a chip system, or a processor that supports the first device to implement the above method, or a second device that supports the implementation of the above method.
  • the apparatus can be used to implement the methods described in the foregoing method embodiments, and for details, reference may be made to the descriptions in the foregoing method embodiments.
  • the communication apparatus 1500 may include one or more processors 1501 .
  • the processor 1501 may be a general-purpose processor or a special-purpose processor, or the like.
  • it may be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processing unit can be used to control communication devices (such as base stations, baseband chips, terminals, terminal chips, DU or CU, etc.), execute software programs, process software program data.
  • the communication apparatus 1500 may include one or more memories 1502, and instructions 1504 may be stored thereon, and the instructions may be executed on the processor 1501, so that the communication apparatus 1500 executes the above method methods described in the examples.
  • the memory 1502 may also store data.
  • the processor 1501 and the memory 1502 can be provided separately or integrated together.
  • the communication apparatus 1500 may further include a transceiver 1505 and an antenna 1506 .
  • the transceiver 1505 may be referred to as a transceiver unit, a transceiver, or a transceiver circuit, etc., for implementing a transceiver function.
  • the transceiver 1505 may include a receiver and a transmitter, the receiver may be called a receiver or a receiving circuit, etc., for implementing a receiving function; the transmitter may be called a transmitter or a transmitting circuit, etc., for implementing a transmitting function.
  • the communication device 1500 is a first device: the processor 1501 is configured to perform the related operations of 203 in the channel information feedback method in FIG. 4 ; the transceiver 1505 is configured to perform the related operations of 202 and 204 in the channel information feedback method.
  • the communication device 1500 is a second device: the processor 1501 is configured to perform the related operations of 206 in the channel information feedback method 100; the transceiver 1505 is configured to perform the related operations of 201 and 205 in the channel information feedback method in FIG. 4 .
  • the processor 1501 may include a transceiver for implementing the functions of receiving and transmitting.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • Transceiver circuits, interfaces or interface circuits used to implement receiving and transmitting functions may be separate or integrated.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transmission.
  • the processor 1501 may store an instruction 1503, and the instruction 1503 runs on the processor 1501, so that the communication apparatus 1500 can execute the method described in the foregoing method embodiment.
  • the instructions 1503 may be hardened in the processor 1501, in which case the processor 1501 may be implemented by hardware.
  • the communication apparatus 1500 may include a circuit, and the circuit may implement the functions of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in the embodiments of the present application may be implemented in integrated circuits (ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed-signal ICs, application specific integrated circuits (ASICs), printed circuits board (printed circuit board, PCB), electronic equipment, etc.
  • ICs integrated circuits
  • RFICs radio frequency integrated circuits
  • ASICs application specific integrated circuits
  • PCB printed circuits board
  • electronic equipment etc.
  • the processor and transceiver can also be fabricated using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (Bipolar Junction Transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication apparatus described in the above embodiments may be the first device, but the scope of the communication apparatus described in the embodiments of the present application is not limited thereto, and the structure of the communication apparatus may not be limited by FIG. 15 .
  • the communication apparatus may be a stand-alone device or may be part of a larger device.
  • the communication means may be:
  • a set with one or more ICs may also include a storage component for storing data and instructions;
  • ASIC such as modem (MSM)
  • the communication device may be a chip or a chip system
  • the chip 1600 shown in FIG. 16 includes a processor 1601 , an interface 1602 and a memory 1603 .
  • the number of processors 1601 may be one or more, and the number of interfaces 1602 may be multiple.
  • the interface 1602 configured to receive a precoding reference signal
  • the processor 1601 is configured to determine T complex coefficients of each of the P ports of the precoding reference signal, where T ⁇ 2;
  • the processor 1601 is further configured to feed back channel information according to the T complex coefficients and the first codebook W of each port;
  • the first codebook W is determined based on T, and T is determined based on the number O of specific delay offsets corresponding to each port, or based on the number K of frequency cell groups corresponding to each port, or based on each port.
  • the number O of the corresponding specific delay offsets and the number K of frequency unit groups corresponding to each specific delay offset are determined; O>1, K>1.
  • the interface 1602 is configured to send a precoding reference signal, where each of the P ports of the precoding reference signal corresponds to T precoding vectors, where T ⁇ 2;
  • the interface 1602 is further configured to receive channel information fed back from the first device for the precoding reference signal;
  • the processor 1601 is configured to determine the precoding of the downlink channel according to the channel information and the first codebook W;
  • the first codebook W is determined based on T, and T is determined based on the number O of specific delay offsets corresponding to each port, or based on the number K of frequency cell groups corresponding to each port, or based on each port.
  • the number O of the corresponding specific delay offsets and the number K of frequency unit groups corresponding to each specific delay offset are determined; O>1, K>1.
  • the processor in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or other possible Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • the memory in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • the present application further provides a computer-readable medium for storing computer software instructions, and when the instructions are executed by the communication device, the functions of any of the foregoing method embodiments are implemented.
  • the present application also provides a computer program product for storing computer software instructions, and when the instructions are executed by the communication device, the functions of any of the foregoing method embodiments are implemented.
  • the above-mentioned embodiments may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software When implemented in software, it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line, DSL) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes an integration of one or more available media.
  • the available media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, high-density digital video discs (DVDs)), or semiconductor media (eg, solid state disks, SSD)) etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本申请公开了一种信道信息反馈方法及相关装置。该方法可接收预编码参考信号;确定预编码参考信号的P个端口中每个端口的T个复系数,P≥1,T≥2;根据每个端口的T个复系数和第一码本W,反馈信道信息;第一码本W基于所述T确定,该T基于每个端口对应的特定时延偏置的个数O确定,或基于所述每个端口对应的频率单元组的组数K确定,或基于所述每个端口对应的特定时延偏置的个数O以及每个特定时延偏置对应的频率单元组的组数K确定;O>1,K>1。可见,该方法中,每个端口可确定至少两个复系数,即获得两个角度时延对信息对应的复系数,与每个端口只能获得一个复系数的方式相比,能够提高端口利用率,即降低端口资源开销。

Description

信道信息反馈方法及相关设备 技术领域
本发明涉及通信技术领域,尤其涉及一种信道信息反馈方法及相关设备。
背景技术
为了提高系统的频谱效率,大规模多输入多输出(massive multi-input multi-output,massive MIMO)技术得到了广泛的应用。采用大规模MIMO技术时,网络设备向终端设备发送数据前,需要对数据进行预编码。而网络设备如何对数据进行预编码主要依靠终端设备向网络设备反馈的下行信道的信道状态信息(channel state information,CSI)确定的。
对于时分复用(time division duplexing,TDD)系统,由于上行信道与下行信道采用相同的频段,因此,可利用信道的互易性,通过上行信道来获取下行信道的CSI,进而确定码本以进行预编码。而对于频分复用(frequency division duplexing,FDD)系统来说,由于上下行频带间的间隔大于带宽,故上下行信道之间不具有完整的互易性,而具有部分互易性,如网络设备可由上行信道获得上下行信道之间的互易信息,如角度、时延等,并将该互易信息加载在信道状态信息-参考信号(channel state information-reference signal,CSI-RS),终端设备可将上下行信道间不互易的信息反馈给网络设备即可。从而网络设备可基于该不互易信息获得下行信道的完整CSI。
然而,网络设备将互易信息,如角度时延对信息,加载到CSI-RS上时,一个CSI-RS端口只能加载一个角度时延对信息,小区的CSI-RS资源开销会随着终端设备的数目线性增加,例如,小区内有30个终端设备,网络设备为每个终端设备配置32个端口的CSI-RS资源,那么该小区的CSI-RS资源开销将难以忍受。
因此,为了基于终端设备上报的不互易信息获得完整的CSI,如何提高CSI-RS的端口利用率,降低CSI-RS资源开销成为一个亟待解决的问题。
发明内容
本申请实施例提供了一种信道信息反馈方法,能够提高参考信号的端口利用率,降低端口资源开销。
第一方面,本申请提供一种信道信息反馈方法,该方法应用于第一装置,该方法可包括:接收预编码参考信号;确定所述预编码参考信号的P个端口中每个端口的T个复系数,P≥1,T≥2;根据所述每个端口的T个复系数和第一码本W,反馈信道信息;所述第一码本W基于所述T确定,所述T基于所述每个端口对应的特定时延偏置的个数O确定,或基于所述每个端口对应的频率单元组的组数K确定,或基于所述每个端口对应的特定时延偏置的个数O以及每个特定时延偏置对应的频率单元组的组数K确定;O>1,K>1。
可见,该方法中,每个端口可确定至少两个复系数,也就是说,可获得两个角度时延对信息对应的复系数,与只能每个端口只能加载一个角度时延对信息,获得一个复系数的方式相比,能够提高端口利用率,即降低端口资源开销。
另外,终端设备还需结合第一码本,反馈信道信息,因此一下对第一码本的相关实施 方式进行阐述。
一种实施方式中,所述第一码本满足的公式为:
Figure PCTCN2020122612-appb-000001
其中,所述W 1是所述P个端口对应的端口选择矩阵;
所述
Figure PCTCN2020122612-appb-000002
是复系数矩阵;
所述W f是频域选择矩阵,用于指示所述第一装置从所述每个端口对应的所述T个复系数中选择的J个复系数的位置,J≤T。
相应地,所述信道信息用于指示以下至少一项:所述W 1、所述
Figure PCTCN2020122612-appb-000003
和所述W f
所述W 1是维度为P*L的整数矩阵,用于指示所述第一装置从所述P个端口中选择的L个端口的位置,L≤P;
所述W f是维度为T*J的整数矩阵,所述W f中的每行与所述每个端口对应的每个复系数相对应,所述W f的每行具有至多1个值为1的非零元素;所述W f的每列与所述J个复系数中每个复系数相对应,所述W f的每列仅有一个值为1的非零元素;
所述
Figure PCTCN2020122612-appb-000004
是维度为L*J的复数矩阵,用于指示所述第一装置从所述L个端口中每个端口对应的所述J个复系数中选择的B个复系数及其在所述
Figure PCTCN2020122612-appb-000005
中的位置;所述
Figure PCTCN2020122612-appb-000006
的每行与所述L个端口中每个端口相对应;所述
Figure PCTCN2020122612-appb-000007
的每列与所述J个复系数中每个复系数相对应;所述
Figure PCTCN2020122612-appb-000008
中元素c l,j为零,表示所述B个复系数中不包括所述第l个端口的第j个复系数;所述
Figure PCTCN2020122612-appb-000009
中元素c l,j为非零元素,表示所述B个复系数中包括所述第l个端口的第j个复系数;1≤l≤L,1≤j≤J。
一种方式中,所述T个复系数是所述每个端口的K个频率单元组对应的复系数,所述T等于所述K;所述W f的每行与所述每个端口的每个频率单元组的复系数相对应。
另一种方式中,所述T个复系数是所述每个端口的O个特定时延偏置对应的复系数,所述T等于所述O;所述W f的每行与所述每个端口的每个特定时延偏置的复系数相对应。
又一种方式中,所述O>1,所述K>1;所述T个复系数是所述每个端口的O个特定时延偏置中每个特定时延偏置的K个频率单元组对应的O*K个复系数,所述T等于所述O*K;所述W f的每行与所述每个端口的每个特定时延偏置的每个频率单元组的复系数相对应。
可选的,该J个复系数可从每个端口对应的T个复系数中自由选择;或者,每个端口选择的J个复系数是所述每个端口选择的M个特定时延偏置的每个特定时延偏置的V个频率单元分组对应的M*V个复系数。
另一种实施方式中,所述第一码本满足的公式为:
Figure PCTCN2020122612-appb-000010
所述W 1是系数选择矩阵,用于指示所述第一装置从所述P个端口的每个端口对应的T个复系数中选择的B个复系数的位置;B≤P*T;
所述
Figure PCTCN2020122612-appb-000011
是复系数矩阵,用于指示所述B个复系数。
相应地,所述信道信息用于指示以下至少一项:所述W 1和所述
Figure PCTCN2020122612-appb-000012
所述W 1是维度为(P*T)*B的整数矩阵,所述W 1的每行与所述P个端口中每个端口对应的每个复系数相对应,所述W 1的每行具有至多1个值为1的非零元素;所述W 1的每列与所述B个复系数中每个复系数相对应,所述W 1的每列仅有一个值为1的非零元素;
所述
Figure PCTCN2020122612-appb-000013
是维度为B*1的复数矩阵,所述
Figure PCTCN2020122612-appb-000014
的每行与所述B个复系数相对应。
一种方式中,所述T个复系数是所述每个端口的K个频率单元组对应的复系数,所述T等于所述K;所述W 1的每行与所述每个端口的每个频率单元组的复系数相对应,K>1。
另一种方式中,所述T个复系数是所述每个端口的O个特定时延偏置对应的复系数,所述T等于所述O;所述W 1的每行与所述每个端口的每个特定时延偏置的复系数相对应,O>1。
又一种方式中,所述O>1,所述K>1;所述T个复系数是所述每个端口的O个特定时延偏置中每个特定时延偏置的K个频率单元组对应的O*K个复系数,所述T等于所述O*K;所述W 1的每行与所述每个端口的每个特定时延偏置的每个频率单元组的复系数相对应。
又一种实施方式中,所述第一码本W满足的公式为:
Figure PCTCN2020122612-appb-000015
所述W 1是所述P个端口对应的端口选择矩阵,用于指示所述第一装置从所述P个端口中选择的L个端口的位置,L≤P;
所述
Figure PCTCN2020122612-appb-000016
是复系数矩阵,用于指示所述第一装置从所述L个端口中每个端口对应的J个复系数中所选的B个复系数及其在所述
Figure PCTCN2020122612-appb-000017
中的位置;
所述J是允许所述第一装置从所述每个端口对应的T个复系数中选择的复系数个数,所述J≤T。
相应地,所述信道信息用于指示以下至少一项:所述W 1和所述
Figure PCTCN2020122612-appb-000018
所述W 1是维度为P*L的整数矩阵,用于指示所述第一装置从所述P个端口中选择的L个端口的位置,L≤P;
所述
Figure PCTCN2020122612-appb-000019
是维度为L*J的复数矩阵,所述
Figure PCTCN2020122612-appb-000020
的每行与所述L个端口中每个端口相对应;所述
Figure PCTCN2020122612-appb-000021
的每列与所述J个复系数中每个复系数相对应;所述
Figure PCTCN2020122612-appb-000022
中元素c l,j为零,表示所述B个复系数中不包括第l个端口的第j个复系数;所述
Figure PCTCN2020122612-appb-000023
中元素c l,j为非零元素,表示所述B个复系数中包括第l个端口的第j个复系数。
又一种实施方式中,所述第一码本W满足的公式为:
Figure PCTCN2020122612-appb-000024
所述
Figure PCTCN2020122612-appb-000025
是复系数矩阵,用于指示所述第一装置选择的B个复系数;所述B个复系数是从所述P个端口的每个端口对应的T个复系数中选择的。
相应地,所述信道信息用于指示复系数矩阵
Figure PCTCN2020122612-appb-000026
所述信道信息包括第一指示信息;
所述复系数矩阵
Figure PCTCN2020122612-appb-000027
是维度为B*1的复数矩阵,所述
Figure PCTCN2020122612-appb-000028
的每行与所述第一装置选择的所述B个复系数中每个复系数相对应;
所述第一指示信息用于指示所述B个复系数的位置信息。
其中,所述B个复系数的位置信息包括所述B个复系数的每个复系数对应的第p个端口;或者,B个复系数中每个复系数对应的第p个端口的第o个特定时延偏置;或者,B个复系数中每个复系数对应的第p个端口的第k个频率单元组;或者,B个复系数中每个复系数对应的第p个端口的第o个特定时延偏置的第k个频率单元组;
1≤p≤P,1≤o≤O,1≤k≤K。
又一种实施方式中,所述第一码本W满足的公式为:
Figure PCTCN2020122612-appb-000029
所述W 1是所述P个端口对应的端口选择矩阵;
所述
Figure PCTCN2020122612-appb-000030
是复系数矩阵;
所述W f是频域基底矩阵,用于指示所述第一装置从每个端口对应的T个频率单元组中选择的J个频率单元组的频域基底。
相应地,所述信道信息用于指示以下至少一项:所述W 1、所述
Figure PCTCN2020122612-appb-000031
和所述W f,所述W 1是维度为P*L的整数矩阵,用于指示所述第一装置从所述P个端口中选择的L个端口的位置,L≤P;
所述W f是从频域基底矩阵W′ f的T列中选择J列获得的;所述W′ f是维度为N f*T的复数矩阵,所述W′ f的每列与一个离散傅里叶变换DFT列向量相对应,所述每列是按照对应频率单元组包括的频率单元将对应的DFT列向量进行采样获得的;所述W′ f的每行与所述N f个频率单元中每个频率单元相对应;所述W′ f的每列与所述T个频率单元组中每个频率单元组相对应,所述W′ f的每列的非零元素的个数等于对应频率单元组包括的频率单元的个数;
所述
Figure PCTCN2020122612-appb-000032
是维度为L*J的复数矩阵,用于指示所述第一装置从所述L个端口中每个端口对应的所述J个频率单元组中选择的B个复系数及其在所述
Figure PCTCN2020122612-appb-000033
中的位置;所述
Figure PCTCN2020122612-appb-000034
的每行与所述L个端口中每个端口相对应;所述
Figure PCTCN2020122612-appb-000035
的每列与所述J个复系数中每个复系数相对应;所述
Figure PCTCN2020122612-appb-000036
中元素c l,j为零,表示所述B个复系数中不包括第l个端口的第j个复系数;所述
Figure PCTCN2020122612-appb-000037
中元素c l,j为非零元素,表示所述B个复系数中包括第l个端口的第j个复系数;1≤l≤L,1≤j≤J。
一种方式中,所述T个频率单元组是所述每个端口的K个频率单元组,所述T等于K;所述W′ f的每列与所述K个频率单元组中的每个频率单元组相对应;所述W′ f的每列对应的离散傅里叶变换DFT列向量的索引相同。
另一种方式中,所述O>1,所述K>1;
所述T个频率单元组是所述每个端口的O个特定时延偏置中每个特定时延偏置的K个频率单元组,所述T等于所述O*K;所述W′ f的每列与所述O个特定时延偏置中每个特定时延偏置的K个频率单元组中的每个频率单元组相对应;所述W′ f的每K列与所述每个特定时延偏置的DFT列向量相对应,所述每K列中每列分别对应的DFT列向量的索引相同,且所述每K列对应的DFT列向量的索引是对应的特定时延偏置的DFT列向量的索引。
一种方式中,该J个频率单元组可以是从O*K个频率单元组中自由选择的;另一方式,每个端口选择的J个频率单元组是所述每个端口选择的M个特定时延偏置的每个特定时延偏置的V个频率单元组,所述J等于M*V。
又一种实施方式,所述第一码本W满足的公式为:
Figure PCTCN2020122612-appb-000038
所述W 1是所述P个端口对应的端口选择矩阵;
所述
Figure PCTCN2020122612-appb-000039
是复系数矩阵;
所述Q f是频率单元选择矩阵,用于指示所述第一装置从所述每个端口对应的T个频率单元组中选择的J个频率单元组中每个频率单元的位置;
所述W f是频域基底矩阵,用于指示所述第一装置从所述每个端口对应的T个离散傅里叶变换DFT列向量中选择的J个DFT列向量。
相应地,所述信道信息包括所述W 1、所述
Figure PCTCN2020122612-appb-000040
所述Q f和所述W f
所述W 1用于指示所述第一装置从所述P个端口中选择的L个端口的位置,L≤P;
所述Q f是维度为N f*J的整数矩阵,所述Q f每行与所述N f个频率单元中每个频率单元相对应;所述Q f的每列与所述J个频率单元组中每个频率单元组相对应;
所述W f是从频域基底矩阵W′ f的T列中选择J列获得的;所述W′ f是维度为N f*T的复数矩阵,所述W′ f的每列与一个离散傅里叶变换DFT列向量相对应;所述W′ f的每行与所 述N f个频率单元中每个频率单元相对应;所述W′ f的每列与所述T个DFT列向量中每个DFT列向量相对应;
所述
Figure PCTCN2020122612-appb-000041
是维度为L*J的复数矩阵,用于指示所述第一装置从所述L个端口中每个端口对应的所述J个复系数中选择的B个复系数及其在所述
Figure PCTCN2020122612-appb-000042
中的位置;所述
Figure PCTCN2020122612-appb-000043
的每行与所述L个端口中每个端口相对应;所述
Figure PCTCN2020122612-appb-000044
的每列与所述J个频率单元组中每个频率单元组相对应;所述
Figure PCTCN2020122612-appb-000045
中元素c l,j等于零,表示B个复系数中不包括第l个端口的第j个频率单元组对应的复系数;所述
Figure PCTCN2020122612-appb-000046
中元素c l,j等于非零,表示所述B个复系数中包括第l个端口的第j个频率单元组对应的复系数,1≤l≤L,1≤j≤J。
一种方式,所述T个频率单元组是所述每个端口的K个频率单元组,所述T等于K;
所述Q f的每列与所述K个频率单元组中的每个频率单元组相对应;
所述W′ f的每列的离散傅里叶变换DFT列向量的索引相同。
另一种方式,所述O>1,所述K>1;
所述T个频率单元组是所述每个端口的O个特定时延偏置中每个特定时延偏置的K个频率单元组,所述T等于所述O*K;
所述Q f的每列与所述O个特定时延偏置中每个特定时延偏置的K个频率单元组中的每个频率单元组相对应;
所述W′ f的每K列为所述每个特定时延偏置对应的DFT列向量,所述每K列中每列的DFT列向量的索引相同,且所述每K列的DFT列向量的索引是对应的特定时延偏置的DFT列向量的索引。
一种方式中,该J个频率单元组可以是从O*K个频率单元组中自由选择的;另一方式,每个端口选择的J个频率单元组是所述每个端口选择的M个特定时延偏置的每个特定时延偏置的V个频率单元组,所述J等于M*V。
针对上述各实施方式,如需要考虑频率单元分组的第一码本W的实施方式中,终端设备还接收第二指示信息,所述第二指示信息用于指示每个端口采用的每个特定时延偏置对应的离散傅里叶变换DFT向量在DFT矩阵中的索引以及每个特定时延偏置对应的N f个频率单元划分的频率单元组数K、第k个频率单元组包括
Figure PCTCN2020122612-appb-000047
个频率单元以及所述第k个频率 单元组中频率单元的索引是Γ k;1≤k≤K;或者,所述第二指示信息用于指示每个端口对应的离散傅里叶变换DFT向量在DFT矩阵中的索引以及对应的N f个频率单元划分的频率单元组数K、第k个频率单元组包括
Figure PCTCN2020122612-appb-000048
个频率单元以及所述第k个频率单元组中频率单元的索引是Γ k
另外,对于需要基于频域基底矩阵W′ f确定频域基底矩阵W f的实施方式,终端设备还可根据第二指示信息,确定频域基底矩阵W′ f
可选的,对于需要获知频率单元分组方式的上述实施方式,第一装置可接收频域基底矩阵W′ f;所述频域基底矩阵W′ f用于指示所述每个端口或每个端口采用的O个特定时延偏置中每个特定时延偏置对应的频率单元组的组数K、第k个频率单元组包括
Figure PCTCN2020122612-appb-000049
个频率单元以及所述第k个频率单元组中频率单元的索引是Γ k;1≤k≤K。
对于需要获知反馈的复系数的个数B的上述实施方式,第一装置可接收第三指示信息,所述第三指示信息用于指示所述第一装置需选择的复系数的个数B。
[根据细则91更正 17.11.2020] 
所述第四指示信息用于指示所述第一装置反馈信道信息所需对应的第一码本W;确定第四指示信息所指示的第一码本W,以获知上述具体的第一码本,进而进行反馈信道信息。
第二方面,本申请还提供一种信道信息反馈方法,该方法应用于第二装置,该方法包括:发送预编码参考信号,所述预编码参考信号的P个端口中每个端口对应T个预编码向量,P≥1,T≥2;接收来自终端设备针对所述预编码参考信号反馈的信道信息;根据所述信道信息和第一码本W,确定下行信道的预编码;所述第一码本W基于所述T确定,所述T基于所述每个端口对应的特定时延偏置的个数O确定,或基于所述每个端口对应的频率单元组的组数K确定,或基于所述每个端口对应的特定时延偏置的个数O以及每个特定时延偏置对应的频率单元组的组数K确定;O>1,K>1。
其中,所述预编码向量基于角度时延对信息确定;所述T个预编码向量对应T个复系数。
可见,该方法中,每个端口可对应至少两个预编码向量,也就是说,可加载至少两个角度时延对信息,与只能每个端口只能加载一个角度时延对信息的方式相比,能够提高端口利用率,即降低端口资源开销。
另外,网络设备还需结合第一码本和信道信息,确定下行信道的预编码。因此,该方面中,第一码本W、信道信息的相关实施方式可参见上述第一方面的相关内容,此处不再详述。
针对第一码本W、信道信息的相关实施方式中,终端设备需要获知频率单元的分组方式,和/或特定时延偏置对应的DFT列向量的索引的实施方式中,一种方式,第二装置还可发送第二指示信息,所述第二指示信息用于指示每个端口采用的每个特定时延偏置对应的离散傅里叶变换DFT向量在DFT矩阵中的索引以及每个特定时延偏置对应的N f个频率单元划分的频率单元组数K、第k个频率单元组包括
Figure PCTCN2020122612-appb-000050
个频率单元以及所述第k个频率单元组中频率单元的索引是Γ k;1≤k≤K;
或者,所述第二指示信息用于指示每个端口对应的离散傅里叶变换DFT向量在DFT矩阵中的索引以及对应的N f个频率单元划分的频率单元组数K、第k个频率单元组包括
Figure PCTCN2020122612-appb-000051
个频率单元以及所述第k个频率单元组中频率单元的索引是Γ k
另一种方式,第二装置可发送频域基底矩阵W′ f;所述频域基底矩阵W′ f用于指示所述每个端口或每个端口采用的O个特定时延偏置中每个特定时延偏置对应的频率单元组的组数K、第k个频率单元组包括
Figure PCTCN2020122612-appb-000052
个频率单元以及所述第k个频率单元组中频率单元的索引是Γ k;1≤k≤K。
对于需要获知反馈的复系数的个数B的上述实施方式,所述方法还包括:第二装置发送第三指示信息,所述第三指示信息用于指示所述第一装置需选择的复系数的个数B。
对于需要获知反馈的复系数的个数B的上述实施方式,所述方法还包括:发送第四指示信息,所述第四指示信息用于指示所述第一装置反馈信道信息所需对应的第一码本W。
另外,针对上述两个方面所述的信道信息反馈方法中,可阐述包括但不限于以下两种分组方式:
一种方式中,所述每个端口或每个端口的每个特定时延偏置对应的N f个频率单元划分为K个频率单元组,第k个频率单元组包括
Figure PCTCN2020122612-appb-000053
个频率单元,所述第k个频率单元组中频率单元的索引是Γ k;1≤k≤K;
其中,
Figure PCTCN2020122612-appb-000054
所述Ω k用于表示所述N f对所述K求余不为零时,所述N f 个频率单元中未被分组的
Figure PCTCN2020122612-appb-000055
个频率单元中被分配到第k个频率单元组的频率单元的索引;第k个频率单元组中频率单元的索引为:
Figure PCTCN2020122612-appb-000056
另一种方式中,所述每个端口或每个端口采用的每个特定时延偏置对应的N f个频率单元划分为K个频率单元组,第k个频率单元组包括
Figure PCTCN2020122612-appb-000057
个频率单元,所述第k个频率单元组中频率单元的索引是Γ k;1≤k≤K;
[根据细则91更正 17.11.2020] 
其中,
Figure PCTCN2020122612-appb-000058
所述Ω k用于表示所述N f对所述K求余不为零时,所述N f个频率单元中未被分组的
Figure PCTCN2020122612-appb-000059
个频率单元中被分配到第k个频率单元组的频率单元的索引;第k个频率单元组中频率单元的索引为
Figure WO-DOC-FIGURE-1
第三方面,本申请还提供一种通信装置。该通信装置具有实现上述第一方面所述第一装置的部分或全部功能,或者具有实现上述第二方面所述第二装置的部分或全部功能,。比如,该通信装置的功能可具备本申请中第一装置的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该通信装置的结构中可包括处理单元和通信单元,所述处理单元被配置为支持通信装置执行上述方法中相应的功能。所述通信单元用于支持通信装置与其他通信装置之间的通信。所述通信装置还可以包括存储单元,所述存储单元用于与处理单元和通信单元耦合,其保存通信装置必要的程序指令和数据。
一种实现方式中,所述通信装置包括:
通信单元,用于接收预编码参考信号;
处理单元,用于确定预编码参考信号的P个端口中每个端口的T个复系数,P≥1,T≥2;
所述处理单元,还用于根据每个端口的T个复系数和第一码本W,反馈信道信息;
其中,第一码本W基于T确定,T基于每个端口对应的特定时延偏置的个数O确定,或基于每个端口对应的频率单元组的组数K确定,或基于每个端口对应的特定时延偏置的个数O以及每个特定时延偏置对应的频率单元组的组数K确定;O>1,K>1。
另外,该方面中,通信装置其他可选的实施方式可参见上述第一方面的相关内容,此处不再详述。
另一种实现方式中,所述通信装置包括:
通信单元,用于发送预编码参考信号,预编码参考信号的P个端口中每个端口对应T个预编码向量,P≥1,T≥2;
通信单元,还用于接收来自第一装置针对预编码参考信号反馈的信道信息;
处理单元,用于根据信道信息和第一码本W,确定下行信道的预编码;
其中,第一码本W基于T确定,T基于每个端口对应的特定时延偏置的个数O确定,或基于每个端口对应的频率单元组的组数K确定,或基于每个端口对应的特定时延偏置的个数O以及每个特定时延偏置对应的频率单元组的组数K确定;O>1,K>1。
另外,该方面中,通信装置其他可选的实施方式可参见上述第二方面的相关内容,此处不再详述。
作为示例,通信单元可以为收发器或接口,存储单元可以为存储器,处理单元可以为处理器。
一种实现方式中,所述通信装置包括:
接口,用于接收预编码参考信号;
处理器,用于确定预编码参考信号的P个端口中每个端口的T个复系数,P≥1,T≥2;
处理器,还用于根据每个端口的T个复系数和第一码本W,反馈信道信息;
其中,第一码本W基于T确定,T基于每个端口对应的特定时延偏置的个数O确定,或基于每个端口对应的频率单元组的组数K确定,或基于每个端口对应的特定时延偏置的个数O以及每个特定时延偏置对应的频率单元组的组数K确定;O>1,K>1。
另外,该方面中,通信装置其他可选的实施方式可参见上述第一方面的相关内容,此处不再详述。
另一种实现方式中,所述通信装置包括:
接口,用于发送预编码参考信号,预编码参考信号的P个端口中每个端口对应T个预编码向量,P≥1,T≥2;
接口,还用于接收来自第一装置针对预编码参考信号反馈的信道信息;
处理器,用于根据信道信息和第一码本W,确定下行信道的预编码;
其中,第一码本W基于T确定,T基于每个端口对应的特定时延偏置的个数O确定,或基于每个端口对应的频率单元组的组数K确定,或基于每个端口对应的特定时延偏置的个数O以及每个特定时延偏置对应的频率单元组的组数K确定;O>1,K>1。
另外,该方面中,通信装置其他可选的实施方式可参见上述第二方面的相关内容,此处不再详述。
在实现过程中,处理器可用于进行,例如但不限于,基带相关处理,收发器可用于进行,例如但不限于,射频收发。上述器件可以分别设置在彼此独立的芯片上,也可以至少部分的或者全部的设置在同一块芯片上。例如,处理器可以进一步划分为模拟基带处理器和数字基带处理器。其中,模拟基带处理器可以与收发器集成在同一块芯片上,数字基带处理器可以设置在独立的芯片上。随着集成电路技术的不断发展,可以在同一块芯片上集 成的器件越来越多。例如,数字基带处理器可以与多种应用处理器(例如但不限于图形处理器,多媒体处理器等)集成在同一块芯片之上。这样的芯片可以称为系统芯片(System on Chip)。将各个器件独立设置在不同的芯片上,还是整合设置在一个或者多个芯片上,往往取决于产品设计的需要。本申请实施例对上述器件的实现形式不做限定。
第四方面,本申请还提供一种处理器,用于执行上述各种方法。在执行这些方法的过程中,上述方法中有关发送上述信息和接收上述信息的过程,可以理解为由处理器输出上述信息的过程,以及处理器接收输入的上述信息的过程。在输出上述信息时,处理器将该上述信息输出给收发器,以便由收发器进行发射。该上述信息在由处理器输出之后,还可能需要进行其他的处理,然后才到达收发器。类似的,处理器接收输入的上述信息时,收发器接收该上述信息,并将其输入处理器。更进一步的,在收发器收到该上述信息之后,该上述信息可能需要进行其他的处理,然后才输入处理器。
基于上述原理,举例来说,前述方法中提及的接收第一指示信息可以理解为处理器接收输入的第一指示信息。
对于处理器所涉及的发射、发送和接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则均可以更加一般性的理解为处理器输出和接收、输入等操作,而不是直接由射频电路和天线所进行的发射、发送和接收操作。
在实现过程中,上述处理器可以是专门用于执行这些方法的处理器,也可以是执行存储器中的计算机指令来执行这些方法的处理器,例如通用处理器。上述存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(Read Only Memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
第五方面,本申请还提供了一种通信系统,该系统包括上述方面的至少一个第一装置和至少一个第二装置。在另一种可能的设计中,该系统还可以包括本申请提供的方案中与第一装置、第二装置进行交互的其他设备。
第六方面,本申请提供了一种计算机可读存储介质,用于储存计算机软件指令,当所述指令被通信装置执行时,实现上述第一方面所述的方法。
第七方面,本申请提供了一种计算机可读存储介质,用于储存计算机软件指令,当所述指令被通信装置执行时,实现上述第二方面所述的方法。
第八方面,本申请还提供了一种包括指令的计算机程序产品,当其在通信装置上运行时,使得通信装置执行上述第一方面所述的方法。
第九方面,本申请还提供了一种包括指令的计算机程序产品,当其在通信装置上运行时,使得通信装置执行上述第二方面所述的方法。
第十方面,本申请提供了一种芯片系统,该芯片系统包括处理器和接口,所述接口用于获取程序或指令,所述处理器用于调用所述程序或指令以实现或者支持终端实现第一方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十一方面,本申请提供了一种芯片系统,该芯片系统包括处理器和接口,所述接口用于获取程序或指令,所述处理器用于调用所述程序或指令以实现或者支持终端实现第二方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
附图说明
图1示出了适用于本申请实施例提供的方法的通信系统100的示意图;
图2是一种信道信息反馈方法的示意图;
图3是一种角度时延对信息加载方法的示意图;
图4是本申请实施例提供的一种信道信息反馈方法的流程示意图;
图5是一种角度时延对信息加载方法100的示意图;
图6是本申请实施例提供的一种角度时延对信息加载方法200的示意图;
图7是本申请实施例提供的一种直流分量加载角度时延对信息的示意图;
图8是本申请实施例提供的一种角度时延对信息加载方法300的示意图;
图9是本申请实施例提供的一种Q f的示意图;
图10是本申请实施例提供的一种W′ f的示意图;
图11是本申请实施例提供的另一种Q f的示意图;
图12是本申请实施例提供的另一种W′ f的示意图;
图13是本申请实施例提供的B个复系数矩阵中自由选择的示意图;
图14是本申请实施例提供的一种通信装置1400的结构示意图;
图15是本申请实施例提供的一种通信装置1500的结构示意图;
图16是本申请实施例提供的一种芯片1600的示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE频分双工(freq终端设备ncy division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、5G移动通信系统或新无线接入技术(new radio Access Technology,NR)。其中,5G移动通信系统可以包括非独立组网(non-standalone,NSA)和/或独立组网(standalone,SA)。
本申请提供的技术方案还可以应用于机器类通信(machine type communication,MTC)、机器间通信长期演进技术(Long Term Evolution-machine,LTE-M)、设备到设备(device-to device,D2D)网络、机器到机器(machine to machine,M2M)网络、物联网(internet of things,IoT)网络或者其他网络。其中,IoT网络例如可以包括车联网。其中,车联网系统中的通信方式统称为车到其他设备(vehicle to X,V2X,X可以代表任何事物),例如,该V2X 可以包括:车辆到车辆(vehicle to vehicle,V2V)通信,车辆与基础设施(vehicle to infrastructure,V2I)通信、车辆与行人之间的通信(vehicle to pedestrian,V2P)或车辆与网络(vehicle to network,V2N)通信等。
本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统等。本申请对此不作限定。
本申请实施例中,网络设备可以是任意一种具有无线收发功能的设备。该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、网络设备控制器(base station controller,BSC)、网络设备收发台(base transceiver station,BTS)、家庭网络设备(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WiFi)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的网络设备的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、介质接入控制(medium access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
网络设备为小区提供服务,终端设备通过网络设备分配的传输资源(例如,频域资源,或者说,频谱资源)与小区进行通信,该小区可以属于宏网络设备(例如,宏eNB或宏gNB等),也可以属于小小区(small cell)对应的网络设备,这里的小小区可以包括:城市小区(metro cell)、微小区(micro cell)、微微小区(pico cell)、毫微微小区(femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
在本申请实施例中,终端设备也可以称为用户设备(user equipment,终端设备)、接入终端设备、用户单元、用户站、移动站、移动台、远方站、远程终端设备、移动设备、用户终端设备、终端设备、无线通信设备、用户代理或用户装置。
终端设备可以是一种向用户提供语音/数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端设备的举例可以为:手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑(如笔记本电脑、掌上电脑等)、移动互联网设备 (mobile internet device,MID)、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等。
其中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,终端设备还可以是物联网(internet of things,IoT)系统中的终端设备。IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。IoT技术可以通过例如窄带(narrow band)NB技术,做到海量连接,深度覆盖,终端设备省电。
此外,终端设备还可以包括智能打印机、火车探测器、加油站等传感器,主要功能包括收集数据(部分终端设备)、接收网络设备的控制信息与下行数据,并发送电磁波,向网络设备传输上行数据。
为便于理解本申请实施例,首先结合图1详细说明适用于本申请实施例提供的方法的通信系统。图1示出了适用于本申请实施例提供的方法的通信系统100的示意图。如图所示,该通信系统100可以包括至少一个网络设备,如图1中所示的5G系统中的网络设备101;该通信系统100还可以包括至少一个终端设备,如图1中所示的终端设备102至107。其中,该终端设备102至107可以是移动的或固定的。网络设备101和终端设备102至107中的一个或多个均可以通过无线链路通信。每个网络设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备通信。例如,网络设备可以向终端设备发送配置信息,终端设备可以基于该配置信息向网络设备发送上行数据;又例如,网络设备可以向终端设备发送下行数据。因此,图1中的网络设备101和终端设备102至107构成一个通信系统。
可选地,终端设备之间可以直接通信。例如可以利用D2D技术等实现终端设备之间的直接通信。如图中所示,终端设备105与106之间、终端设备105与107之间,可以利用D2D技术直接通信。终端设备106和终端设备107可以单独或同时与终端设备105通信。
终端设备105至107也可以分别与网络设备101通信。例如可以直接与网络设备101 通信,如图中的终端设备105和106可以直接与网络设备101通信;也可以间接地与网络设备101通信,如图中的终端设备107经由终端设备106与网络设备101通信。
应理解,图1示例性地示出了一个网络设备和多个终端设备,以及各通信设备之间的通信链路。可选地,该通信系统100可以包括多个网络设备,并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,例如更多或更少的终端设备。本申请对此不做限定。
上述各个通信设备,如图1中的网络设备101和终端设备102至107,可以配置多个天线。该多个天线可以包括至少一个用于发送信号的发射天线和至少一个用于接收信号的接收天线。另外,各通信设备还附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。因此,网络设备与终端设备之间可通过多天线技术通信。
可选地,该无线通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例不限于此。
为了更好地理解本申请实施例,在介绍本申请实施例之前,做出如下几点说明。
第一,为方便理解,先对本申请实施例中涉及到的几个字母所表示的物理意义做如下说明:
P:网络设备为终端设备配置的参考信号的端口数,也即,本申请所述的预编码参考信号的端口数,P≥1且为整数;第p个端口表示配置的该P个端口中的其中一个端口,1≤p≤P;
L:终端设备上报的复系数所允许对应选择的端口的个数,1≤L≤P;第l个端口表示终端设备从该P个端口中选择的L个端口中的其中一个端口,1≤l≤L;
O:网络设备将每个端口加载的角度时延对信息的复系数所移动到的特定时延偏置的个数,O≥1且为整数,第o个特定时延偏置表示该O个特定时延偏置中的其中一个特定时延偏置,1≤o≤O;
M:终端设备从网络设备所移动到的O个特定时延偏置中选择的特定时延偏置的个数,1≤M≤O,第m个特定时延偏置表示终端设备从该O个特定时延偏置中选择的M个特定时延偏置中的其中一个特定时延偏置,1≤m≤M;
N f:预编码参考信号的传输带宽中包含的频率单元的数量;
K:每个端口采用对应的N f个频率单元所划分的频率单元组的个数,K≥1且为整数;第k个频率单元组表示该K个频率单元组中的其中一个频率单元组,1≤k≤K;
V:终端设备从每个端口采用的K个频率单元组中所选择的频率单元组的个数,1≤V≤K且为整数;第v个频率单元组表示该V个频率单元组中的其中一个频率单元组,1≤v≤V;
R:终端设备具有的接收天线的个数,或终端设备能够同时接收的数据流的个数,R≥1且为整数;第r根接收天线表示该R根接收天线中的其中一根接收天线,或者,第r个数据流表示该R个数据流中的其中一个数据流,1≤r≤R;
B:终端设备被允许选择的复系数的个数,或终端设备被允许选择复系数的角度时延对信息的个数;
Br:终端设备针对第r根接收天线或第r个数据流选择的复系数的个数或选择的复系数的角度时延对信息的个数,其中,1≤r≤R,且
Figure PCTCN2020122612-appb-000061
T:每个端口对应的复系数的个数或者预编码向量的个数或者角度时延对的个数,T=O*K,或者T=O,或者T=K,本发明不做限定;
F:频域信息矩阵,物理上对应到达网络设备的各个多径信号的时延,在本申请实施例中可以表示为维度为N f×N f的矩阵;
S:空域信息矩阵,在本申请实施例中可以表示为维度为N tx×N tx的矩阵,N tx表示网络设备具有的发射天线的个数。
第二,在本申请实施例中,为便于描述,在涉及编号时,可以从1开始连续编号。例如,N f个频域单元可以包括第1个频域单元至第N f个频域单元,K个角度时延对信息可以包括第1个角度时延对信息至第K个角度时延对信息,P个端口可以包括第1个端口至第P个端口等。当然,具体实现时不限于此。比如也可以从0始连续编号。例如,N f个频域单元可以包括第0个频域单元至第N f-1个频域单元,K个角度时延对信息可以包括第0个角度时延对信息至第K-1个角度时延对信息,P个端口可以包括第0个端口至第P-1个端口等,为了简洁,这里不一一列举。另外,对应的索引可从1开始编号或从0开始编号,例如,第1个频率单元的索引是1,第N f个频率单元的索引是N f;或者,第0个频率单元的索引是0,第N f-1个频率单元的索引是N f-1。
应理解,上文所述均为便于描述本申请实施例提供的技术方案而进行的设置,而并非用于限制本申请的范围。
第三,在本申请中,多处涉及矩阵和向量的变换和以及函数的运算。为便于理解,这里做统一说明。该部分所示的矩阵A、P,p、q、Q、a、b、N等均为示例。
对于矩阵A,上角标T表示转置,如A T表示矩阵(或向量)A的转置。上角标H表示共轭转置,如,A H表示矩阵(或向量)A的共轭转置。
对于矩阵A,函数A(:,p)表示取矩阵A中的第p列的第一行至最后一行,也即,取矩阵A中的第p列。A(q,:)表示取矩阵A中的第q行的第一列至最后一列,也即取矩阵A中的第q行。
进一步地,函数A(a,Q,b:,p)表示对矩阵中的第p列中,起始行是a,结束行是b,以Q为增量值来取值。也就是说,所取到的值在矩阵A中对应的行号的差值为Q或Q的整数倍。
举例来说,函数A(1,Q,end:,p)表示:对该矩阵A的第p列,从第一行至最后一行,以Q为增量来取值。假设Q=2,若总行数为奇数,则表示从该矩阵A的第p列的第1行开始,取第1行、第3行、第5行、第7行直至最后一行的值;若总行数为偶数,则表示从该矩阵A的第p列的第1行开始,取第1行、第3行、第5行、第7行、直至倒数第二行的值。
函数diag()表示对角矩阵。
函数N%Q表示取N/Q的余数。
函数
Figure PCTCN2020122612-appb-000062
表示向上取整,也可以表示为floor();
函数
Figure PCTCN2020122612-appb-000063
表示向下取整。
A∈N Q×P表示A是一个维度为Q×P的整数矩阵,即该矩阵A的行数是Q,列数是P,其中的元素均是整数;
A∈C Q×P表示A是一个维度为Q×P的复数矩阵,即该矩阵A的行数是Q,列数是P,其中的元素均是复数。
第四,下文中,当描述两个频率单元之间间隔K个频域单元时,可以是指不包含这两个频域单元在内所间隔的频率单元数。例如,RB#1和RB#5之间间隔了4个RB。可以理解,间隔数不同于上文所述的增量值。当增量值为Q时,间隔数为Q。其中,Q仅为示例。
第五,在下文示出的实施例中,以角度向量和时延向量均为列向量为例来说明本申请提供的实施例,但这不应对本申请构成任何限定。基于相同的构思,本领域的技术人员还可以想到其他更多可能的表现方式。
第六,在本申请中,“用于指示”可以包括用于直接指示和用于间接指示。当描述某一指示信息用于指示A时,可以包括该指示信息直接指示A或间接指示A,而并不代表该指示信息中一定携带有A。
将指示信息所指示的信息称为待指示信息,则具体实现过程中,对待指示信息进行指示的方式有很多种,例如但不限于,可以直接指示待指示信息,如待指示信息本身或者该待指示信息的索引等。也可以通过指示其他信息来间接指示待指示信息,其中该其他信息与待指示信息之间存在关联关系。还可以仅仅指示待指示信息的一部分,而待指示信息的其他部分则是已知的或者提前约定的。例如,还可以借助预先约定(例如协议规定)的各个信息的排列顺序来实现对特定信息的指示,从而在一定程度上降低指示开销。同时,还可以识别各个信息的通用部分并统一指示,以降低单独指示同样的信息而带来的指示开销。例如,本领域的技术人员应当明白,预编码矩阵是由预编码向量组成的,预编码矩阵中的各个预编码向量,在组成或者其他属性方面,可能存在相同的部分。
此外,具体的指示方式还可以是现有各种指示方式,例如但不限于,上述指示方式及其各种组合等。各种指示方式的具体细节可以参考现有技术,本文不再赘述。由上文所述可知,举例来说,当需要指示相同类型的多个信息时,可能会出现不同信息的指示方式不相同的情形。具体实现过程中,可以根据具体的需要选择所需的指示方式,本申请实施例对选择的指示方式不做限定,如此一来,本申请实施例涉及的指示方式应理解为涵盖可以使得待指示方获知待指示信息的各种方法。
待指示信息可以作为一个整体一起发送,也可以分成多个子信息分开发送,而且这些子信息的发送周期和/或发送时机可以相同,也可以不同。具体发送方法本申请不进行限定。其中,这些子信息的发送周期和/或发送时机可以是预先定义的,例如根据协议预先定义的,也可以是发射端设备通过向接收端设备发送配置信息来配置的。其中,该配置信息可以例如但不限于包括无线资源控制信令、介质接入控制(medium access control,MAC)层信令和物理层信令中的一种或者至少两种的组合。其中,无线资源控制信令例如包无线资源控制(radio resource control,RRC)信令;MAC层信令例如包括MAC控制元素(control element,CE);物理层信令例如包括下行控制信息(downlink control information,DCI)。
第七,本申请对很多特性(例如预编码矩阵指示(precoding matrix indicator,PMI)、信道、RB、RBG、子带、PRG、资源元素(resource element,RE)、角度以及时延等)所列出的定义仅用于以举例方式来解释该特性的功能,其详细内容可以参考现有技术。
第八,在下文示出的实施例中第一、第二以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的指示信息等。
第九,“预定义”或“预配置”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。其中,“保存”可以是指,保存在一个或者多个存储器中。所述一个或者多个存储器可以是单独的设置,也可以是集成在编码器或者译码器,处理器、或通信装置中。所述一个或者多个存储器也可以是一部分单独设置,一部分集成在译码器、处理器、或通信装置中。存储器的类型可以是任意形式的存储介质,本申请并不对此限定。
第十,本申请实施例中涉及的“协议”可以是指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
第十一,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b和c中的至少一项(个),可以表示:a,或,b,或,c,或,a和b,或,a和c,或,b和c,或,a、b和c。其中a、b和c分别可以是单个,也可以是多个。
第十二,在本申请实施例中,“当……时”、“在……的情况下”、“若”以及“如果”等描述均指在某种客观情况下设备(如,终端设备或者网络设备)会做出相应的处理,并非是限定时间,且也不要求设备(如,终端设备或者网络设备)在实现时一定要有判断的动作,也不意味着存在其它限定。
为便于理解本申请实施例,下面对本申请实施例中涉及到的术语做简单介绍。
1、预编码技术:采用预编码技术,可以实现发送设备与多个接收设备在相同的时频资源上传输,也就是实现了多用户多输入多输出(multiple user multiple input multiple output,MU-MIMO)。应理解,本文中有关预编码技术的相关描述仅为便于理解而示例,并非用于限制本申请实施例的保护范围。在具体实现过程中,网络设备主要依靠终端设备向网络设备反馈的下行信道的信道状态信息(channel state information,CSI)确定的。另外,还可以通过其他方式进行预编码,例如,在无法获知信道信息(例如但不限于信道矩阵)的情况下,采用预先设置的预编码矩阵或者加权处理方式进行预编码等。为了简洁,其具体内容本文不再赘述。
2、信道互易性:在某些通信模式中,如时分复用(time division duplexing,TDD)系统,上下行信道在相同的频域资源上不同的时域资源上传输信号。在相对较短的时间(如,信道传播的相干时间)之内,可以认为上、下行信道上的信号所经历的信道衰落是相同的。即网络设备可利用上行信道获得下行信道的CSI,该特征称为上下行信道的互易性。进而, 基于上下行信道的互易性,网络设备可以根据上行参考信号(reference signal,RS),如探测参考信号(sounding reference signal,SRS),测量上行信道。并可以根据上行信道来估计下行信道,从而可以确定用于下行传输的预编码矩阵。
[根据细则91更正 17.11.2020] 
然而,在另一些通信模式中,如频分复用(frequency division duplexing,FDD)系统,由于上下行信道的频带间隔远大于相干带宽,故上下行信道不具有完整的互易性,利用上行信道来确定用于下行传输的预编码矩阵可能并不能够与下行信道相适配。但是,FDD模式下的上下行信道仍然具有部分的互易性,例如,角度的互易性和时延的互易性。因此,角度和时延也可以称为互易性参数或互易性信息。
3、时延、角度、角度时延对信息:信号在经过无线信道传输时,从发射天线可以经过多个路径到达接收天线。多径时延导致频率选择性衰落,就是频域信道的变化。
时延是无线信号在不同传输路径上的传输时间,由距离和速度决定,与无线信号的频域没有关系。信号在不同的传输路径上传输时,由于距离不同,存在不同的传输时延。由于网络设备与终端设备之间的物理位置是固定的,因而上下行信道的多径分布在时延上是相同的。因此,时延在FDD模式下的上下行信道可以认为是相同的,或者说,互易的。
此外,角度可以是指信号经由无线信道到达接收天线的到达角(angle of arrival,AOA),也可以是指通过发射天线发射信号的离开角(angle of departure,AOD)。在本申请实施例中,该角度可以是指上行信号到达网络设备的到达角,也可以是指网络设备发射下行信号的离开角。由于上下行信道在不同频率上的传输路径的互易,该上行参考信号的到达角和下行参考信号的离开角可以认为是互易的。
角度时延对信息可以为包括角度和时延的信息,也可以是角度时延对,也可以是角度时延对对应的权值。例如,在阐述每个端口对应的角度时延对信息或角度时延对信息对应的权值时,该角度时延对信息可指角度时延对;在阐述角度时延对信息对应的复系数时,该角度时延对信息可指角度时延对的权值。
本文所述的角度实际是一个维度为N tx*1的角度向量,记为S(θ k);相应地,时延实际是一个维度为N f*1的时延向量,记为F(τ l);相应地,角度时延对信息实际是一个角度向量和一个时延向量的组合,任意两个角度时延对信息中所包含的角度向量和时延向量中至少有一项不同,也就是说,每个角度时延对信息可由一个角度向量和一个时延向量唯一确定。
4、参考信号(reference signal,RS)与预编码参考信号:参考信号也可以称为导频(pilot)、参考序列等。在本申请实施例中,参考信号可以是用于信道测量的参考信号。例如,该参考信号可以是用于下行信道测量的信道状态信息参考信号(channel state information reference signal,CSI-RS),也可以是用于上行信道测量的SRS。应理解,上文列举的参考信号仅为示例,不应对本申请构成任何限定。本申请并不排除在未来的协议中定义其他参考信号以实现相同或相似功能的可能。用于获取下行信道的信道状态信息的参考信号也可称为下行参考信号或CSI-RS。
预编码参考信号可以是对参考信号进行预编码后得到的参考信号。其中,预编码具体 可以包括波束赋形(beamforming)和相位旋转。其中,波束赋形例如可以通过基于一个或多个角度向量对下行参考信号进行预编码来实现,相位旋转例如可以通过将一个或多个时延向量对下行参考信号进行预编码来实现。相应的,预编码参考信号可以为下行参考信号采用角度时延对信息进行预编码后的参考信号。
在本申请实施例中,为方便区分和说明,将经过预编码,如波束赋形和相位旋转,得到的参考信号称为预编码参考信号;未经过预编码的参考信号简称为参考信号。
在本申请实施例中,基于一个或多个角度向量对下行参考信号进行预编码,也可以称为,将一个或多个角度向量加载到下行参考信号上,以实现波束赋形。基于一个或多个时延向量对下行参考信号进行预编码,也可以称为将一个或多个时延向量加载到下行参考信号上,以实现相位旋转。基于一个或多个角度时延对信息对下行参考信号进行预编码,也可以称为将一个或多个角度时延对信息加载到下行参考信号上,以实现波束赋形和相位旋转。
基于各角度时延对信息对参考信号进行预编码,相当于采用各角度时延对信息所对应的权值向量加载在参考信号上,其中权值向量为权值矩阵Z H的某一列,本申请中,每个端口可加载T个角度时延对信息所对应的T个权值向量。其中权值矩阵Z H为:
Figure PCTCN2020122612-appb-000064
其中,
Figure PCTCN2020122612-appb-000065
是频域信息矩阵,即由多个时延向量构成;
Figure PCTCN2020122612-appb-000066
是空域信息矩阵,由多个角度向量构成。
在下行传输中,由于加载了角度时延对信息的参考信号可以通过下行信道传输至终端设备,因此,终端设备根据接收到的预编码参考信号测量的信道等效于加载了角度时延对信息的信道。
5、端口(port):可以包括发射端口和接收端口。
其中,发射端口可以理解为被接收设备所识别的虚拟天线。
可选地,端口可以是指发射天线端口。例如,每个发射天线端口的参考信号可以是未经过预编码的参考信号。其中,发射天线端口,可以是指实际的独立发送单元(transceiver unit,TxRU)。
可选地,端口也可以是指经过波束赋形和相位旋转后的端口。例如,每个端口的参考信号可以是基于一个角度向量和一个时延向量对参考信号进行预编码得到的预编码参考信号。该端口也可以称为预编码参考信号的端口。
每个端口的参考信号可以通过一个或者多个频域单元传输,本文中,假设每个端口的参考信号的传输带宽为N f个频率单元。该N f个频率单元可以为频率连续或不连续的频率单元,相应地,本申请中阐述该N f个频率单元中每个频率单元的索引时是基于该N f个频率单元基于频率大小等排列后的顺序,而不是系统带宽中的索引。可选的,本申请实施例中也可采用N f个频率单元在系统带宽中的索引进行阐述,但实质相同,为便于理解和阐述,本申请不再以此进行阐述。
在下文示出的实施例中,在涉及发射天线端口时,可以是指未进行空域预编码的端口数。即,是实际的独立发送单元数。在涉及端口时,在不同的实施例中,可以是指发射天 线端口,也可以是指预编码参考信号的端口。端口所表达的具体含义可以根据具体实施例来确定。下文中为方便区分,将预编码参考信号的端口称为参考信号端口。
接收端口可以理解为接收设备的接收天线。例如在下行传输中,接收端口可以是指终端设备的接收天线。
6、频率单元、频率单元组:频率单元也可称为频域单元,表示频域资源的单位,可表示不同的频域资源粒度。频率单元例如可以包括但不限于,一个或多个子带(sub band,SB)、一个或多个资源块(RB)、一个或多个资源块组(resource block group,RBG)、一个或多个预编码资源块组(precoding resource block group,PRG)等。在以下实施例中,涉及频域单元的相关描述都通过资源块来描述。应理解,RB仅为频域单元的一例,不应对本申请构成任何限定。本申请对于频域单元的具体定义不作限定。
频率单元组是指将每个端口的N f个频率单元以一定的分组方式进行划分获得的,如上文所述,N f个频率单元可划分为K个频率单元组。因此,一个频率单元组可包括一个或多个频率单元。
为了采用上下行信道之间具有互易性的角度时延对信息对参考信号进行预编码,这样,终端设备上报上下行信道之间不具有互易性的信息,如各角度时延对信息的复系数,进而,由网络设备基于所上报的各角度时延对信息的复系数和各角度时延对信息,确定下行信道的预编码,目前的一种信道信息反馈方法可如图2所示:
首先,网络设备根据从上行信道接收的信号进行角度时延估计,获得具有互易性的角度时延对信息;例如,上行信道H UL可以表示为:
H UL=SC ULF H   (2)
其中,S是维度为N tx×N tx的空域信息矩阵,物理上对应网络设备的到达角/出发角;F是维度为N f×N f的频域信息矩阵,物理上对应到达网络设备的各个多径信号的时延;C UL是维度为N tx×N f的复系数矩阵,用于表示上行信道的各角度时延对信息所对应的复系数(也可称为复系数)。
上述公式(2)以向量化表示,可转换为:
Figure PCTCN2020122612-appb-000067
其中,
Figure PCTCN2020122612-appb-000068
表示克罗内克积,vec(C UL)为上行信道的各角度时延对信息所对应的复系数构成的列向量;因此,基于公式(1)可获得每个角度时延对信息对应的权值构成的矩阵Z H
其中,Z H是一个维度为N fN tx×N fN tx的复数矩阵,Z H的每列是每个角度时延对信息对应的权值。
其次,网络设备将每个角度时延对信息对应的权值加载在下行参考信号的每个端口的频率单元上,获得并发送预编码参考信号。
其中,网络设备将每个角度时延对信息对应的权值加载到每个端口的频率单元传输的参考信号上,可简称网络设备在每个端口的参考信号上加载一个角度时延对信息。
[根据细则91更正 17.11.2020] 
例如,假设参考信号的传输带宽为52个频率单元,且一个频率单元为一个RB,以及网络设备通过公式(1)可获得32个角度时延对信息,如图3所示,网络设备将第1个角 度时延对信息加载在端口1对应的所有资源块(resource block,RB)中的参考信号上,将第2个角度时延对信息加载在端口2对应的所有RB上,…,将第32个角度时延对信息加载在端口32对应的所有RB上。
进而,终端设备根据预编码参考信号进行信道估计,获得每个端口上每个频率单元的等效信道,记为
Figure PCTCN2020122612-appb-000069
其中,p表示第p个端口,n表示第n个频率单元。
进而,终端设备将每个端口的N f个频率单元上的等效信道进行累加,获得并上报每个端口对应的一个角度时延对信息的复系数。如第p个端口的下行信道的复系数
Figure PCTCN2020122612-appb-000070
[根据细则91更正 17.11.2020] 
Figure WO-DOC-FIGURE-2
这样,网络设备可基于上述所述的各角度时延对信息的权值向量和下行信道的复系数矩阵C DL,确定下行信道的预编码。其中,该复系数矩阵C DL可基于终端设备的R个接收天线以及每个端口的复系数
Figure PCTCN2020122612-appb-000072
确定。
由于网络设备需要针对每个终端设备发送用户级的预编码参考信号,若如上述图2所述的信道信息反馈方法中,每个端口只能加载一个角度时延对的权值,也就是说每个端口只能对应一个预编码向量,则网络设备需为小区配置的端口数随着小区内的终端设备的数量的增加而线性增加。例如,假设小区内具有30个终端设备,每个终端设备被配置32个端口,则该小区的端口开销过大。另一方面,若通信系统对网络设备允许为终端设备配置的端口的数目进行限制的情况下,也限制了网络设备在参考信号上能够加载的角度时延对的权值的数量。因此,在信道信息反馈方法中,如何降低所需的端口开销成为一个亟待解决的问题。
本申请提供一种信道信息反馈方法,网络设备发送预编码参考信号,该预编码参考信号的每个端口对应T个预编码向量,其中,T≥1;终端设备接收预编码参考信号;终端设备确定所述预编码参考信号的P个端口中每个端口的T个复系数,T≥1;终端设备根据所述每个端口的T个复系数和第一码本W,反馈信道参数;进而,网络设备可基于该信道参数和第一码本W确定下行信道的预编码。其中,所述第一码本W基于所述T确定。预编码向量是基于角度时延对信息确定的。可见,该方法针对每个端口可以承载两个或两个以上的角度时延对信息,从而能够提升端口的利用率,也就是说降低端口开销。
其中,本申请还提供了三种角度时延对信息的加载方式,也就是说,每个端口对应的T个预编码向量对应的T个角度时延对信息如何加载,以及终端设备针对每个端口如何计算对应的T个复系数,均与每个端口的角度时延对信息的加载方法有关。因此,该角度时延对信息加载方法也可称为预编码向量加载方法或复系数计算方法。
一种实施方式中,所述T基于所述每个端口对应的特定时延偏置的个数O确定。具体的,每个端口可通过O个特定时延偏置来加载O个角度时延对信息,每个特定时延偏置相当于网络设备将对应的角度时延对移动到特定时延位置,从而终端设备可针对同一个端口计算O个角度时延对信息对应的复系数。O≥1。
另一种实施方式中,T基于所述每个端口对应的频率单元组的组数K确定。每个端口可通过频率单元分组的方式来加载K个角度时延对信息,每个频率单元组加载一个角度时 延对信息,从而终端设备可针对同一个端口计算K个角度时延对信息对应的复系数。K≥1。
又一种实施方式中,T基于所述每个端口对应的特定时延偏置的个数O以及每个特定时延偏置对应的频率单元组的组数K确定;O≥1,K≥1。也就是说,每个端口采用O个特定时延偏置,每个特定时延偏置对应的N f个频率单元可划分为K个频率单元组,这样,每个特定时延偏置对应的每个频率单元组加载一个角度时延对信息,每个端口就可加载O*K个角度时延对信息,大大提升了端口的利用率。
另外,终端设备可基于上述所述的第一码本W以及每个端口的T个复系数,来反馈信道信息,因此,本申请实施例还提供了第一码本W的实施方式100至实施方式600,其中,信道信息反馈方法将结合第一码本W所需满足的公式约束,反馈对应的信道信息。
以下结合附图,对上述相关内容进行阐述。
请参见图4,图4是本申请实施例提供的一种信道信息反馈方法的流程示意图。如图4所示,该信道信息反馈方法可包括但不限于以下步骤:
201、网络设备发送预编码参考信号,所述预编码参考信号的P个端口中每个端口对应T个预编码向量,T≥2;
202、终端设备接收预编码参考信号;
203、终端设备确定预编码参考信号的P个端口中每个端口的T个复系数,T≥2;
204、终端设备根据所述每个端口的T个复系数和第一码本W,反馈信道信息;
205、网络设备接收该信道信息;
206、网络设备根据所述信道信息和第一码本W,确定下行信道的预编码。
其中,所述第一码本W基于所述T确定,所述T基于所述每个端口对应的特定时延偏置的个数O确定,或基于所述每个端口对应的频率单元组的组数K确定,或基于所述每个端口对应的特定时延偏置的个数O以及每个特定时延偏置对应的频率单元组的组数K确定;O>1,K>1。
针对步骤201中,网络设备可针对每个端口采用T个预编码向量对参考信号进行预编码,获得预编码参考信号。该T个预编码向量是基于T个角度时延对信息确定的。以下阐述三种角度时延对信息加载方法100至角度时延对信息加载方法300。
角度时延对信息加载方法100中:
每个端口可通过O个特定时延偏置来加载O个角度时延对信息,每个特定时延偏置相当于网络设备将对应的复系数移动到特定时延位置,从而终端设备可针对同一个端口计算O个角度时延对信息对应的复系数。
[根据细则91更正 17.11.2020] 
如图5所示,在端口1上,网络设备将最上面的两个角度时延对信息,可基于两个特定时延偏置,分别移动到时延0和时延6的时延位置上,终端设备仅在对应的时延位置,如时延0和时延6上,进行信道估计,针对端口1就可获得该两个角度时延对信息的复系数
Figure PCTCN2020122612-appb-000073
相应地,端口2上,网络设备将最下面的两个角度时延对信息,也基于两个特定时延偏置,分别移动到时延0和时延6的时延位置上,终端设备仅在对应的时延位置,如时延0和时延6上,进行信道估计,针对端口2就可获得该两个角度时延对信息的复系数
Figure PCTCN2020122612-appb-000074
相应地,该方法中,T基于所述每个端口对应的特定时延偏置的个数O确定,如T=O。
角度时延对信息加载方法200中:
每个端口可通过频率单元分组的方式来加载K个角度时延对信息,每个频率单元组加载一个角度时延对信息,从而终端设备可针对同一个端口计算K个角度时延对信息对应的复系数。K≥1。
如图6所示,当网络设备配置参考信号的端口数P=8时,每个端口对应的RB划分为4个RB组,如图6所示,填充图案相同的RB属于同一个RB组,如RB1、RB5、RB9、…、等每间隔4个RB为一个组,以此类推,相应地,该RB组可加载第1个角度时延对的权值;相应地,RB2、RB6、RB10等每间隔4个RB是一个RB组;RB3、RB7、RB11等每间隔4个RB是一个RB组;RB4、RB8、RB12等每间隔4个RB是一个RB组;这样,每个端口均对应4个频率单元组,可加载4个角度时延对信息,即8个端口可加载32个角度时延对信息。也就是说,每个端口可采用4个预编码向量对参考信号进行预编码,相应地,终端设备可针对每个段口在4个频率单元组上的预编码参考信号,分别计算复系数,一共可获得32个复系数。
相应地,该实施方式中,T可等于K。
可选的,该方法中,角度时延对信息可被加载在直流分量上,如图7所示,网络设备针对每个端口不需要采用特定时延偏置,相应地,终端设备可在时延位置0上获得每个端口的复系数。也就是说,该方法中,终端设备通过不同的频率单元组来计算不同的复系数。
可选的,该方法中,角度时延对信息的复系数也可被加载在其他分量上,相当于将所有复系数都移动到一个特定时延偏置上,终端设备在对应的时延位置,基于不同的端口和不同的频率单元分组来计算复系数。
角度时延对信息加载方法300:
每个端口采用O个特定时延偏置,每个特定时延偏置对应的N f个频率单元可划分为K个频率单元组,这样,每个特定时延偏置对应的每个频率单元组加载一个角度时延对信息,每个端口就可加载O*K个角度时延对信息,大大提升了端口的利用率。T基于所述每个端口对应的特定时延偏置的个数O以及每个特定时延偏置对应的频率单元组的组数K确定;O≥1,K≥1。
如图8所示,针对端口p,网络设备采用2个特定时延偏置,如行坐标所示,对应时延0和时延6,因此,终端设备可在该时延0和时延6上分别计算不同的复系数,另外,还将频率单元划分为4个资源块组,每个最小方块表示一个资源块,相同填充图案的资源块属于同一个资源块组。这样,每个时延位置的每个资源快组(记为delay-group)可加载一个角度时延对信息。因此,时延0-组1加载第1个角度时延对信息;时延0-组2加载第2个角度时延对信 息;时延0-组3加载第3个角度时延对信息;时延0-组4加载第4个角度时延对信息;时延6-组1加载第5个角度时延对信息;时延6-组2加载第6个角度时延对信息;时延6-组3加载第7个角度时延对信息;时延6-组4加载第8个角度时延对信息.可见,端口p可加载8个角度时延对信息。从而,大大降低了端口的开销,也就是说提高了端口利用率。
针对步骤203中,终端设备确定预编码参考信号的P个端口中每个端口的T个复系数,可包括:终端设备确定预编码参考信号的P个端口中每个端口的每个特定时延偏置对应的各频率单元的等效信道,进而将等效信道进行累加,即可获得该特定时延偏置对应的角度时延对信息的复系数;相应地,针对上述角度时延信息加载方法100来说,终端可针对每个端口,获得O个复系数,该O可大于1。或者,终端设备确定预编码参考信号的P个端口中每个端口的T个复系数,可包括:终端设备确定预编码参考信号的P个端口中每个端口的每个频率单元组中各频率单元的等效信道,进而将每个频率单元组中各频率单元的等效信道进行累加,即可获得该频率单元组对应的角度时延对信息的复系数;相应地,针对上述角度时延信息加载方法200来说,终端可针对每个端口,获得K个复系数,该K可大于1。或者,终端设备确定预编码参考信号的P个端口中每个端口的T个复系数,可包括:终端设备确定预编码参考信号的P个端口中每个端口的每个特定时延偏置的每个频率单元组中各频率单元的等效信道,进而将等效信道进行累加,即可获得该特定时延偏置的该频率单元组的角度时延对信息的复系数;相应地,针对上述角度时延信息加载方法300来说,终端可针对每个端口,获得O*K个复系数,该O可大于1,K可大于1。
针对步骤204中,终端设备根据所述每个端口的T个复系数和第一码本W,反馈信道信息。也就是说,终端设备所反馈的信道信息还与第一码本W有关。以下分别阐述第一码本W的实施方式100至实施方式600的相关内容。
第一码本W的实施方式100:
所述第一码本满足的公式为:
[根据细则91更正 17.11.2020] 
Figure WO-DOC-FIGURE-3
所述W 1是所述P个端口对应的端口选择矩阵;W 1的每一列仅有一个值为1的非零元素,表示终端设备可以从P个端口中选择L个端口。P和L可由网络设备通过无线资源控制(radio resource control,RRC)、媒体接入控制-控制元素(madia access control-control element,MAC-CE)、下行控制信息(downlink control information,DCI)信令中的一种或几种进行配置,也可以由协议约定。
所述W 1是频域选择矩阵,用于指示所述终端设备从所述每个端口对应的所述T个复系数中选择的J个复系数的位置,J≤T。
所述
Figure PCTCN2020122612-appb-000076
是复系数矩阵,可用于指示终端设备选择的L个端口每个端口对应的J个复系数及其位置信息。或者,可进一步约定在该L×J个复系数的范围内选择B个复系数上报。
相应地,信道信息用于指示以下至少一项所述W 1、所述
Figure PCTCN2020122612-appb-000077
和所述W f
所述W 1是维度为P*L的整数矩阵,用于指示所述终端设备从所述P个端口中选择的L个端口的位置,L≤P;所述W 1的每行与所述P个端口中每个端口相对应,所述W 1的每行具有至多1个值为1的非零元素;所述W 1的每列与所述终端设备选择的每个端口相对应,所述W 1的每列仅有一个值为1的非零元素;所述W 1的元素a p,l等于1时,表示所述终端设备选择的第l个端口是所述P个端口中的第p个端口;所述W 1的元素a p,l等于0时,表示所述P个端口中的第p个端口不是所述终端设备选择的第l个端口,1≤p≤P,1≤l≤L。
例如,P等于4,L等于3,若终端设备从中选择第1个端口、第2个端口、第4个段端口,则该W 1可表示为:
Figure PCTCN2020122612-appb-000078
所述W f是维度为T*J的整数矩阵,所述W f中的每行与所述每个端口对应的每个复系数相对应,所述W f的每行具有至多1个值为1的非零元素;所述W f的每列与所述J个复系数中每个复系数相对应,所述W f的每列仅有一个值为1的非零元素。所述W f的元素b t,j等于1时,表示每个端口的T个复系数中第t个复系数是终端设备选择的J个复系数中第j个复系数;所述W f的元素b t,j等于0时,表示每个端口的T个复系数中第t个复系数不是终端设备选择的J个复系数中第j个复系数;1≤t≤T,1≤j≤J。
一种方式中,如采用角度时延对信息加载方法100,所述T个复系数是所述每个端口的K个频率单元组对应的复系数,所述T等于所述K;所述W 1的每行与所述每个端口的每个频率单元组的复系数相对应。具体的,所述W 1的每行可先排列针对一个端口排列其中的T个复系数,进而排列其他端口的T个复系数,也可以W 1的每行可先排列针对某个频率单元组对应的P个端口对应的P个复系数,进而排列其他频率单元组对应的P个端口的P个复系数。
另一种方式中,如采用角度时延对信息加载方法200,T个复系数是所述每个端口的K个频率单元组对应的复系数,所述T等于所述K;所述W f的每行与所述每个端口的每个频率单元组的复系数相对应。具体的,每个端口对应的T个复系数是与每个端口对应的K个频率单元组对应的角度时延对信息相对应。故该第t个复系数也可称为第k个频率单元组对应的角度时延对信息对应的复系数。相应地,所述W f中的每行与所述每个端口对应的每个频率单元组对应的角度时延对信息的复系数相对应;第j个复系数可为终端从每个 端口对应的每个频率单元组对应的角度时延对信息的复系数选择,所述W f的每列与终端设备选择的每个频率单元组对应的角度时延对信息的复系数。
又一种方式中,采用角度时延对信息加载方法300,所述T个复系数是所述每个端口的O个特定时延偏置中每个特定时延偏置的K个频率单元组对应的O*K个复系数,所述T等于所述O*K;W f的每行与所述每个端口的每个特定时延偏置的每个频率单元组的复系数相对应。所述O≥1,K≥1。具体的,每个端口对应的T个复系数是与每个端口对应的O个特定时延偏置的每个特定时延偏置的K个频率单元组的每个频率单元组对应的角度时延对信息相对应。故该第t个复系数也可称为第o个特定时延偏置的第k个频率单元组对应的角度时延对信息对应的复系数。相应地,所述W f中的每行与所述每个端口的每个特定时延偏置的每个频率单元组对应的角度时延对信息的复系数相对应;第j个复系数可为终端从每个端口的O个特定时延偏置的K个频率单元组对应的O*K个角度时延对信息的复系数选择,所述W f的每列与终端设备选择的每个特定时延偏置的每个频率单元组对应的角度时延对信息的复系数。
例如,当O=2,K=4,J=4时,终端设备上报的一种可能的W f为:
Figure PCTCN2020122612-appb-000079
该W f表示终端设备从每个端口的O×K=8个复系数中的某J=4个中选择部分复系数。也就是说,终端设备选择的复系数只能从每个端口中限定的该J个中选择。具体的,在这个例子中,终端设备选择的复系数是在每端口上的第1/2/5/8个复系数范围内选择。
该方式中,可选的,所述每个端口选择的J个复系数是所述每个端口选择的M个特定时延偏置的每个特定时延偏置的V个频率单元分组对应的M*V个复系数。
所述
Figure PCTCN2020122612-appb-000080
是维度为L*J的复数矩阵,用于指示所述终端设备从所述L个端口中每个端口对应的所述J个复系数中选择的B个复系数及其在所述
Figure PCTCN2020122612-appb-000081
中的位置;所述
Figure PCTCN2020122612-appb-000082
的每行与所述L个端口中每个端口相对应;所述
Figure PCTCN2020122612-appb-000083
的每列与所述J个复系数中每个复系数相对应;所述
Figure PCTCN2020122612-appb-000084
中元素c l,j为零,表示所述B个复系数中不包括所述第l个端口的第j个复系数;所述
Figure PCTCN2020122612-appb-000085
中元素c l,j为非零元素,表示所述B个复系数中包括所述第l个端口的第j个复系数;1≤l≤L,1≤j≤J。
需要注意的是,本文在描述矩阵结构时,所表达的每行、每列的对应关系是用于表示矩阵是符合构造的,即每行、每列的对应关系用于表示每行、每列的物理含义。如上述举 例所述的W 1,其他矩阵的构造方式根据上述描述可对应构造,此处不再详述。
第一码本W的实施方式200:
所述第一码本满足的公式为:
所述第一码本满足的公式为:
Figure PCTCN2020122612-appb-000086
所述W 1是系数选择矩阵,用于指示所述终端设备从所述P个端口的每个端口对应的T个复系数中选择的B个复系数的位置;B≤P*T;
所述
Figure PCTCN2020122612-appb-000087
是复系数矩阵,用于指示所述B个复系数。
相应地,信道信息用于指示以下至少一项所述W 1和所述
Figure PCTCN2020122612-appb-000088
所述W 1是维度为(P*T)*B的整数矩阵,所述W 1的每行与所述P个端口中每个端口对应的每个复系数相对应,所述W 1的每行具有至多1个值为1的非零元素;所述W 1的每列与所述B个复系数中每个复系数相对应,所述W 1的每列仅有一个值为1的非零元素;
所述
Figure PCTCN2020122612-appb-000089
是维度为B*1的复数矩阵,所述
Figure PCTCN2020122612-appb-000090
的每行与所述B个复系数相对应。
一种方式中,如采用角度时延对信息加载方法100,所述T个复系数是所述每个端口的K个频率单元组对应的复系数,所述T等于所述K;所述W 1的每行与所述每个端口的每个频率单元组的复系数相对应。具体的,所述W 1的每行可先排列针对一个端口排列其中的T个复系数,进而排列其他端口的T个复系数,也可以W 1的每行可先排列针对某个频率单元组对应的P个端口对应的P个复系数,进而排列其他频率单元组对应的P个端口的P个复系数。
另一种方式中,如采用角度时延对信息加载方法200,所述T个复系数是所述每个端口的O个特定时延偏置对应的复系数,所述T等于所述O;所述W 1的每行与P个端口的每个端口的每个特定时延偏置的复系数相对应,也可以W 1的每行可先排列针对某个特定时延偏置对应的P个端口对应的P个复系数,进而排列其他特定时延偏置对应的P个端口的P个复系数。
又一种方式中,采用角度时延对信息加载方法300,所述T个复系数是所述每个端口的O个特定时延偏置中每个特定时延偏置的K个频率单元组对应的O*K个复系数,所述T等于所述O*K;所述W 1的每行与所述每个端口的每个特定时延偏置的每个频率单元组的复系数相对应,也可以W 1的每行可先排列针对某个特定时延偏置的某个频率单元组对应的P个端口对应的P个复系数,再排列该特定时延偏置的其他每个频率单元对应的P个端口的P个复系数,然后再排列其他特定时延偏置的每个频率单元对应的P个端口的P个复系数,也可以W 1的每行可先排列针对某个频率单元组的某个特定时延偏置对应的P个端口对应的P个复系数,再排列该频率单元组的其他每个特定时延偏置对应的P个端口的P个复系数,然后再排列其他频率单元组的每个特定时延偏置对应的P个端口的P个复系数。
第一码本W的实施方式300:
所述第一码本W满足的公式为:
Figure PCTCN2020122612-appb-000091
所述W 1是所述P个端口对应的端口选择矩阵,用于指示所述第一装置从所述P个端口中选择的L个端口的位置,L≤P;
所述
Figure PCTCN2020122612-appb-000092
是复系数矩阵,用于指示所述终端设备从所述L个端口中每个端口对应的J个复系数中所选的B个复系数及其在所述
Figure PCTCN2020122612-appb-000093
中的位置;
所述J是允许所述终端设备从所述每个端口对应的T个复系数中选择的复系数个数,所述J≤T。
相应地,所述信道信息用于指示以下至少一项所述W 1和所述
Figure PCTCN2020122612-appb-000094
所述W 1是维度为P*L的整数矩阵,用于指示所述终端设备从所述P个端口中选择的L个端口的位置,L≤P;
所述
Figure PCTCN2020122612-appb-000095
是维度为L*J的复数矩阵,所述
Figure PCTCN2020122612-appb-000096
的每行与所述L个端口中每个端口相对应;所述
Figure PCTCN2020122612-appb-000097
的每列与所述J个复系数中每个复系数相对应;所述
Figure PCTCN2020122612-appb-000098
中元素c l,j为零,表示所述B个复系数中不包括第l个端口的第j个复系数;所述
Figure PCTCN2020122612-appb-000099
中元素c l,j为非零元素,表示所述B个复系数中包括第l个端口的第j个复系数。
第一码本W的实施方式400:
所述第一码本W满足的公式为:
Figure PCTCN2020122612-appb-000100
所述
Figure PCTCN2020122612-appb-000101
是复系数矩阵,用于指示所述终端设备选择的B个复系数;所述B个复系数是从所述P个端口的每个端口对应的T个复系数中选择的。
相应地,所述信道信息用于指示以下至少一项复系数矩阵
Figure PCTCN2020122612-appb-000102
和第一指示信息;
所述复系数矩阵
Figure PCTCN2020122612-appb-000103
是维度为B*1的复数矩阵,所述
Figure PCTCN2020122612-appb-000104
的每行与所述终端设备选择的所述B个复系数中每个复系数相对应;
所述第一指示信息用于指示所述B个复系数的位置信息。
其中,所述B个复系数的位置信息包括所述B个复系数的每个复系数对应的第p个端口;或者,B个复系数中每个复系数对应的第p个端口的第o个特定时延偏置;或者,B个复系数中每个复系数对应的第p个端口的第k个频率单元组;或者,B个复系数中每个复系数对应的第p个端口的第o个特定时延偏置的第k个频率单元组;1≤p≤P,1≤o≤O,1≤k≤K。
第一码本W的实施方式500:
所述第一码本W满足的公式为:
Figure PCTCN2020122612-appb-000105
所述W 1是所述P个端口对应的端口选择矩阵;
所述
Figure PCTCN2020122612-appb-000106
是复系数矩阵;
所述W f是频域基底矩阵,用于指示所述终端设备从每个端口对应的T个频率单元组中选择的J个频率单元组的频域基底。
相应地,所述信道信息用于指示以下至少一项所述W 1、所述
Figure PCTCN2020122612-appb-000107
和所述W f,所述W 1是维度为P*L的整数矩阵,用于指示所述终端设备从所述P个端口中选择的L个端口的位置, L≤P;
所述W f是从频域基底矩阵W′ f的T列中选择J列获得的;所述W′ f是维度为N f*T的复数矩阵,所述W′ f的每列与一个离散傅里叶变换DFT列向量相对应,所述每列是按照对应频率单元组包括的频率单元将对应的DFT列向量进行采样获得的;所述W′ f的每行与所述N f个频率单元中每个频率单元相对应;所述W′ f的每列与所述T个频率单元组中每个频率单元组相对应,所述W′ f的每列的非零元素的个数等于对应频率单元组包括的频率单元的个数;
所述
Figure PCTCN2020122612-appb-000108
是维度为L*J的复数矩阵,用于指示所述终端设备从所述L个端口中每个端口对应的所述J个频率单元组中选择的B个复系数及其在所述
Figure PCTCN2020122612-appb-000109
中的位置;所述
Figure PCTCN2020122612-appb-000110
的每行与所述L个端口中每个端口相对应;所述
Figure PCTCN2020122612-appb-000111
的每列与所述J个复系数中每个复系数相对应;所述
Figure PCTCN2020122612-appb-000112
中元素c l,j为零,表示所述B个复系数中不包括第l个端口的第j个复系数;所述
Figure PCTCN2020122612-appb-000113
中元素c l,j为非零元素,表示所述B个复系数中包括第l个端口的第j个复系数;1≤l≤L,1≤j≤J。
一种方式中,如采用角度时延对信息加载方法200,所述T个频率单元组是所述每个端口的K个频率单元组,所述T等于K;所述W′ f的每列与所述K个频率单元组中的每个频率单元组相对应;所述W′ f的每列对应的离散傅里叶变换DFT列向量的索引相同。
一种方式中,采用角度时延对信息加载方法300,所述T个频率单元组是所述每个端口的O个特定时延偏置中每个特定时延偏置的K个频率单元组,所述T等于所述O*K;
所述W′ f的每列与所述O个特定时延偏置中每个特定时延偏置的K个频率单元组中的每个频率单元组相对应;
所述W′ f的每K列与所述每个特定时延偏置的DFT列向量相对应,所述每K列中每列分别对应的DFT列向量的索引相同,且所述每K列对应的DFT列向量的索引是对应的特 定时延偏置的DFT列向量的索引。
可选的,一种方式中,上述J个频率单元组是从O*K个频率单元组任意选择的;另一方式,所述每个端口选择的J个频率单元组是所述每个端口选择的M个特定时延偏置的每个特定时延偏置的V个频率单元分组,所述J等于M*V。
以下对频域基底矩阵W f、W′ f的相关内容进行相对详细的阐述。
首先,针对角度时延对信息加载方法200,
Figure PCTCN2020122612-appb-000114
为频域基底矩阵,其基向量的维度为N f×1,N f为CSI-RS频率单元的数目,可以等于其发送带宽的RB数目或子带数目,也可以是其RB或子带数目的函数,还可以是由网络设备通知或协议约定。当一个CSI-RS端口N f个频率单元被划分为K组,即该CSI-RS端口可对应K个复系数时,W f的J列表征终端设备从加载的K个复系数中选择其中的J个进行上报。此时W f为满足如下约束的特定结构:
1)标记N f个频率单元的索引序列为Γ={1,2,…,N f-1,N f},将N f个频率单元分为K组后,第k个频率单元组包含
Figure PCTCN2020122612-appb-000115
个频率单元,对应的频率单元索引序列为Γ k;需注意的是频率单元分组时需满足
Figure PCTCN2020122612-appb-000116
每个频率单元至多被划分到某一个频率单元组,即K个频率单元组之间应为互斥集合,且允许存在频率单元不被划分到任何一组(即该频率单元不用来加载角度时延对信息);
2)定义矩阵
Figure PCTCN2020122612-appb-000117
其每列元素均相同,且为DFT矩阵的某一列(记
Figure PCTCN2020122612-appb-000118
表示DFT矩阵的某一列,例如第n列);
3)定义矩阵
Figure PCTCN2020122612-appb-000119
为具有一定稀疏结构的频率单元选择矩阵,矩阵中元素q i,j∈{0,1},其第k列共有
Figure PCTCN2020122612-appb-000120
个非零元素,并且
Figure PCTCN2020122612-appb-000121
个非零元素的位置与第k个频率单元组包含的频率单元索引Γ k一致;其每行最多只有1个非零元素,表征该频率单元只能至多被划分到某一个频率单元组,至多加载一个时延角度对信息的权值或者不加载任何角度时延信息;
4)此时K列完整的频域基底矩阵W′ f可表示为
Figure PCTCN2020122612-appb-000122
其中⊙表示哈达码积,即对应元素相乘;
5)终端设备按照协议约定或者信令通知从K个复系数中选择J个,并由该V个复系数在 W′ f中对应的J列构成频域基底矩阵
Figure PCTCN2020122612-appb-000123
并上报。
将N f个频率单元划分为K组本质上是一个组合问题,具有很多种划分方式,每种划分方式都对应着一种可满足如上约束的频域基底矩阵W f(W′ f中的J列,本质是讨论W′ f的具体形式)。由于划分后的每组频率单元都用来加载一个复系数信息,当组内频率单元数越少时,下行信道在该复系数上的投影系数估计的准确度降低,为综合考虑实际的方案性能,划分后K组内的频率单元数目应尽量相近。本实施例给出两种频率单元划分方式,分别如下所示:
[根据细则91更正 17.11.2020] 
一种方式,N f个频率单元,将相隔K个频率单元的划分为一组。当mod(N f,K)=0时,第k个频率组内共有
Figure PCTCN2020122612-appb-000124
个频域单元,则第k组对应的频率单元索引可表示为
Figure PCTCN2020122612-appb-000125
Figure PCTCN2020122612-appb-000126
当mod(N f,K)≠0时,第k个频率单元组包含
Figure PCTCN2020122612-appb-000127
个频域单元,此时仍有
Figure PCTCN2020122612-appb-000128
个频率单元未分组,这些未分组的频率单元可以都分配到某一个频率单元组,也可以分开配置到多个单元组中,还可以不配置到任何一个频率单元组中;在确定好剩余未分组的频率单元的归属后,第k组对应的频率单元索引可表示为
Figure PCTCN2020122612-appb-000125
Figure PCTCN2020122612-appb-000126
Ωk表示剩余未分组的
Figure PCTCN2020122612-appb-000128
个频率单元划分到第k组的频率单元的索引号。为描述简单以K=4,N f为K的整数倍为例,给出此时满足上述约束的W f矩阵的具体形式:
矩阵
Figure PCTCN2020122612-appb-000129
其中G可表示为(索引为n的DFT列向量):
Figure PCTCN2020122612-appb-000130
频率单元选择矩阵
Figure PCTCN2020122612-appb-000131
可表示为如图9所示的结构。频域基底矩阵
Figure PCTCN2020122612-appb-000132
Figure PCTCN2020122612-appb-000133
可表示为如图10所示的结构。
另一种方式:N f个频率单元,将相邻的
Figure PCTCN2020122612-appb-000134
个频率单元划分为一组。当mod(N f,K)=0时, 第k个频率组内共有
Figure PCTCN2020122612-appb-000135
个频域单元,则第k组对应的频率单元索引可表示为
Figure PCTCN2020122612-appb-000136
当mod(N f,K)≠0,第k个频率单元组包含
Figure PCTCN2020122612-appb-000137
个频域单元,此时仍有
Figure PCTCN2020122612-appb-000138
个频率单元未分组,这些未分组的频率单元可以都分配到某一个频率单元组,也可以分开配置到多个单元组中,还可以不配置到任何一个频率单元组中;在确定好剩余未分组的频率单元的归属后,第k组对应的频率单元索引可表示为
Figure PCTCN2020122612-appb-000139
Ω k表示剩余未分组的
Figure PCTCN2020122612-appb-000140
个频率单元划分到第k组的频率单元的索引号。为与第一种划分方式对比,仍以K=4,N f为K的整数倍为例,给出此时满足上述约束的W′ f矩阵的具体形式:矩阵
Figure PCTCN2020122612-appb-000141
G与上述方式中一致;该方式对应的频率单元选择矩阵
Figure PCTCN2020122612-appb-000142
可表示为图11所示。频域基底矩阵
Figure PCTCN2020122612-appb-000143
可表示为图12所示。
其次,针对采用角度时延对信息加载方法300,对
Figure PCTCN2020122612-appb-000144
为频域基底矩阵,其基向量的维度为N f×1,N f为CSI-RS频率单元的数目,可以等于其发送带宽的RB数目或子带数目,也可以是其RB或子带数目的函数,还可以是由网络设备通知或协议约定。当一个CSI-RS端口上采用O个特定时延偏置,同时将每个特定时延偏置对应的N f个频率单元划分为K组,即每个特定的时延偏置下每个频率单元组可对应一个复系数,即一个CSI-RS端口共可加载O×K个复系数,频域基底矩阵W f即由O×K中选择J个构成,具体如下所述。
当采用上述CSI-RS降开销方案时,频域基底矩阵W f为满足如下约束的特定结构:
1)满足与实施例一相同的频率单元分组规则,记分组后第k个频率单元组索引序列为Γ k,且包含频率单元的数目为
Figure PCTCN2020122612-appb-000145
2)定义矩阵
Figure PCTCN2020122612-appb-000146
其中
Figure PCTCN2020122612-appb-000147
表示一个长度为N f的DFT向量(DFT矩阵的某一列,且O个DFT向量不相同);定义矩阵
Figure PCTCN2020122612-appb-000148
其中G o为矩阵G的第o或f(o)列,其中f(o)表示为o的函数,例如f(o)=(O-o)等;
3)定义矩阵
Figure PCTCN2020122612-appb-000149
为具有一定稀疏结构的频率单元选择矩阵(其结构特征与实施例一中所描述的Q f相同);记满足此约束的矩阵Q的集合为
Figure PCTCN2020122612-appb-000150
4)每个特定时延偏置均可对应一种N f个频率单元的划分方式(频率单元选择矩阵),则总共O个特定时延偏置对应的频率单元选择矩阵可表示为
Figure PCTCN2020122612-appb-000151
其中第o特定时延偏置对应的频率单元选择矩阵
Figure PCTCN2020122612-appb-000152
多个特定时延偏置对应的频率单元选择矩阵可以相同,也可以不同;
5)完整的频域基底矩阵
Figure PCTCN2020122612-appb-000153
⊙表示哈达码积。为了方便理解,给出当O=2,K=2时上述各个步骤的数学表达:
-矩阵
Figure PCTCN2020122612-appb-000154
和矩阵
Figure PCTCN2020122612-appb-000155
可分别表示为:
Figure PCTCN2020122612-appb-000156
Figure PCTCN2020122612-appb-000157
-两种简单的可满足上述频率单元选择矩阵约束的矩阵S 1和S 2可表示为(分别与实施例一中①和②所述的频率单元分组方式相对应):
Figure PCTCN2020122612-appb-000158
-矩阵
Figure PCTCN2020122612-appb-000159
可表示为:
Figure PCTCN2020122612-appb-000160
Figure PCTCN2020122612-appb-000161
Figure PCTCN2020122612-appb-000162
Figure PCTCN2020122612-appb-000163
-选择配置第一种Q f矩阵,则对应的频域基底矩阵W′ f可表示为:
Figure PCTCN2020122612-appb-000164
Figure PCTCN2020122612-appb-000165
第一码本W的实施方式600:
该实施方式的相关内容可参见上述实施方式500,不同之处在于,所述第一码本W满足的公式为:
Figure PCTCN2020122612-appb-000166
所述W 1是所述P个端口对应的端口选择矩阵;
所述
Figure PCTCN2020122612-appb-000167
是复系数矩阵;
所述Q f是频率单元选择矩阵,用于指示所述终端设备从所述每个端口对应的T个频率单元组中选择的J个频率单元组中每个频率单元的位置;
所述W f是频域基底矩阵,用于指示所述终端设备从所述每个端口对应的T个离散傅里叶变换DFT列向量中的J个DFT列向量。
相应地,所述信道信息用于指示以下至少一项所述W 1、所述
Figure PCTCN2020122612-appb-000168
所述Q f和所述W f
所述W 1用于指示所述终端设备从所述P个端口中选择的L个端口的位置,L≤P;
所述Q f是维度为N f*J的整数矩阵,所述Q f每行与所述N f个频率单元中每个频率单元相对应;所述Q f的每列与所述J个频率单元组中每个频率单元组相对应;
所述W f是从频域基底矩阵W′ f的T列中选择J列获得的;所述W′ f是维度为N f*T的复数矩阵,所述W′ f的每列与一个离散傅里叶变换DFT列向量相对应;所述W′ f的每行与所 述N f个频率单元中每个频率单元相对应;所述W′ f的每列与所述T个DFT列向量中每个DFT列向量相对应;
所述
Figure PCTCN2020122612-appb-000169
是维度为L*J的复数矩阵,用于指示所述终端设备从所述L个端口中每个端口对应的所述J个复系数中选择的B个复系数及其在所述
Figure PCTCN2020122612-appb-000170
中的位置;所述
Figure PCTCN2020122612-appb-000171
的每行与所述L个端口中每个端口相对应;所述
Figure PCTCN2020122612-appb-000172
的每列与所述J个频率单元组中每个频率单元组相对应;所述
Figure PCTCN2020122612-appb-000173
中元素c l,j等于零,表示B个复系数中不包括第l个端口的第j个频率单元组对应的复系数;所述
Figure PCTCN2020122612-appb-000174
中元素c l,j等于非零,表示所述B个复系数中包括第l个端口的第j个频率单元组对应的复系数,1≤l≤L,1≤j≤J。
一种方式中,如采用角度时延对信息加载方法200,所述T个频率单元组是所述每个端口的K个频率单元组,所述T等于K;所述Q f的每列与所述K个频率单元组中的每个频率单元组相对应;所述W′ f的每列的离散傅里叶变换DFT列向量的索引相同。
一种方式中,采用角度时延对信息加载方法300,所述T个频率单元组是所述每个端口的O个特定时延偏置中每个特定时延偏置的K个频率单元组,所述T等于所述O*K;所述Q f的每列与所述O个特定时延偏置中每个特定时延偏置的K个频率单元组中的每个频率单元组相对应;所述W′ f的每K列为所述每个特定时延偏置对应的DFT列向量,所述每K列中每列的DFT列向量的索引相同,且所述每K列的DFT列向量的索引是对应的特定时延偏置的DFT列向量的索引。
一种方式中,上述J个频率单元组是从O*K个频率单元组任意选择的;另一方式,所述每个端口选择的J个频率单元组是所述每个端口选择的M个特定时延偏置的每个特定时延偏置的V个频率单元分组,所述J等于M*V。
另外,终端设备上述所采用的相关参数,可包括但不限于以下方式获知:
频率单元的分组方式以及特定时延偏置对应的DFT列向量的索引可通过以下方式获知:
一种方式,网络设备发送第二指示信息,终端设备接收第二指示信息,所述第二指示信息用于指示每个端口采用的每个特定时延偏置对应的离散傅里叶变换DFT向量在DFT矩阵中的索引以及每个特定时延偏置对应的N f个频率单元划分的频率单元组数K、第k个频率单元组包括
Figure PCTCN2020122612-appb-000175
个频率单元以及所述第k个频率单元组中频率单元的索引是Γ k;1≤k≤K;
或者,所述第二指示信息用于指示每个端口对应的离散傅里叶变换DFT向量在DFT矩阵中的索引以及对应的N f个频率单元划分的频率单元组数K、第k个频率单元组包括
Figure PCTCN2020122612-appb-000176
个频率单元以及所述第k个频率单元组中频率单元的索引是Γ k
可选的,终端设备还可根据第二指示信息,确定频域基底矩阵W′ f。以便于终端设备根据上述第一码本W的实施方式500、第一码本W的实施方式600反馈信道信息。
另一方式,网络设备可发送频域基底矩阵W′ f,所述终端设备接收频域基底矩阵W′ f;所述频域基底矩阵W′ f用于指示所述每个端口或每个端口采用的O个特定时延偏置中每个特定时延偏置对应的频率单元组的组数K、第k个频率单元组包括
Figure PCTCN2020122612-appb-000177
个频率单元以及所述第k个频率单元组中频率单元的索引是Γ k;1≤k≤K。
关于上述第一码本W所用到的B,可由所述终端设备接收来自网络设备的第三指示信息,所述第三指示信息用于指示所述终端设备需选择的复系数的个数B。
另外,针对上述各种第一码本W的实施方式,终端设备接收第四指示信息,所述第四指示信息用于指示所述终端设备反馈信道信息所需对应的第一码本W;进而,所述终端设备确定第四指示信息所指示的第一码本W。从而,结合该第一码本W所需满足的公式,反馈信道信息。
另外,本申请还提供包括但不限于以下两种分组方式:
方式一,所述每个端口或每个端口的每个特定时延偏置对应的N f个频率单元划分为K个频率单元组,第k个频率单元组包括
Figure PCTCN2020122612-appb-000178
个频率单元,所述第k个频率单元组中频率单元的索引是Γ k;1≤k≤K;
其中,
Figure PCTCN2020122612-appb-000179
所述Ω k用于表示所述N f对所述K求余不为零时,所述N f个频率单元中未被分组的
Figure PCTCN2020122612-appb-000180
个频率单元中被分配到第k个频率单元组的频率单元的索引;第k个频率单元组中频率单元的索引为:
Figure PCTCN2020122612-appb-000181
方式二:所述每个端口或每个端口采用的每个特定时延偏置对应的N f个频率单元划分 为K个频率单元组,第k个频率单元组包括
Figure PCTCN2020122612-appb-000182
个频率单元,所述第k个频率单元组中频率单元的索引是Γ k;1≤k≤K;
[根据细则91更正 17.11.2020] 
其中,
Figure PCTCN2020122612-appb-000183
所述Ω k用于表示所述N f对所述K求余不为零时,所述N f个频率单元中未被分组的
Figure PCTCN2020122612-appb-000184
个频率单元中被分配到第k个频率单元组的频率单元的索引;第k个频率单元组中频率单元的索引为
Figure WO-DOC-FIGURE-1
本实施例主要针对上述所有实施例,对网络设备CSI-RS权值以及终端设备侧复系数计算和反馈方式进行补充描述。
Figure PCTCN2020122612-appb-000186
网络设备CSI-RS加权行为:

[根据细则91更正 17.11.2020] 
假设每个CSI-RS端口上可加载T个复系数,记第p个CSI-RS端口上加载的第t个复系数在第n个频率单元上的权值为
Figure PCTCN2020122612-appb-000187
(为空域权值,具体与权值矩阵Z H某一列的第n个频率单元的权值对应),t∈{1,2,…,T},n∈{1,2,…,N f},N tx为网络设备的天线数;如果网络设备仅采用上述频率单元分组方案,将该T=K个复系数均加载在第p个CSI-RS端口时,按照角度时延对信息加载方法200所述,此时对应的频域基底矩阵为
Figure PCTCN2020122612-appb-000188
如果网络设备采用上述特定时延偏置联合频率单元分组方案将T=O×K个复系数均加载在第p个CSI-RS端口时,按照角度时延对信息加载方法300所述,此时对应的频域基底矩阵为
Figure PCTCN2020122612-appb-000189
(本质上,上述实施例可以统一到一个W f表达式,只是具体的结构略有差异,后续都统一用符号J来表示选择后的频域基底列数);则第p个CSI-RS端口上第n个频率单元的权值可统一表示为:
Figure PCTCN2020122612-appb-000190
其中W′ f(n,t)表示矩阵W′ f的第n行第t列的元素。
Figure PCTCN2020122612-appb-000191
终端设备侧复系数计算:
[根据细则91更正 17.11.2020] 
网络设备通过信令通知终端设备或协议约定经过频率单元分组后的频域基底矩阵W f形式(或者等效的通知终端设备K个频率单元的分组规则以及O个特定时延对应的DFT向量的索引(角度时延对信息加载方法200的方案对应O=1),或者类似的通知),则终端设备可按照如下方式计算第p个端口加载的第t个复系数的复系数:
Figure PCTCN2020122612-appb-000192
[根据细则91更正 17.11.2020] 
其中c p,t,r表示第r根终端设备接收天线第p个CSI-RS端口上加载的第t个复系数的复系数,若采用角度时延对信息加载方法200的方案,第t个复系数对应的频率单元组序号为k∈{1,…,K};若采用角度时延对信息加载方法300的方案,第t个复系数对应的特定时延偏置索引是
Figure PCTCN2020122612-appb-000193
频率单元组的索引是
Figure PCTCN2020122612-appb-000194
Figure PCTCN2020122612-appb-000195
为第r根终端设备接收天线第p个CSI-RS端口所有频率单元的等效信道。
Figure PCTCN2020122612-appb-000196
终端设备侧复系数反馈个数:
[根据细则91更正 17.11.2020] 
网络设备通过信令约定配置的端口数为P CSI-RS,采用的特定时延偏置的个数O及其对应的DFT索引号,频率单元组划分为组数K,以及终端设备上报复系数时的参数。
[根据细则91更正 17.11.2020] 
-当上报系数自由选择时:网络设备通过信令通知终端设备所有端口上报复系数的个数为B,且该B个复系数在已选择的端口上可以在多个特定时延偏置及多个频率单元分组中随意选择(在如图12所示的复系数矩阵中自由选择元素上报);
[根据细则91更正 17.11.2020] 
当上报系数需满足一定限制时:网络设备通过信令通知终端设备所有端口上报复系数的个数为B,还需限制终端设备只能从每个端口上的O个特定时延偏置中选择M个时延偏置对应的复系数,或只能从K个频率单元组中选择V个频率单元组对应的复系数,或需同时满足M个时延偏置和V个频率单元组的限制,即终端设备只能按照此种约束进行B个复系数的选择和上报(在如图13所示的复系数矩阵中只能在某M和某V行上选择复系数上报)。
Figure PCTCN2020122612-appb-000197
终端设备侧复系数反馈模式:
假设终端设备具有R根接收天线,则终端设备可计算获得R×P CSI-RS×O×K个复系数,对应于上述实施例码本结构中的
Figure PCTCN2020122612-appb-000198
具体的有如下两种
Figure PCTCN2020122612-appb-000199
反馈方式:
-模式1:R根接收天线可计算获得R×P CSI-RS×O×K个复系数,终端设备按照某种约束从中按照一定的准则选择B个复系数(例如复系数的能量大小),并按照一定的规则上报(例如所选择的复系数可按照频率单元组索引、特定时延偏置索引、端口索引、天线索引依次上报,或者可拓展为其他约定的顺序),其中B≤2L 0OKR,并同时上报所选元素的位置信息,例如bitmap等(若全部元素均上报,其位置信息可以省略不上报);
-模式2:将R根接收天线对应的复系数构造为OKP CSI-RS×R的矩阵
Figure PCTCN2020122612-appb-000200
Figure PCTCN2020122612-appb-000201
进行SVD分解可得
Figure PCTCN2020122612-appb-000202
根据Rank数,选择矩阵V的前Rank列,终端设备从Rank×OKP CSI-RS个复系数中按照一定的准则选择B个复系数(例如复系数的能量大小,Rank个
Figure PCTCN2020122612-appb-000203
系数矩阵 的总上报元素个数为B),并按照一定的规则上报(例如所选择的复系数可按照频率单元组索引、特定时延偏置索引、端口索引、天线索引依次上报,或者可拓展为其他约定的顺序),其中B≤2L 0OKR,并同时上报所选元素的位置信息,例如比特位图(bitmap)等(若全部元素均上报,其位置信息可以省略不上报)。
Figure PCTCN2020122612-appb-000204
网络设备确定预编码:
网络设备在获取到终端设备反馈的叠加系数矩阵
Figure PCTCN2020122612-appb-000205
矩阵,端口选择矩阵W 1,频域基底矩阵W f和在选择的端口及选择频域位置范围内的选择上报的元素的位置信息(此位置信息为
Figure PCTCN2020122612-appb-000206
矩阵2L 0×J中B个上报元素的位置)后,按照下式进行预编码重构:
Figure PCTCN2020122612-appb-000207
其中g(i,j)为由终端设备反馈的端口选择矩阵W 1和频域基底矩阵W f所决定的
Figure PCTCN2020122612-appb-000208
与复系数的映射关系,当
Figure PCTCN2020122612-appb-000209
未上报时值为0;z g(i,j)为与g(i,j)复系数所对应的权值(权值矩阵Z H中的某一列)。
如图14所示,本申请实施例提供了一种通信装置1400。该通信装置1400可以是第一装置的部件(例如,集成电路,芯片等等),可以是第二装置的部件(例如,集成电路,芯片等等)。该通信装置1400也可以是其他通信单元,用于实现本申请方法实施例中的方法。该通信装置1400可以包括:通信单元1401、处理单元1402,可选的,还包括存储单元1403。
在一种可能的设计中,如图14中的一个或者多个单元可能由一个或者多个处理器来实现,或者由一个或者多个处理器和存储器来实现;或者由一个或多个处理器和收发器实现;或者由一个或者多个处理器、存储器和收发器实现,本申请实施例对此不作限定。所述处理器、存储器、收发器可以单独设置,也可以集成。
一种实现方式中,该通信装置1400可以包括但不限于:
通信单元1401,用于接收预编码参考信号;
处理单元1402,用于确定预编码参考信号的P个端口中每个端口的T个复系数,P≥1,T≥2;
所述处理单元1402,还用于根据每个端口的T个复系数和第一码本W,反馈信道信息;
其中,第一码本W基于T确定,T基于每个端口对应的特定时延偏置的个数O确定,或基于每个端口对应的频率单元组的组数K确定,或基于每个端口对应的特定时延偏置的个数O以及每个特定时延偏置对应的频率单元组的组数K确定;O>1,K>1。
其中,通信装置1400还需结合第一码本反馈信道信息。因此,该方面中,第一码本W、信道信息的相关实施方式可参见上述方法实施例的相关内容,此处不再详述。
一种实现方式中,通信单元1401,还用于接收第二指示信息,所述第二指示信息用于 指示每个端口采用的每个特定时延偏置对应的离散傅里叶变换DFT向量在DFT矩阵中的索引以及每个特定时延偏置对应的N f个频率单元划分的频率单元组数K、第k个频率单元组包括
Figure PCTCN2020122612-appb-000210
个频率单元以及所述第k个频率单元组中频率单元的索引是Γ k;1≤k≤K;或者,所述第二指示信息用于指示每个端口对应的离散傅里叶变换DFT向量在DFT矩阵中的索引以及对应的N f个频率单元划分的频率单元组数K、第k个频率单元组包括
Figure PCTCN2020122612-appb-000211
个频率单元以及所述第k个频率单元组中频率单元的索引是Γ k
一种实现方式中,处理单元1402还用于根据第二指示信息,确定频域基底矩阵W′ f
一种实现方式中,通信单元1401还用于接收频域基底矩阵W′ f;所述频域基底矩阵W′ f用于指示所述每个端口或每个端口采用的O个特定时延偏置中每个特定时延偏置对应的频率单元组的组数K、第k个频率单元组包括
Figure PCTCN2020122612-appb-000212
个频率单元以及所述第k个频率单元组中频率单元的索引是Γ k;1≤k≤K。
一种实现方式中,通信单元1401还用于接收第三指示信息,所述第三指示信息用于指示所述第一装置需选择的复系数的个数B。
一种实现方式中,通信单元1401还用于接收第四指示信息,所述第四指示信息用于指示所述第一装置反馈信道信息所需对应的第一码本W;处理单元1402还用于确定第四指示信息所指示的第一码本W。
可选的,该通信装置1400还可执行上述方法实施例中终端设备的相关操作、实施方式等,此处不再详述。
另一实施例中,图14所示通信装置1400可以执行上述方法实施例中网络设备的相关实施方式。可选的,该通信装置1400可包括但不限于:
通信单元1401,用于发送预编码参考信号,预编码参考信号的P个端口中每个端口对应T个预编码向量,P≥1,T≥2;
通信单元1401,还用于接收来自第一装置针对预编码参考信号反馈的信道信息;
处理单元1402,用于根据信道信息和第一码本W,确定下行信道的预编码;
其中,第一码本W基于T确定,T基于每个端口对应的特定时延偏置的个数O确定,或基于每个端口对应的频率单元组的组数K确定,或基于每个端口对应的特定时延偏置的个数O以及每个特定时延偏置对应的频率单元组的组数K确定;O>1,K>1。
另外,通信装置1400还需结合第一码本和信道信息,确定下行信道的预编码。因此,第一码本W、信道信息的相关实施方式可参见上述方法实施例的相关内容,此处不再详述。
一种实现方式中,通信单元1401,还用于发送第二指示信息,所述第二指示信息用于 指示每个端口采用的每个特定时延偏置对应的离散傅里叶变换DFT向量在DFT矩阵中的索引以及每个特定时延偏置对应的N f个频率单元划分的频率单元组数K、第k个频率单元组包括
Figure PCTCN2020122612-appb-000213
个频率单元以及所述第k个频率单元组中频率单元的索引是Γ k;1≤k≤K;
或者,所述第二指示信息用于指示每个端口对应的离散傅里叶变换DFT向量在DFT矩阵中的索引以及对应的N f个频率单元划分的频率单元组数K、第k个频率单元组包括
Figure PCTCN2020122612-appb-000214
个频率单元以及所述第k个频率单元组中频率单元的索引是Γ k
一种实现方式中,通信单元1401,还用于发送频域基底矩阵W′ f;所述频域基底矩阵W′ f用于指示所述每个端口或每个端口采用的O个特定时延偏置中每个特定时延偏置对应的频率单元组的组数K、第k个频率单元组包括
Figure PCTCN2020122612-appb-000215
个频率单元以及所述第k个频率单元组中频率单元的索引是Γ k;1≤k≤K。
一种实现方式中,通信单元1401,还用于发送第三指示信息,所述第三指示信息用于指示所述第一装置需选择的复系数的个数B。
一种实现方式中,通信单元1401,还用于发送第四指示信息,所述第四指示信息用于指示所述第一装置反馈信道信息所需对应的第一码本W。
本申请实施例和上述所示的方法实施例基于同一构思,其带来的技术效果也相同,具体原理请参照上述所示实施例的描述,在此不赘述。
可以理解的是,本申请实施例中的一些可选的特征,在某些场景下,可以不依赖于其他特征,比如其当前所基于的方案,而独立实施,解决相应的技术问题,达到相应的效果,也可以在某些场景下,依据需求与其他特征进行结合。相应的,本申请实施例中给出的通信装置也可以相应的实现这些特征或功能,在此不予赘述。
图15给出了一种通信装置的结构示意图。所述通信装置1500可以是第一装置,也可以是第二装置,还可以是支持第一装置实现上述方法的芯片、芯片系统、或处理器等,还可以是支持第二装置实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
所述通信装置1500可以包括一个或多个处理器1501。所述处理器1501可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端、终端芯片,DU或CU等)进行控制,执行软件程序,处理软件程序的数据。
可选的,所述通信装置1500中可以包括一个或多个存储器1502,其上可以存有指令1504,所述指令可在所述处理器1501上被运行,使得所述通信装置1500执行上述方法实施例中描述的方法。可选的,所述存储器1502中还可以存储有数据。所述处理器1501和存储器1502可以单独设置,也可以集成在一起。
可选的,所述通信装置1500还可以包括收发器1505、天线1506。所述收发器1505可 以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1505可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
所述通信装置1500为第一装置:处理器1501用于执行图4中信道信息反馈方法中的203的相关操作;收发器1505用于执行信道信息反馈方法中的202、204的相关操作。
所述通信装置1500为第二装置:处理器1501用于执行信道信息反馈方法100中的206的相关操作;收发器1505用于执行图4中信道信息反馈方法中的201、205的相关操作。
另一种可能的设计中,处理器1501中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
又一种可能的设计中,可选的,处理器1501可以存有指令1503,指令1503在处理器1501上运行,可使得所述通信装置1500执行上述方法实施例中描述的方法。指令1503可能固化在处理器1501中,该种情况下,处理器1501可能由硬件实现。
又一种可能的设计中,通信装置1500可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请实施例中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(Bipolar Junction Transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是第一设备,但本申请实施例中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图15的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,指令的存储部件;
(3)ASIC,例如调制解调器(MSM);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端、智能终端、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,可参见图16所示的芯片的结构示意图。 图16所示的芯片1600包括处理器1601、接口1602以及存储器1603。其中,处理器1601的数量可以是一个或多个,接口1602的数量可以是多个。
一种设计中,对于芯片用于实现本申请实施例中第一装置的功能的情况:
所述接口1602,用于接收预编码参考信号;
所述处理器1601,用于确定预编码参考信号的P个端口中每个端口的T个复系数,T≥2;
所述处理器1601,还用于根据每个端口的T个复系数和第一码本W,反馈信道信息;
其中,第一码本W基于T确定,T基于每个端口对应的特定时延偏置的个数O确定,或基于每个端口对应的频率单元组的组数K确定,或基于每个端口对应的特定时延偏置的个数O以及每个特定时延偏置对应的频率单元组的组数K确定;O>1,K>1。
另一种设计中,对于芯片用于实现本申请实施例中第二装置的功能的情况:
所述接口1602,用于发送预编码参考信号,所述预编码参考信号的P个端口中每个端口对应T个预编码向量,T≥2;
所述接口1602,还用于接收来自第一装置针对所述预编码参考信号反馈的信道信息;
所述处理器1601,用于根据所述信道信息和第一码本W,确定下行信道的预编码;
其中,第一码本W基于T确定,T基于每个端口对应的特定时延偏置的个数O确定,或基于每个端口对应的频率单元组的组数K确定,或基于每个端口对应的特定时延偏置的个数O以及每个特定时延偏置对应的频率单元组的组数K确定;O>1,K>1。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
可以理解的是,本申请实施例中的一些可选的特征,在某些场景下,可以不依赖于其他特征,比如其当前所基于的方案,而独立实施,解决相应的技术问题,达到相应的效果,也可以在某些场景下,依据需求与其他特征进行结合。相应的,本申请实施例中给出的通信装置也可以相应的实现这些特征或功能,在此不予赘述。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。
应理解,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包 括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请还提供了一种计算机可读介质,用于储存计算机软件指令,当所述指令被通信装置执行时,实现上述任一方法实施例的功能。
本申请还提供了一种计算机程序产品,用于储存计算机软件指令,当所述指令被通信装置执行时,实现上述任一方法实施例的功能。
上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (82)

  1. 一种信道信息反馈方法,其特征在于,所述方法应用于第一装置,包括:
    接收预编码参考信号;
    确定所述预编码参考信号的P个端口中每个端口的T个复系数,P≥1,T≥2;
    根据所述每个端口的T个复系数和第一码本W,反馈信道信息;
    所述第一码本W基于所述T确定,所述T基于所述每个端口对应的特定时延偏置的个数O确定,或基于所述每个端口对应的频率单元组的组数K确定,或基于所述每个端口对应的特定时延偏置的个数O以及每个特定时延偏置对应的频率单元组的组数K确定;O>1,K>1。
  2. 一种信道信息反馈方法,其特征在于,所述方法应用于第二装置,包括:
    发送预编码参考信号,所述预编码参考信号的P个端口中每个端口对应T个预编码向量,P≥1,T≥2;
    接收来自终端设备针对所述预编码参考信号反馈的信道信息;
    根据所述信道信息和第一码本W,确定下行信道的预编码;
    所述第一码本W基于所述T确定,所述T基于所述每个端口对应的特定时延偏置的个数O确定,或基于所述每个端口对应的频率单元组的组数K确定,或基于所述每个端口对应的特定时延偏置的个数O以及每个特定时延偏置对应的频率单元组的组数K确定;
    O>1,K>1。
  3. 根据权利要求2所述的方法,其特征在于,所述预编码向量基于角度时延对信息确定;所述T个预编码向量对应T个复系数。
  4. 根据权利要求1或3所述的方法,其特征在于,
    所述第一码本满足的公式为:
    Figure PCTCN2020122612-appb-100001
    所述W 1是所述P个端口对应的端口选择矩阵;
    所述
    Figure PCTCN2020122612-appb-100002
    是复系数矩阵;
    所述W f是频域选择矩阵,用于指示所述第一装置从所述每个端口对应的所述T个复系数中选择的J个复系数的位置,J≤T。
  5. 根据权利要求4所述的方法,其特征在于,
    所述信道信息用于指示以下至少一项:所述W 1、所述
    Figure PCTCN2020122612-appb-100003
    和所述W f
    所述W 1是维度为P*L的整数矩阵,用于指示所述第一装置从所述P个端口中选择的L个端口的位置,L≤P;
    所述W f是维度为T*J的整数矩阵,所述W f中的每行与所述每个端口对应的每个复系数相对应,所述W f的每行具有至多1个值为1的非零元素;所述W f的每列与所述J个复系数中每个复系数相对应,所述W f的每列仅有一个值为1的非零元素;
    所述
    Figure PCTCN2020122612-appb-100004
    是维度为L*J的复数矩阵,用于指示所述第一装置从所述L个端口中每个端口对应的所述J个复系数中选择的B个复系数及其在所述
    Figure PCTCN2020122612-appb-100005
    中的位置;所述
    Figure PCTCN2020122612-appb-100006
    的每行与所述L个端口中每个端口相对应;所述
    Figure PCTCN2020122612-appb-100007
    的每列与所述J个复系数中每个复系数相对应;所述
    Figure PCTCN2020122612-appb-100008
    中元素c l,j为零,表示所述B个复系数中不包括所述第l个端口的第j个复系数;所述
    Figure PCTCN2020122612-appb-100009
    中元素c l,j为非零元素,表示所述B个复系数中包括所述第l个端口的第j个复系数;1≤l≤L,1≤j≤J。
  6. 根据权利要求4或5所述的方法,其特征在于,
    所述T个复系数是所述每个端口的K个频率单元组对应的复系数,所述T等于所述K;
    所述W f的每行与所述每个端口的每个频率单元组的复系数相对应。
  7. 根据权利要求4或5所述的方法,其特征在于,
    所述T个复系数是所述每个端口的O个特定时延偏置对应的复系数,所述T等于所述O;
    所述W f的每行与所述每个端口的每个特定时延偏置的复系数相对应。
  8. 根据权利要求4或5所述的方法,其特征在于,所述O>1,所述K>1;
    所述T个复系数是所述每个端口的O个特定时延偏置中每个特定时延偏置的K个频率单元组对应的O*K个复系数,所述T等于所述O*K;
    所述W f的每行与所述每个端口的每个特定时延偏置的每个频率单元组的复系数相对应。
  9. 根据权利要求8所述的方法,其特征在于,
    所述每个端口选择的J个复系数是所述每个端口选择的M个特定时延偏置的每个特定时延偏置的V个频率单元分组对应的M*V个复系数。
  10. 根据权利要求1或3所述的方法,其特征在于,
    所述第一码本满足的公式为:
    Figure PCTCN2020122612-appb-100010
    所述W 1是系数选择矩阵,用于指示所述第一装置从所述P个端口的每个端口对应的T个复系数中选择的B个复系数的位置;B≤P*T;
    所述
    Figure PCTCN2020122612-appb-100011
    是复系数矩阵,用于指示所述B个复系数。
  11. 根据权利要求10所述的方法,其特征在于,
    所述信道信息用于指示以下至少一项:所述W 1和所述
    Figure PCTCN2020122612-appb-100012
    所述W 1是维度为(P*T)*B的整数矩阵,所述W 1的每行与所述P个端口中每个端口对应的每个复系数相对应,所述W 1的每行具有至多1个值为1的非零元素;所述W 1的每列与所述B个复系数中每个复系数相对应,所述W 1的每列仅有一个值为1的非零元素;
    所述
    Figure PCTCN2020122612-appb-100013
    是维度为B*1的复数矩阵,所述
    Figure PCTCN2020122612-appb-100014
    的每行与所述B个复系数相对应。
  12. 根据权利要求10或11所述的方法,其特征在于,
    所述T个复系数是所述每个端口的K个频率单元组对应的复系数,所述T等于所述K;
    所述W 1的每行与所述每个端口的每个频率单元组的复系数相对应。
  13. 根据权利要求10或11所述的方法,其特征在于,
    所述T个复系数是所述每个端口的O个特定时延偏置对应的复系数,所述T等于所述O;
    所述W 1的每行与所述每个端口的每个特定时延偏置的复系数相对应。
  14. 根据权利要求10或11所述的方法,其特征在于,所述O>1,所述K>1;
    所述T个复系数是所述每个端口的O个特定时延偏置中每个特定时延偏置的K个频率单元组对应的O*K个复系数,所述T等于所述O*K;
    所述W 1的每行与所述每个端口的每个特定时延偏置的每个频率单元组的复系数相对应。
  15. 根据权利要求1或3所述的方法,其特征在于,
    所述第一码本W满足的公式为:
    Figure PCTCN2020122612-appb-100015
    所述W 1是所述P个端口对应的端口选择矩阵,用于指示所述第一装置从所述P个端口中选择的L个端口的位置,L≤P;
    所述
    Figure PCTCN2020122612-appb-100016
    是复系数矩阵,用于指示所述第一装置从所述L个端口中每个端口对应的J个复系数中所选的B个复系数及其在所述
    Figure PCTCN2020122612-appb-100017
    中的位置;
    所述J是允许所述第一装置从所述每个端口对应的T个复系数中选择的复系数个数, 所述J≤T。
  16. 根据权利要求15所述的方法,其特征在于,
    所述信道信息用于指示以下至少一项:所述W 1和所述
    Figure PCTCN2020122612-appb-100018
    所述W 1是维度为P*L的整数矩阵,用于指示所述第一装置从所述P个端口中选择的L个端口的位置,L≤P;
    所述
    Figure PCTCN2020122612-appb-100019
    是维度为L*J的复数矩阵,所述
    Figure PCTCN2020122612-appb-100020
    的每行与所述L个端口中每个端口相对应;所述
    Figure PCTCN2020122612-appb-100021
    的每列与所述J个复系数中每个复系数相对应;所述
    Figure PCTCN2020122612-appb-100022
    中元素c l,j为零,表示所述B个复系数中不包括第l个端口的第j个复系数;所述
    Figure PCTCN2020122612-appb-100023
    中元素c l,j为非零元素,表示所述B个复系数中包括第l个端口的第j个复系数。
  17. 根据权利要求1或3所述的方法,其特征在于,
    所述第一码本W满足的公式为:
    Figure PCTCN2020122612-appb-100024
    所述
    Figure PCTCN2020122612-appb-100025
    是复系数矩阵,用于指示所述第一装置选择的B个复系数;所述B个复系数是从所述P个端口的每个端口对应的T个复系数中选择的。
  18. 根据权利要求17所述的方法,其特征在于,
    所述信道信息用于指示复系数矩阵
    Figure PCTCN2020122612-appb-100026
    所述信道信息包括第一指示信息;
    所述复系数矩阵
    Figure PCTCN2020122612-appb-100027
    是维度为B*1的复数矩阵,所述
    Figure PCTCN2020122612-appb-100028
    的每行与所述第一装置选择的所述B个复系数中每个复系数相对应;
    所述第一指示信息用于指示所述B个复系数的位置信息。
  19. 根据权利要求18所述的方法,其特征在于,
    所述B个复系数的位置信息包括所述B个复系数的每个复系数对应的第p个端口;或者,B个复系数中每个复系数对应的第p个端口的第o个特定时延偏置;或者,B个复系数中每个复系数对应的第p个端口的第k个频率单元组;或者,B个复系数中每个复系数对应的第p个端口的第o个特定时延偏置的第k个频率单元组;
    1≤p≤P,1≤o≤O,1≤k≤K。
  20. 根据权利要求1或3所述的方法,其特征在于,
    所述第一码本W满足的公式为:
    Figure PCTCN2020122612-appb-100029
    所述W 1是所述P个端口对应的端口选择矩阵;
    所述
    Figure PCTCN2020122612-appb-100030
    是复系数矩阵;
    所述W f是频域基底矩阵,用于指示所述第一装置从每个端口对应的T个频率单元组中选择的J个频率单元组的频域基底。
  21. 根据权利要求20所述的方法,其特征在于,
    所述信道信息用于指示以下至少一项:所述W 1、所述
    Figure PCTCN2020122612-appb-100031
    和所述W f,所述W 1是维度为P*L的整数矩阵,用于指示所述第一装置从所述P个端口中选择的L个端口的位置,L≤P;
    所述W f是从频域基底矩阵W′ f的T列中选择J列获得的;所述W′ f是维度为N f*T的复数矩阵,所述W′ f的每列与一个离散傅里叶变换DFT列向量相对应,所述每列是按照对应频率单元组包括的频率单元将对应的DFT列向量进行采样获得的;所述W′ f的每行与所述N f个频率单元中每个频率单元相对应;所述W′ f的每列与所述T个频率单元组中每个频率单元组相对应,所述W′ f的每列的非零元素的个数等于对应频率单元组包括的频率单元的个数;
    所述
    Figure PCTCN2020122612-appb-100032
    是维度为L*J的复数矩阵,用于指示所述第一装置从所述L个端口中每个端口对应的所述J个频率单元组中选择的B个复系数及其在所述
    Figure PCTCN2020122612-appb-100033
    中的位置;所述
    Figure PCTCN2020122612-appb-100034
    的每行与所述L个端口中每个端口相对应;所述
    Figure PCTCN2020122612-appb-100035
    的每列与所述J个复系数中每个复系数相对应;所述
    Figure PCTCN2020122612-appb-100036
    中元素c l,j为零,表示所述B个复系数中不包括第l个端口的第j个复系数;所述
    Figure PCTCN2020122612-appb-100037
    中元素c l,j为非零元素,表示所述B个复系数中包括第l个端口的第j个复系数;1≤l≤L,1≤j≤J。
  22. 根据权利要求20或21所述的方法,其特征在于,
    所述T个频率单元组是所述每个端口的K个频率单元组,所述T等于K;
    所述W′ f的每列与所述K个频率单元组中的每个频率单元组相对应;
    所述W′ f的每列对应的离散傅里叶变换DFT列向量的索引相同。
  23. 根据权利要求20或21所述的方法,其特征在于,所述O>1,所述K>1;
    所述T个频率单元组是所述每个端口的O个特定时延偏置中每个特定时延偏置的K个频率单元组,所述T等于所述O*K;
    所述W′ f的每列与所述O个特定时延偏置中每个特定时延偏置的K个频率单元组中的每个频率单元组相对应;
    所述W′ f的每K列与所述每个特定时延偏置的DFT列向量相对应,所述每K列中每列分别对应的DFT列向量的索引相同,且所述每K列对应的DFT列向量的索引是对应的特定时延偏置的DFT列向量的索引。
  24. 根据权利要求23所述的方法,其特征在于,
    所述每个端口选择的J个频率单元组是所述每个端口选择的M个特定时延偏置的每个特定时延偏置的V个频率单元组,所述J等于M*V。
  25. 根据权利要求1或3所述的方法,其特征在于,
    所述第一码本W满足的公式为:
    Figure PCTCN2020122612-appb-100038
    所述W 1是所述P个端口对应的端口选择矩阵;
    所述
    Figure PCTCN2020122612-appb-100039
    是复系数矩阵;
    所述Q f是频率单元选择矩阵,用于指示所述第一装置从所述每个端口对应的T个频率单元组中选择的J个频率单元组中每个频率单元的位置;
    所述W f是频域基底矩阵,用于指示所述第一装置从所述每个端口对应的T个离散傅里叶变换DFT列向量中选择的J个DFT列向量。
  26. 根据权利要求25所述的方法,其特征在于,
    所述信道信息包括所述W 1、所述
    Figure PCTCN2020122612-appb-100040
    所述Q f和所述W f
    所述W 1用于指示所述第一装置从所述P个端口中选择的L个端口的位置,L≤P;
    所述Q f是维度为N f*J的整数矩阵,所述Q f每行与所述N f个频率单元中每个频率单元相对应;所述Q f的每列与所述J个频率单元组中每个频率单元组相对应;
    所述W f是从频域基底矩阵W′ f的T列中选择J列获得的;所述W′ f是维度为N f*T的复数矩阵,所述W′ f的每列与一个离散傅里叶变换DFT列向量相对应;所述W′ f的每行与所述N f个频率单元中每个频率单元相对应;所述W′ f的每列与所述T个DFT列向量中每个 DFT列向量相对应;
    所述
    Figure PCTCN2020122612-appb-100041
    是维度为L*J的复数矩阵,用于指示所述第一装置从所述L个端口中每个端口对应的所述J个复系数中选择的B个复系数及其在所述
    Figure PCTCN2020122612-appb-100042
    中的位置;所述
    Figure PCTCN2020122612-appb-100043
    的每行与所述L个端口中每个端口相对应;所述
    Figure PCTCN2020122612-appb-100044
    的每列与所述J个频率单元组中每个频率单元组相对应;所述
    Figure PCTCN2020122612-appb-100045
    中元素c l,j等于零,表示B个复系数中不包括第l个端口的第j个频率单元组对应的复系数;所述
    Figure PCTCN2020122612-appb-100046
    中元素c l,j等于非零,表示所述B个复系数中包括第l个端口的第j个频率单元组对应的复系数,1≤l≤L,1≤j≤J。
  27. 根据权利要求26所述的方法,其特征在于,
    所述T个频率单元组是所述每个端口的K个频率单元组,所述T等于K;
    所述Q f的每列与所述K个频率单元组中的每个频率单元组相对应;
    所述W′ f的每列的离散傅里叶变换DFT列向量的索引相同。
  28. 根据权利要求26所述的方法,其特征在于,所述O>1,所述K>1;
    所述T个频率单元组是所述每个端口的O个特定时延偏置中每个特定时延偏置的K个频率单元组,所述T等于所述O*K;
    所述Q f的每列与所述O个特定时延偏置中每个特定时延偏置的K个频率单元组中的每个频率单元组相对应;
    所述W′ f的每K列为所述每个特定时延偏置对应的DFT列向量,所述每K列中每列的DFT列向量的索引相同,且所述每K列的DFT列向量的索引是对应的特定时延偏置的DFT列向量的索引。
  29. 根据权利要求28所述的方法,其特征在于,
    所述每个端口选择的J个频率单元组是所述每个端口选择的M个特定时延偏置的每个特定时延偏置的V个频率单元分组,所述J等于M*V。
  30. 根据权利要求1或4至29任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第二指示信息,所述第二指示信息用于指示每个端口采用的每个特定时延偏置对应的离散傅里叶变换DFT向量在DFT矩阵中的索引以及每个特定时延偏置对应的N f个频率单元划分的频率单元组数K、第k个频率单元组包括
    Figure PCTCN2020122612-appb-100047
    个频率单元以及所述第k个频率单元组中频率单元的索引是Γ k;1≤k≤K;
    或者,所述第二指示信息用于指示每个端口对应的离散傅里叶变换DFT向量在DFT矩阵中的索引以及对应的N f个频率单元划分的频率单元组数K、第k个频率单元组包括
    Figure PCTCN2020122612-appb-100048
    个频率单元以及所述第k个频率单元组中频率单元的索引是Γ k
  31. 根据权利要求30所述的方法,其特征在于,所述方法还包括:
    根据第二指示信息,确定频域基底矩阵W′ f
  32. 根据权利要求1或4至29任一项所述的方法,其特征在于,所述方法还包括:
    接收频域基底矩阵W′ f
    所述频域基底矩阵W′ f用于指示所述每个端口或每个端口采用的O个特定时延偏置中每个特定时延偏置对应的频率单元组的组数K、第k个频率单元组包括
    Figure PCTCN2020122612-appb-100049
    个频率单元以及所述第k个频率单元组中频率单元的索引是Γ k;1≤k≤K。
  33. 根据权利要求1或4至32任一项所述的方法,其特征在于,所述方法还包括:
    接收第三指示信息,所述第三指示信息用于指示所述第一装置需选择的复系数的个数B。
  34. 根据权利要求1或4至33任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第四指示信息,所述第四指示信息用于指示所述第一装置反馈信道信息所需对应的第一码本W;
    所述终端设备确定第四指示信息所指示的第一码本W。
  35. 根据权利要求2至29任一项所述的方法,其特征在于,所述方法还包括:
    发送第二指示信息,所述第二指示信息用于指示每个端口采用的每个特定时延偏置对应的离散傅里叶变换DFT向量在DFT矩阵中的索引以及每个特定时延偏置对应的N f个频率单元划分的频率单元组数K、第k个频率单元组包括
    Figure PCTCN2020122612-appb-100050
    个频率单元以及所述第k个频率 单元组中频率单元的索引是Γ k;1≤k≤K;
    或者,所述第二指示信息用于指示每个端口对应的离散傅里叶变换DFT向量在DFT矩阵中的索引以及对应的N f个频率单元划分的频率单元组数K、第k个频率单元组包括
    Figure PCTCN2020122612-appb-100051
    个频率单元以及所述第k个频率单元组中频率单元的索引是Γ k
  36. 根据权利要求2至29任一项所述的方法,其特征在于,所述方法还包括:
    发送频域基底矩阵W′ f
    所述频域基底矩阵W′ f用于指示所述每个端口或每个端口采用的O个特定时延偏置中每个特定时延偏置对应的频率单元组的组数K、第k个频率单元组包括
    Figure PCTCN2020122612-appb-100052
    个频率单元以及所述第k个频率单元组中频率单元的索引是Γ k;1≤k≤K。
  37. 根据权利要求2至29任一项所述的方法,其特征在于,所述方法还包括:
    发送第三指示信息,所述第三指示信息用于指示所述第一装置需选择的复系数的个数B。
  38. 根据权利要求2至29任一项所述的方法,其特征在于,所述方法还包括:
    发送第四指示信息,所述第四指示信息用于指示所述第一装置反馈信道信息所需对应的第一码本W。
  39. 根据权利要求1至38所述的方法,其特征在于,
    所述每个端口或每个端口的每个特定时延偏置对应的N f个频率单元划分为K个频率单元组,第k个频率单元组包括
    Figure PCTCN2020122612-appb-100053
    个频率单元,所述第k个频率单元组中频率单元的索引是Γ k;1≤k≤K;
    其中,
    Figure PCTCN2020122612-appb-100054
    所述Ω k用于表示所述N f对所述K求余不为零时,所述N f个频率单元中未被分组的
    Figure PCTCN2020122612-appb-100055
    个频率单元中被分配到第k个频率单元组的频率单 元的索引;第k个频率单元组中频率单元的索引为:
    Figure PCTCN2020122612-appb-100056
  40. 根据权利要求1至38所述的方法,其特征在于,
    所述每个端口或每个端口采用的每个特定时延偏置对应的N f个频率单元划分为K个频率单元组,第k个频率单元组包括
    Figure PCTCN2020122612-appb-100057
    个频率单元,所述第k个频率单元组中频率单元的索引是Γ k;1≤k≤K;
    其中,
    Figure PCTCN2020122612-appb-100058
    所述Ω k用于表示所述N f对所述K求余不为零时,所述N f个频率单元中未被分组的
    Figure PCTCN2020122612-appb-100059
    个频率单元中被分配到第k个频率单元组的频率单元的索引;第k个频率单元组中频率单元的索引为
    Figure PCTCN2020122612-appb-100060
  41. 一种通信装置,其特征在于,所述通信装置为第一装置,包括:
    通信单元,用于接收预编码参考信号;
    处理单元,用于确定所述预编码参考信号的P个端口中每个端口的T个复系数,P≥1,T≥2;
    处理单元,还用于根据所述每个端口的T个复系数和第一码本W,反馈信道信息;
    所述第一码本W基于所述T确定,所述T基于所述每个端口对应的特定时延偏置的个数O确定,或基于所述每个端口对应的频率单元组的组数K确定,或基于所述每个端口对应的特定时延偏置的个数O以及每个特定时延偏置对应的频率单元组的组数K确定;O>1,K>1。
  42. 一种通信装置,其特征在于,所述通信装置为第二装置,包括:
    通信单元,用于发送预编码参考信号,所述预编码参考信号的P个端口中每个端口对应T个预编码向量,P≥1,T≥2;
    通信单元,用于接收来自第一装置针对所述预编码参考信号反馈的信道信息;
    处理单元,用于根据所述信道信息和第一码本W,确定下行信道的预编码;
    所述第一码本W基于所述T确定,所述T基于所述每个端口对应的特定时延偏置的个数O确定,或基于所述每个端口对应的频率单元组的组数K确定,或基于所述每个端口对应的特定时延偏置的个数O以及每个特定时延偏置对应的频率单元组的组数K确定;
    O>1,K>1。
  43. 根据权利要求42所述的通信装置,其特征在于,所述预编码向量基于角度时延对信息确定;所述T个预编码向量对应T个复系数。
  44. 根据权利要求41或43所述的通信装置,其特征在于,
    所述第一码本满足的公式为:
    Figure PCTCN2020122612-appb-100061
    所述W 1是所述P个端口对应的端口选择矩阵;
    所述
    Figure PCTCN2020122612-appb-100062
    是复系数矩阵;
    所述W f是频域选择矩阵,用于指示所述第一装置从所述每个端口对应的所述T个复系数中选择的J个复系数的位置,J≤T。
  45. 根据权利要求44所述的通信装置,其特征在于,
    所述信道信息用于指示以下至少一项:所述W 1、所述
    Figure PCTCN2020122612-appb-100063
    和所述W f
    所述W 1是维度为P*L的整数矩阵,用于指示所述第一装置从所述P个端口中选择的L个端口的位置,L≤P;
    所述W f是维度为T*J的整数矩阵,所述W f中的每行与所述每个端口对应的每个复系数相对应,所述W f的每行具有至多1个值为1的非零元素;所述W f的每列与所述J个复系数中每个复系数相对应,所述W f的每列仅有一个值为1的非零元素;
    所述
    Figure PCTCN2020122612-appb-100064
    是维度为L*J的复数矩阵,用于指示所述第一装置从所述L个端口中每个端口对应的所述J个复系数中选择的B个复系数及其在所述
    Figure PCTCN2020122612-appb-100065
    中的位置;所述
    Figure PCTCN2020122612-appb-100066
    的每行与所述L个端口中每个端口相对应;所述
    Figure PCTCN2020122612-appb-100067
    的每列与所述J个复系数中每个复系数相对应;所述
    Figure PCTCN2020122612-appb-100068
    中元素c l,j为零,表示所述B个复系数中不包括所述第l个端口的第j个复系数;所述
    Figure PCTCN2020122612-appb-100069
    中元素c l,j为非零元素,表示所述B个复系数中包括所述第l个端口的第j个复系数;1≤l≤L,1≤j≤J。
  46. 根据权利要求44或45所述的通信装置,其特征在于,
    所述T个复系数是所述每个端口的K个频率单元组对应的复系数,所述T等于所述K;
    所述W f的每行与所述每个端口的每个频率单元组的复系数相对应。
  47. 根据权利要求44或45所述的通信装置,其特征在于,
    所述T个复系数是所述每个端口的O个特定时延偏置对应的复系数,所述T等于所述O;
    所述W f的每行与所述每个端口的每个特定时延偏置的复系数相对应。
  48. 根据权利要求44或45所述的通信装置,其特征在于,
    所述T个复系数是所述每个端口的O个特定时延偏置中每个特定时延偏置的K个频率单元组对应的O*K个复系数,所述T等于所述O*K;
    所述W f的每行与所述每个端口的每个特定时延偏置的每个频率单元组的复系数相对应。
  49. 根据权利要求48所述的通信装置,其特征在于,
    所述每个端口选择的J个复系数是所述每个端口选择的M个特定时延偏置的每个特定时延偏置的V个频率单元分组对应的M*V个复系数。
  50. 根据权利要求41或43所述的通信装置,其特征在于,
    所述第一码本满足的公式为:
    Figure PCTCN2020122612-appb-100070
    所述W 1是系数选择矩阵,用于指示所述第一装置从所述P个端口的每个端口对应的T个复系数中选择的B个复系数的位置;B≤P*T;
    所述
    Figure PCTCN2020122612-appb-100071
    是复系数矩阵,用于指示所述B个复系数。
  51. 根据权利要求50所述的通信装置,其特征在于,
    所述信道信息用于指示以下至少一项:所述W 1和所述
    Figure PCTCN2020122612-appb-100072
    所述W 1是维度为(P*T)*B的整数矩阵,所述W 1的每行与所述P个端口中每个端口对应的每个复系数相对应,所述W 1的每行具有至多1个值为1的非零元素;所述W 1的每列与所述B个复系数中每个复系数相对应,所述W 1的每列仅有一个值为1的非零元素;
    所述
    Figure PCTCN2020122612-appb-100073
    是维度为B*1的复数矩阵,所述
    Figure PCTCN2020122612-appb-100074
    的每行与所述B个复系数相对应。
  52. 根据权利要求50或51所述的通信装置,其特征在于,
    所述T个复系数是所述每个端口的K个频率单元组对应的复系数,所述T等于所述K;
    所述W 1的每行与所述每个端口的每个频率单元组的复系数相对应。
  53. 根据权利要求50或51所述的通信装置,其特征在于,
    所述T个复系数是所述每个端口的O个特定时延偏置对应的复系数,所述T等于所述O;
    所述W 1的每行与所述每个端口的每个特定时延偏置的复系数相对应。
  54. 根据权利要求50或51所述的通信装置,其特征在于,
    所述T个复系数是所述每个端口的O个特定时延偏置中每个特定时延偏置的K个频率单元组对应的O*K个复系数,所述T等于所述O*K;
    所述W 1的每行与所述每个端口的每个特定时延偏置的每个频率单元组的复系数相对应。
  55. 根据权利要求41或43所述的通信装置,其特征在于,
    所述第一码本W满足的公式为:
    Figure PCTCN2020122612-appb-100075
    所述W 1是所述P个端口对应的端口选择矩阵,用于指示所述第一装置从所述P个端口中选择的L个端口的位置,L≤P;
    所述
    Figure PCTCN2020122612-appb-100076
    是复系数矩阵,用于指示所述第一装置从所述L个端口中每个端口对应的J个复系数中所选的B个复系数及其在所述
    Figure PCTCN2020122612-appb-100077
    中的位置;
    所述J是允许所述第一装置从所述每个端口对应的T个复系数中选择的复系数个数,所述J≤T。
  56. 根据权利要求55所述的通信装置,其特征在于,
    所述信道信息用于指示以下至少一项:所述W 1和所述
    Figure PCTCN2020122612-appb-100078
    所述W 1是维度为P*L的整数矩阵,用于指示所述第一装置从所述P个端口中选择的L个端口的位置,L≤P;
    所述
    Figure PCTCN2020122612-appb-100079
    是维度为L*J的复数矩阵,所述
    Figure PCTCN2020122612-appb-100080
    的每行与所述L个端口中每个端口相对应;所述
    Figure PCTCN2020122612-appb-100081
    的每列与所述J个复系数中每个复系数相对应;所述
    Figure PCTCN2020122612-appb-100082
    中元素c l,j为零,表示所述B个复系数中不包括第l个端口的第j个复系数;所述
    Figure PCTCN2020122612-appb-100083
    中元素c l,j为非零元素,表示所述B个复系数中包括第l个端口的第j个复系数。
  57. 根据权利要求41或43所述的通信装置,其特征在于,
    所述第一码本W满足的公式为:
    Figure PCTCN2020122612-appb-100084
    所述
    Figure PCTCN2020122612-appb-100085
    是复系数矩阵,用于指示所述第一装置选择的B个复系数;所述B个复系数是从所述P个端口的每个端口对应的T个复系数中选择的。
  58. 根据权利要求57所述的通信装置,其特征在于,
    所述信道信息用于指示复系数矩阵
    Figure PCTCN2020122612-appb-100086
    所述信道信息包括第一指示信息;
    所述复系数矩阵
    Figure PCTCN2020122612-appb-100087
    是维度为B*1的复数矩阵,所述
    Figure PCTCN2020122612-appb-100088
    的每行与所述第一装置选择的所述B个复系数中每个复系数相对应;
    所述第一指示信息用于指示所述B个复系数的位置信息。
  59. 根据权利要求58所述的通信装置,其特征在于,
    所述B个复系数的位置信息包括所述B个复系数的每个复系数对应的第p个端口;或者,B个复系数中每个复系数对应的第p个端口的第o个特定时延偏置;或者,B个复系数中每个复系数对应的第p个端口的第k个频率单元组;或者,B个复系数中每个复系数对应的第p个端口的第o个特定时延偏置的第k个频率单元组;
    1≤p≤P,1≤o≤O,1≤k≤K。
  60. 根据权利要求41或43所述的通信装置,其特征在于,
    所述第一码本W满足的公式为:
    Figure PCTCN2020122612-appb-100089
    所述W 1是所述P个端口对应的端口选择矩阵;
    所述
    Figure PCTCN2020122612-appb-100090
    是复系数矩阵;
    所述W f是频域基底矩阵,用于指示所述第一装置从每个端口对应的T个频率单元组中选择的J个频率单元组的频域基底。
  61. 根据权利要求60所述的通信装置,其特征在于,
    所述信道信息用于指示以下至少一项:所述W 1、所述
    Figure PCTCN2020122612-appb-100091
    和所述W f,所述W 1是维度为P*L的整数矩阵,用于指示所述第一装置从所述P个端口中选择的L个端口的位置,L≤P;
    所述W f是从频域基底矩阵W′ f的T列中选择J列获得的;所述W′ f是维度为N f*T的复数矩阵,所述W′ f的每列与一个离散傅里叶变换DFT列向量相对应,所述每列是按照对应频率单元组包括的频率单元将对应的DFT列向量进行采样获得的;所述W′ f的每行与所述N f个频率单元中每个频率单元相对应;所述W′ f的每列与所述T个频率单元组中每个频率单元组相对应,所述W′ f的每列的非零元素的个数等于对应频率单元组包括的频率单元的个数;
    所述
    Figure PCTCN2020122612-appb-100092
    是维度为L*J的复数矩阵,用于指示所述第一装置从所述L个端口中每个端 口对应的所述J个频率单元组中选择的B个复系数及其在所述
    Figure PCTCN2020122612-appb-100093
    中的位置;所述
    Figure PCTCN2020122612-appb-100094
    的每行与所述L个端口中每个端口相对应;所述
    Figure PCTCN2020122612-appb-100095
    的每列与所述J个复系数中每个复系数相对应;所述
    Figure PCTCN2020122612-appb-100096
    中元素c l,j为零,表示所述B个复系数中不包括第l个端口的第j个复系数;所述
    Figure PCTCN2020122612-appb-100097
    中元素c l,j为非零元素,表示所述B个复系数中包括第l个端口的第j个复系数;1≤l≤L,1≤j≤J。
  62. 根据权利要求60或61所述的通信装置,其特征在于,
    所述T个频率单元组是所述每个端口的K个频率单元组,所述T等于K;
    所述W′ f的每列与所述K个频率单元组中的每个频率单元组相对应;
    所述W′ f的每列对应的离散傅里叶变换DFT列向量的索引相同。
  63. 根据权利要求60或61所述的通信装置,其特征在于,
    所述T个频率单元组是所述每个端口的O个特定时延偏置中每个特定时延偏置的K个频率单元组,所述T等于所述O*K;
    所述W′ f的每列与所述O个特定时延偏置中每个特定时延偏置的K个频率单元组中的每个频率单元组相对应;
    所述W′ f的每K列与所述每个特定时延偏置的DFT列向量相对应,所述每K列中每列分别对应的DFT列向量的索引相同,且所述每K列对应的DFT列向量的索引是对应的特定时延偏置的DFT列向量的索引。
  64. 根据权利要求63所述的通信装置,其特征在于,
    所述每个端口选择的J个频率单元组是所述每个端口选择的M个特定时延偏置的每个特定时延偏置的V个频率单元组,所述J等于M*V。
  65. 根据权利要求41或43所述的通信装置,其特征在于,
    所述第一码本W满足的公式为:
    Figure PCTCN2020122612-appb-100098
    所述W 1是所述P个端口对应的端口选择矩阵;
    所述
    Figure PCTCN2020122612-appb-100099
    是复系数矩阵;
    所述Q f是频率单元选择矩阵,用于指示所述第一装置从所述每个端口对应的T个频率单元组中选择的J个频率单元组中每个频率单元的位置;
    所述W f是频域基底矩阵,用于指示所述第一装置从所述每个端口对应的T个离散傅 里叶变换DFT列向量中选择的J个DFT列向量。
  66. 根据权利要求65所述的通信装置,其特征在于,
    所述信道信息包括所述W 1、所述
    Figure PCTCN2020122612-appb-100100
    所述Q f和所述W f
    所述W 1用于指示所述第一装置从所述P个端口中选择的L个端口的位置,L≤P;
    所述Q f是维度为N f*J的整数矩阵,所述Q f每行与所述N f个频率单元中每个频率单元相对应;所述Q f的每列与所述J个频率单元组中每个频率单元组相对应;
    所述W f是从频域基底矩阵W′ f的T列中选择J列获得的;所述W′ f是维度为N f*T的复数矩阵,所述W′ f的每列与一个离散傅里叶变换DFT列向量相对应;所述W′ f的每行与所述N f个频率单元中每个频率单元相对应;所述W′ f的每列与所述T个DFT列向量中每个DFT列向量相对应;
    所述
    Figure PCTCN2020122612-appb-100101
    是维度为L*J的复数矩阵,用于指示所述第一装置从所述L个端口中每个端口对应的所述J个复系数中选择的B个复系数及其在所述
    Figure PCTCN2020122612-appb-100102
    中的位置;所述
    Figure PCTCN2020122612-appb-100103
    的每行与所述L个端口中每个端口相对应;所述
    Figure PCTCN2020122612-appb-100104
    的每列与所述J个频率单元组中每个频率单元组相对应;所述
    Figure PCTCN2020122612-appb-100105
    中元素c l,j等于零,表示B个复系数中不包括第l个端口的第j个频率单元组对应的复系数;所述
    Figure PCTCN2020122612-appb-100106
    中元素c l,j等于非零,表示所述B个复系数中包括第l个端口的第j个频率单元组对应的复系数,1≤l≤L,1≤j≤J。
  67. 根据权利要求66所述的通信装置,其特征在于,
    所述T个频率单元组是所述每个端口的K个频率单元组,所述T等于K;
    所述Q f的每列与所述K个频率单元组中的每个频率单元组相对应;
    所述W′ f的每列的离散傅里叶变换DFT列向量的索引相同。
  68. 根据权利要求66所述的通信装置,其特征在于,
    所述T个频率单元组是所述每个端口的O个特定时延偏置中每个特定时延偏置的K个频率单元组,所述T等于所述O*K;
    所述Q f的每列与所述O个特定时延偏置中每个特定时延偏置的K个频率单元组中的每个频率单元组相对应;
    所述W′ f的每K列为所述每个特定时延偏置对应的DFT列向量,所述每K列中每列的DFT列向量的索引相同,且所述每K列的DFT列向量的索引是对应的特定时延偏置的DFT列向量的索引。
  69. 根据权利要求68所述的通信装置,其特征在于,
    所述每个端口选择的J个频率单元组是所述每个端口选择的M个特定时延偏置的每个特定时延偏置的V个频率单元分组,所述J等于M*V。
  70. 根据权利要求41或44至69任一项所述的通信装置,其特征在于,
    所述通信单元,还用于接收第二指示信息,所述第二指示信息用于指示每个端口采用的每个特定时延偏置对应的离散傅里叶变换DFT向量在DFT矩阵中的索引以及每个特定时延偏置对应的N f个频率单元划分的频率单元组数K、第k个频率单元组包括
    Figure PCTCN2020122612-appb-100107
    个频率单元以及所述第k个频率单元组中频率单元的索引是Γ k;1≤k≤K;
    或者,所述第二指示信息用于指示每个端口对应的离散傅里叶变换DFT向量在DFT矩阵中的索引以及对应的N f个频率单元划分的频率单元组数K、第k个频率单元组包括
    Figure PCTCN2020122612-appb-100108
    个频率单元以及所述第k个频率单元组中频率单元的索引是Γ k
  71. 根据权利要求70所述的通信装置,其特征在于,
    所述通信单元,还用于根据第二指示信息,确定频域基底矩阵W′ f
  72. 根据权利要求41或44至69任一项所述的通信装置,其特征在于,
    所述通信单元,还用于接收频域基底矩阵W′ f
    所述频域基底矩阵W′ f用于指示所述每个端口或每个端口采用的O个特定时延偏置中每个特定时延偏置对应的频率单元组的组数K、第k个频率单元组包括
    Figure PCTCN2020122612-appb-100109
    个频率单元以及 所述第k个频率单元组中频率单元的索引是Γ k;1≤k≤K。
  73. 根据权利要求41或44至72任一项所述的通信装置,其特征在于,
    所述通信单元,还用于接收第三指示信息,所述第三指示信息用于指示所述第一装置需选择的复系数的个数B。
  74. 根据权利要求41或44至73任一项所述的通信装置,其特征在于,
    所述通信单元,还用于接收第四指示信息,所述第四指示信息用于指示所述第一装置反馈信道信息所需对应的第一码本W;
    所述处理单元,还用于确定第四指示信息所指示的第一码本W。
  75. 根据权利要求42至69任一项所述的通信装置,其特征在于,
    通信单元,还用于发送第二指示信息,所述第二指示信息用于指示每个端口采用的每个特定时延偏置对应的离散傅里叶变换DFT向量在DFT矩阵中的索引以及每个特定时延偏置对应的N f个频率单元划分的频率单元组数K、第k个频率单元组包括
    Figure PCTCN2020122612-appb-100110
    个频率单元以及所述第k个频率单元组中频率单元的索引是Γ k;1≤k≤K;
    或者,所述第二指示信息用于指示每个端口对应的离散傅里叶变换DFT向量在DFT矩阵中的索引以及对应的N f个频率单元划分的频率单元组数K、第k个频率单元组包括
    Figure PCTCN2020122612-appb-100111
    个频率单元以及所述第k个频率单元组中频率单元的索引是Γ k
  76. 根据权利要求42至69任一项所述的通信装置,其特征在于,
    通信单元,还用于发送频域基底矩阵W′ f
    所述频域基底矩阵W′ f用于指示所述每个端口或每个端口采用的O个特定时延偏置中每个特定时延偏置对应的频率单元组的组数K、第k个频率单元组包括
    Figure PCTCN2020122612-appb-100112
    个频率单元以及所述第k个频率单元组中频率单元的索引是Γ k;1≤k≤K。
  77. 根据权利要求42至69任一项所述的通信装置,其特征在于,
    通信单元,还用于发送第三指示信息,所述第三指示信息用于指示所述第一装置需选择的复系数的个数B。
  78. 根据权利要求42至69任一项所述的通信装置,其特征在于,
    通信单元,还用于发送第四指示信息,所述第四指示信息用于指示所述第一装置反馈信道信息所需对应的第一码本W。
  79. 根据权利要求41至78任一项所述的通信装置,其特征在于,
    所述每个端口或每个端口的每个特定时延偏置对应的N f个频率单元划分为K个频率单元组,第k个频率单元组包括
    Figure PCTCN2020122612-appb-100113
    个频率单元,所述第k个频率单元组中频率单元的索引是Γ k;1≤k≤K;
    其中,
    Figure PCTCN2020122612-appb-100114
    所述Ω k用于表示所述N f对所述K求余不为零时,所述N f个频率单元中未被分组的
    Figure PCTCN2020122612-appb-100115
    个频率单元中被分配到第k个频率单元组的频率单元的索引;第k个频率单元组中频率单元的索引为:
    Figure PCTCN2020122612-appb-100116
  80. 根据权利要求41至78任一项所述的通信装置,其特征在于,
    所述每个端口或每个端口采用的每个特定时延偏置对应的N f个频率单元划分为K个频率单元组,第k个频率单元组包括
    Figure PCTCN2020122612-appb-100117
    个频率单元,所述第k个频率单元组中频率单元的索引是Γ k;1≤k≤K;
    其中,
    Figure PCTCN2020122612-appb-100118
    所述Ω k用于表示所述N f对所述K求余不为零时,所述N f个频率单元中未被分组的
    Figure PCTCN2020122612-appb-100119
    个频率单元中被分配到第k个频率单元组的频率单元的索引;第k个频率单元组中频率单元的索引为
    Figure PCTCN2020122612-appb-100120
  81. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储 有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1、或4至34中任一项所述的方法,或者,以使所述装置执行如权利要求2至29,或35至40中任一项所述的方法。
  82. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,如权利要求1、或4至34中任一项所述的方法被实现,或者,如权利要求2至29,或35至40中任一项所述的方法被实现。
PCT/CN2020/122612 2020-10-21 2020-10-21 信道信息反馈方法及相关设备 WO2022082545A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/122612 WO2022082545A1 (zh) 2020-10-21 2020-10-21 信道信息反馈方法及相关设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/122612 WO2022082545A1 (zh) 2020-10-21 2020-10-21 信道信息反馈方法及相关设备

Publications (1)

Publication Number Publication Date
WO2022082545A1 true WO2022082545A1 (zh) 2022-04-28

Family

ID=81291401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122612 WO2022082545A1 (zh) 2020-10-21 2020-10-21 信道信息反馈方法及相关设备

Country Status (1)

Country Link
WO (1) WO2022082545A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023226837A1 (zh) * 2022-05-27 2023-11-30 中兴通讯股份有限公司 信道信息反馈的方法、电子设备、计算机可读介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106656292A (zh) * 2015-10-29 2017-05-10 电信科学技术研究院 一种信道状态信息的反馈方法、基站及终端
US20170302353A1 (en) * 2016-04-19 2017-10-19 Samsung Electronics Co., Ltd Method and apparatus for explicit csi reporting in advanced wireless communication systems

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106656292A (zh) * 2015-10-29 2017-05-10 电信科学技术研究院 一种信道状态信息的反馈方法、基站及终端
US20170302353A1 (en) * 2016-04-19 2017-10-19 Samsung Electronics Co., Ltd Method and apparatus for explicit csi reporting in advanced wireless communication systems

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Discussion on CSI enhancement", 3GPP DRAFT; R1-1812242, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Spokane, USA; 20181112 - 20181116, 11 November 2018 (2018-11-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051554124 *
HUAWEI, HISILICON: "Discussion on CSI enhancement", 3GPP DRAFT; R1-1903969, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Xi’an, China; 20190408 - 20190412, 7 April 2019 (2019-04-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051699382 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023226837A1 (zh) * 2022-05-27 2023-11-30 中兴通讯股份有限公司 信道信息反馈的方法、电子设备、计算机可读介质

Similar Documents

Publication Publication Date Title
CN113840324B (zh) 一种测量上报方法及装置
WO2022048593A1 (zh) 信道测量的方法和装置
CN115315906B (zh) 一种信道测量方法和通信装置
US20230164004A1 (en) Channel parameter obtaining method and apparatus
WO2021081847A1 (zh) 一种信道测量方法和通信装置
WO2022082545A1 (zh) 信道信息反馈方法及相关设备
WO2024027394A1 (zh) 一种通信方法及装置
WO2021159309A1 (zh) 一种信道测量方法和通信装置
US20230318677A1 (en) Channel information feedback method and communication apparatus
US20230379020A1 (en) Precoding method and apparatus
WO2023165458A1 (zh) 信道状态信息的反馈方法和通信装置
US20230019630A1 (en) Update Method and Communications Apparatus
WO2022227976A1 (zh) 通信方法和通信装置
WO2021179311A1 (zh) 一种信道状态信息csi测量的指示方法和通信装置
WO2021062806A1 (zh) 信道测量的方法和通信装置
WO2021081964A1 (zh) 一种下行参考信号的发送端口的配置方法和通信装置
WO2023236612A1 (zh) 波束信息的确定方法、装置及通信设备
WO2024093867A1 (zh) 一种预编码的指示方法及通信装置
WO2023125340A1 (zh) 数据处理方法及装置
WO2022267899A1 (zh) 一种信道状态信息反馈方法及通信装置
WO2021146961A1 (zh) 用于确定下行信道状态信息的方法和装置
WO2024065810A1 (en) Method for uplink sounding reference signal precoder selection for interference suppression
WO2023274101A1 (zh) 一种获得预编码矩阵的方法及装置
WO2022126346A1 (zh) 上行传输方法及装置
WO2021146938A1 (zh) 用于确定下行信道状态信息的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20958128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20958128

Country of ref document: EP

Kind code of ref document: A1