WO2022126346A1 - 上行传输方法及装置 - Google Patents

上行传输方法及装置 Download PDF

Info

Publication number
WO2022126346A1
WO2022126346A1 PCT/CN2020/136265 CN2020136265W WO2022126346A1 WO 2022126346 A1 WO2022126346 A1 WO 2022126346A1 CN 2020136265 W CN2020136265 W CN 2020136265W WO 2022126346 A1 WO2022126346 A1 WO 2022126346A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
precoding matrix
group
antenna group
antennas
Prior art date
Application number
PCT/CN2020/136265
Other languages
English (en)
French (fr)
Inventor
纪刘榴
金黄平
任海豹
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/136265 priority Critical patent/WO2022126346A1/zh
Publication of WO2022126346A1 publication Critical patent/WO2022126346A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data

Definitions

  • the present application relates to the field of communication technologies, and in particular, to an uplink transmission method and apparatus.
  • Massive MIMO massive multiple input multiple output
  • Massive MIMO massive multiple input multiple output
  • NR New Radio Access Technology
  • UE User Equipment
  • the antennas configured on the UE may be distributed on one or more antenna panels, which makes the UE more suitable for multi-stream transmission scenarios, thereby improving the performance of uplink transmission.
  • precoding matrix After the UE is configured with multiple antennas, it is usually necessary to use a precoding matrix to preprocess the data to be sent to obtain beamforming gain, reduce interference between different data streams of the same UE, or obtain diversity gain and improve transmission reliability. Thereby improving system performance.
  • precoding matrices are designed for UEs configured with 1, 2, and 4 antennas, and for the case where UEs are configured with 3 antennas, corresponding precoding matrices have not been designed. Especially in the case of unbalanced antenna capabilities among the antennas of the terminal equipment, how to design a precoding matrix to improve the capacity of uplink transmission becomes an urgent problem to be solved.
  • the embodiments of the present application provide an uplink transmission method and apparatus, and the provided precoding matrix can be applied to the situation of terminal equipment with unbalanced antenna capabilities such as three antennas.
  • the present application provides an uplink transmission method, in which a terminal device can receive precoding matrix indication information, and determine a precoding matrix according to the precoding matrix indication information.
  • the precoding matrix is a precoding matrix for M antenna groups, the M antenna groups are antenna groups corresponding to N antennas of the terminal device, N is an integer greater than or equal to 3, and M is greater than or equal to 2 Integer. It can be seen that the uplink transmission method is conducive to determining a precoding matrix for antenna groups with different antenna capabilities, thereby improving the performance of uplink transmission.
  • the present application provides an uplink transmission method, which corresponds to the uplink transmission method described in the first aspect and is described from the perspective of a network device.
  • the network device determines precoding matrix indication information, and sends the precoding matrix indication information, where the precoding matrix indication information is used to determine a precoding matrix, and the precoding matrix is a precoding matrix for M antenna groups,
  • the M antenna groups are antenna groups corresponding to N antennas of the terminal device, where N is an integer greater than or equal to 3, and M is an integer greater than or equal to 2.
  • the precoding matrix indicated by the precoding matrix indication information sent by the network device is a precoding matrix for multiple antenna groups, and the precoding matrix is determined by considering the antennas with different antenna capabilities of the terminal device, which is conducive to improving the uplink. transmission performance.
  • the antennas in each antenna group have the same or similar antenna capabilities, and the antennas between different antenna groups have different antenna capabilities. It can be seen that the design of the precoding matrix takes into account the different antenna capabilities of each antenna due to different engineering design standards, which is conducive to the joint use of multiple antennas possessed by terminal equipment to improve uplink transmission performance and system capacity.
  • the number of antennas included in some of the M antenna groups is different. It can be seen that this embodiment is conducive to grouping the antennas based on the antenna capabilities without being limited by the number of antennas that the antenna group needs to include, so as to take into account the antenna capabilities of each antenna, and use more antennas to send data to improve system capacity.
  • the M antenna groups corresponding to the N antennas are indicated by the network device, determined by the terminal device, or predefined.
  • the precoding matrix indication information is used to indicate the index of the precoding matrix.
  • the terminal device may determine the precoding matrix based on the index indicated by the precoding matrix indication information.
  • the precoding matrix indication information is used to indicate one or more of the following parameters:
  • the terminal device may determine the precoding matrix based on the one or more parameters indicated by the precoding matrix indication information.
  • the index of the precoding matrix and the above one or more parameters can be indicated by one signaling or multiple signaling respectively, and the terminal device can use the index of the precoding matrix and the above one or more parameters. , determine the precoding matrix.
  • N is equal to 3
  • M is equal to 2
  • the M antenna groups include a first antenna group and a second antenna group, the first antenna group is composed of two antennas, and the second antenna group is composed of one antenna composition
  • the precoding matrix is a precoding matrix used to map a data stream to 2 antenna groups; the precoding matrix satisfies the following characteristics:
  • the total power normalization factor of the two antenna groups is denoted as A;
  • the power factor between the first antenna group and the second antenna group includes: the maximum antenna power factor of the first antenna group is recorded as The maximum power factor of the second antenna group is recorded as The antenna power factor between the first antenna group and the second antenna group is denoted as p, and p is greater than or equal to 1;
  • the power between the antennas in the first antenna group is equal;
  • the phase factor between the antennas in the first antenna group is denoted as x.
  • N is equal to 3
  • M is equal to 2
  • the M antenna groups include a first antenna group and a second antenna group, the first antenna group is composed of two antennas, and the second antenna group is composed of one Antenna composition
  • the precoding matrix is used to map two data streams to corresponding antenna groups, and each antenna group transmits a data stream; the precoding matrix satisfies the following characteristics:
  • the total power normalization factor of the two antenna groups is denoted as A;
  • the power factor between the first antenna group and the second antenna group includes: the maximum antenna power factor of the first antenna group is denoted as The maximum power factor of the second antenna group is denoted as The antenna power factor between the first antenna group and the second antenna group is denoted as p, and p is greater than or equal to 1;
  • the powers between the antennas in the first antenna group are equal;
  • the phase factor between the antennas in the first antenna group is denoted as x.
  • the N is equal to 3
  • the M is equal to 2
  • the M antenna groups include a first antenna group and a second antenna group, and the first antenna group is composed of two antennas , the second antenna group consists of one antenna;
  • the precoding matrix is used to map two data streams to two antenna groups, and one of the antenna groups performs coherent transmission on the two data streams.
  • the precoding matrix satisfies the following characteristics:
  • the total power normalization factor of the two antenna groups is denoted as A;
  • the power factor between the first antenna group and the second antenna group includes: the maximum antenna power factor of the first antenna group is recorded as The maximum power factor of the second antenna group is recorded as
  • the phase factor between the antennas in the first antenna group is denoted as x;
  • the phase factor between the antennas in the first antenna group is denoted as -x;
  • the precoding vector of the first data stream transmitted by the first antenna group is orthogonal to the precoding vector of the second data stream
  • the power factors of the first data stream and the second data stream transmitted by the first antenna group are ⁇ , ⁇ respectively.
  • N is equal to 3
  • M is equal to 2
  • the M antenna groups include a first antenna group and a second antenna group, the first antenna group is composed of two antennas, and the second antenna group is composed of one antenna.
  • Antenna composition is a precoding matrix used to map 2 data streams to 2 antenna groups, and one of the antenna groups performs non-coherent transmission of the 2 data streams; the precoding matrix satisfies the following characteristics:
  • the total power normalization factor of the two antenna groups is denoted as A;
  • the power factor between the first antenna group and the second antenna group includes: the maximum antenna power factor of the first antenna group is recorded as The maximum power factor of the second antenna group is recorded as The antenna power factor between the first antenna group and the second antenna group is denoted as p.
  • N is equal to 3
  • M is equal to 2
  • the M antenna groups include a first antenna group and a second antenna group, the first antenna group is composed of two antennas, and the second antenna group is composed of one antenna
  • the precoding matrix is used to map 3 data streams to 2 antenna groups, and one of the antenna groups performs coherent transmission on the 2 data streams.
  • the precoding matrix satisfies the following characteristics:
  • the total power normalization factor of the two antenna groups is denoted as A;
  • the power factor between the first antenna group and the second antenna group includes: the maximum antenna power factor of the first antenna group is recorded as The maximum power factor of the second antenna group is recorded as
  • the phase factor between the antennas in the first antenna group is denoted as x;
  • the phase factor between the antennas in the first antenna group is denoted as -x;
  • the precoding vector of the first data stream transmitted by the first antenna group is orthogonal to the precoding vector of the second data stream
  • the power factors of the first data stream and the second data stream transmitted by the first antenna group are ⁇ , ⁇ respectively.
  • the present application further provides an uplink transmission method, the method includes: a terminal device receives beam indication information; the beam indication information is used to indicate a beam group; the phase difference between adjacent beams in the beam group is less than N of the terminal equipment For the phase resolution between the antennas, N is an integer greater than or equal to 3; each beam in the beam group is suitable for different resource units; the terminal device determines the precoding matrix according to the beam group.
  • the present application further provides an uplink transmission method, which corresponds to the third aspect and is described from the perspective of a network device.
  • the method may include: the network device determines beam indication information; the beam indication information is used for Indicates the beam group; the phase difference between adjacent beams in the beam group is smaller than the phase resolution between N antennas of the terminal equipment, N is an integer greater than or equal to 3; each beam in the beam group is suitable for different resource units;
  • the network device sends beam indication information.
  • the precoding matrix can make the phase difference between the beams formed by the data streams transmitted by the N antennas on different resource units smaller than the phase difference between the N antennas of the terminal device phase resolution, which is beneficial to avoid performance problems caused by the relative phase drift between antennas. That is, the precoding matrix designed in this embodiment of the present application is robust and can achieve compromised performance effects in complex channel environments. .
  • the beam group is one or more of multiple beam groups formed after the basis vector is oversampled.
  • the beams of different data streams on the same resource unit are orthogonal; for the uplink transmission method of the third aspect, the terminal equipment determines the precoding matrix according to the beam group, including: the terminal equipment according to the beam indication information indicates The beam group of each data stream is determined, and the terminal device determines the precoding matrix according to the beam group of each data stream. Therefore, it is beneficial to reduce the overhead required for beam indication.
  • the number of beams in the beam group is greater than or equal to the ratio between the beam coverage and the beam resolution; the beam coverage is related to the phase resolution, and the beam resolution is equal to 2 ⁇ /NO, and O represents the basis vector. Oversampling factor.
  • the beam coverage is equal to the phase resolution.
  • N is equal to 3
  • the terminal device transmits 2 data streams on the resource unit s, and in the beam group indicated by the beam indication information, the beam m is applied on the resource unit s to transmit the first data stream, and the beam is applied.
  • the precoding matrix for transmitting the second data stream satisfies the following characteristics:
  • the total power normalization factor of the three antennas is denoted as A; the oversampling factor of the basis vector is denoted as O; the beam m is orthogonal to the beam n.
  • N is equal to 3
  • the terminal device transmits 3 data streams on resource unit s, and in the beam group indicated by the beam indication information, beam m is used on resource unit s to transmit the first data stream, and beam n is used to transmit the first data stream.
  • the precoding matrix for transmitting the second data stream and applying beam q to transmit the third data stream satisfies the following characteristics:
  • the total power normalization factor of the three antennas is denoted as A; the oversampling factor of the basis vector is denoted as O; the beam m, beam n and beam q are orthogonal to each other.
  • the present application further provides a communication device.
  • the communication device may be a terminal or a network device, or a component in a terminal or a network device.
  • the communication apparatus may include various modules or units for performing the method in the first aspect and any possible implementation manner of the first aspect; or, the communication apparatus may include the second aspect and any one of the second aspect.
  • Each module or unit of the method in a possible implementation manner; the communication device may include each module or unit for performing the third aspect and the method in any possible implementation manner of the third aspect; the communication device may include Each module or unit for performing the method in the fourth aspect and any possible implementation manner of the fourth aspect.
  • the functions of the modules or units may be implemented by hardware, or by executing corresponding software by hardware.
  • the structure of the communication device may include a processing unit, and the processing unit is configured to support the communication device to perform the corresponding functions in the above method.
  • the structure of the communication device may further include a communication unit, and the communication unit is used for supporting communication between the communication device and other devices.
  • the communication device may also include a storage unit for coupling with the processing unit and the communication unit, which stores program instructions and data necessary for the communication device.
  • the communication apparatus performs the relevant operations of the terminal equipment in the first aspect, and the communication apparatus may include:
  • a communication unit configured to receive precoding matrix indication information
  • a processing unit configured to determine a precoding matrix according to the precoding matrix indication information
  • the precoding matrix is a precoding matrix for M antenna groups; the M antenna groups are antenna groups corresponding to the N antennas of the terminal device; the N is an integer greater than or equal to 3, and the M is an integer greater than or equal to 2.
  • the precoding matrix used by the communication device is a precoding matrix for multiple antenna groups, and the precoding matrix is determined in consideration of antennas with different antenna capabilities of the communication device, which is beneficial to improve the performance of uplink transmission.
  • the communication apparatus performs the relevant operations of the network device in the second aspect, and the communication apparatus may include:
  • a processing unit configured to determine precoding matrix indication information
  • a communication unit configured to send the precoding matrix indication information
  • the precoding matrix indication information is used to indicate a precoding matrix, and the precoding matrix is a precoding matrix for M antenna groups; the M antenna groups are antenna groups corresponding to N antennas of the terminal device; the N is an integer greater than or equal to 3, and the M is an integer greater than or equal to 2.
  • the precoding matrix indicated by the communication device is a precoding matrix for multiple antenna groups, and the precoding matrix is determined in consideration of antennas with different antenna capabilities possessed by the communication device, thereby helping to improve the performance of uplink transmission.
  • the communication apparatus performs the related operations of the terminal equipment in the third aspect, and the communication apparatus may include:
  • a communication unit for receiving beam indication information
  • the beam indication information is used to indicate a beam group; the phase difference between adjacent beams in the beam group is smaller than the phase resolution between N antennas of the terminal device, where N is an integer greater than or equal to 3; so Each beam in the beam group is suitable for different resource units;
  • a processing unit configured to determine a precoding matrix according to the beam group.
  • the precoding matrix used by the communication device can make the phase difference between the beams formed by the data streams transmitted by the N antennas on different resource units smaller than the phase resolution between the N antennas of the terminal device, thereby helping to avoid
  • the performance problem caused by the drift of the relative phase between the antennas, that is, the precoding matrix designed in the present application is robust and can achieve a compromised performance effect in a complex channel environment.
  • the communication apparatus performs the related operations of the network device in the fourth aspect, and the communication apparatus may include:
  • a processing unit configured to determine beam indication information
  • the beam indication information is used to indicate a beam group; the phase difference between adjacent beams in the beam group is smaller than the phase resolution between N antennas of the terminal device, where N is an integer greater than or equal to 3; so Each beam in the beam group is suitable for different resource units;
  • a communication unit configured to send the beam indication information.
  • the precoding matrix indicated by the communication device can make the phase difference between the beams formed by the data streams transmitted by the N antennas on different resource units smaller than the phase resolution between the N antennas of the terminal device, thereby helping to avoid
  • the performance problem caused by the drift of the relative phase between the antennas, that is, the precoding matrix designed in the present application is robust and can achieve a compromised performance effect in a complex channel environment.
  • the communication unit may be a transceiver or a communication interface
  • the storage unit may be a memory
  • the processing unit may be a processor
  • the communication apparatus is a terminal or a network device.
  • the processing unit may be a processor; the communication unit may be a transceiver, or an input/output interface.
  • the communication device is a chip or a system of chips.
  • the processing unit may also be embodied as a processing circuit or a logic circuit; the communication unit may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit, etc. on the chip or chip system.
  • the communication apparatus performs the relevant operations of the terminal equipment in the first aspect, and the communication apparatus may include:
  • a transceiver for receiving precoding matrix indication information
  • a processor configured to determine a precoding matrix according to the precoding matrix indication information
  • the precoding matrix is a precoding matrix for M antenna groups; the M antenna groups are antenna groups corresponding to the N antennas of the terminal device; the N is an integer greater than or equal to 3, and the M is an integer greater than or equal to 2.
  • the precoding matrix used by the communication device is a precoding matrix for multiple antenna groups, and the precoding matrix is determined in consideration of antennas with different antenna capabilities of the communication device, which is beneficial to improve the performance of uplink transmission.
  • the communication apparatus performs the relevant operations of the network device in the second aspect, and the communication apparatus may include:
  • a processor configured to determine precoding matrix indication information
  • a transceiver configured to send the precoding matrix indication information
  • the precoding matrix indication information is used to indicate a precoding matrix, and the precoding matrix is a precoding matrix for M antenna groups; the M antenna groups are antenna groups corresponding to N antennas of the terminal device; the N is an integer greater than or equal to 3, and the M is an integer greater than or equal to 2.
  • the precoding matrix indicated by the communication device is a precoding matrix for multiple antenna groups, and the precoding matrix is determined in consideration of antennas with different antenna capabilities possessed by the communication device, thereby helping to improve the performance of uplink transmission.
  • the communication apparatus performs the related operations of the terminal equipment in the third aspect, and the communication apparatus may include:
  • a transceiver for receiving beam indication information
  • the beam indication information is used to indicate a beam group; the phase difference between adjacent beams in the beam group is smaller than the phase resolution between N antennas of the terminal device, where N is an integer greater than or equal to 3; so Each beam in the beam group is suitable for different resource units;
  • a processor configured to determine a precoding matrix according to the beam group.
  • the precoding matrix used by the communication device can make the phase difference between the beams formed by the data streams transmitted by the N antennas on different resource units smaller than the phase resolution between the N antennas of the terminal device, thereby helping to avoid The performance problem caused by the drift of the relative phase between the antennas, that is, the precoding matrix designed in this application is robust and can achieve a compromised performance effect in a complex channel environment.
  • the communication apparatus performs the related operations of the network device in the fourth aspect, and the communication apparatus may include:
  • the beam indication information is used to indicate a beam group; the phase difference between adjacent beams in the beam group is smaller than the phase resolution between N antennas of the terminal device, where N is an integer greater than or equal to 3; so Each beam in the beam group is suitable for different resource units;
  • a transceiver configured to send the beam indication information.
  • the precoding matrix indicated by the communication device can make the phase difference between the beams formed by the data streams transmitted by the N antennas on different resource units smaller than the phase resolution between the N antennas of the terminal device, thereby helping to avoid
  • the performance problem caused by the drift of the relative phase between the antennas, that is, the precoding matrix designed in the present application is robust and can achieve a compromised performance effect in a complex channel environment.
  • the processor may be used to perform, for example but not limited to, baseband related processing
  • the transceiver may be used to perform, for example but not limited to, radio frequency transceiving.
  • the above-mentioned devices may be respectively arranged on chips that are independent of each other, or at least part or all of them may be arranged on the same chip.
  • processors can be further divided into analog baseband processors and digital baseband processors.
  • the analog baseband processor can be integrated with the transceiver on the same chip, and the digital baseband processor can be set on a separate chip. With the continuous development of integrated circuit technology, more and more devices can be integrated on the same chip.
  • a digital baseband processor can be integrated with a variety of application processors (such as but not limited to graphics processors, multimedia processors, etc.) on the same chip.
  • application processors such as but not limited to graphics processors, multimedia processors, etc.
  • Such a chip may be called a System on Chip. Whether each device is independently arranged on different chips or integrated on one or more chips often depends on the needs of product design. The embodiments of the present application do not limit the implementation form of the foregoing device.
  • the present application further provides a processor for executing the method described in the first aspect, the second aspect, the third aspect or the fourth aspect.
  • the process of sending the above information and receiving the above information in the above method can be understood as the process of outputting the above information by the processor process, and the process by which the processor receives the input of the above information.
  • the processor When outputting the above-mentioned information, the processor outputs the above-mentioned information to the transceiver for transmission by the transceiver. After the above-mentioned information is output by the processor, other processing may be required before reaching the transceiver.
  • the transceiver receives the above-mentioned information and inputs it into the processor. Furthermore, after the transceiver receives the above-mentioned information, the above-mentioned information may need to perform other processing before being input to the processor.
  • the above-mentioned processor may be a processor specially used to execute these methods, or may be a processor that executes computer instructions in a memory to execute these methods, such as a general-purpose processor.
  • the above-mentioned memory can be a non-transitory (non-transitory) memory, such as a read-only memory (Read Only Memory, ROM), which can be integrated with the processor on the same chip, or can be set on different chips respectively.
  • ROM read-only memory
  • the embodiment does not limit the type of the memory and the setting manner of the memory and the processor.
  • the present application provides a computer-readable storage medium for storing computer software instructions, and when the instructions are executed by a communication device, the first aspect, the second aspect, the third aspect or the fourth aspect can be realized the method described.
  • the present application further provides a computer program product comprising instructions, which, when run on a communication device, cause the communication device to perform the first, second, third or fourth aspects described above method.
  • a chip system which is applied in a communication device, wherein the chip system includes at least one processor, and when program instructions are executed in the at least one processor, the above-mentioned first aspect to
  • the method described in any of the fourth aspect and the optional implementation manner of the first aspect to the optional implementation manner of the fourth aspect can be implemented on any of the following devices: a terminal device and a network device.
  • a communication system includes: the above-mentioned communication device.
  • the communication system includes: a terminal device and a network device, the terminal device executes the method described in the first aspect and the optional implementation manner of the first aspect, and the network device executes the optional implementation of the second aspect and the second aspect. or, the terminal device executes the method described in the third aspect and the optional embodiment of the third aspect, and the network device executes the fourth aspect and the optional embodiment of the fourth aspect. The method described in the embodiment.
  • FIG. 1 shows a schematic diagram of a communication system suitable for the method provided by the embodiment of the present application
  • FIG. 2 is a schematic flowchart of an uplink transmission method 100 provided by an embodiment of the present application
  • 3 is a schematic diagram of a 3T precoding matrix with a rank of 1 provided by an embodiment of the present application;
  • FIG. 4 is a schematic diagram of a 3T precoding matrix with a rank of 2 provided by an embodiment of the present application;
  • FIG. 5 is a schematic flowchart of an uplink transmission method 200 provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of an optional beam obtained by three-antenna-basic vector oversampling provided by an embodiment of the present application;
  • FIG. 7 is a schematic diagram of a three-antenna-basis vector optional beam provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of another optional beam obtained by oversampling with three antennas and basis vectors provided by an embodiment of the present application;
  • 9 is a schematic diagram of the correspondence between 4 subbands of uplink transmission and 2 beams in a beam group provided by an embodiment of the present application.
  • 10 is a schematic diagram of the correspondence between 4 subbands and 2 beams in a beam group of another uplink transmission provided by an embodiment of the present application;
  • 11 is a schematic diagram of the correspondence between 5 subbands of uplink transmission and 2 beams in a beam group provided by an embodiment of the present application;
  • 12 is a schematic diagram of the correspondence between 5 subbands of another uplink transmission and 2 beams in a beam group provided by an embodiment of the present application;
  • FIG. 13 is a schematic diagram of beam selection corresponding to two data streams provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of another communication apparatus provided by an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a chip provided by an embodiment of the present application.
  • the technical solutions of the present application can be applied to various communication systems.
  • global system for mobile communications LTE frequency division duplex system, LTE time division duplex system, universal mobile communication system, 4G system, and with the continuous development of communication technology
  • the technical solution of the present application can also be used for subsequent evolved communication systems , such as 5G systems, future communication systems, etc.
  • the embodiments of the present application can be applied to independent networking, that is, communication systems such as new base stations, backhaul links, and core networks deployed in future networks, and can also be applied to various communication systems such as non-independent networking.
  • the embodiments of the present application may be used in a fifth generation (5th generation, 5G) system, which may also be referred to as a new radio (new radio, NR) system, or a sixth generation (6th generation, 6G) system or other future communication systems ; or can also be used in device to device (device to device, D2D) systems, machine to machine (machine to machine, M2M) systems, long term evolution (long term evolution, LTE) systems and so on.
  • 5G fifth generation
  • NR new radio
  • 6G sixth generation
  • device to device device to device
  • M2M machine to machine
  • LTE long term evolution
  • the network device may be a device with a wireless transceiver function or a chip that can be provided in the device, and the network device includes but is not limited to: an evolved node B (evolved node B, eNB), a radio network controller ( radio network controller, RNC), node B (Node B, NB), network equipment controller (base station controller, BSC), network equipment transceiver station (base transceiver station, BTS), home network equipment (for example, home evolved Node B , or home Node B, HNB), baseband unit (BBU), access point (AP), wireless relay node, wireless backhaul node, wireless fidelity (wireless fidelity, WIFI) system Transmission point (transmission and reception point, TRP or transmission point, TP), etc.; it can also be a device used in 5G, 6G or even 7G systems, such as gNB in NR system, or transmission point (TRP or TP), in 5G system One or a group (including multiple antenna panels)
  • RNC radio network controller
  • terminal equipment may include, but is not limited to: user equipment (user equipment, UE), access terminal equipment, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal equipment, mobile equipment, User terminal equipment, user agent or user equipment, etc.
  • user equipment user equipment, UE
  • access terminal equipment subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal equipment, mobile equipment, User terminal equipment, user agent or user equipment, etc.
  • the terminal device may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, industrial control Wireless terminals in (industrial control), wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, and transportation safety wireless terminals in smart cities, wireless terminals in smart homes, wireless terminals in the aforementioned V2X Internet of Vehicles, or RSUs of the wireless terminal type, etc.
  • a mobile phone mobile phone
  • a tablet computer Pad
  • a computer with a wireless transceiver function a virtual reality (VR) terminal device
  • AR augmented reality
  • industrial control Wireless terminals in (industrial control) wireless terminals in self-driving
  • wireless terminals in remote medical wireless terminals in smart grid
  • transportation safety wireless terminals in smart cities wireless terminals in smart homes, wireless terminals in the aforementioned V2X Internet of Vehicles, or RSUs of the wireless terminal type,
  • a gNB may include a centralized unit (CU) and a distributed unit (DU).
  • the gNB may also include an active antenna unit (AAU).
  • the CU implements some functions of the gNB, and the DU implements some functions of the gNB.
  • the CU is responsible for processing non-real-time protocols and services, and implementing functions of radio resource control (RRC) and packet data convergence protocol (PDCP) layers.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing physical layer protocols and real-time services, and implementing the functions of the radio link control (RLC) layer, medium access control (MAC) layer, and physical (PHY) layer.
  • RLC radio link control
  • MAC medium access control
  • PHY physical
  • the higher-layer signaling such as the RRC layer signaling
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network devices in an access network (radio access network, RAN), and the CU can also be divided into network devices in a core network (core network, CN), which is not limited in this application.
  • FIG. 1 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • the communication system shown in FIG. 1 includes but is not limited to base stations and terminal devices, and may also include other communication devices, which will not be described in detail here.
  • the basic principle of precoding is a transformation or mapping process that maps one or more data streams onto multiple antennas, which may also be referred to as beamforming.
  • the number of data streams of the same user is called the rank, and may also be called the number of layers.
  • the multiple antennas may be referred to as multiple antenna ports to distinguish different channels. Data transmitted by multiple channels obtained after precoding processing can not interfere with each other, thereby improving system performance.
  • precoding to map a data stream to multiple antennas for transmission, diversity gain can be obtained, transmission reliability can be improved, and system performance can be improved.
  • the precoding conversion process can be expressed as a linear operation between the data and the precoding matrix, that is, the data to be sent is multiplied by the precoding matrix to obtain.
  • the rank of the precoding matrix (also the number of columns of the precoding matrix) is the number of data streams of the same user described above; the number of rows of the precoding matrix is equal to the number of antenna ports, and the embodiment of the present application may be referred to as is the number of antennas.
  • the rank number of the terminal equipment for uplink transmission is equal to v, that is, there are 0 to v-1 data streams in total, which can be expressed as [y (0) (i) ... y (v-1) (i)] T , in, is the number of modulation symbols of each layer of data stream.
  • the data [z (0) (i) ... z (P-1) (i)] T corresponding to the P ports can be obtained, in, Indicates the number of modulation symbols per antenna port.
  • the process that the terminal equipment uses the precoding matrix W to precode the v data streams can be expressed as:
  • the terminal device For uplink transmission, there are three ways for the terminal device to obtain the precoding matrix:
  • the network device performs uplink channel estimation according to the uplink sounding reference signal (Sounding Reference Signal, SRS), and determines the precoding matrix indication (Transmit Matrix) corresponding to the precoding matrix for uplink transmission in the preset codebook according to the estimated situation.
  • Precoding Matrix Indicator, TPMI Precoding Matrix Indicator, TPMI
  • the terminal equipment presets multiple precoding matrices to send multiple reference signal resources (such as SRS resources), and the terminal equipment selects the identifier of one of the SRS resources according to the received signal strength and indicates it to the terminal equipment; further, the terminal equipment can The precoding matrix corresponding to the SRS resource is used as the precoding matrix for uplink transmission.
  • multiple reference signal resources such as SRS resources
  • the terminal device performs channel estimation according to the downlink channel state information reference signal (Channel State Information Reference Signal, CSI-RS), and calculates the precoding matrix for uplink transmission by itself according to the reciprocity of the uplink and downlink channels.
  • CSI-RS Channel State Information Reference Signal
  • the manner of determining the precoding matrix described in this embodiment of the present application may include, but is not limited to, the manner described in manner (2).
  • the codebook includes, for each rank, a certain number of precoding matrices to represent the quantized channel.
  • Each precoding matrix in the codebook corresponds to one or more precoding matrix indices, and generally, the precoding matrix indices have a corresponding relationship with the corresponding TPMI.
  • Each precoding matrix in the codebook can also be a codeword.
  • the codebook is usually predefined, the network device and the terminal device will store the corresponding codebook, and the network device and the terminal device agree on the correspondence between each precoding matrix, precoding matrix index and TPMI in the codebook. understanding is the same.
  • the pre-defined codebook for rank 1 in the network device and the terminal device may be as shown in Table 1, which is suitable for 4 antenna ports.
  • the network device selects a precoding matrix from the predefined codebook according to the estimated uplink channel and determines its precoding matrix index (such as a value from 0 to 27 corresponding to the TPMI index in Table 1), it can The TPMI corresponding to the determined precoding matrix index is notified to the terminal device through downlink signaling (such as downlink control information (DCI) of physical layer signaling); the terminal device, according to the TPMI carried in the signaling issued by the network device, A specific precoding matrix can be determined from Table 1; further, the terminal device will precode the data to be sent according to the precoding matrix before sending.
  • DCI downlink control information
  • Multi-antenna coherent transmission multi-antenna partial coherent transmission, multi-antenna incoherent transmission
  • Multi-antenna coherent transmission refers to precoding a data stream using all the antennas of the terminal device to form a beam before sending.
  • the TPMI index is equal to the precoding matrix corresponding to 12 to 27, and one data stream can be mapped to four antennas for transmission.
  • Multi-antenna partial coherent transmission refers to a data stream that is pre-coded using part of the antennas of the terminal device to form a beam and then sent.
  • the TPMI index is equal to the precoding matrix corresponding to 4 to 11, and one data stream can be mapped to two antennas for transmission.
  • Multi-antenna incoherent transmission refers to a data stream, using one antenna for precoding, forming a beam and sending it.
  • the precoding matrix corresponding to TPMI index equal to 0 to 3 in Table 1 above can map one data stream to one antenna for transmission.
  • the antennas used by different data streams are different, and the corresponding beams are also different.
  • a resource unit not only refers to a resource element (resource element, RE) in the frequency domain, but also may refer to a time unit in the time domain.
  • the time unit in the time domain may refer to a subframe, a time slot, or a radio frame, a mini slot (mini slot or sub slot), a plurality of aggregated time slots, a plurality of Aggregated subframes, symbols, etc., may also refer to a transmission time interval (Transmission Time Interval, TTI).
  • TTI Transmission Time Interval
  • the duration of one time unit in the time domain is equal to the duration of an integer number of another time unit in the time domain, for example, a minislot/slot/subframe/radio frame contains an integer number of symbols, a slot/ A subframe/radio frame contains an integer number of mini-slots, a subframe/radio frame contains an integer number of time slots, a radio frame contains an integer number of subframes, etc.
  • Other examples may also be included, which are not limited in this application.
  • the resource units in the frequency domain include subcarriers, resource blocks (RBs), physical resource blocks, virtual resource blocks, precoding resource block groups (PRGs), and physical resource block groups (physical resource blocks).
  • block group RBG
  • subband subband
  • partial bandwidth partial bandwidth
  • bandwidth part BWP
  • carrier carrier
  • serving cell serving cell
  • frequency band band
  • the precoding matrices currently designed are all designed for 1, 2 or 4 antennas, and there is no precoding matrix designed for other antenna forms. For example, how to design the precoding matrix for 3 antennas can improve the performance of uplink transmission. For another example, for multiple antennas with different antenna capabilities, how to design a precoding matrix to improve the capacity of uplink transmission.
  • the present application provides an uplink transmission method 100.
  • the precoding matrix determined by the method 100 is a precoding matrix for M antenna groups, and the M antenna groups are antenna groups corresponding to N antennas of a terminal device. It can be seen that the uplink transmission
  • the precoding matrix determined by the transmission method is beneficial to determine the precoding matrix for antenna groups with different antenna capabilities, thereby improving the performance of uplink transmission.
  • FIG. 2 is a schematic flowchart of an uplink transmission method 100 provided by an embodiment of the present application. As shown in FIG. 1, the uplink transmission method 100 may include but not limited to the following steps:
  • a network device determines precoding matrix indication information
  • the precoding matrix indication information is used to indicate precoding matrices of M antenna groups, where the M antenna groups are antenna groups corresponding to N antennas possessed by the terminal device, N is an integer greater than or equal to 3, and M is greater than or equal to 3. An integer equal to 2.
  • the antennas in each of the M antenna groups, the antennas have the same or similar antenna capabilities, and the antennas between different antenna groups have different antenna capabilities.
  • the antenna capability may include the frequency band capability, power capability, phase calibration accuracy, etc. of the antenna. It can be seen that the design of the precoding matrix takes into account the different antenna capabilities of each antenna due to different engineering design standards, which is conducive to the joint use of multiple antennas possessed by terminal equipment to improve uplink transmission performance and system capacity.
  • the antennas having the same or similar antenna capabilities refer to the same or similar values of one or more capabilities in the frequency band capabilities such as frequency bands supported by different antennas, power capabilities such as maximum transmit power, and phase calibration accuracy.
  • the maximum transmit power of each antenna may be equal; if the antennas have similar power capabilities, the difference between the maximum transmit powers of each antenna may be no greater than a preset value.
  • the frequency band ranges supported by each antenna may be the same; if the antennas have similar frequency band capabilities, the overlapping range between the frequency band ranges supported by each antenna may not be less than the preset range. scope.
  • the antennas have the same phase calibration accuracy the phase calibration accuracy supported by each antenna may be the same; if the antennas have similar phase calibration accuracy, the difference between the phase calibration accuracy supported by each antenna may be determined. not greater than the preset value.
  • the antennas have different antenna capabilities, which means that the values of one or more capabilities in the frequency band capabilities such as frequency bands supported by different antennas, power capabilities such as maximum transmit power, and phase calibration accuracy are different or greatly different.
  • the maximum transmit power of each antenna may be different; if the antennas have different power capabilities, the difference between the maximum transmit powers of each antenna may be greater than the preset value.
  • the frequency band ranges supported by each antenna may be different; if the antennas have different frequency band capabilities, the overlapping range between the frequency band ranges supported by each antenna may be smaller than the predetermined range. set range.
  • the antennas have different phase calibration accuracy
  • the phase calibration accuracy supported by each antenna may be different; if the antennas have different phase calibration accuracy, the phase calibration accuracy supported by each antenna may be different. The difference is greater than the preset value.
  • the number of antennas included in some of the M antenna groups is different.
  • M equals 2, N equals 3, the first antenna group includes 1 antenna, and the second antenna group includes the remaining 2 antennas; for another example, M equals 3, N equals 5, and the first antenna group includes 2 antennas, the second antenna group includes 2 antennas, and the third antenna group includes 1 antenna.
  • the first antenna group and the second antenna group include the same number of antennas, which are different from the third antenna group. The number of antennas included varies.
  • this embodiment is conducive to grouping the antennas based on the antenna capabilities, instead of being limited by the number of antennas that the antenna group needs to include, so as to take into account the antenna capabilities of each antenna, and use more antennas to send data to improve system capacity.
  • the network device determining the precoding matrix indication information may include: the network device determining the precoding matrix indication information according to the M antenna groups and the antenna capability of each antenna.
  • the precoding matrix corresponding to the precoding matrix indication information can take into account the antenna capabilities of different antennas, such as one or more of the maximum transmit power, frequency band range, and phase calibration accuracy, so that it is beneficial for the terminal equipment to use all
  • the antennas are used to transmit data, avoiding hardware waste caused by the inability to use one of the antennas, which is beneficial to increase the system capacity.
  • the terminal device is configured with 3 antennas. Due to the different engineering design standards of each antenna, among the 3 antennas (denoted as Tx1, Tx2, and Tx3), a better calibration accuracy can be achieved between Tx1 and Tx2 (relative phase, relative power calibration), and only rough calibration level between Tx3 and Tx1, Tx2; and, Tx1 and Tx2 themselves are low-cost low-power antennas, such as the maximum transmit power can only reach 20dBm , and Tx1 and Tx2 can achieve the effect of the maximum transmission power of 23dBm when jointly transmitting, and Tx3 itself can achieve the effect of the maximum transmission power of 23dBm.
  • Tx1 and Tx2 can be sent coherently, Tx3 is sent separately, and the sum of the maximum transmit powers sent by Tx1 and Tx2 can reach 23dBm, while The maximum transmit power of Tx3 alone can be 23dBm, so based on the precoding matrix, the terminal device can call 3 antennas to send uplink data, which greatly improves the system capacity. That is, the network device can determine the precoding matrix indication information according to the grouping of the three antennas based on the antenna capabilities and the capabilities of each antenna, thereby helping to improve the system capacity.
  • the network device sends the precoding matrix indication information
  • the terminal device receives the precoding matrix indication information
  • the terminal device determines a precoding matrix according to the precoding matrix indication information.
  • the precoding matrix indication information indicates the mode of the precoding matrix.
  • the manner in which the precoding matrix indication information indicates the precoding matrix may include, but is not limited to, the following implementations:
  • the precoding matrix is identified by the index indicated by the precoding matrix indication information.
  • the terminal device may determine the precoding matrix corresponding to the index of the precoding matrix from the predefined codebook. Since the network device has limited overhead for indicating the precoding matrix, the precoding matrix (also referred to as a codeword) indicated by the network device is a codeword within a certain range, and the codewords within a certain range form a codebook, that is, A codebook predefined by a protocol is used between the terminal device and the network device, so that the network device can indicate to the terminal device one of the codewords in the codebook as a codeword for uplink transmission within a limited overhead.
  • the precoding matrix is determined by using one or more parameters indicated by the precoding matrix indication information.
  • the one or more parameters include, but are not limited to: the total power normalization factor of the M antenna groups (may be referred to as normalization factor for short); the power factor between different antenna groups; the power factor between data streams ; the power factor between antennas within each antenna group containing multiple antennas; the phase factor between antennas within each antenna group containing multiple antennas.
  • the terminal device may determine the precoding matrix according to the above-mentioned one or more parameters indicated by the precoding matrix indication information.
  • the precoding matrix is determined according to the index of the precoding matrix and one or more parameters described above.
  • the terminal device may determine the precoding matrix according to the index of the precoding matrix and the above-mentioned one or more parameters.
  • the above-mentioned one or more parameters may be notified to the terminal equipment through high layer signaling, and the index of the precoding matrix may be notified to the terminal equipment through physical layer signaling, such as the precoding matrix indication information described in Embodiment 1.1.
  • the precoding matrix described in this embodiment of the present application is a precoding matrix for M antenna groups, and the M antenna groups are divided based on antenna capabilities. Therefore, the precoding matrix can be obtained from one or more of the above parameters, such as the power factor between different antenna groups (may be referred to as inter-group power for short), the phase factor between antennas in each antenna group including multiple antennas ( It can be referred to as the design of parameters such as intra-group phase) to take into account the antenna capabilities between each antenna group and the antenna capabilities of the antennas in each antenna group, so that all antennas can transmit data and improve system capacity.
  • the power factor between different antenna groups may be referred to as inter-group power for short
  • the phase factor between antennas in each antenna group including multiple antennas It can be referred to as the design of parameters such as intra-group phase
  • the indication manner of the above parameters may also be indicated by the capability of the terminal device, predefined by the protocol, or indicated by other signaling.
  • the above parameters may be indicated by one signaling, or may be indicated separately.
  • the intra-group phase can be indicated by precoding matrix indication information
  • power-related parameters such as inter-group power can be indicated by high-layer signaling.
  • the indication granularity may be indication granularity in the time domain or indication granularity in the frequency domain.
  • the indication granularity of the above parameters is the indication granularity in the time domain, that is, it may be indicated periodically, indicated by downlink control information (DCI), or indicated by a media access control-control element (media access control element). -control element, MAC-CE) indicated.
  • the indication granularity of the above-mentioned parameters is the indication granularity in the frequency domain, that is, the indication granularity may be indicated by broadband, partial frequency band, or subband.
  • the phase factor within the above-mentioned antenna group may be indicated by the granularity of subband, and the power factor between the antenna groups may be indicated by the granularity of broadband.
  • the second part the characteristics that the precoding matrices corresponding to the M antenna groups need to satisfy.
  • the precoding matrix determined based on the above precoding matrix indication information may have, but not limited to, the features described in the following embodiments.
  • the precoding matrix W with a rank of 1 needs to satisfy the following characteristics:
  • A is the normalization factor of the total power of M antenna groups
  • the total power normalization factor is used to normalize the total energy of the precoding matrix W to a constant, such as 1, or to 1/2.
  • the total energy of the precoding matrix W is equal to the sum of the squares of the elements in the precoding matrix W.
  • the total power normalization factor of the precoding matrix may be predefined in the protocol or indicated by the network device.
  • the precoding matrices in the codebooks predefined in the terminal device and the network device described above may have different total power normalization factors, corresponding to different total energies.
  • parameter 2 represents the power factor between different antenna groups
  • the power factor between the antenna groups is equal, that is, each antenna group distributes power evenly.
  • the power factors between the antenna groups are not equal, that is, the power is distributed unevenly.
  • the power factor between the antenna groups is the ratio of the number of antennas between the antenna groups.
  • the power factor between different antenna groups includes the antenna power factor in addition to the maximum power factor between the antenna groups, such as y1, y2, ..., ym, etc.
  • the antenna power factor is different from the maximum power factor and is used for fine adjustment.
  • the power of the antennas between the antenna groups which can be 0, 6dB, -6dB, etc.
  • the maximum power factor and/or the power factor may be determined by reporting by the terminal device, or may be indicated by the network device.
  • parameter 3 are respectively the power factor between the antennas in each antenna group
  • the power factors between the antennas in each antenna group are equal, that is, the power between the antennas in the antenna group is evenly distributed, for example, the power factors between the antennas in the ith antenna group are
  • x ij represents the phase factor adjusted by the jth antenna in the ith antenna group relative to the first antenna in the ith antenna group, which is referred to as the phase factor between the antennas in the ith antenna group.
  • the number of antennas included in each antenna group may be different, that is, the number M i of antennas in the ith antenna group is not a fixed value, and is related to the antenna capabilities of the N antennas possessed by the terminal device.
  • the value of x ij can be ⁇ 1, -1, j, -j ⁇ ; if it is 8 Phase Shift Keying (8 Phase Shift Keying) , 8PSK), then the value of x ij can be It can be seen that different values of x ij correspond to different precoding precisions and indication overheads.
  • the phase factor may be indicated by the network device to the terminal device in a collective manner, or may be reported by the terminal device to the network device in a collective manner.
  • the terminal device can report the above phase factor according to the degree of coherence between the antennas supported by the terminal device in the antenna group. For example, if the degree of coherence is 1, the phase calibration accuracy is plus or minus 40 degrees, that is, The phase resolution of the precoding matrix supported by the terminal device can only be at least 80 degrees, so the phase factor reported by the terminal device can be ⁇ 1, -1, j, -j ⁇ of QPSK.
  • the M antenna groups include a first antenna group and a second antenna group, the first antenna group is composed of two antennas, and the second antenna group is composed of two antennas.
  • the group consists of one antenna; the precoding matrix satisfies the following characteristics when the rank is 1:
  • the total power normalization factor of the two antenna groups is denoted as A; represents the maximum antenna power distribution factor of the i-th antenna group, then the power distribution factor between the first antenna group and the second antenna group includes: the maximum antenna power distribution factor of the first antenna group (denoted as ), the maximum power distribution factor of the second antenna group (denoted as ), the antenna power factor between the first antenna group and the second antenna group (denoted as p, p is greater than or equal to 1); the power between the antennas in the first antenna group is equal, both are 1/2;
  • the phase factor between the antennas in the first antenna group is denoted as x, which represents the adjusted phase of the second antenna relative to the first antenna in the first antenna group.
  • FIG. 3 is a schematic diagram of a 3T precoding matrix with a rank of 1 provided by an embodiment of the present application.
  • the precoding matrix shown in FIG. 3 is applicable to a terminal device having 2 antenna groups corresponding to 3 antennas.
  • the three antennas possessed by the terminal device are referred to as 3T for short, and the 3T are Tx1, Tx2, and Tx3 respectively;
  • the two antenna groups corresponding to the three antennas are respectively the antenna group 1 and the antenna group 2;
  • the antenna group 1 includes Tx1, Tx2, antenna group 2 includes Tx3;
  • the maximum power distribution factor between groups shown in Figure 3 the maximum transmit power of the terminal equipment is evenly distributed between antenna group 1 and antenna group 2, that is, antenna group 1 and antenna group 2
  • the maximum power between the two groups is equal;
  • the power distribution factor p between groups as shown in Figure 3 represents the power of the terminal equipment to finely adjust the antenna group 2 relative to the antenna group 1, that is, the power adjustment with a smaller amplitude compared with the maximum power;
  • the power distribution factor in the group shown in Figure 3, the power of the antenna group 1 is also evenly distributed between Tx1 and Tx2, that is, the power between Tx1 and Tx2 in the antenna group 1 is equal;
  • Phase factor x which indicates
  • Embodiment 2.2 for the case where the terminal device has N antennas and M antenna groups, the characteristics that the precoding matrix W of rank 2 needs to satisfy.
  • the precoding matrix W is similar to the precoding matrix W described in the foregoing Embodiment 2.1, wherein the relevant implementations of parameters 1 to 4 may refer to the relevant descriptions in the foregoing Embodiment 2.1, which will not be described in detail here.
  • This embodiment mainly describes how N antennas map 2 data streams.
  • [z (0) (i) ... z (P-1) (i)] T is the precoded data, corresponding to multiple Tx of the terminal device;
  • [y (0) (i) ... y (v-1) (i)] T is a plurality of data streams to be precoded.
  • the precoding matrix may include, but is not limited to, the following mapping modes:
  • the precoding matrix is a precoding matrix used to map two data streams to M antenna groups respectively, and each antenna group transmits one data stream.
  • the precoding matrix of this method can satisfy the characteristics of the precoding matrix shown in FIG. 4 .
  • the precoding matrix shown in Figure 4 is:
  • each row of the precoding matrix and Tx shown in the formula (4), and the antenna grouping information of 3T are similar to those shown in FIG. 3 .
  • each column of the precoding matrix is associated with two The mapping relationship of the data flow is illustrated by taking the example shown in FIG. 4 . It can be seen that in the precoding matrix shown in formula (4), the antenna group 1 where Tx1 and Tx2 are located only transmits the first data stream, and the antenna group 2 where Tx3 is located only transmits the second data stream.
  • the coding matrix can also be exchanged in columns, that is, antenna group 1 only transmits the second data stream, and antenna group 2 only transmits the first data stream; optionally, the precoding matrix can also be exchanged in rows, that is, antenna grouping
  • the information is variable. For details, please refer to the related description about the antenna grouping information below.
  • the precoding matrix can be:
  • the precoding matrix shown in the formula (5) enables Tx1 and Tx2 to jointly send the first data stream and in the same phase; Tx3 sends the second data stream independently.
  • the first data stream is represented as
  • the second data stream is represented as Use the precoding matrix shown in formula (5) to perform precoding, and obtain the precoded data:
  • Tx1 and Tx2 jointly sent the first data stream And when it is sent, it is in the same phase, and Tx3 sends the second data stream alone
  • the precoding matrix is used for some antenna groups to send one data stream respectively, and another part of the antenna groups to send multiple data streams respectively.
  • the precoding matrix is a precoding matrix used to map 2 data streams to one antenna group and one of the data streams to the other antenna group, so that some antennas transmit one of the data streams, and the other part of the antennas transmit multiple data streams. flow.
  • multiple antennas can perform coherent transmission or non-coherent transmission. The following may include but are not limited to way 2.2.2.1 and way 2.2.2.2.
  • Mode 2.2.2.1 In an antenna group that transmits multiple data streams and has multiple antennas, multiple antennas are coherently transmitted.
  • the parameters associated with the precoding matrix include the above-mentioned parameters 1 to 4, and also include parameter 5, that is, the power allocation factor between the data streams.
  • the precoding matrix of this method 2.1 can satisfy the following characteristics:
  • the precoding matrix shown in formula (6) can enable antenna group 1 to send two data streams, and antenna group 2 to send one data stream.
  • can be designed , ⁇ as the power distribution factor among the streams to adjust the power ratio among the streams.
  • the precoding matrix can be:
  • ⁇ , ⁇ can be used to adjust the power ratio between the first data stream and the second data stream transmitted by the antenna group.
  • antenna group 2 selects to transmit the first data stream, and optionally, antenna group 2 can also select to transmit the second data stream, and the corresponding precoding matrix can be:
  • the parameters associated with the precoding matrix include the above parameters 1 to 4, but does not include parameter 5, that is, due to the incoherent transmission between the antennas in the antenna group, different data streams are transmitted by different antennas, so there is no A power allocation factor between data streams is required.
  • the precoding matrix of method 2.2 can satisfy the following characteristics:
  • the precoding matrix shown in formula (10) can enable antenna group 1 to send two data streams, and antenna group 2 to send one data stream, wherein the two data streams sent by antenna group 1 are incoherent transmission, such as Tx1 The first data stream is transmitted, and the Tx2 transmits the second data stream.
  • the precoding matrix can be:
  • Tx1 and Tx2 in antenna group 1 are sent incoherently, where Tx1 sends the first data stream, Tx2 sends the second data stream, and Tx3 sends the first data stream .
  • the first data stream is sent by Tx1 and Tx3, and the total power of the first data stream is relatively large, which is beneficial to allocate more power to the first data stream based on the principle of water injection when the SNR of the first data stream is relatively high. The first data stream.
  • Tx3 can also send a second data stream, that is, the precoding matrix is:
  • Tx3 sends the second data stream, which is beneficial to try to make the transmission between the antennas in the antenna group sending multiple data streams.
  • the power is more balanced, which is beneficial to simplify the design of the receiver.
  • the antenna group for transmitting multiple data streams includes one antenna.
  • the precoding matrix of this method can satisfy the following characteristics:
  • mapping relationship between each row of the precoding matrix and Tx shown in the formula (13) and the antenna grouping information of 3T are the same as the mapping relationship and antenna grouping information shown in FIG. 3 , and will not be described in detail here. It can be seen that in the precoding matrix shown in formula (13), the antenna group 1 where Tx1 and Tx2 are located only transmits the first data stream, and the antenna group 2 where Tx3 is located transmits the first data stream and the second data stream.
  • the precoding matrix can be:
  • the precoding matrix shown in the formula (14) enables Tx1 and Tx2 to jointly transmit the first data stream and in the same phase; Tx3 transmits the first data stream and the second data stream.
  • ⁇ , ⁇ is used as a power factor between different antenna groups, and is used to adjust the power ratio between different antenna groups.
  • the precoding matrix can be:
  • the precoding matrix can be:
  • the precoding matrix can be:
  • the power capabilities of the antennas are equal, and the power capabilities of the antenna groups are different.
  • the precoding matrix can be:
  • the powers of Tx1 to Tx3 are all But the total power of the first antenna group is 2/3, and the total power of the second antenna group is 1/3, that is, the power capability between the first antenna group and the second antenna group is different.
  • the phase factor between the antennas when the first data stream is transmitted in the first antenna group is x
  • the phase factor between the antennas when the second data stream is transmitted is -x.
  • Embodiment 2.3 for the case where the terminal device has N antennas and M antenna groups, the characteristics that the precoding matrix W 3 of rank 3 needs to satisfy.
  • the precoding matrix W 3 is similar to the above-mentioned precoding matrix W 1 , in which the related implementations of parameters 1 to 4 may refer to the related descriptions in the above-mentioned implementation 2.1, which will not be described in detail here.
  • This embodiment mainly describes how N antennas map 3 data streams.
  • [z (0) (i) ... z (P-1) (i)] T is the precoded data, corresponding to multiple Tx of the terminal device;
  • [y (0) (i) ... y (v-1) (i)] T is a plurality of data streams to be precoded.
  • the precoding matrix may include, but is not limited to, the following mapping modes:
  • the precoding matrix is used for some antenna groups to send one data stream respectively, and another part of the antenna groups to send multiple data streams respectively.
  • Mode 2.3.1.1 an antenna group for transmitting multiple data streams, and coherent transmission among multiple antennas.
  • the M antenna groups include the first antenna group and the second antenna group, the first antenna group consists of two antennas, and the second antenna group consists of one antenna;
  • precoding matrix is the precoding matrix for the data stream selected for transmission by the second antenna group; the precoding matrix satisfies the following characteristics:
  • each row of the precoding matrix and Tx shown in the formula (18) and the antenna grouping information of 3T are the same as the mapping relationship and antenna grouping information shown in FIG. 3 , and will not be described in detail here.
  • the correspondence between each column of the precoding matrix and the three data streams may be: the first column corresponds to the first data stream, the second column corresponds to the second data stream, and the third column corresponds to the third data stream.
  • the precoding matrix shown in formula (18) can enable antenna group 1 to send two data streams, and antenna group 2 to send another data stream.
  • antenna group 1 sends two data streams it is possible to design ⁇ ⁇ , ⁇ are used as power distribution factors among the streams to adjust the power ratio among the streams.
  • the precoding matrix can be:
  • the precoding matrix can be:
  • Mode 2.3.1.2 an antenna group for transmitting multiple data streams, and incoherent transmission among multiple antennas.
  • the M antenna groups include the first antenna group and the second antenna group, the first antenna group consists of two antennas, and the second antenna group consists of one antenna, the precoding
  • the matrix satisfies the following characteristics:
  • the precoding matrix shown in formula (21) can enable antenna group 1 to send two data streams, and antenna group 2 to send one data stream, wherein the two data streams sent by antenna group 1 are incoherent transmission, such as Tx1
  • Tx2 transmits the second data stream
  • Antenna Group 2 transmits the third data stream.
  • the precoding matrix can be:
  • the precoding matrix shown in formula (22) can make the power evenly distributed among the antenna groups, and the power between the first data stream and the second data stream transmitted by the antenna group 1 is also evenly distributed.
  • Embodiment 2.4 is an example of a precoding matrix with 4Tx and 5Tx for the terminal device.
  • one antenna group includes 3 antennas
  • the other antenna group includes a precoding matrix of one antenna
  • the principle is similar to that of Embodiment 2.1. with two antenna groups equal to
  • the power is evenly distributed among the antennas in the antenna group, and the phase factor in the antenna group is ⁇ x 1 , x 2 ⁇ (that is, it is assumed that the phase of the first antenna is used as the reference, and the second antenna is adjusted relative to the first antenna.
  • the phase factor is x 1
  • the phase factor adjusted by the third antenna relative to the first antenna is x 2
  • the precoding matrix can be:
  • 5Tx can be divided into two antenna groups of 3Tx+2Tx, or three antenna groups of 2Tx+2Tx+1Tx, etc.
  • 3 antenna groups the maximum power factor is equal to That is, the maximum power is evenly distributed among the antenna groups; and, taking the uniform power distribution among the antennas in the antenna group as an example, the precoding matrix can be:
  • x 11 and x 21 are the phase adjustment factors between antennas in different antenna groups respectively.
  • the number of rows of the precoding matrix corresponds to Tx1 to Tx5 one-to-one from top to bottom, which are antenna group 1, antenna Group 2, antenna group 3, then x 11 represents the phase factor adjusted by Tx2 in antenna group 1 relative to Tx1, and x 21 represents the phase factor adjusted by Tx4 in antenna group 2 relative to Tx3.
  • the relationship between the multiple antenna groups can be embodied as: the multiple antenna groups are all incoherent relationships (ie, no phase and/or amplitude calibration); In the antenna group, some antenna groups are in a non-coherent relationship, and another part is in a coherent relationship; or, multiple antenna groups are in a coherent relationship.
  • the precoding matrix of the 5Tx packet can be written in the following form:
  • the values of p 1 , p 2 , and p 3 can be values smaller than the coherent calibration accuracy between the antenna groups.
  • the terminal equipment can ensure that The phase calibration accuracy between the two groups of antennas is 45 degrees, then p 1 , p 2 , and p 3 can be used to indicate the phase change between the antenna groups that is less than 45 degrees; conversely, for those groups without coherence, the p 1
  • the values of , p 2 , and p 3 may be values greater than the coherent calibration accuracy, or 1 (that is, the phase and/or amplitude relationship between the incoherent antenna groups is not adjusted). It should be noted that p 1 , p 2 , p 3 may represent factors of phase or magnitude.
  • the following describes the method of determining the precoding matrix described in Embodiment 1 above with reference to the features of the precoding matrix described in Embodiment 2 above.
  • the predefined codebooks in the terminal device and the network device may be a whole matrix, for example, the relevant parameters in formula (2) are known; the network device
  • the sent precoding matrix indication information is used to indicate an index of one of the precoding matrices, so that the terminal device can determine the precoding matrix based on the index.
  • the network device may use the precoding matrix indication information to indicate the foregoing parameters 1 to 4 for a precoding matrix with a rank of 1.
  • the network device may use different information to indicate parameter 1 to parameter 4 respectively.
  • the network device may indicate the total power normalization factor described in parameter 1, the power factor between antenna groups described in parameter 2, and the power factor between antennas described in parameter 3 through high-layer signaling; and, the network The device may indicate the phase factor between the antennas described in parameter 4 through physical layer signaling.
  • the high layer signaling may be RRC signaling, MAC-CE signaling, etc., and the physical layer signaling may be DCI and the like.
  • the terminal device can report one or more of the above-mentioned parameters 1 to 5 supported by the network device itself through the capability, and the network device can use two way to determine the precoding matrix indication information.
  • the precoding matrix indication information corresponds to the precoding matrix corresponding to the parameter supported by the terminal device.
  • the network device can use the precoding matrix indication information to indicate only one of the precoding matrices supported by the terminal device, so that the number of bits required for the precoding matrix indication information is relatively small, and the overhead is relatively low.
  • the number of supported precoding matrices may be different. Therefore, the number of bits of the precoding matrix indication information sent by the network device may be different, and the corresponding relationship between the value of the precoding matrix indication information and the precoding matrix is variable. , such as changes with the capabilities of the terminal equipment.
  • the predefined codebooks in the terminal device and the network device include Q codewords, wherein the precoding matrix supported by the terminal device 1 is Q1 codewords corresponding to the first normalization factor, and Q1 ⁇ Q, then, The number of bits required for the precoding matrix indication information only needs to be able to indicate any one of the Q1 codewords; the precoding matrix supported by the terminal device 2 is the Q2 codewords corresponding to the second normalization factor, Q2 ⁇ Q, then, the number of bits required for the precoding matrix indication information only needs to be able to indicate any one of the Q2 codewords. Therefore, the number of bits of the precoding matrix indication information sent by the network device to the terminal device 1 is the same as The number of bits of the precoding matrix indication information sent to the terminal device 2 may be different.
  • the network device indicates at least one of the above-mentioned parameters 1 to 5 through high-layer signaling, and indicates the index of the precoding matrix through the precoding matrix indication information; furthermore, the terminal device According to the index of the precoding matrix, the corresponding precoding matrix is determined, wherein at least one variable in the above parameters 1 to 5 exists in the precoding matrix; the terminal device can determine the final precoding according to the parameters indicated by the high-level signaling matrix.
  • each precoding matrix satisfies the characteristics shown in Figure 3 above, the maximum power between antenna group 1 and antenna group 2 is equal, and the maximum power between Tx1 and Tx2 in antenna group 1 is also equal ; and, the value of A is set 1, the value of x is set 2, and the value of p is set 3.
  • the attribute used to measure the size of the set is called the potential of the set, the potential of set 1 is denoted as L A , the potential of set 2 is denoted as L x , and the potential of set 3 is denoted as L p .
  • L A is equal to 1, that is, each precoding matrix in the predefined codebook has a normalization factor predefined by the protocol; L x is equal to 4, set 2 includes 4 values predefined by the protocol, and set 2 is ⁇ 1 , -1, j, -j ⁇ ; Lp is determined according to the reporting capability of the terminal device.
  • the precoding matrix indication information described in this way 3.1 corresponds to the precoding matrix corresponding to the parameters supported by the terminal device.
  • the precoding matrix indication information and the parameters supported by the terminal device 1 may be shown in Table 2.
  • the corresponding relationship between the precoding matrix indication information and the precoding matrix corresponding to the parameter supported by the terminal device 2 ie, the inter-group power p
  • [] T represents the transpose of the matrix.
  • Table 2 The correspondence between the precoding matrix indication information and the precoding matrix corresponding to the parameters supported by the terminal device 1
  • Table 3 The correspondence between the precoding matrix indication information and the precoding matrix corresponding to the parameters supported by the terminal device 2
  • the number of precoding matrices supported by terminal equipment 1 and terminal equipment 2 is different.
  • the former is 4 and the latter is 8. Therefore, the precoding matrix sent by the network equipment indicates The number of bits of information is different, for example, the former is 2 bits, and the latter is 3 bits.
  • ⁇ p1, p2 ⁇ can be designed as or designed as Alternatively, the set 3 that the terminal device supports p is ⁇ p1, p2, p3 ⁇ , and the ⁇ p1, p2, p3 ⁇ can be designed as This design is designed in combination with the fine-tuned power between the antenna groups described in parameter 2 above, which can be 0, 6dB, -6dB, etc.
  • the precoding matrices corresponding to each value of x in the set 2 are sequentially arranged.
  • the values of x correspond to the precoding matrices respectively, that is, the values of p are the same, the values of x are adjacent in set 2, and the values of the precoding matrix indication information of the corresponding precoding matrix are also adjacent.
  • the values of x in Table 2 are 1, -1, j, and -j, respectively, and the values of the precoding matrix indication information corresponding to the precoding matrices are V 1 , V 2 , V 3 , V 4 ;
  • Table 3 In the same value p1 of p, the values of x are 1, -1, j, and -j, respectively, and the values of the precoding matrix indication information corresponding to the precoding matrices are V' 1 , V' 2 , V' 3.
  • V′ 4 the same value p2 of p in Table 3, the value of x is 1, -1, j, and the value of the precoding matrix indication information corresponding to the precoding matrices of -j in turn is V' 5 , V' 6 , V' 7 , V' 8 .
  • the precoding matrices corresponding to each value of p in the set 3 may also be sequentially arranged for the same x value. That is, Table 3 can be replaced with: the same value of x is 1, the value of p is the precoding matrices of p1 and p2, and the values of the precoding matrix indication information corresponding to the precoding matrices are V′ 1 and V′ 2 ; The same value of -1, the value of p is the precoding matrix of p1 and p2, and the values of the precoding matrix indication information corresponding to the precoding matrix are V' 3 and V' 4 in sequence; the same value of x is j, the value of p is The values of the precoding matrices corresponding to p1 and p2 in sequence are V′ 5 and V′ 6 in sequence; the value of the same value of x is -j, and the value of p is the precoding matrix of p1 and p2 in sequence.
  • the correspondence between the precoding matrix indication information and the precoding matrix may be nested, that is, partially the same.
  • the precoding matrix indication information corresponds to the precoding matrix corresponding to all parameters, that is, not only the precoding matrix corresponding to the parameters supported by the terminal device.
  • the network device may use the precoding indication information to indicate one of the precoding matrices supported by all terminal devices.
  • the predefined codebooks in the terminal equipment and network equipment include Q codewords, and the number of bits required for the precoding matrix indication information must be able to indicate any one of the Q codewords.
  • the precoding matrix The number of bits of the indication information is the same. In this way, for different terminal devices, the corresponding relationship between the value of the precoding indication information and the precoding matrix is the same (for example, the interpretation of the DCI is the same), thereby simplifying the implementation logic.
  • the precoding matrix indication information sent by the network device may correspond to terminal devices with different capabilities. However, for a specific terminal device, the precoding matrix indication information sent by the network device only indicates the precoding matrix supported by the terminal device. For example, for the corresponding relationship shown in Table 3, for terminal device 1, the network device can only select a value from V' 1 to V' 4 ; for terminal device 2, the network device can select a value from V' 1 Choose a value from V'8 . That is to say, for the terminal device 1, it does not expect to receive one of the values of V'5 to V'8 ; if it is received, the terminal device may consider that the DCI where the precoding matrix indication information is located is invalid, and does not Signal upstream or otherwise process.
  • the number of rows of the precoding matrix is the number of antennas possessed by the terminal device
  • the number of columns of the precoding matrix is the number of data streams transmitted by the terminal device.
  • the above-mentioned parameters 1 to 5 related to the precoding matrix or the precoding matrix are related to the antenna grouping. Therefore, the related content of the antenna grouping information is described in Section 4.
  • the M antenna groups corresponding to the N antennas possessed by the terminal equipment are described.
  • the M antenna groups corresponding to the N antennas may be indicated by the network device.
  • the manners in which the network device indicates the antenna grouping information of the M antenna groups may include but are not limited to the following two.
  • the network device is indicated by the precoding matrix.
  • the precoding matrix can reflect the power distribution factor between antenna groups, the power distribution factor and phase factor between antennas in each antenna group including multiple antennas, so for the network device side, the above-mentioned Embodiment 1 or Embodiment 3 informs the terminal device that there are M antenna groups corresponding to N antennas; for the terminal device side, the M antenna groups corresponding to N antennas can be obtained through the precoding matrix determined in Embodiment 1 or Embodiment 3 above.
  • M antenna groups with different antenna combinations in the predefined codebook correspond to different precoding matrices
  • the network device indicates the M antenna groups with different antenna combinations by indicating different precoding matrices.
  • the terminal equipment maps its own antennas to the rows designed by the precoding matrix, and performs corresponding transmission.
  • the precoding matrix W1 of the M antenna groups corresponding to the N antennas described above is divided into 1 to M antenna groups in order in the order of the index of the antenna possessed by the terminal device, and the precoding matrix has The size of the index of the row is in order, and it is divided into 1 to M row groups in turn. In this way, each row group is sequentially used for coherent transmission or non-coherent transmission of the corresponding antenna group.
  • the first M1 rows of the precoding matrix are used for the coherent transmission of the M1 antennas of the first antenna group
  • the subsequent M2 rows of the precoding matrix are used for the coherent transmission of the M2 antennas of the second antenna group
  • the last Mm rows of the precoding matrix are used for coherent transmission of the Mm antennas of the Mth antenna group.
  • the M antenna groups corresponding to the N antennas are indicated by the network device through signaling. That is, the manner in which the network device indicates the antenna grouping information is separate from the manner in which the precoding matrix is determined in any of the foregoing Embodiments 1 to 3.
  • the M antenna groups corresponding to the N antennas are reported by the terminal device.
  • the reporting of the antenna grouping information of the M antenna groups by the terminal device may include, but is not limited to, the following manners.
  • the terminal device explicitly reports the antenna grouping information through signaling. For example, assuming that the terminal device has 3 antennas, namely Antenna 1, Antenna 2, and Antenna 3, the antenna grouping information that the terminal device can report is: ⁇ Antenna 1, Antenna 2 ⁇ Antenna 3 ⁇ , ⁇ Antenna 1, Antenna 3 ⁇ Two antenna groups of any one of ⁇ Antenna 2 ⁇ , ⁇ Antenna 2, Antenna 3 ⁇ ⁇ Antenna 1 ⁇ .
  • the terminal equipment reports the antenna grouping information in an implicit manner. For example, the terminal device can report the precoding matrix it supports, and then the network device learns the antenna grouping information based on the supported precoding matrix reported by the terminal device.
  • the terminal device informs the network device of the antenna grouping information it supports by reporting the power difference between the antennas. For example, assuming that the terminal device has 3 antennas, namely Antenna 1, Antenna 2, and Antenna 3, the power difference information that the terminal device can report is: 1:1:2, then the network device can learn Antenna 1 and Antenna 2 is equal power coherent transmission, belonging to one antenna group, and antenna 3 belongs to another antenna group.
  • the M antenna groups corresponding to the N antennas are predefined.
  • M antenna groups based on the N antennas can be stored in the terminal device and the network device in advance, so that the M antenna groups can be directly targeted at the data transmission stage. Determine the precoding matrix.
  • the precoding matrix determined by the precoding matrix indication information is designed considering the M antenna groups corresponding to the N antennas, which is conducive to calling multiple antennas of the terminal device for uplink transmission and greatly improves the system capacity.
  • the network device can use the precoding matrix of some antenna-related transmissions, so that the two antennas with similar or the same antenna capabilities can be coherent for one frequency band, such as carrier 1.
  • the remaining 1 antenna is directed to another frequency band, such as carrier 2, for separate transmission.
  • the two frequency bands (or carriers) may not share an antenna or a radio frequency module. Thereby, it is beneficial to increase the system bandwidth.
  • the terminal device is configured with 3 antennas and supports non-independent networking (Non stand alone, NSA) mode, that is, the terminal device supports working under multiple communication standards at the same time, such as LTE and NR.
  • non-independent networking Non stand alone, NSA
  • one of the antennas can be used for the LTE standard, and the remaining two antennas can be used for the NR standard, so that the functions in the NR standard are more advanced than LTE.
  • the terminal equipment switches from the above two scenarios to only one frequency band.
  • the operator in the place where the terminal equipment roams has only one uplink spectrum, or with the development of the communication system, the frequency band of LTE is gradually reduced. If the terminal equipment still uses If one antenna or two antennas are used for uplink transmission, the remaining antennas will be wasted. Therefore, considering the direction of technological evolution, the embodiments of the present application mainly relate to the solution of how to make full use of hardware and power resources to improve the uplink transmission rate or reliability in the case of N antennas composed of N1 and N2 antennas .
  • the network device determines the precoding matrix indicated by the precoding matrix indication information, it can consider the difference in the engineering design standards of each of the N antennas. For example, a better calibration accuracy (relative phase, relative phase, Relative power calibration), therefore, coherent transmission can be used, the other Tx3 is separate, and only a rough calibration level can be achieved between Tx3 and Tx1 and Tx2.
  • Tx1 and Tx2 themselves are low-power antennas with relatively low success. For example, the maximum transmit power can only reach 20dBm, while Tx1 and Tx2 can achieve a maximum power of 23dBm when jointly transmitting, while Tx3 itself can reach a maximum power of 23dBm. It can be seen that , the three antennas have different maximum transmit power capabilities.
  • the present application also provides an uplink transmission method 200.
  • the beam indication information may indicate a beam group, and the phase difference between adjacent beams in the beam group is smaller than the phase resolution between N antennas of the terminal device,
  • each beam in the beam group is suitable for different resource units of uplink transmission, so the designed codebook is robust and can achieve compromised performance results in complex channel environments.
  • FIG. 5 is a schematic flowchart of an uplink transmission method 200 provided by an embodiment of the present application.
  • the uplink transmission method 200 may include but not limited to the following steps:
  • the network device determines beam indication information
  • the beam indication information is used to indicate a beam group, and the phase difference between adjacent beams in the beam group is smaller than the phase resolution between N antennas of the terminal device, where N is an integer greater than or equal to 3; Beams apply to different resource units.
  • the network device before the network device determines the beam indication information, it also receives capability report information from the terminal device, where the capability report information is used to indicate the number N of antennas for the terminal device to perform uplink transmission.
  • the terminal device may send the capability report information.
  • the network device sends the beam indication information
  • the terminal device receives the beam indication information
  • the terminal device determines a precoding matrix according to the beam group indicated by the beam indication information.
  • the precoding matrix determined by the uplink transmission method can make the phase difference between the beams formed by the data streams transmitted by the N antennas on different resource units smaller than the phase resolution between the N antennas of the terminal device, so that there is It is beneficial to avoid the performance problem caused by the drift of the relative phase between the antennas, that is, the precoding matrix designed in the embodiment of the present application is robust, and can achieve a compromised performance effect in a complex channel environment.
  • the network device measures the uplink channel state information to determine the most matching precoding
  • the beam group indicated by the beam indication information may be one of multiple beam groups formed after the basis vector is oversampled.
  • the basis vector may be a discrete Fourier transform (Discrete Fourier Transform, DFT) basis vector, a discrete cosine transform (discrete cosine transform, DCT) vector, a channel eigenvector, an eigenvector of a channel correlation matrix, and the like.
  • FIG. 7 is a schematic diagram of an optional beam with three antennas and basis vectors provided by an embodiment of the present application.
  • three antennas there are three optional DFT basis vectors, and the phase difference between adjacent beams is 120 degrees.
  • the optional beam shown in Figure 6 can be obtained.
  • the phase difference between any two adjacent beams in the beam shown in Figure 6 is 60 degrees, If the phase resolution of the antenna is 80 degrees, the phase difference shown in FIG. 6 may be smaller than the phase resolution of the antenna, thereby helping to compensate for the above-mentioned phase drift.
  • the number of beams in the beam group is greater than or equal to the ratio between the beam coverage and the beam resolution; the beam coverage is related to the phase resolution, and the beam resolution is equal to 2 ⁇ /NO, where O represents the basis vector
  • the oversampling factor of , N represents the number of antennas the terminal device has.
  • the beam coverage is related to the phase calibration accuracy of the antenna, for example, the beam coverage can be equal to the phase calibration accuracy.
  • the number of beams in the beam group is greater than or equal to the ratio between the beam coverage and the beam resolution, which can be expressed as the following formula:
  • K represents the number of beams in the beam group
  • the phase calibration accuracy is plus or minus n degrees
  • the phase resolution is 2n degrees
  • the beam coverage is 2n degrees.
  • the beam indication information indicates a beam group, which may be: the beam indication information indicates the index of each beam in the beam group; or, the beam indication information indicates the index of the beam group.
  • any two adjacent beams in Figure 6 are a beam group.
  • the beam indication information may respectively indicate the index of the beam in the beam group, or the index of the beam group.
  • the beam group includes one or more beams, and different beam groups may not include the same beam, or include part of the same beam. For example, some beams of two adjacent beam groups may overlap.
  • each beam in the beam group and the resource unit may be predefined, or may be indicated by signaling such as RRC and DCI.
  • signaling such as RRC and DCI.
  • the S resource units can be divided into S/K resource unit groups, and each resource unit group includes K resource units.
  • the following correspondences between the S resource units and the above K beams may include, but are not limited to, the following two optional manners.
  • the K resource units are in one-to-one correspondence with the K beams in the beam group in sequence, and each resource unit applies a corresponding beam.
  • S is equal to 4
  • K is equal to 2
  • one resource unit is one subband
  • the four subbands can be SB1, SB2, SB3, and SB4 respectively.
  • S/K resource element groups alternately apply each beam in the beam group, that is, apply one beam in the beam group for every K resource element.
  • S is equal to 4
  • K is equal to 2
  • one resource unit is one subband
  • the four subbands can be SB1, SB2, SB3, and SB4 respectively.
  • the resource unit group may not be divided, but each beam in the beam group may be applied in turn every K resource units.
  • the S resource units can be divided into resource unit groups, where Each resource unit group includes K resource units, and the remaining one resource unit group includes S1 resource units, and S1 ⁇ S.
  • the following correspondences between the K resource units and the above K beams may include, but are not limited to, the following two optional manners.
  • Mode 3 for which resource unit groups, and the K resource units in each resource unit group correspond one-to-one with the K beams in the beam group in turn. Similar to Mode 1 in the above embodiment, each resource unit applies the corresponding beam; for the remaining A resource unit group including S1 resource units, the S1 resource units may sequentially use S1 beams among the K beams in the beam group, and optionally, the S1 beams selected from the K beams may be predefined by a protocol. For example, assuming that S is equal to 5, K is equal to 2, and one resource unit is one subband, the four subbands can be SB1, SB2, SB3, SB4, and SB5 respectively.
  • Each resource unit group alternately applies each beam in the beam group, that is, where There are resource unit groups, and one beam in the beam group is applied to every K resource unit, which is similar to Mode 2 in the above-mentioned embodiment; the remaining resource element groups including S1 resource units apply one beam in the beam group. For example, assuming that S is equal to 5, K is equal to 2, and one resource unit is one subband, the five subbands can be SB1, SB2, SB3, SB4, and SB5 respectively.
  • the resource unit group may not be divided, but the Each of the K resource units is used to apply each beam in the beam group in turn; the remaining S1 resource units apply one beam in the beam group.
  • Step S204 the terminal device determines the precoding matrix according to the beam group, including: the terminal device determines the beam group of each data stream according to the beam group indicated by the beam indication information; the terminal device determines the beam group of each data stream according to the beam group of each data stream. , determine the precoding matrix.
  • FIG. 13 is a schematic diagram of beam selection for two data streams provided by an embodiment of the present application.
  • the beam group after base vector oversampling shown in Figure 13 is shown in Figure 8.
  • the terminal device can determine two beam groups according to the beam indication information.
  • the orthogonal beam group refers to a plurality of beams on the same resource unit that are determined to be orthogonal to each other based on the correspondence between the resource units and the beams described in the above manners 1 to 4.
  • different data streams use the same method when determining the correspondence between the beam and the resource unit, for example, it can be any one of the above-mentioned methods 1 to 4, which is beneficial to ensure the same resource unit Orthogonal between multiple beams applied on.
  • the beam indication information may indicate multiple orthogonal beam groups, such as an index of each beam group; or, the beam indication information may indicate multiple orthogonal beam groups
  • the index of each beam in the beam group, such as the index of the beam in each beam group; or, the beam indication information can indicate an identifier, and the terminal device can determine the corresponding multiple from the predefined multiple orthogonal beam groups according to the identifier. beam group.
  • the terminal device determining the precoding matrix according to the beam group of each data stream includes: the terminal device determining the precoding matrix on each resource unit according to the beam group of each data stream.
  • the precoding matrix for transmitting 1 data stream in the beam m corresponding to the resource unit s can satisfy the following characteristics:
  • A is the normalization factor of the precoding matrix. Furthermore, the terminal device may determine the precoding matrix of each resource unit on the S resource units based on the value of m in the beam group.
  • the precoding matrix of applying beam m to transmit the first data stream on resource unit s and applying beam n to transmit the second data stream can satisfy the following characteristics:
  • the first column in the precoding matrix may correspond to the transmission of the first data stream
  • the second column may correspond to the transmission of the second data stream.
  • n may be equal to (m+0).
  • the rank is 3, that is, on the resource unit s, the beam m is used to transmit the first data stream, the beam n is used to transmit the second data stream, and the beam q is used to transmit the precoding matrix of the third data stream.
  • the first column in the precoding matrix can correspond to the transmission of the first data stream
  • the second column can correspond to the transmission of the second data stream
  • the third column can correspond to the transmission of the third data stream.
  • the n may be equal to (m+O) and q may be equal to (m+2O).
  • the precoding matrix designed in the embodiment of the present application has robustness, can achieve a compromised performance result in a complex channel environment, and is not biased towards the design of a special channel environment.
  • FIG. 14 is a schematic block diagram of a communication apparatus 1400 provided by an embodiment of the present application.
  • the communication apparatus 1400 corresponds to the terminal equipment or the network equipment in the above-mentioned uplink transmission method.
  • the communication apparatus 1400 may include, but is not limited to, a communication unit 1401 and a processing unit 1402 .
  • the communication apparatus 1400 may perform the relevant operations of the above-mentioned terminal equipment, and the communication apparatus may include:
  • a communication unit 1401, configured to receive precoding matrix indication information
  • a processing unit 1402 configured to determine a precoding matrix according to the precoding matrix indication information
  • the precoding matrix is a precoding matrix for M antenna groups; the M antenna groups are antenna groups corresponding to N antennas of the terminal device; N is an integer greater than or equal to 3, and M is an integer greater than or equal to 2.
  • the communication apparatus 1400 is beneficial to determine precoding matrices for antenna groups with different antenna capabilities, thereby helping to improve the performance of uplink transmission.
  • the communication apparatus 1400 may perform the above-mentioned related operations of the network equipment, and the communication apparatus may include:
  • a processing unit 1402 configured to determine precoding matrix indication information
  • the precoding matrix indication information is used to indicate the precoding matrix, and the precoding matrix is the precoding matrix for M antenna groups; the M antenna groups are the antenna groups corresponding to the N antennas of the terminal device; N is greater than or equal to 3 , and M is an integer greater than or equal to 2.
  • the communication apparatus 1400 may perform the above-mentioned related operations of the terminal equipment, and the communication apparatus may include:
  • a communication unit 1401, configured to receive beam indication information
  • the beam indication information is used to indicate the beam group; the phase difference between adjacent beams in the beam group is smaller than the phase resolution between N antennas of the terminal device, N is an integer greater than or equal to 3; each beam in the beam group Applicable to different resource units;
  • the processing unit 1402 is configured to determine a precoding matrix according to the beam group.
  • the communication apparatus 1400 may perform the above-mentioned related operations of the network equipment, and the communication apparatus may include:
  • a processing unit 1402 configured to determine beam indication information
  • the beam indication information is used to indicate the beam group; the phase difference between adjacent beams in the beam group is smaller than the phase resolution between N antennas of the terminal device, N is an integer greater than or equal to 3; each beam in the beam group Applicable to different resource units;
  • the communication unit 1401 is used for sending beam indication information.
  • FIG. 15 is a schematic structural diagram of a communication apparatus provided by an embodiment of the present application.
  • the communication apparatus 1500 may be a network device, a terminal device, a chip, a chip system, or a processor that supports the network device to implement the above method, or a chip or a chip system that supports the terminal device to implement the above method. , or processor, etc.
  • the apparatus can be used to implement the methods described in the foregoing method embodiments, and for details, reference may be made to the descriptions in the foregoing method embodiments.
  • the communication apparatus may include one or more processors 1501 .
  • the processor 1501 may be a general-purpose processor or a special-purpose processor, or the like.
  • it may be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processing unit can be used to control communication devices (such as base stations, baseband chips, terminals, terminal chips, DU or CU, etc.), execute software programs, process software program data.
  • the communication apparatus 1500 may include one or more memories 1502, and instructions 1504 may be stored thereon, and the instructions may be executed on the processor 1501, so that the communication apparatus 1500 executes the above method methods described in the examples.
  • the memory 1502 may also store data.
  • the processor 1501 and the memory 1502 can be provided separately or integrated together.
  • the communication apparatus 1500 may further include a transceiver 1505 and an antenna 1506 .
  • the transceiver 1505 may be referred to as a transceiver unit, a transceiver, or a transceiver circuit, etc., for implementing a transceiver function.
  • the transceiver 1505 may include a receiver and a transmitter, the receiver may be called a receiver or a receiving circuit, etc., for implementing a receiving function; the transmitter may be called a transmitter or a transmitting circuit, etc., for implementing a transmitting function.
  • the communication device 1500 is a network device, or a device, circuit, etc. in the network device:
  • the processor 1501 is configured to perform the relevant operations of S101 in the uplink transmission method 100; or perform the relevant operations of S201 in the above-mentioned transmission method 200;
  • the transceiver 1505 is configured to perform related operations of S102 in the uplink transmission method 100 ; and perform S202 in the uplink transmission method 200 .
  • the communication device 1500 is a terminal device, or a device, circuit, etc. in the terminal device:
  • the processor 1501 is configured to perform the relevant operations of S104 in the uplink transmission method 100; or perform the relevant operations of S204 in the above-mentioned transmission method 200;
  • the transceiver 1505 is configured to perform the relevant operations of S103 in the uplink transmission method 100 ; and perform the relevant operations of S203 in the uplink transmission method 200 .
  • the communication apparatus 1500 may also perform related operations in the foregoing method embodiments, which will not be described in detail here.
  • the processor 1501 may include a transceiver for implementing the functions of receiving and transmitting.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • Transceiver circuits, interfaces or interface circuits used to implement receiving and transmitting functions may be separate or integrated.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transmission.
  • the processor 1501 may store an instruction 1503, and the instruction 1503 runs on the processor 1501, so that the communication apparatus 1500 can execute the method described in the foregoing method embodiment.
  • the instructions 1503 may be hardened in the processor 1501, in which case the processor 1501 may be implemented by hardware.
  • the communication apparatus 1500 may include a circuit, and the circuit may implement the functions of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in the embodiments of the present application can be implemented in integrated circuits (ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed-signal ICs, application specific integrated circuits (ASICs), printed circuits board (printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (Bipolar Junction Transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a network device or a terminal device, but the scope of the communication device described in the embodiments of the present application is not limited thereto, and the structure of the communication device may not be limited by FIG. 15 .
  • the communication apparatus may be a stand-alone device or may be part of a larger device.
  • the communication means may be:
  • a set with one or more ICs may also include a storage component for storing data and instructions;
  • ASIC such as modem (MSM)
  • the communication device may be a chip or a chip system
  • the chip 1600 shown in FIG. 16 includes a processor 1601 and an interface 1602 .
  • the number of processors 1601 may be one or more, and the number of interfaces 1602 may be multiple.
  • the processor 1601 is configured to perform the relevant operations of S101 in the uplink transmission method 100; or perform the relevant operations of S201 in the above-mentioned transmission method 200;
  • the interface 1602 is used to perform the related operations of S102 in the uplink transmission method 100 ; and perform S202 in the uplink transmission method 200 .
  • the processor 1601 is configured to perform the relevant operations of S104 in the uplink transmission method 100; or perform the relevant operations of S204 in the above-mentioned transmission method 200;
  • the interface 1602 is used to perform the relevant operations of S103 in the uplink transmission method 100 ; and to perform the relevant operations of S203 in the uplink transmission method 200 .
  • the chip further includes a memory 1603, and the memory 1603 is used to store necessary program instructions and data of the terminal device or the network device.
  • the chip may also perform related operations in the foregoing method embodiments, which will not be described in detail here.
  • the present application also provides a computer-readable medium on which a computer program is stored, and when the computer program is executed by a computer, implements the functions of any of the foregoing method embodiments.
  • the present application also provides a computer program product, which implements the functions of any of the above method embodiments when the computer program product is executed by a computer.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line, DSL) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes an integration of one or more available media.
  • the available media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, high-density digital video discs (DVDs)), or semiconductor media (eg, solid state disks, SSD)) etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本申请提供一种上行传输方法及装置,该方法中,终端设备可接收预编码矩阵指示信息,根据该预编码矩阵指示信息确定预编码矩阵。其中,该预编码矩阵是针对M个天线组的预编码矩阵,该M个天线组是终端设备的N个天线对应的天线组,N为大于或等于3的整数,M为大于或等于2的整数。可见,该上行传输方法有利于针对不同天线能力的天线组确定预编码矩阵,从而有利于改善上行传输的性能。

Description

上行传输方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种上行传输方法及装置。
背景技术
在无线网络中,大规模多输入多输出(massive multiple input multiple output,Massive MIMO)技术能够利用更多的空间自由度来提高系统容量,是新一代无线接入技术(New Radio Access Technology,NR)中的关键技术之一。NR系统中除了无线基站设备可以配置大规模天线外,用户设备(User Equipment,UE)也会配置多天线。在NR系统中,UE上配置的天线可能分布在一块或者多块天线面板上,这样使得UE更适合多流传输的场景,从而提高上行传输的性能。
UE配置多天线后,通常需要利用预编码矩阵对需要发送的数据进行预处理,以获取波束成型增益,减少同一UE的不同数据流之间的干扰,或者以获取分集增益,提高传输可靠性,从而提高系统性能。然而,目前均是针对UE配置有1、2、4等天线个数所设计的预编码矩阵,而针对UE配置有3个天线的情况,还没有设计相应的预编码矩阵。特别是针对终端设备具有的各天线之间天线能力不均衡的情况,如何设计预编码矩阵以改善上行传输的容量成为一个亟待解决的问题。
发明内容
本申请实施例提供了一种上行传输方法及装置,所提供的预编码矩阵可适用具有3个天线等天线能力不均衡的终端设备的情况。
第一方面,本申请提供一种上行传输方法,该方法中,终端设备可接收预编码矩阵指示信息,根据该预编码矩阵指示信息确定预编码矩阵。其中,该预编码矩阵是针对M个天线组的预编码矩阵,该M个天线组是终端设备的N个天线对应的天线组,N为大于或等于3的整数,M为大于或等于2的整数。可见,该上行传输方法有利于针对不同天线能力的天线组确定预编码矩阵,从而有利于改善上行传输的性能。
第二方面,本申请提供一种上行传输方法,该方法与第一方面所述的上行传输方法相对应,是从网络设备的角度进行阐述的。该方法中,网络设备确定预编码矩阵指示信息,并发送该预编码矩阵指示信息,该预编码矩阵指示信息用于确定预编码矩阵,该预编码矩阵是针对M个天线组的预编码矩阵,M个天线组是终端设备的N个天线对应的天线组,N为大于或等于3的整数,M为大于或等于2的整数。可见,网络设备发送的预编码矩阵指示信息所指示的预编码矩阵是针对多个天线组的预编码矩阵,考虑到了终端设备具有的不同天线能力的天线来确定预编码矩阵,从而有利于改善上行传输的性能。
为避免冗余,以下对适用于上述第一方面和第二方面的相关实施方式进行一并阐述。
针对上述上行传输方法中,该M个天线组中,每个天线组内的天线具有相同或相近的天线能力,不同天线组之间的天线具有不同的天线能力。可见,该预编码矩阵的设计考虑了每个天线由于工程设计标准不同所导致的天线能力不同的情况,有利于联合使用终端设 备具有的多个天线,以提升上行传输性能和系统容量。
可选的,该M个天线组中部分天线组之间包含的天线个数不同。可见,该实施方式有利于基于天线能力对天线进行分组,而不必被天线组所需包括的天线个数限制,从而有利于照顾到各个天线具有的天线能力,使用更多的天线发送数据以提升系统容量。
本申请实施例中,N个天线对应的M个天线组是由网络设备指示的、终端设备确定的或是预定义的。
一种实施方式中,预编码矩阵指示信息用于指示预编码矩阵的索引。相应地,终端设备可基于该预编码矩阵指示信息所指示的索引,确定预编码矩阵。
另一种实施方式中,预编码矩阵指示信息用于指示以下一个或多个参数:
M个天线组的总功率归一化因子;
不同天线组之间的功率因子;
数据流之间的功率因子;
包含多个天线的每个天线组内天线之间的功率因子;
包含多个天线的每个天线组内天线之间的相位因子。
相应地,终端设备可基于该预编码矩阵指示信息所指示的该一个或多个参数,确定预编码矩阵。
又一种实施方式中,预编码矩阵的索引和上述一个或多个参数可采用一个信令指示或多个信令分别指示,终端设备可根据该预编码矩阵的索引和上述一个或多个参数,确定预编码矩阵。
一种实施方式中,N等于3,M等于2,M个天线组包括第一个天线组和第二个天线组,第一个天线组由两个天线组成,第二个天线组由一个天线组成;该预编码矩阵是用于将一个数据流映射到2个天线组的预编码矩阵;该预编码矩阵满足如下特征:
Figure PCTCN2020136265-appb-000001
其中,2个天线组的总功率归一化因子记为A;
第一个天线组和第二个天线组之间功率因子包括:第一个天线组的最大天线功率因子记为
Figure PCTCN2020136265-appb-000002
第二个天线组的最大功率因子记为
Figure PCTCN2020136265-appb-000003
第一个天线组与第二个天线组之间的天线功率因子记为p,p大于或等于1;
第一个天线组内天线之间的功率相等;
第一个天线组内天线之间的相位因子记为x。
另一种实施方式中,N等于3,M等于2,M个天线组包括第一个天线组和第二个天线组,第一个天线组由两个天线组成,第二个天线组由一个天线组成;该预编码矩阵是用于将2个数据流分别映射到对应的天线组,且每个天线组传输一个数据流的预编码矩阵;该预编码矩阵满足如下特征:
Figure PCTCN2020136265-appb-000004
所述2个天线组的总功率归一化因子记为A;
所述第一个天线组和所述第二个天线组之间功率因子包括:所述第一个天线组的最大天线功率因子记为
Figure PCTCN2020136265-appb-000005
所述第二个天线组的最大功率因子记为
Figure PCTCN2020136265-appb-000006
所述第一个天线组与所述第二个天线组之间的天线功率因子记为p,p大于或等于1;
所述第一个天线组内天线之间的功率相等;
所述第一个天线组内天线之间的相位因子记为x。
又一种实施方式中,所述N等于3,所述M等于2,所述M个天线组包括第一个天线组和第二个天线组,所述第一个天线组由两个天线组成,所述第二个天线组由一个天线组成;该预编码矩阵是用于将2个数据流映射到2个天线组,且其中一个天线组对所述2个数据流进行相干传输的预编码矩阵;该预编码矩阵满足如下特征:
Figure PCTCN2020136265-appb-000007
其中,2个天线组的总功率归一化因子记为A;
第一个天线组和第二个天线组之间功率因子包括:第一个天线组的最大天线功率因子记为
Figure PCTCN2020136265-appb-000008
第二个天线组的最大功率因子记为
Figure PCTCN2020136265-appb-000009
针对第一个数据流,第一个天线组内天线之间的相位因子记为x;
针对第二个数据流,第一个天线组内天线之间的相位因子记为-x;
第一个天线组传输的第一个数据流的预编码向量与第二个数据流的预编码向量是正交的;
第一个天线组传输的第一个数据流、第二数据流的功率因子分别是{α,β}。
又一种实施方式中,N等于3,M等于2,M个天线组包括第一个天线组和第二个天线组,第一个天线组由两个天线组成,第二个天线组由一个天线组成;该预编码矩阵是用于将2个数据流映射到2个天线组,且其中一个天线组对2个数据流进行非相干传输的预编码矩阵;该预编码矩阵满足如下特征:
Figure PCTCN2020136265-appb-000010
其中,2个天线组的总功率归一化因子记为A;
第一个天线组和第二个天线组之间功率因子包括:第一个天线组的最大天线功率因子记为
Figure PCTCN2020136265-appb-000011
第二个天线组的最大功率因子记为
Figure PCTCN2020136265-appb-000012
第一个天线组与第二个天线组之间的天线功率因子记为p。
一种实施方式中,N等于3,M等于2,M个天线组包括第一个天线组和第二个天线 组,第一个天线组由两个天线组成,第二个天线组由一个天线组成;该预编码矩阵是用于将3个数据流映射到2个天线组,且其中一个天线组对其中2个数据流进行相干传输的预编码矩阵;该预编码矩阵满足如下特征:
Figure PCTCN2020136265-appb-000013
其中,该2个天线组的总功率归一化因子记为A;
第一个天线组和第二个天线组之间功率因子包括:第一个天线组的最大天线功率因子记为
Figure PCTCN2020136265-appb-000014
第二个天线组的最大功率因子记为
Figure PCTCN2020136265-appb-000015
针对第一个数据流,第一个天线组内天线之间的相位因子记为x;
针对第二个数据流,第一个天线组内天线之间的相位因子记为-x;
第一个天线组传输的第一个数据流的预编码向量与第二个数据流的预编码向量是正交的;
第一个天线组传输的第一个数据流、第二数据流的功率因子分别是{α,β}。
第三方面,本申请还提供一种上行传输方法,该方法包括:终端设备接收波束指示信息;波束指示信息用于指示波束组;波束组内相邻波束之间的相位差小于终端设备的N个天线之间的相位分辨率,N为大于或等于3的整数;波束组中各波束适用于不同的资源单元;终端设备根据波束组,确定预编码矩阵。
第四方面,本申请还提供一种上行传输方法,该方法与上述第三方面相对应,是从网络设备的角度阐述的,该方法可包括:网络设备确定波束指示信息;波束指示信息用于指示波束组;波束组内相邻波束之间的相位差小于终端设备的N个天线之间的相位分辨率,N为大于或等于3的整数;波束组中各波束适用于不同的资源单元;网络设备发送波束指示信息。
可见,第三方面、第四方面的上行传输方法中,预编码矩阵可使得N个天线传输的数据流在不同的资源单元上形成的波束之间的相位差小于终端设备N个天线之间的相位分辨率,从而有利于避免天线之间的相对相位发生漂移所导致的性能问题,即本申请实施例设计的预编码矩阵具有鲁棒性,能够在复杂的信道环境中取得折中的性能效果。
为避免冗余,以下对适用于上述第三方面和第四方面的相关实施方式进行一并阐述。
可选的,波束组是基向量过采样后形成的多个波束组中的其中一个或多个。
一种实施方式中,不同数据流在同一资源单元上的波束正交;针对第三方面的上行传输方法中,终端设备根据波束组,确定预编码矩阵,包括:终端设备根据波束指示信息所指示的波束组,确定每个数据流的波束组;终端设备根据每个数据流的波束组,确定预编码矩阵。从而,有利于降低波束指示所需的开销。
一种实施方式中,波束组中波束的个数大于或等于波束覆盖范围与波束分辨率之间的比值;波束覆盖范围与相位分辨率相关,波束分辨率等于2π/NO,O表示基向量的过采样因子。可选的,波束覆盖范围等于相位分辨率。
一种实施方式中,N等于3,终端设备在资源单元s上传输2个数据流,波束指示信 息所指示的波束组中,在资源单元s上应用波束m传输第1个数据流,应用波束n传输第2个数据流的预编码矩阵满足以下特征:
Figure PCTCN2020136265-appb-000016
3个天线的总功率归一化因子记为A;基向量的过采样因子记为O;波束m与波束n正交。
一种实施方式中,N等于3,终端设备在资源单元s上传输3个数据流,波束指示信息所指示的波束组中,资源单元s上应用波束m传输第1个数据流,应用波束n传输第2个数据流,以及应用波束q传输第3个数据流的预编码矩阵满足以下特征:
Figure PCTCN2020136265-appb-000017
3个天线的总功率归一化因子记为A;基向量的过采样因子记为O;波束m、波束n以及波束q之间互相正交。
第五方面,本申请还提供一种通信装置。该通信装置可以是终端或网络设备,或终端或网络设备中的部件。该通信装置可以包括用于执行第一方面以及第一方面中任一种可能实施方式中的方法的各个模块或单元;或者,该通信装置可以包括用于执行第二方面以及第二方面中任一种可能实施方式中的方法的各个模块或单元;该通信装置可以包括用于执行第三方面以及第三方面中任一种可能实施方式中的方法的各个模块或单元;该通信装置可以包括用于执行第四方面以及第四方面中任一种可能实施方式中的方法的各个模块或单元。所述模块或单元的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。
在一种可能的设计中,该通信装置的结构中可包括处理单元,所述处理单元被配置为支持通信装置执行上述方法中相应的功能。该通信装置的结构中还可包括通信单元,所述通信单元用于支持通信装置与其他装置之间的通信。所述通信装置还可以包括存储单元,所述存储单元用于与处理单元和通信单元耦合,其保存通信装置必要的程序指令和数据。
一种实施方式中,通信装置执行第一方面中终端设备的相关操作,该通信装置可包括:
通信单元,用于接收预编码矩阵指示信息;
处理单元,用于根据所述预编码矩阵指示信息,确定预编码矩阵;
所述预编码矩阵是针对M个天线组的预编码矩阵;所述M个天线组是所述终端设备的N个天线对应的天线组;所述N为大于或等于3的整数,所述M为大于或等于2的整数。
可见,该通信装置采用的预编码矩阵是针对多个天线组的预编码矩阵,考虑到了通信装置具有的不同天线能力的天线来确定预编码矩阵,从而有利于改善上行传输的性能。
另外,该方面中,通信装置其他可选的实施方式可参见上述第一方面的相关内容,此 处不再详述。
另一种实施方式中,通信装置执行第二方面中网络设备的相关操作,该通信装置可包括:
处理单元,用于确定预编码矩阵指示信息;
通信单元,用于发送所述预编码矩阵指示信息;
所述预编码矩阵指示信息用于指示预编码矩阵,所述预编码矩阵是针对M个天线组的预编码矩阵;所述M个天线组是终端设备的N个天线对应的天线组;所述N为大于或等于3的整数,所述M为大于或等于2的整数。
可见,该通信装置指示的预编码矩阵是针对多个天线组的预编码矩阵,考虑到了通信装置具有的不同天线能力的天线来确定预编码矩阵,从而有利于改善上行传输的性能。
另外,该方面中,通信装置其他可选的实施方式可参见上述第二方面的相关内容,此处不再详述。
又一种实施方式中,通信装置执行第三方面中终端设备的相关操作,该通信装置可包括:
通信单元,用于接收波束指示信息;
所述波束指示信息用于指示波束组;所述波束组内相邻波束之间的相位差小于终端设备的N个天线之间的相位分辨率,所述N为大于或等于3的整数;所述波束组中各波束适用于不同的资源单元;
处理单元,用于根据所述波束组,确定预编码矩阵。
可见,该通信装置采用的预编码矩阵可使得N个天线传输的数据流在不同的资源单元上形成的波束之间的相位差小于终端设备N个天线之间的相位分辨率,从而有利于避免天线之间的相对相位发生漂移所导致的性能问题,即本申请设计的预编码矩阵具有鲁棒性,能够在复杂的信道环境中取得折中的性能效果。
另外,该方面中,通信装置其他可选的实施方式可参见上述第三方面的相关内容,此处不再详述。
又一种实施方式中,通信装置执行第四方面中网络设备的相关操作,该通信装置可包括:
处理单元,用于确定波束指示信息;
所述波束指示信息用于指示波束组;所述波束组内相邻波束之间的相位差小于终端设备的N个天线之间的相位分辨率,所述N为大于或等于3的整数;所述波束组中各波束适用于不同的资源单元;
通信单元,用于发送所述波束指示信息。
可见,该通信装置指示的预编码矩阵可使得N个天线传输的数据流在不同的资源单元上形成的波束之间的相位差小于终端设备N个天线之间的相位分辨率,从而有利于避免天线之间的相对相位发生漂移所导致的性能问题,即本申请设计的预编码矩阵具有鲁棒性,能够在复杂的信道环境中取得折中的性能效果。
另外,该方面中,通信装置其他可选的实施方式可参见上述第二方面的相关内容,此处不再详述。
作为示例,通信单元可以为收发器或通信接口,存储单元可以为存储器,处理单元可以为处理器。
在一种实现方式中,该通信装置为终端或网络设备。当该通信装置为终端或网络设备时,所述处理单元可以为处理器;所述通信单元可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为芯片或芯片系统。所述处理单元也可以体现为处理电路或逻辑电路;所述通信单元可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。
一种实施方式中,通信装置执行第一方面中终端设备的相关操作,该通信装置可包括:
收发器,用于接收预编码矩阵指示信息;
处理器,用于根据所述预编码矩阵指示信息,确定预编码矩阵;
所述预编码矩阵是针对M个天线组的预编码矩阵;所述M个天线组是所述终端设备的N个天线对应的天线组;所述N为大于或等于3的整数,所述M为大于或等于2的整数。
可见,该通信装置采用的预编码矩阵是针对多个天线组的预编码矩阵,考虑到了通信装置具有的不同天线能力的天线来确定预编码矩阵,从而有利于改善上行传输的性能。
另外,该方面中,通信装置其他可选的实施方式可参见上述第一方面的相关内容,此处不再详述。
另一种实施方式中,通信装置执行第二方面中网络设备的相关操作,该通信装置可包括:
处理器,用于确定预编码矩阵指示信息;
收发器,用于发送所述预编码矩阵指示信息;
所述预编码矩阵指示信息用于指示预编码矩阵,所述预编码矩阵是针对M个天线组的预编码矩阵;所述M个天线组是终端设备的N个天线对应的天线组;所述N为大于或等于3的整数,所述M为大于或等于2的整数。
可见,该通信装置指示的预编码矩阵是针对多个天线组的预编码矩阵,考虑到了通信装置具有的不同天线能力的天线来确定预编码矩阵,从而有利于改善上行传输的性能。
另外,该方面中,通信装置其他可选的实施方式可参见上述第二方面的相关内容,此处不再详述。
又一种实施方式中,通信装置执行第三方面中终端设备的相关操作,该通信装置可包括:
收发器,用于接收波束指示信息;
所述波束指示信息用于指示波束组;所述波束组内相邻波束之间的相位差小于终端设备的N个天线之间的相位分辨率,所述N为大于或等于3的整数;所述波束组中各波束适用于不同的资源单元;
处理器,用于根据所述波束组,确定预编码矩阵。
可见,该通信装置采用的预编码矩阵可使得N个天线传输的数据流在不同的资源单元上形成的波束之间的相位差小于终端设备N个天线之间的相位分辨率,从而有利于避免天线之间的相对相位发生漂移所导致的性能问题,即本申请设计的预编码矩阵具有鲁棒性, 能够在复杂的信道环境中取得折中的性能效果。
另外,该方面中,通信装置其他可选的实施方式可参见上述第三方面的相关内容,此处不再详述。
又一种实施方式中,通信装置执行第四方面中网络设备的相关操作,该通信装置可包括:
处理器,用于确定波束指示信息;
所述波束指示信息用于指示波束组;所述波束组内相邻波束之间的相位差小于终端设备的N个天线之间的相位分辨率,所述N为大于或等于3的整数;所述波束组中各波束适用于不同的资源单元;
收发器,用于发送所述波束指示信息。
可见,该通信装置指示的预编码矩阵可使得N个天线传输的数据流在不同的资源单元上形成的波束之间的相位差小于终端设备N个天线之间的相位分辨率,从而有利于避免天线之间的相对相位发生漂移所导致的性能问题,即本申请设计的预编码矩阵具有鲁棒性,能够在复杂的信道环境中取得折中的性能效果。
在实现过程中,处理器可用于进行,例如但不限于,基带相关处理,收发器可用于进行,例如但不限于,射频收发。上述器件可以分别设置在彼此独立的芯片上,也可以至少部分的或者全部的设置在同一块芯片上。例如,处理器可以进一步划分为模拟基带处理器和数字基带处理器。其中,模拟基带处理器可以与收发器集成在同一块芯片上,数字基带处理器可以设置在独立的芯片上。随着集成电路技术的不断发展,可以在同一块芯片上集成的器件越来越多。例如,数字基带处理器可以与多种应用处理器(例如但不限于图形处理器,多媒体处理器等)集成在同一块芯片之上。这样的芯片可以称为系统芯片(System on Chip)。将各个器件独立设置在不同的芯片上,还是整合设置在一个或者多个芯片上,往往取决于产品设计的需要。本申请实施例对上述器件的实现形式不做限定。
第六方面,本申请还提供一种处理器,用于执行上述第一方面、第二方面、第三方面或第四方面所述的方法。在执行上述第一方面、第二方面、第三方面或第四方面所述的方法的过程中,上述方法中有关发送上述信息和接收上述信息的过程,可以理解为由处理器输出上述信息的过程,以及处理器接收输入的上述信息的过程。在输出上述信息时,处理器将该上述信息输出给收发器,以便由收发器进行发射。该上述信息在由处理器输出之后,还可能需要进行其他的处理,然后才到达收发器。类似的,处理器接收输入的上述信息时,收发器接收该上述信息,并将其输入处理器。更进一步的,在收发器收到该上述信息之后,该上述信息可能需要进行其他的处理,然后才输入处理器。
对于处理器所涉及的发射、发送和接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则均可以更加一般性的理解为处理器输出和接收、输入等操作,而不是直接由射频电路和天线所进行的发射、发送和接收操作。
在实现过程中,上述处理器可以是专门用于执行这些方法的处理器,也可以是执行存储器中的计算机指令来执行这些方法的处理器,例如通用处理器。上述存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(Read Only Memory,ROM),其可以与处 理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
第七方面,本申请提供了一种计算机可读存储介质,用于储存计算机软件指令,当所述指令被通信装置执行时,实现上述第一方面、第二方面、第三方面或第四方面所述的方法。
第八方面,本申请还提供了一种包括指令的计算机程序产品,当其在通信装置上运行时,使得通信装置执行上述第一方面、第二方面、第三方面或第四方面所述的方法。
第九方面,提供了一种芯片系统,应用在通信设备中,其特征在于,该芯片系统包括至少一个处理器,当程序指令在所述至少一个处理器中执行时,使得上述第一方面~第四方面和上述第一方面的可选的实现方式~第四方面的可选的实现方式中任一所述的方法在如下任一设备上得以实现:终端设备和网络设备。
第十方面,一种通信系统,该通信系统包括:上述通信设备。例如,该通信系统包括:终端设备和网络设备,该终端设备执行上述第一方面和第一方面的可选的实施方式所描述的方法,该网络设备执行上述第二方面和第二方面的可选的实施方式所描述的方法;或者,该终端设备执行上述第三方面和第三方面的可选的实施方式所描述的方法,该网络设备执行上述第四方面和第四方面的可选的实施方式所描述的方法。
附图说明
图1示出了适用于本申请实施例提供的方法的通信系统的示意图;
图2是本申请实施例提供的一种上行传输方法100的流程示意图;
图3是本申请实施例提供的一种秩为1的3T的预编码矩阵的示意图;
图4是本申请实施例提供的一种秩为2的3T的预编码矩阵的示意图;
图5是本申请实施例提供的一种上行传输方法200的流程示意图;
图6是本申请实施例提供的一种三天线-基向量过采样获得的可选波束的示意图;
图7是本申请实施例提供的一种三天线-基向量的可选波束的示意图;
图8是本申请实施例提供的另一种三天线-基向量过采样获得的可选波束的示意图;
图9是本申请实施例提供的一种上行传输的4个子带与波束组中2个波束之间的对应关系示意图;
图10是本申请实施例提供的另一种上行传输的4个子带与波束组中2个波束之间的对应关系示意图;
图11是本申请实施例提供的一种上行传输的5个子带与波束组中2个波束之间的对应关系示意图;
图12是本申请实施例提供的另一种上行传输的5个子带与波束组中2个波束之间的对应关系示意图;
图13是本申请实施例提供的一种两个数据流对应的波束选择的示意图;
图14是本申请实施例提供的一种通信装置的结构示意图;
图15是本申请实施例提供的另一种通信装置的结构示意图;
图16是本申请实施例提供的一种芯片的结构示意图。
具体实施方式
为了更好的理解本申请实施例提供的波束查找方法,首先对本申请实施例适用的通信系统进行描述。
本申请的技术方案可应用于各种通信系统中。例如,全球移动通信系统、LTE频分双工系统、LTE时分双工系统、通用移动通信系统、4G系统,以及随着通信技术的不断发展,本申请的技术方案还可用于后续演进的通信系统,如5G系统、未来通信系统等等。
本申请实施例可应用于独立组网,即未来网络中部署的新的基站、回程链路以及核心网等通信系统中,也可应用非独立组网等各种通信系统中。
例如,本申请实施例可用于第五代(5th generation,5G)系统,也可以称为新空口(new radio,NR)系统,或者第六代(6th generation,6G)系统或未来的其他通信系统;或者还可用于设备到设备(device to device,D2D)系统,机器到机器(machine to machine,M2M)系统、长期演进(long term evolution,LTE)系统等等。
本申请实施例中,网络设备可为具有无线收发功能的设备或可设置于该设备的芯片,该网络设备包括但不限于:演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、网络设备控制器(base station controller,BSC)、网络设备收发台(base transceiver station,BTS)、家庭网络设备(例如,home evolved Node B,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等;还可以为5G、6G甚至7G系统中使用的设备,如NR系统中的gNB,或传输点(TRP或TP),5G系统中的网络设备的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(DU,distributed unit),或微微网络设备(Picocell),或毫微微网络设备(Femtocell),或,车联网(vehicle to everything,V2X)或者智能驾驶场景中的路侧单元(road side unit,RSU)。
本申请实施例中,终端设备可包括但不限于:用户设备(user equipment,UE)、接入终端设备、用户单元、用户站、移动站、移动台、远方站、远程终端设备、移动设备、用户终端设备、用户代理或用户装置等。再比如,终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、前述的V2X车联网中的无线终端或无线终端类型的RSU等等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、介质接入控制(medium access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU和AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
请参阅图1,图1是本申请实施例提供的一种通信系统的示意图。为表述方便,以图1为例对本申请实施例进行阐述,图1所示的通信系统包括但不限于基站和终端设备,还可以包括其他的通信设备,此处不再详述。
为了便于理解本申请实施例,作以下说明。
本申请公开的实施例中场景以无线通信网络中NR网络的场景为例进行说明,应当指出的是,本申请公开的实施例中的方案还可以应用于其他无线通信网络中,相应的名称也可以用其他无线通信网络中的对应功能的名称进行替代。
本申请公开的实施例将围绕包括多个设备、组件、模块等的系统来呈现本申请的各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,以及可以并不包括结合附图讨论的所有设备、组件、模块等,或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
其次,对本申请实施例涉及的相关概念进行简单的介绍。
1、预编码
预编码的基本原理是将一个或多个数据流映射到多个天线上的转换或映射过程,该过程也可称为是波束成型。同一用户的数据流的个数称为秩(rank),也可称为层(layer)数。该多个天线可称为多个天线端口,以区分不同的信道。预编码处理后获得的多个信道传输的数据可互不干扰,从而提高系统性能。或者,采用预编码将一个数据流映射到多个天线上发送,可获得分集增益提高传输可靠性,提高系统性能。
2、预编码矩阵
该预编码的转换过程可表示为数据与预编码矩阵的线性运算,即对待发送的数据进行与预编码矩阵相乘的处理获得。该预编码矩阵的秩(也是该预编码矩阵的列数)是上述所述的同一用户的数据流的个数;该预编码矩阵的行数等于天线端口的个数,本申请实施例可称为天线的个数。
例如,假设终端设备进行上行传输的rank数等于v,即一共有0至v-1个数据流,可 表示为[y (0)(i) … y (v-1)(i)] T
Figure PCTCN2020136265-appb-000018
其中,
Figure PCTCN2020136265-appb-000019
是每层数据流的调制符号数,经过预编码矩阵W的预编码后,可获得P个端口对应的数据[z (0)(i) … z (P-1)(i)] T
Figure PCTCN2020136265-appb-000020
其中,
Figure PCTCN2020136265-appb-000021
表示每个天线端口的调制符号数。那么,终端设备采用预编码矩阵W对v个数据流进行预编码的过程可表示为:
Figure PCTCN2020136265-appb-000022
对于上行传输来说,终端设备获取预编码矩阵的方式,可以包括以下三种:
(1)网络设备根据上行的探测参考信号(Sounding Reference Signal,SRS)进行上行信道估计,根据估计的情况在预先设定的码本中确定上行传输的预编码矩阵对应的预编码矩阵指示(Transmit Precoding Matrix Indicator,TPMI),并通过信令将该TPMI下发给终端设备;进而,终端设备利用该TPMI从预先设定的码本中确定上行传输的预编码矩阵。
(2)终端设备预先设定多个预编码矩阵发送多个参考信号资源(如SRS资源),终端设备根据接收信号强度选择其中的一个SRS资源的标识并指示给终端设备;进而,终端设备可将该SRS资源对应的预编码矩阵作为上行传输的预编码矩阵。
(3)终端设备根据下行的信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)进行信道估计,根据上下行信道互易性自行计算上行传输的预编码矩阵。
本申请实施例所述的确定预编码矩阵的方式可以包括但不限于方式(2)所述的方式。
3、码本
码本对于每个秩,包括一定数量的预编码矩阵,以代表量化的信道。码本中的每个预编码矩阵都对应一个或多个预编码矩阵索引,通常预编码矩阵索引与相应的TPMI具有对应关系。码本中的每个预编码矩阵也可成为码字。码本通常是预定义好的,网络设备和终端设备都会存储相应的码本,并且约定网络设备和终端设备对该码本中每个预编码矩阵、预编码矩阵索引和TPMI之间的对应关系的理解是一致的。
例如,网络设备和终端设备中预定义的针对秩为1,适用于4个天线端口的码本可以如表1所示。当网络设备根据估计的上行信道,从预定义的码本中选出一个预编码矩阵并确定其预编码矩阵索引(如表1中TPMI index对应的0至27中的一个值)后,可将确定的预编码矩阵索引对应的TPMI通过下行信令(如物理层信令的下行控制信息(downlink control information,DCI))通知终端设备;终端设备根据网络设备下发的信令中携带的TPMI,可从表1中确定具体的预编码矩阵;进而,终端设备会根据该预编码矩阵对待发送的数据进行预编码后发送。
表1 针对秩为1,4个天线的预编码矩阵W
Figure PCTCN2020136265-appb-000023
4、多天线相干传输、多天线部分相干传输、多天线非相干传输
多天线相干传输是指针对一个数据流,使用终端设备的所有天线进行预编码,形成一个波束后进行发送。如上述表1中,TPMI index等于12至27对应的预编码矩阵,可将一个数据流映射到四个天线上发送。
多天线部分相干传输是指针对一个数据流,使用终端设备的部分天线进行预编码形成一个波束后进行发送。如上述表1中TPMI index等于4至11对应的预编码矩阵,可将一个数据流映射到两个天线上发送。
多天线非相干传输是指针对一个数据流,使用一根天线进行预编码,形成一个波束后进行发送。如上述表1中TPMI index等于0至3对应的预编码矩阵,可将一个数据流映射到一根天线上发送。对于多个数据流,即秩大于1的情况,不同数据流所使用的天线不同,所对应的波束也不同。
5、资源单元
本申请实施例中,资源单元不仅仅指频域上的资源单元(resource element,RE),还可以指时域上的时间单元。
其中,时域上的时间单元可以是指子帧,也可以是指时隙(slot),还可是指无线帧、微时隙(mini slot或sub slot)、多个聚合的时隙、多个聚合的子帧、符号等等,还可以是指传输时间间隔(Transmission Time Interval,TTI)。或者,一种时间单位在时域内的时长等于整数个另一种时间单元在时域内的时长,例如,一个微时隙/时隙/子帧/无线帧内包含整 数个符号,一个时隙/子帧/无线帧内包含整数个微时隙,一个子帧/无线帧内包含整数个时隙,一个无线帧包含整数个子帧等,也可以存在其余包含举例,本申请不做限定。
其中,频域上的资源单元包括子载波、资源块(resource block,RB)、物理资源块、虚拟资源块、预编码资源块组(precoding resource block group,PRG)、物理资源块组(physical resource block group,RBG)、子带(subband)、部分带宽(partial bandwidth)、带宽部分(bandwidth part,BWP)、载波(carrier)、服务小区(serving cell)、频段(band)等。
经过研究发现,目前所设计的预编码矩阵均是针对1个、2个或4个天线等形态的设计,还没有针对其他天线形态所设计的预编码矩阵。例如,针对3个天线的预编码矩阵如何设计,可改善上行传输的性能。再例如,针对具有不同天线能力的多个天线,如何设计预编码矩阵,改善上行传输的容量。
本申请提供一种上行传输方法100,该方法100确定的预编码矩阵是针对M个天线组的预编码矩阵,该M个天线组是终端设备的N个天线对应的天线组,可见,该上行传输方法所确定的预编码矩阵有利于针对不同天线能力的天线组确定预编码矩阵,从而改善上行传输的性能。
以下结合附图对本申请所提供的上行传输方法进行阐述。
请参见图2,图2是本申请实施例提供的一种上行传输方法100的流程示意图。如图1所示,该上行传输方法100可包括但不限于以下步骤:
S101、网络设备确定预编码矩阵指示信息;
其中,预编码矩阵指示信息用于指示M个天线组的预编码矩阵,该M个天线组是终端设备具有的N个天线对应的天线组,N为大于或等于3的整数,M为大于或等于2的整数。
一种实施方式中,该M个天线组中的每个天线组内,天线之间具有相同或相近的天线能力,不同天线组之间的天线具有不同的天线能力。天线能力可以包括天线具有的频带能力、功率能力、相位校准精度等。可见,该预编码矩阵的设计考虑了每个天线由于工程设计标准不同所导致的天线能力不同的情况,从而有利于联合使用终端设备具有的多个天线,以提升上行传输性能和系统容量。
其中,天线之间具有相同或相近的天线能力,是指不同天线所支持的频段等频带能力、最大发射功率等功率能力以及相位校准精度中一个或多个能力的值相同或相近。例如,天线之间具有相同的功率能力,可以为每个天线的最大发射功率相等;天线之间具有相近的功率能力,可以为每个天线的最大发射功率之差不大于预设值。再例如,天线之间具有相同的频带能力,可以为每个天线支持的频段范围相同;天线之间具有相近的频带能力,可以为每个天线支持的频段范围之间的重叠范围不小于预设范围。又例如,天线之间具有相同的相位校准精度,可以为每个天线支持的相位校准精度相同;天线之间具有相近的相位校准精度,可以为每个天线支持的相位校准精度之间的差值不大于预设值。
相应的,天线之间具有不同的天线能力,是指不同天线所支持的频段等频带能力、最大发射功率等功率能力以及相位校准精度中一个或多个能力的值不同或相差较大。例如,天线之间具有不同的功率能力,可以为每个天线的最大发射功率不等;天线之间具有相差 较大的功率能力,可以为每个天线的最大发射功率之差大于预设值。再例如,天线之间具有不同的频带能力,可以为每个天线支持的频段范围不同;天线之间具有相差较大的频带能力,可以为每个天线支持的频段范围之间的重叠范围小于预设范围。又例如,天线之间具有不同的相位校准精度,可以为每个天线支持的相位校准精度不同;天线之间具有相差较大的相位校准精度,可以为每个天线支持的相位校准精度之间的差值大于预设值。
一种实施方式中,该M个天线组中的部分天线组之间包含的天线个数不同。例如,M等于2,N等于3,第一个天线组包括1个天线,第二个天线组包括剩余的2个天线;再例如,M等于3,N等于5,第一个天线组包括2个天线,第二个天线组包括2个天线,第三个天线组包括1个天线,可见,第一个天线组、第二个天线组包括的天线个数相同,而与第三个天线组包括的天线个数不同。可见,该实施方式有利于基于天线能力对天线进行分组,而不必被天线组所需包括的天线个数限制,从而有利于照顾到各个天线具有的天线能力,使用更多的天线发送数据以提升系统容量。
相应的,步骤S101中,网络设备确定预编码矩阵指示信息,可以包括:网络设备根据M个天线组以及每个天线具有的天线能力,确定预编码矩阵指示信息。这样,该预编码矩阵指示信息所对应的预编码矩阵可照顾到不同天线的天线能力,如最大发射功率、频带范围以及相位校准精度中的一项或多项,从而,有利于终端设备使用所有天线来发送数据,避免因无法使用其中一个天线所导致的硬件浪费,进而有利于提升系统容量。
例如,终端设备被配置了3个天线,由于每个天线的工程设计标准的不同,该3个天线(记为Tx1、Tx2、Tx3)中,Tx1和Tx2之间可做到较好的校准精度(相对相位、相对功率的校准),而Tx3与Tx1、Tx2之间只能达到粗糙的校准水平;并且,Tx1和Tx2本身都是较低成本的低功率天线,如最大发射功率只能达到20dBm,而Tx1和Tx2联合发送时可达到最大发射功率23dBm的效果,而Tx3本身就可以达到最大发射功率23dBm的效果。因此,网络设备确定的预编码矩阵指示信息所指示的预编码矩阵中,可使得Tx1和Tx2采用相干发送,Tx3单独发送,并且Tx1和Tx2发送的最大发射功率之和可达到23dBm的效果,而Tx3单独的最大发射功率可为23dBm,从而基于该预编码矩阵,终端设备可调用3个天线来发送上行数据,大大提升系统容量。也就是说,网络设备可根据该3个天线基于天线能力的分组以及各天线能力来确定预编码矩阵指示信息,从而有利于改善系统容量。
S102、网络设备发送该预编码矩阵指示信息;
S103、终端设备接收该预编码矩阵指示信息;
S104、终端设备根据该预编码矩阵指示信息,确定预编码矩阵。
第1部分,预编码矩阵指示信息指示预编码矩阵的方式。
本申请实施例中,预编码矩阵指示信息指示预编码矩阵的方式可以包括但不限于以下几种实施方式:
实施方式1.1,预编码矩阵是预编码矩阵指示信息所指示的索引标识的。
如上述方式(1)所述的终端设备获取预编码矩阵的方式,终端设备可从预定义的码本中确定该预编码矩阵的索引对应的预编码矩阵。由于网络设备指示预编码矩阵的开销有限,因此,网络设备所指示的预编码矩阵(也可称为码字)是一定范围内的码字,该一定范围内的码字形成一个码本,即终端设备与网络设备之间通过协议预定义的码本,从而有利于 网络设备在有限的开销内,向终端设备指示该码本中的其中一个码字作为上行传输的码字。
实施方式1.2,预编码矩阵是利用预编码矩阵指示信息所指示的一个或多个参数确定的。
该一个或多个参数包括但不限于:所述M个天线组的总功率归一化因子(可简称为归一化因子);不同天线组之间的功率因子;数据流之间的功率因子;包含多个天线的每个天线组内天线之间的功率因子;包含多个天线的每个天线组内天线之间的相位因子。
这样,步骤S104中,终端设备可根据该预编码矩阵指示信息所指示的上述一个或多个参数,确定预编码矩阵。
实施方式1.3,预编码矩阵根据预编码矩阵的索引以及上述一个或多个参数确定的。
也就是说,终端设备可根据预编码矩阵的索引以及上述一个或多个参数,确定预编码矩阵。可选的,上述一个或多个参数可通过高层信令通知给终端设备,预编码矩阵的索引可通过物理层信令,如实施方式1.1所述的预编码矩阵指示信息通知给终端设备。
本申请实施例所述的预编码矩阵是针对M个天线组的预编码矩阵,该M个天线组是基于天线能力划分的。因此,该预编码矩阵可从上述一个或多个参数,如不同天线组之间的功率因子(可简称为组间功率)、包括多个天线的每个天线组内天线之间的相位因子(可简称为组内相位)等参数的设计,来兼顾每个天线组之间的天线能力以及每个天线组内天线具有的天线能力,以实现所有天线都可发送数据,改善系统容量。
本申请实施例中,上述各参数的指示方式除了采用预编码矩阵指示信息指示外,还可以是终端设备能力上报的、协议预定义的或其他信令指示的。另外,上述各参数可以是采用一个信令指示的,也可以是分开指示的。例如,组内相位可由预编码矩阵指示信息指示,组间功率等功率相关的参数可由高层信令指示。
另外,上述各参数是分开指示时,还可具有不同的指示粒度,该指示粒度可以是时域上的指示粒度或频域上的指示粒度。例如,上述各参数的指示粒度是时域上的指示粒度,即可以是周期性指示的、由下行控制信息(downlink control information,DCI)指示的或由媒体接入控制-控制元素(media access control-control element,MAC-CE)指示的。再例如,上述各参数的指示粒度是频域上的指示粒度,即可以是以宽带为粒度指示的、以部分频段为粒度指示的或以子带为粒度指示的。如上述天线组内的相位因子可以是以子带为粒度指示的,天线组之间的功率因子可以是以宽带为粒度指示的。从而,改善预编码矩阵的鲁棒性。
第2部分,M个天线组对应的预编码矩阵所需满足的特征。
本申请实施例中,基于上述预编码矩阵指示信息确定的预编码矩阵,可具有但不限于以下几种实施方式所述的特征。
实施方式2.1,针对终端设备具有N个天线,M个天线组的情况,秩为1的预编码矩阵W所需满足如下特征:
Figure PCTCN2020136265-appb-000024
该预编码矩阵W中:
参数1,A为M个天线组的总功率归一化因子;
总功率归一化因子用于使得该预编码矩阵W的总能量归一为一个常数,如1,或者归一为1/2。该预编码矩阵W的总能量等于该预编码矩阵W中各元素的平方的和。
预编码矩阵的总功率归一化因子可以是协议中预定义好的,或者是网络设备指示的。上文所述的终端设备与网络设备中预定义的码本中的各预编码矩阵可以有不同的总功率归一化因子,对应不同的总能量。
参数2,
Figure PCTCN2020136265-appb-000025
表示不同天线组之间的功率因子;
其中,
Figure PCTCN2020136265-appb-000026
表示不同天线组之间的最大功率因子,所有天线组的最大功率之和等于1,即
Figure PCTCN2020136265-appb-000027
一种方式中,天线组之间功率因子相等,即每个天线组均匀分配功率。另一种方式中,天线组之间的功率因子不相等,即是不均匀分 配功率的,如天线组之间的功率因子是天线组之间天线数量的比值。
另外,不同天线组之间的功率因子除了天线组之间的最大功率因子外,还包括天线功率因子,如y1、y2、…、ym等,天线功率因子不同于最大功率因子,用于细调天线组之间天线的功率,其取值可以是0、6dB、-6dB等。
其中,最大功率因子和/或功率因子可以是终端设备上报确定的,也可以是网络设备指示的。
参数3,
Figure PCTCN2020136265-appb-000028
分别是对应每个天线组内的天线之间的功率因子;
该预编码矩阵W 1中,每个天线组内天线之间的功率因子相等,即该天线组内天线之间的功率均匀分配,如第i个天线组内天线之间的功率因子均为
Figure PCTCN2020136265-appb-000029
参数4,x ij表示第i个天线组内的第j个天线相对于该第i个天线组内的第一个天线调整的相位因子,简称第i个天线组内天线之间的相位因子。
其中,每个天线组包含的天线个数可以不一样,也就是第i个天线组中天线的个数M i不是固定值,与终端设备具有的N个天线的天线能力有关。
例如,若为正交相移键控(Quadrature Phase Shift Keying,QPSK),则x ij的取值可以是{1,-1,j,-j};若为8移相键控(8Phase Shift Keying,8PSK),则x ij的取值可以是
Figure PCTCN2020136265-appb-000030
Figure PCTCN2020136265-appb-000031
可见,x ij的不同取值对应了不同的预编码精度和指示开销。
可选的,该相位因子可以是网络设备以集合的方式指示给终端设备的,也可以是终端设备以集合的方式上报给网络设备的。终端设备上报的方式中,终端设备可根据天线组内该终端设备所支持的天线之间的相干程度上报上述相位因子,如相干程度为1,相位校准精度为正负40度,也就是说,终端设备支持的预编码矩阵的相位分辨率最小只能到80度,那么终端设备上报的相位因子可以是QPSK的{1,-1,j,-j}。
一种可选的实施方式中,假设N等于3,M等于2,M个天线组包括第一个天线组和第二个天线组,第一个天线组由两个天线组成,第二个天线组由一个天线组成;预编码矩阵在秩为1时满足如下特征:
Figure PCTCN2020136265-appb-000032
该2个天线组的总功率归一化因子记为A;以
Figure PCTCN2020136265-appb-000033
表示第i个天线组的最大天线功率分配因子,则第一个天线组和第二个天线组之间功率分配因子包括:第一个天线组的最大天线功率分配因子(记为
Figure PCTCN2020136265-appb-000034
),第二个天线组的最大功率分配因子(记为
Figure PCTCN2020136265-appb-000035
),第一个天线组与第二个天线组之间的天线功率因子(记为p,p大于或等于1);第一个天线组内天线之间的功率相等,均为1/2;第一个天线组内天线之间的相位因子记为x,表示该第一个天线组内,第二个天线相对于第一个天线调整的相位。
例如,请参阅图3,图3是本申请实施例提供的一种秩为1的3T的预编码矩阵的示意图。图3所示的预编码矩阵可适用于终端设备具有3个天线对应的2个天线组。其中,终端设备具有的3个天线简称为3T,该3T分别是Tx1、Tx2、Tx3;该3个天线对应的2个天线组,分别是天线组1、天线组2;其中,天线组1包括Tx1、Tx2,天线组2包括Tx3;如图3所示的组间最大功率分配因子,终端设备的最大发射功率在天线组1与天线组2之间均匀分配,即天线组1与天线组2之间的最大功率相等;如图3所示的组间功率分配因子p,表示终端设备将天线组2相对于天线组1细微调整的功率,即与最大功率相比幅度较小的功率调整;如图3所示的组内功率分配因子,天线组1的功率在Tx1与Tx2之间也均匀分配,即该天线组1内Tx1与Tx2之间的功率相等;如图3所示的组内相位因子x,该相位因子x表示Tx2相对于Tx1调整的相位是x。
实施方式2.2,针对终端设备具有N个天线,M个天线组的情况,秩为2的预编码矩阵W所需满足的特征。
该预编码矩阵W与上述实施方式2.1所述的预编码矩阵W类似,其中参数1至参数4的相关实施方式可参见上述实施方式2.1中的相关阐述,此处不再详述。该实施方式主要阐述N个天线是如何映射2个数据流的。如前文公式(1)所述,[z (0)(i) … z (P-1)(i)] T是预编码后的数据,对应终端设备具有的多个Tx;[y (0)(i) … y (v-1)(i)] T是待预编码的多个数据流,该实施方式阐述预编码矩阵可包括但不限于以下几种映射方式:
方式2.2.1,预编码矩阵是用于将2个数据流分别映射到M个天线组,且每个天线组传输一个数据流的预编码矩阵。
以N等于3,M等于2,秩为2,天线组内天线之间的功率均匀分配为例,该方式的预编码矩阵可满足如图4所示的预编码矩阵的特征。其中,图4所示的预编码矩阵为:
Figure PCTCN2020136265-appb-000036
其中,A、
Figure PCTCN2020136265-appb-000037
p、x可参见上述公式(3)的相关阐述,此处不再详述。另外,如图4所示,该公式(4)所示的预编码矩阵每一行与Tx之间的映射关系、3T的天线分组信息与图3类似,另外,预编码矩阵的每一列与2个数据流的映射关系以图4所示为例阐述。可见,公式(4)所示的预编码矩阵中,Tx1和Tx2所在的天线组1只发送第一个数据流,Tx3所在的天线组2只发送第二个数据流,可选的,该预编码矩阵也可进行列互换,即天线组1只发送第二个数据流,天线组2只发送第一个数据流;可选的,该预编码矩阵也可进行行互换,即天线分组信息可变,具体的,可参见下文关于天线分组信息的相关阐述。
举例来说,假设A等于1,
Figure PCTCN2020136265-appb-000038
均等于
Figure PCTCN2020136265-appb-000039
p等于1,x等于1,那么,该预编码矩阵可为:
Figure PCTCN2020136265-appb-000040
可见,该公式(5)所示的预编码矩阵,可使得Tx1和Tx2共同发送第一个数据流且是同相位发送;Tx3单独发送第二个数据流。
例如,第一个数据流表示为
Figure PCTCN2020136265-appb-000041
第二个数据流表示为
Figure PCTCN2020136265-appb-000042
采用公式(5)所示的预编码矩阵进行预编码,获得的预编码后的数据:
Figure PCTCN2020136265-appb-000043
可见,Tx1和Tx2共同发送了第一个数据流
Figure PCTCN2020136265-appb-000044
且发送的时候是同相位的,Tx3单独发送了第二个数据流
Figure PCTCN2020136265-appb-000045
方式2.2.2,该预编码矩阵是用于部分天线组分别发送一个数据流,另外一部分天线组分别发送多个数据流。
即预编码矩阵是用于将2个数据流映射到一个天线组且其中一个数据流映射到另一个天线组的预编码矩阵,这样,部分天线发送其中一个数据流,另外一部分天线发送多个数据流。其中,发送多个数据流的天线组内,多个天线可以进行相干发送或非相干发送。以下可包括但不限于方式2.2.2.1和方式2.2.2.2。
方式2.2.2.1,发送多个数据流且具有多个天线的天线组内,多个天线相干发送。
该方式2.2.2.1中,预编码矩阵关联的参数包括上述参数1至参数4之外,还包括参数5,即数据流之间的功率分配因子。
以N等于3,M等于2,秩R为2为例,该方式2.1的预编码矩阵可满足如下特征:
Figure PCTCN2020136265-appb-000046
其中,A、
Figure PCTCN2020136265-appb-000047
p、x可参见上述公式(3)的相关阐述,此处不再详述。另外,该公式(6)所示的预编码矩阵每一行与Tx之间的映射关系、3T的天线分组信息与图3所示的映射关系、天线分组信息相同,此处不再详述。可见,公式(6)所示的预编码矩阵,可使得天线组1可发送两个数据流,天线组2可发送一个数据流,其中,天线组1发送两个数据流时,可设计{α,β}作为流间的功率分配因子,来调整流间的功率比。
假设A等于1,
Figure PCTCN2020136265-appb-000048
均等于
Figure PCTCN2020136265-appb-000049
p等于1,x等于1,那么,该预编码矩阵可为:
Figure PCTCN2020136265-appb-000050
可见,公式(7)所示的预编码矩阵,可采用{α,β}调整天线组传输的第一个数据流与第二个数据流之间的功率配比。
假设天线组1传输的第一个数据流与第二个数据流之间的功率均匀分配,即{α=1,β=1},且Tx2相对于Tx1调整的相位因子x等于j,则公式(7)所示的预编码矩阵变换为:
Figure PCTCN2020136265-appb-000051
其中,公式(8)所示的预编码矩阵中,天线组2选择传输第一个数据流,可选的,天线组2也可选择传输第二个数据流,对应的预编码矩阵可为:
Figure PCTCN2020136265-appb-000052
方式2.2.2.2,发送多个数据流的天线组内,多个天线非相干发送。
该方式2.2.2.2中,预编码矩阵关联的参数包括上述参数1至参数4,不包括参数5,即由于天线组内天线之间进行非相干传输,不同数据流由不同的天线传输,故不需要数据流之间的功率分配因子。
以N等于3,M等于2,秩R为2为例,该方式2.2的预编码矩阵可满足如下特征:
Figure PCTCN2020136265-appb-000053
其中,A、
Figure PCTCN2020136265-appb-000054
p、x可参见上述公式(3)的相关阐述,此处不再详述。另外,该公式(10)所示的预编码矩阵每一行与Tx之间的映射关系、3T的天线分组信息与图3所示的映射关系、天线分组信息相同,此处不再详述。可见,公式(10)所示的预编码矩阵,可使得天线组1可发送两个数据流,天线组2可发送一个数据流,其中,天线组1发送两个数据流是非相干传输,如Tx1传输第一个数据流,Tx2传输第二个数据流。
假设A等于1,
Figure PCTCN2020136265-appb-000055
均等于
Figure PCTCN2020136265-appb-000056
p等于1,x等于1,那么,该预编码矩阵可为:
Figure PCTCN2020136265-appb-000057
可见,公式(11)所示的预编码矩阵,天线组1中Tx1和Tx2是非相干发送的,其中,Tx1发送第一个数据流,Tx2发送第二个数据流,Tx3发送第一个数据流。可见,第一个数据流由Tx1和Tx3发送,该第一个数据流的总功率比较大,有利于在第一个数据流的SNR比较高时基于注水法的原则分配更多的功率给该第一个数据流。
可选的,Tx3也可以发送第二个数据流,即该预编码矩阵是:
Figure PCTCN2020136265-appb-000058
可见,公式(12)所示的预编码矩阵与公式(11)所示的预编码矩阵相比,Tx3发送第二个数据流,有利于尽量让发送多个数据流的天线组内天线之间的功率更加均衡,有利于简化接收机的设计。
方式2.2.2.3,发送多个数据流的天线组包括一个天线。
以N等于3,M等于2,秩R等于2为例,该方式的预编码矩阵可满足如下特征:
Figure PCTCN2020136265-appb-000059
其中,A、
Figure PCTCN2020136265-appb-000060
p、x可参见上述公式(3)的相关阐述,此处不再详述。另外,该公式(13)所示的预编码矩阵每一行与Tx之间的映射关系、3T的天线分组信息与图3所示的映射关系、天线分组信息相同,此处不再详述。可见,公式(13)所示的预编码矩阵中,Tx1和Tx2所在的天线组1只发送第一个数据流,Tx3所在的天线组2发送第一个数据流和第二个数据流。
举例来说,假设A等于1,
Figure PCTCN2020136265-appb-000061
均等于
Figure PCTCN2020136265-appb-000062
p等于1,x等于1,那么,该预编码矩阵可为:
Figure PCTCN2020136265-appb-000063
可见,该公式(14)所示的预编码矩阵,可使得Tx1和Tx2共同发送第一个数据流且是同相位发送;Tx3发送第一个数据流和第二个数据流。
可选的,针对秩为2的预编码矩阵,{α,β}作为不同天线组之间的功率因子,用于调整的是不同天线组之间的功率配比。
例如,假设预编码矩阵每一行与Tx之间的映射关系、3T的天线分组信息与图3所示的映射关系、天线分组信息相同,并且,天线组内天线之间的功率均匀分配,即均为
Figure PCTCN2020136265-appb-000064
{α,β}作为不同天线组之间的功率因子;第一个天线组内天线之间的相位因子是x,则该预编码矩阵可为:
Figure PCTCN2020136265-appb-000065
可选的,针对秩为2的预编码矩阵,部分天线流间非等功率,允许主天线构成的天线组选择传输流。假设预编码矩阵每一行与Tx之间的映射关系、3T的天线分组信息与图3所示的映射关系、天线分组信息相同,并且,第一个天线组内天线之间的功率均匀分配,即均为
Figure PCTCN2020136265-appb-000066
第一个天线组内天线之间的相位因子是x,第二个天线组是主天线构成的天线组,其功率为
Figure PCTCN2020136265-appb-000067
则该预编码矩阵可为:
该预编码矩阵可为:
Figure PCTCN2020136265-appb-000068
可选的,针对秩为2的预编码矩阵,天线之间的功率能力是相等的,而天线组之间的功率能力是不同的。
例如,假设预编码矩阵每一行与Tx之间的映射关系、3T的天线分组信息与图3所示的映射关系、天线分组信息相同,该预编码矩阵可为:
Figure PCTCN2020136265-appb-000069
可见,Tx1至Tx3的功率均为
Figure PCTCN2020136265-appb-000070
但第一个天线组的总功率是2/3,第二个天线组 的总功率是1/3,即第一个天线组与第二个天线组之间的功率能力不同。其中,第一个天线组内传输第1个数据流时天线之间的相位因子是x,传输第2个数据流时天线之间的相位因子是-x。
实施方式2.3,针对终端设备具有N个天线,M个天线组的情况,秩为3的预编码矩阵W 3所需满足的特征。
预编码矩阵W 3与上述预编码矩阵W 1类似,其中参数1至参数4的相关实施方式可参见上述实施方式2.1中的相关阐述,此处不再详述。该实施方式主要阐述N个天线是如何映射3个数据流的。如前文公式(1)所述,[z (0)(i) … z (P-1)(i)] T是预编码后的数据,对应终端设备具有的多个Tx;[y (0)(i) … y (v-1)(i)] T是待预编码的多个数据流,该实施方式阐述预编码矩阵可包括但不限于以下几种映射方式:
方式2.3.1,该预编码矩阵是用于部分天线组分别发送一个数据流,另外一部分天线组分别发送多个数据流。
方式2.3.1.1,发送多个数据流的天线组,多天线之间相干传输。
以N等于3,M等于2,M个天线组包括第一个天线组和第二个天线组,第一个天线组由两个天线组成,第二个天线组由一个天线组成;预编码矩阵是用于由第二个天线组选择传输的数据流的预编码矩阵;该预编码矩阵满足如下特征:
Figure PCTCN2020136265-appb-000071
其中,A、
Figure PCTCN2020136265-appb-000072
p、x可参见上述公式(3)的相关阐述,此处不再详述。另外,该公式(18)所示的预编码矩阵每一行与Tx之间的映射关系、3T的天线分组信息与图3所示的映射关系、天线分组信息相同,此处不再详述。其中,预编码矩阵的每一列与3个数据流的对应关系可为:第一列对应第1个数据流,第二列对应第2个数据流,第三列对应第3个数据流。可见,公式(18)所示的预编码矩阵,可使得天线组1可发送两个数据流,天线组2可发送另外一个数据流,其中,天线组1发送两个数据流时,可设计{α,β}作为流间的功率分配因子,来调整流间的功率比。
假设
Figure PCTCN2020136265-appb-000073
均等于
Figure PCTCN2020136265-appb-000074
p等于1,{α,β}均为
Figure PCTCN2020136265-appb-000075
即天线组之间的功率均匀分配,第一个数据流与第二个数据流之间的功率均匀分配,该预编码矩阵可为:
Figure PCTCN2020136265-appb-000076
假设
Figure PCTCN2020136265-appb-000077
均等于1,p等于1,{α,β}均为1,即天线组之间、天线组内天线之间均等功率,那么,该预编码矩阵可为:
Figure PCTCN2020136265-appb-000078
方式2.3.1.2,发送多个数据流的天线组,多天线之间非相干传输。
以N等于3,M等于2,M个天线组包括第一个天线组和第二个天线组,第一个天线 组由两个天线组成,第二个天线组由一个天线组成,该预编码矩阵满足如下特征:
Figure PCTCN2020136265-appb-000079
其中,A、
Figure PCTCN2020136265-appb-000080
p、x可参见上述公式(3)的相关阐述,此处不再详述。另外,该公式(21)所示的预编码矩阵每一行与Tx之间的映射关系、3T的天线分组信息与图3所示的映射关系、天线分组信息相同,此处不再详述。可见,公式(21)所示的预编码矩阵,可使得天线组1可发送两个数据流,天线组2可发送一个数据流,其中,天线组1发送两个数据流是非相干传输,如Tx1传输第一个数据流,Tx2传输第二个数据流,天线组2发送第三个数据流。
假设
Figure PCTCN2020136265-appb-000081
均等于1,p等于1,那么,该预编码矩阵可为:
Figure PCTCN2020136265-appb-000082
可见,公式(22)所示的预编码矩阵,可使得天线组之间的功率均匀分配,以及天线组1传输的第一个数据流与第二个数据流之间的功率也均匀分配。
实施方式2.4,针对终端设备具有4Tx、5Tx的预编码矩阵示例。
针对终端设备具有4个天线,2个天线组,其中一个天线组包括3个天线,另一个天线组包括1个天线的预编码矩阵,原理与实施方式2.1类似。以两个天线组的
Figure PCTCN2020136265-appb-000083
均等于
Figure PCTCN2020136265-appb-000084
Figure PCTCN2020136265-appb-000085
天线组内天线之间功率均匀分配,且天线组内的相位因子为{x 1,x 2}(即假设以第一个天线的相位为基准,第二个天线相对于第一个天线调整的相位因子为x 1,第三个天线相对于第一个天线调整的相位因子为x 2)为例,该预编码矩阵可为:
Figure PCTCN2020136265-appb-000086
针对终端设备具有5个天线,5Tx可以划分为3Tx+2Tx两个天线组,或者是2Tx+2Tx+1Tx三个天线组等。以2Tx+2Tx+1Tx三个天线组为例,原理与实施方式2.1类似。以3个天线组的最大功率因子均等于
Figure PCTCN2020136265-appb-000087
即天线组之间最大功率均匀分配;以及,天线组内天线之间功率均匀分配为例,该预编码矩阵可为:
Figure PCTCN2020136265-appb-000088
其中,x 11和x 21分别是不同的天线组内的天线间的相位调整因子,如该预编码矩阵的行数从上到下依次与Tx1至Tx5一一对应,分别是天线组1,天线组2,天线组3,则x 11表示天线组1中Tx2相对于Tx1调整的相位因子,x 21表示天线组2中Tx4相对于Tx3调整的相位因子。另外,当有多个天线组的时候,多个天线组之间的关系可以体现为:多个天线组之间均为非相干的关系(即无相位和/或幅度校准);或者,多个天线组中部分天线组间为非相干的关系,另一部分为相干的关系;或者,多个天线组之间均为相干的关系。例如,该5Tx的分组的预编码矩阵可以写成这样的形式:
Figure PCTCN2020136265-appb-000089
对于具有相干关系的组,如天线组1、天线组2、天线组3,p 1、p 2、p 3的取值可以是小于天线组之间的相干校准精度的值,比如终端设备能够保证两组天线之间的相位校准精度是45度,则p 1、p 2、p 3可以用于指示天线组之间小于45度的相位变化;反之,对于没有相干关系的那些组,其p 1、p 2、p 3的取值可以是大于相干校准精度的值,或者为1(也就是说不调整非相干的天线组之间相位和/或幅度关系)。需要注意的是,p 1、p 2、p 3可以表示 相位或幅度的因子。
第3部分,以下结合上述实施方式2所述的预编码矩阵的特征,对上述实施方式1所述的确定预编码矩阵的方式进行对应阐述。
针对上述实施方式1.1所述的确定预编码矩阵的方式,终端设备和网络设备中预定义的码本可以是一个个整体的矩阵,如公式(2)中的相关参数是已知的;网络设备发送的预编码矩阵指示信息用于指示其中一个预编码矩阵的索引,从而终端设备可基于该索引确定预编码矩阵。
针对上述实施方式1.2所述的确定预编码矩阵的方式,网络设备针对秩为1的预编码矩阵,可利用预编码矩阵指示信息指示上述参数1至参数4。可选的,网络设备可分别采用不同的信息指示参数1至参数4。例如,网络设备可通过高层信令指示参数1所述的总功率归一化因子、参数2所述的天线组之间的功率因子、参数3所述的天线之间的功率因子;以及,网络设备可通过物理层信令指示参数4所述的天线之间的相位因子。由于功率相对变化较慢,相位相对变化比较,这样,既能降低物理层信令的开销,又能保证预编码矩阵与信道的匹配度。其中,高层信令可以为RRC信令、MAC-CE信令等,物理层信令可以为DCI等。
针对实施方式1.1、实施方式1.3所述的确定预编码矩阵的方式,终端设备可通过能力上报告知网络设备自身所支持的上述参数1至参数5中的一个或多个,网络设备可采用两种方式确定预编码矩阵指示信息。
方式3.1,预编码矩阵指示信息对应的是终端设备支持的参数所对应的预编码矩阵。
即网络设备可采用预编码矩阵指示信息仅指示终端设备支持的预编码矩阵中的其中一个,这样预编码矩阵指示信息所需的比特数相对较少,开销相对较低,另外,由于不同终端设备所支持的预编码矩阵的个数可能不同,因此,网络设备发送的预编码矩阵指示信息的比特数可能是不同,且预编码矩阵指示信息的取值与预编码矩阵的对应关系是可变的,如随着终端设备的能力变化而变化。
例如,终端设备和网络设备中预定义的码本包括Q个码字,其中,终端设备1所支持的预编码矩阵是第一归一化因子对应的Q1个码字,Q1≤Q,那么,预编码矩阵指示信息所需的比特数只需能够指示该Q1个码字中的任意一个即可;终端设备2所支持的预编码矩阵是第二归一化因子对应的Q2个码字,Q2≤Q,那么,预编码矩阵指示信息所需的比特数只需能够指示该Q2个码字中的任意一个即可,因此,网络设备发送给终端设备1的预编码矩阵指示信息的比特数与发送给终端设备2的预编码矩阵指示信息的比特数可能不同。
针对实施方式1.3所述的确定预编码矩阵的方式,网络设备通过高层信令指示上述参数1至参数5中的至少一个,以及通过预编码矩阵指示信息指示预编码矩阵的索引;进而,终端设备根据该预编码矩阵的索引,确定对应的预编码矩阵,其中,该预编码矩阵中存在上述参数1至参数5中至少一个变量;终端设备可根据高层信令指示的参数,确定最终的预编码矩阵。
假设预定义的码本中,各预编码矩阵满足上述图3所示的特征,天线组1与天线组2之间的最大功率相等,天线组1内的Tx1与Tx2之间的最大功率也相等;以及,A的取值 为集合1,x的取值为集合2,p的取值为集合3。其中,用于度量集合规模大小的属性称为集合的势,集合1的势记为L A,集合2的势记为L x,集合3的势记为L p。假设L A等于1,即该预定义的码本中各预编码矩阵具有协议预定义的归一化因子;L x等于4,集合2包括4个协议预定义的取值,集合2是{1,-1,j,-j};Lp根据终端设备上报能力确定。
假设终端设备1上报支持p的集合3是{p1},终端设备2上报支持p的集合3是{p1,p2}。那么,采用该方式3.1所述的预编码矩阵指示信息对应的是终端设备支持的参数所对应的预编码矩阵,那么,针对终端设备1,该预编码矩阵指示信息与终端设备1支持的参数(即组间功率p)所对应的预编码矩阵之间的对应关系,可如表2所示。针对终端设备2,该预编码矩阵指示信息与终端设备2支持的参数(即组间功率p)所对应的预编码矩阵之间的对应关系,可如表3所示。其中,[] T表示矩阵的转置。
表2 预编码矩阵指示信息与终端设备1支持的参数对应的预编码矩阵之间的对应关系
Figure PCTCN2020136265-appb-000090
表3 预编码矩阵指示信息与终端设备2支持的参数对应的预编码矩阵之间的对应关系
Figure PCTCN2020136265-appb-000091
Figure PCTCN2020136265-appb-000092
可见,如表2、表3所示,终端设备1与终端设备2所支持的预编码矩阵的个数不同,前者是4个,后者是8个,因此,网络设备发送的预编码矩阵指示信息的比特数不同,如前者是2个比特即可,后者是3个比特。
上述{p1,p2}可以设计为
Figure PCTCN2020136265-appb-000093
或者设计为
Figure PCTCN2020136265-appb-000094
或者,终端设备支持p的集合3是{p1,p2,p3},该{p1,p2,p3}可设计为
Figure PCTCN2020136265-appb-000095
该设计是结合上述参数2所述的细调天线组之间的功率可以是0、6dB、-6dB等而设计的。
其中,上述表2、表3中,先针对相同的p值,依次排列集合2中x的各取值所对应的预编码矩阵,如上述取值V 1至V 4依次对应同一p1值,各x的取值分别对应的预编码矩阵,即p的取值相同,x的取值在集合2中相邻,对应的预编码矩阵的预编码矩阵指示信息的取值也是相邻的。如表2中x的取值依次是1,-1,j,-j的预编码矩阵分别对应的预编码矩阵指示信息的取值依次是V 1、V 2、V 3、V 4;表3中p的同一取值p1,x的取值依次是1,-1,j,-j的预编码矩阵分别对应的预编码矩阵指示信息的取值依次是V′ 1、V′ 2、V′ 3、V′ 4;表3中p的同一取值p2,x的取值依次是1,-1,j,-j的预编码矩阵分别对应的预编码矩阵指示信息的取值依次是V′ 5、V′ 6、V′ 7、V′ 8
可选的,上述表3中,也可针对相同的x值,依次排列集合3中p的各取值所对应的预编码矩阵。即表3可更换为:x的同一取值1,p的取值依次是p1、p2的预编码矩阵分别对应的预编码矩阵指示信息的取值依次是V′ 1、V′ 2;x的同一取值-1,p的取值依次是p1、p2的预编码矩阵分别对应的预编码矩阵指示信息的取值依次是V′ 3、V′ 4;x的同一取值j,p的取值依次是p1、p2的预编码矩阵分别对应的预编码矩阵指示信息的取值依次是V′ 5、V′ 6;x的同一取值-j,p的取值依次是p1、p2的预编码矩阵分别对应的预编码矩阵指示信息的取值依次是V′ 7、V′ 8
另外,针对不同能力的终端设备,预编码矩阵指示信息与预编码矩阵之间的对应关系可以是嵌套的,即部分相同。例如,表2、表3所示的对应关系可部分相同,即V 1=V′ 1、V 2=V′ 2、V 3=V′ 3、V 4=V′ 4
方式3.2,预编码矩阵指示信息对应的是所有参数所对应的预编码矩阵,即不仅仅对应的是终端设备支持的参数的预编码矩阵。
网络设备可采用预编码指示信息指示所有终端设备支持的预编码矩阵中的其中一个。例如,终端设备和网络设备中预定义的码本包括Q个码字,预编码矩阵指示信息所需的比特数需能够指示该Q个码字中的任意一个,对于不同终端设备,预编码矩阵指示信息的比特数相同。这样,对于不同的终端设备,预编码指示信息的取值与预编码矩阵之间的对应关系是一样的,(比如说DCI的解读是一样的),从而可简化实现逻辑。
可见,该方式3.2中,网络设备发送的预编码矩阵指示信息可对应不同能力的终端设备。但是,针对特定的终端设备,网络设备所发送的预编码矩阵指示信息仅指示该终端设备所支持的预编码矩阵。例如,针对表3所示的对应关系,对于终端设备1来说,网络设备只能从V′ 1至V′ 4中选择一取值;对于终端设备2来说,网络设备可从V′ 1至V′ 8中选择一取值。 也就是说,对于终端设备1来说,它不期望接收到V′ 5至V′ 8中的其中一值;若是接收到,则终端设备可认为该预编码矩阵指示信息所在的DCI无效,不发送上行信号或以其他方式处理。
本申请实施例中,预编码矩阵的行数为终端设备具有的天线个数,预编码矩阵的列数为终端设备传输的数据流的个数。如上所述,预编码矩阵或预编码矩阵相关的上述参数1至参数5是与天线分组有关的,因此,在第4部分阐述天线分组信息的相关内容。
第4部分,终端设备具有的N个天线对应的M个天线组进行相关阐述。
实施方式4.1,该N个天线对应的M个天线组可以是网络设备指示的。
其中,网络设备指示该M个天线组的天线分组信息的方式可包括但不限于以下两种。
方式4.1.1,网络设备通过预编码矩阵指示的。预编码矩阵能够体现天线组之间的功率分配因子、包含多个天线的每个天线组内天线之间的功率分配因子、相位因子,故对于网络设备侧来说,可通过上述实施方式1或实施方式3告知终端设备,N个天线对应的M个天线组;对于终端设备侧来说,可通过上述实施方式1或实施方式3确定的预编码矩阵,获知N个天线对应的M个天线组。可选的,预定义的码本中不同天线组合的M个天线组对应不同的预编码矩阵,网络设备通过指示不同的预编码矩阵,来表示不同天线组合的M个天线组。
进而,终端设备将自己的天线对应映射到预编码矩阵设计的行,进行相应的传输。例如,针对上述所述的N个天线对应的M个天线组的预编码矩阵W1,以终端设备具有的天线的索引的大小为顺序,依次分为1至M个天线组,以预编码矩阵具有的行的索引的大小为顺序,依次分为1至M个行组,这样,每个行组依次用于对应的天线组的相干传输或非相干传输。例如,预编码矩阵的前M1行用于第1个天线组的M1个天线的相干传输,预编码矩阵的后续M2行用于第2个天线组的M2个天线的相干传输,等等,依次类推,预编码矩阵的最后Mm行用于第M个天线组的Mm个天线的相干传输。
方式4.1.2,该N个天线对应的M个天线组是网络设备通过信令指示的。即网络设备指示天线分组信息的方式与上述实施方式1至实施方式3中任一确定预编码矩阵的方式是分开的。
实施方式4.2,该N个天线对应的M个天线组是终端设备上报的。其中,终端设备上报该M个天线组的天线分组信息可包括但不限于以下几种方式。
方式4.2.1,终端设备通过信令显式上报天线分组信息。例如,假设终端设备具有3个天线,分别是天线1、天线2、天线3,那么,终端设备可上报的天线分组信息为:{天线1,天线2}{天线3}、{天线1,天线3}{天线2}、{天线2,天线3}{天线1}中的任一种的2个天线组。
方式4.2.2,终端设备以隐式方式上报天线分组信息。例如,终端设备可上报其所支持的预编码矩阵,进而,网络设备基于终端设备上报的所支持的预编码矩阵,获知天线分组信息。
方式4.2.3,终端设备通过上报天线之间的功率差,告知网络设备其所支持的天线分组信息。例如,假设终端设备具有3个天线,分别是天线1、天线2、天线3,那么,终端设 备可上报的功率差信息为:1:1:2,那么,网络设备可获知天线1和天线2是等功率的相干传输,属于一个天线组,天线3属于另一个天线组。
实施方式4.3,该N个天线对应的M个天线组是预定义的。
例如,终端设备与网络设备在连接建立协商阶段,可提前基于该N个天线的M个天线组分别存储在终端设备和网络设备中,从而有利于在数据传输阶段可直接针对该M个天线组确定预编码矩阵。
可见,预编码矩阵指示信息所确定的预编码矩阵是考虑N个天线对应的M个天线组而设计的,从而有利于调用终端设备的多个天线进行上行传输,大大提升了系统容量。
例如,针对终端设备配置了3个天线且支持载波聚合技术的情况,网络设备可采用部分天线相关传输的预编码矩阵,使得天线能力相近或相同的2个天线针对一个频段,如载波1进行相干传输,将剩余的1个天线针对另一个频段,如载波2,进行单独传输。其中,该两个频段(或载波)之间可不共用天线或者是不共用射频模块。从而有利于提升系统带宽。
再例如,针对终端设备配置了3个天线且支持非独立组网(Non stand alone,NSA)模式,即终端设备支持同时工作在多种通信制式下,如LTE和NR两种制式下,网络设备确定的预编码矩阵指示信息时,可针对LTE制式采用其中1个天线,针对NR制式采用剩余的2个天线,这样,可以兼容NR制式中的功能比LTE更加先进的情况。
再例如,终端设备从上述两种场景切换到只有一个频段,如终端设备漫游到的地方的运营商只有一段上行频谱,或随着通信系统的发展,LTE的频段逐渐减少,若终端设备还使用其中1个天线或2个天线来进行上行传输的话,会导致剩余天线的浪费。因此,考虑到技术演进的方向,本申请实施例主要涉及的是由N1和N2个天线拼成的N个天线的情况下,如何充分利用硬件和功率资源,提升上行传输速率或可靠性的方案。
网络设备确定预编码矩阵指示信息所指示的预编码矩阵时,可以考虑该N个天线中各天线的工程设计标准的不同,如Tx1和Tx2之间可做到较好的校准精度(相对相位、相对功率的校准),因此,可采用相干发送,另外一个Tx3是单独的,Tx3与Tx1、Tx2之间只能达到粗糙的校准水平。而且Tx1和Tx2本身都是较低成功的低功率天线,如最大发射功率只能达到20dBm,而Tx1和Tx2联合发送时可达到最大功率23dBm的效果,而Tx3本身就可以达到最大功率23dBm,可见,这三个天线具有不同的最大发射功率能力。
如上所述,经过研究发现,还没有针对其他天线形态所设计的预编码矩阵。例如,针对3个天线的预编码矩阵如何设计,可改善上行传输的性能。
本申请还提供一种上行传输方法200,该方法200中波束指示信息可指示波束组,该波束组内相邻波束之间的相位差小于终端设备具有的N个天线之间的相位分辨率,并且波束组内各波束适用于上行传输的不同资源单元,这样,所设计的码本具有鲁棒性,能够在复杂的信道环境中取得折中的性能结果。
请参阅图5,图5是本申请实施例提供的一种上行传输方法200的流程示意图。如图5所示,该上行传输方法200可包括但不限于以下步骤:
S201、网络设备确定波束指示信息;
该波束指示信息用于指示波束组,该波束组内相邻波束之间的相位差小于终端设备的N个天线之间的相位分辨率,N为大于或等于3的整数;该波束组中各波束适用于不同的资源单元。
可选的,网络设备确定波束指示信息之前,还接收来自终端设备的能力上报信息,该能力上报信息用于指示终端设备进行上行传输的天线个数N。相应的,终端设备可发送该能力上报信息。
S202、网络设备发送该波束指示信息;
S203、终端设备接收该波束指示信息;
S204、终端设备根据该波束指示信息所指示的波束组,确定预编码矩阵。
可见,该上行传输方法所确定的预编码矩阵可使得N个天线传输的数据流在不同的资源单元上形成的波束之间的相位差小于终端设备N个天线之间的相位分辨率,从而有利于避免天线之间的相对相位发生漂移所导致的性能问题,即本申请实施例设计的预编码矩阵具有鲁棒性,能够在复杂的信道环境中取得折中的性能效果。
例如,如图6所示,以采样间隔为60°采样获得波束为例,针对终端设备具有3个天线的情况,在时间t1,网络设备进行上行信道状态信息的测量,确定最匹配的预编码方向是0度,也就是如图6所示的m=0所对应的相位方向;由于天线之间的相位校准有一定的误差,在时间t2,波束顺时针旋转了40度,即天线具有的相位校准精度是正负40度,此时,预编码矩阵设计的相位分辨率最小是80度,故最匹配的预编码方向是60度,也就是如图6所示的m=1所对应的相位方向。因此,本申请实施例中波束指示信息所指示的波束组可包括m=0和m=1的波束,可见,该波束组中相邻波束的相位差为60度,小于天线之间的相位分辨率80度,从而有利于弥补上述相位漂移,可见,本申请实施例所设计的预编码矩阵具有鲁棒性。
本申请实施例中,波束指示信息所指示的波束组可以是基向量过采样后形成的多个波束组中的一个。其中,基向量可以为离散傅里叶变换(Discrete Fourier Transform,DFT)基向量、离散余弦变换(discrete cosine transform,DCT)向量、信道特征向量、信道相关矩阵的特征向量等。
例如,如图7所示,图7是本申请实施例提供的一种三天线-基向量的可选波束的示意图。如图7所示,针对三天线,可选的DFT基向量有三个,且相邻波束之间的相位差为120度。基向量经过采样因子(O=2)的过采样后,可获得如图6所示的可选波束,图6所示的波束中任意两个相邻的波束之间的相位差是60度,若天线的相位分辨率是80度,则该图6所示的相位差可小于天线的相位分辨率,从而有利于弥补上述相位漂移。
本申请实施例中,波束组中波束的个数大于或等于波束覆盖范围与波束分辨率之间的比值;波束覆盖范围与相位分辨率相关,波束分辨率等于2π/NO,该O表示基向量的过采样因子,N表示终端设备具有的天线的个数。波束覆盖范围与天线的相位校准精度有关,如波束覆盖范围可以等于相位校准精度。
这样,波束组中波束的个数大于或等于波束覆盖范围与波束分辨率之间的比值,可表示为如下公式:
Figure PCTCN2020136265-appb-000096
其中,K表示波束组中波束的个数,相位校准精度是正负n度,相位分辨率为2n度,那么,波束覆盖范围为2n度。
本申请实施例中,波束指示信息指示波束组的方式,可以是:波束指示信息指示波束组中每个波束的索引;或者,波束指示信息指示波束组的索引。
例如,O等于2,N等于3,n等于40度,故K≥4/3,以K等于2为例,图6中任意两个相邻的波束为一个波束组,如波束组1包括m=0,m=1的波束,波束组2包括m=2,m=3的波束,波束组3包括m=4,m=5的波束。例如,波束指示信息可分别指示m=0,m=1的波束,或者,波束指示信息可指示波束组1即可。
再例如,O等于4,N等于3,那么基向量经过采样后可获得如图8所示的可选波束的示意图。图8是以采样间隔为30度进行采样的,获得的相邻波束之间的相位差为30度。以n等于40度为例,则K≥8/3,以K等于3为例,图8中任意三个相邻的波束为一个波束组,如波束组1包括m=0,m=1,m=2的波束,波束组2包括m=3,m=4,m=5的波束,波束组3包括m=6,m=7,m=8的波束,波束组4包括m=9,m=10,m=11的波束。这样,波束指示信息可分别指示波束组中的波束的索引,或波束组的索引即可。
可选的,波束组包含一个或多个波束,不同的波束组之间可以不包含相同的波束,或者包含部分相同的波束。比如,相邻的两个波束组可能有部分波束是重叠的。
本申请实施例中,波束组中各波束与资源单元之间的对应关系可以是预先定义的,也可以是RRC、DCI等信令指示的。例如,终端设备将m=0,m=1,m=2的波束进行功率归一化后,可依次应用于RB0、RB1、RB2等等。
假设上行传输的资源单元个数为S,若S对K求余为零,则可将该S个资源单元划分为S/K个资源单元组,每个资源单元组中包括K个资源单元。以下对该S个资源单元与上述K个波束之间的对应关系可包括但不限于以下两种可选的方式。
方式1,针对每组资源单元,K个资源单元依次与波束组中的K个波束一一对应,每个资源单元应用对应的波束。例如,假设S等于4,K等于2,一个资源单元为一个子带,则该4个子带可分别是SB1,SB2,SB3,SB4,以子带的索引从低到高,将该4个子带划分为2个子带组,子带组1包括SB1、SB2,子带组2包括SB3、SB4;假设波束组中的波束分别是m=0,m=1,则采用该方式,可获知如图9所示的上行传输的4个子带所采用的波束,即子带组1中的SB1应用m=0的波束,子带组1中的SB2应用m=1的波束;子带组2中的SB3应用m=0的波束,子带组2中的SB4应用m=1的波束。
方式2,S/K个资源单元组交替应用波束组中的各个波束,即每K个资源单元应用波束组中的一个波束。例如,假设S等于4,K等于2,一个资源单元为一个子带,则该4个子带可分别是SB1,SB2,SB3,SB4,以子带的索引从低到高,将该4个子带划分为2个子带组,子带组1包括SB1、SB2,子带组2包括SB3、SB4;假设波束组中的波束分别是m=0,m=1,则采用该方式,可获知如图10所示的上行传输的4个子带所采用的波束,即子带组1中的SB1应用m=0的波束,子带组1中的SB2应用m=1的波束;子带组2中的SB3应用m=0的波束,子带组2中的SB4应用m=1的波束。可选的,该方式也可不划分 资源单元组,而是以每K个资源单元轮流应用波束组中的各波束。
另一种实施方式中,假设上行传输的资源单元个数为S,若S对K求余不为零,比如为S1,则可将该S个资源单元划分为
Figure PCTCN2020136265-appb-000097
个资源单元组,其中
Figure PCTCN2020136265-appb-000098
个资源单元组中包括K个资源单元,剩余1个资源单元组中包括S1个资源单元,S1<S。以下对该K个资源单元与上述K个波束之间的对应关系可包括但不限于以下两种可选的方式。
方式3,针对其中
Figure PCTCN2020136265-appb-000099
个资源单元组,每个资源单元组中K个资源单元依次与波束组中的K个波束一一对应,与上述实施方式中的方式1类似,每个资源单元应用对应的波束;针对剩余的包括S1个资源单元的资源单元组,该S1个资源单元可依次采用波束组中K个波束中的S1个波束,可选的,K个波束中选择的该S1个波束可协议预定义。例如,假设S等于5,K等于2,一个资源单元为一个子带,则该4个子带可分别是SB1,SB2,SB3,SB4,SB5,以子带的索引从低到高,将该5个子带划分为3个子带组,子带组1包括SB1、SB2,子带组2包括SB3、SB4,子带组3包括SB5;假设波束组中的波束分别是m=0,m=1,则采用该方式,可获知如图11所示的上行传输的5个子带所采用的波束,即子带组1中的SB1应用m=0的波束,子带组1中的SB2应用m=1的波束;子带组2中的SB3应用m=0的波束,子带组2中的SB4应用m=1的波束;子带组3中的SB5应用m=0或m=1的波束。
方式4,
Figure PCTCN2020136265-appb-000100
个资源单元组交替应用波束组中的各个波束,即其中
Figure PCTCN2020136265-appb-000101
个资源单元组,每K个资源单元应用波束组中的一个波束,与上述实施方式中的方式2类似;剩余的包括S1个资源单元的资源单元组应用波束组中的一个波束。例如,假设S等于5,K等于2,一个资源单元为一个子带,则该5个子带可分别是SB1,SB2,SB3,SB4,SB5,以子带的索引从低到高,将该5个子带划分为3个子带组,子带组1包括SB1、SB2,子带组2包括SB3、SB4,子带组3包括SB5;假设波束组中的波束分别是m=0,m=1,则采用该方式,可获知如图12所示的上行传输的5个子带所采用的波束,即子带组1中的SB1、SB2均应用m=0的波束,子带组2中的SB2、SB3均应用m=1的波束;子带组3中的SB5应用m=0的波束。可选的,该方式也可不划分资源单元组,而是其中
Figure PCTCN2020136265-appb-000102
个资源单元,以每K个资源单元轮流应用波束组中的各波束;剩余S1个资源单元应用波束组中的一个波束。
本申请实施例中,不同数据流在同一资源单元上的波束正交。步骤S204终端设备根据波束组,确定预编码矩阵,包括:终端设备根据所述波束指示信息所指示的波束组,确定每个数据流的波束组;终端设备根据所述每个数据流的波束组,确定预编码矩阵。
对于秩大于或等于2的预编码矩阵来说,与上述秩为1的预编码矩阵的不同之处在于,相同的资源单元上,不同数据流所使用的波束是正交的。例如,图13是本申请实施例提供的一种两个数据流的波束选择示意图。其中,图13所示的基向量过采样后的波束组如图8所示,另外,终端设备根据波束指示信息可确定两个波束组,第1个数据流对应的波束组包括m=0和m=1的波束,第2个数据流对应的波束组包括m=4和m=5的波束,且该两个个波束组是正交波束组。其中,正交波束组是指基于上述方式1至方式4所述的资源单元与波束之间对应关系,确定的同一资源单元上的多个波束之间正交。
假设上行传输的资源单元为4个RB,即S等于4,一个波束组包括2个波束,即K 等于2,采用上述方式1所述的资源单元与波束之间的对应关系,第1个数据流在RB0、RB1、RB2、RB3上分别对应使用是m=0、m=1、m=0、m=1的波束,第2个数据流在RB0、RB1、RB2、RB3上分别对应使用是m=4、m=5、m=4、m=5的波束,其中,m=0、m=1的波束构成的波束组与m=4、m=5构成的波束组之间正交,即m=0的波束与m=4的波束之间正交,m=1的波束与m=5的波束之间正交。
其中,不同数据流在确定波束与资源单元之间的对应关系时所采用的方式是相同的,如可以是上述所述的方式1至方式4中的任一种,从而有利于保证同一资源单元上应用的多个波束之间正交。
本申请实施例中,对于秩大于或等于2的预编码矩阵,波束指示信息可指示正交的多个波束组,如每个波束组的索引;或者,波束指示信息可指示正交的多个波束组中各波束的索引,如每个波束组中波束的索引;或者,波束指示信息可指示一标识,终端设备可根据该标识从预定义的多个正交波束组中确定相应的多个波束组。例如,假设上述m=0、m=1的波束构成的波束组与m=4、m=5构成的波束组对应标识0,那么,波束指示信息指示该标识0时,终端设备可获知正交的波束组是:m=0、m=1的波束构成的波束组与m=4、m=5构成的波束组。
本申请实施例中,终端设备根据每个数据流的波束组,确定预编码矩阵,包括:终端设备根据每个数据流的波束组,确定每个资源单元上的预编码矩阵。
例如,对于N等于3,秩为1,即资源单元s上对应的波束m传输1个数据流的预编码矩阵,可满足如下特征:
Figure PCTCN2020136265-appb-000103
其中,A为该预编码矩阵的归一化因子。进而,终端设备可基于波束组中m的取值,确定S个资源单元上每个资源单元的预编码矩阵。
对于N等于3,秩为2,即资源单元s上应用波束m传输第1个数据流,应用波束n传输第2个数据流的预编码矩阵,可满足如下特征:
Figure PCTCN2020136265-appb-000104
其中,该预编码矩阵中的第1列可对应传输第1个数据流,第2列可对应传输第2个数据流。可选的,鉴于第1个数据流在资源单元s上的波束m与第2个数据流在资源单元s上的波束n正交,该n可等于(m+O)。
对于N等于3,秩为3,即资源单元s上应用波束m传输第1个数据流,应用波束n传输第2个数据流,以及应用波束q传输第3个数据流的预编码矩阵,可满足如下特征:
Figure PCTCN2020136265-appb-000105
其中,该预编码矩阵中的第1列可对应传输第1个数据流,第2列可对应传输第2个数据流,第3列可对应传输第3个数据流。可选的,鉴于第1个数据流在资源单元s上的波束m、第2个数据流在资源单元s上的波束n以及第3个数据流在资源单元s上的波束q正交,该n可等于(m+O),q可等于(m+2O)。
可见,本申请实施例所设计的预编码矩阵具有鲁棒性,能够在复杂的信道环境中取得折中的性能结果,不偏向于特别的信道环境设计。
请参阅图14,图14是本申请实施例提供的一种通信装置1400的示意性框图。通信装置1400对应上述上行传输方法中的终端设备或网络设备。可选的,该通信装置1400可以包括但不限于:通信单元1401、处理单元1402。
一种可能的设计中,该通信装置1400可执行上述终端设备的相关操作,该通信装置可包括:
通信单元1401,用于接收预编码矩阵指示信息;
处理单元1402,用于根据预编码矩阵指示信息,确定预编码矩阵;
其中,预编码矩阵是针对M个天线组的预编码矩阵;M个天线组是终端设备的N个天线对应的天线组;N为大于或等于3的整数,M为大于或等于2的整数。
可见,该通信装置1400有利于针对不同天线能力的天线组确定预编码矩阵,从而有利于改善上行传输的性能。
该通信装置其他可选的实施方式可参见上述方法实施例中上行传输方法100中的相关内容,此处不再详述。
另一种可能的设计中,该通信装置1400可执行上述网络设备的相关操作,该通信装置可包括:
处理单元1402,用于确定预编码矩阵指示信息;
通信单元1401,用于发送预编码矩阵指示信息;
其中,预编码矩阵指示信息用于指示预编码矩阵,预编码矩阵是针对M个天线组的预编码矩阵;M个天线组是终端设备的N个天线对应的天线组;N为大于或等于3的整数,M为大于或等于2的整数。
该通信装置其他可选的实施方式可参见上述方法实施例中上行传输方法100所述的相关内容,此处不再详述。
又一种可能的设计中,该通信装置1400可执行上述终端设备的相关操作,该通信装置可包括:
通信单元1401,用于接收波束指示信息;
其中,波束指示信息用于指示波束组;波束组内相邻波束之间的相位差小于终端设备的N个天线之间的相位分辨率,N为大于或等于3的整数;波束组中各波束适用于不同的 资源单元;
处理单元1402,用于根据波束组,确定预编码矩阵。
该通信装置其他可选的实施方式可参见上述方法实施例中上行传输方法200所述的相关内容,此处不再详述。
又一种可能的设计中,该通信装置1400可执行上述网络设备的相关操作,该通信装置可包括:
处理单元1402,用于确定波束指示信息;
其中,波束指示信息用于指示波束组;波束组内相邻波束之间的相位差小于终端设备的N个天线之间的相位分辨率,N为大于或等于3的整数;波束组中各波束适用于不同的资源单元;
通信单元1401,用于发送波束指示信息。
该通信装置其他可选的实施方式可参见上述方法实施例中上行传输方法200所述的相关内容,此处不再详述。
请参阅图15,图15是本申请实施例提供的一种通信装置的结构示意图。所述通信装置1500可以是网络设备,也可以是终端设备,也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
所述通信装置可以包括一个或多个处理器1501。所述处理器1501可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端、终端芯片,DU或CU等)进行控制,执行软件程序,处理软件程序的数据。
可选的,所述通信装置1500中可以包括一个或多个存储器1502,其上可以存有指令1504,所述指令可在所述处理器1501上被运行,使得所述通信装置1500执行上述方法实施例中描述的方法。可选的,所述存储器1502中还可以存储有数据。所述处理器1501和存储器1502可以单独设置,也可以集成在一起。
可选的,所述通信装置1500还可以包括收发器1505、天线1506。所述收发器1505可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1505可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
一种可能的设计中,所述通信装置1500为网络设备,或网络设备中的装置、电路等:
处理器1501用于执行上行传输方法100中的S101的相关操作;或执行上述传输方法200中S201的相关操作;
收发器1505用于执行上行传输方法100中的S102的相关操作;执行上行传输方法200中的S202。
另一种可能的设计中,所述通信装置1500为终端设备,或终端设备中的装置、电路等:
处理器1501用于执行上行传输方法100中的S104的相关操作;或执行上述传输方法 200中S204的相关操作;
收发器1505用于执行上行传输方法100中的S103的相关操作;执行上行传输方法200中的S203的相关操作。
可选的,该通信装置1500还可执行上述方法实施例中的相关操作,此处不再详述。
一种可能的设计中,处理器1501中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
又一种可能的设计中,可选的,处理器1501可以存有指令1503,指令1503在处理器1501上运行,可使得所述通信装置1500执行上述方法实施例中描述的方法。指令1503可能固化在处理器1501中,该种情况下,处理器1501可能由硬件实现。
又一种可能的设计中,通信装置1500可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请实施例中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(Bipolar Junction Transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者终端设备,但本申请实施例中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图15的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,指令的存储部件;
(3)ASIC,例如调制解调器(MSM);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端、智能终端、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,可参见图16所示的芯片的结构示意图。图16所示的芯片1600包括处理器1601和接口1602。其中,处理器1601的数量可以是一个或多个,接口1602的数量可以是多个。
一种可能的设计中,对于芯片用于实现本申请实施例中网络设备的功能的情况:
处理器1601用于执行上行传输方法100中的S101的相关操作;或执行上述传输方法200中S201的相关操作;
接口1602用于执行上行传输方法100中的S102的相关操作;执行上行传输方法200中的S202。
一种可能的设计中,对于芯片用于实现本申请实施例中终端设备的功能的情况:
处理器1601用于执行上行传输方法100中的S104的相关操作;或执行上述传输方法200中S204的相关操作;
接口1602用于执行上行传输方法100中的S103的相关操作;执行上行传输方法200中的S203的相关操作。
可选的,芯片还包括存储器1603,存储器1603用于存储终端设备或网络设备必要的程序指令和数据。
可选的,该芯片还可执行上述方法实施例中的相关操作,此处不再详述。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请还提供了一种计算机可读介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述任一方法实施例的功能。
本申请还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
以上所述,为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (43)

  1. 一种上行传输方法,其特征在于,所述方法包括:
    终端设备接收预编码矩阵指示信息;
    所述终端设备根据所述预编码矩阵指示信息,确定预编码矩阵;
    所述预编码矩阵是针对M个天线组的预编码矩阵;所述M个天线组是所述终端设备的N个天线对应的天线组;所述N为大于或等于3的整数,所述M为大于或等于2的整数。
  2. 一种上行传输方法,其特征在于,所述方法包括:
    网络设备确定预编码矩阵指示信息;
    所述网络设备发送所述预编码矩阵指示信息;
    所述预编码矩阵指示信息用于指示预编码矩阵,所述预编码矩阵是针对M个天线组的预编码矩阵;所述M个天线组是终端设备的N个天线对应的天线组;所述N为大于或等于3的整数,所述M为大于或等于2的整数。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述M个天线组中,每个天线组内的天线具有相同或相近的天线能力,不同天线组之间的天线具有不同的天线能力。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,
    所述M个天线组中部分天线组之间包含的天线个数不同。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,
    所述N个天线对应的所述M个天线组是由网络设备指示的、所述终端设备确定的或是预定义的。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,
    所述预编码矩阵指示信息用于指示预编码矩阵的索引。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,所述预编码矩阵指示信息用于指示以下一个或多个参数:
    所述M个天线组的总功率归一化因子;
    不同天线组之间的功率因子;
    数据流之间的功率因子;
    包含多个天线的每个天线组内天线之间的功率因子;
    包含多个天线的每个天线组内天线之间的相位因子。
  8. 根据权利要求1至7任一项所述的方法,其特征在于,所述N等于3,所述M等 于2,所述M个天线组包括第一个天线组和第二个天线组,所述第一个天线组由两个天线组成,所述第二个天线组由一个天线组成;
    所述预编码矩阵是用于将一个数据流映射到2个天线组的预编码矩阵;
    所述预编码矩阵满足如下特征:
    Figure PCTCN2020136265-appb-100001
    所述2个天线组的总功率归一化因子记为A;
    所述第一个天线组和所述第二个天线组之间功率因子包括:所述第一个天线组的最大天线功率因子记为
    Figure PCTCN2020136265-appb-100002
    所述第二个天线组的最大功率因子记为
    Figure PCTCN2020136265-appb-100003
    所述第一个天线组与所述第二个天线组之间的天线功率因子记为p,p大于或等于1;
    所述第一个天线组内天线之间的功率相等;
    所述第一个天线组内天线之间的相位因子记为x。
  9. 根据权利要求1至7任一项所述的方法,其特征在于,所述N等于3,所述M等于2,所述M个天线组包括第一个天线组和第二个天线组,所述第一个天线组由两个天线组成,所述第二个天线组由一个天线组成;
    所述预编码矩阵是用于将2个数据流分别映射到对应的天线组,且每个天线组传输一个数据流的预编码矩阵;
    所述预编码矩阵满足如下特征:
    Figure PCTCN2020136265-appb-100004
    所述2个天线组的总功率归一化因子记为A;
    所述第一个天线组和所述第二个天线组之间功率因子包括:所述第一个天线组的最大天线功率因子记为
    Figure PCTCN2020136265-appb-100005
    所述第二个天线组的最大功率因子记为
    Figure PCTCN2020136265-appb-100006
    所述第一个天线组与所述第二个天线组之间的天线功率因子记为p,p大于或等于1;
    所述第一个天线组内天线之间的功率相等;
    所述第一个天线组内天线之间的相位因子记为x。
  10. 根据权利要求1至7任一项所述的方法,其特征在于,所述N等于3,所述M等于2,所述M个天线组包括第一个天线组和第二个天线组,所述第一个天线组由两个天线组成,所述第二个天线组由一个天线组成;
    所述预编码矩阵是用于将2个数据流映射到2个天线组,且其中一个天线组对所述2个数据流进行相干传输的预编码矩阵;
    所述预编码矩阵满足如下特征:
    Figure PCTCN2020136265-appb-100007
    所述2个天线组的总功率归一化因子记为A;
    所述第一个天线组和所述第二个天线组之间功率因子包括:所述第一个天线组的最大天线功率因子记为
    Figure PCTCN2020136265-appb-100008
    所述第二个天线组的最大功率因子记为
    Figure PCTCN2020136265-appb-100009
    针对第一个数据流,所述第一个天线组内天线之间的相位因子记为x;
    针对第二个数据流,所述第一个天线组内天线之间的相位因子记为-x;
    所述第一个天线组传输的所述第一个数据流的预编码向量与所述第二个数据流的预编码向量是正交的;
    所述第一个天线组传输的所述第一个数据流、所述第二数据流的功率因子分别是{α,β}。
  11. 根据权利要求1至7任一项所述的方法,其特征在于,所述N等于3,所述M等于2,所述M个天线组包括第一个天线组和第二个天线组,所述第一个天线组由两个天线组成,所述第二个天线组由一个天线组成;
    所述预编码矩阵是用于将2个数据流映射到2个天线组,且其中一个天线组对所述2个数据流进行非相干传输的预编码矩阵;
    所述预编码矩阵满足如下特征:
    Figure PCTCN2020136265-appb-100010
    所述2个天线组的总功率归一化因子记为A;
    所述第一个天线组和所述第二个天线组之间功率因子包括:所述第一个天线组的最大天线功率因子记为
    Figure PCTCN2020136265-appb-100011
    所述第二个天线组的最大功率因子记为
    Figure PCTCN2020136265-appb-100012
    所述第一个天线组与所述第二个天线组之间的天线功率因子记为p。
  12. 根据权利要求1至7任一项所述的方法,其特征在于,所述N等于3,所述M等于2,所述M个天线组包括第一个天线组和第二个天线组,所述第一个天线组由两个天线组成,所述第二个天线组由一个天线组成;
    所述预编码矩阵是用于将3个数据流映射到2个天线组,且其中一个天线组对其中2个数据流进行相干传输的预编码矩阵;
    所述预编码矩阵满足如下特征:
    Figure PCTCN2020136265-appb-100013
    所述2个天线组的总功率归一化因子记为A;
    所述第一个天线组和所述第二个天线组之间功率因子包括:所述第一个天线组的最大 天线功率因子记为
    Figure PCTCN2020136265-appb-100014
    所述第二个天线组的最大功率因子记为
    Figure PCTCN2020136265-appb-100015
    针对第一个数据流,所述第一个天线组内天线之间的相位因子记为x;
    针对第二个数据流,所述第一个天线组内天线之间的相位因子记为-x;
    所述第一个天线组传输的所述第一个数据流的预编码向量与所述第二个数据流的预编码向量是正交的;
    所述第一个天线组传输的第一个数据流、第二数据流的功率因子分别是{α,β}。
  13. 一种上行传输方法,其特征在于,所述方法包括:
    终端设备接收波束指示信息;
    所述波束指示信息用于指示波束组;所述波束组内相邻波束之间的相位差小于终端设备的N个天线之间的相位分辨率,所述N为大于或等于3的整数;所述波束组中各波束适用于不同的资源单元;
    所述终端设备根据所述波束组,确定预编码矩阵。
  14. 一种上行传输方法,其特征在于,所述方法包括:
    网络设备确定波束指示信息;
    所述波束指示信息用于指示波束组;所述波束组内相邻波束之间的相位差小于终端设备的N个天线之间的相位分辨率,所述N为大于或等于3的整数;所述波束组中各波束适用于不同的资源单元;
    所述网络设备发送所述波束指示信息。
  15. 根据权利要求13或14所述的方法,其特征在于,所述波束组是基向量过采样后形成的多个波束组中的其中一个或多个。
  16. 根据权利要求13或15所述的方法,其特征在于,
    不同数据流在同一资源单元上的波束正交;
    所述终端设备根据所述波束组,确定预编码矩阵,包括:
    所述终端设备根据所述波束指示信息所指示的波束组,确定每个数据流的波束组;
    所述终端设备根据所述每个数据流的波束组,确定预编码矩阵。
  17. 根据权利要求15或16所述的方法,其特征在于,
    所述波束组中波束的个数大于或等于波束覆盖范围与波束分辨率之间的比值;
    所述波束覆盖范围与所述相位分辨率相关,所述波束分辨率等于2π/NO,所述O表示所述基向量的过采样因子。
  18. 根据权利要求13至17任一项所述的方法,其特征在于,
    所述N等于3,所述终端设备在资源单元s上传输2个数据流,所述波束指示信息所指示的波束组中,在所述资源单元s上应用波束m传输第1个数据流,应用波束n传输第 2个数据流的预编码矩阵满足以下特征:
    Figure PCTCN2020136265-appb-100016
    所述3个天线的总功率归一化因子记为A;所述基向量的过采样因子记为O;所述波束m与所述波束n正交。
  19. 根据权利要求13至17任一项所述的方法,其特征在于,
    所述N等于3,所述终端设备在资源单元s上传输3个数据流,所述波束指示信息所指示的波束组中,所述资源单元s上应用波束m传输第1个数据流,应用波束n传输第2个数据流,以及应用波束q传输第3个数据流的预编码矩阵满足以下特征:
    Figure PCTCN2020136265-appb-100017
    所述3个天线的总功率归一化因子记为A;所述基向量的过采样因子记为O;所述波束m、所述波束n以及所述波束q之间互相正交。
  20. 一种上行传输装置,其特征在于,所述装置包括:
    通信单元,用于接收预编码矩阵指示信息;
    处理单元,用于根据所述预编码矩阵指示信息,确定预编码矩阵;
    所述预编码矩阵是针对M个天线组的预编码矩阵;所述M个天线组是所述终端设备的N个天线对应的天线组;所述N为大于或等于3的整数,所述M为大于或等于2的整数。
  21. 一种上行传输装置,其特征在于,所述装置包括:
    处理单元,用于确定预编码矩阵指示信息;
    通信单元,用于发送所述预编码矩阵指示信息;
    所述预编码矩阵指示信息用于指示预编码矩阵,所述预编码矩阵是针对M个天线组的预编码矩阵;所述M个天线组是终端设备的N个天线对应的天线组;所述N为大于或等于3的整数,所述M为大于或等于2的整数。
  22. 根据权利要求20或21所述的装置,其特征在于,
    所述M个天线组中,每个天线组内的天线具有相同或相近的天线能力,不同天线组之间的天线具有不同的天线能力。
  23. 根据权利要求20至22任一项所述的装置,其特征在于,
    所述M个天线组中部分天线组之间包含的天线个数不同。
  24. 根据权利要求20至23任一项所述的装置,其特征在于,
    所述N个天线对应的所述M个天线组是由网络设备指示的、所述终端设备确定的或是预定义的。
  25. 根据权利要求20至24任一项所述的装置,其特征在于,
    所述预编码矩阵指示信息用于指示预编码矩阵的索引。
  26. 根据权利要求20至25任一项所述的装置,其特征在于,所述预编码矩阵指示信息用于指示以下一个或多个参数:
    所述M个天线组的总功率归一化因子;
    不同天线组之间的功率因子;
    数据流之间的功率因子;
    包含多个天线的每个天线组内天线之间的功率因子;
    包含多个天线的每个天线组内天线之间的相位因子。
  27. 根据权利要求20至26任一项所述的装置,其特征在于,所述N等于3,所述M等于2,所述M个天线组包括第一个天线组和第二个天线组,所述第一个天线组由两个天线组成,所述第二个天线组由一个天线组成;
    所述预编码矩阵是用于将一个数据流映射到2个天线组的预编码矩阵;
    所述预编码矩阵满足如下特征:
    Figure PCTCN2020136265-appb-100018
    所述2个天线组的总功率归一化因子记为A;
    所述第一个天线组和所述第二个天线组之间功率因子包括:所述第一个天线组的最大天线功率因子记为,所述第二个天线组的最大功率因子记为,所述第一个天线组与所述第二个天线组之间的天线功率因子记为p,p大于或等于1;
    所述第一个天线组内天线之间的功率相等;
    所述第一个天线组内天线之间的相位因子记为x。
  28. 根据权利要求20至26任一项所述的装置,其特征在于,所述N等于3,所述M等于2,所述M个天线组包括第一个天线组和第二个天线组,所述第一个天线组由两个天线组成,所述第二个天线组由一个天线组成;
    所述预编码矩阵是用于将2个数据流分别映射到对应的天线组,且每个天线组传输一 个数据流的预编码矩阵;
    所述预编码矩阵满足如下特征:
    Figure PCTCN2020136265-appb-100019
    所述2个天线组的总功率归一化因子记为A;
    所述第一个天线组和所述第二个天线组之间功率因子包括:所述第一个天线组的最大天线功率因子记为
    Figure PCTCN2020136265-appb-100020
    所述第二个天线组的最大功率因子记为
    Figure PCTCN2020136265-appb-100021
    所述第一个天线组与所述第二个天线组之间的天线功率因子记为p,p大于或等于1;
    所述第一个天线组内天线之间的功率相等;
    所述第一个天线组内天线之间的相位因子记为x。
  29. 根据权利要求20至26任一项所述的装置,其特征在于,所述N等于3,所述M等于2,所述M个天线组包括第一个天线组和第二个天线组,所述第一个天线组由两个天线组成,所述第二个天线组由一个天线组成;
    所述预编码矩阵是用于将2个数据流映射到2个天线组,且其中一个天线组对所述2个数据流进行相干传输的预编码矩阵;
    所述预编码矩阵满足如下特征:
    Figure PCTCN2020136265-appb-100022
    所述2个天线组的总功率归一化因子记为A;
    所述第一个天线组和所述第二个天线组之间功率因子包括:所述第一个天线组的最大天线功率因子记为
    Figure PCTCN2020136265-appb-100023
    所述第二个天线组的最大功率因子记为
    Figure PCTCN2020136265-appb-100024
    针对第一个数据流,所述第一个天线组内天线之间的相位因子记为x;
    针对第二个数据流,所述第一个天线组内天线之间的相位因子记为-x;
    所述第一个天线组传输的所述第一个数据流的预编码向量与所述第二个数据流的预编码向量是正交的;
    所述第一个天线组传输的所述第一个数据流、所述第二数据流的功率因子分别是{α,β}。
  30. 根据权利要求20至26任一项所述的装置,其特征在于,所述N等于3,所述M等于2,所述M个天线组包括第一个天线组和第二个天线组,所述第一个天线组由两个天线组成,所述第二个天线组由一个天线组成;
    所述预编码矩阵是用于将2个数据流映射到2个天线组,且其中一个天线组对所述2个数据流进行非相干传输的预编码矩阵;
    所述预编码矩阵满足如下特征:
    Figure PCTCN2020136265-appb-100025
    所述2个天线组的总功率归一化因子记为A;
    所述第一个天线组和所述第二个天线组之间功率因子包括:所述第一个天线组的最大天线功率因子记为
    Figure PCTCN2020136265-appb-100026
    所述第二个天线组的最大功率因子记为
    Figure PCTCN2020136265-appb-100027
    所述第一个天线组与所述第二个天线组之间的天线功率因子记为p。
  31. 根据权利要求20至26任一项所述的装置,其特征在于,根据权利要求1至7任一项所述的方法,其特征在于,所述N等于3,所述M等于2,所述M个天线组包括第一个天线组和第二个天线组,所述第一个天线组由两个天线组成,所述第二个天线组由一个天线组成;
    所述预编码矩阵是用于将3个数据流映射到2个天线组,且其中一个天线组对其中2个数据流进行相干传输的预编码矩阵;
    所述预编码矩阵满足如下特征:
    Figure PCTCN2020136265-appb-100028
    所述2个天线组的总功率归一化因子记为A;
    所述第一个天线组和所述第二个天线组之间功率因子包括:所述第一个天线组的最大天线功率因子记为
    Figure PCTCN2020136265-appb-100029
    所述第二个天线组的最大功率因子记为
    Figure PCTCN2020136265-appb-100030
    针对第一个数据流,所述第一个天线组内天线之间的相位因子记为x;
    针对第二个数据流,所述第一个天线组内天线之间的相位因子记为-x;
    所述第一个天线组传输的所述第一个数据流的预编码向量与所述第二个数据流的预编码向量是正交的;
    所述第一个天线组传输的第一个数据流、第二数据流的功率因子分别是{α,β}。
  32. 一种上行传输装置,其特征在于,所述装置包括:
    通信单元,用于接收波束指示信息;
    所述波束指示信息用于指示波束组;所述波束组内相邻波束之间的相位差小于终端设备的N个天线之间的相位分辨率,所述N为大于或等于3的整数;所述波束组中各波束适用于不同的资源单元;
    处理单元,用于根据所述波束组,确定预编码矩阵。
  33. 一种上行传输装置,其特征在于,所述装置包括:
    处理单元,用于确定波束指示信息;
    所述波束指示信息用于指示波束组;所述波束组内相邻波束之间的相位差小于终端设备的N个天线之间的相位分辨率,所述N为大于或等于3的整数;所述波束组中各波束适 用于不同的资源单元;
    通信单元,用于发送所述波束指示信息。
  34. 根据权利要求32或33所述的装置,其特征在于,所述波束组是基向量过采样后形成的多个波束组中的其中一个或多个。
  35. 根据权利要求32或34所述的装置,其特征在于,
    不同数据流在同一资源单元上的波束正交;
    所述终端设备根据所述波束组,确定预编码矩阵,包括:
    所述终端设备根据所述波束指示信息所指示的波束组,确定每个数据流的波束组;
    所述终端设备根据所述每个数据流的波束组,确定预编码矩阵。
  36. 根据权利要求34或35所述的装置,其特征在于,
    所述波束组中波束的个数大于或等于波束覆盖范围与波束分辨率之间的比值;
    所述波束覆盖范围与所述相位分辨率相关,所述波束分辨率等于2π/NO,所述O表示所述基向量的过采样因子。
  37. 根据权利要求32至36任一项所述的方法,其特征在于,
    所述N等于3,所述终端设备在资源单元s上传输2个数据流,所述波束指示信息所指示的波束组中,在所述资源单元s上应用波束m传输第1个数据流,应用波束n传输第2个数据流的预编码矩阵满足以下特征:
    Figure PCTCN2020136265-appb-100031
    所述3个天线的总功率归一化因子记为A;所述基向量的过采样因子记为O;所述波束m与所述波束n正交。
  38. 根据权利要求32至36任一项所述的方法,其特征在于,
    所述N等于3,所述终端设备在资源单元s上传输3个数据流,所述波束指示信息所指示的波束组中,所述资源单元s上应用波束m传输第1个数据流,应用波束n传输第2个数据流,以及应用波束q传输第3个数据流的预编码矩阵满足以下特征:
    Figure PCTCN2020136265-appb-100032
    所述3个天线的总功率归一化因子记为A;所述基向量的过采样因子记为O;所述波束m、所述波束n以及所述波束q之间互相正交。
  39. 一种通信装置,其特征在于,包括处理器和通信接口,所述通信接口用于输入和/输出信息;所述处理器用于运行程序,以使得所述通信装置实现如权利要求1、或3至12中任一项所述的方法,或,执行如权利要求2至12中任一项所述的方法,或执行如权利要求13、或15至19中任一项所述的方法,或执行如权利要求14至19中任一项所述的方法。
  40. 如权利要求39所述通信装置,其特征在于,所述通信装置为芯片或芯片系统。
  41. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1、或3至12中任一项所述的方法,或,执行如权利要求2至12中任一项所述的方法,或执行如权利要求13、或15至19中任一项所述的方法,或执行如权利要求14至19中任一项所述的方法。
  42. 一种通信系统,其特征在于,包括权利要求20、或22至31中任一项所述的装置,和权利要求21至31中任一项所述的装置;或者,
    包括权利要求32、或34至38中任一项所述的装置,和权利要求33至38中任一项所述的装置。
  43. 一种计算机程序产品,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行权利要求1、或3至12中任一项所述的方法,或,执行如权利要求2至12中任一项所述的方法,或执行如权利要求13、或15至19中任一项所述的方法,或执行如权利要求14至19中任一项所述的方法。
PCT/CN2020/136265 2020-12-14 2020-12-14 上行传输方法及装置 WO2022126346A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/136265 WO2022126346A1 (zh) 2020-12-14 2020-12-14 上行传输方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/136265 WO2022126346A1 (zh) 2020-12-14 2020-12-14 上行传输方法及装置

Publications (1)

Publication Number Publication Date
WO2022126346A1 true WO2022126346A1 (zh) 2022-06-23

Family

ID=82059812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/136265 WO2022126346A1 (zh) 2020-12-14 2020-12-14 上行传输方法及装置

Country Status (1)

Country Link
WO (1) WO2022126346A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011079429A1 (zh) * 2009-12-28 2011-07-07 富士通株式会社 生成预编码矩阵码书的方法和装置
US20150318908A1 (en) * 2012-12-03 2015-11-05 Lg Electronics Inc. Method and apparatus for reporting channel state information in wireless communication system
CN109495879A (zh) * 2017-09-11 2019-03-19 电信科学技术研究院 一种资源配置方法、基站和终端
WO2019191932A1 (zh) * 2018-04-04 2019-10-10 华为技术有限公司 上行天线的选择方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011079429A1 (zh) * 2009-12-28 2011-07-07 富士通株式会社 生成预编码矩阵码书的方法和装置
US20150318908A1 (en) * 2012-12-03 2015-11-05 Lg Electronics Inc. Method and apparatus for reporting channel state information in wireless communication system
CN109495879A (zh) * 2017-09-11 2019-03-19 电信科学技术研究院 一种资源配置方法、基站和终端
WO2019191932A1 (zh) * 2018-04-04 2019-10-10 华为技术有限公司 上行天线的选择方法和装置

Similar Documents

Publication Publication Date Title
US20190319682A1 (en) Feedback of sparse correlation matrix for multiple-input and multiple-output (mimo) wireless networks
US11476918B2 (en) Device and method transmitting data based on non-codebook in wireless communication system
KR102328004B1 (ko) 데이터 전송 방법, 장치, 네트워크측 기기 및 사용자 기기
US20200195330A1 (en) Method and apparatus for transmitting downlink control information (dci)
US20200177426A1 (en) Electrical apparatus and wireless communication method for communication device with multiple antennas
US11089554B2 (en) Apparatus and method for controlling uplink transmission power in wireless communication system
US20230019630A1 (en) Update Method and Communications Apparatus
WO2022206981A1 (zh) 通信方法及装置
WO2022126346A1 (zh) 上行传输方法及装置
US11888593B2 (en) Scaling and quantization for channel state information reporting
WO2023159575A1 (zh) 通信方法、终端设备及网络设备
US11063642B2 (en) Apparatus and method for precoding data in wireless communication system
WO2024065810A1 (en) Method for uplink sounding reference signal precoder selection for interference suppression
WO2023160357A1 (zh) 上行传输方法与装置、终端设备和网络设备
WO2022204970A1 (zh) 一种参考信号的传输方法、装置及设备
WO2023216166A1 (zh) 相干带宽的测量方法和装置
US20240204834A1 (en) Precoding matrix indicator feedback method and communication apparatus
WO2024093867A1 (zh) 一种预编码的指示方法及通信装置
WO2024022525A1 (zh) 信道状态信息报告传输方法与装置、终端设备和网络设备
WO2022002130A1 (zh) 一种流处理方法及其装置
CN118316579A (zh) 通信方法、装置、系统及计算机相关装置
US20210168002A1 (en) Device and method for processing received signal in wireless communication system
CN117813771A (zh) 系数指示方法及其装置
CN117882354A (zh) 上行传输的波束测量上报方法及装置
CN117395790A (zh) 数据传输方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20965364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20965364

Country of ref document: EP

Kind code of ref document: A1