WO2022206981A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2022206981A1
WO2022206981A1 PCT/CN2022/084938 CN2022084938W WO2022206981A1 WO 2022206981 A1 WO2022206981 A1 WO 2022206981A1 CN 2022084938 W CN2022084938 W CN 2022084938W WO 2022206981 A1 WO2022206981 A1 WO 2022206981A1
Authority
WO
WIPO (PCT)
Prior art keywords
indication information
terminal device
handover
pusch
codebook subset
Prior art date
Application number
PCT/CN2022/084938
Other languages
English (en)
French (fr)
Inventor
张茜
孔令宇
戴喜增
刘江华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022206981A1 publication Critical patent/WO2022206981A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/08Mobility data transfer
    • H04W8/14Mobility data transfer between corresponding nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data

Definitions

  • the present application relates to the field of communication, and in particular, to a communication method and device.
  • the terminal equipment In a wireless communication system, if the terminal equipment is switched, such as uplink transmission switching or sounding reference signal (SRS) switching, the terminal equipment still uses the previous physical uplink shared channel (physical uplink shared channel, PUSCH).
  • the coding matrix precodes the current PUSCH, which is likely to cause the transmission configuration to not match the current relative power and phase error of the terminal device, resulting in a decrease in the transmission performance of the PUSCH and affecting data transmission.
  • the embodiments of the present application provide a communication method and apparatus, which can ensure the transmission performance of the PUSCH.
  • an embodiment of the present application provides a communication method, and the execution body of the method may be a terminal device, or may be a chip applied in the terminal device.
  • the following description takes the execution subject being a terminal device as an example.
  • the method includes: the terminal device sends first capability information to the network device.
  • the first capability information indicates that the codebook subset supported by the terminal device is: a fully coherent codebook subset or a partially coherent codebook subset.
  • the codebook subset indicated by the first capability information is used for precoding the first physical uplink shared channel PUSCH.
  • the first PUSCH is transmitted before handover.
  • the handover includes uplink transmission handover or sounding reference signal SRS handover.
  • the terminal device sends the first indication information to the network device.
  • the first indication information indicates a codebook subset supported by the terminal device after the handover occurs.
  • the terminal device receives the second indication information from the network device.
  • the second indication information indicates the transmission configuration of the second PUSCH, and the second PUSCH is transmitted after the handover.
  • the terminal device in addition to reporting the first capability information, the terminal device also reports the first indication information to indicate the codebook subset that it supports after handover, thereby providing a reference for the network device to determine the second indication information.
  • the transmission configuration of the second PUSCH can be determined, so that the switched transmission configuration matches the relative power and phase error of the terminal device, thereby ensuring the transmission performance of the PUSCH.
  • the first indication information indicates a non-coherent codebook subset.
  • the transmission capability possessed by the terminal device is an incoherent transmission capability.
  • the network device can know that the transmission capability possessed by the terminal device is an incoherent transmission capability, so as to facilitate the network device to schedule a corresponding transmission configuration for the terminal device.
  • the first indication information indicates one of the following: a fully coherent codebook subset, a partially coherent codebook subset, or a non-coherent codebook subset. That is to say, the terminal device selects a codebook subset from the fully coherent codebook subset, the partially coherent codebook subset and the non-coherent codebook subset to characterize its own transmission capability after switching, and then passes the first capability The information is reported to the network device, so that the network device can schedule the corresponding transmission configuration for the terminal device.
  • the first indication information also indicates the type of handover that occurs in the terminal device, so that the network device knows which type of handover has occurred in the terminal device.
  • the second indication information indicates that the transmission configuration of the second PUSCH includes a preset transmission mode.
  • the preset transmission mode includes one of the following: a non-coherent precoding transmission mode, a DCI_0_0 mode, or a transmit diversity mode.
  • the network device instructs the terminal device to transmit the second PUSCH in the preset transmission mode, so as to avoid the terminal device still
  • the transmission mode of fully coherent precoding or partial coherent precoding is adopted to ensure the transmission performance of PUSCH.
  • the second indication information is carried in the first downlink control information DCI.
  • the first DCI is used to trigger handover.
  • the network device when the first indication information indicates a non-coherent codebook subset and the handover is triggered by the first DCI, the network device also carries the second indication information through the first DCI to indicate the transmission configuration of the second PUSCH, Therefore, the terminal equipment can still use the transmission mode of full coherent precoding or partial coherent precoding after switching, so as to ensure the transmission performance of PUSCH.
  • the second indication information indicates that the transmission configuration of the second PUSCH includes channel quality indication CQI information.
  • the CQI information indicates a precoding matrix, and the precoding matrix indicated by the CQI information is one of the non-coherent codebook subsets.
  • the network device indicates the transmission mode to the terminal device through the CQI information.
  • the precoding matrix indicated by the CQI information belongs to a non-coherent precoding matrix, so as to prevent the terminal device from still adopting the transmission mode of full coherent precoding or partial coherent precoding after switching, so as to ensure the transmission performance of PUSCH.
  • the communication method in the embodiment of the present application further includes: the terminal device receives configuration information from the network device.
  • the configuration information is used to configure the transmission resources of the SRS.
  • the terminal device sends the SRS to the network device on the transmission resource.
  • the transmission time of the SRS is earlier than the transmission start time of the second PUSCH.
  • the SRS is used to determine the second indication information.
  • the terminal device retransmits the SRS once, so that the network device determines the second indication information based on the reissued SRS, so that the transmission configuration indicated by the second indication information is Match the current actual situation of the terminal equipment to ensure the transmission performance of PUSCH.
  • the resource set of the SRS is configured as a codebook or a non-codebook.
  • the second indication information is carried in a control element MAC-CE of medium access control or a radio resource control RRC message.
  • an embodiment of the present application provides a communication method, and the execution body of the method may be a terminal device or a chip applied in the terminal device.
  • the following description takes the execution subject being a terminal device as an example.
  • the method includes: the terminal device sends first capability information to the network device.
  • the first capability information indicates that the codebook subset supported by the terminal device is: a fully coherent codebook subset or a partially coherent codebook subset.
  • the codebook subset indicated by the first capability information is used for precoding the physical uplink shared channel PUSCH.
  • the terminal device sends the first indication information to the network device.
  • the first indication information indicates a non-coherent codebook subset
  • the codebook subset indicated by the first indication information is a codebook subset supported by the terminal device after handover occurs.
  • the handover includes uplink transmission handover or sounding reference signal SRS handover.
  • the terminal device receives the second indication information from the network device.
  • the second indication information indicates a precoding matrix.
  • the precoding matrix indicated by the second indication information is one of the non-coherent codebook subsets, and the precoding matrix indicated by the second indication information is used for precoding the PUSCH.
  • the network device when the first indication information indicates a subset of non-coherent codebooks, the network device does not observe whether the terminal device is switched, and always configures the transmission mode of non-coherent precoding for the terminal device to prevent the terminal device from not meeting the radio frequency index. , and still adopt the phenomenon of fully coherent transmission and partial coherent transmission mode, so as to ensure the transmission performance of PUSCH.
  • the first indication information also indicates the type of handover that occurs in the terminal device, so that the network device knows which type of handover has occurred in the terminal device.
  • an embodiment of the present application provides a communication method, and the execution body of the method may be a terminal device or a chip applied in the terminal device.
  • the following description takes the execution subject being a terminal device as an example.
  • the method includes: a terminal device receiving a handover instruction from a network device.
  • the handover instruction instructs the terminal equipment to perform handover, and the handover includes uplink transmission handover or sounding reference signal SRS handover.
  • the terminal device adopts the preset transmission mode to send the second physical uplink shared channel PUSCH to the network device. Wherein, the second PUSCH is transmitted after the handover.
  • the terminal device autonomously determines the transmission mode of the second PUSCH, so that the switched transmission configuration matches the relative power and phase error of the terminal device, thereby ensuring the PUSCH transmission performance.
  • the communication method in the embodiment of the present application further includes: the terminal device sends the first indication information to the network device.
  • the first indication information indicates a codebook subset supported by the terminal device after the handover occurs, so that the network device can know the coherent transmission capability of the terminal device after the handover.
  • the first indication information indicates a non-coherent codebook subset.
  • the first indication information indicates one of the following: a fully coherent codebook subset, a partially coherent codebook subset, or a non-coherent codebook subset.
  • the first indication information also indicates the type of handover that occurs in the terminal device.
  • the communication method further includes: the terminal device receives the second indication information from the network device.
  • the second indication information indicates a preset transmission mode.
  • the preset transmission mode includes one of the following: non-coherent precoding transmission mode, DCI_0_0 mode, or transmit diversity mode.
  • the transmission mode of the second PUSCH is indicated by the network device.
  • the receiving moment of the second indication information is earlier than the receiving moment of the handover instruction. That is to say, the network device pre-indicates the transmission mode of the second PUSCH to the terminal device.
  • the communication method in this embodiment of the present application further includes: the terminal device sends the first capability information to the network device.
  • the first capability information indicates that the codebook subset supported by the terminal device is: a fully coherent codebook subset or a partially coherent codebook subset.
  • the codebook subset indicated by the first capability information is used for precoding the first PUSCH, and the first PUSCH is transmitted before handover.
  • the terminal device further indicates the codebook subset through the first capability information, so that the network device knows the coherent transmission capability of the terminal device before handover.
  • an embodiment of the present application provides a communication method, and the execution body of the method may be a network device or a chip applied in the network device.
  • the following description takes the execution subject being a network device as an example.
  • the method includes: the network device receives first capability information from the terminal device.
  • the first capability information indicates that the codebook subset supported by the terminal device is: a fully coherent codebook subset or a partially coherent codebook subset.
  • the codebook subset indicated by the first capability information is used to precode the first physical uplink shared channel PUSCH, and the first PUSCH is transmitted before handover.
  • the handover includes uplink transmission handover or sounding reference signal SRS handover.
  • the network device receives the first indication information from the terminal device.
  • the first indication information indicates a codebook subset supported by the terminal device after the handover occurs. Then, the network device sends the second indication information to the terminal device.
  • the second indication information indicates the transmission configuration of the second PUSCH, and the second PUSCH is transmitted after the handover.
  • the first indication information indicates a non-coherent codebook subset.
  • the first indication information indicates one of the following: a fully coherent codebook subset, a partially coherent codebook subset, or a non-coherent codebook subset.
  • the first indication information also indicates the type of handover that occurs in the terminal device.
  • the second indication information indicates that the transmission configuration of the second PUSCH includes a preset transmission mode.
  • the preset transmission mode includes one of the following: a non-coherent precoding transmission mode, a DCI_0_0 mode, or a transmit diversity mode.
  • the second indication information is carried in the first downlink control information DCI.
  • the first DCI is used to trigger handover.
  • the second indication information indicates that the transmission configuration of the second PUSCH includes channel quality indication CQI information.
  • the CQI information indicates a precoding matrix, and the precoding matrix indicated by the CQI information is one of the non-coherent codebook subsets.
  • the sending moment of the second indication information is later than the sending moment of the first DCI.
  • the first DCI is used to trigger handover. That is to say, the network device may first trigger the terminal device to perform handover, and then indicate the transmission configuration of the second PUSCH to the terminal device through the second indication information.
  • the sending moment of the second indication information is earlier than the sending moment of the second DDI.
  • the second DDI is used to trigger switching. That is, the network device may first indicate the transmission configuration of the second PUSCH to the terminal device through the second indication information, and then trigger the terminal device to perform handover.
  • the communication method according to the embodiment of the present application further includes: the network device sends configuration information to the terminal device.
  • the configuration information is used to configure the transmission resources of the SRS.
  • the network device receives the SRS from the terminal device on the transmission resource.
  • the reception time of the SRS is earlier than the reception start time of the second PUSCH, and the SRS is used to determine the second indication information.
  • an embodiment of the present application provides a communication method, and the execution body of the method may be a network device or a chip applied in the network device.
  • the following description takes the execution subject being a network device as an example.
  • the method includes: the network device receives first capability information from the terminal device.
  • the first capability information indicates that the codebook subset supported by the terminal device is: a fully coherent codebook subset or a partially coherent codebook subset.
  • the codebook subset indicated by the first capability information is used for precoding the physical uplink shared channel PUSCH.
  • the network device receives the first indication information from the terminal device.
  • the first indication information indicates a non-coherent codebook subset
  • the codebook subset indicated by the first indication information is a codebook subset supported by the terminal device after handover occurs.
  • the handover includes uplink transmission handover or sounding reference signal SRS handover.
  • the network device sends the second indication information to the terminal device.
  • the second indication information indicates a precoding matrix, the precoding matrix indicated by the second indication information is one of the non-coherent codebook subsets, and the precoding matrix indicated by the second indication information is used for precoding PUSCH.
  • the first indication information also indicates the type of handover that occurs in the terminal device.
  • an embodiment of the present application provides a communication method, and the execution body of the method may be a network device or a chip applied in the network device.
  • the following description takes the execution subject being a network device as an example.
  • the method includes: the network device sends a switching instruction to the terminal device. Wherein, the switching instruction instructs the terminal device to perform switching.
  • the handover includes uplink transmission handover or sounding reference signal SRS handover.
  • the network device receives the second physical uplink shared channel PUSCH from the terminal device. Wherein, the second PUSCH is transmitted after switching in a preset transmission mode.
  • the communication method further includes: the network device receives the first indication information from the terminal device.
  • the first indication information indicates a codebook subset supported by the terminal device after the handover occurs.
  • the first indication information indicates a non-coherent codebook subset.
  • the first indication information indicates one of the following: a fully coherent codebook subset, a partially coherent codebook subset, or a non-coherent codebook subset.
  • the first indication information also indicates the type of handover that occurs in the terminal device.
  • the communication method in the embodiment of the present application further includes: the network device sends second indication information to the terminal device.
  • the second indication information indicates a preset transmission mode.
  • the preset transmission mode includes one of the following: non-coherent precoding transmission mode, DCI_0_0 mode, or transmit diversity mode.
  • the sending moment of the second indication information is earlier than the sending moment of the handover instruction.
  • the communication method in this embodiment of the present application further includes: the network device receiving the first capability information from the terminal device.
  • the first capability information indicates that the codebook subset supported by the terminal device is: a fully coherent codebook subset or a partially coherent codebook subset.
  • the codebook subset indicated by the first capability information is used for precoding the first PUSCH, and the first PUSCH is transmitted before handover.
  • an embodiment of the present application provides a communication device, and the communication device may be a terminal device in the first aspect or any possible design of the first aspect, or a device disposed in the above-mentioned terminal device, or A chip that realizes the functions of the above-mentioned terminal equipment; the communication device includes a corresponding module, unit, or means (means) for realizing the above-mentioned method.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication device includes a sending unit, a receiving unit and a processing unit.
  • the sending unit is configured to send the first capability information to the network device.
  • the first capability information indicates that the codebook subset supported by the communication apparatus is: a fully coherent codebook subset or a partially coherent codebook subset.
  • the codebook subset indicated by the first capability information is used for precoding the first physical uplink shared channel PUSCH.
  • the first PUSCH is transmitted before handover.
  • the handover includes uplink transmission handover or sounding reference signal SRS handover.
  • the sending unit is further configured to send the first indication information to the network device.
  • the first indication information indicates a codebook subset supported by the communication apparatus after the handover occurs.
  • the receiving unit is configured to receive the second indication information from the network device.
  • the second indication information indicates the transmission configuration of the second PUSCH, and the second PUSCH is transmitted after the handover.
  • the processing unit is configured to determine the first capability information and the first indication information.
  • the first indication information indicates a non-coherent codebook subset.
  • the first indication information indicates one of the following: a fully coherent codebook subset, a partially coherent codebook subset, or a non-coherent codebook subset.
  • the first indication information also indicates the type of handover that occurs in the communication device.
  • the second indication information indicates that the transmission configuration of the second PUSCH includes a preset transmission mode.
  • the preset transmission mode includes one of the following: a non-coherent precoding transmission mode, a DCI_0_0 mode, or a transmit diversity mode.
  • the second indication information is carried in the first downlink control information DCI.
  • the first DCI is used to trigger handover.
  • the second indication information indicates that the transmission configuration of the second PUSCH includes channel quality indication CQI information.
  • the CQI information indicates a precoding matrix, and the precoding matrix indicated by the CQI information is one of the non-coherent codebook subsets.
  • the receiving unit is further configured to receive configuration information from the network device.
  • the configuration information is used to configure the transmission resources of the SRS.
  • the sending unit is further configured to send the SRS to the network device on the transmission resource.
  • the transmission time of the SRS is earlier than the transmission start time of the second PUSCH.
  • the SRS is used to determine the second indication information.
  • the resource set of the SRS is configured as a codebook or a non-codebook.
  • the second indication information is carried in a control element MAC-CE of medium access control or a radio resource control RRC message.
  • an embodiment of the present application provides a communication device, and the communication device may be a terminal device in the second aspect or any possible design of the second aspect, or a device disposed in the above-mentioned terminal device, or A chip that realizes the functions of the above-mentioned terminal equipment; the communication device includes a corresponding module, unit, or means (means) for realizing the above-mentioned method.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication device includes a sending unit, a receiving unit and a processing unit.
  • the sending unit is configured to send the first capability information to the network device.
  • the first capability information indicates that the codebook subset supported by the communication apparatus is: a fully coherent codebook subset or a partially coherent codebook subset.
  • the codebook subset indicated by the first capability information is used for precoding the physical uplink shared channel PUSCH.
  • the sending unit is further configured to send the first indication information to the network device.
  • the first indication information indicates a non-coherent codebook subset, and the codebook subset indicated by the first indication information is a codebook subset supported by the communication device after handover occurs.
  • the handover includes uplink transmission handover or sounding reference signal SRS handover.
  • the receiving unit is configured to receive the second indication information from the network device.
  • the second indication information indicates a precoding matrix.
  • the precoding matrix indicated by the second indication information is one of the non-coherent codebook subsets, and the precoding matrix indicated by the second indication information is used for precoding the PUSCH.
  • the processing unit is configured to determine the first capability information and the first indication information.
  • the first indication information also indicates the type of handover that occurs in the communication device.
  • an embodiment of the present application provides a communication device, where the communication device may be a terminal device in the third aspect or any possible design of the third aspect, or a device disposed in the above-mentioned terminal device, or A chip that realizes the functions of the above-mentioned terminal equipment; the communication device includes a corresponding module, unit, or means (means) for realizing the above-mentioned method.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication device includes a sending unit, a receiving unit and a processing unit.
  • the receiving unit is used for receiving the switching instruction from the network device.
  • the handover instruction instructs the communication device to perform handover, and the handover includes uplink transmission handover or sounding reference signal SRS handover.
  • the processing unit is configured to determine that the codebook subset supported by the communication device after the handover is the non-coherent codebook subset.
  • the sending unit is configured to use a preset transmission mode to send the second physical uplink shared channel PUSCH to the network device. Wherein, the second PUSCH is transmitted after the handover.
  • the sending unit is further configured to send the first indication information to the network device.
  • the first indication information indicates a codebook subset supported by the communication apparatus after the handover occurs.
  • the first indication information indicates a non-coherent codebook subset.
  • the first indication information indicates one of the following: a fully coherent codebook subset, a partially coherent codebook subset, or a non-coherent codebook subset.
  • the first indication information also indicates the type of handover that occurs in the communication device.
  • the receiving unit is further configured to receive the second indication information from the network device.
  • the second indication information indicates a preset transmission mode.
  • the preset transmission mode includes one of the following: non-coherent precoding transmission mode, DCI_0_0 mode, or transmit diversity mode.
  • the receiving moment of the second indication information is earlier than the receiving moment of the handover instruction.
  • the sending unit is further configured to send the first capability information to the network device.
  • the first capability information indicates that the codebook subset supported by the communication apparatus is: a fully coherent codebook subset or a partially coherent codebook subset.
  • the codebook subset indicated by the first capability information is used for precoding the first PUSCH, and the first PUSCH is transmitted before handover.
  • an embodiment of the present application provides a communication device, and the communication device may be a network device in the fourth aspect or any possible design of the fourth aspect, or a device disposed in the network device, or A chip that realizes the function of the above-mentioned network device; the communication device includes a corresponding module, unit, or means (means) for realizing the above-mentioned method, and the module, unit, or means can be realized by hardware, software, or by hardware. accomplish.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication device includes a sending unit, a receiving unit and a processing unit.
  • the receiving unit is configured to receive the first capability information from the terminal device.
  • the first capability information indicates that the codebook subset supported by the terminal device is: a fully coherent codebook subset or a partially coherent codebook subset.
  • the codebook subset indicated by the first capability information is used to precode the first physical uplink shared channel PUSCH, and the first PUSCH is transmitted before handover.
  • the handover includes uplink transmission handover or sounding reference signal SRS handover.
  • the receiving unit is further configured to receive the first indication information from the terminal device.
  • the first indication information indicates a codebook subset supported by the terminal device after the handover occurs.
  • the sending unit is configured to send the second indication information to the terminal device.
  • the second indication information indicates the transmission configuration of the second PUSCH, and the second PUSCH is transmitted after the handover.
  • the processing unit is configured to determine the second indication information according to the first capability information and the first indication information.
  • the first indication information indicates a non-coherent codebook subset.
  • the first indication information indicates one of the following: a fully coherent codebook subset, a partially coherent codebook subset, or a non-coherent codebook subset.
  • the first indication information also indicates the type of handover that occurs in the terminal device.
  • the second indication information indicates that the transmission configuration of the second PUSCH includes a preset transmission mode.
  • the preset transmission mode includes one of the following: a non-coherent precoding transmission mode, a DCI_0_0 mode, or a transmit diversity mode.
  • the second indication information is carried in the first downlink control information DCI.
  • the first DCI is used to trigger handover.
  • the second indication information indicates that the transmission configuration of the second PUSCH includes channel quality indication CQI information.
  • the CQI information indicates a precoding matrix, and the precoding matrix indicated by the CQI information is one of the non-coherent codebook subsets.
  • the sending moment of the second indication information is later than the sending moment of the first DCI.
  • the first DCI is used to trigger handover.
  • the sending moment of the second indication information is earlier than the sending moment of the second DDI.
  • the second DDI is used to trigger switching.
  • the sending unit is further configured to send configuration information to the terminal device.
  • the configuration information is used to configure the transmission resources of the SRS.
  • the receiving unit is further configured to receive the SRS from the terminal device on the transmission resource.
  • the reception time of the SRS is earlier than the reception start time of the second PUSCH, and the SRS is used to determine the second indication information.
  • an embodiment of the present application provides a communication device, and the communication device may be a network device in the fifth aspect or any possible design of the fifth aspect, or a device disposed in the network device, Or a chip that realizes the functions of the above-mentioned network equipment; the communication device includes a corresponding module, unit, or means (means) for realizing the above-mentioned method, and the module, unit, or means can be realized by hardware, software, or by hardware.
  • Software Implementation The hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication device includes a sending unit, a receiving unit and a processing unit.
  • the receiving unit is configured to receive the first capability information from the terminal device.
  • the first capability information indicates that the codebook subset supported by the terminal device is: a fully coherent codebook subset or a partially coherent codebook subset.
  • the codebook subset indicated by the first capability information is used for precoding the physical uplink shared channel PUSCH.
  • the receiving unit is further configured to receive the first indication information from the terminal device.
  • the first indication information indicates a non-coherent codebook subset, and the codebook subset indicated by the first indication information is a codebook subset supported by the terminal device after handover occurs.
  • the handover includes uplink transmission handover or sounding reference signal SRS handover.
  • the sending unit is further configured to send the second indication information to the terminal device.
  • the second indication information indicates a precoding matrix
  • the precoding matrix indicated by the second indication information is one of the non-coherent codebook subsets
  • the precoding matrix indicated by the second indication information is used for precoding PUSCH.
  • the processing unit is configured to determine the second indication information according to the first capability information and the first indication information.
  • the first indication information also indicates the type of handover that occurs in the terminal device.
  • an embodiment of the present application provides a communication device, and the communication device may be a network device in the sixth aspect or any possible design of the sixth aspect, or a device disposed in the network device, Or a chip that realizes the functions of the above-mentioned network equipment; the communication device includes a corresponding module, unit, or means (means) for realizing the above-mentioned method, and the module, unit, or means can be realized by hardware, software, or by hardware.
  • Software Implementation The hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication device includes a sending unit, a receiving unit and a processing unit.
  • the processing unit is used to determine the switching instruction.
  • the sending unit is used for sending the switching instruction to the terminal device.
  • the switching instruction instructs the terminal device to perform switching.
  • the handover includes uplink transmission handover or sounding reference signal SRS handover.
  • the receiving unit is configured to receive the second physical uplink shared channel PUSCH from the terminal device. Wherein, the second PUSCH is transmitted after switching in a preset transmission mode.
  • the receiving unit is further configured to receive the first indication information from the terminal device.
  • the first indication information indicates a codebook subset supported by the terminal device after the handover occurs.
  • the first indication information indicates a non-coherent codebook subset.
  • the first indication information indicates one of the following: a fully coherent codebook subset, a partially coherent codebook subset, or a non-coherent codebook subset.
  • the first indication information also indicates the type of handover that occurs in the terminal device.
  • the sending unit is further configured to send the second indication information to the terminal device.
  • the second indication information indicates a preset transmission mode.
  • the preset transmission mode includes one of the following: non-coherent precoding transmission mode, DCI_0_0 mode, or transmit diversity mode.
  • the sending moment of the second indication information is earlier than the sending moment of the handover instruction.
  • the receiving unit is further configured to receive the first capability information from the terminal device.
  • the first capability information indicates that the codebook subset supported by the terminal device is: a fully coherent codebook subset or a partially coherent codebook subset.
  • the codebook subset indicated by the first capability information is used for precoding the first PUSCH, and the first PUSCH is transmitted before handover.
  • an embodiment of the present application provides a communication device, including: a processor and a memory; the memory is used to store a computer instruction, and when the processor executes the instruction, the communication device is made to perform any of the foregoing aspects or A method performed by a terminal device in any possible design of any aspect.
  • the communication device may be a terminal device in the first aspect or any possible design of the first aspect, or a chip that implements the functions of the terminal device; or, the communication device may be the second aspect or any one of the second aspects.
  • a terminal device in a possible design, or a chip that implements the function of the above-mentioned terminal device; or, the communication device may be the terminal device in the third aspect or any of the possible designs of the third aspect, or realize the function of the above-mentioned terminal device. chip.
  • an embodiment of the present application provides a communication device, including: a processor; the processor is coupled to a memory, and is configured to read and execute instructions in the memory, so that the communication device executes any of the above A method performed by a terminal device in any possible design of the aspect or any aspect.
  • the communication device may be a terminal device in the first aspect or any possible design of the first aspect, or a chip that implements the functions of the terminal device; or, the communication device may be the second aspect or any one of the second aspects.
  • a terminal device in a possible design, or a chip that implements the function of the above-mentioned terminal device; or, the communication device may be the terminal device in the third aspect or any of the possible designs of the third aspect, or realize the function of the above-mentioned terminal device. chip.
  • an embodiment of the present application provides a chip, including a logic circuit and an input and output interface.
  • the input and output interfaces are used for communication with modules other than the chip.
  • the chip may be a chip that implements the functions of the terminal device in the first aspect or any possible design of the first aspect.
  • the input and output interface outputs the first capability information and the first indication information.
  • the input and output interface inputs the second indication information.
  • a logic circuit is used to run a computer program or instructions to implement the method in the above first aspect or any possible design of the first aspect.
  • the chip may be a chip that implements the terminal device function in the second aspect or any possible design of the second aspect.
  • the input-output interface outputs the first capability information and the first indication information, and the input-output interface inputs the second indication information.
  • a logic circuit is used to run a computer program or instructions to implement the method in the above second aspect or any possible design of the second aspect.
  • the chip may be a chip that implements the terminal device function in the third aspect or any possible design of the third aspect.
  • the input-output interface outputs the second PUSCH, and the input-output interface inputs a switching instruction.
  • a logic circuit is used to run a computer program or instructions to implement the method in the above third aspect or any possible design of the third aspect.
  • an embodiment of the present application provides a communication device, including: a processor and a memory; the memory is used to store a computer instruction, and when the processor executes the instruction, the communication device is made to perform any of the foregoing aspects or A method performed by a network device in any possible design of any aspect.
  • the communication device may be a network device in the fourth aspect or any possible design of the fourth aspect, or a chip that implements the functions of the network device; or, the communication device may be any of the fifth aspect or the fifth aspect.
  • a network device in a possible design, or a chip that implements the above-mentioned network device function; or, the communication device may be the network device in the sixth aspect or any possible design of the sixth aspect, or realize the above-mentioned network device function. chip.
  • an embodiment of the present application provides a communication device, including: a processor; the processor is coupled to a memory, and is configured to read and execute instructions in the memory, so that the communication device executes any of the above A method performed by a network device in any possible design of an aspect or any aspect.
  • the communication device may be a network device in the fourth aspect or any possible design of the fourth aspect, or a chip that implements the functions of the network device; or, the communication device may be any of the fifth aspect or the fifth aspect.
  • an embodiment of the present application provides a chip, including a logic circuit and an input and output interface.
  • the input and output interfaces are used for communication with modules other than the chip.
  • the chip may be a chip that implements the network device function in the fourth aspect or any possible design of the fourth aspect.
  • the input and output interface outputs the first capability information and the first indication information.
  • the input and output interface inputs the second indication information.
  • the logic circuit is used to run the computer program or instructions to implement the method in the above fourth aspect or any possible design of the fourth aspect.
  • the chip may be a chip that implements the function of the network device in the fifth aspect or any possible design of the fifth aspect.
  • the input/output interface outputs the first capability information and the first indication information, and the input/output interface inputs the second indication information.
  • the logic circuit is used to run the computer program or instructions to implement the method in the above fifth aspect or any possible design of the fifth aspect.
  • the chip may be a chip that implements the function of the network device in the sixth aspect or any possible design of the sixth aspect.
  • the input-output interface outputs the second PUSCH, and the input-output interface inputs a switching instruction.
  • a logic circuit is used to run a computer program or instructions to implement the method in the sixth aspect or any of the possible designs of the sixth aspect.
  • an embodiment of the present application provides a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, and when the computer-readable storage medium runs on a computer, the computer can execute any one of the preceding aspects. communication method.
  • the embodiments of the present application provide a computer program product including instructions, which, when executed on a computer, enables the computer to execute the communication method of any one of the foregoing aspects.
  • an embodiment of the present application provides a computer program product including instructions, which, when executed on a processor, implements the communication method of any one of the foregoing aspects.
  • an embodiment of the present application provides a circuit system, the circuit system includes a processing circuit, and the processing circuit is configured to execute the communication method according to any one of the foregoing aspects.
  • an embodiment of the present application provides a communication system, where the communication system includes the terminal device and the network device in any one of the foregoing aspects.
  • FIG. 1 is a schematic diagram of a network architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • 3a is a schematic flowchart of still another communication method provided by an embodiment of the present application.
  • 3b is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • 4a is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 4b is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 4c is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 7a is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 7b is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of still another communication apparatus provided by an embodiment of the present application.
  • words such as “exemplary” or “for example” are used to represent examples, illustrations or illustrations. Any embodiments or designs described in the embodiments of the present application as “exemplary” or “such as” should not be construed as preferred or advantageous over other embodiments or designs. Rather, the use of words such as “exemplary” or “such as” is intended to present the related concepts in a specific manner.
  • "transmitting” includes “sending” or “receiving”.
  • the terminal device can support fully coherent transmission, partially coherent transmission or non-coherent transmission, and select the precoding matrix used in the fully coherent codebook subset (codebook subset), the partially coherent codebook subset and the non-coherent codebook subset, respectively.
  • fully coherent means that all antennas of the terminal device can transmit coherently.
  • the network device allows the terminal device to perform precoding using the precoding matrix in the subset of the fully coherent codebook.
  • Partial coherence means that the antennas in the same coherent transmission group of the terminal equipment can transmit coherently, but cannot transmit coherently between different coherent transmission groups. Wherein, each coherent transmission group includes 2 antennas.
  • the network device allows the terminal device to perform precoding using the precoding matrix in the subset of the partially coherent codebook.
  • Incoherent means that none of the antennas of the terminal device can transmit coherently.
  • the network device allows the terminal device to perform precoding using the precoding matrix in the non-coherent codebook subset.
  • the terminal device indicates the coherent transmission capability (including one of fully coherent transmission, partial coherent transmission and non-coherent transmission) through a codebook subset.
  • coherent transmission capability including one of fully coherent transmission, partial coherent transmission and non-coherent transmission
  • codebook subset Exemplarily, indicated by pusch-TransCoherence in MIMO-ParametersPerBand:
  • codebookSubet ENUMERATED ⁇ fullyAndPartialAndNonCoherent, partialAnd NonCoherent, nonCoherent ⁇
  • the terminal device When the pusch-TransCoherence reported by the terminal device is nonCoherent, the terminal device supports non-coherent transmission and has the capability of non-coherent transmission.
  • the terminal device When the pusch-TransCoherence reported by the terminal device is partialAnd NonCoherent, the terminal device supports partial coherent transmission and non-coherent transmission, and has the capability of partial coherent transmission and non-coherent transmission.
  • the terminal device When the pusch-TransCoherence reported by the terminal device is fullyAndPartialAndNonCoherent, the terminal device supports fully coherent transmission, partial coherent transmission and non-coherent transmission, and has the capability of fully coherent transmission, partial coherent transmission and non-coherent transmission.
  • the terminal equipment uses the precoding matrix in the incoherent codebook subset to perform precoding.
  • the handover includes at least one of uplink transmission handover and SRS handover.
  • the determination of the precoding matrix depends on pusch-TransCoherence and downlink control information (downlink control information, DCI), and the terminal device can use the precoding matrix of the previous PUSCH to precode the current PUSCH.
  • the terminal device performs the above handover and does not meet the radio frequency index, if the terminal device still uses the full-phase precoding matrix or the partial coherent precoding matrix to precode the current PUSCH, the transmission performance of the PUSCH will be degraded.
  • FIG. 1 is a schematic diagram of the architecture of a communication system applicable to the communication method of the embodiment of the present application, and the communication system may include at least two communication devices.
  • the communication device includes a terminal device 10 and a network device 11 .
  • the number of terminal devices 10 and network devices 11 may be one or more. Only two terminal devices 10 and one network device 11 are shown in FIG. 1 .
  • FIG. 1 is only a schematic diagram, and does not constitute a limitation on an applicable scenario of the communication method of the embodiment of the present application.
  • the terminal device 10 may also be referred to as user equipment (UE), terminal, access terminal, subscriber unit, subscriber station, mobile station, remote station, remote terminal, mobile device, user terminal, wireless communication device, User agent or user device, etc.
  • the terminal device may be a wireless terminal or a wired terminal.
  • a wireless terminal can refer to a device with wireless transceiver functions, which can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites, etc.).
  • the terminal device may be a drone, an internet of things (IoT) device (for example, a sensor, an electricity meter, a water meter, etc.), a vehicle-to-everything (V2X) device, a wireless local area networks, WLAN) stations (station, ST), cellular phones, cordless phones, session initiation protocol (session initiation protocol, SIP) phones, wireless local loop (wireless local loop, WLL) stations, personal digital processing (personal digital assistant, PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices (also known as wearable smart devices).
  • IoT internet of things
  • V2X vehicle-to-everything
  • WLAN wireless local area networks
  • WLAN wireless local area networks
  • ST wireless local area networks
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the terminal device may also be a terminal in a next-generation communication system, for example, a terminal in a 5G communication system or a terminal in a future evolved public land mobile network (Public Land Mobile Network, PLMN), a terminal in an NR communication system, etc. This is not limited in the application examples.
  • PLMN Public Land Mobile Network
  • the network device 11 is a device in a wireless communication network, for example, a radio access network (RAN) node that connects the terminal device 10 to the wireless communication network.
  • RAN nodes are: gNB, transmission reception point (TRP), evolved Node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), Node B ( Node B, NB), base station controller (BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), base band unit (base band unit, BBU), or wireless fidelity (wireless fidelity, Wifi) access point (access point, AP), or network-side equipment in a 5G communication network or a communication network after 5G, etc.
  • TRP transmission reception point
  • eNB evolved Node B
  • RNC radio network controller
  • Node B Node B, NB
  • BSC base station controller
  • base transceiver station base trans
  • the handover includes at least one of the following: uplink transmission handover and SRS handover.
  • the uplink transmission switching may be recorded as UL-switching, and the SRS switching includes at least one of SRS antenna switching (SRS-antenna Switching) and SRS-carrier switching (SRS-carrier Switching).
  • SRS-antenna Switching SRS-antenna Switching
  • SRS-carrier Switching SRS-carrier Switching
  • the first PUSCH refers to the PUSCH transmitted after the terminal device sends the Nth SRS and before the handover.
  • the second PUSCH refers to the PUSCH transmitted after the terminal device performs handover and before sending the (N+1)th SRS.
  • the radio frequency index refers to the index specified in the RAN4 protocol, that is, the relative power and phase error are less than 4dB/40°.
  • the network device sends SRS configuration information to the terminal device, where the SRS configuration information includes one or more SRS resources, and the transmission performed by the terminal device based on the one or more SRS resources is SRS transmission.
  • SRS transmission includes codebook-based transmission and non-codebook-based transmission.
  • codebook-based transmission the role (usage) of the SRS resource set (resourceset) configured for the terminal device in the SRS configuration information is codebook-based transmission ( codebook), the number of SRS resources in this configuration can be 1 or 2.
  • Codebook-based transmission can be further divided into periodic SRS transmission and aperiodic SRS transmission.
  • the network device will configure the period and offset of the SRS transmission in the SRS configuration message.
  • One SRS transmission For aperiodic SRS transmission, the network device may use DCI to trigger the terminal device to perform SRS transmission, and the SRS transmission triggered by the terminal device based on the DCI is one SRS transmission.
  • an SRS transmission may also be determined by the terminal according to the configuration of other network devices, which is not limited here.
  • FIG. 2 shows the steps of the communication method 200 according to the embodiment of the present application:
  • a terminal device sends first capability information to a network device.
  • the network device receives the first capability information from the terminal device.
  • the first capability information indicates that the codebook subset supported by the terminal device is: a fully coherent codebook subset or a partially coherent codebook subset.
  • the codebook subset indicated by the first capability information is used for precoding the first PUSCH.
  • the terminal device sends first indication information to the network device.
  • the network device receives the first indication information from the terminal device.
  • the first indication information indicates a codebook subset supported by the terminal device after the handover occurs.
  • the codebook subset indicated by the first indication information includes one of the following: a fully coherent codebook subset, a partially coherent codebook subset, and a non-coherent codebook subset.
  • the network device sends the second indication information to the terminal device.
  • the terminal device receives the second indication information from the network device.
  • the second indication information at least indicates the transmission configuration of the second PUSCH.
  • the terminal device in addition to reporting the first capability information, the terminal device also reports the first indication information to indicate the codebook subset that it supports after handover, thereby providing a reference for the network device to determine the second indication information.
  • the transmission configuration of the second PUSCH can be determined, so that the switched transmission configuration matches the relative power and phase error of the terminal device, thereby ensuring the transmission performance of the PUSCH.
  • the codebook subset indicated by the first indication information is a non-coherent codebook subset
  • the network device knows that the terminal device does not support fully coherent transmission and partial coherent transmission after handover, and the transmission configuration indicated by the second indication information Fully coherent and partially coherent transmission modes are not included.
  • the terminal device does not precode the second PUSCH using the precoding matrix in the fully coherent codebook subset and the partially coherent codebook subset.
  • the codebook subset indicated by the first indication information is a fully coherent codebook subset (or a partially coherent codebook subset)
  • the network device learns that the terminal device supports fully coherent transmission (or partially coherent transmission) after switching. transmission)
  • the transmission configuration indicated by the second indication information includes fully coherent transmission (or partial coherent transmission).
  • the terminal device transmits the second PUSCH according to the transmission configuration indicated by the second indication information, so as to obtain a corresponding gain, thereby ensuring the PUSCH transmission performance.
  • a terminal device sends first capability information to a network device.
  • the network device receives the first capability information from the terminal device.
  • the first capability information indicates that the codebook subset supported by the terminal device is: a fully coherent codebook subset or a partially coherent codebook subset.
  • the codebook subset indicated by the first capability information is used for precoding the first PUSCH.
  • the first capability information includes pusch-TransCoherence.
  • the codebook subset indicated by the first capability information is the fully coherent codebook subset.
  • the codebook subset indicated by the first capability information is a partial coherent codebook subset.
  • the first capability information may also be explicitly or implicitly indicated to the user equipment through other information.
  • the codebook subset indicated by the first capability information may represent the coherent transmission capability of the terminal device before handover.
  • the codebook subset indicated by the first capability information is a fully coherent codebook subset
  • the terminal device has fully coherent transmission capability before handover
  • the matrix for precoding the first PUSCH includes one of the following: Fully coherent precoding matrices, partially coherent precoding matrices, and non-coherent precoding matrices.
  • the matrix for precoding the first PUSCH includes one of the following: : Partially coherent precoding matrix and non-coherent precoding matrix.
  • the codebook subset indicated by the first capability information is one selected from the following three: a fully coherent codebook subset, a partially coherent codebook subset, and a non-coherent codebook subset.
  • the terminal may determine indication information indicating a subset of a fully coherent codebook or a subset of a partially coherent codebook.
  • the first capability information or the above-determined indication information may indicate an association relationship between the codebook subset and the first PUSCH, or indicate that the codebook subset is associated with the first PUSCH.
  • the terminal device sends first indication information to the network device.
  • the network device receives the first indication information from the terminal device.
  • the codebook subset indicated by the first indication information includes one of the following: a fully coherent codebook subset, a partially coherent codebook subset, and a non-coherent codebook subset.
  • the first indication information may also be described as second capability information.
  • the first indication information may be recorded as enhanced pusch-TransCoherence.
  • the codebook subset indicated by the first indication information is a fully coherent codebook subset.
  • the codebook subset indicated by the first indication information is a partial coherent codebook subset.
  • the codebook subset indicated by the first indication information is a non-coherent codebook subset.
  • the first indication information indicates a codebook subset supported by the terminal device after the handover occurs. In yet another embodiment, the first indication information indicates a codebook subset, and further optionally, the codebook subset is associated with the second PUSCH.
  • the codebook subset indicated by the first indication information may represent the coherent transmission capability of the terminal device after handover.
  • the codebook subset indicated by the first indication information is a fully coherent codebook subset
  • the terminal device has fully coherent transmission capability after handover, and meets the requirements of the radio frequency index.
  • the matrix used by the terminal device to precode the second PUSCH is the precoding matrix in the fully coherent codebook subset.
  • the codebook subset indicated by the first indication information is a partial coherent codebook subset
  • the terminal device has partial coherent transmission capability after handover, which meets the requirements of the radio frequency index.
  • the matrix for precoding the second PUSCH by the terminal device is the precoding matrix in the subset of the partially coherent codebook.
  • the terminal device has incoherent transmission capability after handover, which does not meet the requirements of the radio frequency index.
  • the matrix for precoding the second PUSCH by the terminal device is a precoding matrix in the subset of the non-coherent codebook, or the terminal device transmits the second PUSCH in the DCI_0_0 mode or the transmit diversity mode.
  • the DCI_0_0 mode is a fallback format, which is commonly used in the process of scheduling PUSCH in a cell.
  • Transmit diversity mode uses multiple antennas at the transmitter to exploit diversity gain and improve link quality.
  • LTE specifies two transmit diversity schemes: one is a 2 ⁇ 2 space frequency block code (SFBC) technology, and the other is a 4 ⁇ 4 technology.
  • SFBC space frequency block code
  • the terminal device can determine its own coherent transmission capability after handover according to the radio frequency index, for example, determine whether it meets the radio frequency index. Then, the terminal device generates the first indication information according to its own coherent transmission capability after the handover.
  • the first indication information is introduced through two examples:
  • the first indication information indicates the codebook subset, but does not indicate the type of handover of the terminal device. For example, in the case where the terminal device determines that the radio frequency index is not satisfied, the first indication information indicates that the codebook subset supported by the terminal device after the handover occurs is: an incoherent codebook subset. When the terminal device determines that the radio frequency index is met, the first indication information indicates that the codebook subset supported by the terminal device after the handover occurs is: a fully coherent codebook subset or a partially coherent codebook subset. In one embodiment, the first indication information may also be determined by the terminal according to other preset conditions, which is not limited here.
  • the type of handover refers to the type in which the terminal device is handed over.
  • the supported codebook subset may be a fully coherent codebook subset or a partially coherent codebook subset, or a non-coherent codebook subset.
  • the types of handover include, but are not limited to, uplink transmission handover and SRS handover.
  • the first indication information indicates the codebook subset, and also indicates the type of handover of the terminal device.
  • the kind of switching can be represented by a category name or a category ID.
  • the first indication information carries category name information or category identification information, so as to indicate the category in which the terminal device is switched.
  • the terminal device may execute S201 first, then execute S202, or execute S202 first, then execute S201, or execute S201 and S202 at the same time , the execution order of S201 and S202 is not limited in this embodiment of the present application.
  • the description of the determination order of the first capability information and the first indication information is as follows: In the case where the first capability information indicates that the codebook subset supported by the terminal device is: a fully coherent codebook subset or a partially coherent codebook subset, The terminal device determines the codebook subset that it supports after the handover occurs, and generates the first indication information.
  • the above S201 and S202 may also be one step.
  • the network device sends the second indication information to the terminal device.
  • the terminal device receives the second indication information from the network device.
  • the second indication information indicates the transmission configuration of the PUSCH.
  • the network device may determine that the terminal device has not been switched, and the transmission configuration indicated by the second indication information includes the transmission mode of the previous PUSCH.
  • the terminal device still sends the current PUSCH in the transmission mode of the previous PUSCH.
  • the codebook subset indicated by the first indication information may be a fully coherent codebook subset, a partially coherent codebook subset, or a non-coherent codebook subset.
  • the device still satisfies the radio frequency index without switching, so the transmission configuration indicated by the second indication information includes the transmission mode of the previous PUSCH.
  • the second indication information at least indicates the transmission configuration of the second PUSCH.
  • the codebook subset indicated by the first indication information is: a fully coherent codebook subset or a partially coherent codebook subset.
  • the transmission of the second PUSCH may be configured as a fully coherent precoding transmission mode.
  • the transmission of the second PUSCH may be configured as a partially coherent precoding transmission mode.
  • the codebook subset indicated by the first indication information is: a non-coherent codebook subset.
  • the transmission configuration of the second PUSCH includes one of the following: a non-coherent precoding transmission mode, a DCI_0_0 mode, or a transmit diversity mode.
  • the first scenario of the second example is uplink transmission handover.
  • the uplink transmission switching can realize the dual-connectivity (DC) mode of the evolved universal terrestrial radio access network-new radio (E-UTRA-NR), carrier aggregation (carrier aggregation) aggregation, CA) or supplementary uplink.
  • DC dual-connectivity
  • E-UTRA-NR evolved universal terrestrial radio access network-new radio
  • CA carrier aggregation
  • the terminal device receives the RRC signaling from the network device.
  • the uplinkTxSwitchingOption-r16 field of the RRC signaling is switch UL
  • the pusch-Config field is txConfig codebook
  • Figures 3a and 3b show two uplink transmission switching procedures.
  • FIG. 3a shows the first uplink transmission switching process, and the specific steps include:
  • the terminal device sends the SRS to the network device.
  • the network device receives the SRS from the terminal device.
  • the SRS in S301a is the Nth SRS sent by the terminal device.
  • the network device sends DCI1 to the terminal device.
  • the terminal device receives the DCI1 from the network device.
  • DCI1 indicates the transmission configuration of the first PUSCH.
  • the transmission configuration indicated by DCI1 may be determined based on the measurement result of the SRS in S301a.
  • the format of DCI1 includes DCI_0_1.
  • the format of DCI1 may also be DCI_0_2 or other formats, which are not limited in this embodiment of the present application.
  • the terminal device sends the first PUSCH to the network device.
  • the network device receives the first PUSCH from the terminal device.
  • the transmission configuration of the first PUSCH in S303a is the transmission configuration indicated by DCI1.
  • the network device sends DCI2 to the terminal device.
  • the terminal device receives the DCI2 from the network device.
  • DCI2 instructs the terminal equipment to perform uplink transmission switching, that is, DCI2 triggers uplink transmission switching.
  • the format of DCI2 includes one of the following: DCI_0_1, DCI_1_1, or DCI_2_3.
  • the format of the DCI2 may also be other formats, which are not limited in this embodiment of the present application.
  • the terminal device performs uplink transmission switching.
  • the network device sends DCI3 to the terminal device.
  • the terminal device receives the DCI3 from the network device.
  • DCI3 instructs the terminal device to send the second PUSCH.
  • the format of DCI3 includes DCI_0_1.
  • the format of DCI3 may also be other formats, which are not limited in this embodiment of the present application.
  • the terminal device sends the second PUSCH to the network device.
  • the network device receives the second PUSCH from the terminal device.
  • the network device first executes S302a, and then executes S304a. That is to say, the network device schedules the first PUSCH first, and then triggers the uplink transmission switching.
  • the second indication information may be carried in one of the following:
  • the first item, the second indication information is carried in DCI1. That is to say, when the network device schedules the PUSCH, it does not know the time when the handover occurs, but DCI1 still indicates to the terminal device the transmission configuration after the handover occurs. In this case, if a switch occurs after the terminal device executes S302a, that is, the terminal device executes S305a, then the transmission configuration used in S307a is the transmission configuration indicated by the second indication information in S302a.
  • the second item, the second indication information is carried in DCI2. That is, the network device carries the second indication information in the DCI2 triggering the uplink transmission switch to indicate the transmission configuration of the terminal device after the switch, so as to prevent the terminal device from continuing to use the transmission mode of full (or partial) coherent precoding.
  • the third item, the second indication information is carried in DCI3. That is to say, after the uplink transmission switching, the network device instructs the terminal device to send the second indication information in DCI3 of the second PUSCH, so as to indicate the transmission configuration of the terminal device after the switch, so as to prevent the terminal device from continuing to use the full (or partial) phase.
  • the transmission mode of the intervening encoding is carried in DCI3.
  • the second indication information is represented by a preset number of bits, such as the value of a certain (or more) bits to indicate the value of the second PUSCH.
  • Transport configuration For example, when the value of this bit is "1", it indicates that the transmission configuration of the second PUSCH is a preset transmission mode. Or, on the contrary, when the value of the bit is "0", it indicates that the transmission configuration of the second PUSCH is a preset transmission mode.
  • the preset transmission mode includes one of the following: a non-coherent precoding transmission mode, a DCI_0_0 mode, or a transmit diversity mode.
  • the index value and Rank value of the modulation and coding scheme are pre-agreed with the network device side.
  • FIG. 3b shows the second uplink transmission switching process, and the specific steps include:
  • the terminal device sends the SRS to the network device.
  • the network device receives the SRS from the terminal device.
  • the SRS in S301b is the Nth SRS sent by the terminal device.
  • the network device sends DCI2 to the terminal device.
  • the terminal device receives the DCI2 from the network device.
  • the network device sends DCI1 to the terminal device.
  • the terminal device receives the DCI1 from the network device.
  • DCI1 indicates the transmission configuration of the first PUSCH and the transmission configuration of the second PUSCH (ie, the second indication information).
  • the transmission configuration indicated by DCI1 is determined based on the measurement result of the SRS in S301b and DCI2.
  • the network device may execute S302b first, and then execute S303b. That is to say, for the network device, the transmission time of DCI2 is earlier than the transmission time of DCI1. For the terminal equipment, the receiving time of DCI2 is earlier than the receiving time of DCI1.
  • the terminal device sends the first PUSCH to the network device.
  • the network device receives the first PUSCH from the terminal device.
  • the transmission configuration of the first PUSCH in S303b is the transmission configuration indicated by DCI1.
  • the terminal device performs uplink transmission switching.
  • the network device sends DCI3 to the terminal device.
  • the terminal device receives the DCI3 from the network device.
  • DCI3 instructs the terminal device to send the second PUSCH.
  • DCI3 For the format of DCI3, please refer to the relevant description in S306a, which will not be repeated here.
  • the terminal device sends the second PUSCH to the network device.
  • the network device receives the second PUSCH from the terminal device.
  • the transmission configuration of the second PUSCH in S307b is the transmission configuration indicated by DCI1.
  • the network device first executes S302b, and then executes S303b. That is to say, the network device triggers the uplink transmission switch first, and then schedules the first PUSCH and the second PUSCH.
  • the second indication information is carried in DCI1 to indicate the transmission configuration of the terminal equipment after the handover, so as to prevent the terminal equipment from continuing to use the transmission mode of full (or partial) coherent precoding.
  • the second indication information includes first channel quality indication (channel quality indication, CQI) information.
  • the first CQI information includes a transmitted precoding matrix indicator (transmitted precoding matrix indicator, TPMI), a modulation and coding strategy (modulation and coding scheme, MCS), and a rank indicator (rank indicator, RI).
  • the precoding matrix indicated by the TPMI is one of the non-coherent codebook subsets
  • the MCS is used to determine the modulation mode and the code rate
  • the rank indication is the number of layers mapped to the second PUSCH. That is, the transmission indicated by the first CQI is configured in a non-coherent precoding mode.
  • the second scenario of the second example is SRS handover.
  • the SRS handover is a kind of handover that occurs in the terminal device.
  • SRS switching includes aperiodic triggering and periodic triggering.
  • DCI is used to trigger aperiodic SRS switching.
  • RRC signaling configures periodic SRS switching, or activates periodic SRS switching through media access control (media access control, MAC)-control element (control element, CE).
  • media access control media access control, MAC
  • CE control element
  • Figure 4a shows the first aperiodic triggering process of SRS handover, and the specific steps include:
  • the terminal device sends the SRS to the network device.
  • the network device receives the SRS from the terminal device.
  • the SRS in S401a is the Nth SRS sent by the terminal device.
  • the network device sends DCI1 to the terminal device.
  • the terminal device receives the DCI1 from the network device.
  • the terminal device sends the first PUSCH to the network device.
  • the network device receives the first PUSCH from the terminal device.
  • the transmission configuration of the first PUSCH in S403a is the transmission configuration indicated by DCI1.
  • the network device sends DCI2 to the terminal device.
  • the terminal device receives the DCI2 from the network device.
  • DCI2 instructs the terminal device to perform SRS switching, that is, DCI2 triggers SRS switching.
  • DCI2 For the format of DCI2, please refer to the relevant description in S304a, which will not be repeated here.
  • the terminal device performs SRS handover.
  • the terminal device sends the second PUSCH to the network device.
  • the network device receives the second PUSCH from the terminal device.
  • the network device first executes S402a, and then executes S404a. That is to say, the network device schedules the first PUSCH first, and then triggers the SRS switching.
  • the second indication information may be carried in one of the following:
  • the first item, the second indication information is carried in DCI1. That is to say, when the network device schedules the PUSCH, it does not know the time when the handover occurs, but DCI1 still indicates to the terminal device the transmission configuration after the handover occurs. In this case, if a switch occurs after the terminal device performs S402a, that is, the terminal device performs S405a, then the transmission configuration used in S406a is the transmission configuration indicated by the second indication information in S402a.
  • the second item, the second indication information is carried in DCI2. That is, the network device carries the second indication information in the DCI2 that triggers the SRS handover to indicate the transmission configuration of the terminal device after the handover, so as to prevent the terminal device from continuing to use the transmission mode of full (or partial) coherent precoding.
  • the second indication information is represented by a preset number of bits.
  • the introduction in FIG. 3 a please refer to the introduction in FIG. 3 a , which will not be repeated here.
  • Figure 4b shows the second aperiodic triggering of the SRS switching process, and the specific steps include:
  • the terminal device sends the SRS to the network device.
  • the network device receives the SRS from the terminal device.
  • the SRS in S401b is the Nth SRS sent by the terminal device.
  • the network device sends DCI2 to the terminal device.
  • the terminal device receives the DCI2 from the network device.
  • DCI2 instructs the terminal device to perform SRS switching, that is, DCI2 triggers SRS switching.
  • DCI2 For the format of DCI2, please refer to the relevant description in S304a, which will not be repeated here.
  • the network device sends DCI1 to the terminal device.
  • the terminal device receives the DCI1 from the network device.
  • DCI1 indicates the transmission configuration of the first PUSCH and the transmission configuration of the second PUSCH (ie, the second indication information).
  • the transmission configuration indicated by DCI1 is determined based on the measurement result of the SRS in S401b and DCI2.
  • the network device first executes S402b, and then executes S403b. That is to say, for the network device, the transmission time of DCI2 is earlier than the transmission time of DCI1. For the terminal equipment, the receiving time of DCI2 is earlier than the receiving time of DCI1.
  • the terminal device sends the first PUSCH to the network device.
  • the network device receives the first PUSCH from the terminal device.
  • the transmission configuration of the first PUSCH in S404b is the transmission configuration indicated by DCI1.
  • the terminal device performs SRS handover.
  • the terminal device sends the second PUSCH to the network device.
  • the network device receives the second PUSCH from the terminal device.
  • the transmission configuration of the second PUSCH in S406b is the transmission configuration indicated by DCI1.
  • the network device first executes S402b, and then executes S403b. That is, the network device triggers the SRS switching first, and then instructs the terminal device the transmission configuration of the second PUSCH through DCI1, so as to prevent the terminal device from continuing to use the full (or partial) coherent precoding transmission mode after the SRS switching.
  • Figure 4c shows the process of periodically triggering SRS handover, and the specific steps include:
  • the terminal device sends the SRS to the network device.
  • the network device receives the SRS from the terminal device.
  • the SRS in S401c is the Nth SRS sent by the terminal device.
  • the network device sends DCI1 to the terminal device.
  • the terminal device receives the DCI1 from the network device.
  • DCI1 indicates the transmission configuration of the first PUSCH and the transmission configuration of the second PUSCH (ie, the second indication information).
  • the transmission configuration indicated by DCI1 is determined based on the measurement result of the SRS in S401c and the trigger period of the SRS switching.
  • the format of the DCI1 reference may be made to the relevant description in S302a, which will not be repeated here.
  • the terminal device sends the first PUSCH to the network device.
  • the network device receives the first PUSCH from the terminal device.
  • the transmission configuration of the first PUSCH in S403c is the transmission configuration indicated by DCI1.
  • the terminal device performs SRS handover.
  • the terminal equipment performs SRS handover according to the trigger period indicated by RRC signaling or MAC-CE.
  • the terminal device sends the second PUSCH to the network device.
  • the network device receives the second PUSCH from the terminal device.
  • the transmission configuration of the second PUSCH in S405c is the transmission configuration indicated by DCI1.
  • the second indication information is carried in the DCI as an example for description.
  • the second indication information may also be carried in the MAC-CE, and the second indication information may also be carried in RRC signaling, which is not limited in this embodiment of the present application.
  • the communication method in this embodiment of the present application further includes S501 and S502:
  • the network device sends configuration information to the terminal device.
  • the terminal device receives the configuration information from the network device.
  • the configuration credit is used to configure the transmission resources of the SRS.
  • the terminal device sends the SRS to the network device on the transmission resource.
  • the network device receives the SRS from the terminal device on the transmission resource.
  • the transmission time of the SRS is earlier than the transmission start time of the second PUSCH.
  • the terminal device After the terminal device performs S202, the terminal device is switched. After the handover occurs, and before the transmission start time of the second PUSCH, the terminal device performs S502, that is, re-sends the SRS once, so that the network device determines the second indication information based on the SRS in S502, so that the second indication information indicates The transmission configuration of the PUSCH matches the current actual situation of the terminal device to ensure the transmission performance of the PUSCH.
  • the terminal device sends the PUSCH to the network device.
  • the network device receives the PUSCH from the terminal device.
  • the terminal device still sends the current PUSCH by using the transmission mode of the previous PUSCH.
  • the terminal device still sends the first PUSCH using the transmission mode of the previous PUSCH.
  • the terminal device sends the second PUSCH using the transmission configuration indicated by the second indication information.
  • the resource set (ResourceSet) of the SRS (such as the SRS sent at the Nth time, the SRS sent at the (N+1)th time, and the SRS sent in S502 ) is configured as a codebook or a non-resource set. codebook.
  • the usage in the SRS-ResourceSet is set to nonCodebook, that is, the resource set of the SRS
  • each transmission of SRS includes two sets.
  • one set of SRS is precoded by using the precoding matrix in the subset of the fully coherent codebook or the subset of the partially coherent codebook, and the other set of SRS is precoded by using the precoding matrix in the subset of the non-codebook codebook.
  • SRS-ResourceSet is set to Codebook, the SRS transmitted each time is not precoded.
  • the network device indicates the PUSCH transmission configuration for the terminal device
  • the terminal device can also independently determine the transmission configuration after switching.
  • the network device sends a switching instruction to the terminal device.
  • the terminal device receives the handover instruction from the network device.
  • the switching instruction instructs the terminal device to perform switching.
  • the handover instruction includes DCI2 in S304a.
  • the handover instruction includes DCI2 in S404a.
  • the handover instruction includes RRC signaling or MAC-CE.
  • the terminal device executes the switching process according to the switching instruction.
  • the terminal device performs uplink transmission switching.
  • the handover instruction instructs SRS handover
  • the terminal device performs SRS handover.
  • the terminal device After the terminal device performs the handover, if the codebook subset supported by the terminal device after the handover is: a fully coherent codebook subset or a partially coherent codebook subset, the terminal device transmits the current PUSCH in the transmission mode of the previous PUSCH. If the codebook subset supported by the terminal device after switching is a non-coherent codebook subset, the terminal device performs S603:
  • the terminal device sends the second PUSCH to the network device by using a preset transmission mode.
  • the network device adopts the preset transmission mode to receive the second PUSCH from the terminal device.
  • the terminal device autonomously determines the transmission mode of the second PUSCH, so that the switched transmission configuration matches the relative power and phase error of the terminal device, thereby ensuring the PUSCH transmission performance.
  • the communication method according to this embodiment of the present application further includes S604:
  • the terminal device sends the first indication information to the network device.
  • the network device receives the first indication information from the terminal device.
  • the first indication information indicates a codebook subset supported by the terminal device after the handover occurs.
  • the first indication information is also applicable to other implementation manners described in S202, and details are not repeated here.
  • the terminal device can still report the first indication information, so that the network device can know the capabilities of the terminal device and facilitate the network device to schedule resources for the terminal device.
  • the communication method according to the embodiment of the present application further includes S605:
  • the terminal device sends the first capability information to the network device.
  • the network device receives the first capability information from the terminal device.
  • the terminal device even if the terminal device autonomously determines the transmission configuration after switching, the terminal device still reports the first capability information, so that the network device can know the capabilities of the terminal device and facilitate the network device to schedule resources for the terminal device.
  • the terminal device may execute S604 but not S605, the terminal device may also execute S605 but not execute S604, and the terminal device may execute both S604 and S605, This embodiment of the present application does not limit this.
  • the communication method according to the embodiment of the present application further includes S606 and S607:
  • the terminal device sends the SRS to the network device.
  • the network device receives the SRS from the terminal device.
  • the SRS in S606 is the Nth SRS sent by the terminal device.
  • the network device sends the second indication information to the terminal device.
  • the terminal device receives the second indication information from the network device.
  • the second indication information indicates a preset transmission mode.
  • the sending time of the second indication information is earlier than the sending time of the handover instruction.
  • the moment of receiving the second indication information is earlier than the moment of receiving the handover instruction. That is to say, in the communication method 600 in this embodiment of the present application, S606 is executed first, and then S601 is executed, that is, when the network device schedules the PUSCH, it does not know the time when the handover occurs, but the second indication information is that the terminal device indicates that the handover occurs after the handover occurs. transmission configuration. In this case, if a switch occurs after the terminal device performs S607, that is, the terminal device performs S602 and S603, then the transmission configuration used in S603 is the transmission configuration indicated by the second indication information in S607.
  • PUSCH transmission configuration is used as an example for introduction.
  • the communication method in the embodiment of the present application may also be applicable to transmission configurations of other channels, which is not limited in the embodiment of the present application.
  • the above description is only given as an example of uplink transmission switching or SRS switching.
  • uplink transmission switching can also be replaced with one of the following: antenna switching, PUSCH configuration (config) switching, discontinuous reception mechanism (discontinuous reception, DRX) entering sleep (off time), occurrence of measurement interval (measurement gap occurrences), bandwidth part (BWP) handover, Evolved Universal Terrestrial Radio Access Network (evolved universal terrestrial radio access network-new radio-dual-connectivity, EN-DC) change, carrier Carrier aggregation (CA) configuration changes, RF channel switching, power control parameter changes, or frequency hopping.
  • PUSCH configuration config
  • discontinuous reception mechanism discontinuous reception
  • DRX discontinuous reception
  • DRX discontinuous reception
  • BWP bandwidth part
  • Evolved Universal Terrestrial Radio Access Network evolved universal terrestrial radio access network-new radio-dual-connectivity, EN-DC
  • CA carrier Carrier aggregation
  • the embodiment of the present application further provides a communication method 800 .
  • the communication method 800 according to the embodiment of the present application will be described in detail.
  • a terminal device sends first capability information to a network device.
  • the network device receives the first capability information from the terminal device.
  • the first capability information indicates that the codebook subset supported by the terminal device is: a fully coherent codebook subset or a partially coherent codebook subset.
  • the codebook subset indicated by the first capability information is used for precoding PUSCH.
  • S201 For the specific implementation of the first capability information, reference may be made to the description of S201, which will not be repeated here.
  • the terminal device sends first indication information to the network device.
  • the network device receives the first indication information from the terminal device.
  • the first indication information indicates a non-coherent codebook subset, and the codebook subset indicated by the first indication information is a codebook subset supported by the terminal device after handover occurs.
  • the handover includes uplink transmission handover or sounding reference signal SRS handover.
  • SRS handover sounding reference signal
  • the terminal device sends the SRS to the network device.
  • the network device receives the SRS from the terminal device.
  • the SRS in S803 is the above-mentioned Nth SRS sent by the terminal device.
  • the network device sends the second indication information to the terminal device.
  • the terminal device receives the second indication information from the network device.
  • the second indication information indicates a precoding matrix.
  • the precoding matrix indicated by the second indication information is one of the non-coherent codebook subsets.
  • the second indication information may be carried in DCI, and the second indication information may be implemented as CQI information.
  • the CQI information includes TPMI, MCS and RI.
  • the precoding matrix indicated by the TPMI is one of the above non-coherent codebook subsets
  • the MCS is used to determine the modulation mode and the code rate
  • the rank indication is the number of layers for PUSCH mapping.
  • the MCS and RI are determined based on the measurement result of the SRS in S803. That is to say, the transmission mode indicated by the second indication information is a non-coherent precoding transmission mode.
  • the implementation manner of S804 includes but is not limited to the following introduction: As an implementation manner, after the network device executes S802, the network device executes S804. That is, after the network device acquires the first indication information, the first indication information triggers the network device to execute S804. As another implementation manner, the network device sends RRC signaling to the terminal device. Correspondingly, the terminal device receives the RRC signaling from the network device. Wherein, when the uplinkTxSwitchingOption-r16 field of the RRC signaling is switch UL, and the pusch-Config field is txConfig codebook, the network device executes S804.
  • the terminal device sends the PUSCH to the network device.
  • the network device receives the PUSCH from the terminal device.
  • the precoding matrix used by the PUSCH in S805 is the precoding matrix indicated by the second indication information.
  • the terminal device may or may not switch, and the PUSCH in S805 always adopts a non-coherent intercoding matrix precoding.
  • the terminal device may or may not switch during the process of executing S805, and the PUSCH in S805 is always precoded by using a non-coherent precoding matrix.
  • the network device when the first indication information indicates a subset of non-coherent codebooks, the network device does not observe whether the terminal device is switched, and always configures the transmission mode of non-coherent precoding for the terminal device to prevent the terminal device from not meeting the radio frequency index. , and still adopt the phenomenon of fully coherent transmission and partial coherent transmission mode, so as to ensure the transmission performance of PUSCH.
  • an embodiment of the present application further provides a communication device, and the communication device may be a network element in the foregoing method embodiments, or a device including the foregoing network element, or a component usable for a network element.
  • the communication apparatus includes corresponding hardware structures and/or software modules for executing each function.
  • the present application can be implemented in hardware or a combination of hardware and computer software with the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
  • An embodiment of the present application provides a chip, where the chip includes a logic circuit and an input and output interface.
  • the input and output interface is used for communicating with modules other than the chip, and the logic circuit is used for performing other operations on the terminal device in the above method embodiments except for the transceiving operation.
  • the input and output interfaces may be used to execute S201, S202, S203, and S204 on the terminal device side in the embodiments of the present application, and/or the input and output interfaces It is also used to perform other transceiving steps on the terminal device side in the embodiment of the present application.
  • the logic circuit may be used to execute other processing steps on the terminal device side in the embodiments of the present application.
  • the input/output interface may be used to execute S601 and S603 on the terminal device side, and/or the input/output interface may also be used to execute the implementation of the present application.
  • the logic circuit may be used to perform S602 on the terminal device side, and/or the logic circuit may also be used to perform other processing steps on the terminal device side in the embodiments of the present application.
  • the input/output interface may be used to execute S801, S802, S803, S804, and S805 on the terminal device side, and/or the input/output interface may also It is used to perform other transceiving steps on the terminal device side in this embodiment of the present application.
  • Logic circuits can be used to perform other processing steps in the end device side.
  • the input and output interfaces may be used to execute S201, S202, S203, and S204 on the network device side in the embodiments of the present application, and/or the input and output interfaces It is also used to perform other transceiving steps on the network device side in this embodiment of the present application.
  • the logic circuit may be used to execute other processing steps on the network device side in the embodiments of the present application.
  • the input and output interfaces can be used to perform S601 and S603 on the network device side, and/or the input and output interfaces are also used to perform the implementation of the present application.
  • Logic circuits may be used to perform other processing steps in the network device side.
  • the input and output interfaces can be used to execute S801, S802, S803, S804, and S805 on the network device side, and/or the input and output interfaces are also It is used to perform other transceiving steps on the network device side in this embodiment of the present application.
  • Logic circuits may be used to perform other processing steps in the network device side.
  • FIG. 9 shows a schematic structural diagram of a communication apparatus 900 .
  • the communication apparatus 900 may exist in the form of software, or may be a device, or a component in a device.
  • the communication device 900 includes a processing unit 902 , a sending unit 903 and a receiving unit 904 .
  • the sending unit 903 is an interface circuit of the communication device 900, and is used for sending signals to other devices.
  • the sending unit 903 is an interface circuit used by the chip to send signals to other chips or devices.
  • the receiving unit 904 is an interface circuit of the communication device 900 for receiving signals from other devices.
  • the receiving unit 904 is an interface circuit used by the chip to receive signals from other chips or devices.
  • the processing unit 902 may be used to support the communication apparatus 900 to perform other processes of the solution described herein.
  • the sending unit 903 is used to support communication between the communication device 900 and other network elements.
  • the sending unit 903 is configured to support the communication apparatus 900 to perform S201, S202, S204 shown in FIG. 2, and/or other processes for the solutions described herein.
  • the receiving unit 904 is used to support communication between the communication device 900 and other network elements.
  • the receiving unit 904 is configured to support the communication apparatus 900 to perform S203 shown in FIG. 2 , and/or other processes for the solutions described herein.
  • the processing unit 902 may be used to support the communication apparatus 900 to perform S602 in FIG. 6 , and/or other processes for the solutions described herein.
  • the sending unit 903 is used to support communication between the communication device 900 and other network elements.
  • the sending unit 903 is configured to support the communication apparatus 900 to perform S603 shown in FIG. 6 , and/or other processes for the solutions described herein.
  • the receiving unit 904 is used to support communication between the communication device 900 and other network elements.
  • the receiving unit 904 is configured to support the communication apparatus 900 to perform S601 shown in FIG. 6 , and/or other processes for the solutions described herein.
  • the processing unit 902 may be used to support the communication apparatus 900 to perform other processes of the scheme described in FIG. 8 .
  • the sending unit 903 is used to support communication between the communication device 900 and other network elements.
  • the sending unit 903 is configured to support the communication apparatus 900 to perform S801, S802, S803, S805 shown in FIG. 8, and/or other processes for the solutions described herein.
  • the receiving unit 904 is used to support communication between the communication device 900 and other network elements.
  • the receiving unit 904 is configured to support the communication apparatus 900 to perform S804 shown in FIG. 8 , and/or other processes for the solutions described herein.
  • the processing unit 902 may be used to support the communication apparatus 900 to perform other processes of the solution described herein.
  • the sending unit 903 is used to support communication between the communication device 900 and other network elements.
  • the sending unit 903 is configured to support the communication apparatus 900 to perform S203 shown in FIG. 2 , and/or other processes for the solutions described herein.
  • the receiving unit 904 is used to support communication between the communication device 900 and other network elements.
  • the receiving unit 904 is configured to support the communication apparatus 900 to perform S201, S202, S204 shown in FIG. 2, and/or other processes for the solutions described herein.
  • the processing unit 902 may be used to support the communication apparatus 900 to perform other processes in FIG. 6 .
  • the sending unit 903 is used to support communication between the communication device 900 and other network elements.
  • the sending unit 903 is configured to support the communication apparatus 900 to perform S601 shown in FIG. 6 , and/or other processes for the solutions described herein.
  • the receiving unit 904 is used to support communication between the communication device 900 and other network elements.
  • the receiving unit 904 is configured to support the communication apparatus 900 to perform S603 shown in FIG. 6 , and/or other processes for the solutions described herein.
  • the processing unit 902 may be used to support the communication apparatus 900 to perform other processes of the scheme described in FIG. 8 .
  • the sending unit 903 is used to support communication between the communication device 900 and other network elements.
  • the sending unit 903 is configured to support the communication apparatus 900 to perform S804 shown in FIG. 8 , and/or other processes for the solutions described herein.
  • the receiving unit 904 is used to support communication between the communication device 900 and other network elements.
  • the receiving unit 904 is configured to support the communication apparatus 900 to perform S801, S802, S803, S805 shown in FIG. 8, and/or other processes for the solutions described herein.
  • the communication apparatus 900 may further include a storage unit 901 for storing program codes and data of the communication apparatus 900, and the data may include but not limited to original data or intermediate data.
  • the processing unit 902 may be a processor or a controller, for example, a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (application specific integrated circuit) circuit, ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It may implement or execute the various exemplary logical blocks, modules and circuits described in connection with this disclosure.
  • a processor may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and the like.
  • the sending unit 903 and the receiving unit 904 may be a communication interface, a transceiver or a transceiver circuit, etc., wherein the communication interface is a general term, and in a specific implementation, the communication interface may include multiple interfaces.
  • the storage unit 901 may be a memory.
  • the processing unit 902 includes a processor
  • the sending unit 903 and the receiving unit 904 include a communication interface
  • the storage unit 901 includes a memory
  • the communication apparatus 1000 involved in the embodiment of the present application may be as shown in FIG. 10 .
  • the communication device 1000 includes: at least one processor 1002 , a transceiver 1003 , and a memory 1001 .
  • the transceiver 1003 can be an independently set transmitter, which can be used to send information to other devices, and the transceiver 1003 can also be an independently set receiver, which can be used to receive information from other devices.
  • the transceiver may also be a component that integrates the functions of sending and receiving information, and the specific implementation of the transceiver is not limited in this embodiment of the present application.
  • the communication apparatus 1000 may further include a bus 1004 .
  • the transceiver 1003, the processor 1002 and the memory 1001 may be connected to each other through a bus 1004; the bus 1004 may include a peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA) bus etc.
  • the bus 1004 can be divided into an address bus, a data bus, a control bus, and the like. For ease of presentation, only one thick line is used in FIG. 10, but it does not mean that there is only one bus or one type of bus.
  • each module of the present invention can also be divided into different communication devices.
  • the second indication information is generated by the first network device and sent directly or indirectly to the terminal device via the second network device; or directly or indirectly sent to the terminal device by the second network device.
  • the receiving function performed by the network device it can be performed by different network devices.
  • the computer instructions may be stored in or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line, DSL) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may include any available medium that can be accessed by a computer, or a data storage device such as a server, data center, etc., that includes one or more available media integrated.
  • the usable media may include magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, digital video discs (DVDs), or semiconductor media (eg, solid state disks, SSDs)) Wait.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical or other forms.
  • the units described as separate components may or may not be physically separated, and components shown as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network devices. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each functional unit may exist independently, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware, or may be implemented in the form of hardware plus software functional units.
  • the present application can be implemented by means of software plus necessary general-purpose hardware, and of course hardware can also be used, but in many cases the former is a better implementation manner .
  • the technical solutions of the present application can be embodied in the form of software products in essence, or the parts that make contributions to the prior art.
  • the computer software products are stored in a readable storage medium, such as a floppy disk of a computer. , a hard disk or an optical disk, etc., including several instructions to cause a computer device (which may include a personal computer, a server, or a network device, etc.) to execute the methods described in the various embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了通信方法及装置,涉及通信技术领域,能够保障物理上行共享信道PUSCH的传输性能。该方法包括:终端设备向网络设备发送第一能力信息。其中,第一能力信息指示终端设备支持的码本子集为:全相干码本子集或部分相干码本子集。第一能力信息指示的码本子集用于预编码第一PUSCH。第一PUSCH在切换之前传输。切换包括上行发射切换或探测参考信号SRS切换。终端设备向网络设备发送第一指示信息。其中,第一指示信息指示终端设备在发生切换后支持的码本子集。然后,终端设备接收来自网络设备的第二指示信息。其中,第二指示信息指示第二PUSCH的传输配置。第二PUSCH在切换之后传输。

Description

通信方法及装置
本申请要求于2021年04月02日提交国家知识产权局、申请号为202110363848.0、发明名称为“通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种通信方法及装置。
背景技术
在无线通信系统中,若终端设备发生切换,如上行发射切换或探测参考信号(sounding reference signal,SRS)切换,则终端设备仍沿用前一物理上行共享信道(physical uplink shared channel,PUSCH)的预编码矩阵对当前的PUSCH进行预编码,容易造成传输配置不匹配终端设备当前的相对功率和相位误差,导致PUSCH的传输性能下降,影响数据传输。
发明内容
本申请实施例提供一种通信方法及装置,能够保障PUSCH的传输性能。
为达到上述目的,本申请实施例采用如下技术方案:
第一方面,本申请实施例提供一种通信方法,该方法的执行主体可以是终端设备,也可以是应用于终端设备中的芯片。下面以执行主体是终端设备为例进行描述。该方法包括:终端设备向网络设备发送第一能力信息。其中,第一能力信息指示终端设备支持的码本子集为:全相干码本子集或部分相干码本子集。第一能力信息指示的码本子集用于预编码第一物理上行共享信道PUSCH。第一PUSCH在切换之前传输。切换包括上行发射切换或探测参考信号SRS切换。终端设备向网络设备发送第一指示信息。其中,第一指示信息指示终端设备在发生切换后支持的码本子集。终端设备接收来自网络设备的第二指示信息。其中,第二指示信息指示第二PUSCH的传输配置,第二PUSCH在切换之后传输。
也就是说,终端设备除了上报第一能力信息之外,还上报第一指示信息,以指示自身在切换之后支持的码本子集,从而为网络设备确定第二指示信息提供了参考。在终端设备接收第二指示信息之后,即可确定第二PUSCH的传输配置,以使得切换后的传输配置匹配终端设备的相对功率和相位误差,从而保障PUSCH的传输性能。
在一种可能的设计中,第一指示信息指示非相干码本子集。示例性的,在终端设备发生切换之后,若终端设备不满足射频指标,则终端设备具备的传输能力为非相干传输能力。在第一指示信息指示非相干码本子集的情况下,网络设备即可获知终端设备具备的传输能力为非相干传输能力,以方便网络设备为终端设备调度相应的传输配置。
在一种可能的设计中,第一指示信息指示以下其中一项:全相干码本子集、部分相干码本子集、或非相干码本子集。也就是说,终端设备是从全相干码本子集、部分相干码本子集和非相干码本子集中选择一个码本子集,来表征自身在切换后具备的传输能力,再通过第一能力信息上报给网络设备,以方便网络设备为终端设备调度相应的传输配置。
在一种可能的设计中,第一指示信息还指示终端设备发生的切换种类,以使网络设备 获知终端设备发生了哪一种类的切换。
在一种可能的设计中,第二指示信息指示第二PUSCH的传输配置包括预设的传输模式。其中,预设的传输模式包括以下其中一项:非相干预编码的传输模式、DCI_0_0模式、或发射分集模式。
也就是说,在第一指示信息指示非相干码本子集,且终端设备发生切换的情况下,网络设备指示终端设备采用预设的传输模式传输第二PUSCH,以避免终端设备在切换后仍采用全相干预编码或部分相干预编码的传输模式,从而保障PUSCH的传输性能。
在一种可能的设计中,第二指示信息承载于第一下行控制信息DCI。其中,第一DCI用于触发切换。
也就是说,在第一指示信息指示非相干码本子集,且由第一DCI触发切换的情况下,网络设备还通过第一DCI携带第二指示信息,以指示第二PUSCH的传输配置,从而避免终端设备在切换后仍采用全相干预编码或部分相干预编码的传输模式,以保障PUSCH的传输性能。
在一种可能的设计中,第二指示信息指示第二PUSCH的传输配置包括信道质量指示CQI信息。其中,CQI信息指示预编码矩阵,且CQI信息指示的预编码矩阵为非相干码本子集中的一个。
也就是说,网络设备通过CQI信息来为终端设备指示传输模式。其中,CQI信息指示的预编码矩阵属于非相干预编码矩阵,以避免终端设备在切换后仍采用全相干预编码或部分相干预编码的传输模式,以保障PUSCH的传输性能。
在一种可能的设计中,本申请实施例通信方法还包括:终端设备接收来自网络设备的配置信息。其中,配置信息用于配置SRS的传输资源。然后,终端设备在传输资源上,向网络设备发送SRS。其中,SRS的发送时刻早于第二PUSCH的发送起始时刻。SRS用于确定第二指示信息。
也就是说,终端设备在发生切换之后,在发送第二PUSCH之前,终端设备补发一次SRS,以使网络设备基于补发的SRS确定第二指示信息,从而使得第二指示信息指示的传输配置匹配终端设备当前的实际状况,以保障PUSCH的传输性能。
在一种可能的设计中,SRS的资源集配置为码本或非码本。
在一种可能的设计中,第二指示信息承载于媒体接入控制的控制元素MAC-CE或无线资源控制RRC消息。
第二方面,本申请实施例提供一种通信方法,该方法的执行主体可以是终端设备,也可以是应用于终端设备中的芯片。下面以执行主体是终端设备为例进行描述。该方法包括:终端设备向网络设备发送第一能力信息。其中,第一能力信息指示终端设备支持的码本子集为:全相干码本子集或部分相干码本子集。第一能力信息指示的码本子集用于预编码物理上行共享信道PUSCH。终端设备向网络设备发送第一指示信息。其中,第一指示信息指示非相干码本子集,且第一指示信息指示的码本子集是终端设备在发生切换后支持的码本子集。切换包括上行发射切换或探测参考信号SRS切换。然后,终端设备接收来自网络设备的第二指示信息。其中,第二指示信息指示预编码矩阵。第二指示信息指示的预编码矩阵为非相干码本子集中的一个,且第二指示信息指示的预编码矩阵用于预编码PUSCH。
也就是说,在第一指示信息指示非相干码本子集的情况下,网络设备不观测终端设备 是否发生切换,始终为终端设备配置非相干预编码的传输模式,避免终端设备不满足射频指标,且仍采用全相干传输和部分相干传输模式的现象,从而保证PUSCH的传输性能。
在一种可能的设计中,第一指示信息还指示终端设备发生的切换种类,以使网络设备获知终端设备发生了哪一种类的切换。
第三方面,本申请实施例提供一种通信方法,该方法的执行主体可以是终端设备,也可以是应用于终端设备中的芯片。下面以执行主体是终端设备为例进行描述。该方法包括:终端设备接收来自网络设备的切换指令。其中,切换指令指示终端设备进行切换,切换包括上行发射切换或探测参考信号SRS切换。如果终端设备在切换后支持的码本子集为非相干码本子集,终端设备采用预设的传输模式,向网络设备发送第二物理上行共享信道PUSCH。其中,第二PUSCH在切换之后传输。
也就是说,终端设备在发生切换的情况下,终端设备自主确定第二PUSCH的传输模式,以使得切换后的传输配置匹配终端设备的相对功率和相位误差,从而保障PUSCH传输性能。
在一种可能的设计中,本申请实施例通信方法还包括:终端设备向网络设备发送第一指示信息。其中,第一指示信息指示终端设备在发生切换后支持的码本子集,以使网络设备获知终端设备在切换后的相干传输能力。
在一种可能的设计中,第一指示信息指示非相干码本子集。
在一种可能的设计中,第一指示信息指示以下其中一项:全相干码本子集、部分相干码本子集、或非相干码本子集。
在一种可能的设计中,第一指示信息还指示终端设备发生的切换种类。
在一种可能的设计中,本申请实施例通信方法还包括:终端设备接收来自网络设备的第二指示信息。其中,第二指示信息指示预设的传输模式。预设的传输模式包括以下其中一项:非相干预编码的传输模式、DCI_0_0模式、或发射分集模式。
也就是说,在终端设备发生切换的情况下,第二PUSCH的传输模式由网络设备指示的。
在一种可能的设计中,第二指示信息的接收时刻早于切换指令的接收时刻。也就是说,网络设备预先为终端设备指示第二PUSCH的传输模式。
在一种可能的设计中,本申请实施例通信方法还包括:终端设备向网络设备发送第一能力信息。其中,第一能力信息指示终端设备支持的码本子集为:全相干码本子集或部分相干码本子集。第一能力信息指示的码本子集用于预编码第一PUSCH,第一PUSCH在切换之前传输。
也就是说,终端设备还通过第一能力信息指示码本子集,以使网络设备获知终端设备在切换前的相干传输能力。
第四方面,本申请实施例提供一种通信方法,该方法的执行主体可以是网络设备,也可以是应用于网络设备中的芯片。下面以执行主体是网络设备为例进行描述。该方法包括:网络设备接收来自终端设备的第一能力信息。其中,第一能力信息指示终端设备支持的码本子集为:全相干码本子集或部分相干码本子集。第一能力信息指示的码本子集用于预编码第一物理上行共享信道PUSCH,第一PUSCH在切换之前传输。切换包括上行发射切换或探测参考信号SRS切换。网络设备接收来自终端设备的第一指示信息。其中,第一指示信息指示终端设备在发生切换后支持的码本子集。然后,网络设备向终端设备发送第二指示信息。其中,第二指示信息指示第二PUSCH的传输配置,第二PUSCH在切换之后传输。
在一种可能的设计中,第一指示信息指示非相干码本子集。
在一种可能的设计中,第一指示信息指示以下其中一项:全相干码本子集、部分相干码本子集、或非相干码本子集。
在一种可能的设计中,第一指示信息还指示终端设备发生的切换种类。
在一种可能的设计中,第二指示信息指示第二PUSCH的传输配置包括预设的传输模式。其中,预设的传输模式包括以下其中一项:非相干预编码的传输模式、DCI_0_0模式、或发射分集模式。
在一种可能的设计中,第二指示信息承载于第一下行控制信息DCI。其中,第一DCI用于触发切换。
在一种可能的设计中,第二指示信息指示第二PUSCH的传输配置包括信道质量指示CQI信息。其中,CQI信息指示预编码矩阵,CQI信息指示的预编码矩阵为非相干码本子集中的一个。
在一种可能的设计中,第二指示信息的发送时刻晚于第一DCI的发送时刻。其中,第一DCI用于触发切换。也就是说,网络设备可以先触发终端设备进行切换,后通过第二指示信息为终端设备指示第二PUSCH的传输配置。
在一种可能的设计中,第二指示信息的发送时刻早于第二DDI的发送时刻。其中,第二DDI用于触发切换。也就是说,网络设备可以先通过第二指示信息为终端设备指示第二PUSCH的传输配置,后触发终端设备进行切换。
在一种可能的设计中,本申请实施例通信方法还包括:网络设备向终端设备发送配置信息。其中,配置信息用于配置SRS的传输资源。然后,网络设备在传输资源上,接收来自终端设备的SRS。其中,SRS的接收时刻早于第二PUSCH的接收起始时刻,SRS用于确定第二指示信息。
第五方面,本申请实施例提供一种通信方法,该方法的执行主体可以是网络设备,也可以是应用于网络设备中的芯片。下面以执行主体是网络设备为例进行描述。该方法包括:网络设备接收来自终端设备的第一能力信息。其中,第一能力信息指示终端设备支持的码本子集为:全相干码本子集或部分相干码本子集。第一能力信息指示的码本子集用于预编码物理上行共享信道PUSCH。网络设备接收来自终端设备的第一指示信息。其中,第一指示信息指示非相干码本子集,且第一指示信息指示的码本子集是终端设备在发生切换后支持的码本子集。切换包括上行发射切换或探测参考信号SRS切换。然后,网络设备向终端设备发送第二指示信息。其中,第二指示信息指示预编码矩阵,第二指示信息指示的预编码矩阵为非相干码本子集中的一个,且第二指示信息指示的预编码矩阵用于预编码PUSCH。
在一种可能的设计中,第一指示信息还指示终端设备发生的切换种类。
第六方面,本申请实施例提供一种通信方法,该方法的执行主体可以是网络设备,也可以是应用于网络设备中的芯片。下面以执行主体是网络设备为例进行描述。该方法包括:网络设备向终端设备发送切换指令。其中,切换指令指示终端设备进行切换。切换包括上行发射切换或探测参考信号SRS切换。然后,网络设备接收来自终端设备的第二物理上行共享信道PUSCH。其中,第二PUSCH通过预设的传输模式在切换之后传输。
在一种可能的设计中,本申请实施例通信方法还包括:网络设备接收来自终端设备的第一指示信息。其中,第一指示信息指示终端设备在发生切换后支持的码本子集。
在一种可能的设计中,第一指示信息指示非相干码本子集。
在一种可能的设计中,第一指示信息指示以下其中一项:全相干码本子集、部分相干码本子集、或非相干码本子集。
在一种可能的设计中,第一指示信息还指示终端设备发生的切换种类。
在一种可能的设计中,本申请实施例通信方法还包括:网络设备向终端设备发送第二指示信息。其中,第二指示信息指示预设的传输模式。预设的传输模式包括以下其中一项:非相干预编码的传输模式、DCI_0_0模式、或发射分集模式。
在一种可能的设计中,第二指示信息的发送时刻早于切换指令的发送时刻。
在一种可能的设计中,本申请实施例通信方法还包括:网络设备接收来自终端设备的第一能力信息。其中,第一能力信息指示终端设备支持的码本子集为:全相干码本子集或部分相干码本子集。第一能力信息指示的码本子集用于预编码第一PUSCH,第一PUSCH在切换之前传输。
第七方面,本申请实施例提供一种通信装置,该通信装置可以为上述第一方面或第一方面任一种可能的设计中的终端设备,或者为设置于上述终端设备内的装置,或者实现上述终端设备功能的芯片;所述通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
该通信装置包括发送单元、接收单元和处理单元。其中,发送单元用于向网络设备发送第一能力信息。其中,第一能力信息指示通信装置支持的码本子集为:全相干码本子集或部分相干码本子集。第一能力信息指示的码本子集用于预编码第一物理上行共享信道PUSCH。第一PUSCH在切换之前传输。切换包括上行发射切换或探测参考信号SRS切换。发送单元还用于向网络设备发送第一指示信息。其中,第一指示信息指示通信装置在发生切换后支持的码本子集。接收单元用于接收来自网络设备的第二指示信息。其中,第二指示信息指示第二PUSCH的传输配置,第二PUSCH在切换之后传输。处理单元用于确定第一能力信息和第一指示信息。
在一种可能的设计中,第一指示信息指示非相干码本子集。
在一种可能的设计中,第一指示信息指示以下其中一项:全相干码本子集、部分相干码本子集、或非相干码本子集。
在一种可能的设计中,第一指示信息还指示通信装置发生的切换种类。
在一种可能的设计中,第二指示信息指示第二PUSCH的传输配置包括预设的传输模式。其中,预设的传输模式包括以下其中一项:非相干预编码的传输模式、DCI_0_0模式、或发射分集模式。
在一种可能的设计中,第二指示信息承载于第一下行控制信息DCI。其中,第一DCI用于触发切换。
在一种可能的设计中,第二指示信息指示第二PUSCH的传输配置包括信道质量指示CQI信息。其中,CQI信息指示预编码矩阵,且CQI信息指示的预编码矩阵为非相干码本子集中的一个。
在一种可能的设计中,接收单元还用于接收来自网络设备的配置信息。其中,配置信息用于配置SRS的传输资源。发送单元还用于在传输资源上,向网络设备发送SRS。其中, SRS的发送时刻早于第二PUSCH的发送起始时刻。SRS用于确定第二指示信息。
在一种可能的设计中,SRS的资源集配置为码本或非码本。
在一种可能的设计中,第二指示信息承载于媒体接入控制的控制元素MAC-CE或无线资源控制RRC消息。
第八方面,本申请实施例提供一种通信装置,该通信装置可以为上述第二方面或第二方面任一种可能的设计中的终端设备,或者为设置于上述终端设备内的装置,或者实现上述终端设备功能的芯片;所述通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
该通信装置包括发送单元、接收单元和处理单元。其中,发送单元用于向网络设备发送第一能力信息。其中,第一能力信息指示通信装置支持的码本子集为:全相干码本子集或部分相干码本子集。第一能力信息指示的码本子集用于预编码物理上行共享信道PUSCH。发送单元还用于向网络设备发送第一指示信息。其中,第一指示信息指示非相干码本子集,且第一指示信息指示的码本子集是通信装置在发生切换后支持的码本子集。切换包括上行发射切换或探测参考信号SRS切换。接收单元用于接收来自网络设备的第二指示信息。其中,第二指示信息指示预编码矩阵。第二指示信息指示的预编码矩阵为非相干码本子集中的一个,且第二指示信息指示的预编码矩阵用于预编码PUSCH。处理单元用于确定第一能力信息和第一指示信息。
在一种可能的设计中,第一指示信息还指示通信装置发生的切换种类。
第九方面,本申请实施例提供一种通信装置,该通信装置可以为上述第三方面或第三方面任一种可能的设计中的终端设备,或者为设置于上述终端设备内的装置,或者实现上述终端设备功能的芯片;所述通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
该通信装置包括发送单元、接收单元和处理单元。其中,接收单元用于接收来自网络设备的切换指令。其中,切换指令指示通信装置进行切换,切换包括上行发射切换或探测参考信号SRS切换。处理单元用于确定通信装置在切换后支持的码本子集为非相干码本子集。发送单元用于采用预设的传输模式,向网络设备发送第二物理上行共享信道PUSCH。其中,第二PUSCH在切换之后传输。
在一种可能的设计中,发送单元还用于向网络设备发送第一指示信息。其中,第一指示信息指示通信装置在发生切换后支持的码本子集。
在一种可能的设计中,第一指示信息指示非相干码本子集。
在一种可能的设计中,第一指示信息指示以下其中一项:全相干码本子集、部分相干码本子集、或非相干码本子集。
在一种可能的设计中,第一指示信息还指示通信装置发生的切换种类。
在一种可能的设计中,接收单元还用于接收来自网络设备的第二指示信息。其中,第二指示信息指示预设的传输模式。预设的传输模式包括以下其中一项:非相干预编码的传输模式、DCI_0_0模式、或发射分集模式。
在一种可能的设计中,第二指示信息的接收时刻早于切换指令的接收时刻。
在一种可能的设计中,发送单元还用于向网络设备发送第一能力信息。其中,第一能力信息指示通信装置支持的码本子集为:全相干码本子集或部分相干码本子集。第一能力信息指示的码本子集用于预编码第一PUSCH,第一PUSCH在切换之前传输。
第十方面,本申请实施例提供一种通信装置,该通信装置可以为上述第四方面或第四方面任一种可能的设计中的网络设备,或者为设置于上述网络设备内的装置,或者实现上述网络设备功能的芯片;所述通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
该通信装置包括发送单元、接收单元和处理单元。其中,接收单元用于接收来自终端设备的第一能力信息。其中,第一能力信息指示终端设备支持的码本子集为:全相干码本子集或部分相干码本子集。第一能力信息指示的码本子集用于预编码第一物理上行共享信道PUSCH,第一PUSCH在切换之前传输。切换包括上行发射切换或探测参考信号SRS切换。接收单元还用于接收来自终端设备的第一指示信息。其中,第一指示信息指示终端设备在发生切换后支持的码本子集。发送单元用于向终端设备发送第二指示信息。其中,第二指示信息指示第二PUSCH的传输配置,第二PUSCH在切换之后传输。处理单元用于根据第一能力信息和第一指示信息确定第二指示信息。
在一种可能的设计中,第一指示信息指示非相干码本子集。
在一种可能的设计中,第一指示信息指示以下其中一项:全相干码本子集、部分相干码本子集、或非相干码本子集。
在一种可能的设计中,第一指示信息还指示终端设备发生的切换种类。
在一种可能的设计中,第二指示信息指示第二PUSCH的传输配置包括预设的传输模式。其中,预设的传输模式包括以下其中一项:非相干预编码的传输模式、DCI_0_0模式、或发射分集模式。
在一种可能的设计中,第二指示信息承载于第一下行控制信息DCI。其中,第一DCI用于触发切换。
在一种可能的设计中,第二指示信息指示第二PUSCH的传输配置包括信道质量指示CQI信息。其中,CQI信息指示预编码矩阵,CQI信息指示的预编码矩阵为非相干码本子集中的一个。
在一种可能的设计中,第二指示信息的发送时刻晚于第一DCI的发送时刻。其中,第一DCI用于触发切换。
在一种可能的设计中,第二指示信息的发送时刻早于第二DDI的发送时刻。其中,第二DDI用于触发切换。
在一种可能的设计中,发送单元还用于向终端设备发送配置信息。其中,配置信息用于配置SRS的传输资源。接收单元还用于在传输资源上,接收来自终端设备的SRS。其中,SRS的接收时刻早于第二PUSCH的接收起始时刻,SRS用于确定第二指示信息。
第十一方面,本申请实施例提供一种通信装置,该通信装置可以为上述第五方面或第五方面任一种可能的设计中的网络设备,或者为设置于上述网络设备内的装置,或者实现上述网络设备功能的芯片;所述通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相 应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
该通信装置包括发送单元、接收单元和处理单元。其中,接收单元用于接收来自终端设备的第一能力信息。其中,第一能力信息指示终端设备支持的码本子集为:全相干码本子集或部分相干码本子集。第一能力信息指示的码本子集用于预编码物理上行共享信道PUSCH。接收单元还用于接收来自终端设备的第一指示信息。其中,第一指示信息指示非相干码本子集,且第一指示信息指示的码本子集是终端设备在发生切换后支持的码本子集。切换包括上行发射切换或探测参考信号SRS切换。发送单元还用于向终端设备发送第二指示信息。其中,第二指示信息指示预编码矩阵,第二指示信息指示的预编码矩阵为非相干码本子集中的一个,且第二指示信息指示的预编码矩阵用于预编码PUSCH。处理单元用于根据第一能力信息和第一指示信息确定第二指示信息。
在一种可能的设计中,第一指示信息还指示终端设备发生的切换种类。
第十二方面,本申请实施例提供一种通信装置,该通信装置可以为上述第六方面或第六方面任一种可能的设计中的网络设备,或者为设置于上述网络设备内的装置,或者实现上述网络设备功能的芯片;所述通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
该通信装置包括发送单元、接收单元和处理单元。其中,处理单元用于确定切换指令。发送单元用于向终端设备发送切换指令。其中,切换指令指示终端设备进行切换。切换包括上行发射切换或探测参考信号SRS切换。接收单元用于接收来自终端设备的第二物理上行共享信道PUSCH。其中,第二PUSCH通过预设的传输模式在切换之后传输。
在一种可能的设计中,接收单元还用于接收来自终端设备的第一指示信息。其中,第一指示信息指示终端设备在发生切换后支持的码本子集。
在一种可能的设计中,第一指示信息指示非相干码本子集。
在一种可能的设计中,第一指示信息指示以下其中一项:全相干码本子集、部分相干码本子集、或非相干码本子集。
在一种可能的设计中,第一指示信息还指示终端设备发生的切换种类。
在一种可能的设计中,发送单元还用于向终端设备发送第二指示信息。其中,第二指示信息指示预设的传输模式。预设的传输模式包括以下其中一项:非相干预编码的传输模式、DCI_0_0模式、或发射分集模式。
在一种可能的设计中,第二指示信息的发送时刻早于切换指令的发送时刻。
在一种可能的设计中,接收单元还用于接收来自终端设备的第一能力信息。其中,第一能力信息指示终端设备支持的码本子集为:全相干码本子集或部分相干码本子集。第一能力信息指示的码本子集用于预编码第一PUSCH,第一PUSCH在切换之前传输。
第十三方面,本申请实施例提供了一种通信装置,包括:处理器和存储器;该存储器用于存储计算机指令,当该处理器执行该指令时,使得该通信装置执行上述任一方面或任一方面任一种可能的设计中终端设备所执行的方法。该通信装置可以为上述第一方面或第一方面任一种可能的设计中的终端设备,或者实现上述终端设备功能的芯片;或者,该通信装置可以为上述第二方面或第二方面任一种可能的设计中的终端设备,或者实现上述终端设备功能的芯片;或者,该通信装置可以为上述第三方面或第三方面任一种可能的设计 中的终端设备,或者实现上述终端设备功能的芯片。
第十四方面,本申请实施例提供了一种通信装置,包括:处理器;所述处理器与存储器耦合,用于读取存储器中的指令并执行,以使该通信装置执行如上述任一方面或任一方面任一种可能的设计中的终端设备所执行的方法。该通信装置可以为上述第一方面或第一方面任一种可能的设计中的终端设备,或者实现上述终端设备功能的芯片;或者,该通信装置可以为上述第二方面或第二方面任一种可能的设计中的终端设备,或者实现上述终端设备功能的芯片;或者,该通信装置可以为上述第三方面或第三方面任一种可能的设计中的终端设备,或者实现上述终端设备功能的芯片。
第十五方面,本申请实施例提供一种芯片,包括逻辑电路和输入输出接口。其中,输入输出接口用于与芯片之外的模块通信,例如,该芯片可以为实现上述第一方面或第一方面任一种可能的设计中的终端设备功能的芯片。输入输出接口输出第一能力信息、第一指示信息。输入输出接口输入第二指示信息。逻辑电路用于运行计算机程序或指令,以实现以上第一方面或第一方面任一种可能的设计中的方法。或者,该芯片可以为实现上述第二方面或第二方面任一种可能的设计中的终端设备功能的芯片。输入输出接口输出第一能力信息、第一指示信息,输入输出接口输入第二指示信息。逻辑电路用于运行计算机程序或指令,以实现以上第二方面或第二方面任一种可能的设计中的方法。或者,该芯片可以为实现上述第三方面或第三方面任一种可能的设计中的终端设备功能的芯片。输入输出接口输出第二PUSCH,输入输出接口输入切换指令。逻辑电路用于运行计算机程序或指令,以实现以上第三方面或第三方面任一种可能的设计中的方法。
第十六方面,本申请实施例提供了一种通信装置,包括:处理器和存储器;该存储器用于存储计算机指令,当该处理器执行该指令时,使得该通信装置执行上述任一方面或任一方面任一种可能的设计中网络设备所执行的方法。该通信装置可以为上述第四方面或第四方面任一种可能的设计中的网络设备,或者实现上述网络设备功能的芯片;或者,该通信装置可以为上述第五方面或第五方面任一种可能的设计中的网络设备,或者实现上述网络设备功能的芯片;或者,该通信装置可以为上述第六方面或第六方面任一种可能的设计中的网络设备,或者实现上述网络设备功能的芯片。
第十七方面,本申请实施例提供了一种通信装置,包括:处理器;所述处理器与存储器耦合,用于读取存储器中的指令并执行,以使该通信装置执行如上述任一方面或任一方面任一种可能的设计中的网络设备所执行的方法。该通信装置可以为上述第四方面或第四方面任一种可能的设计中的网络设备,或者实现上述网络设备功能的芯片;或者,该通信装置可以为上述第五方面或第五方面任一种可能的设计中的网络设备,或者实现上述网络设备功能的芯片;或者,该通信装置可以为上述第六方面或第六方面任一种可能的设计中的网络设备,或者实现上述网络设备功能的芯片。
第十八方面,本申请实施例提供一种芯片,包括逻辑电路和输入输出接口。其中,输入输出接口用于与芯片之外的模块通信,例如,该芯片可以为实现上述第四方面或第四方面任一种可能的设计中的网络设备功能的芯片。输入输出接口输出第一能力信息、第一指示信息。输入输出接口输入第二指示信息。逻辑电路用于运行计算机程序或指令,以实现以上第四方面或第四方面任一种可能的设计中的方法。或者,该芯片可以为实现上述第五方面或第五方面任一种可能的设计中的网络设备功能的芯片。输入输出接口输出第一能力 信息、第一指示信息,输入输出接口输入第二指示信息。逻辑电路用于运行计算机程序或指令,以实现以上第五方面或第五方面任一种可能的设计中的方法。或者,该芯片可以为实现上述第六方面或第六方面任一种可能的设计中的网络设备功能的芯片。输入输出接口输出第二PUSCH,输入输出接口输入切换指令。逻辑电路用于运行计算机程序或指令,以实现以上第六方面或第六方面任一种可能的设计中的方法。
第十九方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述任一方面中任一项的通信方法。
第二十方面,本申请实施例提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述任一方面中任一项的通信方法。
第二十一方面,本申请实施例提供一种包含指令的计算机程序产品,当其在处理器上运行时,实现上述任一方面中任一项的通信方法。
第二十二方面,本申请实施例提供一种电路系统,电路系统包括处理电路,处理电路被配置为执行如上述任一方面中任一项的通信方法。
第二十三方面,本申请实施例提供一种通信系统,该通信系统包括上述各个方面中任一项中的终端设备和网络设备。
其中,第四方面至第二十三方面中任一种设计所带来的技术效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
附图说明
图1为本申请实施例提供的一种网络架构的示意图;
图2为本申请实施例提供的一种通信方法的流程示意图;
图3a为本申请实施例提供的再一种通信方法的流程示意图;
图3b为本申请实施例提供的又一种通信方法的流程示意图;
图4a为本申请实施例提供的又一种通信方法的流程示意图;
图4b为本申请实施例提供的又一种通信方法的流程示意图;
图4c为本申请实施例提供的又一种通信方法的流程示意图;
图5为本申请实施例提供的又一种通信方法的流程示意图;
图6为本申请实施例提供的又一种通信方法的流程示意图;
图7a为本申请实施例提供的又一种通信方法的流程示意图;
图7b为本申请实施例提供的又一种通信方法的流程示意图;
图8为本申请实施例提供的又一种通信方法的流程示意图;
图9为本申请实施例提供的一种通信装置的结构示意图;
图10为本申请实施例提供的再一种通信装置的结构示意图。
具体实施方式
本申请的说明书以及附图中的术语“第一”和“第二”等是用于区别不同的对象,或者用于区别对同一对象的不同处理,而不是用于描述对象的特定顺序。此外,本申请的描述中所提到的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括其他没有列出的步骤或单元,或可选地还包括对于这些过程、 方法、产品或设备固有的其它步骤或单元。本申请实施例中,“多个”包括两个或两个以上。本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。在本申请实施例中,“传输”包括“发送”或“接收”。
首先,介绍本申请中所涉及的技术术语:
全相干(full-coherent)、部分相干(partial-coherent)、非相干(non-coherent)
终端设备可以支持全相干传输、部分相干传输或非相干传输,并分别在全相干码本子集(codebook subset)、部分相干码本子集和非相干码本子集中选择所使用的预编码矩阵。
其中,全相干是指,终端设备的所有天线都可以相干传输。网络设备允许终端设备采用全相干码本子集中的预编码矩阵进行预编码。
部分相干是指,终端设备同一相干传输组内的天线可以相干传输,不同相干传输组之间不能相干传输。其中,每个相干传输组包括2个天线。网络设备允许终端设备采用部分相干码本子集中的预编码矩阵进行预编码。
非相干是指,终端设备的天线中没有天线可以相干传输。网络设备允许终端设备采用非相干码本子集中的预编码矩阵进行预编码。
终端设备通过码本子集来指示相干传输能力(包括全相干传输、部分相干传输和非相干传输中的一种)。示例性的,通过MIMO-ParametersPerBand中的pusch-TransCoherence指示:
PUSCH-Config=SEQUENCE{
……
codebookSubet ENUMERATED{fullyAndPartialAndNonCoherent,partialAnd NonCoherent,nonCoherent}
……
}。
在终端设备上报的pusch-TransCoherence为nonCoherent的情况下,终端设备支持非相干传输,具备非相干传输的能力。
在终端设备上报的pusch-TransCoherence为partialAnd NonCoherent的情况下,终端设备支持部分相干传输和非相干传输,具备部分相干传输和非相干传输的能力。
在终端设备上报的pusch-TransCoherence为fullyAndPartialAndNonCoherent的情况下,终端设备支持全相干传输、部分相干传输和非相干传输,具备全相干传输、部分相干传输和非相干传输的能力。
在无线接入网络(radio access network,RAN)4协议中,当相邻两次发射的探测参考信号(sounding reference signal,SRS)之间未发生切换时,发射物理上行共享信道(physical uplink shared channel,PUSCH)的天线端口与发射SRS的天线端口之间需满足射频指标,即在相对功率和相位误差大于或等于4dB/40°的情况下,终端设备采用非相干码本子集中的预编码矩阵进行预编码。其中,切换包括上行发射切换和SRS切换中的至少一项。当相邻两次发射的SRS之间发生切换时,不受上述射频指标的限制。在RAN1/2协议中,预编码矩阵的确定取决于pusch-TransCoherence和下行链路控制信息(downlink  control information,DCI),终端设备可沿用前一PUSCH的预编码矩阵对当前的PUSCH进行预编码。
然而,在终端设备发生上述切换,且不满足射频指标的情况下,若终端设备仍沿用全相干预编码矩阵或部分相干预编码矩阵对当前的PUSCH进行预编码,则导致PUSCH的传输性能下降。
有鉴于此,本申请实施例提供一种通信方法,本申请实施例通信方法适用于各种通信系统。本申请实施例提供的通信方法可以应用于长期演进(long term evolution,LTE)系统,或者第五代(fifth-generation,5G)通信网络,或者其他类似的网络中,或者未来的其它网络中。图1为可适用于本申请实施例通信方法的通信系统的架构示意图,该通信系统可以包括至少两个通信设备。其中,通信设备包括终端设备10和网络设备11。终端设备10和网络设备11的数量均可以为一个或多个。图1中仅示出了两个终端设备10和一个网络设备11。图1仅为示意图,并不构成对本申请实施例通信方法的适用场景的限定。
其中,终端设备10,也可以称为用户设备(user equipment,UE)、终端、接入终端、用户单元、用户站、移动站、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置等。终端设备可以是无线终端,也可以是有线终端。无线终端可以是指一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端设备可以是无人机、物联网(internet of things,IoT)设备(例如,传感器,电表,水表等)、车联网(vehicle-to-everything,V2X)设备、无线局域网(wireless local area networks,WLAN)中的站点(station,ST)、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备(也可以称为穿戴式智能设备)。终端设备还可以为下一代通信系统中的终端,例如,5G通信系统中的终端或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的终端,NR通信系统中的终端等,本申请实施例对此不作限定。
网络设备11是无线通信网络中的设备,例如将终端设备10接入到无线通信网络的无线接入网(radio access network,RAN)节点。目前,一些RAN节点的举例为:gNB、传输接收点(transmi ssion reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP),或5G通信网络或5G之后的通信网络中的网络侧设备等。
本申请实施例描述的通信系统以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定。本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
下面对本申请实施例提供的通信方法进行具体阐述。
需要说明的是,本申请下述实施例中各个网元之间的消息名字或消息中各参数的名字等只是一个示例,具体实现中也可以是其他的名字,在此统一说明,以下不再赘述。
本申请实施例提供一种通信方法,该方法应用在预编码矩阵配置过程中。在本申请实施例通信方法中,切换包括以下至少一种:上行发射切换、SRS切换。其中,上行发射切换可以记为UL-switching,SRS切换包括SRS天线切换(SRS-antennaSwitching)和SRS载波切换(SRS-carrierSwitching)中的至少一种。切换的发生时刻是在终端设备发送第N次SRS之后,且在发送第(N+1)次SRS之前。其中,N为正整数,第N次的SRS和第(N+1)次的SRS均用于信道质量探测。第一PUSCH是指,终端设备发送第N次的SRS之后,且在切换之前传输的PUSCH。第二PUSCH是指,终端设备执行切换之后,且在发送第(N+1)次的SRS之前传输的PUSCH。在本申请实施例通信方法中,射频指标是指,RAN4协议中规定的指标,即相对功率和相位误差小于4dB/40°。
下面对一次SRS传输的含义进行说明:
网络设备向终端设备发送SRS配置信息,SRS配置信息包括一个或多个SRS资源,终端设备基于该一个或多个SRS资源上进行的传输为SRS传输。SRS传输包括基于码本的传输和基于非码本的传输,对于基于码本的传输,SRS配置信息中给终端设备配置的SRS资源集(resourceset)的作用(usage)为基于码本的传输(codebook),该配置的SRS资源数可以为1个或2个。基于码本的传输又可以分为周期性的SRS传输和非周期性的SRS传输。
其中,对于周期性的SRS传输,网络设备在SRS配置消息中会配置SRS传输的周期和偏移量,终端设备在一个周期内,基于配置在这一个或2个SRS资源上进行的SRS传输为一次SRS传输。对于非周期SRS传输,网络设备可以使用DCI触发终端设备进行SRS传输,终端设备基于该DCI触发的SRS传输为一次SRS传输。一个实施方式中,一次SRS传输也可以是终端根据其它网络设备的配置来确定的,这里不做限定。
在网络设备为终端设备指示PUSCH传输配置的情况下,参见图2,图2示出了本申请实施例通信方法200的步骤:
S201、终端设备向网络设备发送第一能力信息。相应的,网络设备接收来自终端设备的第一能力信息。
其中,第一能力信息指示终端设备支持的码本子集为:全相干码本子集或部分相干码本子集。第一能力信息指示的码本子集用于预编码第一PUSCH。
S202、终端设备向网络设备发送第一指示信息。相应的,网络设备接收来自终端设备的第一指示信息。
其中,第一指示信息指示终端设备在发生切换后支持的码本子集。第一指示信息指示的码本子集包括以下其中一项:全相干码本子集、部分相干码本子集、非相干码本子集。
S203、网络设备向终端设备发送第二指示信息。相应的,终端设备接收来自网络设备的第二指示信息。
其中,第二指示信息至少指示第二PUSCH的传输配置。
也就是说,终端设备除了上报第一能力信息之外,还上报第一指示信息,以指示自身在切换之后支持的码本子集,从而为网络设备确定第二指示信息提供了参考。在终端设备 接收第二指示信息之后,即可确定第二PUSCH的传输配置,以使得切换后的传输配置匹配终端设备的相对功率和相位误差,从而保障PUSCH的传输性能。例如,在第一指示信息指示的码本子集为非相干码本子集的情况下,网络设备获知终端设备在切换后不支持全相干传输和部分相干传输,第二指示信息指示的传输配置不包括全相干传输和部分相干传输模式。如此,终端设备不采用全相干码本子集和部分相干码本子集中的预编码矩阵预编码第二PUSCH。再如,在第一指示信息指示的码本子集为全相干码本子集(或部分相干码本子集)的情况下,网络设备获知终端设备在切换后支持全相干传输(或部分相干传输),第二指示信息指示的传输配置包括全相干传输(或部分相干传输)。如此,终端设备按照第二指示信息指示的传输配置传输第二PUSCH,以取得相应的增益,从而保障PUSCH传输性能。
下面,对本申请实施例通信方法200进行详细阐述。
S201、终端设备向网络设备发送第一能力信息。相应的,网络设备接收来自终端设备的第一能力信息。
其中,第一能力信息指示终端设备支持的码本子集为:全相干码本子集或部分相干码本子集。第一能力信息指示的码本子集用于预编码第一PUSCH。
示例性的,第一能力信息包括pusch-TransCoherence。在pusch-TransCoherence包括fullyAndPartialAndNonCoherent的情况下,第一能力信息指示的码本子集为全相干码本子集。在pusch-TransCoherence包括partialAnd NonCoherent的情况下,第一能力信息指示的码本子集为部分相干码本子集。第一能力信息也可以是通过其它信息显式或隐式指示给用户设备。
应理解,第一能力信息指示的码本子集,可以表征终端设备在切换前的相干传输能力。例如,在第一能力信息指示的码本子集为全相干码本子集的情况下,终端设备在切换前具备全相干传输能力,对第一PUSCH进行预编码的矩阵包括以下其中一项:全相干预编码矩阵、部分相干预编码矩阵和非相干预编码矩阵。再如,在第一能力信息指示的码本子集为部分相干码本子集的情况下,终端设备在切换前具备部分相干传输能力,对第一PUSCH进行预编码的矩阵包括以下其中一项:部分相干预编码矩阵和非相干预编码矩阵。另外,第一能力信息指示的码本子集是从以下三者中选择的一个:全相干码本子集、部分相干码本子集和非相干码本子集。一个实施例中,所述终端可以确定出一个指示信息,指示全相干码本子集或部分相干码本子集。又一个实施例中,所述第一能力信息或上述确定出的指示信息可以指示码本子集和第一PUSCH的关联关系,或者是指示码本子集和第一PUSCH相关联。
S202、终端设备向网络设备发送第一指示信息。相应的,网络设备接收来自终端设备的第一指示信息。
其中,第一指示信息指示的码本子集包括以下其中一项:全相干码本子集、部分相干码本子集、非相干码本子集。
示例性的,第一指示信息也可以描述为第二能力信息。第一指示信息可以记为enhanced pusch-TransCoherence。在enhanced pusch-TransCoherence包括fullyAndPartialAndNonCoherent的情况下,第一指示信息指示的码本子集为全相干码本子集。在enhanced pusch-TransCoherence包括partialAnd NonCoherent的情况下,第 一指示信息指示的码本子集为部分相干码本子集。在enhanced pusch-TransCoherence包括nonCoherent的情况下,第一指示信息指示的码本子集为非相干码本子集。
一个实施方式中,第一指示信息指示终端设备在发生切换后支持的码本子集。又一个实施方式中,第一指示信息指示一个码本子集,其中,进一步可选的,所述码本子集与第二PUSCH相关联。
应理解,第一指示信息指示的码本子集,可以表征终端设备在切换后的相干传输能力。例如,在第一指示信息指示的码本子集为全相干码本子集的情况下,终端设备在切换后具备全相干传输能力,满足射频指标的要求。如此,终端设备对第二PUSCH进行预编码时采用的矩阵是全相干码本子集中的预编码矩阵。再如,在第一指示信息指示的码本子集为部分相干码本子集的情况下,终端设备在切换后具备部分相干传输能力,满足射频指标的要求。如此,终端设备对第二PUSCH进行预编码的矩阵是部分相干码本子集中的预编码矩阵。又如,在第一指示信息指示的码本子集为非相干码本子集的情况下,终端设备在切换后具备非相干传输能力,不满足射频指标的要求。如此,终端设备对第二PUSCH进行预编码的矩阵是非相干码本子集中的预编码矩阵,或者,终端设备采用DCI_0_0模式或发射分集模式传输第二PUSCH。其中,DCI_0_0模式是一种回退格式(fallback format),常用在小区调度PUSCH过程中。发射分集模式使用发射机处的多个天线来利用分集增益,并改善链路质量。例如,LTE规定了两种发射分集方案:一种是2×2空频块码(space frequency block code,SFBC)技术,另一种是4×4技术。
需要说明的是,终端设备可以根据射频指标,确定自身在发生切换之后的相干传输能力,如确定自身是否满足射频指标。然后,终端设备根据自身在切换后的相干传输能力,生成第一指示信息。下面,通过两个示例对第一指示信息进行介绍:
示例一、第一指示信息指示码本子集,但不指示终端设备发生切换的种类。例如,在终端设备确定不满足射频指标的情况下,第一指示信息指示终端设备在发生切换后支持的码本子集为:非相干码本子集。在终端设备确定满足射频指标的情况下,第一指示信息指示终端设备在发生切换后支持的码本子集为:全相干码本子集或部分相干码本子集。一个实施方式中,第一指示信息也可以是终端根据其它预设条件确定,这里不做限定。
其中,切换的种类是指,终端设备发生切换的类别。终端设备发生该种类的切换之后,支持的码本子集可能是全相干码本子集或部分相干码本子集,也可能是非相干码本子集。示例性的,切换的种类包括但不限于:上行发射切换、SRS切换。
示例二、第一指示信息指示码本子集,也指示终端设备发生切换的种类。例如,切换的种类可以通过种类名称或种类标识来表示。如此,第一指示信息携带种类名称信息或种类标识信息,以指示终端设备发生切换的种类。
需要说明的是,第一能力信息和第一指示信息在发送顺序上的说明如下:终端设备可以先执行S201,再执行S202,也可以先执行S202,再执行S201,还可以同时执行S201和S202,本申请实施例对S201和S202的执行顺序不作限定。第一能力信息和第一指示信息在确定顺序上的说明如下:在第一能力信息指示终端设备支持的码本子集为:全相干码本子集或部分相干码本子集的情况下,终端设备才确定在发生切换后自身支持的码本子集,生成第一指示信息。上述S201和S202也可以是一个步骤。
S203、网络设备向终端设备发送第二指示信息。相应的,终端设备接收来自网络设备 的第二指示信息。
其中,第二指示信息指示PUSCH的传输配置。下面,分两种情况进行介绍:
第一种情况,终端设备在执行S202之后,未发生上述切换。此种情况下,网络设备可以确定终端设备未发生切换,第二指示信息指示的传输配置包括前一PUSCH的传输模式。终端设备仍沿用前一PUSCH的传输模式发送当前的PUSCH。需要说明的是,此种情况下,第一指示信息指示的码本子集可以是全相干码本子集,也可以是部分相干码本子集,还可以是非相干码本子集,由于终端设备未发生切换,仍满足射频指标,所以,第二指示信息指示的传输配置包括前一PUSCH的传输模式。
第二种情况,终端设备在执行S202之后,发生了上述切换。此种情况下,第二指示信息至少指示第二PUSCH的传输配置。下面,分两种示例进行介绍:
在第一种示例中,第一指示信息指示的码本子集为:全相干码本子集或部分相干码本子集。此种情况下,若第一能力信息指示的码本子集为全相干码本子集,则第二PUSCH的传输可配置为全相干预编码的传输模式。若第一能力信息指示的码本子集为部分相干码本子集,则第二PUSCH的传输可配置为部分相干预编码的传输模式。
在第二种示例中,第一指示信息指示的码本子集为:非相干码本子集。此种情况下,第二PUSCH的传输配置包括以下其中一项:非相干预编码的传输模式、DCI_0_0模式、或发射分集模式。下面,分别对两种(上行发射切换和SRS切换)切换场景进行介绍:
第二种示例的第一种场景为上行发射切换。其中,上行发射切换能够实现演进的通用陆地无线电接入网新无线电(evolved universal terrestrial radio access network-new radio,E-UTRA-NR)的双连接(dual-connectivity,DC)模式、载波聚合(carrier aggregation,CA)或补充上行(supplementary uplink)。示例性的,当终端设备接收来自网络设备的RRC信令。其中,RRC信令的uplinkTxSwitchingOption-r16字段为switch UL,且pusch-Config字段为txConfig codebook的情况下,终端设备进入上行发射切换模式。下面,图3a和图3b示出了两种上行发射切换过程。
图3a示出了第一种上行发射切换过程,具体步骤包括:
S301a、终端设备向网络设备发送SRS。相应的,网络设备接收来自终端设备的SRS。
其中,S301a中的SRS是终端设备发送的上述第N次的SRS。
S302a、网络设备向终端设备发送DCI1。相应的,终端设备接收来自网络设备的DCI1。
其中,DCI1指示第一PUSCH的传输配置。DCI1指示的传输配置可以是基于S301a中SRS的测量结果确定的。示例性的,DCI1的格式包括DCI_0_1。当然,DCI1的格式也可以为DCI_0_2或其他格式,本申请实施例对此不作限定。
S303a、终端设备向网络设备发送第一PUSCH。相应的,网络设备接收来自终端设备的第一PUSCH。
其中,S303a中第一PUSCH的传输配置即为DCI1指示的传输配置。
S304a、网络设备向终端设备发送DCI2。相应的,终端设备接收来自网络设备的DCI2。
其中,DCI2指示终端设备执行上行发射切换,即DCI2触发上行发射切换。示例性的,DCI2的格式包括以下其中一项:DCI_0_1、DCI_1_1、或DCI_2_3。当然,DCI2的格式也可以为其他格式,本申请实施例对此不作限定。
S305a、终端设备执行上行发射切换。
S306a、网络设备向终端设备发送DCI3。相应的,终端设备接收来自网络设备的DCI3。
其中,DCI3指示终端设备发送第二PUSCH。示例性的,DCI3的格式包括DCI_0_1。当然,DCI3的格式也可以为其他格式,本申请实施例对此不作限定。
S307a、终端设备向网络设备发送第二PUSCH。相应的,网络设备接收来自终端设备的第二PUSCH。
在上述过程中,网络设备先执行S302a,再执行S304a。也就是说,网络设备先调度的第一PUSCH,后触发的上行发射切换。此种情况下,第二指示信息可以承载于以下其中一项:
第一项,第二指示信息承载于DCI1。也就是说,网络设备在调度PUSCH时,未获知切换发生的时间,但DCI1仍为终端设备指示了发生切换后的传输配置。此种情况下,如果终端设备执行S302a之后,发生了切换,即终端设备执行S305a,那么,S307a中采用的传输配置是S302a中第二指示信息指示的传输配置。
第二项,第二指示信息承载于DCI2。也就是说,网络设备在触发上行发射切换的DCI2中携带第二指示信息,以指示终端设备在切换之后的传输配置,避免终端设备继续采用全(或部分)相干预编码的传输模式。
第三项,第二指示信息承载于DCI3。也就是说,在上行发射切换之后,网络设备指示终端设备发送第二PUSCH的DCI3中携带第二指示信息,以指示终端设备在切换之后的传输配置,避免终端设备继续采用全(或部分)相干预编码的传输模式。
需要说明的是,在图3a示出的上行发射切换过程中,第二指示信息通过预设数量的比特位来表示,如某一个(或多个)比特位的取值来指示第二PUSCH的传输配置。例如,在该比特位的取值是“1”的情况下,指示第二PUSCH的传输配置为预设的传输模式。或者,反之,在该比特位的取值是“0”的情况下,指示第二PUSCH的传输配置为预设的传输模式。其中,预设的传输模式包括以下其中一项:非相干预编码的传输模式、DCI_0_0模式、或发射分集模式。在终端设备采用非相干预编码的传输模式传输第二PUSCH的情况下,调制与编码策略(modulation and coding scheme,MCS)的索引值和Rank值以是预先与网络设备侧约定的。
图3b示出了第二种上行发射切换过程,具体步骤包括:
S301b、终端设备向网络设备发送SRS。相应的,网络设备接收来自终端设备的SRS。
其中,S301b中的SRS是终端设备发送的上述第N次的SRS。
S302b、网络设备向终端设备发送DCI2。相应的,终端设备接收来自网络设备的DCI2。
其中,DCI2可以参见S304a中的介绍,此处不再赘述。
S303b、网络设备向终端设备发送DCI1。相应的,终端设备接收来自网络设备的DCI1。
其中,DCI1指示第一PUSCH的传输配置和第二PUSCH的传输配置(即第二指示信息)。DCI1指示的传输配置是基于S301b中SRS的测量结果和DCI2确定的。DCI1的格式可以参见S302a中的相关说明,此处不再赘述。
需要说明的是,在图3b示出的上行发射切换过程中,网络设备可以先执行S302b,后执行S303b。也就是说,对于网络设备而言,DCI2的发送时刻早于DCI1的发送时刻。对于终端设备而言,DCI2的接收时刻早于DCI1的接收时刻。
S304b、终端设备向网络设备发送第一PUSCH。相应的,网络设备接收来自终端设备的 第一PUSCH。
其中,S303b中第一PUSCH的传输配置即为DCI1指示的传输配置。
S305b、终端设备执行上行发射切换。
S306b、网络设备向终端设备发送DCI3。相应的,终端设备接收来自网络设备的DCI3。
其中,DCI3指示终端设备发送第二PUSCH。DCI3的格式可以参见S306a中的相关说明,此处不再赘述。
S307b、终端设备向网络设备发送第二PUSCH。相应的,网络设备接收来自终端设备的第二PUSCH。
其中,S307b中第二PUSCH的传输配置即为DCI1指示的传输配置。
在上述过程中,网络设备先执行S302b,后执行S303b。也就是说,网络设备先触发的上行发射切换,再调度的第一PUSCH和第二PUSCH。此种情况下,第二指示信息承载于DCI1,以指示终端设备在切换之后的传输配置,避免终端设备继续采用全(或部分)相干预编码的传输模式。
需要说明的是,在图3b示出的上行发射切换过程中,第二指示信息的具体实现方式可以有两种。其中,第一种实现方式,第二指示信息通过预设数量的比特位来表示,具体参见图3a中的介绍,此处不再赘述。第二种实现方式,第二指示信息包括第一信道质量指示(channel quality indication,CQI)信息。其中,第一CQI信息包括传输预编码矩阵指示(transmitted precoding matrix indicator,TPMI)、调制与编码策略(modulation and coding scheme,MCS)和秩指示(rank indicator,RI)。其中,TPMI指示的预编码矩阵为非相干码本子集中的一个,MCS用于确定调制方式和码率,秩指示为第二PUSCH映射的层数。也就是说,第一CQI指示的传输配置为非相干预编码的模式。
第二种示例的第二种场景为SRS切换。其中,SRS切换是终端设备发生的一种切换,如在SRS资源集被配置的高层参数为天线切换的情况下,终端设备发生SRS切换。SRS切换包括非周期性触发和周期性触发。其中,DCI来触发非周期性的SRS切换。RRC信令配置周期性的SRS切换,或通过媒体接入控制(media access control,MAC)-控制元素(control element,CE)激活周期性的SRS切换。下面,通过图4a、图4b和图4c进行介绍。
图4a示出了第一种非周期性触发SRS切换的过程,具体步骤包括:
S401a、终端设备向网络设备发送SRS。相应的,网络设备接收来自终端设备的SRS。
其中,S401a中的SRS是终端设备发送的上述第N次的SRS。
S402a、网络设备向终端设备发送DCI1。相应的,终端设备接收来自网络设备的DCI1。
其中,DCI1的介绍可以参见S302a中的相关说明,此处不再赘述。
S403a、终端设备向网络设备发送第一PUSCH。相应的,网络设备接收来自终端设备的第一PUSCH。
其中,S403a中第一PUSCH的传输配置即为DCI1指示的传输配置。
S404a、网络设备向终端设备发送DCI2。相应的,终端设备接收来自网络设备的DCI2。
其中,DCI2指示终端设备执行SRS切换,即DCI2触发SRS切换。DCI2的格式可以参见S304a中的相关说明,此处不再赘述。
S405a、终端设备执行SRS切换。
S406a、终端设备向网络设备发送第二PUSCH。相应的,网络设备接收来自终端设备的第二PUSCH。
在上述过程中,网络设备先执行S402a,再执行S404a。也就是说,网络设备先调度的第一PUSCH,后触发的SRS切换。此种情况下,第二指示信息可以承载于以下其中一项:
第一项,第二指示信息承载于DCI1。也就是说,网络设备在调度PUSCH时,未获知切换发生的时间,但DCI1仍为终端设备指示了发生切换后的传输配置。此种情况下,如果终端设备执行S402a之后,发生了切换,即终端设备执行S405a,那么,S406a中采用的传输配置是S402a中第二指示信息指示的传输配置。
第二项,第二指示信息承载于DCI2。也就是说,网络设备在触发SRS切换的DCI2中携带第二指示信息,以指示终端设备在切换之后的传输配置,避免终端设备继续采用全(或部分)相干预编码的传输模式。
需要说明的是,在图4a示出的SRS切换过程中,第二指示信息通过预设数量的比特位来表示,具体参见图3a中的介绍,此处不再赘述。
图4b示出了第二种非周期性触发SRS切换的过程,具体步骤包括:
S401b、终端设备向网络设备发送SRS。相应的,网络设备接收来自终端设备的SRS。
其中,S401b中的SRS是终端设备发送的上述第N次的SRS。
S402b、网络设备向终端设备发送DCI2。相应的,终端设备接收来自网络设备的DCI2。
其中,DCI2指示终端设备执行SRS切换,即DCI2触发SRS切换。DCI2的格式可以参见S304a中的相关说明,此处不再赘述。
S403b、网络设备向终端设备发送DCI1。相应的,终端设备接收来自网络设备的DCI1。
其中,DCI1指示第一PUSCH的传输配置和第二PUSCH的传输配置(即第二指示信息)。DCI1指示的传输配置是基于S401b中SRS的测量结果和DCI2确定的。DCI1的格式可以参见S302a中的相关说明,此处不再赘述。
需要说明的是,在图4b示出的SRS切换过程中,网络设备先执行S402b,后执行S403b。也就是说,对于网络设备而言,DCI2的发送时刻早于DCI1的发送时刻。对于终端设备而言,DCI2的接收时刻早于DCI1的接收时刻。
S404b、终端设备向网络设备发送第一PUSCH。相应的,网络设备接收来自终端设备的第一PUSCH。
其中,S404b中第一PUSCH的传输配置即为DCI1指示的传输配置。
S405b、终端设备执行SRS切换。
S406b、终端设备向网络设备发送第二PUSCH。相应的,网络设备接收来自终端设备的第二PUSCH。
其中,S406b中第二PUSCH的传输配置即为DCI1指示的传输配置。
在上述过程中,网络设备先执行S402b,后执行S403b。也就是说,网络设备先触发的SRS切换,再通过DCI1为终端设备指示第二PUSCH的传输配置,避免终端设备在SRS切换之后继续采用全(或部分)相干预编码的传输模式。
需要说明的是,在图4b示出的SRS切换过程中,第二指示信息的具体实现方式可以参见图3b的介绍,此处不再赘述。
图4c示出了周期性触发SRS切换的过程,具体步骤包括:
S401c、终端设备向网络设备发送SRS。相应的,网络设备接收来自终端设备的SRS。
其中,S401c中的SRS是终端设备发送的上述第N次的SRS。
S402c、网络设备向终端设备发送DCI1。相应的,终端设备接收来自网络设备的DCI1。
其中,DCI1指示第一PUSCH的传输配置和第二PUSCH的传输配置(即第二指示信息)。DCI1指示的传输配置是基于S401c中SRS的测量结果和SRS切换的触发周期确定的。DCI1的格式可以参见S302a中的相关说明,此处不再赘述。
S403c、终端设备向网络设备发送第一PUSCH。相应的,网络设备接收来自终端设备的第一PUSCH。
其中,S403c中第一PUSCH的传输配置即为DCI1指示的传输配置。
S404c、终端设备执行SRS切换。
其中,终端设备按照RRC信令或MAC-CE指示的触发周期,执行SRS切换。
S405c、终端设备向网络设备发送第二PUSCH。相应的,网络设备接收来自终端设备的第二PUSCH。
其中,S405c中第二PUSCH的传输配置即为DCI1指示的传输配置。
在上述过程中,第二指示信息的具体实现方式可以参见图3b的介绍,此处不再赘述。
应理解,在图3a、图3b、图4a、图4b和图4c示出的过程中,均以第二指示信息承载于DCI为例进行介绍。当然,第二指示信息也可以承载于MAC-CE,第二指示信息还可以承载于RRC信令,本申请实施例对此不作限定。
需要说明的是,在第二种情况的第二种示例中,即在第一指示信息指示的码本子集为非相干码本子集的情况下,作为一种可能的实现方式,参见图5,本申请实施例通信方法还包括S501和S502:
S501、网络设备向终端设备发送配置信息。相应的,终端设备接收来自网络设备的配置信息。
其中,配置信用于配置SRS的传输资源。
S502、终端设备在传输资源上,向网络设备发送SRS。相应的,网络设备在传输资源上,接收来自终端设备的SRS。
其中,SRS的发送时刻早于第二PUSCH的发送起始时刻。
也就是说,终端设备在执行S202之后,终端设备发生了切换。终端设备在发生切换之后,且在第二PUSCH的发送起始时刻之前,执行S502,即补发一次SRS,以使网络设备基于S502中的SRS确定第二指示信息,从而使得第二指示信息指示的传输配置匹配终端设备当前的实际状况,以保障PUSCH的传输性能。
S204、终端设备向网络设备发送PUSCH。相应的,网络设备接收来自终端设备的PUSCH。
示例性的,在未发生上述切换的情况下,终端设备仍沿用前一PUSCH的传输模式发送当前的PUSCH。在发生上述切换的情况下,在上述切换发生之前,终端设备仍沿用前一PUSCH的传输模式发送第一PUSCH。在上述切换发生之后,终端设备采用第二指示信息指示的传输配置发送第二PUSCH。
需要说明的是,在本申请实施例中SRS(如第N次发送的SRS、第(N+1)次发送的SRS、S502中发送的SRS)的资源集(ResourceSet)配置为码本或非码本。示例性的,当SRS-ResourceSet中usage设置为nonCodebook时,即SRS的资源集)配置为非码本。此 种情况下,每次传输的SRS包括两套。其中,一套SRS是采用全相干码本子集或部分相干码本子集中的预编码矩阵进行预编码(precoding)的,另一套SRS是采用非码本码本子集中的预编码矩阵进行预编码。当SRS-ResourceSet中usage设置为Codebook时,每次传输的SRS未经过预编码。
以上均以“网络设备为终端设备指示PUSCH传输配置”为例进行说明,当然,终端设备也可以自主确定切换后的传输配置。下面,对本申请实施例通信方法600进行详细阐述。参见图6,图6示出了终端设备自主确定PUSCH传输配置的步骤:
S601、网络设备向终端设备发送切换指令。相应的,终端设备接收来自网络设备的切换指令。
其中,切换指令指示终端设备进行切换。例如,在切换包括上行发射切换的情况下,切换指令包括S304a中的DCI2。再如,在切换包括SRS切换,且SRS切换为非周期性触发的情况下,切换指令包括S404a中的DCI2。又如,在切换包括SRS切换,且SRS切换为周期性触发的情况下,切换指令包括RRC信令或MAC-CE。
S602、终端设备根据切换指令,执行切换过程。
示例性的,在切换指令指示上行发射切换的情况下,终端设备执行上行发射切换。在切换指令指示SRS切换的情况下,终端设备执行SRS切换。
在终端设备执行切换之后,如果终端设备在切换后支持的码本子集为:全相干码本子集或部分相干码本子集,则终端设备沿用前一PUSCH的传输模式传输当前的PUSCH。如果终端设备在切换后支持的码本子集为非相干码本子集,则终端设备执行S603:
S603、终端设备采用预设的传输模式,向网络设备发送第二PUSCH。相应的,网络设备采用预设的传输模式,接收来自终端设备的第二PUSCH。
其中,预设的传输模式可以参见图3a的相关说明,此处不再赘述。
也就是说,终端设备在发生切换的情况下,终端设备自主确定第二PUSCH的传输模式,以使得切换后的传输配置匹配终端设备的相对功率和相位误差,从而保障PUSCH传输性能。
在一些实施例中,参见图7a,本申请实施例通信方法还包括S604:
S604、终端设备向网络设备发送第一指示信息。相应的,网络设备接收来自终端设备的第一指示信息。
其中,第一指示信息指示终端设备在发生切换后支持的码本子集。第一指示信息的介绍可以参见S202的介绍,第一指示信息也适用S202中描述的其他实施方式,此处不再赘述。
也就是说,即使终端设备自主确定切换后的传输配置的情况下,终端设备仍可以上报第一指示信息,以使网络设备了解终端设备的能力,便于网络设备为该终端设备调度资源。
在一些实施例中,参见图7a,本申请实施例通信方法还包括S605:
S605、终端设备向网络设备发送第一能力信息。相应的,网络设备接收来自终端设备的第一能力信息。
其中,第一能力信息的介绍可以参见S201的相关说明,此处不再赘述。
也就是说,即使终端设备自主确定切换后的传输配置的情况下,终端设备仍上报第一能力信息,以使网络设备了解终端设备的能力,便于网络设备为该终端设备调度资源。
需要说明的是,在本申请实施例通信方法600中,终端设备可以执行S604,但不执行 S605,终端设备也可以执行S605,但不执行S604,终端设备还可以既执行S604,又执行S605,本申请实施例对此不作限定。
在一些实施例中,参见图7b,本申请实施例通信方法还包括S606和S607:
S606、终端设备向网络设备发送SRS。相应的,网络设备接收来自终端设备的SRS。
其中,S606中的SRS是终端设备发送的上述第N次的SRS。
S607、网络设备向终端设备发送第二指示信息。相应的,终端设备接收来自网络设备的第二指示信息。
其中,第二指示信息指示预设的传输模式。对于网络设备而言,第二指示信息的发送时刻早于切换指令的发送时刻。对于终端设备而言,第二指示信息的接收时刻早于切换指令的接收时刻。也就是说,在本申请实施例通信方法600中,先执行S606,再执行S601,即网络设备在调度PUSCH时,未获知切换发生的时间,但第二指示信息为终端设备指示了发生切换后的传输配置。此种情况下,如果终端设备执行S607之后,发生了切换,即终端设备执行S602和S603,那么,S603中采用的传输配置是S607中第二指示信息指示的传输配置。
需要说明的是,在本申请实施例通信方法中,仅以“PUSCH的传输配置”为例进行介绍。当然,本申请实施例通信方法也可以适用于其他信道的传输配置,本申请实施例对此不作限定。以上仅以上行发射切换或SRS切换为例进行介绍。当然,上行发射切换(或SRS切换)还可以替换为以下其中一种:天线切换、PUSCH的配置(config)切换、非连续接收机制(discontinuous reception,DRX)进入休眠(off time)、出现测量间隔(measurement gap occurs)、带宽部分(bandwidth part,BWP)切换、演进通用陆地无线电接入网新无线电-双连接(evolved universal terrestrial radio access network-new radio-dual-connectivity,EN-DC)变化、载波聚合(carrier aggregation,CA)配置(configuration)变化、射频通道切换、功率控制(power control)参数变化、或调频(frequency hopping)。
另外,本申请实施例还提供通信方法800。下面,参见图8,对本申请实施例通信方法800进行详细阐述。
S801、终端设备向网络设备发送第一能力信息。相应的,网络设备接收来自终端设备的第一能力信息。
其中,第一能力信息指示终端设备支持的码本子集为:全相干码本子集或部分相干码本子集。第一能力信息指示的码本子集用于预编码PUSCH。第一能力信息的具体实现可以参见S201的说明,此处不再赘述。
S802、终端设备向网络设备发送第一指示信息。相应的,网络设备接收来自终端设备的第一指示信息。
其中,第一指示信息指示非相干码本子集,且第一指示信息指示的码本子集是终端设备在发生切换后支持的码本子集。切换包括上行发射切换或探测参考信号SRS切换。第一指示信息的具体实现可以参见S202的说明,此处不再赘述。
S803、终端设备向网络设备发送SRS。相应的,网络设备接收来自终端设备的SRS。
其中,S803中的SRS是终端设备发送的上述第N次的SRS。
S804、网络设备向终端设备发送第二指示信息。相应的,终端设备接收来自网络设备 的第二指示信息。
其中,第二指示信息指示预编码矩阵。第二指示信息指示的预编码矩阵为非相干码本子集中的一个。示例性的,第二指示信息可以承载于DCI,且第二指示信息可以实现为CQI信息。其中,CQI信息包括TPMI、MCS和RI。TPMI指示的预编码矩阵为上述非相干码本子集中的一个,MCS用于确定调制方式和码率,秩指示为PUSCH映射的层数。MCS和RI是基于S803中SRS的测量结果确定的。也就是说,第二指示信息指示的传输模式为非相干预编码的传输模式。
其中,S804的实现方式包括但不限于如下介绍:作为一种实现方式,网络设备执行S802之后,网络设备执行S804。也就是说,在网络设备获取第一指示信息之后,由第一指示信息触发网络设备执行S804。作为另一种实现方式,网络设备向终端设备发送RRC信令。相应的,终端设备接收来自网络设备的RRC信令。其中,RRC信令的uplinkTxSwitchingOption-r16字段为switch UL,且pusch-Config字段为txConfig codebook的情况下,网络设备执行S804。
S805、终端设备向网络设备发送PUSCH。相应的,网络设备接收来自终端设备的PUSCH。
其中,S805中PUSCH采用的预编码矩阵为第二指示信息指示的预编码矩阵。
需要说明的是,在本申请实施例通信方法800中,终端设备在执行S803之后,且执行S805之前,终端设备可以发生切换,也可以不发生切换,S805中的PUSCH始终采用非相干预编码矩阵进行预编码。或者,在本申请实施例通信方法800中,终端设备在执行S805的过程中,可以发生切换,也可以不发生切换,S805中的PUSCH始终采用非相干预编码矩阵进行预编码。
也就是说,在第一指示信息指示非相干码本子集的情况下,网络设备不观测终端设备是否发生切换,始终为终端设备配置非相干预编码的传输模式,避免终端设备不满足射频指标,且仍采用全相干传输和部分相干传输模式的现象,从而保证PUSCH的传输性能。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。相应的,本申请实施例还提供了通信装置,该通信装置可以为上述方法实施例中的网元,或者包含上述网元的装置,或者为可用于网元的部件。可以理解的是,该通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例提供一种芯片,该芯片包括逻辑电路和输入输出接口。其中,输入输出接口用于与芯片之外的模块通信,逻辑电路用于执行上述方法实施例中终端设备上除了收发操作之外的其他操作。
比如,以芯片实现为上述方法实施例图2的终端设备的功能为例,输入输出接口可以用于执行本申请实施例中终端设备侧的S201、S202、S203、S204,和/或输入输出接口还用于执行本申请实施例中终端设备侧的其他收发步骤。逻辑电路可以用于执行本申请实施例中终端设备侧的的其他处理步骤。
再如,以芯片实现为上述方法实施例中图6的终端设备的功能为例,输入输出接口可 以用于执行终端设备侧的S601、S603,和/或输入输出接口还用于执行本申请实施例中终端设备侧的其他收发步骤。逻辑电路可以用于执行终端设备侧中的S602,和/或逻辑电路还用于执行本申请实施例中终端设备侧的其他处理步骤。
又如,以芯片实现为上述方法实施例中图8的终端设备的功能为例,输入输出接口可以用于执行终端设备侧的S801、S802、S803、S804、S805,和/或输入输出接口还用于执行本申请实施例中终端设备侧的其他收发步骤。逻辑电路可以用于执行终端设备侧中的其他处理步骤。
比如,以芯片实现为上述方法实施例图2的网络设备的功能为例,输入输出接口可以用于执行本申请实施例中网络设备侧的S201、S202、S203、S204,和/或输入输出接口还用于执行本申请实施例中网络设备侧的其他收发步骤。逻辑电路可以用于执行本申请实施例中网络设备侧的的其他处理步骤。
再如,以芯片实现为上述方法实施例中图6的网络设备的功能为例,输入输出接口可以用于执行网络设备侧的S601、S603,和/或输入输出接口还用于执行本申请实施例中网络设备侧的其他收发步骤。逻辑电路可以用于执行网络设备侧中的其他处理步骤。
又如,以芯片实现为上述方法实施例中图8的网络设备的功能为例,输入输出接口可以用于执行网络设备侧的S801、S802、S803、S804、S805,和/或输入输出接口还用于执行本申请实施例中网络设备侧的其他收发步骤。逻辑电路可以用于执行网络设备侧中的其他处理步骤。
图9示出了一种通信装置900的结构示意图。该通信装置900可以以软件的形式存在,也可以为设备,或者设备中的组件。
该通信装置900包括处理单元902、发送单元903和接收单元904。
发送单元903是该通信装置900的一种接口电路,用于向其它装置发送信号。例如,当该通信装置900以芯片的方式实现时,该发送单元903是该芯片用于向其它芯片或装置发送信号的接口电路。
接收单元904是该通信装置900的一种接口电路,用于从其它装置接收信号。例如,当该通信装置900以芯片的方式实现时,该接收单元904是该芯片用于从其它芯片或装置接收信号的接口电路。
比如,当通信装置900用于实现上述终端设备的功能时,示例性的,以图2为例,处理单元902可以用于支持通信装置900执行本文所描述的方案的其它过程。发送单元903用于支持通信装置900和其他网元之间的通信。比如,发送单元903用于支持通信装置900执行图2所示的S201、S202、S204,和/或用于本文所描述的方案的其它过程。接收单元904用于支持通信装置900和其他网元之间的通信。比如,接收单元904用于支持通信装置900执行图2所示的S203,和/或用于本文所描述的方案的其它过程。
以图6为例,处理单元902可以用于支持通信装置900执行图6中的S602,和/或用于本文所描述的方案的其它过程。发送单元903用于支持通信装置900和其他网元之间的通信。比如,发送单元903用于支持通信装置900执行图6所示的S603,和/或用于本文所描述的方案的其它过程。接收单元904用于支持通信装置900和其他网元之间的通信。比如,接收单元904用于支持通信装置900执行图6所示的S601,和/或用于本文所描述的方案的其它过程。
以图8为例,处理单元902可以用于支持通信装置900执行图8中的所描述的方案的其它过程。发送单元903用于支持通信装置900和其他网元之间的通信。比如,发送单元903用于支持通信装置900执行图8所示的S801、S802、S803、S805,和/或用于本文所描述的方案的其它过程。接收单元904用于支持通信装置900和其他网元之间的通信。比如,接收单元904用于支持通信装置900执行图8所示的S804,和/或用于本文所描述的方案的其它过程。
比如,当通信装置900用于实现上述网络设备的功能时,示例性的,以图2为例,处理单元902可以用于支持通信装置900执行本文所描述的方案的其它过程。发送单元903用于支持通信装置900和其他网元之间的通信。比如,发送单元903用于支持通信装置900执行图2所示的S203,和/或用于本文所描述的方案的其它过程。接收单元904用于支持通信装置900和其他网元之间的通信。比如,接收单元904用于支持通信装置900执行图2所示的S201、S202、S204,和/或用于本文所描述的方案的其它过程。
以图6为例,处理单元902可以用于支持通信装置900执行图6中的其它过程。发送单元903用于支持通信装置900和其他网元之间的通信。比如,发送单元903用于支持通信装置900执行图6所示的S601,和/或用于本文所描述的方案的其它过程。接收单元904用于支持通信装置900和其他网元之间的通信。比如,接收单元904用于支持通信装置900执行图6所示的S603,和/或用于本文所描述的方案的其它过程。
以图8为例,处理单元902可以用于支持通信装置900执行图8中的所描述的方案的其它过程。发送单元903用于支持通信装置900和其他网元之间的通信。比如,发送单元903用于支持通信装置900执行图8所示的S804,和/或用于本文所描述的方案的其它过程。接收单元904用于支持通信装置900和其他网元之间的通信。比如,接收单元904用于支持通信装置900执行图8所示的S801、S802、S803、S805,和/或用于本文所描述的方案的其它过程。
可选的,通信装置900还可以包括存储单元901,用于存储通信装置900的程序代码和数据,数据可以包括不限于原始数据或者中间数据等。
其中,处理单元902可以是处理器或控制器,例如可以是中央处理器(central processing unit,CPU),通用处理器,数字信号处理器(digital signal processor,DSP),专用集成电路(application specific integrated circuit,ASIC),现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
发送单元903和接收单元904可以是通信接口、收发器或收发电路等,其中,该通信接口是统称,在具体实现中,该通信接口可以包括多个接口。
存储单元901可以是存储器。
当处理单元902包括处理器,发送单元903和接收单元904包括通信接口,存储单元901包括存储器时,本申请实施例所涉及的通信装置1000可以为图10所示。
参阅图10所示,该通信装置1000包括:至少一个处理器1002、收发器1003、存储器1001。
其中,收发器1003可以为独立设置的发送器,该发送器可用于向其他设备发送信息,该收发器也可以为独立设置的接收器,用于从其他设备接收信息。该收发器也可以是将发送、接收信息功能集成在一起的部件,本申请实施例对收发器的具体实现不做限制。
可选的,通信装置1000还可以包括总线1004。其中,收发器1003、处理器1002以及存储器1001可以通过总线1004相互连接;总线1004可以包括外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。所述总线1004可以分为地址总线、数据总线、控制总线等。为便于表示,图10中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
应理解,本发明的各个模块也可以拆分为不同的通信装置。例如由第一网络设备生成第二指示信息,经由第二网络设备,直接或间接发送至终端设备;或由第二网络设备,直接或间接发送至终端设备。对于网络设备完成的接收的功能,可以由不同网络设备完成。
本领域普通技术人员可以理解:在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以包括通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以包括计算机能够存取的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以包括磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络设备上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个功能单元独立存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实 施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘,硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以包括个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (47)

  1. 一种通信方法,其特征在于,包括:
    终端设备向网络设备发送第一能力信息,其中,所述第一能力信息指示所述终端设备支持的码本子集为:全相干码本子集或部分相干码本子集,所述第一能力信息指示的码本子集用于预编码第一物理上行共享信道PUSCH,所述第一PUSCH在切换之前传输,所述切换包括上行发射切换或探测参考信号SRS切换;
    所述终端设备向所述网络设备发送第一指示信息,其中,所述第一指示信息指示所述终端设备在发生所述切换后支持的码本子集;
    所述终端设备接收来自所述网络设备的第二指示信息,其中,所述第二指示信息指示第二PUSCH的传输配置,所述第二PUSCH在所述切换之后传输。
  2. 根据权利要求1所述的方法,其特征在于,所述第一指示信息指示非相干码本子集。
  3. 根据权利要求1所述的方法,其特征在于,所述第一指示信息指示以下其中一项:所述全相干码本子集、所述部分相干码本子集、或非相干码本子集。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述第一指示信息还指示所述终端设备发生的切换种类。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述第二指示信息指示所述第二PUSCH的传输配置包括预设的传输模式。
  6. 根据权利要求5所述的方法,其特征在于,所述第二指示信息承载于第一下行控制信息DCI,其中,所述第一DCI用于触发所述切换。
  7. 根据权利要求5或6所述的方法,其特征在于,所述预设的传输模式包括以下其中一项:非相干预编码的传输模式;
    DCI_0_0模式;
    发射分集模式。
  8. 根据权利要求1至4任一项所述的方法,其特征在于,所述第二指示信息指示所述第二PUSCH的传输配置包括信道质量指示CQI信息,所述CQI信息指示预编码矩阵,所述预编码矩阵为非相干码本子集中的一个。
  9. 根据权利要求1至4任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收来自所述网络设备的配置信息,所述配置信息配置SRS的传输资源;
    所述终端设备在所述传输资源上,向所述网络设备发送所述SRS,其中,所述SRS的发送时刻早于所述第二PUSCH的发送起始时刻,所述SRS用于确定所述第二指示信息。
  10. 一种通信方法,其特征在于,包括:
    网络设备接收来自终端设备的第一能力信息,其中,所述第一能力信息指示所述终端设备支持的码本子集为:全相干码本子集或部分相干码本子集,所述第一能力信息指示的码本子集用于预编码第一物理上行共享信道PUSCH,所述第一PUSCH在切换之前传输,所述切换包括上行发射切换或探测参考信号SRS切换;
    所述网络设备接收来自所述终端设备的第一指示信息,其中,所述第一指示信息指示所述终端设备在发生所述切换后支持的码本子集;
    所述网络设备向所述终端设备发送第二指示信息,其中,所述第二指示信息指示第二 PUSCH的传输配置,所述第二PUSCH在所述切换之后传输。
  11. 根据权利要求10所述的方法,其特征在于,所述第一指示信息指示非相干码本子集。
  12. 根据权利要求10所述的方法,其特征在于,所述第一指示信息指示以下其中一项:所述全相干码本子集、所述部分相干码本子集、或非相干码本子集。
  13. 根据权利要求10至12任一项所述的方法,其特征在于,所述第一指示信息还指示所述终端设备发生的切换种类。
  14. 根据权利要求10至13任一项所述的方法,其特征在于,所述第二指示信息指示所述第二PUSCH的传输配置包括预设的传输模式。
  15. 根据权利要求14所述的方法,其特征在于,所述第二指示信息承载于第一下行控制信息DCI,其中,所述第一DCI用于触发所述切换。
  16. 根据权利要求14或15所述的方法,其特征在于,所述预设的传输模式包括以下其中一项:非相干预编码的传输模式;
    DCI_0_0模式;
    发射分集模式。
  17. 根据权利要求10至13任一项所述的方法,其特征在于,所述第二指示信息指示所述第二PUSCH的传输配置包括信道质量指示CQI信息,所述CQI信息指示预编码矩阵,所述预编码矩阵为非相干码本子集中的一个。
  18. 根据权利要求14或17所述的方法,其特征在于,所述第二指示信息的发送时刻晚于第一DCI的发送时刻,其中,所述第一DCI用于触发所述切换。
  19. 根据权利要求17所述的方法,其特征在于,所述第二指示信息的发送时刻早于第一DDI的发送时刻,其中,所述第一DCI用于触发所述切换。
  20. 根据权利要求10至13任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送配置信息,其中,所述配置信息配置SRS的传输资源;
    所述网络设备在所述传输资源上,接收来自所述终端设备的所述SRS,其中,所述SRS的接收时刻早于所述第二PUSCH的接收起始时刻,所述SRS用于确定所述第二指示信息。
  21. 一种通信装置,其特征在于,包括:
    发送单元,用于向网络设备发送第一能力信息,其中,所述第一能力信息指示所述通信装置支持的码本子集为:全相干码本子集或部分相干码本子集,所述第一能力信息指示的码本子集用于预编码第一物理上行共享信道PUSCH,所述第一PUSCH在切换之前传输,所述切换包括上行发射切换或探测参考信号SRS切换;
    所述发送单元,还用于向所述网络设备发送第一指示信息,其中,所述第一指示信息指示所述通信装置在发生所述切换后支持的码本子集;
    接收单元,用于接收来自所述网络设备的第二指示信息,其中,所述第二指示信息指示第二PUSCH的传输配置,所述第二PUSCH在所述切换之后传输。
  22. 根据权利要求21所述的装置,其特征在于,所述第一指示信息指示非相干码本子集。
  23. 根据权利要求21所述的装置,其特征在于,所述第一指示信息指示以下其中一 项:所述全相干码本子集、所述部分相干码本子集、或非相干码本子集。
  24. 根据权利要求21至23任一项所述的装置,其特征在于,所述第一指示信息还指示所述通信装置发生的切换种类。
  25. 根据权利要求21至24任一项所述的装置,其特征在于,所述第二指示信息指示所述第二PUSCH的传输配置包括预设的传输模式。
  26. 根据权利要求25所述的装置,其特征在于,所述第二指示信息承载于第一下行控制信息DCI,其中,所述第一DCI用于触发所述切换。
  27. 根据权利要求25或26所述的装置,其特征在于,所述预设的传输模式包括以下其中一项:非相干预编码的传输模式;
    DCI_0_0模式;
    发射分集模式。
  28. 根据权利要求21至24任一项所述的装置,其特征在于,所述第二指示信息指示所述第二PUSCH的传输配置包括信道质量指示CQI信息,所述CQI信息指示预编码矩阵,所述预编码矩阵为非相干码本子集中的一个。
  29. 根据权利要求21至24任一项所述的装置,其特征在于,
    所述接收单元,还用于接收来自所述网络设备的配置信息,其中,所述配置信息配置SRS的传输资源;
    所述发送单元,还用于在所述传输资源上,向所述网络设备发送所述SRS,所述SRS的发送时刻早于所述第二PUSCH的发送起始时刻,所述SRS用于确定所述第二指示信息。
  30. 一种通信装置,其特征在于,包括:
    接收单元,用于接收来自终端设备的第一能力信息,其中,所述第一能力信息指示所述终端设备支持的码本子集为:全相干码本子集或部分相干码本子集,所述第一能力信息指示的码本子集用于预编码第一物理上行共享信道PUSCH,所述第一PUSCH在切换之前传输,所述切换包括上行发射切换或探测参考信号SRS切换;
    所述接收单元,还用于接收来自所述终端设备的第一指示信息,其中,所述第一指示信息指示所述终端设备在发生所述切换后支持的码本子集;
    发送单元,用于向所述终端设备发送第二指示信息,其中,所述第二指示信息指示第二PUSCH的传输配置,所述第二PUSCH在所述切换之后传输。
  31. 根据权利要求30所述的装置,其特征在于,所述第一指示信息指示非相干码本子集。
  32. 根据权利要求30所述的装置,其特征在于,所述第一指示信息指示以下其中一项:所述全相干码本子集、所述部分相干码本子集、或非相干码本子集。
  33. 根据权利要求30至32任一项所述的装置,其特征在于,所述第一指示信息还指示所述终端设备发生的切换种类。
  34. 根据权利要求30至33任一项所述的装置,其特征在于,所述第二指示信息指示所述第二PUSCH的传输配置包括预设的传输模式。
  35. 根据权利要求34所述的装置,其特征在于,所述第二指示信息承载于第一下行控制信息DCI,其中,所述第一DCI用于触发所述切换。
  36. 根据权利要求34或35所述的装置,其特征在于,所述预设的传输模式包括以下 其中一项:非相干预编码的传输模式;
    DCI_0_0模式;
    发射分集模式。
  37. 根据权利要求30至33任一项所述的装置,其特征在于,所述第二指示信息指示所述第二PUSCH的传输配置包括信道质量指示CQI信息,所述CQI信息指示预编码矩阵,所述预编码矩阵为非相干码本子集中的一个。
  38. 根据权利要求34或37所述的装置,其特征在于,所述第二指示信息的发送时刻晚于第一DCI的发送时刻,其中,所述第一DCI用于触发所述切换。
  39. 根据权利要求37所述的装置,其特征在于,所述第二指示信息的发送时刻早于第一DDI的发送时刻,其中,所述第一DCI用于触发所述切换。
  40. 根据权利要求30至33任一项所述的装置,其特征在于,
    所述发送单元,还用于向所述终端设备发送配置信息,其中,所述配置信息配置SRS的传输资源;
    所述接收单元,还用于在所述传输资源上,接收来自所述终端设备的所述SRS,其中,所述SRS的接收时刻早于所述第二PUSCH的接收起始时刻,所述SRS用于确定所述第二指示信息。
  41. 一种通信装置,其特征在于,包括:处理器和存储器,所述处理器和所述存储器耦合,所述存储器存储有程序指令,当所述存储器存储的程序指令被所述处理器执行时,如权利要求1至9任一项所述的通信方法被执行。
  42. 一种芯片,其特征在于,所述芯片包括逻辑电路和输入输出接口,所述输入输出接口用于与所述芯片之外的模块通信,所述逻辑电路用于运行计算机程序或指令,以控制终端设备执行如权利要求1至9任一项所述的通信方法。
  43. 一种通信装置,其特征在于,包括:处理器和存储器,所述处理器和所述存储器耦合,所述存储器存储有程序指令,当所述存储器存储的程序指令被所述处理器执行时,如权利要求10至20任一项所述的通信方法被执行。
  44. 一种芯片,其特征在于,所述芯片包括逻辑电路和输入输出接口,所述输入输出接口用于与所述芯片之外的模块通信,所述逻辑电路用于运行计算机程序或指令,以控制网络设备执行如权利要求10至20任一项所述的通信方法。
  45. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储程序,所述程序被处理器调用时,权利要求1至9任一项所述的通信方法被执行,或者权利要求10至20任一项所述的通信方法被执行。
  46. 一种计算机程序产品,其特征在于,包括计算机程序,当所述程序被处理器运行时,实现权利要求1-20任一项所述的方法。
  47. 一种通信系统,包括权利要求21所述的通信装置,以及权利要求30所述的通信装置或者,包括权利要求41所述的通信装置,以及权利要求43所述的通信装置。
PCT/CN2022/084938 2021-04-02 2022-04-01 通信方法及装置 WO2022206981A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110363848.0 2021-04-02
CN202110363848.0A CN115175161A (zh) 2021-04-02 2021-04-02 通信方法及装置

Publications (1)

Publication Number Publication Date
WO2022206981A1 true WO2022206981A1 (zh) 2022-10-06

Family

ID=83458092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/084938 WO2022206981A1 (zh) 2021-04-02 2022-04-01 通信方法及装置

Country Status (2)

Country Link
CN (1) CN115175161A (zh)
WO (1) WO2022206981A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116996196B (zh) * 2023-09-07 2024-04-16 深圳传音控股股份有限公司 传输方法、通信设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110913490A (zh) * 2018-01-12 2020-03-24 Oppo广东移动通信有限公司 上行数据传输方法及相关设备
US20200382180A1 (en) * 2019-08-15 2020-12-03 Intel Corporation Full-power uplink transmissions for new radio systems
CN112468270A (zh) * 2019-09-06 2021-03-09 维沃移动通信有限公司 信息指示方法和通信设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110913490A (zh) * 2018-01-12 2020-03-24 Oppo广东移动通信有限公司 上行数据传输方法及相关设备
US20200382180A1 (en) * 2019-08-15 2020-12-03 Intel Corporation Full-power uplink transmissions for new radio systems
CN112468270A (zh) * 2019-09-06 2021-03-09 维沃移动通信有限公司 信息指示方法和通信设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HE, CHENGLONG; ZHANG, YONG: "Research of PUSCH Channel in LTE-A system", DIGITAL TECHNOLOGY & APPLICATION, no. 8, 15 August 2013 (2013-08-15), pages 90 - 92, XP009540940, ISSN: 1007-9416, DOI: 10.19695/j.cnki.cn12-1369.2013.08.065 *
INTEL CORPORATION, NTT DOCOMO, INC.: "Release-16 UE capabilities based on RAN1, RAN4 feature lists and RAN2 corrections", 3GPP DRAFT; R2-2008119, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic meeting; 20200817 - 20200828, 14 August 2020 (2020-08-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051920672 *

Also Published As

Publication number Publication date
CN115175161A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
US11283503B2 (en) Communication method and communications apparatus
CN111615805B (zh) 无线通信系统中的用户装置
US11284246B2 (en) Uplink transmission method, uplink transmission configuration method, user equipment and base station
US10925034B2 (en) Resource indication method, apparatus, and system
WO2019223729A1 (zh) 通信方法、终端设备和网络设备
WO2018141272A1 (zh) 终端、网络设备和通信方法
RU2589655C2 (ru) Способ и устройство для определения числа уровня mimo
US11005550B2 (en) Method and apparatus for transmitting downlink control information (DCI)
US11323222B2 (en) Communication method, and apparatus
WO2021052179A1 (zh) 一种上行数据传输方法及装置
KR102527915B1 (ko) 업링크 파워 제어 방법 및 기기
US11101866B2 (en) Rank indication reporting method and apparatus, and indication method and apparatus
JP6783945B2 (ja) 参照信号送信方法および装置
US10911122B2 (en) Reference signal sending method, reference signal receiving method, network device, and terminal device
US11277176B2 (en) Communication method, communications apparatus, and communications system
WO2020034854A1 (zh) 资源管理的方法和装置
WO2022206981A1 (zh) 通信方法及装置
US20210337572A1 (en) Data transmission method and communication apparatus
US20230361975A1 (en) Method of sharing srs resources between srs resource sets of different usages, and corresponding ue
US11425729B2 (en) Reference signal transmission method and communications device
JP2023504552A (ja) 高速モビリティ用のドップラースプレッドベースのビーム測定/報告
WO2021004475A1 (zh) 一种通信方法及装置
CN117676549A (zh) 一种能力上报的方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779161

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22779161

Country of ref document: EP

Kind code of ref document: A1