WO2022002130A1 - 一种流处理方法及其装置 - Google Patents

一种流处理方法及其装置 Download PDF

Info

Publication number
WO2022002130A1
WO2022002130A1 PCT/CN2021/103542 CN2021103542W WO2022002130A1 WO 2022002130 A1 WO2022002130 A1 WO 2022002130A1 CN 2021103542 W CN2021103542 W CN 2021103542W WO 2022002130 A1 WO2022002130 A1 WO 2022002130A1
Authority
WO
WIPO (PCT)
Prior art keywords
division multiplexed
space division
information
stream
streams
Prior art date
Application number
PCT/CN2021/103542
Other languages
English (en)
French (fr)
Inventor
高慧
黄梅玉
闫江北
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022002130A1 publication Critical patent/WO2022002130A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a stream processing method and device thereof.
  • Massive multiple input multiple output is one of the key technologies of the fifth generation (5G) mobile communication technology.
  • massive MIMO the base station and terminal have a large number of antennas, which creates conditions for multi-stream space division multiplexing.
  • space division multiplexing technology to send data to the terminal is conducive to improving spectral efficiency.
  • the channel between the base station and the terminal usually contains multipath, and the same data stream reaches the terminal through different paths and experiences different fading.
  • Different data streams usually reach the terminal through different multipaths, which will make the signal strength of each stream vary greatly when reaching the terminal, which will lead to lower overall demodulation performance of the data stream, which will result in the spectral efficiency of space division multiplexing. lower.
  • Embodiments of the present application provide a stream processing method and a device thereof.
  • the first information is used to determine the transmission information of the multiple space division multiplexed streams, which is beneficial to improve the overall demodulation performance of the multiple space division multiplexed streams, thereby improving the performance of the multiple space division multiplexed streams. It is beneficial to improve the spectral efficiency of space division multiplexing.
  • an embodiment of the present application provides a stream processing method.
  • the method includes: a network device acquires transmission information of multiple space division multiplexed streams;
  • the physical downlink shared channel PDSCH is sent to the terminal device;
  • the multiple space division multiplexed streams are carried on the first PDSCH;
  • the transmission information of the multiple space division multiplexed streams is determined according to the first information;
  • the first information includes any one of the following Item: the signal-to-noise ratio of each space division multiplexed stream, the reference signal received power RSRP corresponding to each space division multiplexed stream, and the channel information of the first PDSCH.
  • the transmission information of the multiple space division multiplexed streams is determined according to the first information, and the first information can reflect the signal strength of each space division multiplexed flow when it reaches the terminal device to a certain extent. Therefore, the network device sends the first PDSCH to the terminal device according to the transmission information of the multiple space division multiplexed streams, which is beneficial to reduce the difference in signal strength of each space division multiplexed stream when reaching the terminal device, thereby facilitating optimization
  • the overall demodulation performance of the multiple space division multiplexed streams improves the spectral efficiency of space division multiplexing.
  • the transmission information of the multiple space division multiplexed streams may include at least one of the following: a power coefficient of each space division multiplexed flow; and a codeword mapped to each space division multiplexed flow.
  • the foregoing first information includes: the signal-to-noise ratio of each spatially multiplexed stream or the RSRP corresponding to each spatially multiplexed stream; the network device obtains the transmission information of multiple spatially multiplexed streams.
  • the specific implementation may be: receiving transmission information of multiple space division multiplexed streams from the aforementioned terminal equipment.
  • a specific implementation manner for the network device to obtain the transmission information of the multiple space division multiplexed streams may be: the network device determines the transmission information of the multiple space division multiplexed streams according to the first information.
  • the foregoing first information includes: the signal-to-noise ratio of each spatially multiplexed stream or the RSRP corresponding to each of the spatially multiplexed streams; the method may further include: the network device sends measurement information to the terminal device , the measurement information is used for the terminal device to determine the first information; the network device receives the first information from the terminal device.
  • the measurement information includes a second PDSCH or a reference signal of an antenna port corresponding to each space division multiplexed stream; wherein the second PDSCH carries the foregoing multiple space division multiplexed streams; the second PDSCH The transmission time of the first PDSCH is before the transmission time of the first PDSCH.
  • the measurement information includes a reference signal of an antenna port corresponding to each space division multiplexed stream; each reference signal is weighted by the weight of the space division multiplexed stream corresponding to the reference signal in the first PDSCH Obtained, or each reference signal is obtained by weighting the precoding matrix PMI fed back by the terminal device.
  • the measurement information includes the second PDSCH; the method further includes: the network device sends first indication information to the terminal device, where the first indication information is used to instruct the terminal device to determine the first PDSCH according to the second PDSCH information.
  • the transmission information of the multiple spatially multiplexed streams includes the power coefficient of each spatially multiplexed stream; the aforementioned multiple spatially multiplexed streams include at least a first spatially multiplexed stream and a second spatially multiplexed stream.
  • the power coefficient of the first spatially-multiplexed stream may be greater than that of the second spatially-multiplexed stream or, if the RSRP corresponding to the first space-division multiplexing flow is smaller than the RSRP corresponding to the second space-division multiplexing flow, the power coefficient of the first space-division multiplexing flow may be greater than that of the first space-division multiplexing flow.
  • the power factor of the two space division multiplexed streams if the signal-to-noise ratio of the first spatially-multiplexed stream is smaller than that of the second spatially-multiplexed stream, the power coefficient of the first spatially-multiplexed stream may be greater than that of the second spatially-multiplexed stream or, if the RSRP corresponding to the first space-division multiplexing flow is smaller than the RSRP corresponding to the second space-division multiplexing flow, the power coefficient of the first space-division multiplexing flow may be greater than that
  • the difference in signal strength of the aforementioned multiple spatially multiplexed streams when reaching the terminal device is small, which is conducive to optimizing the overall demodulation performance of the multiple spatially multiplexed streams, so that the spectral efficiency of the spatially multiplexed streams can be obtained. promote.
  • the transmission information of the foregoing multiple SDM streams includes a codeword mapped by each SDM stream; the foregoing first information includes a signal-to-noise ratio of each SDM stream;
  • the codeword mapped by the multiplexed stream may be the first codeword or the second codeword; wherein, the signal-to-noise ratio of each spatially multiplexed stream mapped to the first codeword is different from that of the third spatially multiplexed stream.
  • the absolute value of the difference between the signal-to-noise ratios is smaller than the first preset value;
  • the absolute values of the differences between the noise ratios are all greater than or equal to the first preset value; among the foregoing multiple spatially multiplexed streams, the third spatially multiplexed stream has the largest or smallest signal-to-noise ratio.
  • the signal-to-noise ratios of each space-division multiplexed stream mapped to the same codeword can be made similar, which is beneficial to reduce the difference in the received signal strength of each space-division multiplexed stream mapped to the same codeword. Therefore, it is beneficial to optimize the overall demodulation performance of the multiple space division multiplexing streams, so that the spectral efficiency of the space division multiplexing is improved.
  • the transmission information of the foregoing multiple SDM streams includes a codeword mapped by each SDM stream; the first information includes an RSRP corresponding to each SDM stream;
  • the codeword mapped by the stream is the third codeword or the fourth codeword; wherein, the RSRP corresponding to each space division multiplexing stream mapped to the third codeword is between the RSRP corresponding to the fourth space division multiplexing stream
  • the absolute value of the difference is smaller than the second preset value; the difference between the RSRP corresponding to each space division multiplexing stream mapped to the fourth codeword and the RSRP corresponding to the fourth space division multiplexing flow
  • the absolute value of is greater than or equal to the second preset value; among the multiple space division multiplexing streams, the RSRP corresponding to the fourth space division multiplexing stream is the largest or the smallest.
  • the RSRPs corresponding to each space-division multiplexed stream mapped to the same codeword can be made relatively similar, which is beneficial to reduce the difference in the received signal strength of each space-division multiplexed stream mapped to the same codeword, so that It is beneficial to optimize the overall demodulation performance of multiple space division multiplexing streams, so that the spectral efficiency of space division multiplexing is improved.
  • the transmission information of the foregoing multiple space division multiplexed streams includes the power coefficient of each space division multiplexed stream;
  • the first information includes channel information of the first PDSCH;
  • the method may further include: the foregoing network device Send second indication information to the aforementioned terminal equipment, where the second indication information is used to instruct the terminal equipment to send an uplink sounding reference signal SRS; receive the SRS from the terminal equipment; and determine the channel information of the first PDSCH according to the SRS; the According to the first information, the network device determines the transmission information of the multiple space division multiplexed streams in a specific implementation manner: for each space division multiplexed stream, the network device determines the transmission information of the space division multiplexed streams according to the channel information of the first PDSCH and the space division multiplexed stream. Using the weight of the stream in the first PDSCH, the power coefficient of the space division multiplexed stream is determined.
  • an embodiment of the present application provides another stream processing method.
  • the method includes: a terminal device receives a first PDSCH from a network device, where the first PDSCH bears multiple space division multiplexed streams; the first PDSCH is a sent according to the transmission information of the multiple space division multiplexed streams; the transmission information of the multiple space division multiplexed streams is determined according to first information; the first information includes any one of the following: Signal-to-noise ratio, reference signal received power RSRP corresponding to each space division multiplexed stream and channel information of the first PDSCH.
  • the transmission information of the multiple space division multiplexed streams is determined according to the first information, and the first information can reflect the signal strength of each space division multiplexed flow when it reaches the terminal device to a certain extent. Therefore, the network device sends the first PDSCH according to the transmission information of the multiple space division multiplexed streams, which is beneficial to reduce the difference in signal strength of each space division multiplexed stream when reaching the terminal device, thereby helping to optimize the multiple space division multiplexed streams.
  • the overall demodulation performance of the multiplexed stream improves the spectral efficiency of space division multiplexing.
  • the transmission information of the multiple space division multiplexed streams may include at least one of the following: a power coefficient of each space division multiplexed flow; and a codeword mapped to each space division multiplexed flow.
  • the first information includes: a signal-to-noise ratio of each space-division multiplexed stream or an RSRP corresponding to each space-division multiplexed stream; the method may further include: the terminal device according to the first information , determine the transmission information of the multiple space division multiplexed streams; and send the transmission information of the multiple space division multiplexed streams to the network device.
  • the foregoing first information includes: a signal-to-noise ratio of each spatially multiplexed stream or a corresponding RSRP of each spatially multiplexed stream; the method may further include: the terminal device receives a signal from a network device. measuring information; and determining first information according to the measuring information; and sending the first information to the network device.
  • the measurement information includes a second PDSCH or a reference signal of an antenna port corresponding to each space division multiplexed stream; wherein the second PDSCH carries the foregoing multiple space division multiplexed streams; the second PDSCH The transmission time of the first PDSCH is before the transmission time of the first PDSCH.
  • the measurement information includes a reference signal of an antenna port corresponding to each space division multiplexed stream; each reference signal is weighted by the weight of the space division multiplexed stream corresponding to the reference signal in the first PDSCH Obtained, or each reference signal is obtained by weighting the precoding matrix PMI fed back by the terminal device.
  • the measurement information includes the second PDSCH; the method further includes: the terminal device receives first indication information from the network device, where the first indication information is used to instruct the terminal device to determine the first indication according to the second PDSCH a message.
  • the transmission information of the multiple spatially multiplexed streams includes the power coefficient of each spatially multiplexed stream; the aforementioned multiple spatially multiplexed streams include at least a first spatially multiplexed stream and a second spatially multiplexed stream.
  • the power coefficient of the first spatially-multiplexed stream may be greater than that of the second spatially-multiplexed stream or, if the RSRP corresponding to the first space-division multiplexing flow is smaller than the RSRP corresponding to the second space-division multiplexing flow, the power coefficient of the first space-division multiplexing flow may be greater than that of the first space-division multiplexing flow.
  • the power factor of the two space division multiplexed streams if the signal-to-noise ratio of the first spatially-multiplexed stream is smaller than that of the second spatially-multiplexed stream, the power coefficient of the first spatially-multiplexed stream may be greater than that of the second spatially-multiplexed stream or, if the RSRP corresponding to the first space-division multiplexing flow is smaller than the RSRP corresponding to the second space-division multiplexing flow, the power coefficient of the first space-division multiplexing flow may be greater than that
  • the difference in signal strength of the aforementioned multiple spatially multiplexed streams when reaching the terminal device is small, which is conducive to optimizing the overall demodulation performance of the multiple spatially multiplexed streams, so that the spectral efficiency of the spatially multiplexed streams can be obtained. promote.
  • the transmission information of the foregoing multiple SDM streams includes a codeword mapped by each SDM stream; the foregoing first information includes a signal-to-noise ratio of each SDM stream;
  • the codeword mapped by the multiplexed stream may be the first codeword or the second codeword; wherein, the signal-to-noise ratio of each spatially multiplexed stream mapped to the first codeword is different from that of the third spatially multiplexed stream.
  • the absolute value of the difference between the signal-to-noise ratios is smaller than the first preset value;
  • the absolute values of the differences between the noise ratios are all greater than or equal to the first preset value; among the foregoing multiple spatially multiplexed streams, the third spatially multiplexed stream has the largest or smallest signal-to-noise ratio.
  • the signal-to-noise ratios of each space-division multiplexed stream mapped to the same codeword can be made similar, which is beneficial to reduce the difference in the received signal strength of each space-division multiplexed stream mapped to the same codeword. Therefore, it is beneficial to optimize the overall demodulation performance of the multiple space division multiplexing streams, so that the spectral efficiency of the space division multiplexing is improved.
  • the transmission information of the foregoing multiple SDM streams includes a codeword mapped by each SDM stream; the first information includes an RSRP corresponding to each SDM stream;
  • the codeword mapped by the stream is the third codeword or the fourth codeword; wherein, the RSRP corresponding to each space division multiplexing stream mapped to the third codeword is between the RSRP corresponding to the fourth space division multiplexing stream
  • the absolute value of the difference is less than the second preset value; the difference between the RSRP corresponding to each space division multiplexing stream mapped to the fourth codeword and the RSRP corresponding to the fourth space division multiplexing flow
  • the absolute value of is greater than or equal to the second preset value; among the multiple space division multiplexing streams, the RSRP corresponding to the fourth space division multiplexing stream is the largest or the smallest.
  • the RSRPs corresponding to each space-division multiplexed stream mapped to the same codeword can be made relatively similar, which is beneficial to reduce the difference in the received signal strength of each space-division multiplexed stream mapped to the same codeword, so that It is beneficial to optimize the overall demodulation performance of multiple space division multiplexing streams, so that the spectral efficiency of space division multiplexing is improved.
  • the transmission information of the foregoing multiple space division multiplexed streams includes the power coefficient of each space division multiplexed stream;
  • the first information includes channel information of the first PDSCH;
  • the method may further include: the terminal device receives The second indication information from the network device, the second indication information is used to instruct the terminal device to send the uplink sounding reference signal SRS; the SRS is used to determine the channel information of the first PDSCH; for each space division multiplexed stream, the empty The power coefficient of the division multiplexed stream is determined by the channel information of the first PDSCH and the weight of the space division multiplexed stream in the first PDSCH; the terminal device sends the SRS to the network device.
  • an embodiment of the present application provides a communication device, the communication device having part or all of the functions of the network device in the method example described in the first aspect above, for example, the function of the communication device may have some of the functions in the present application Or the functions in all the embodiments may also have the functions of independently implementing any one of the embodiments in this application.
  • the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication apparatus may include a processing unit and a communication unit, and the processing unit is configured to support the communication apparatus to perform the corresponding functions in the above method.
  • the communication unit is used to support communication between the communication device and other devices.
  • the communication device may also include a storage unit for coupling with the processing unit and the communication unit, which stores computer programs and data necessary for the communication device.
  • the communication device includes: a processing unit configured to acquire transmission information of multiple space division multiplexed streams; the multiple space division multiplexed streams are carried on the first physical downlink shared channel PDSCH; the multiple space division multiplexed streams are carried on the first physical downlink shared channel PDSCH;
  • the transmission information of the space division multiplexed streams is determined according to the first information; the first information includes any one of the following: the signal-to-noise ratio of each space division multiplexed stream, the reference signal received power corresponding to each space division multiplexed stream Channel information of the RSRP and the first PDSCH; a communication unit, configured to send the first PDSCH to the terminal device according to the transmission information of the multiple space division multiplexed streams.
  • the processing unit may be a processor
  • the communication unit may be a transceiver or a communication interface
  • the storage unit may be a memory.
  • the communication apparatus includes: a processor configured to acquire transmission information of multiple space division multiplexed streams; the multiple space division multiplexed streams are carried on the first physical downlink shared channel PDSCH; the multiple space division multiplexed streams are carried on the first physical downlink shared channel PDSCH;
  • the transmission information of the space division multiplexed streams is determined according to the first information; the first information includes any one of the following: the signal-to-noise ratio of each space division multiplexed stream, the reference signal received power corresponding to each space division multiplexed stream Channel information of the RSRP and the first PDSCH; the transceiver, configured to send the first PDSCH to the terminal device according to the transmission information of the multiple space division multiplexed streams.
  • an embodiment of the present application provides another communication device, the communication device having to implement some or all of the functions of the terminal device in the method example described in the second aspect above.
  • the function of the communication device may have the functions of the Some or all of the functions in the embodiments may also have the functions of independently implementing any one of the embodiments in this application.
  • the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a communication unit and a processing unit, and the processing unit is configured to support the communication device to perform corresponding functions in the above method.
  • the communication unit is used to support communication between the communication device and other devices.
  • the communication device may also include a storage unit for coupling with the processing unit and the communication unit, which stores computer programs and data necessary for the communication device.
  • the communication apparatus includes: a communication unit configured to receive a first PDSCH from a network device, where the first PDSCH carries a plurality of space division multiplexed streams; the first PDSCH is based on the plurality of The transmission information of the space division multiplexed stream is sent; the transmission information of the multiple space division multiplexed streams is determined according to the first information; the first information includes any one of the following: the signal-to-noise ratio of each space division multiplexed stream, The reference signal received power RSRP corresponding to each space division multiplexed stream and the channel information of the first PDSCH; the processing unit is configured to demodulate the first PDSCH to obtain the multiple space division multiplexed streams.
  • the processing unit may be a processor
  • the communication unit may be a transceiver or a communication interface
  • the storage unit may be a memory.
  • the communication apparatus includes: a transceiver configured to receive a first PDSCH from a network device, where the first PDSCH carries a plurality of space division multiplexed streams; the first PDSCH is based on the plurality of The transmission information of the space division multiplexed stream is sent; the transmission information of the multiple space division multiplexed streams is determined according to the first information; the first information includes any one of the following: the signal-to-noise ratio of each space division multiplexed stream, The reference signal received power RSRP corresponding to each space division multiplexed stream and the channel information of the first PDSCH; the processor is configured to demodulate the first PDSCH to obtain the multiple space division multiplexed streams.
  • embodiments of the present application provide a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and the computer program includes program instructions that, when executed by a communication device, cause the communication device to The method of the first aspect above is performed.
  • an embodiment of the present application provides another computer-readable storage medium, where the computer-readable storage medium stores a computer program, and the computer program includes program instructions, which, when executed by a communication device, enable the communication
  • the apparatus performs the method of the second aspect above.
  • an embodiment of the present application provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the first aspect.
  • the embodiments of the present application provide another computer program product including a computer program, which, when running on a computer, causes the computer to execute the method described in the second aspect above.
  • an embodiment of the present application provides a chip system, where the chip system includes at least one processor and an interface, and is configured to support a network device to implement the functions involved in the first aspect, for example, determining or processing the functions involved in the above method. at least one of the data and information.
  • the chip system further includes a memory for storing necessary computer programs and data of the network device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • an embodiment of the present application provides another chip system, where the chip system includes at least one processor and an interface, and is configured to support a terminal device to implement the functions involved in the second aspect, for example, to determine or process the functions involved in the above method. At least one of the data and information involved.
  • the chip system further includes a memory for storing necessary computer programs and data of the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • FIG. 1 is a schematic diagram of the architecture of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a stream processing method provided by an embodiment of the present application
  • FIG. 3 is a schematic flowchart of another stream processing method provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of another stream processing method provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of another stream processing method provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a chip provided by an embodiment of the present application.
  • SDM Space division multiplexing
  • Spatial division multiplexing technology refers to dividing the space by adaptive array antennas to form different beams in different directions. Each beam can provide a unique channel without interference from other users, so that the same frequency band can be repeated in different spaces. use.
  • the space-division multiplexed stream mentioned in the embodiments of the present application refers to a data stream sent from a network device to a terminal device using a space-division multiplexing technology. Each space division multiplexed stream may be sent by multiple antennas in the network device, and the data sent by the multiple antennas are different.
  • the data sent from the media access control (MAC) layer to the physical layer is organized in the form of transport blocks (TB).
  • a TB becomes a codeword after channel coding.
  • Antenna port refers to the logical port used for transmission. It is worth noting that there is no one-to-one correspondence between antenna ports and physical antennas. Antenna ports can be distinguished by reference signals (RS): in the downlink, the downlink and downlink reference signals correspond one-to-one. If a reference signal is transmitted through multiple physical antennas, then the multiple physical antennas correspond to The same antenna port; if two different reference signals are transmitted through the same physical antenna, then the physical antenna corresponds to two independent antenna ports. The signal of one antenna port can be distributed to different physical antennas for transmission.
  • RS reference signals
  • FIG. 1 is a schematic structural diagram of a communication system according to an embodiment of the present application.
  • the communication system may include, but is not limited to, a terminal device and a network device.
  • the number and form of devices shown in FIG. 1 are used as examples and do not constitute a limitation to the embodiments of the present application. In practical applications, two or more devices may be included.
  • the communication system shown in FIG. 1 includes a network device 101 and a terminal device 102 as an example.
  • the network device 101 may be configured to acquire transmission information of multiple space division multiplexed streams, and send the first PDSCH to the terminal device 102 according to the transmission information of the multiple space division multiplexed streams (it can be understood as: A PDSCH data is sent to the terminal device 102).
  • the terminal device 102 may receive the first PDSCH from the network device 101 (it can be understood as receiving data of the first PDSCH from the network device 101 ).
  • the multiple space division multiplexed streams are all carried on a first physical downlink shared channel (PDSCH), that is, the multiple space division multiplexed streams are transmitted to the same terminal device 102 through the first PDSCH.
  • PDSCH physical downlink shared channel
  • the space division multiplexed stream in the embodiment of the present application can be understood as a data channel, and a lot of data can be transmitted in the space division multiplexed stream. Data can be different.
  • the transmission information of the plurality of space division multiplexed streams may include information required for transmission of the plurality of space division multiplexed streams. Transmission information of the multiple space division multiplexed streams may be determined according to the first information.
  • the first information may include one or more parameters, which to a certain extent may reflect the signal strength of each space division multiplexed stream upon reaching the terminal device 102 .
  • the first information may include, but is not limited to, any of the following: the signal-to-noise ratio of each spatially multiplexed stream, the reference signal receiving power (RSRP) corresponding to each spatially multiplexed stream, and the Channel information of a PDSCH.
  • RSRP reference signal receiving power
  • the transmission information of the multiple space division multiplexed streams is determined according to the first information, because the first information can reflect the signal strength of each space division multiplexed flow when it reaches the terminal device 102 to a certain extent. Therefore, the network device 101 sends the first PDSCH to the terminal device 102 according to the transmission information of the multiple space division multiplexed streams, which is beneficial to reduce the difference in signal strength of the respective space division multiplexed streams when they reach the terminal device 102, so that It is beneficial to optimize the overall demodulation performance of the multiple space division multiplexing streams, so that the spectral efficiency of space division multiplexing is improved.
  • LTE long term evolution
  • 5G fifth generation
  • 5G new radio (NR) system 5G new radio
  • 6G sixth generation
  • the communication mode of the communication system to which the technical solutions of the embodiments of the present application are applied may be frequency division duplex (frequency-division duplex, FDD), time-division duplex (time-division duplex, TDD), or both are supported.
  • the network device 101 in this embodiment of the present application is an entity on the network side for transmitting or receiving signals.
  • the network device 101 may be an evolved base station (evolved NodeB, eNB), a transmission point (transmission reception point, TRP), a next generation base station (next generation NodeB, gNB) in an NR system, or a base station in other future mobile communication systems Or an access node in a wireless fidelity (WiFi) system, etc.
  • eNB evolved NodeB
  • TRP transmission reception point
  • gNB next generation base station
  • WiFi wireless fidelity
  • the network device 101 has multiple physical antennas to support space division multiplexing.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the network device.
  • the network device provided in this embodiment of the present application may be composed of a centralized unit (central unit, CU) and a distributed unit (distributed unit, DU), where the CU may also be called a control unit (control unit), and a CU-DU is adopted.
  • the structure of the network equipment such as the protocol layer of the base station, can be split, and the functions of some protocol layers are centrally controlled by the CU, and the functions of the remaining part or all of the protocol layers are distributed in the DU, and the CU centrally controls the DU.
  • the terminal device 102 in this embodiment of the present application is an entity on the user side that is used to receive or transmit signals, such as a mobile phone.
  • a terminal device may also be referred to as a terminal (terminal), a user equipment (UE), a mobile station (mobile station, MS), a mobile terminal (mobile terminal, MT), and the like.
  • the terminal device can be a car with a communication function, a smart car, a mobile phone (mobile phone), a wearable device, a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, augmented reality (augmented reality (AR) terminal equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, smart grid wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, wireless terminals that support antenna selection or do not support antenna selection, etc. Wait.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the terminal device.
  • FIG. 2 is a schematic flowchart of a stream processing method provided by an embodiment of the present application.
  • the execution subject of steps S201 to S202 is a network device, or a chip in the network device, and the following description takes the network device as the execution subject of the stream processing method as an example.
  • the method may include but is not limited to the following steps:
  • Step S201 The network device acquires transmission information of multiple space division multiplexed streams; the multiple space division multiplexed streams are carried on the first physical downlink shared channel PDSCH; the transmission information of the multiple space division multiplexed streams is based on the first information Determine; the first information includes any one of the following: the signal-to-noise ratio of each space division multiplexed stream, the reference signal received power RSRP corresponding to each space division multiplexed stream, and the channel information of the first PDSCH.
  • the multiple space division multiplexed streams are data streams to be sent to the same terminal device.
  • the network device may acquire the transmission information of the multiple space division multiplexed streams in the following manner: the network device receives the transmission information of the multiple space division multiplexed streams from the terminal device, at this time, the multiple space division multiplexed streams
  • the transmission information of the space division multiplexed stream is determined by the terminal device according to the first information (for the execution process, please refer to the specific description of step S301 in FIG. 3 ); or, the network device determines the transmission information of the multiple space division multiplexed streams according to the first information. Transmission information (for the execution process, please refer to the specific description of step S404 in FIG. 4 ).
  • the transmission information of the plurality of space division multiplexed streams may include information required for transmission of the plurality of space division multiplexed streams.
  • the transmission information of the multiple space division multiplexing streams may include, but is not limited to, at least one of the following: a power coefficient of each space division multiplexing flow, and a code mapped to each space division multiplexing flow Character.
  • the power coefficient of the space division multiplexed stream can be used to determine the transmission power when the network device sends the space division multiplexed stream.
  • the terminal device may support one or more codewords.
  • different spatial multiplexing streams may be mapped to the same codeword, or may be mapped to different codewords, which is not limited in this embodiment of the present application.
  • the terminal device supports one codeword, the aforementioned multiple spatially multiplexed streams are mapped to the same codeword (ie, the codeword supported by the terminal device).
  • each codeword may be mapped with multiple space division multiplexed streams; or, each codeword may be mapped with only one space division multiplexed stream; or, in some codewords
  • Each codeword is mapped with multiple space division multiplexed streams, and each codeword in the other part of the codewords is mapped with only one space division multiplexed stream.
  • the multiplexed streams are mapped to the same codeword.
  • the transmission information of the multiple space division multiplexed streams is determined according to the first information.
  • the first information may include one or more parameters, which to a certain extent may reflect the signal strength of each space-division multiplexed stream when it reaches the terminal device.
  • the first information may include, but is not limited to, any of the following: the signal-to-noise ratio of each spatially multiplexed stream, the reference signal receiving power (RSRP) corresponding to each spatially multiplexed stream, and the Channel information of a PDSCH.
  • the signal-to-noise ratio may refer to the signal-to-interference plus noise ratio (SINR) after equalization, or the SINR before equalization.
  • SINR signal-to-interference plus noise ratio
  • the post-equalization SINR refers to the SINR of the space-division multiplexed stream actually received after passing through the receiver, and the pre-equalization refers to the SINR of the space-division multiplexed stream received before the receiver.
  • the larger the signal-to-noise ratio of the space-division multiplexed stream the stronger the signal strength of the space-division multiplexed stream when it reaches the terminal device; the smaller the signal-to-noise ratio of the space-division multiplexed stream, the stronger The multiplexed stream has a weaker signal strength when it reaches the end device.
  • the larger the RSRP corresponding to the space division multiplexed flow the stronger the signal strength of the space division multiplexed flow when it reaches the terminal device; the smaller the RSRP corresponding to the space division multiplexed flow, it can be considered that the space division multiplexed flow is in the The weaker the signal strength when it reaches the end device.
  • the channel information in the embodiments of the present application may also be referred to as channel state information (channel state information, CSI), and the channel information may reflect the channel properties of the communication link.
  • CSI can describe the attenuation factor of the signal on each transmission path, that is, the value of each element in the channel gain matrix, such as signal scattering (scattering), environmental attenuation (fading, multipath fading or shadowing fading), distance attenuation (power decay of distance) and other information.
  • CSI can make the communication system adapt to the current channel conditions, and provide guarantee for high reliability and high speed communication in the multi-antenna system.
  • the channel information of the first PDSCH may include, but is not limited to, the channel matrix of the first PDSCH. Based on the channel matrix of the first PDSCH, it is beneficial to determine the signal strength of each space-division multiplexed stream when it is transmitted to the terminal device through the first PDSCH.
  • the transmission information of the multiple space division multiplexed streams is determined according to the first information, and the first information can reflect the signal strength of each space division multiplexed stream when it reaches the terminal device to a certain extent. Therefore, the network device sends the first PDSCH to the terminal device according to the transmission information of the multiple space division multiplexed streams, which is beneficial to reduce the difference in signal strength of each space division multiplexed stream when reaching the terminal device, thereby facilitating optimization
  • the overall demodulation performance of the multiple space division multiplexed streams improves the spectral efficiency of space division multiplexing.
  • Step S202 The network device sends the first PDSCH to the terminal device according to the transmission information of the multiple space division multiplexed streams.
  • the network device may send the first PDSCH to the terminal device according to the transmission information of the multiple space division multiplexed streams.
  • the network device may determine, according to the power coefficients of each space division multiplexed stream, the power coefficient when sending the space division multiplexed stream. transmit power. Or, for each space-division multiplexed flow, the network device may use the power coefficient of the space-division multiplexed flow to weight the initial power coefficient of the space-division multiplexed flow to obtain the transmission power coefficient of the space-division multiplexed flow; then , according to the transmit power coefficient and the total power for transmitting the first PDSCH, determine the transmit power when transmitting the space division multiplexed stream.
  • the initial power coefficient of each space division multiplexed stream may be set by the network device, for example, the initial power coefficient of each space division multiplexed stream may be the same. It should be noted that the initial power coefficient of each space division multiplexed stream may be changed by a network device, and the initial power coefficient of each space division multiplexed stream may be the same or different, which is not limited in this embodiment of the present application.
  • the network device may map the space division multiplexed stream to a codeword, and then send the space division multiplexed stream to the terminal device through the codeword. Specifically, the network device may map the space division multiplexed stream to the antenna, so as to transmit the space division multiplexed stream through the antenna. For example, when the transmission information of the multiple space division multiplexing streams includes codewords mapped to each space division multiplexing stream, if the terminal device supports one or more codewords, the network device may modulate each codeword to generate Modulation symbols; combine modulation symbols of different codewords to perform layer mapping; then, perform precoding on the data after layer mapping, and map the data obtained after precoding to the antenna.
  • Resource mapping is performed on each antenna, and orthogonal frequency division multiplexing (OFDM) symbols are generated and transmitted.
  • OFDM orthogonal frequency division multiplexing
  • the modulation symbols of one codeword can be mapped to one or more layers.
  • each layer corresponds to a space division multiplexed stream, and one space division multiplexed stream corresponds to one antenna port.
  • Data of one layer may be mapped to one or more transmit antennas, and data of different layers may be mapped to the same transmit antenna or different transmit antennas, which is not limited in this embodiment of the present application.
  • Layer mapping and precoding can be viewed as two sub-processes of the "mapping codewords to transmit antennas" process.
  • Layer mapping maps codewords to one or more layers according to preset rules. After precoding, the data of each layer is mapped to the corresponding transmit antenna for transmission.
  • the terminal device may demodulate the first PDSCH to obtain the foregoing multiple space division multiplexed streams. Specifically, after receiving the first PDSCH, the terminal device may perform channel estimation on each space division multiplexed stream carried in the first PDSCH, and then perform joint demultiplexing on the multiple space division multiplexed streams in the first PDSCH tune to obtain the multiple space division multiplexed streams. Alternatively, the terminal device may perform channel estimation on each codeword in the first PDSCH, and then demodulate each codeword respectively to obtain a space division multiplexed stream mapped to each codeword.
  • the received signal strength of the space division multiplexed stream refers to the signal strength of the space division multiplexed stream when it reaches the terminal device.
  • the power coefficient of each spatially multiplexed stream in the multiple spatially multiplexed streams can be determined by the stream processing method provided in the embodiment of the present application. In this way, even if multiple space division multiplexed streams are mapped to the same codeword, it is also beneficial to reduce the difference in signal strength of each space division multiplexed stream in the codeword when reaching the terminal device.
  • the stream processing method provided by the embodiments of the present application can determine the mapping relationship between the spatially multiplexed stream and the codewords, and/or, can determine multiple spatially multiplexed The power factor of each space-division multiplexed stream in the stream. In this way, even if there are multiple spatially multiplexed streams mapped to the same codeword, it is beneficial to reduce the signal of each spatially multiplexed stream between codewords and/or within a codeword when reaching the terminal equipment strength difference.
  • the multiple spatially multiplexed streams may be mapped to the same codeword for transmission. In this way, the purpose of reducing the signal strength difference of each space division multiplexed stream when reaching the terminal device can be achieved, and it is also beneficial to reduce the power consumption of determining the mapping relationship between the space division multiplexed stream and the codeword.
  • the same transmit power may be allocated to each space division multiplexed stream. In this way, the purpose of reducing the signal strength difference of each space division multiplexed stream when reaching the terminal equipment can be achieved, and it is also beneficial to reduce the power consumption for determining the power coefficient of each space division multiplexed stream.
  • the transmission information of the multiple space division multiplexed streams is determined according to the first information, and the first information can reflect the signal strength of each space division multiplexed stream when it reaches the terminal device to a certain extent. Therefore, the network device sends the first PDSCH to the terminal device according to the transmission information of the multiple space division multiplexed streams, which is beneficial to reduce the difference in signal strength of each space division multiplexed stream when reaching the terminal device, thereby facilitating optimization
  • the overall demodulation performance of the multiple space division multiplexed streams improves the spectral efficiency of space division multiplexing.
  • FIG. 3 is a schematic flowchart of another stream processing method provided by an embodiment of the present application.
  • the method describes in detail that the first information includes the signal-to-noise ratio of each spatially multiplexed stream or each spatially multiplexed stream.
  • the RSRP corresponding to the stream is used, how does the terminal device determine the transmission information of multiple space division multiplexed streams according to the first information, and feed back the transmission information to the network device.
  • the execution subject of steps S301 to S302 is a terminal device or a chip in the terminal device
  • the execution subject of step S303 is a network device or a chip in the network device.
  • the terminal device and the network device are used as stream processing methods
  • the main body of the execution is described as an example.
  • the method may include but is not limited to the following steps:
  • Step S301 The terminal device determines transmission information of multiple space division multiplexed streams according to the first information; the multiple space division multiplexed streams are carried on the first physical downlink shared channel PDSCH; the first information includes: each space division multiplexed stream The signal-to-noise ratio of the multiplexed stream or the RSRP corresponding to each spatially multiplexed stream; the transmission information of the multiple spatially multiplexed streams includes at least one of the following: the power coefficient of each spatially multiplexed stream and the Multiplexed stream mapped codewords.
  • the first information includes a signal-to-noise ratio of each of the foregoing multiple spatially multiplexed streams, or each of the multiple spatially multiplexed streams
  • the transmission information of the multiple space division multiplexed streams may be determined by the terminal device according to the first information.
  • each space division multiplexed stream mentioned in the embodiments of the present application refers to each space division multiplexed stream in the multiple space division multiplexed streams carried in the first PDSCH.
  • the power coefficient of the space division multiplexed stream may be determined according to the signal-to-noise ratio of the space division multiplexed stream or the RSRP corresponding to the space division multiplexed stream. For example, when the multiple space division multiplexed streams include at least a first space division multiplexed stream and a second space division multiplexed stream, if the signal-to-noise ratio of the first space division multiplexed stream is smaller than that of the second space division multiplexed stream The signal-to-noise ratio of the first spatially multiplexed stream may be greater than the power coefficient of the second spatially multiplexed stream; or, if the RSRP corresponding to the first spatially multiplexed stream is smaller than that of the second spatially multiplexed stream Using the RSRP corresponding to the stream, the power coefficient of the first spatially multiplexed stream may be greater than the power coefficient of the second spatially multiplexed stream.
  • the difference in signal strength of the aforementioned multiple spatially multiplexed streams when reaching the terminal device is small, which is conducive to optimizing the overall demodulation performance of the multiple spatially multiplexed streams, so that the spectral efficiency of the spatially multiplexed streams can be obtained.
  • the first space division multiplexed stream and the second space division multiplexed stream may be mapped to the same codeword, or may be mapped to different codewords, which is not limited in this embodiment of the present application.
  • the terminal device may determine the power coefficient of the i-th stream in the multiple spatially multiplexed streams according to the following formula:
  • p i represents the i-th power coefficient stream
  • R & lt is the total number of space division multiplexed stream
  • gamma] i is the SNR of the i-th stream or streams corresponding to RSRP i.
  • the space division multiplexed streams with similar signal-to-noise ratios in the foregoing multiple space division multiplexed streams may be mapped to the same codeword.
  • the mapping relationship between the space division multiplexed stream and the codeword can be determined by: selecting one space division multiplexing stream as a reference among multiple space division multiplexing streams, and using the rest of the space division multiplexing streams as a reference The multiplexed stream is compared with the spatial multiplexed stream as a reference, and the mapping relationship between the spatially multiplexed stream and the codeword is determined according to the comparison result.
  • the terminal device supports two codewords (such as the first codeword and the second codeword), that is, the code of the space-division multiplexed stream mapping
  • the word can be the first codeword or the second codeword.
  • the absolute value of the difference between the signal-to-noise ratio of each space-division multiplexed stream mapped to the first codeword and the signal-to-noise ratio of the third space-division multiplexed stream (that is, the reference object) is smaller than that of the first codeword.
  • a preset value; the absolute value of the difference between the signal-to-noise ratio of each spatially multiplexed stream mapped to the second codeword and the signal-to-noise ratio of the third spatially multiplexed stream is greater than or equal to the first preset value; among the plurality of spatially multiplexed streams, the signal-to-noise ratio of the third spatially multiplexed stream is the largest or the smallest.
  • the space-division multiplexed stream mapped to the first codeword and the space-division multiplexed stream mapped to the second codeword form the aforementioned plurality of space-division multiplexed streams.
  • the first codeword may be mapped with one or more space division multiplexed streams
  • the second codeword may also be mapped with one or more space division multiplexed streams.
  • the space division multiplexed streams with similar signal-to-noise ratios in the foregoing multiple space division multiplexed streams can be mapped to the same codeword (such as the first codeword), and the remaining empty space division multiplexed streams in the multiple space division multiplexed streams can be mapped to the same codeword.
  • the division multiplexed stream is mapped to another codeword (eg, a second codeword).
  • the signal-to-noise ratio of each space-division multiplexed stream mapped to codeword a is the same as that of the third space-division multiplexed stream.
  • the absolute value of the difference between the signal-to-noise ratios of the multiplexed streams is smaller than the preset value 1;
  • the absolute value of the difference between the signal-to-noise ratios is greater than or equal to the preset value 1, and less than the preset value 2;
  • the absolute values of the differences between the signal-to-noise ratios of the space division multiplexed streams are all greater than or equal to the preset value 2.
  • the preset value 1 is smaller than the preset value 2. It should be noted that the terminal device can also support four or more codewords, and the mapping relationship between the codewords and the space division multiplexing stream can be determined by referring to the relevant content when the terminal device supports two or three codewords. It will not be repeated here.
  • the signal-to-noise ratios of each space-division multiplexed stream mapped to the same codeword can be made similar, which is beneficial to reduce the difference in the received signal strength of each space-division multiplexed stream mapped to the same codeword, so that It is beneficial to optimize the overall demodulation performance of multiple space division multiplexing streams, so that the spectral efficiency of space division multiplexing is improved.
  • the space division multiplexed streams with similar signal-to-noise ratios in the foregoing multiple space division multiplexed streams may be mapped to the same codeword.
  • the mapping relationship between the space division multiplexed stream and the codeword can be determined by: selecting one space division multiplexing stream as a reference among multiple space division multiplexing streams, and using the rest of the space division multiplexing streams as a reference The multiplexed stream is compared with the spatial multiplexed stream as a reference, and the mapping relationship between the spatially multiplexed stream and the codeword is determined according to the comparison result.
  • the terminal device supports two codewords (such as the third codeword and the fourth codeword), that is, the codeword mapped by the SDM stream can be is the third codeword or the fourth codeword.
  • the absolute value of the difference between the RSRP corresponding to each space division multiplexing stream mapped to the third codeword and the RSRP corresponding to the fourth space division multiplexing stream (that is, the reference) is smaller than the second prediction Set value; the RSRP corresponding to each space-division multiplexing stream mapped to the fourth codeword, and the absolute value of the difference between the RSRPs corresponding to the fourth space-division multiplexing stream is greater than or equal to the second preset Set the value; among the foregoing multiple spatially multiplexed streams, the RSRP corresponding to the fourth spatially multiplexed stream is the largest or the smallest.
  • the space-division multiplexed stream mapped to the third codeword and the space-division multiplexed stream mapped to the fourth codeword constitute the aforementioned plurality of space-division multiplexed streams.
  • the third codeword may be mapped with one or more space division multiplexed streams
  • the fourth codeword may also be mapped with one or more space division multiplexed streams.
  • the space division multiplexed streams with similar RSRPs in the foregoing multiple space division multiplexed streams can be mapped to the same codeword (eg, the third codeword), and the remaining space division multiplexed streams in the multiple space division multiplexed streams can be mapped to the same codeword.
  • the division multiplexed stream is mapped to another codeword (eg, the fourth codeword).
  • the RSRP corresponding to each spatially multiplexed stream mapped to codeword d is the same as that of the fourth spatially multiplexed stream.
  • the absolute value of the difference between the RSRPs corresponding to the streams is smaller than the preset value 3; the RSRP corresponding to each spatially multiplexed stream mapped to the codeword e is the same as the RSRP corresponding to the fourth spatially multiplexed stream.
  • the absolute value of the difference between is greater than or equal to the preset value 3, and is less than the preset value 4; the RSRP corresponding to each space division multiplexing stream mapped to the codeword f, and the fourth space division multiplexing stream.
  • the absolute values of the differences between the corresponding RSRPs are all greater than or equal to the preset value of 4.
  • the preset value 3 is smaller than the preset value 4. It should be noted that the terminal device can also support four or more codewords, and the mapping relationship between the codewords and the space division multiplexing stream can be determined by referring to the relevant content when the terminal device supports two or three codewords. It will not be repeated here.
  • the RSRP corresponding to each SDM stream mapped to the same codeword can be made relatively similar, which is beneficial to reduce the difference in the received signal strength of each SDM stream mapped to the same codeword. It is beneficial to optimize the overall demodulation performance of multiple space division multiplexing streams, so that the spectral efficiency of space division multiplexing is improved.
  • the above method of determining the mapping relationship between the space division multiplexed stream and the codeword by selecting a space division multiplexed stream as a reference is only for an example, and does not constitute a limitation to the embodiments of the present application. , as long as the signal-to-noise ratio (or RSRP) of each space-division multiplexed stream mapped to the same codeword is relatively similar. For example, in the case where a spatially multiplexed stream is not selected as the reference, or the selected reference is not necessarily the aforementioned third spatially multiplexed stream (or the fourth spatially multiplexed stream), the mapping is made. The difference between the signal-to-noise ratios (or RSRP) of the spatially multiplexed streams in the same codeword is less than a threshold.
  • first preset value, second preset value, and preset value 1 to preset value 5 can all be configured by the network device (for example, delivered in a system message or proprietary signaling), Alternatively, it may be stipulated by the protocol, or may be set by default by the terminal device, or may be set and changed by the user, which is not limited in this embodiment of the present application.
  • Step S302 The terminal device sends the transmission information of the multiple space division multiplexed streams to the network device.
  • the terminal device may send the transmission information of the multiple spatially multiplexed streams to the network device, so that the network device can The information is transmitted, and the first PDSCH bearing the multiple space division multiplexed streams is sent to the terminal device.
  • Step S303 The network device sends the first PDSCH to the terminal device according to the transmission information of the multiple space division multiplexed streams.
  • step S303 for the execution process of step S303, reference may be made to the specific description of step S202 in FIG. 2, which will not be repeated here.
  • FIG. 4 is a schematic flowchart of another stream processing method provided by an embodiment of the present application.
  • the method describes in detail that the first information includes the signal-to-noise ratio of each spatially multiplexed stream or each spatially multiplexed stream.
  • the RSRP corresponding to the stream is used, how the terminal device determines the first information and feeds back the first information to the network device; and how the network device determines the transmission information of multiple space division multiplexed streams according to the first information.
  • step S401, step S404 to step S405 is a network device, or a chip in the network device
  • the execution subject of step S402 to step S403 is a terminal device, or a chip in the terminal device, hereinafter referred to as terminal device
  • the description is given by taking the network device as the execution subject of the stream processing method as an example.
  • the method may include but is not limited to the following steps:
  • Step S401 The network device sends measurement information to the terminal device, where the measurement information is used by the terminal device to determine first information; the first information includes the signal-to-noise ratio of each of the multiple spatially multiplexed streams or RSRP corresponding to each space division multiplexed stream; the multiple space division multiplexed streams are carried on the first physical downlink shared channel PDSCH.
  • the measurement information may include a reference signal of an antenna port corresponding to each space division multiplexed stream in the plurality of space division multiplexed streams.
  • one space division multiplexed stream may correspond to one antenna port, and one antenna port may transmit one reference signal.
  • the reference signal in this embodiment of the present application may refer to a channel state information reference signal (channel state information reference signal, CSI-RS).
  • each reference signal may be weighted by the weight of the space division multiplexed stream corresponding to the reference signal in the first PDSCH.
  • the signal of one antenna port can be distributed to one or more physical antennas for transmission.
  • a physical antenna has a certain amplitude and phase when sending signals.
  • each reference signal may be weighted by a precoding matrix (precoding matrix indicator, PMI) fed back by the terminal device.
  • PMI precoding matrix indicator
  • the feedback PMI may be a PMI selected by the terminal device from multiple PMIs agreed upon in the protocol, and the meaning of each element in the PMI is the amplitude and phase of the physical antenna.
  • the weight of the space division multiplexed stream in the first PDSCH (that is, the amplitude and phase of the physical antenna) can be determined by the network device, and the elements in the PMI (that is, the amplitude and phase of the physical antenna) can be determined by 3GPP agreement.
  • the measurement information may include a second PDSCH, where the second PDSCH carries the foregoing multiple space division multiplexed streams; the transmission time of the second PDSCH is before the transmission time of the foregoing first PDSCH.
  • the transmission power of each space division multiplexed stream may be equal or unequal, which is not limited in this embodiment of the present application.
  • the data of the space division multiplexed streams transmitted on the first PDSCH and the second PDSCH may be the same or different, which is not limited in this embodiment of the present application.
  • the network device may send first indication information to the terminal device, where the first indication information may be used to instruct the terminal device to determine the foregoing first information according to the second PDSCH. That is, after receiving the first indication information, the terminal device can wait to receive the second PDSCH from the network device, determine the aforementioned first information according to the second PDSCH, and feed back the first information to the network device or according to the first PDSCH The information further determines the transmission information of the aforementioned plurality of space division multiplexed streams.
  • the second PDSCH may be a PDSCH sent on a specific time slot (timeslot), and in this case, the first indication information is specifically used to instruct the terminal device according to the first time slot sent on the specific time slot.
  • the second PDSCH determines the first information. It should be noted that the specific time slot may appear periodically or aperiodically, which is not limited in this embodiment of the present application.
  • the terminal device may support a reference signal measurement mode or a PDSCH measurement mode for a specific time slot.
  • the fact that the terminal device supports the reference signal measurement mode indicates that the terminal device can determine the first information according to the reference signal.
  • the fact that the terminal device supports the PDSCH measurement mode of a specific time slot indicates that the terminal device supports determining the first information according to the PDSCH (ie, the second PDSCH) sent on the specific time slot.
  • the network device may send indication information 1 to the terminal device, where the indication information 1 may be used to instruct the terminal device to enable the reference signal measurement mode.
  • the network device may send indication information 2 to the terminal device, where the indication information 2 may be used to instruct the terminal device to enable the PDSCH measurement mode of a specific time slot.
  • indication information 1 and indication information 2 may all be carried in radio resource control (radio resource control, RRC) signaling or downlink control information (downlink control information, DCI), and this application implements The example does not limit this.
  • RRC radio resource control
  • DCI downlink control information
  • Step S402 The terminal device determines the first information according to the measurement information.
  • the terminal device may determine the first information according to the measurement information, and the first information may include the signal-to-noise signal of each space division multiplexed stream in the multiple space division multiplexed streams Ratio or RSRP corresponding to each SDM stream.
  • the measurement information is the CSIRS (or the second PDSCH) of the antenna port corresponding to each of the multiple space division multiplexed streams
  • the terminal device measures the reference signal (or the second PDSCH)
  • the signal-to-noise ratio of the space division multiplexed stream corresponding to each antenna port can be determined.
  • the terminal device can determine the SINR of the i-th stream among the multiple spatially multiplexed streams by the following formula, where the SINR refers to the SINR after equalization:
  • H represents the CSIRS channel matrix measured by the terminal device
  • H represents the channel matrix of the second PDSCH measured by the terminal device
  • H can be obtained by channel estimation.
  • H H represents the conjugate transpose matrix of the channel matrix H
  • (H H H) -1 represents the inverse matrix of the matrix (H H H)
  • n 0 represents the noise floor of the terminal device.
  • the terminal device may determine the SINR of the i-th stream among the multiple spatially multiplexed streams by the following formula, where the SINR refers to the SINR after equalization:
  • N r is the number of receiving antennas in the terminal device; when the measurement information is CSIRS, H t,i represents the channel matrix of the t-th receiving antenna of the terminal device receiving the CSIRS sent by the i-th antenna port; when measuring When the information is the second PDSCH, H t,i represents the channel matrix for the t-th receiving antenna of the terminal device to receive the signal sent by the i-th antenna port (that is, a certain stream carried in the second PDSCH); H t,i can be obtained by channel estimation.
  • the elements in the matrix H t,i are complex numbers, and
  • a certain complex element z a+bi in H t,i , where a and b are real numbers, a is the real part, b is the imaginary part, i (with the label i of the antenna port and the space division multiplexed stream different) is an imaginary unit.
  • the result of modulo element z is n 0 represents the noise floor of the terminal device.
  • the terminal device measures the reference signal (or the second PDSCH), and can Determine the RSRP corresponding to the space division multiplexed stream (corresponding to each antenna port). Specifically, the terminal device can determine the RSRP corresponding to the i-th stream in the multiple spatially multiplexed streams by the following formula:
  • N r is the number of receiving antennas in the terminal device; when the measurement information is CSIRS, H t,i represents the channel matrix of the t-th receiving antenna of the terminal device receiving the CSIRS sent by the i-th antenna port; when measuring When the information is the second PDSCH, H t,i represents the channel matrix for the t-th receiving antenna of the terminal device to receive the signal sent by the i-th antenna port (that is, a certain stream carried in the second PDSCH); H t,i can be obtained by channel estimation.
  • the elements in the matrix H t,i are complex numbers, and
  • Step S403 The terminal device sends the first information to the aforementioned network device.
  • the first information may be fed back to the network device, so that the network device determines the transmission information of the foregoing multiple space division multiplexed streams according to the first information.
  • Step S404 The network device determines, according to the first information, the transmission information of the foregoing multiple space division multiplexed streams.
  • the network device may determine the transmission information of the foregoing multiple space division multiplexed streams according to the first information. It should be noted that the execution process for the network device to determine the transmission information of the multiple space division multiplexed streams according to the first information is the same as the execution process for the terminal device to determine the transmission information of the multiple space division multiplexed streams according to the first information. , you can refer to the specific description of step S301 in FIG. 3 , which will not be repeated here.
  • Step S405 The network device sends the aforementioned first PDSCH to the terminal device according to the transmission information of the multiple space division multiplexed streams.
  • step S303 for the execution process of step S303, reference may be made to the specific description of step S202 in FIG. 2, which will not be repeated here.
  • step S403 may be replaced by the following steps: the terminal device determines the power coefficient of each spatially multiplexed stream according to the first information, and sends the power coefficient of each spatially multiplexed stream to the aforementioned Internet equipment.
  • Step S404 may be replaced by the following steps: after the network device receives the power coefficient of each space division multiplexed flow fed back by the terminal device, it may determine the space division multiplexed flow and the code according to the power coefficient of each space division multiplexed flow. Mapping relationship between words.
  • the terminal device supports two codewords (such as codeword A and codeword B), that is, the codeword mapped by the space division multiplexing stream can be the codeword A or the codeword B, and the network device can determine the space division in the following way
  • the mapping relationship between the multiplexed stream and the codeword convert the power coefficient of the space division multiplexed stream to the dB domain, and convert the difference between the dB domain power coefficient and the dB domain power coefficient of the fifth space division multiplexed stream.
  • the space-division multiplexed stream whose absolute value is less than the third preset value is mapped to codeword A, and the absolute value of the difference between the dB-domain power coefficient and the dB-domain power coefficient of the fifth space-division multiplexed stream is greater than or equal to
  • the spatial division multiplexed stream of the third preset value is mapped to codeword B.
  • the dB-domain power coefficient of the fifth spatially multiplexed stream is the largest or the smallest.
  • the codeword A may be mapped with one or more space division multiplexed streams
  • the codeword B may also be mapped with one or more space division multiplexed streams.
  • the space division multiplexed streams with similar power coefficients in the dB domain in the foregoing multiple space division multiplexed streams can be mapped to the same codeword (such as codeword A), and the remaining space division multiplexed streams in the multiple space division multiplexed streams can be mapped
  • the division multiplexed stream is mapped to another codeword (eg codeword B).
  • the above method of determining the mapping relationship between the space division multiplexed stream and the codeword by selecting a space division multiplexed stream (that is, the fifth space division multiplexed stream) as a reference is only for an example. , which does not constitute a limitation on the embodiments of the present application, as long as the power coefficients in the dB domain of each space-division multiplexed stream mapped to the same codeword are relatively similar.
  • each spatially multiplexed stream mapped to the same codeword is made The difference in dB-domain power coefficients between the streams is less than a certain threshold.
  • the third preset value may be configured by the network device (for example, delivered in a system message or proprietary signaling), or may be stipulated by a protocol, or may be set by default by the terminal device, or may be set by the user Settings and modifications are not limited in this embodiment of the present application.
  • FIG. 5 is a schematic flowchart of another stream processing method provided by an embodiment of the present application.
  • the method describes in detail that the transmission information of multiple spatially multiplexed streams includes the power coefficient of each spatially multiplexed stream.
  • the first information includes the channel information of the first PDSCH
  • the network device determine the channel information of the first PDSCH
  • the power coefficient of each SDM stream according to the channel information of the first PDSCH.
  • the execution subject of steps S501, S503 to S505 is a network device, or a chip in a network device
  • the execution subject of step S502 is a terminal device, or a chip in the terminal device.
  • the terminal device and the network device are used as streams.
  • the execution subject of the processing method is described as an example.
  • the method may include but is not limited to the following steps:
  • Step S501 The network device sends second indication information to the terminal device, where the second indication information is used to instruct the terminal device to send an uplink sounding reference signal (sounding reference signal, SRS).
  • SRS sounding reference signal
  • the second indication information may be specifically used to instruct the terminal device to send the SRS through an independent antenna, that is, to send the SRS through a single antenna. It should be noted that, when the terminal device has multiple transmit antennas, and the network device knows information such as amplitudes and phases of the multiple transmit antennas in advance, the second indication information may specifically instruct the terminal device to transmit SRS through multiple antennas.
  • Step S502 The terminal device sends the SRS to the network device.
  • the terminal device may send the SRS.
  • Step S503 The network device determines the channel information of the first PDSCH according to the SRS.
  • the network device may determine the channel information of the first PDSCH according to the SRS.
  • the channel information of the first PDSCH may include, but is not limited to, the channel matrix of the first PDSCH.
  • the network device may determine the channel matrix of the first PDSCH in the following manner:
  • the network device measures the channel matrix H srs of the SRS ;
  • the superscript T represents the transpose of the matrix H srs .
  • Step S504 For each space division multiplexed flow in the multiple space division multiplexed flows, the network device determines the space division multiplexed flow according to the channel information of the first PDSCH and the weight of the space division multiplexed flow in the first PDSCH. The power coefficient of the space division multiplexed stream; the multiple space division multiplexed streams are carried on the first PDSCH.
  • the network device when the first information includes channel information of the first PDSCH, and the transmission information of the multiple space division multiplexed streams includes the power coefficient of each space division multiplexed stream, the network device, according to the first information,
  • the specific implementation manner of determining the transmission information of the multiple space division multiplexed streams may be as follows: for each space division multiplexed flow, the network device according to the channel information of the first PDSCH and the weight of the space division multiplexed flow in the first PDSCH. value to determine the power coefficient of the space division multiplexed stream.
  • the network device may determine the power coefficient of each spatially multiplexed stream in the following manner: based on the estimated HDL , determine multiple spatially multiplexed streams.
  • r represents the number of the first PDSCH stream carried in space division multiplexing; matrix H DL W i to a plurality of elements,
  • the mean() function means to take the mean of all the elements in the brackets (ie
  • Step S505 The network device sends the first PDSCH to the terminal device according to the power coefficient of each space division multiplexed stream in the plurality of space division multiplexed streams.
  • step S505 For the execution process of step S505, reference may be made to the specific description of step S202 in FIG. 2, which will not be repeated here.
  • the methods provided by the embodiments of the present application are respectively introduced from the perspectives of a network device and a terminal device.
  • the network device and the terminal device may include hardware structures and software modules, and implement the above functions in the form of hardware structures, software modules, or hardware structures plus software modules.
  • a certain function among the above functions may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • FIG. 6 is a schematic structural diagram of a communication apparatus 60 according to an embodiment of the present application.
  • the communication device 60 shown in FIG. 6 may include a processing unit 601 and a communication unit 602 .
  • the communication unit 602 may include a sending unit and/or a receiving unit, the sending unit is used to implement the sending function, the receiving unit is used to implement the receiving function, and the communication unit 602 may implement the sending function and/or the receiving function.
  • the communication unit may also be described as a transceiving unit.
  • the communication device 60 may be a network device, a device in a network device, or a device that can be matched with the network device.
  • the communication device 60 may be a terminal device, a device in a terminal device, or a device that can be matched and used with the terminal device.
  • the communication device 60 is a network device: a processing unit 601 is configured to acquire transmission information of multiple space division multiplexed streams; the multiple space division multiplexed streams are carried on the first physical downlink shared channel PDSCH; the multiple space division multiplexed streams are carried on the first physical downlink shared channel PDSCH; The transmission information of the stream is determined according to the first information; the first information includes any one of the following: the signal-to-noise ratio of each space-division multiplexed flow; the reference signal received power RSRP corresponding to each space-division multiplexed flow; the first Channel information of the PDSCH; the communication unit 602 is configured to send the first PDSCH to the terminal device according to the transmission information of the multiple space division multiplexed streams.
  • the transmission information of the multiple space division multiplexed streams may include at least one of the following: a power coefficient of each space division multiplexed flow; and a codeword mapped to each space division multiplexed flow.
  • the aforementioned first information includes: the signal-to-noise ratio of each spatially multiplexed stream or the corresponding RSRP of each spatially multiplexed stream; the processing unit 601 can also be configured to call the communication unit 602 to receive the data from the aforementioned Transmission information for multiple space division multiplexed streams of a terminal device.
  • the processing unit 601 may also be configured to determine, according to the first information, transmission information of multiple spatially multiplexed streams.
  • the foregoing first information includes: the signal-to-noise ratio of each space division multiplexed stream or the RSRP corresponding to each space division multiplexed stream; the communication unit 602 may also be configured to send measurement information to the terminal device, The measurement information is used for the terminal device to determine the first information; the communication unit 602 may also be used to receive the first information from the terminal device.
  • the measurement information includes a second PDSCH or a reference signal of an antenna port corresponding to each space division multiplexed stream; wherein the second PDSCH carries the foregoing multiple space division multiplexed streams; the second PDSCH The transmission time of the first PDSCH is before the transmission time of the first PDSCH.
  • the measurement information includes a reference signal of an antenna port corresponding to each space division multiplexed stream; each reference signal is weighted by the weight of the space division multiplexed stream corresponding to the reference signal in the first PDSCH Obtained, or each reference signal is obtained by weighting the precoding matrix PMI fed back by the terminal device.
  • the measurement information includes the second PDSCH; the communication unit 602 may also be configured to send first indication information to the terminal device, where the first indication information is used to instruct the terminal device to determine the first PDSCH according to the second PDSCH information.
  • the transmission information of the multiple spatially multiplexed streams includes the power coefficient of each spatially multiplexed stream; the aforementioned multiple spatially multiplexed streams include at least a first spatially multiplexed stream and a second spatially multiplexed stream.
  • the power coefficient of the first spatially-multiplexed stream may be greater than that of the second spatially-multiplexed stream or, if the RSRP corresponding to the first space-division multiplexing flow is smaller than the RSRP corresponding to the second space-division multiplexing flow, the power coefficient of the first space-division multiplexing flow may be greater than that of the first space-division multiplexing flow.
  • the power factor of the two space division multiplexed streams if the signal-to-noise ratio of the first spatially-multiplexed stream is smaller than that of the second spatially-multiplexed stream, the power coefficient of the first spatially-multiplexed stream may be greater than that of the second spatially-multiplexed stream or, if the RSRP corresponding to the first space-division multiplexing flow is smaller than the RSRP corresponding to the second space-division multiplexing flow, the power coefficient of the first space-division multiplexing flow may be greater than that
  • the transmission information of the foregoing multiple SDM streams includes a codeword mapped by each SDM stream; the foregoing first information includes a signal-to-noise ratio of each SDM stream;
  • the codeword mapped by the multiplexed stream may be the first codeword or the second codeword; wherein, the signal-to-noise ratio of each spatially multiplexed stream mapped to the first codeword is different from that of the third spatially multiplexed stream.
  • the absolute value of the difference between the signal-to-noise ratios is smaller than the first preset value;
  • the absolute values of the differences between the noise ratios are all greater than or equal to the first preset value; among the foregoing multiple spatially multiplexed streams, the third spatially multiplexed stream has the largest or smallest signal-to-noise ratio.
  • the transmission information of the foregoing multiple SDM streams includes a codeword mapped by each SDM stream; the first information includes an RSRP corresponding to each SDM stream;
  • the codeword mapped by the stream is the third codeword or the fourth codeword; wherein, the RSRP corresponding to each space division multiplexing stream mapped to the third codeword is between the RSRP corresponding to the fourth space division multiplexing stream
  • the absolute value of the difference is less than the second preset value; the difference between the RSRP corresponding to each space division multiplexing stream mapped to the fourth codeword and the RSRP corresponding to the fourth space division multiplexing flow
  • the absolute value of is greater than or equal to the second preset value; among the multiple space division multiplexing streams, the RSRP corresponding to the fourth space division multiplexing stream is the largest or the smallest.
  • the transmission information of the foregoing multiple space division multiplexed streams includes the power coefficient of each space division multiplexed stream;
  • the first information includes channel information of the first PDSCH;
  • the communication unit 602 can also be used to send the foregoing information to the
  • the terminal device sends second indication information, where the second indication information is used to instruct the terminal device to send the uplink sounding reference signal SRS;
  • the communication unit 602 can also be used to receive the SRS from the terminal device;
  • the processing unit 601 can also be used to receive the SRS from the terminal device;
  • the SRS determines the channel information of the first PDSCH; for each space division multiplexed flow, the space division multiplexed flow is determined according to the channel information of the first PDSCH and the weight of the space division multiplexed flow in the first PDSCH power factor.
  • the communication device 60 is a terminal device: the communication unit 602 is configured to receive a first PDSCH from a network device, where the first PDSCH bears multiple space division multiplexed streams; the first PDSCH is based on the multiple space division multiplexed streams
  • the transmission information of the multiple space division multiplexed streams is determined according to the first information; the first information includes any of the following: the signal-to-noise ratio of each space division multiplexed stream; each space division multiplexed stream Use the reference signal received power RSRP corresponding to the stream; the channel information of the first PDSCH; and the processing unit 601, configured to demodulate the first PDSCH to obtain the multiple space division multiplexed streams.
  • the transmission information of the multiple space division multiplexed streams may include at least one of the following: a power coefficient of each space division multiplexed flow; and a codeword mapped to each space division multiplexed flow.
  • the first information includes: the signal-to-noise ratio of each space-division multiplexed stream or the RSRP corresponding to each space-division multiplexed stream; the processing unit 601 may also be configured to determine according to the first information Transmission information of multiple space division multiplexed streams; the communication unit 602 may also be configured to send the transmission information of the multiple space division multiplexed streams to a network device.
  • the transmission information of the multiple spatially multiplexed streams includes the power coefficient of each spatially multiplexed stream; the aforementioned multiple spatially multiplexed streams include at least a first spatially multiplexed stream and a second spatially multiplexed stream.
  • the power coefficient of the first spatially-multiplexed stream may be greater than that of the second spatially-multiplexed stream or, if the RSRP corresponding to the first space-division multiplexing flow is smaller than the RSRP corresponding to the second space-division multiplexing flow, the power coefficient of the first space-division multiplexing flow may be greater than that of the first space-division multiplexing flow.
  • the power factor of the two space division multiplexed streams if the signal-to-noise ratio of the first spatially-multiplexed stream is smaller than that of the second spatially-multiplexed stream, the power coefficient of the first spatially-multiplexed stream may be greater than that of the second spatially-multiplexed stream or, if the RSRP corresponding to the first space-division multiplexing flow is smaller than the RSRP corresponding to the second space-division multiplexing flow, the power coefficient of the first space-division multiplexing flow may be greater than that
  • the transmission information of the foregoing multiple SDM streams includes a codeword mapped by each SDM stream; the foregoing first information includes a signal-to-noise ratio of each SDM stream;
  • the codeword mapped by the multiplexed stream may be the first codeword or the second codeword; wherein, the signal-to-noise ratio of each spatially multiplexed stream mapped to the first codeword is different from that of the third spatially multiplexed stream.
  • the absolute value of the difference between the signal-to-noise ratios is smaller than the first preset value;
  • the absolute values of the differences between the noise ratios are all greater than or equal to the first preset value; among the foregoing multiple spatially multiplexed streams, the third spatially multiplexed stream has the largest or smallest signal-to-noise ratio.
  • the transmission information of the foregoing multiple SDM streams includes a codeword mapped by each SDM stream; the first information includes an RSRP corresponding to each SDM stream;
  • the codeword mapped by the stream is the third codeword or the fourth codeword; wherein, the RSRP corresponding to each space division multiplexing stream mapped to the third codeword is between the RSRP corresponding to the fourth space division multiplexing stream
  • the absolute value of the difference is less than the second preset value; the difference between the RSRP corresponding to each space division multiplexing stream mapped to the fourth codeword and the RSRP corresponding to the fourth space division multiplexing flow
  • the absolute value of is greater than or equal to the second preset value; among the multiple space division multiplexing streams, the RSRP corresponding to the fourth space division multiplexing stream is the largest or the smallest.
  • the foregoing first information includes: the signal-to-noise ratio of each space-division multiplexed flow or the RSRP corresponding to each space-division multiplexed flow; the communication unit 602 may also be configured to receive measurement information from a network device ; The processing unit 601 can also be used to determine the first information according to the measurement information; the communication unit 602 can also be used to send the first information to the network device.
  • the measurement information includes a second PDSCH or a reference signal of an antenna port corresponding to each space division multiplexed stream; wherein the second PDSCH carries the foregoing multiple space division multiplexed streams; the second PDSCH The transmission time of the first PDSCH is before the transmission time of the first PDSCH.
  • the measurement information includes a reference signal of an antenna port corresponding to each space division multiplexed stream; each reference signal is weighted by the weight of the space division multiplexed stream corresponding to the reference signal in the first PDSCH Obtained, or each reference signal is obtained by weighting the precoding matrix PMI fed back by the communication device 60 .
  • the measurement information includes the second PDSCH; the communication unit 602 may also be configured to receive first indication information from the network device, where the first indication information is used to instruct the communication apparatus 60 to determine the first indication according to the second PDSCH a message.
  • the transmission information of the foregoing multiple space division multiplexed streams includes the power coefficient of each space division multiplexed stream;
  • the first information includes channel information of the first PDSCH;
  • the communication unit 602 can also be used to receive data from The second indication information of the network device, the second indication information is used to instruct the communication apparatus 60 to send the uplink sounding reference signal SRS;
  • the SRS is used to determine the channel information of the first PDSCH; for each space division multiplexed stream, the space division The power coefficient of the multiplexed stream is determined by the channel information of the first PDSCH and the weight of the space division multiplexed stream in the first PDSCH;
  • the communication unit 602 may also be used to send the SRS to the network device.
  • FIG. 7 is a schematic structural diagram of another communication apparatus 70 provided by an embodiment of the present application.
  • the communication device 70 may be a network device, a terminal device, a chip, a chip system, or a processor that supports the network device to implement the above method, or a chip, a chip system, or a chip that supports the terminal device to implement the above method. processor etc.
  • the apparatus can be used to implement the methods described in the foregoing method embodiments, and for details, reference may be made to the descriptions in the foregoing method embodiments.
  • the Communication device 70 may include one or more processors 701 .
  • the processor 701 may be a general-purpose processor or a special-purpose processor, or the like.
  • it may be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processing unit can be used to control communication devices (such as base stations, baseband chips, terminals, terminal chips, DU or CU, etc.), execute computer programs, process computer program data.
  • the communication device 70 may include one or more memories 702, and a computer program 703 may be stored thereon, and the computer program may be executed on the communication device 70, so that the communication device 70 performs the method described in the above embodiment. Methods.
  • the memory 702 may also store data.
  • the communication device 70 and the memory 702 may be provided separately or integrated together.
  • the communication device 70 may further include a transceiver 704 and an antenna 705 .
  • the transceiver 704 may be referred to as a transceiver unit, a transceiver, or a transceiver circuit, etc., for implementing a transceiver function.
  • the transceiver 704 may include a receiver and a transmitter, the receiver may be called a receiver or a receiving circuit, etc., for implementing a receiving function; the transmitter may be called a transmitter or a transmitting circuit, etc., for implementing a transmitting function.
  • the communication apparatus 70 is a network device: the processor 701 is configured to perform step S201 in FIG. 2 ; perform step S404 in FIG. 4 ; or perform steps S503 and S504 in FIG. 5 .
  • the transceiver 704 is configured to perform step S202 in FIG. 2 ; perform step S303 in FIG. 3 ; perform steps S401 and S405 in FIG. 4 ; or perform steps S501 and S505 in FIG. 5 .
  • the communication apparatus 70 is a terminal device: the processor 701 is configured to execute step S301 in FIG. 3 ; or execute step S402 in FIG. 4 .
  • the transceiver 704 is configured to perform step S302 in FIG. 3 ; perform step S403 in FIG. 4 ; or perform step S502 in FIG. 5 .
  • the processor 701 may include a transceiver for implementing receiving and transmitting functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • Transceiver circuits, interfaces or interface circuits used to implement receiving and transmitting functions may be separate or integrated.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transmission.
  • the processor 701 may store a computer program 706, and the computer program 706 runs on the processor 701 to enable the communication device 70 to execute the methods described in the above method embodiments.
  • the computer program 706 may be embodied in the processor 701, in which case the processor 701 may be implemented by hardware.
  • the communication apparatus 70 may include a circuit, and the circuit may implement the functions of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this application can be implemented in integrated circuits (ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed-signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication apparatus described in the above embodiments may be network equipment or terminal equipment, but the scope of the communication apparatus described in this application is not limited thereto, and the structure of the communication apparatus may not be limited by FIG. 7 .
  • the communication apparatus may be a stand-alone device or may be part of a larger device.
  • the communication means may be:
  • the IC set can also include a storage component for storing data and computer programs;
  • ASIC such as modem (Modem);
  • the communication device may be a chip or a chip system
  • the chip shown in FIG. 8 includes a processor 801 and an interface 802 .
  • the number of processors 801 may be one or more, and the number of interfaces 802 may be multiple.
  • the processor 801 is configured to acquire transmission information of multiple space division multiplexed streams; the multiple space division multiplexed streams are carried on the first physical downlink shared channel PDSCH; the transmission information of the multiple space division multiplexed streams is based on the first physical downlink shared channel PDSCH; One information is determined; the first information includes any one of the following: the signal-to-noise ratio of each space division multiplexed stream; the reference signal received power RSRP corresponding to each space division multiplexed stream; the channel information of the first PDSCH; the interface 802 , for sending the first PDSCH to the terminal device according to the transmission information of the multiple space division multiplexed streams.
  • the transmission information of the multiple space division multiplexed streams may include at least one of the following: a power coefficient of each space division multiplexed flow; and a codeword mapped to each space division multiplexed flow.
  • the foregoing first information includes: the signal-to-noise ratio of each space division multiplexed stream or the RSRP corresponding to each space division multiplexed stream; the processor 801 may also be configured to call the interface 802 to receive data from the foregoing terminal Transmission information for multiple spatially multiplexed streams of a device.
  • the processor 801 may also be configured to determine, according to the first information, transmission information of multiple spatially multiplexed streams.
  • the foregoing first information includes: the signal-to-noise ratio of each space division multiplexed stream or the RSRP corresponding to each space division multiplexed stream; the interface 802 can also be used to send measurement information to the terminal device, the The measurement information is used for the terminal device to determine the first information; the interface 802 may also be used to receive the first information from the terminal device.
  • the measurement information includes a second PDSCH or a reference signal of an antenna port corresponding to each space division multiplexed stream; wherein the second PDSCH carries the foregoing multiple space division multiplexed streams; the second PDSCH The transmission time of the first PDSCH is before the transmission time of the first PDSCH.
  • the measurement information includes a reference signal of an antenna port corresponding to each space division multiplexed stream; each reference signal is weighted by the weight of the space division multiplexed stream corresponding to the reference signal in the first PDSCH Obtained, or each reference signal is obtained by weighting the precoding matrix PMI fed back by the terminal device.
  • the measurement information includes the second PDSCH; the interface 802 may also be used to send first indication information to the terminal device, where the first indication information is used to instruct the terminal device to determine the first information according to the second PDSCH .
  • the transmission information of the multiple spatially multiplexed streams includes the power coefficient of each spatially multiplexed stream; the aforementioned multiple spatially multiplexed streams include at least a first spatially multiplexed stream and a second spatially multiplexed stream.
  • the power coefficient of the first spatially-multiplexed stream may be greater than that of the second spatially-multiplexed stream or, if the RSRP corresponding to the first space-division multiplexing flow is smaller than the RSRP corresponding to the second space-division multiplexing flow, the power coefficient of the first space-division multiplexing flow may be greater than that of the first space-division multiplexing flow.
  • the power factor of the two space division multiplexed streams if the signal-to-noise ratio of the first spatially-multiplexed stream is smaller than that of the second spatially-multiplexed stream, the power coefficient of the first spatially-multiplexed stream may be greater than that of the second spatially-multiplexed stream or, if the RSRP corresponding to the first space-division multiplexing flow is smaller than the RSRP corresponding to the second space-division multiplexing flow, the power coefficient of the first space-division multiplexing flow may be greater than that
  • the transmission information of the foregoing multiple SDM streams includes a codeword mapped by each SDM stream; the foregoing first information includes a signal-to-noise ratio of each SDM stream;
  • the codeword mapped by the multiplexed stream may be the first codeword or the second codeword; wherein, the signal-to-noise ratio of each spatially multiplexed stream mapped to the first codeword is different from that of the third spatially multiplexed stream.
  • the absolute value of the difference between the signal-to-noise ratios is smaller than the first preset value;
  • the absolute values of the differences between the noise ratios are all greater than or equal to the first preset value; among the foregoing multiple spatially multiplexed streams, the third spatially multiplexed stream has the largest or smallest signal-to-noise ratio.
  • the transmission information of the foregoing multiple SDM streams includes a codeword mapped by each SDM stream; the first information includes an RSRP corresponding to each SDM stream;
  • the codeword mapped by the stream is the third codeword or the fourth codeword; wherein, the RSRP corresponding to each space division multiplexing stream mapped to the third codeword is between the RSRP corresponding to the fourth space division multiplexing stream
  • the absolute value of the difference is less than the second preset value; the difference between the RSRP corresponding to each space division multiplexing stream mapped to the fourth codeword and the RSRP corresponding to the fourth space division multiplexing flow
  • the absolute value of is greater than or equal to the second preset value; among the multiple space division multiplexing streams, the RSRP corresponding to the fourth space division multiplexing stream is the largest or the smallest.
  • the transmission information of the foregoing multiple space division multiplexed streams includes the power coefficient of each space division multiplexed stream; the first information includes channel information of the first PDSCH; the interface 802 may also be used to communicate to the foregoing terminal
  • the device sends second indication information, where the second indication information is used to instruct the terminal device to send an uplink sounding reference signal SRS; the interface 802 can also be used to receive the SRS from the terminal device; the processor 801 can also be used to determine according to the SRS Channel information of the first PDSCH; for each space division multiplexed flow, determine the power of the space division multiplexed flow according to the channel information of the first PDSCH and the weight of the space division multiplexed flow in the first PDSCH coefficient.
  • the interface 802 is used to receive the first PDSCH from the network device, where the first PDSCH bears multiple space division multiplexed streams; the first PDSCH is sent according to the transmission information of the multiple space division multiplexed streams; the multiple space division multiplexed streams are sent; The transmission information of the space division multiplexed streams is determined according to the first information; the first information includes any of the following: the signal-to-noise ratio of each space division multiplexed stream; the reference signal received power corresponding to each space division multiplexed stream RSRP; the channel information of the first PDSCH; the processor 801 is configured to demodulate the first PDSCH to obtain the multiple space division multiplexed streams.
  • the transmission information of the multiple space division multiplexed streams may include at least one of the following: a power coefficient of each space division multiplexed flow; and a codeword mapped to each space division multiplexed flow.
  • the first information includes: a signal-to-noise ratio of each spatially multiplexed stream or an RSRP corresponding to each of the spatially multiplexed streams; the processor 801 may also be configured to determine, according to the first information, Transmission information of multiple space division multiplexed streams; the interface 802 may also be used to send the transmission information of the multiple space division multiplexed streams to the network device.
  • the transmission information of the multiple spatially multiplexed streams includes the power coefficient of each spatially multiplexed stream; the aforementioned multiple spatially multiplexed streams include at least a first spatially multiplexed stream and a second spatially multiplexed stream.
  • the power coefficient of the first spatially-multiplexed stream may be greater than that of the second spatially-multiplexed stream or, if the RSRP corresponding to the first space-division multiplexing flow is smaller than the RSRP corresponding to the second space-division multiplexing flow, the power coefficient of the first space-division multiplexing flow may be greater than that of the first space-division multiplexing flow.
  • the power factor of the two space division multiplexed streams if the signal-to-noise ratio of the first spatially-multiplexed stream is smaller than that of the second spatially-multiplexed stream, the power coefficient of the first spatially-multiplexed stream may be greater than that of the second spatially-multiplexed stream or, if the RSRP corresponding to the first space-division multiplexing flow is smaller than the RSRP corresponding to the second space-division multiplexing flow, the power coefficient of the first space-division multiplexing flow may be greater than that
  • the transmission information of the foregoing multiple SDM streams includes a codeword mapped by each SDM stream; the foregoing first information includes a signal-to-noise ratio of each SDM stream;
  • the codeword mapped by the multiplexed stream may be the first codeword or the second codeword; wherein, the signal-to-noise ratio of each spatially multiplexed stream mapped to the first codeword is different from that of the third spatially multiplexed stream.
  • the absolute value of the difference between the signal-to-noise ratios is smaller than the first preset value;
  • the absolute values of the differences between the noise ratios are all greater than or equal to the first preset value; among the foregoing multiple spatially multiplexed streams, the third spatially multiplexed stream has the largest or smallest signal-to-noise ratio.
  • the transmission information of the foregoing multiple SDM streams includes a codeword mapped by each SDM stream; the first information includes an RSRP corresponding to each SDM stream;
  • the codeword mapped by the stream is the third codeword or the fourth codeword; wherein, the RSRP corresponding to each space division multiplexing stream mapped to the third codeword is between the RSRP corresponding to the fourth space division multiplexing stream
  • the absolute value of the difference is less than the second preset value; the difference between the RSRP corresponding to each space division multiplexing stream mapped to the fourth codeword and the RSRP corresponding to the fourth space division multiplexing flow
  • the absolute value of is greater than or equal to the second preset value; among the multiple space division multiplexing streams, the RSRP corresponding to the fourth space division multiplexing stream is the largest or the smallest.
  • the foregoing first information includes: the signal-to-noise ratio of each space division multiplexed stream or the RSRP corresponding to each space division multiplexed stream; the interface 802 can also be used to receive measurement information from a network device; The processor 801 can also be used to determine the first information according to the measurement information; the interface 802 can also be used to send the first information to the network device.
  • the measurement information includes a second PDSCH or a reference signal of an antenna port corresponding to each space division multiplexed stream; wherein the second PDSCH carries the foregoing multiple space division multiplexed streams; the second PDSCH The transmission time of the first PDSCH is before the transmission time of the first PDSCH.
  • the measurement information includes a reference signal of an antenna port corresponding to each space division multiplexed stream; each reference signal is weighted by the weight of the space division multiplexed stream corresponding to the reference signal in the first PDSCH Obtained, or, each reference signal is obtained by weighting the precoding matrix PMI fed back by the terminal device.
  • the measurement information includes the second PDSCH; the interface 802 may also be used to receive first indication information from the network device, where the first indication information is used to instruct the terminal device to determine the first information according to the second PDSCH .
  • the transmission information of the foregoing multiple space division multiplexed streams includes the power coefficient of each space division multiplexed stream; the first information includes channel information of the first PDSCH; the interface 802 can also be used to receive data from the network
  • the second indication information of the device is used to instruct the terminal device to send the uplink sounding reference signal SRS; the SRS is used to determine the channel information of the first PDSCH; for each space division multiplexing stream, the space division multiplexing
  • the power coefficient of the stream is determined by the channel information of the first PDSCH and the weight of the space division multiplexed stream in the first PDSCH; the interface 802 can also be used to send the SRS to the network device.
  • the chip further includes a memory 803 for storing necessary computer programs and data.
  • the present application also provides a computer-readable storage medium on which a computer program is stored, where the computer program includes program instructions, and when the program instructions are executed by a computer, the functions of any of the foregoing method embodiments are implemented.
  • the above-mentioned computer-readable storage medium includes, but is not limited to, flash memory, hard disk, and solid-state disk.
  • the present application also provides a computer program product, which implements the functions of any of the above method embodiments when the computer program product is executed by a computer.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer programs. When the computer program is loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer program may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line, DSL) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes an integration of one or more available media.
  • the available media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, high-density digital video discs (DVDs)), or semiconductor media (eg, solid state disks, SSD)) etc.
  • At least one in this application may also be described as one or more, and the multiple may be two, three, four or more, which is not limited in this application.
  • the technical feature is distinguished by “first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in the “first”, “second”, “third”, “A”, “B”, “C” and “D” described technical features in no order or order of magnitude.
  • the corresponding relationships shown in each table in this application may be configured or predefined.
  • the values of the information in each table are only examples, and can be configured with other values, which are not limited in this application.
  • the corresponding relationships shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, for example, splitting, merging, and so on.
  • the names of the parameters shown in the headings in the above tables can also be other names that can be understood by the communication device, and the values or representations of the parameters can also be other values or representations that can be understood by the communication device.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear lists, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables, or hash tables. Wait.
  • Predefined in this application may be understood as defining, predefining, storing, pre-storing, pre-negotiating, pre-configuring, curing, or pre-firing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种流处理方法及其装置,该方法包括:网络设备获取多个空分复用流的传输信息,并根据该多个空分复用流的传输信息,将第一物理下行共享信道PDSCH发送至终端设备;其中,该多个空分复用流承载于第一PDSCH;该多个空分复用流的传输信息根据第一信息确定;该第一信息包括以下任一项:每个空分复用流的信噪比,每个空分复用流对应的参考信号接收功率RSRP和第一PDSCH的信道信息。通过实施本申请实施例,通过第一信息确定该多个空分复用流的传输信息,有利于提高该多个空分复用流的整体解调性能,从而有利于提高空分复用的谱效率。

Description

一种流处理方法及其装置
本申请要求于2020年6月30日提交中国专利局、申请号为202010625815.4、申请名称为“一种流处理方法及其装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种流处理方法及其装置。
背景技术
大规模天线技术(massive multiple input multiple output,massive MIMO)是第五代(5th generation,5G)移动通信技术的关键技术之一。在massive MIMO中,基站和终端的天线数较多,这为多流空分复用创造了条件。采用空分复用技术向终端发送数据,有利于提高谱效率。
但是,基站与终端之间的信道通常包含多径,同一数据流通过不同的路径到达终端所经历的衰落不同。不同数据流通常通过不同的多径到达终端,这会使得各个流在到达终端时的信号强度差异较大,这样会导致数据流的整体解调性能较低,进而造成空分复用的谱效率较低。
发明内容
本申请实施例提供一种流处理方法及其装置,通过第一信息确定该多个空分复用流的传输信息,有利于提高该多个空分复用流的整体解调性能,从而有利于提高空分复用的谱效率。
第一方面,本申请实施例提供一种流处理方法,该方法包括:网络设备获取多个空分复用流的传输信息;并根据该多个空分复用流的传输信息,将第一物理下行共享信道PDSCH发送至终端设备;该多个空分复用流承载于该第一PDSCH;该多个空分复用流的传输信息根据第一信息确定;该第一信息包括以下任一项:每个空分复用流的信噪比,每个空分复用流对应的参考信号接收功率RSRP和第一PDSCH的信道信息。
在该技术方案中,多个空分复用流的传输信息根据第一信息确定,该第一信息在一定程度上可以反映各个空分复用流在到达终端设备时的信号强度。因此,网络设备根据该多个空分复用流的传输信息,将第一PDSCH发送至终端设备,有利于减小各个空分复用流在到达终端设备时的信号强度差异,从而有利于优化该多个空分复用流的整体解调性能,使得空分复用的谱效率得到提升。
在一种实现方式中,该多个空分复用流的传输信息可以包括以下至少一项:每个空分复用流的功率系数;每个空分复用流映射的码字。
在一种实现方式中,前述第一信息包括:每个空分复用流的信噪比或每个空分复用流对应的RSRP;网络设备获取多个空分复用流的传输信息的具体实施方式可以为:接收来自前述终端设备的多个空分复用流的传输信息。
在一种实现方式中,网络设备获取多个空分复用流的传输信息的具体实施方式可以为:该网络设备根据第一信息,确定多个空分复用流的传输信息。
在一种实现方式中,前述第一信息包括:每个空分复用流的信噪比或每个空分复用流对应的RSRP;该方法还可以包括:网络设备向终端设备发送测量信息,该测量信息用于该终端设备确定第一信息;网络设备接收来自该终端设备的第一信息。
在一种实现方式中,该测量信息包括第二PDSCH或每个空分复用流对应的天线端口的参考信号;其中,第二PDSCH承载有前述多个空分复用流;该第二PDSCH的发送时间在前述第一PDSCH的发送时间之前。
在一种实现方式中,该测量信息包括每个空分复用流对应的天线端口的参考信号;每个参考信号由该参考信号对应的空分复用流在第一PDSCH中的权值加权得到,或者,每个参考信号由该终端设备反馈的预编码矩阵PMI加权得到。
在一种实现方式中,该测量信息包括第二PDSCH;该方法还包括:网络设备向终端设备发送第一指示信息,该第一指示信息用于指示该终端设备根据该第二PDSCH确定第一信息。
在一种实现方式中,多个空分复用流的传输信息包括每个空分复用流的功率系数;前述多个空分复用流至少包括第一空分复用流和第二空分复用流;其中,若该第一空分复用流的信噪比小于第二空分复用流的信噪比,则第一空分复用流的功率系数可以大于该第二空分复用流的功率系数;或者,若该第一空分复用流对应的RSRP小于第二空分复用流对应的RSRP,则该第一空分复用流的功率系数可以大于该第二空分复用流的功率系数。
在该技术方案中,信噪比(或RSRP)越小的空分复用流的功率系数越大,可以使得网络设备发送该空分复用流时的发送功率变大,进而有利于提高该空分复用流在到达终端设备时的信号强度。信噪比(或RSRP)越大的空分复用流的功率系数越小,可以使得网络设备发送该空分复用流时的发送功率变小。这样可以使得前述多个空分复用流在到达终端设备时的信号强度差异较小,从而有利于优化该多个空分复用流的整体解调性能,使得空分复用的谱效率得到提升。
在一种实现方式中,前述多个空分复用流的传输信息包括每个空分复用流映射的码字;前述第一信息包括每个空分复用流的信噪比;空分复用流映射的码字可以为第一码字或第二码字;其中,映射于该第一码字的每个空分复用流的信噪比,与第三空分复用流的信噪比之间的差值的绝对值均小于第一预设值;映射于该第二码字的每个空分复用流的信噪比,与该第三空分复用流的信噪比之间的差值的绝对值均大于或等于该第一预设值;在前述多个空分复用流中,该第三空分复用流的信噪比最大或最小。
在该技术方案中,可以使得映射于同一码字的各个空分复用流的信噪比较为相近,这样有利于减小映射于同一码字的各个空分复用流的接收信号强度差异,从而有利于优化多个空分复用流的整体解调性能,使得空分复用的谱效率得到提升。
在一种实现方式中,前述多个空分复用流的传输信息包括每个空分复用流映射的码字;第一信息包括每个空分复用流对应的RSRP;空分复用流映射的码字为第三码字或第四码字;其中,映射于该第三码字的每个空分复用流对应的RSRP,与第四空分复用流对应的RSRP之间的差值的绝对值均小于第二预设值;映射于该第四码字的每个空分复用流对应的RSRP, 与该第四空分复用流对应的RSRP之间的差值的绝对值均大于或等于该第二预设值;在该多个空分复用流中,该第四空分复用流对应的RSRP最大或最小。
在该技术方案中,可以使得映射于同一码字的各个空分复用流对应的RSRP较为相近,这样有利于减小映射于同一码字的各个空分复用流的接收信号强度差异,从而有利于优化多个空分复用流的整体解调性能,使得空分复用的谱效率得到提升。
在一种实现方式中,前述多个空分复用流的传输信息包括每个空分复用流的功率系数;第一信息包括第一PDSCH的信道信息;该方法还可以包括:前述网络设备向前述终端设备发送第二指示信息,该第二指示信息用于指示该终端设备发送上行探测参考信号SRS;接收来自该终端设备的SRS;并根据该SRS确定该第一PDSCH的信道信息;该网络设备根据第一信息,确定前述多个空分复用流的传输信息的具体实施方式可以为:针对每个空分复用流,该网络设备根据第一PDSCH的信道信息以及该空分复用流在该第一PDSCH中的权值,确定该空分复用流的功率系数。
第二方面,本申请实施例提供另一种流处理方法,该方法包括:终端设备接收来自网络设备的第一PDSCH,该第一PDSCH承载有多个空分复用流;该第一PDSCH是根据该多个空分复用流的传输信息发送的;该多个空分复用流的传输信息根据第一信息确定;该第一信息包括以下任一项:每个空分复用流的信噪比,每个空分复用流对应的参考信号接收功率RSRP和该第一PDSCH的信道信息。
在该技术方案中,多个空分复用流的传输信息根据第一信息确定,该第一信息在一定程度上可以反映各个空分复用流在到达终端设备时的信号强度。因此,网络设备根据该多个空分复用流的传输信息发送第一PDSCH,有利于减小各个空分复用流在到达终端设备时的信号强度差异,从而有利于优化该多个空分复用流的整体解调性能,使得空分复用的谱效率得到提升。
在一种实现方式中,该多个空分复用流的传输信息可以包括以下至少一项:每个空分复用流的功率系数;每个空分复用流映射的码字。
在一种实现方式中,该第一信息包括:每个空分复用流的信噪比或每个空分复用流对应的RSRP;该方法还可以包括:该终端设备根据该第一信息,确定多个空分复用流的传输信息;并将该多个空分复用流的传输信息发送至网络设备。
在一种实现方式中,前述第一信息包括:每个空分复用流的信噪比或每个空分复用流对应的RSRP;该方法还可以包括:该终端设备接收来自网络设备的测量信息;并根据该测量信息,确定第一信息;将该第一信息发送至该网络设备。
在一种实现方式中,该测量信息包括第二PDSCH或每个空分复用流对应的天线端口的参考信号;其中,第二PDSCH承载有前述多个空分复用流;该第二PDSCH的发送时间在前述第一PDSCH的发送时间之前。
在一种实现方式中,该测量信息包括每个空分复用流对应的天线端口的参考信号;每个参考信号由该参考信号对应的空分复用流在第一PDSCH中的权值加权得到,或者,每个参考信号由该终端设备反馈的预编码矩阵PMI加权得到。
在一种实现方式中,该测量信息包括第二PDSCH;该方法还包括:终端设备接收来自网络设备的第一指示信息,该第一指示信息用于指示该终端设备根据该第二PDSCH确定 第一信息。
在一种实现方式中,多个空分复用流的传输信息包括每个空分复用流的功率系数;前述多个空分复用流至少包括第一空分复用流和第二空分复用流;其中,若该第一空分复用流的信噪比小于第二空分复用流的信噪比,则第一空分复用流的功率系数可以大于该第二空分复用流的功率系数;或者,若该第一空分复用流对应的RSRP小于第二空分复用流对应的RSRP,则该第一空分复用流的功率系数可以大于该第二空分复用流的功率系数。
在该技术方案中,信噪比(或RSRP)越小的空分复用流的功率系数越大,可以使得网络设备发送该空分复用流时的发送功率变大,进而有利于提高该空分复用流在到达终端设备时的信号强度。信噪比(或RSRP)越大的空分复用流的功率系数越小,可以使得网络设备发送该空分复用流时的发送功率变小。这样可以使得前述多个空分复用流在到达终端设备时的信号强度差异较小,从而有利于优化该多个空分复用流的整体解调性能,使得空分复用的谱效率得到提升。
在一种实现方式中,前述多个空分复用流的传输信息包括每个空分复用流映射的码字;前述第一信息包括每个空分复用流的信噪比;空分复用流映射的码字可以为第一码字或第二码字;其中,映射于该第一码字的每个空分复用流的信噪比,与第三空分复用流的信噪比之间的差值的绝对值均小于第一预设值;映射于该第二码字的每个空分复用流的信噪比,与该第三空分复用流的信噪比之间的差值的绝对值均大于或等于该第一预设值;在前述多个空分复用流中,该第三空分复用流的信噪比最大或最小。
在该技术方案中,可以使得映射于同一码字的各个空分复用流的信噪比较为相近,这样有利于减小映射于同一码字的各个空分复用流的接收信号强度差异,从而有利于优化多个空分复用流的整体解调性能,使得空分复用的谱效率得到提升。
在一种实现方式中,前述多个空分复用流的传输信息包括每个空分复用流映射的码字;第一信息包括每个空分复用流对应的RSRP;空分复用流映射的码字为第三码字或第四码字;其中,映射于该第三码字的每个空分复用流对应的RSRP,与第四空分复用流对应的RSRP之间的差值的绝对值均小于第二预设值;映射于该第四码字的每个空分复用流对应的RSRP,与该第四空分复用流对应的RSRP之间的差值的绝对值均大于或等于该第二预设值;在该多个空分复用流中,该第四空分复用流对应的RSRP最大或最小。
在该技术方案中,可以使得映射于同一码字的各个空分复用流对应的RSRP较为相近,这样有利于减小映射于同一码字的各个空分复用流的接收信号强度差异,从而有利于优化多个空分复用流的整体解调性能,使得空分复用的谱效率得到提升。
在一种实现方式中,前述多个空分复用流的传输信息包括每个空分复用流的功率系数;第一信息包括第一PDSCH的信道信息;该方法还可以包括:终端设备接收来自网络设备的第二指示信息,该第二指示信息用于指示该终端设备发送上行探测参考信号SRS;该SRS用于确定第一PDSCH的信道信息;针对每个空分复用流,该空分复用流的功率系数由该第一PDSCH的信道信息以及该空分复用流在该第一PDSCH中的权值确定;该终端设备将该SRS发送至该网络设备。
第三方面,本申请实施例提供了一种通信装置,该通信装置具有实现上述第一方面所述的方法示例中网络设备的部分或全部功能,比如通信装置的功能可具备本申请中的部分 或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种实现方式中,该通信装置的结构中可包括处理单元和通信单元,所述处理单元被配置为支持通信装置执行上述方法中相应的功能。所述通信单元用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储单元,所述存储单元用于与处理单元和通信单元耦合,其保存通信装置必要的计算机程序和数据。
在一种实现方式中,所述通信装置包括:处理单元,用于获取多个空分复用流的传输信息;该多个空分复用流承载于第一物理下行共享信道PDSCH;该多个空分复用流的传输信息根据第一信息确定;该第一信息包括以下任一项:每个空分复用流的信噪比,每个空分复用流对应的参考信号接收功率RSRP和第一PDSCH的信道信息;通信单元,用于根据该多个空分复用流的传输信息,将该第一PDSCH发送至终端设备。
作为示例,处理单元可以为处理器,通信单元可以为收发器或通信接口,存储单元可以为存储器。
在一种实现方式中,所述通信装置包括:处理器,用于获取多个空分复用流的传输信息;该多个空分复用流承载于第一物理下行共享信道PDSCH;该多个空分复用流的传输信息根据第一信息确定;该第一信息包括以下任一项:每个空分复用流的信噪比,每个空分复用流对应的参考信号接收功率RSRP和第一PDSCH的信道信息;收发器,用于根据该多个空分复用流的传输信息,将该第一PDSCH发送至终端设备。
第四方面,本申请实施例提供了另一种通信装置,该通信装置具有实现上述第二方面所述的方法示例中终端设备的部分或全部功能,比如通信装置的功能可具备本申请中的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种实现方式中,该通信装置的结构中可包括通信单元和处理单元,所述处理单元被配置为支持通信装置执行上述方法中相应的功能。所述通信单元用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储单元,所述存储单元用于与处理单元和通信单元耦合,其保存通信装置必要的计算机程序和数据。
在一种实现方式中,所述通信装置包括:通信单元,用于接收来自网络设备的第一PDSCH,该第一PDSCH承载有多个空分复用流;该第一PDSCH是根据该多个空分复用流的传输信息发送的;该多个空分复用流的传输信息根据第一信息确定;该第一信息包括以下任一项:每个空分复用流的信噪比,每个空分复用流对应的参考信号接收功率RSRP和该第一PDSCH的信道信息;处理单元,用于对该第一PDSCH进行解调,得到该多个空分复用流。
作为示例,处理单元可以为处理器,通信单元可以为收发器或通信接口,存储单元可以为存储器。
在一种实现方式中,所述通信装置包括:收发器,用于接收来自网络设备的第一PDSCH,该第一PDSCH承载有多个空分复用流;该第一PDSCH是根据该多个空分复用流的传输信 息发送的;该多个空分复用流的传输信息根据第一信息确定;该第一信息包括以下任一项:每个空分复用流的信噪比,每个空分复用流对应的参考信号接收功率RSRP和该第一PDSCH的信道信息;处理器,用于对该第一PDSCH进行解调,得到该多个空分复用流。
第五方面,本申请实施例提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令被通信装置执行时使该通信装置执行上述第一方面的方法。
第六方面,本申请实施例提供了另一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令被通信装置执行时使该通信装置执行上述第二方面的方法。
第七方面,本申请实施例提供了一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第八方面,本申请实施例提供了另一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
第九方面,本申请实施例提供了一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持网络设备实现第一方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存网络设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十方面,本申请实施例提供了另一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持终端设备实现第二方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
附图说明
图1是本申请实施例提供的一种通信系统的架构示意图;
图2是本申请实施例提供的一种流处理方法的流程示意图;
图3是本申请实施例提供的另一种流处理方法的流程示意图;
图4是本申请实施例提供的又一种流处理方法的流程示意图;
图5是本申请实施例提供的又一种流处理方法的流程示意图;
图6是本申请实施例提供的一种通信装置的结构示意图;
图7是本申请实施例提供的另一种通信装置的结构示意图;
图8是本申请实施例提供的一种芯片的结构示意图。
具体实施方式
为了便于理解,首先介绍本申请涉及的术语。
1、空分复用(space division multiplexing,SDM)
空分复用技术是指通过自适应阵列天线将空间分割,在不同方向上形成不同的波束, 每个波束可提供一个无其他用户干扰的唯一信道,进而让同一频段在不同的空间内得以重复利用。本申请实施例中提及的空分复用流是指采用空分复用技术从网络设备发送至终端设备的数据流。每个空分复用流可以由网络设备中的多个天线发送,且该多个天线所发送的数据不同。
2、码字(code word)
从媒体接入控制(media access control,MAC)层发往物理层的数据是以传输块(transport block,TB)的形式组织的。一个TB经过信道编码后成为一个码字。
3、天线端口
天线端口指用于传输的逻辑端口。值得注意的是,天线端口与物理天线不存在一一对应关系。天线端口可以通过参考信号(reference signal,RS)区分:在下行链路中,下行链路和下行参考信号一一对应,如果通过多个物理天线来传输一个参考信号,那么该多个物理天线对应同一天线端口;如果两个不同的参考信号通过同一物理天线传输,那么该物理天线对应两个独立的天线端口。一个天线端口的信号可以分布到不同的物理天线上发送。
为了更好的理解本申请实施例公开的一种流处理方法,下面首先对本申请实施例适用的通信系统进行描述。
请参见图1,图1为本申请实施例提供的一种通信系统的架构示意图。该通信系统可包括但不限于一个终端设备和一个网络设备,图1所示的设备数量和形态用于举例并不构成对本申请实施例的限定,实际应用中可以包括两个或两个以上的终端设备,两个或两个以上的网络设备。图1所示的通信系统以包括一个网络设备101和一个终端设备102为例。
其中,网络设备101可以用于获取多个空分复用流的传输信息,并根据该多个空分复用流的传输信息,将第一PDSCH发送至终端设备102(可以理解为,将第一PDSCH的数据发送至终端设备102)。相应的,终端设备102可以接收来自网络设备101的第一PDSCH(可以理解为,接收来自网络设备101的第一PDSCH的数据)。该多个空分复用流均承载于第一物理下行共享信道(physical downlink shared channel,PDSCH),即该多个空分复用流通过第一PDSCH传输至同一终端设备102。需要说明的是,本申请实施例中的空分复用流可以理解为一个数据通道,空分复用流中可以传输很多数据,不同时隙的PDSCH中传输的同一空分复用流中的数据可以不同。
该多个空分复用流的传输信息可以包括传输该多个空分复用流所需要的信息。该多个空分复用流的传输信息可以根据第一信息确定。第一信息可以包括一个或多个参数,该参数在一定程度上可以反映各个空分复用流在到达终端设备102时的信号强度。该第一信息可以包括但不限于以下任一项:每个空分复用流的信噪比,每个空分复用流对应的参考信号接收功率(reference signal receiving power,RSRP)和该第一PDSCH的信道信息。
在本申请实施例中,多个空分复用流的传输信息根据第一信息确定,由于该第一信息在一定程度上可以反映各个空分复用流在到达终端设备102时的信号强度。因此,网络设备101根据该多个空分复用流的传输信息,将第一PDSCH发送至终端设备102,有利于减小各个空分复用流在到达终端设备102时的信号强度差异,从而有利于优化该多个空分复用流的整体解调性能,使得空分复用的谱效率得到提升。
需要说明的是,本申请实施例的技术方案可以应用于各种通信系统。例如:长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、5G新空口(new radio,NR)系统,或者其他未来的通信系统(例如第六代(6th generation,6G)移动通信系统)等。还需要说明的是,本申请实施例的技术方案所应用的通信系统的通信模式可以为频分双工(frequency-division duplex,FDD)、时分双工(time-division duplex,TDD)或者两者均支持。
本申请实施例中的网络设备101是网络侧的一种用于发射或接收信号的实体。例如,网络设备101可以为演进型基站(evolved NodeB,eNB)、传输点(transmission reception point,TRP)、NR系统中的下一代基站(next generation NodeB,gNB)、其他未来移动通信系统中的基站或无线保真(wireless fidelity,WiFi)系统中的接入节点等。需要说明的是,网络设备101具有多个物理天线,以支持空分复用。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。本申请实施例提供的网络设备可以是由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本申请实施例中的终端设备102是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self-driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、支持天线选择或者不支持天线选择的无线终端等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
可以理解的是,本申请实施例描述的通信系统是为了更加清楚的说明本申请实施例的技术方案,并不构成对本申请实施例提供的技术方案的限定,本领域技术人员可知,随着系统架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
下面结合附图对本申请提供的流处理方法及通信装置进行详细地介绍。
请参见图2,图2是本申请实施例提供的一种流处理方法的流程示意图。其中,步骤S201~步骤S202的执行主体为网络设备,或者为网络设备中的芯片,以下以网络设备为流处理方法的执行主体为例进行说明。如图2所示,该方法可以包括但不限于如下步骤:
步骤S201:网络设备获取多个空分复用流的传输信息;该多个空分复用流承载于第一物理下行共享信道PDSCH;该多个空分复用流的传输信息根据第一信息确定;该第一信息包括以下任一项:每个空分复用流的信噪比,每个空分复用流对应的参考信号接收功率 RSRP和该第一PDSCH的信道信息。
其中,该多个空分复用流是待发送至同一终端设备的数据流。
在本申请实施例中,网络设备可以通过如下方式获取该多个空分复用流的传输信息:网络设备从终端设备接收该多个空分复用流的传输信息,此时,该多个空分复用流的传输信息由该终端设备根据第一信息确定(执行过程可参见图3中步骤S301的具体描述);或者,网络设备根据第一信息确定该多个空分复用流的传输信息(执行过程可参见图4中步骤S404的具体描述)。
该多个空分复用流的传输信息可以包括传输该多个空分复用流所需要的信息。在一种实现方式中,该多个空分复用流的传输信息可以包括但不限于以下至少一项:每个空分复用流的功率系数,和每个空分复用流映射的码字。其中,空分复用流的功率系数可以用于确定网络设备发送该空分复用流时的发送功率。
在本申请实施例中,终端设备可以支持一个或多个码字。在一种实现方式中,不同空分复用流可以映射于同一码字,也可以映射于不同码字,本申请实施例对此不做限定。当终端设备支持一个码字时,前述多个空分复用流映射于同一码字(即该终端设备支持的码字)。当终端设备支持多个码字时,每个码字均可以映射有多个空分复用流;或者,每个码字均仅映射有一个空分复用流;或者,部分码字中的每个码字均映射有多个空分复用流,另一部分码字中的每个码字仅映射有一个空分复用流,换言之,多个空分复用流中至少存在两个空分复用流映射于同一码字。
在本申请实施例中,该多个空分复用流的传输信息根据第一信息确定。第一信息可以包括一个或多个参数,该参数在一定程度上可以反映各个空分复用流在到达终端设备时的信号强度。该第一信息可以包括但不限于以下任一项:每个空分复用流的信噪比,每个空分复用流对应的参考信号接收功率(reference signal receiving power,RSRP)和该第一PDSCH的信道信息。信噪比可以指均衡后的信号与干扰加噪声比(signal to interference plus noise ratio,SINR),或者均衡前的SINR。均衡后SINR指经过接收机之后实际接收到的空分复用流的SINR,均衡前指在接收机之前接收到的空分复用流的SINR。
其中,空分复用流的信噪比越大,可以认为该空分复用流在到达终端设备时的信号强度越强;空分复用流的信噪比越小,可以认为该空分复用流在到达终端设备时的信号强度越弱。空分复用流对应的RSRP越大,可以认为该空分复用流在到达终端设备时的信号强度越强;空分复用流对应的RSRP越小,可以认为该空分复用流在到达终端设备时的信号强度越弱。
本申请实施例中的信道信息也可以称为信道状态信息(channel state information,CSI),信道信息可以反映通信链路的信道属性。CSI可以描述信号在每条传输路径上的衰弱因子,即信道增益矩阵中每个元素的值,如信号散射(scattering)、环境衰弱(fading,multipath fading or shadowing fading)、距离衰减(power decay of distance)等信息。CSI可以使通信系统适应当前的信道条件,在多天线系统中为高可靠性、高速率的通信提供保障。在本申请实施例中,第一PDSCH的信道信息可以包括但不限于该第一PDSCH的信道矩阵。基于该第一PDSCH的信道矩阵,有利于确定各个空分复用流通过该第一PDSCH传输至终端设备时的信号强度。
在本申请实施例中,多个空分复用流的传输信息根据第一信息确定,该第一信息在一定程度上可以反映各个空分复用流在到达终端设备时的信号强度。因此,网络设备根据该多个空分复用流的传输信息,将第一PDSCH发送至终端设备,有利于减小各个空分复用流在到达终端设备时的信号强度差异,从而有利于优化该多个空分复用流的整体解调性能,使得空分复用的谱效率得到提升。
步骤S202:该网络设备根据该多个空分复用流的传输信息,将该第一PDSCH发送至终端设备。
具体的,网络设备获取多个空分复用流的传输信息之后,可以根据该多个空分复用流的传输信息,将该第一PDSCH发送至终端设备。
例如,当该多个空分复用流的传输信息包括每个空分复用流的功率系数时,网络设备可以根据各个空分复用流的功率系数确定发送该空分复用流时的发送功率。或者,针对各个空分复用流,网络设备可以采用该空分复用流的功率系数对该空分复用流的初始功率系数进行加权,得到该空分复用流的发送功率系数;然后,根据该发送功率系数以及发送第一PDSCH的总功率,确定发送该空分复用流时的发送功率。其中,各个空分复用流的初始功率系数可以由网络设备设置,例如,各个空分复用流的初始功率系数可以相同。需要说明的是,各个空分复用流的初始功率系数可以由网络设备更改,各个空分复用流的初始功率系数可以相同,也可以不同,本申请实施例对此不做限定。
在本申请实施例中,网络设备可以将空分复用流映射到码字,然后通过该码字将该空分复用流发送至终端设备。具体的,网络设备可以将空分复用流映射到天线,以通过天线发送该空分复用流。例如,当该多个空分复用流的传输信息包括每个空分复用流映射的码字时,若终端设备支持一个或多个码字,网络设备可以对各个码字进行调制,产生调制符号;组合不同码字的调制符号一起进行层映射;然后,对于层映射之后的数据进行预编码,并将预编码后得到的数据映射到天线上。在各个天线上进行资源映射,生成正交频分复用(orthogonal frequency division multiplexing,OFDM)符号并发射。需要说明的是,在层映射过程中,一个码字的调制符号可以映射到一层或多层。层映射后每层对应一个空分复用流,一个空分复用流对应一个天线端口。一层的数据可以映射到一个或多个发送天线,且不同层的数据可以映射到相同的发送天线,或者不同的发送天线,本申请实施例对此不做限定。层映射和预编码可以看作是“映射码字到发送天线”过程的两个子过程。层映射按照预设规则将码字映射到一层或多层。预编码再将各层的数据映射到相应的发送天线上发送。
相应的,终端设备在接收到来自网络设备的第一PDSCH之后,可以对该第一PDSCH进行解调,得到前述多个空分复用流。具体的,终端设备在接收到第一PDSCH之后,可以对该第一PDSCH中承载的各个空分复用流进行信道估计,然后对该第一PDSCH中的多个空分复用流进行联合解调,得到该多个空分复用流。或者,终端设备可以对该第一PDSCH中的各个码字进行信道估计,然后对各个码字分别进行解调,得到映射于各个码字的空分复用流。
需要说明的是,当一个码字映射有至少两个空分复用流,且该至少两个空分复用流中各个空分复用流的接收信号强度差异较大时,若使用较高阶的调制编码方式(modulation  and coding scheme,MCS),则信号强度弱的空分复用流的误码率较高,这样会导致整个码字的译码错误率较高;若使用较低阶的MCS,则会使得整个码字的谱效率较低。在本申请实施例中,空分复用流的接收信号强度指该空分复用流在到达终端设备时的信号强度。
在终端设备支持一个码字的情况下,通过本申请实施例提供的流处理方法可以确定多个空分复用流中各个空分复用流的功率系数。这样即使多个空分复用流映射于同一码字,也有利于减小码字内的各个空分复用流在到达终端设备时的信号强度差异。在终端设备支持多个码字的情况下,通过本申请实施例提供的流处理方法可以确定空分复用流与码字之间的映射关系,和/或,可以确定多个空分复用流中各个空分复用流的功率系数。通过这种方式,即使存在多个空分复用流映射于同一码字的情况,也有利于减小码字间和/或码字内的各个空分复用流在到达终端设备时的信号强度差异。
在一种实现方式中,确定多个空分复用流中各个空分复用流的功率系数之后,可以将该多个空分复用流映射于同一码字发送。通过这种方式,既能到达减小各个空分复用流在到达终端设备时的信号强度差异的目的,还有利于降低确定空分复用流与码字之间的映射关系的功耗。在一种实现方式中,确定空分复用流与码字之间的映射关系之后,可以为各个空分复用流分配相同的发送功率。通过这种方式,既能到达减小各个空分复用流在到达终端设备时的信号强度差异的目的,还有利于降低确定各个空分复用流的功率系数的功耗。
在本申请实施例中,多个空分复用流的传输信息根据第一信息确定,该第一信息在一定程度上可以反映各个空分复用流在到达终端设备时的信号强度。因此,网络设备根据该多个空分复用流的传输信息,将第一PDSCH发送至终端设备,有利于减小各个空分复用流在到达终端设备时的信号强度差异,从而有利于优化该多个空分复用流的整体解调性能,使得空分复用的谱效率得到提升。
请参见图3,图3是本申请实施例提供的另一种流处理方法的流程示意图,该方法详细描述了第一信息包括每个空分复用流的信噪比或每个空分复用流对应的RSRP时,终端设备如何根据第一信息确定多个空分复用流的传输信息,并将该传输信息反馈给网络设备。其中,步骤S301~步骤S302的执行主体为终端设备,或者为终端设备中的芯片,步骤S303的执行主体为网络设备,或者为网络设备中的芯片,以下以终端设备、网络设备为流处理方法的执行主体为例进行说明。该方法可以包括但不限于如下步骤:
步骤S301:终端设备根据第一信息,确定多个空分复用流的传输信息;该多个空分复用流承载于第一物理下行共享信道PDSCH;该第一信息包括:每个空分复用流的信噪比或每个空分复用流对应的RSRP;多个空分复用流的传输信息包括以下至少一项:每个空分复用流的功率系数和每个空分复用流映射的码字。
在本申请实施例中,第一信息包括前述多个空分复用流中的每个空分复用流的信噪比,或该多个空分复用流中的每个空分复用流对应的RSRP时,该多个空分复用流的传输信息可以由终端设备根据第一信息确定。需要说明的是,本申请实施例中提及的每个空分复用流指第一PDSCH中承载的多个空分复用流中的每个空分复用流。
在一种实现方式中,空分复用流的功率系数可以根据该空分复用流的信噪比或者该空分复用流对应的RSRP确定。例如,当该多个空分复用流至少包括第一空分复用流和第二 空分复用流时,若第一空分复用流的信噪比小于第二空分复用流的信噪比,则该第一空分复用流的功率系数可以大于该第二空分复用流的功率系数;或者,若第一空分复用流对应的RSRP小于第二空分复用流对应的RSRP,则该第一空分复用流的功率系数可以大于该第二空分复用流的功率系数。换言之,空分复用流的信噪比越小,该空分复用流的功率系数可以越大;该空分复用流对应的RSRP越小,该空分复用流的功率系数可以越大。可以认为空分复用流的信噪比与功率系数之间具有反比关系,空分复用流对应的RSRP与功率系数之间具有反比关系。
空分复用流的信噪比越小(或者该空分复用流对应的RSRP越小),可以认为该空分复用流在到达终端设备时的信号强度越弱。空分复用流的信噪比越大(或者该空分复用流对应的RSRP越大),可以认为该空分复用流在到达终端设备时的信号强度越强。相较于对信噪比(或RSRP)较大的空分复用流增加发送功率,对信噪比(或RSRP)较小的空分复用流增加发送功率,有利于使得整体解调性能得到更大提升。这是因为对于信噪比(或RSRP)较大的空分复用流,该空分复用流在到达终端设备时的信号强度已足够强,增大发送功率,对整体解调性能的提升不会很大。
在本申请实施例中,信噪比(或RSRP)越小的空分复用流的功率系数越大,可以使得网络设备发送该空分复用流时的发送功率变大,进而有利于提高该空分复用流在到达终端设备时的信号强度。信噪比(或RSRP)越大的空分复用流的功率系数越小,可以使得网络设备发送该空分复用流时的发送功率变小。这样可以使得前述多个空分复用流在到达终端设备时的信号强度差异较小,从而有利于优化该多个空分复用流的整体解调性能,使得空分复用的谱效率得到提升。需要说明的是,第一空分复用流和第二空分复用流可以映射于同一码字,也可以映射于不同码字,本申请实施例对此不做限定。
在一种实现方式中,终端设备可以根据如下公式确定多个空分复用流中第i流的功率系数:
Figure PCTCN2021103542-appb-000001
其中,p i表示第i流的功率系数;r是空分复用流的总数;γ i是第i流的信噪比或者第i流对应的RSRP。
在本申请实施例中,可以将前述多个空分复用流中信噪比相近的空分复用流映射至同一码字。在一种实现方式中,可以通过如下方式确定空分复用流与码字之间的映射关系:在多个空分复用流中选择一个空分复用流作为参照物,并将其余空分复用流与作为参照物的空分复用流进行比较,根据比较结果以确定空分复用流与码字之间的映射关系。例如,当第一信息包括每个空分复用流的信噪比时,若终端设备支持两个码字(如第一码字和第二码字),即空分复用流映射的码字可以为该第一码字或该第二码字。其中,映射于该第一码字的每个空分复用流的信噪比,与第三空分复用流(即参照物)的信噪比之间的差值的绝对值均小于第一预设值;映射于该第二码字的每个空分复用流的信噪比,与该第三空分复用流的信噪比之间的差值的绝对值均大于或等于该第一预设值;在前述多个空分复用流中,该第三空分复用流的信噪比最大或最小。映射于该第一码字的空分复用流和映射于 该第二码字的空分复用流组成前述多个空分复用流。需要说明的是,该第一码字可以映射有一个或多个空分复用流,第二码字也可以映射有一个或多个空分复用流。换言之,可以将前述多个空分复用流中信噪比相近的空分复用流映射至同一码字(如第一码字),并将该多个空分复用流中剩余的空分复用流映射至另一码字(如第二码字)。
同理,当终端设备支持三个码字(如码字a、码字b和码字c)时,映射于码字a的每个空分复用流的信噪比,与第三空分复用流的信噪比之间的差值的绝对值均小于预设值1;映射于码字b的每个空分复用流的信噪比,与该第三空分复用流的信噪比之间的差值的绝对值均大于或等于该预设值1,且小于预设值2;映射于码字c的每个空分复用流的信噪比,与该第三空分复用流的信噪比之间的差值的绝对值均大于或等于该预设值2。其中,预设值1小于预设值2。需要说明的是,终端设备还可以支持4个以及4个以上码字,码字与空分复用流之间的映射关系可以参照终端设备支持两个或三个码字时的相关内容确定,此处不再赘述。
通过这种方式,可以使得映射于同一码字的各个空分复用流的信噪比较为相近,这样有利于减小映射于同一码字的各个空分复用流的接收信号强度差异,从而有利于优化多个空分复用流的整体解调性能,使得空分复用的谱效率得到提升。
在本申请实施例中,可以将前述多个空分复用流中信噪比相近的空分复用流映射至同一码字。在一种实现方式中,可以通过如下方式确定空分复用流与码字之间的映射关系:在多个空分复用流中选择一个空分复用流作为参照物,并将其余空分复用流与作为参照物的空分复用流进行比较,根据比较结果以确定空分复用流与码字之间的映射关系。例如,第一信息包括每个空分复用流对应的RSRP时,若终端设备支持两个码字(如第三码字和第四码字),即空分复用流映射的码字可以为该第三码字或该第四码字。其中,映射于该第三码字的每个空分复用流对应的RSRP,与第四空分复用流(即参考物)对应的RSRP之间的差值的绝对值均小于第二预设值;映射于该第四码字的每个空分复用流对应的RSRP,与该第四空分复用流对应的RSRP之间的差值的绝对值均大于或等于该第二预设值;在前述多个空分复用流中,该第四空分复用流对应的RSRP最大或最小。映射于该第三码字的空分复用流和映射于该第四码字的空分复用流组成前述多个空分复用流。需要说明的是,该第三码字可以映射有一个或多个空分复用流,第四码字也可以映射有一个或多个空分复用流。换言之,可以将前述多个空分复用流中对应的RSRP相近的空分复用流映射至同一码字(如第三码字),并将该多个空分复用流中剩余的空分复用流映射至另一码字(如第四码字)。
同理,当终端设备支持三个码字(如码字d、码字e和码字f)时,映射于码字d的每个空分复用流对应的RSRP,与第四空分复用流对应的RSRP之间的差值的绝对值均小于预设值3;映射于码字e的每个空分复用流对应的RSRP,与该第四空分复用流对应的RSRP之间的差值的绝对值均大于或等于该预设值3,且小于预设值4;映射于码字f的每个空分复用流对应的RSRP,与该第四空分复用流对应的RSRP之间的差值的绝对值均大于或等于该预设值4。其中,预设值3小于预设值4。需要说明的是,终端设备还可以支持4个以及4个以上码字,码字与空分复用流之间的映射关系可以参照终端设备支持两个或三个码字时的相关内容确定,此处不再赘述。
通过这种方式,可以使得映射于同一码字的各个空分复用流对应的RSRP较为相近,这样有利于减小映射于同一码字的各个空分复用流的接收信号强度差异,从而有利于优化多个空分复用流的整体解调性能,使得空分复用的谱效率得到提升。
需要说明的是,上述通过选定一个空分复用流作为参照物,进而确定空分复用流与码字之间的映射关系的方式仅用于举例,并不构成对本申请实施例的限定,只要使得映射于同一码字的每个空分复用流的信噪比(或者RSRP)较为相近即可。例如,在不用选定一空分复用流作为参考物的情况下,或者选择的参考物不一定为前述第三空分复用流(或者第四空分复用流)的情况下,使得映射于同一码字的各个空分复用流彼此之间的信噪比(或者RSRP)的差值小于一个阈值。
还需要说明的是,前述第一预设值、第二预设值和预设值1至预设值5均可以由网络设备配置(例如,在系统消息或专有信令中下发),或者可以由协议约定,或者可以由终端设备默认设置,或者可以由用户设置以及更改,本申请实施例对此不做限定。
步骤S302:终端设备将该多个空分复用流的传输信息发送至网络设备。
具体的,终端设备确定多个空分复用流的传输信息之后,可以将该多个空分复用流的传输信息发送至网络设备,以便该网络设备根据该多个空分复用流的传输信息,将承载该多个空分复用流的第一PDSCH发送至终端设备。
步骤S303:该网络设备根据该多个空分复用流的传输信息,将该第一PDSCH发送至终端设备。
需要说明的是,步骤S303的执行过程可参见图2中步骤S202的具体描述,此处不再赘述。
通过实施本申请实施例,有利于使得多个空分复用流在到达终端设备时的信号强度差异较小,从而有利于优化该多个空分复用流的整体解调性能,使得空分复用的谱效率得到提升。
请参见图4,图4是本申请实施例提供的又一种流处理方法的流程示意图,该方法详细描述了第一信息包括每个空分复用流的信噪比或每个空分复用流对应的RSRP时,终端设备如何确定第一信息,并将第一信息反馈给网络设备;以及网络设备如何根据第一信息确定多个空分复用流的传输信息。其中,步骤S401、步骤S404~步骤S405的执行主体为网络设备,或者为网络设备中的芯片,步骤S402~步骤S403的执行主体为终端设备,或者为终端设备中的芯片,以下以终端设备、网络设备为流处理方法的执行主体为例进行说明。该方法可以包括但不限于如下步骤:
步骤S401:网络设备向终端设备发送测量信息,该测量信息用于该终端设备确定第一信息;该第一信息包括多个空分复用流中每个空分复用流的信噪比或每个空分复用流对应的RSRP;该多个空分复用流承载于第一物理下行共享信道PDSCH。
其中,该测量信息可以包括该多个空分复用流中每个空分复用流对应的天线端口的参考信号。在本申请实施例中,一个空分复用流可以对应一个天线端口,一个天线端口可以发送一个参考信号。本申请实施例中的参考信号可以指信道状态信息参考信号(channel state information reference signal,CSI-RS)。在一种实现方式中,每个参考信号可以由该参考信 号对应的空分复用流在该第一PDSCH中的权值加权得到。一个天线端口的信号可以分布到一个或多个物理天线上发送。物理天线在发送信号时具有一定的幅度和相位,多个物理天线在发送相同的导频序列时,各个物理天线的幅度和相位可以相同也可以不同,该多个物理天线发送的导频序列叠加可以得到该多个物理天线对应的天线端口发送的参考信号。其中,空分复用流在该第一PDSCH中的权值可以指前述各个物理天线的幅度和相位。在另一种实现方式中,每个参考信号可以由终端设备反馈的预编码矩阵(precoding matrix indicator,PMI)加权得到。例如,在网络设备无法确定空分复用流在第一PDSCH中的权值的情况下,每个参考信号可以由终端设备反馈的PMI加权得到。其中,反馈的PMI可以是终端设备从协议约定的多个PMI中选择的一个PMI,PMI中每个元素的含义为物理天线的幅度和相位。需要说明的是,空分复用流在第一PDSCH中的权值(即物理天线的幅度和相位)可以由网络设备决定的,而PMI中的元素(即物理天线的幅度和相位)可以由3GPP协议约定的。
在一种实现方式中,测量信息可以包括第二PDSCH,该第二PDSCH承载有前述多个空分复用流;该第二PDSCH的发送时间在前述第一PDSCH的发送时间之前。需要说明的是,网络设备可以在第二PDSCH上发送多个空分复用流时,各个空分复用流的发送功率可以相等,也可以不等,本申请实施例对此不做限定。还需要说明的是,第一PDSCH和第二PDSCH上传输的空分复用流的数据可以相同,也可以不同,本申请实施例对此不做限定。在一种实现方式中,网络设备可以向终端设备发送第一指示信息,该第一指示信息可以用于指示该终端设备根据第二PDSCH确定前述第一信息。即终端设备在接收到该第一指示信息之后,可以等待接收来自网络设备的第二PDSCH,并根据第二PDSCH确定前述第一信息,并将该第一信息反馈给网络设备或者根据该第一信息进一步确定前述多个空分复用流的传输信息。在一种实现方式中,该第二PDSCH可以是在特定时隙(timeslot)上发送的PDSCH,在此情况下,第一指示信息具体用于指示终端设备根据该特定时隙上的发送的第二PDSCH确定第一信息。需要说明的是,该特定时隙可以周期出现,也可以非周期出现,本申请实施例对次不做限定。
在一种实现方式中,终端设备可以支持参考信号测量模式或特定时隙的PDSCH测量模式。终端设备支持参考信号测量模式表示:该终端设备可以根据参考信号确定第一信息。终端设备支持特定时隙的PDSCH测量模式表示:该终端设备支持根据特定时隙上发送的PDSCH(即第二PDSCH)确定第一信息。在一种实现方式中,网络设备可以向终端设备发送指示信息1,该指示信息1可以用于指示终端设备开启参考信号测量模式。或者,网络设备可以向终端设备发送指示信息2,该指示信息2可以用于指示终端设备开启特定时隙的PDSCH测量模式。
需要说明的是,前述第一指示信息、指示信息1和指示信息2均可以携带于无线资源控制(radio resource control,RRC)信令或者下行控制信息(downlink control information,DCI)中,本申请实施例对此不做限定。
步骤S402:终端设备根据该测量信息,确定该第一信息。
具体的,终端设备接收到来自网络设备的测量信息之后,可以根据该测量信息,确定第一信息,该第一信息可以包括多个空分复用流中每个空分复用流的信噪比或每个空分复 用流对应的RSRP。例如,当测量信息为该多个空分复用流中每个空分复用流对应的天线端口的CSIRS(或者第二PDSCH)时,终端设备对该参考信号(或者第二PDSCH)进行测量,可以确定各个天线端口对应的空分复用流的信噪比。例如,终端设备可以通过如下公式确定多个空分复用流中第i流的SINR,其中,SINR指均衡后的SINR:
Figure PCTCN2021103542-appb-000002
其中,当测量信息为CSIRS时,H表示终端设备测量的CSIRS信道矩阵;当测量信息为第二PDSCH时,H表示终端设备测量的第二PDSCH的信道矩阵;H可以由信道估计获得。H H表示信道矩阵H的共轭转置矩阵;(H HH) -1表示矩阵(H HH)的逆矩阵;
Figure PCTCN2021103542-appb-000003
表示矩阵(H HH) -1中第i行第i列的元素;n 0表示终端设备的底噪。
又例如,终端设备可以通过如下公式确定多个空分复用流中第i流的SINR,其中,SINR指均衡后的SINR:
Figure PCTCN2021103542-appb-000004
其中,N r是终端设备中的接收天线的个数;当测量信息为CSIRS时,H t,i表示终端设备的第t个接收天线接收第i个天线端口发送的CSIRS的信道矩阵;当测量信息为第二PDSCH时,H t,i表示终端设备的第t个接收天线接收第i个天线端口发送的信号(即第二PDSCH中承载的某个流)的信道矩阵;H t,i可以由信道估计获得。矩阵H t,i中的元素为复数,|H t,i|表示对矩阵H t,i中的各个复数元素取模。例如,H t,i中的某复数元素z=a+bi,其中,a、b均为实数,a为实部,b为虚部,i(与天线端口和空分复用流的标号i不同)为虚数单位。对元素z取模的结果为
Figure PCTCN2021103542-appb-000005
n 0表示终端设备的底噪。
当测量信息为该多个空分复用流中每个空分复用流对应的天线端口的CSIRS(或者第二PDSCH)时,终端设备对该参考信号(或者第二PDSCH)进行测量,可以确定(各个天线端口对应的)空分复用流对应的RSRP。具体的,终端设备可以通过如下公式确定多个空分复用流中第i流对应的RSRP:
Figure PCTCN2021103542-appb-000006
其中,N r是终端设备中的接收天线的个数;当测量信息为CSIRS时,H t,i表示终端设备的第t个接收天线接收第i个天线端口发送的CSIRS的信道矩阵;当测量信息为第二PDSCH时,H t,i表示终端设备的第t个接收天线接收第i个天线端口发送的信号(即第二PDSCH中承载的某个流)的信道矩阵;H t,i可以由信道估计获得。矩阵H t,i中的元素为复数,|H t,i|表示对矩阵H t,i中的各个复数元素取模;n 0表示终端设备的底噪。
步骤S403:终端设备将该第一信息发送至前述网络设备。
具体的,终端设备确定第一信息之后,可以将该第一信息反馈给网络设备,以便该网络设备根据该第一信息确定前述多个空分复用流的传输信息。
步骤S404:该网络设备根据该第一信息,确定前述多个空分复用流的传输信息。
具体的,网络设备接收到来自终端设备的第一信息之后,可以根据该第一信息确定前述多个空分复用流的传输信息。需要说明的是,网络设备根据该第一信息确定多个空分复用流的传输信息的执行过程,与终端设备根据第一信息,确定多个空分复用流的传输信息的执行过程相同,可以参见图3中步骤S301的具体描述,此处不再赘述。
步骤S405:该网络设备根据该多个空分复用流的传输信息,将前述第一PDSCH发送至终端设备。
需要说明的是,步骤S303的执行过程可参见图2中步骤S202的具体描述,此处不再赘述。
在一种实现方式中,步骤S403可以由如下步骤替代执行:终端设备根据该第一信息确定每个空分复用流的功率系数,并将每个空分复用流的功率系数发送至前述网络设备。步骤S404可以由如下步骤替代执行:网络设备接收到终端设备反馈的每个空分复用流的功率系数之后,可以根据每个空分复用流的功率系数,确定空分复用流与码字之间的映射关系。若终端设备支持两个码字(如码字A和码字B),即空分复用流映射的码字可以为该码字A或该码字B,网络设备可以通过如下方式确定空分复用流与码字之间的映射关系:将空分复用流的功率系数转换到dB域,将dB域功率系数与第五空分复用流的dB域功率系数之间的差值的绝对值小于第三预设值的空分复用流映射至码字A,并将dB域功率系数与第五空分复用流的dB域功率系数之间的差值的绝对值大于或等于第三预设值的空分复用流映射至码字B。在前述多个空分复用流中,该第五空分复用流的dB域功率系数最大或最小。映射于码字A的空分复用流和映射于码字B的空分复用流组成前述多个空分复用流。需要说明的是,码字A可以映射有一个或多个空分复用流,码字B也可以映射有一个或多个空分复用流。换言之,可以将前述多个空分复用流中dB域功率系数相近的空分复用流映射至同一码字(如码字A),并将该多个空分复用流中剩余的空分复用流映射至另一码字(如码字B)。
需要说明的是,上述通过选定一个空分复用流(即第五空分复用流)作为参照物,进而确定空分复用流与码字之间的映射关系的方式仅用于举例,并不构成对本申请实施例的限定,只要使得映射于同一码字的每个空分复用流的dB域功率系数较为相近即可。例如,在不用选定一空分复用流作为参考物的情况下,或者选择的参考物不一定为前述第五空分复用流的情况下,使得映射于同一码字的各个空分复用流彼此之间的dB域功率系数的差值小于某阈值。
还需要说明的是,第三预设值可以由网络设备配置(例如,在系统消息或专有信令中下发),或者可以由协议约定,或者可以由终端设备默认设置,或者可以由用户设置以及更改,本申请实施例对此不做限定。
通过实施本申请实施例,有利于使得多个空分复用流在到达终端设备时的信号强度差异较小,从而有利于优化该多个空分复用流的整体解调性能,使得空分复用的谱效率得到提升。
请参见图5,图5是本申请实施例提供的又一种流处理方法的流程示意图,该方法详细描述了多个空分复用流的传输信息包括每个空分复用流的功率系数,且第一信息包括第 一PDSCH的信道信息时,网络设备如何确定该第一PDSCH的信道信息,以及如何根据该第一PDSCH的信道信息确定每个空分复用流的功率系数。其中,步骤S501、S503~步骤S505的执行主体为网络设备,或者为网络设备中的芯片,步骤S502的执行主体为终端设备,或者为终端设备中的芯片,以下以终端设备、网络设备为流处理方法的执行主体为例进行说明。该方法可以包括但不限于如下步骤:
步骤S501:网络设备向终端设备发送第二指示信息,该第二指示信息用于指示该终端设备发送上行探测参考信号(sounding reference signal,SRS)。
在一种实现方式中,该第二指示信息具体可以用于指示该终端设备通过独立天线发送SRS,即通过单个天线发送SRS。需要说明的是,在终端设备具有多个发送天线,且网络设备预先知道该多个发送天线的幅度和相位等信息时,该第二指示信息具体可以指示终端设备通过多个天线发送SRS。
步骤S502:终端设备将该SRS发送至网络设备。
具体的,终端设备接收到来自网络设备的第二指示信息之后,可以发送该SRS。
步骤S503:网络设备根据该SRS确定第一PDSCH的信道信息。
具体的,网络设备接收到来自终端设备的SRS之后,可以根据该SRS确定第一PDSCH的信道信息。在本申请实施例中,第一PDSCH的信道信息可以包括但不限于该第一PDSCH的信道矩阵。
在一种实现方式中,网络设备可以通过如下方式确定第一PDSCH的信道矩阵:
1、网络设备测量得到SRS的信道矩阵H srs
2、根据SRS的信道矩阵H srs确定下行信道(即第一PDSCH)的信道矩阵
Figure PCTCN2021103542-appb-000007
其中,上标T表示对矩阵H srs做转置。
步骤S504:针对多个空分复用流中的每个空分复用流,网络设备根据该第一PDSCH的信道信息以及该空分复用流在该第一PDSCH中的权值,确定该空分复用流的功率系数;该多个空分复用流承载于该第一PDSCH。
在本申请实施例中,当第一信息包括第一PDSCH的信道信息,且多个空分复用流的传输信息包括每个空分复用流的功率系数时,网络设备根据第一信息,确定多个空分复用流的传输信息的具体实施方式可以为:针对每个空分复用流,网络设备根据第一PDSCH的信道信息以及该空分复用流在第一PDSCH中的权值,确定该空分复用流的功率系数。可选的,当第一PDSCH的信道信息指第一PDSCH的信道矩阵时,网络设备可以通过如下方式确定每个空分复用流的功率系数:基于估计的H DL,确定多个空分复用流中第i流的功率系数为:p i=f(H DL,W i),其中,W i可以表示第一PDSCH中承载的第i流的权值;函数f可以为:
Figure PCTCN2021103542-appb-000008
其中,r表示第一PDSCH中承载的空分复用流的数量;矩阵H DLW i中的元素为复数,|H DLW i|表示对矩阵H DLW i中的各个复数元素取模;mean()函数表示取括号中的所有元素(即 |H DLW j| 2)的平均值。
步骤S505:该网络设备根据该多个空分复用流中各个空分复用流的功率系数,将该第一PDSCH发送至终端设备。
需要说明的是,步骤S505的执行过程可参见图2中步骤S202的具体描述,此处不再赘述。
通过实施本申请实施例,有利于使得多个空分复用流在到达终端设备时的信号强度差异较小,从而有利于优化该多个空分复用流的整体解调性能,使得空分复用的谱效率得到提升。
上述本申请提供的实施例中,分别从网络设备、终端设备的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络设备和终端设备可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
请参见图6,为本申请实施例提供的一种通信装置60的结构示意图。图6所示的通信装置60可包括处理单元601和通信单元602。通信单元602可包括发送单元和/或接收单元,发送单元用于实现发送功能,接收单元用于实现接收功能,通信单元602可以实现发送功能和/或接收功能。通信单元也可以描述为收发单元。
通信装置60可以是网络设备,也可以网络设备中的装置,还可以是能够与网络设备匹配使用的装置。或者,通信装置60可以是终端设备,也可以终端设备中的装置,还可以是能够与终端设备匹配使用的装置。
通信装置60为网络设备:处理单元601,用于获取多个空分复用流的传输信息;该多个空分复用流承载于该第一物理下行共享信道PDSCH;该多个空分复用流的传输信息根据第一信息确定;该第一信息包括以下任一项:每个空分复用流的信噪比;每个空分复用流对应的参考信号接收功率RSRP;第一PDSCH的信道信息;通信单元602,用于根据该多个空分复用流的传输信息,将第一PDSCH发送至终端设备。
在一种实现方式中,该多个空分复用流的传输信息可以包括以下至少一项:每个空分复用流的功率系数;每个空分复用流映射的码字。
在一种实现方式中,前述第一信息包括:每个空分复用流的信噪比或每个空分复用流对应的RSRP;处理单元601还可以用于调用通信单元602接收来自前述终端设备的多个空分复用流的传输信息。
在一种实现方式中,处理单元601还可以用于根据第一信息,确定多个空分复用流的传输信息。
在一种实现方式中,前述第一信息包括:每个空分复用流的信噪比或每个空分复用流对应的RSRP;通信单元602还可以用于向终端设备发送测量信息,该测量信息用于该终端设备确定第一信息;通信单元602还可以用于接收来自该终端设备的第一信息。
在一种实现方式中,该测量信息包括第二PDSCH或每个空分复用流对应的天线端口 的参考信号;其中,第二PDSCH承载有前述多个空分复用流;该第二PDSCH的发送时间在前述第一PDSCH的发送时间之前。
在一种实现方式中,该测量信息包括每个空分复用流对应的天线端口的参考信号;每个参考信号由该参考信号对应的空分复用流在第一PDSCH中的权值加权得到,或者,每个参考信号由该终端设备反馈的预编码矩阵PMI加权得到。
在一种实现方式中,该测量信息包括第二PDSCH;通信单元602还可以用于向终端设备发送第一指示信息,该第一指示信息用于指示该终端设备根据该第二PDSCH确定第一信息。
在一种实现方式中,多个空分复用流的传输信息包括每个空分复用流的功率系数;前述多个空分复用流至少包括第一空分复用流和第二空分复用流;其中,若该第一空分复用流的信噪比小于第二空分复用流的信噪比,则第一空分复用流的功率系数可以大于该第二空分复用流的功率系数;或者,若该第一空分复用流对应的RSRP小于第二空分复用流对应的RSRP,则该第一空分复用流的功率系数可以大于该第二空分复用流的功率系数。
在一种实现方式中,前述多个空分复用流的传输信息包括每个空分复用流映射的码字;前述第一信息包括每个空分复用流的信噪比;空分复用流映射的码字可以为第一码字或第二码字;其中,映射于该第一码字的每个空分复用流的信噪比,与第三空分复用流的信噪比之间的差值的绝对值均小于第一预设值;映射于该第二码字的每个空分复用流的信噪比,与该第三空分复用流的信噪比之间的差值的绝对值均大于或等于该第一预设值;在前述多个空分复用流中,该第三空分复用流的信噪比最大或最小。
在一种实现方式中,前述多个空分复用流的传输信息包括每个空分复用流映射的码字;第一信息包括每个空分复用流对应的RSRP;空分复用流映射的码字为第三码字或第四码字;其中,映射于该第三码字的每个空分复用流对应的RSRP,与第四空分复用流对应的RSRP之间的差值的绝对值均小于第二预设值;映射于该第四码字的每个空分复用流对应的RSRP,与该第四空分复用流对应的RSRP之间的差值的绝对值均大于或等于该第二预设值;在该多个空分复用流中,该第四空分复用流对应的RSRP最大或最小。
在一种实现方式中,前述多个空分复用流的传输信息包括每个空分复用流的功率系数;第一信息包括第一PDSCH的信道信息;通信单元602还可以用于向前述终端设备发送第二指示信息,该第二指示信息用于指示该终端设备发送上行探测参考信号SRS;通信单元602还可以用于接收来自该终端设备的SRS;处理单元601还可以用于根据该SRS确定该第一PDSCH的信道信息;针对每个空分复用流,根据第一PDSCH的信道信息以及该空分复用流在该第一PDSCH中的权值,确定该空分复用流的功率系数。
通信装置60为终端设备:通信单元602,用于接收来自网络设备的第一PDSCH,该第一PDSCH承载有多个空分复用流;该第一PDSCH是根据该多个空分复用流的传输信息发送的;该多个空分复用流的传输信息根据第一信息确定;该第一信息包括以下任一项:每个空分复用流的信噪比;每个空分复用流对应的参考信号接收功率RSRP;该第一PDSCH的信道信息;处理单元601,用于对该第一PDSCH进行解调,得到该多个空分复用流。
在一种实现方式中,该多个空分复用流的传输信息可以包括以下至少一项:每个空分复用流的功率系数;每个空分复用流映射的码字。
在一种实现方式中,该第一信息包括:每个空分复用流的信噪比或每个空分复用流对应的RSRP;处理单元601还可以用于根据该第一信息,确定多个空分复用流的传输信息;通信单元602还可以用于将该多个空分复用流的传输信息发送至网络设备。
在一种实现方式中,多个空分复用流的传输信息包括每个空分复用流的功率系数;前述多个空分复用流至少包括第一空分复用流和第二空分复用流;其中,若该第一空分复用流的信噪比小于第二空分复用流的信噪比,则第一空分复用流的功率系数可以大于该第二空分复用流的功率系数;或者,若该第一空分复用流对应的RSRP小于第二空分复用流对应的RSRP,则该第一空分复用流的功率系数可以大于该第二空分复用流的功率系数。
在一种实现方式中,前述多个空分复用流的传输信息包括每个空分复用流映射的码字;前述第一信息包括每个空分复用流的信噪比;空分复用流映射的码字可以为第一码字或第二码字;其中,映射于该第一码字的每个空分复用流的信噪比,与第三空分复用流的信噪比之间的差值的绝对值均小于第一预设值;映射于该第二码字的每个空分复用流的信噪比,与该第三空分复用流的信噪比之间的差值的绝对值均大于或等于该第一预设值;在前述多个空分复用流中,该第三空分复用流的信噪比最大或最小。
在一种实现方式中,前述多个空分复用流的传输信息包括每个空分复用流映射的码字;第一信息包括每个空分复用流对应的RSRP;空分复用流映射的码字为第三码字或第四码字;其中,映射于该第三码字的每个空分复用流对应的RSRP,与第四空分复用流对应的RSRP之间的差值的绝对值均小于第二预设值;映射于该第四码字的每个空分复用流对应的RSRP,与该第四空分复用流对应的RSRP之间的差值的绝对值均大于或等于该第二预设值;在该多个空分复用流中,该第四空分复用流对应的RSRP最大或最小。
在一种实现方式中,前述第一信息包括:每个空分复用流的信噪比或每个空分复用流对应的RSRP;通信单元602还可以用于接收来自网络设备的测量信息;处理单元601还可以用于根据该测量信息,确定第一信息;通信单元602还可以用于将该第一信息发送至该网络设备。
在一种实现方式中,该测量信息包括第二PDSCH或每个空分复用流对应的天线端口的参考信号;其中,第二PDSCH承载有前述多个空分复用流;该第二PDSCH的发送时间在前述第一PDSCH的发送时间之前。
在一种实现方式中,该测量信息包括每个空分复用流对应的天线端口的参考信号;每个参考信号由该参考信号对应的空分复用流在第一PDSCH中的权值加权得到,或者,每个参考信号由通信装置60反馈的预编码矩阵PMI加权得到。
在一种实现方式中,该测量信息包括第二PDSCH;通信单元602还可以用于接收来自网络设备的第一指示信息,该第一指示信息用于指示通信装置60根据该第二PDSCH确定第一信息。
在一种实现方式中,前述多个空分复用流的传输信息包括每个空分复用流的功率系数;第一信息包括第一PDSCH的信道信息;通信单元602还可以用于接收来自网络设备的第二指示信息,该第二指示信息用于指示通信装置60发送上行探测参考信号SRS;该SRS用于确定第一PDSCH的信道信息;针对每个空分复用流,该空分复用流的功率系数由该第一PDSCH的信道信息以及该空分复用流在该第一PDSCH中的权值确定;通信单元602 还可以用于将该SRS发送至该网络设备。
请参见图7,图7是本申请实施例提供的另一种通信装置70的结构示意图。通信装置70可以是网络设备,也可以是终端设备,也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置70可以包括一个或多个处理器701。处理器701可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端、终端芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置70中可以包括一个或多个存储器702,其上可以存有计算机程序703,所述计算机程序可在通信装置70上被运行,使得通信装置70执行上述方法实施例中描述的方法。可选的,所述存储器702中还可以存储有数据。通信装置70和存储器702可以单独设置,也可以集成在一起。
可选的,通信装置70还可以包括收发器704、天线705。收发器704可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器704可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
通信装置70为网络设备:处理器701用于执行图2中的步骤S201;执行图4中的步骤S404;或执行图5中的步骤S503和步骤S504。收发器704用于执行图2中的步骤S202;执行图3中的步骤S303;执行图4中的步骤S401和步骤S405;或执行图5中的步骤S501和步骤S505。
通信装置70为终端设备:处理器701用于执行图3中的步骤S301;或执行图4中的步骤S402。收发器704用于执行图3中的步骤S302;执行图4中的步骤S403;或执行图5中的步骤S502。
在一种实现方式中,处理器701中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器701可以存有计算机程序706,计算机程序706在处理器701上运行,可使得通信装置70执行上述方法实施例中描述的方法。计算机程序706可能固化在处理器701中,该种情况下,处理器701可能由硬件实现。
在一种实现方式中,通信装置70可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该 处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者终端设备,但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图7的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端、智能终端、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,可参见图8所示的芯片的结构示意图。图8所示的芯片包括处理器801和接口802。其中,处理器801的数量可以是一个或多个,接口802的数量可以是多个。
对于芯片用于实现本申请实施例中网络设备的功能的情况:
处理器801,用于获取多个空分复用流的传输信息;该多个空分复用流承载于该第一物理下行共享信道PDSCH;该多个空分复用流的传输信息根据第一信息确定;该第一信息包括以下任一项:每个空分复用流的信噪比;每个空分复用流对应的参考信号接收功率RSRP;第一PDSCH的信道信息;接口802,用于根据该多个空分复用流的传输信息,将第一PDSCH发送至终端设备。
在一种实现方式中,该多个空分复用流的传输信息可以包括以下至少一项:每个空分复用流的功率系数;每个空分复用流映射的码字。
在一种实现方式中,前述第一信息包括:每个空分复用流的信噪比或每个空分复用流对应的RSRP;处理器801还可以用于调用接口802接收来自前述终端设备的多个空分复用流的传输信息。
在一种实现方式中,处理器801还可以用于根据第一信息,确定多个空分复用流的传输信息。
在一种实现方式中,前述第一信息包括:每个空分复用流的信噪比或每个空分复用流对应的RSRP;接口802还可以用于向终端设备发送测量信息,该测量信息用于该终端设备确定第一信息;接口802还可以用于接收来自该终端设备的第一信息。
在一种实现方式中,该测量信息包括第二PDSCH或每个空分复用流对应的天线端口的参考信号;其中,第二PDSCH承载有前述多个空分复用流;该第二PDSCH的发送时间在前述第一PDSCH的发送时间之前。
在一种实现方式中,该测量信息包括每个空分复用流对应的天线端口的参考信号;每个参考信号由该参考信号对应的空分复用流在第一PDSCH中的权值加权得到,或者,每个参考信号由该终端设备反馈的预编码矩阵PMI加权得到。
在一种实现方式中,该测量信息包括第二PDSCH;接口802还可以用于向终端设备发送第一指示信息,该第一指示信息用于指示该终端设备根据该第二PDSCH确定第一信息。
在一种实现方式中,多个空分复用流的传输信息包括每个空分复用流的功率系数;前述多个空分复用流至少包括第一空分复用流和第二空分复用流;其中,若该第一空分复用流的信噪比小于第二空分复用流的信噪比,则第一空分复用流的功率系数可以大于该第二空分复用流的功率系数;或者,若该第一空分复用流对应的RSRP小于第二空分复用流对应的RSRP,则该第一空分复用流的功率系数可以大于该第二空分复用流的功率系数。
在一种实现方式中,前述多个空分复用流的传输信息包括每个空分复用流映射的码字;前述第一信息包括每个空分复用流的信噪比;空分复用流映射的码字可以为第一码字或第二码字;其中,映射于该第一码字的每个空分复用流的信噪比,与第三空分复用流的信噪比之间的差值的绝对值均小于第一预设值;映射于该第二码字的每个空分复用流的信噪比,与该第三空分复用流的信噪比之间的差值的绝对值均大于或等于该第一预设值;在前述多个空分复用流中,该第三空分复用流的信噪比最大或最小。
在一种实现方式中,前述多个空分复用流的传输信息包括每个空分复用流映射的码字;第一信息包括每个空分复用流对应的RSRP;空分复用流映射的码字为第三码字或第四码字;其中,映射于该第三码字的每个空分复用流对应的RSRP,与第四空分复用流对应的RSRP之间的差值的绝对值均小于第二预设值;映射于该第四码字的每个空分复用流对应的RSRP,与该第四空分复用流对应的RSRP之间的差值的绝对值均大于或等于该第二预设值;在该多个空分复用流中,该第四空分复用流对应的RSRP最大或最小。
在一种实现方式中,前述多个空分复用流的传输信息包括每个空分复用流的功率系数;第一信息包括第一PDSCH的信道信息;接口802还可以用于向前述终端设备发送第二指示信息,该第二指示信息用于指示该终端设备发送上行探测参考信号SRS;接口802还可以用于接收来自该终端设备的SRS;处理器801还可以用于根据该SRS确定该第一PDSCH的信道信息;针对每个空分复用流,根据第一PDSCH的信道信息以及该空分复用流在该第一PDSCH中的权值,确定该空分复用流的功率系数。
对于芯片用于实现本申请实施例中终端设备的功能的情况:
接口802,用于接收来自网络设备的第一PDSCH,该第一PDSCH承载有多个空分复用流;该第一PDSCH是根据该多个空分复用流的传输信息发送的;该多个空分复用流的传输信息根据第一信息确定;该第一信息包括以下任一项:每个空分复用流的信噪比;每个空分复用流对应的参考信号接收功率RSRP;该第一PDSCH的信道信息;处理器801,用于对该第一PDSCH进行解调,得到该多个空分复用流。
在一种实现方式中,该多个空分复用流的传输信息可以包括以下至少一项:每个空分复用流的功率系数;每个空分复用流映射的码字。
在一种实现方式中,该第一信息包括:每个空分复用流的信噪比或每个空分复用流对应的RSRP;处理器801还可以用于根据该第一信息,确定多个空分复用流的传输信息;接 口802还可以用于将该多个空分复用流的传输信息发送至网络设备。
在一种实现方式中,多个空分复用流的传输信息包括每个空分复用流的功率系数;前述多个空分复用流至少包括第一空分复用流和第二空分复用流;其中,若该第一空分复用流的信噪比小于第二空分复用流的信噪比,则第一空分复用流的功率系数可以大于该第二空分复用流的功率系数;或者,若该第一空分复用流对应的RSRP小于第二空分复用流对应的RSRP,则该第一空分复用流的功率系数可以大于该第二空分复用流的功率系数。
在一种实现方式中,前述多个空分复用流的传输信息包括每个空分复用流映射的码字;前述第一信息包括每个空分复用流的信噪比;空分复用流映射的码字可以为第一码字或第二码字;其中,映射于该第一码字的每个空分复用流的信噪比,与第三空分复用流的信噪比之间的差值的绝对值均小于第一预设值;映射于该第二码字的每个空分复用流的信噪比,与该第三空分复用流的信噪比之间的差值的绝对值均大于或等于该第一预设值;在前述多个空分复用流中,该第三空分复用流的信噪比最大或最小。
在一种实现方式中,前述多个空分复用流的传输信息包括每个空分复用流映射的码字;第一信息包括每个空分复用流对应的RSRP;空分复用流映射的码字为第三码字或第四码字;其中,映射于该第三码字的每个空分复用流对应的RSRP,与第四空分复用流对应的RSRP之间的差值的绝对值均小于第二预设值;映射于该第四码字的每个空分复用流对应的RSRP,与该第四空分复用流对应的RSRP之间的差值的绝对值均大于或等于该第二预设值;在该多个空分复用流中,该第四空分复用流对应的RSRP最大或最小。
在一种实现方式中,前述第一信息包括:每个空分复用流的信噪比或每个空分复用流对应的RSRP;接口802还可以用于接收来自网络设备的测量信息;处理器801还可以用于根据该测量信息,确定第一信息;接口802还可以用于将该第一信息发送至该网络设备。
在一种实现方式中,该测量信息包括第二PDSCH或每个空分复用流对应的天线端口的参考信号;其中,第二PDSCH承载有前述多个空分复用流;该第二PDSCH的发送时间在前述第一PDSCH的发送时间之前。
在一种实现方式中,该测量信息包括每个空分复用流对应的天线端口的参考信号;每个参考信号由该参考信号对应的空分复用流在第一PDSCH中的权值加权得到,或者,每个参考信号由终端设备反馈的预编码矩阵PMI加权得到。
在一种实现方式中,该测量信息包括第二PDSCH;接口802还可以用于接收来自网络设备的第一指示信息,该第一指示信息用于指示终端设备根据该第二PDSCH确定第一信息。
在一种实现方式中,前述多个空分复用流的传输信息包括每个空分复用流的功率系数;第一信息包括第一PDSCH的信道信息;接口802还可以用于接收来自网络设备的第二指示信息,该第二指示信息用于指示终端设备发送上行探测参考信号SRS;该SRS用于确定第一PDSCH的信道信息;针对每个空分复用流,该空分复用流的功率系数由该第一PDSCH的信道信息以及该空分复用流在该第一PDSCH中的权值确定;接口802还可以用于将该SRS发送至该网络设备。
可选的,芯片还包括存储器803,存储器803用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative  logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请还提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序包括程序指令,该程序指令被计算机执行时实现上述任一方法实施例的功能。
上述计算机可读存储介质包括但不限于快闪存储器、硬盘、固态硬盘。
本申请还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也不表示先后顺序。
本申请中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。在本申请实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (31)

  1. 一种流处理方法,其特征在于,所述方法包括:
    网络设备获取多个空分复用流的传输信息;所述多个空分复用流承载于第一物理下行共享信道PDSCH;所述多个空分复用流的传输信息根据第一信息确定;所述第一信息包括以下任一项:每个所述空分复用流的信噪比,每个所述空分复用流对应的参考信号接收功率RSRP和所述第一PDSCH的信道信息;
    所述网络设备根据所述多个空分复用流的传输信息,将所述第一PDSCH发送至终端设备。
  2. 根据权利要求1所述的方法,其特征在于,所述多个空分复用流的传输信息包括以下至少一项:
    每个所述空分复用流的功率系数;
    每个所述空分复用流映射的码字。
  3. 根据权利要求2所述的方法,其特征在于,所述第一信息包括:每个所述空分复用流的信噪比或每个所述空分复用流对应的RSRP;所述网络设备获取多个空分复用流的传输信息,包括:
    所述网络设备接收来自所述终端设备的多个空分复用流的传输信息。
  4. 根据权利要求2所述的方法,其特征在于,所述网络设备获取多个空分复用流的传输信息,包括:
    所述网络设备根据所述第一信息,确定所述多个空分复用流的传输信息。
  5. 根据权利要求4所述的方法,其特征在于,所述第一信息包括:每个所述空分复用流的信噪比或每个所述空分复用流对应的RSRP;所述方法还包括:
    所述网络设备向所述终端设备发送测量信息,所述测量信息用于所述终端设备确定所述第一信息;
    所述网络设备接收来自所述终端设备的所述第一信息。
  6. 根据权利要求5所述的方法,其特征在于,所述测量信息包括第二PDSCH或每个所述空分复用流对应的天线端口的参考信号;其中,所述第二PDSCH承载有所述多个空分复用流;所述第二PDSCH的发送时间在所述第一PDSCH的发送时间之前。
  7. 根据权利要求6所述的方法,其特征在于,所述测量信息包括每个所述空分复用流对应的天线端口的参考信号;
    每个参考信号由所述参考信号对应的空分复用流在所述第一PDSCH中的权值加权得到,或者,每个参考信号由所述终端设备反馈的预编码矩阵PMI加权得到。
  8. 根据权利要求6所述的方法,其特征在于,所述测量信息包括所述第二PDSCH;所述方法还包括:
    所述网络设备向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述终端设备根据所述第二PDSCH确定所述第一信息。
  9. 根据权利要求2~8中任一项所述的方法,其特征在于,所述多个空分复用流的传输信息包括每个所述空分复用流的功率系数;所述多个空分复用流至少包括第一空分复用流 和第二空分复用流;
    其中,若所述第一空分复用流的信噪比小于所述第二空分复用流的信噪比,则所述第一空分复用流的功率系数大于所述第二空分复用流的功率系数;或者,若所述第一空分复用流对应的RSRP小于所述第二空分复用流对应的RSRP,则所述第一空分复用流的功率系数大于所述第二空分复用流的功率系数。
  10. 根据权利要求2~8中任一项所述的方法,其特征在于,所述多个空分复用流的传输信息包括每个所述空分复用流映射的码字;所述第一信息包括每个所述空分复用流的信噪比;所述空分复用流映射的码字为第一码字或第二码字;
    其中,映射于所述第一码字的每个空分复用流的信噪比,与第三空分复用流的信噪比之间的差值的绝对值均小于第一预设值;映射于所述第二码字的每个空分复用流的信噪比,与所述第三空分复用流的信噪比之间的差值的绝对值均大于或等于所述第一预设值;在所述多个空分复用流中,所述第三空分复用流的信噪比最大或最小。
  11. 根据权利要求2~8中任一项所述的方法,其特征在于,所述多个空分复用流的传输信息包括每个所述空分复用流映射的码字;所述第一信息包括每个所述空分复用流对应的RSRP;所述空分复用流映射的码字为第三码字或第四码字;
    其中,映射于所述第三码字的每个空分复用流对应的RSRP,与第四空分复用流对应的RSRP之间的差值的绝对值均小于第二预设值;映射于所述第四码字的每个空分复用流对应的RSRP,与所述第四空分复用流对应的RSRP之间的差值的绝对值均大于或等于所述第二预设值;在所述多个空分复用流中,所述第四空分复用流对应的RSRP最大或最小。
  12. 根据权利要求4所述的方法,其特征在于,所述多个空分复用流的传输信息包括每个所述空分复用流的功率系数;所述第一信息包括所述第一PDSCH的信道信息;所述方法还包括:
    所述网络设备向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述终端设备发送上行探测参考信号SRS;
    所述网络设备接收来自所述终端设备的所述SRS;
    所述网络设备根据所述SRS确定所述第一PDSCH的信道信息;
    所述网络设备根据所述第一信息,确定所述多个空分复用流的传输信息,包括:
    针对每个所述空分复用流,所述网络设备根据所述第一PDSCH的信道信息以及所述空分复用流在所述第一PDSCH中的权值,确定所述空分复用流的功率系数。
  13. 一种流处理方法,其特征在于,所述方法包括:
    终端设备接收来自网络设备的第一PDSCH,所述第一PDSCH承载有多个空分复用流;所述第一PDSCH是根据所述多个空分复用流的传输信息发送的;所述多个空分复用流的传输信息根据第一信息确定;
    所述第一信息包括以下任一项:每个所述空分复用流的信噪比,每个所述空分复用流对应的参考信号接收功率RSRP和所述第一PDSCH的信道信息。
  14. 根据权利要求13所述的方法,其特征在于,所述多个空分复用流的传输信息包括以下至少一项:
    每个所述空分复用流的功率系数;
    每个所述空分复用流映射的码字。
  15. 根据权利要求14所述的方法,其特征在于,所述第一信息包括:每个所述空分复用流的信噪比或每个所述空分复用流对应的RSRP;所述方法还包括:
    所述终端设备根据所述第一信息,确定所述多个空分复用流的传输信息;
    所述终端设备将所述多个空分复用流的传输信息发送至所述网络设备。
  16. 根据权利要求14所述的方法,其特征在于,所述第一信息包括:每个所述空分复用流的信噪比或每个所述空分复用流对应的RSRP;所述方法还包括:
    所述终端设备接收来自网络设备的测量信息;
    所述终端设备根据所述测量信息,确定所述第一信息;
    所述终端设备将所述第一信息发送至所述网络设备。
  17. 根据权利要求16所述的方法,其特征在于,所述测量信息包括第二PDSCH或每个所述空分复用流对应的天线端口的参考信号;其中,所述第二PDSCH承载有所述多个空分复用流;所述第二PDSCH的发送时间在所述第一PDSCH的发送时间之前。
  18. 根据权利要求17所述的方法,其特征在于,所述测量信息包括每个所述空分复用流对应的天线端口的参考信号;
    每个参考信号由所述参考信号对应的空分复用流在所述第一PDSCH中的权值加权得到,或者,每个参考信号由所述终端设备反馈的预编码矩阵PMI加权得到。
  19. 根据权利要求17所述的方法,其特征在于,所述测量信息包括所述第二PDSCH;所述方法还包括:
    所述终端设备接收来自所述网络设备的第一指示信息,所述第一指示信息用于指示所述终端设备根据所述第二PDSCH确定所述第一信息。
  20. 根据权利要求14~19中任一项所述的方法,其特征在于,所述多个空分复用流的传输信息包括每个所述空分复用流的功率系数;所述多个空分复用流至少包括第一空分复用流和第二空分复用流;
    其中,若所述第一空分复用流的信噪比小于所述第二空分复用流的信噪比,则所述第一空分复用流的功率系数大于所述第二空分复用流的功率系数;或者,若所述第一空分复用流对应的RSRP小于所述第二空分复用流对应的RSRP,则所述第一空分复用流的功率系数大于所述第二空分复用流的功率系数。
  21. 根据权利要求14~19中任一项所述的方法,其特征在于,所述多个空分复用流的传输信息包括每个所述空分复用流映射的码字;所述第一信息包括每个所述空分复用流的信噪比;所述空分复用流映射的码字为第一码字或第二码字;
    其中,映射于所述第一码字的每个空分复用流的信噪比,与第三空分复用流的信噪比之间的差值的绝对值均小于第一预设值;映射于所述第二码字的每个空分复用流的信噪比,与所述第三空分复用流的信噪比之间的差值的绝对值均大于或等于所述第一预设值;在所述多个空分复用流中,所述第三空分复用流的信噪比最大或最小。
  22. 根据权利要求14~19中任一项所述的方法,其特征在于,所述多个空分复用流的传输信息包括每个所述空分复用流映射的码字;所述第一信息包括每个所述空分复用流对应的RSRP;所述空分复用流映射的码字为第三码字或第四码字;
    其中,映射于所述第三码字的每个空分复用流对应的RSRP,与第四空分复用流对应的RSRP之间的差值的绝对值均小于第二预设值;映射于所述第四码字的每个空分复用流对应的RSRP,与所述第四空分复用流对应的RSRP之间的差值的绝对值均大于或等于所述第二预设值;在所述多个空分复用流中,所述第四空分复用流对应的RSRP最大或最小。
  23. 根据权利要求14所述的方法,其特征在于,所述多个空分复用流的传输信息包括每个所述空分复用流的功率系数;所述第一信息包括所述第一PDSCH的信道信息;所述方法还包括:
    所述终端设备接收来自所述网络设备的第二指示信息,所述第二指示信息用于指示所述终端设备发送上行探测参考信号SRS;所述SRS用于确定所述第一PDSCH的信道信息;针对每个所述空分复用流,所述空分复用流的功率系数由所述第一PDSCH的信道信息以及所述空分复用流在所述第一PDSCH中的权值确定;
    所述终端设备将所述SRS发送至所述网络设备。
  24. 一种通信装置,其特征在于,包括用于执行如权利要求1~12中任一项所述的方法的单元。
  25. 一种通信装置,其特征在于,包括用于执行如权利要求13~23中任一项所述的方法的单元。
  26. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有程序指令,所述处理器执行所述存储器中存储的程序指令,以使所述装置执行如权利要求1~12中任一项所述的方法。
  27. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有程序指令,所述处理器执行所述存储器中存储的程序指令,以使所述装置执行如权利要求13~23中任一项所述的方法。
  28. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令被通信装置执行时使所述通信装置执行如权利要求1~12或13~23中任一项所述的方法。
  29. 一种计算机程序产品,其特征在于,所述计算机程序产品包括指令,当所述指令被运行时,使得如权利要求1至12任一项所述的方法被执行。
  30. 一种计算机程序产品,其特征在于,所述计算机程序产品包括指令,当所述指令被运行时,使得如权利要求13至23任一项所述的方法被执行。
  31. 一种通信系统,其特征在于,所述通信系统包括用于执行权利要求1至12任一项所述方法的网络设备和权利要求13至23任一项所述的终端设备。
PCT/CN2021/103542 2020-06-30 2021-06-30 一种流处理方法及其装置 WO2022002130A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010625815.4 2020-06-30
CN202010625815.4A CN113873649A (zh) 2020-06-30 2020-06-30 一种流处理方法及其装置

Publications (1)

Publication Number Publication Date
WO2022002130A1 true WO2022002130A1 (zh) 2022-01-06

Family

ID=78982062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103542 WO2022002130A1 (zh) 2020-06-30 2021-06-30 一种流处理方法及其装置

Country Status (2)

Country Link
CN (1) CN113873649A (zh)
WO (1) WO2022002130A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103634864A (zh) * 2013-12-23 2014-03-12 展讯通信(上海)有限公司 多模无线终端及其电路域回落方法
CN103648137A (zh) * 2013-12-23 2014-03-19 展讯通信(上海)有限公司 多模无线终端及其发起电路域语音业务的方法
CN108173622A (zh) * 2017-12-26 2018-06-15 广东欧珀移动通信有限公司 信号传输控制方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103634864A (zh) * 2013-12-23 2014-03-12 展讯通信(上海)有限公司 多模无线终端及其电路域回落方法
CN103648137A (zh) * 2013-12-23 2014-03-19 展讯通信(上海)有限公司 多模无线终端及其发起电路域语音业务的方法
CN108173622A (zh) * 2017-12-26 2018-06-15 广东欧珀移动通信有限公司 信号传输控制方法及装置

Also Published As

Publication number Publication date
CN113873649A (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
US11522597B2 (en) Beam information feedback method and apparatus, and configuration information feedback method and apparatus
JP5905484B2 (ja) 無線ネットワークにおける周期的なチャネル状態報告のための装置及びその方法
US10804977B2 (en) Electronic device and communication method
CN113824481B (zh) 上行传输方法、装置、芯片系统及存储介质
CN110915283B (zh) 用于支持波束成形的探测参考信号的系统和方法
US10652066B2 (en) Device, method, and program for identifying a preferred codebook for non-orthogonal multiplexing/non-orthogonal multiple access
WO2023236223A1 (zh) 一种传输配置指示状态的指示方法及装置
WO2017132793A1 (en) Method, system and apparatus
WO2023070586A1 (zh) 物理下行共享信道pdsch配置方法及装置
WO2013191466A1 (en) Method and apparatus for transmitting downlink signal in wireless communication system
CN109391571B (zh) 相位噪声估计方法及设备
KR20140018399A (ko) 다중 사용자 다중 입력 다중 출력 송신 방법, 사용자 장비 및 기지국
WO2023236222A1 (zh) 一种传输配置指示状态的指示方法及装置
WO2022002130A1 (zh) 一种流处理方法及其装置
WO2023050234A1 (zh) 一种探测参考信号srs资源的调整方法及其装置
WO2022198413A1 (zh) 一种上行控制信息uci的资源映射方法及其装置
WO2023216166A1 (zh) 相干带宽的测量方法和装置
WO2024016184A1 (zh) 一种上行解调参考信号端口确定方法及其装置
WO2024026796A1 (zh) 上行mimo传输的预编码矩阵确定方法及其装置
WO2023050235A1 (zh) 一种探测参考信号srs的发送方法及其装置
WO2023159575A1 (zh) 通信方法、终端设备及网络设备
WO2022099611A1 (zh) 一种通信方法及装置
WO2024031484A1 (zh) 上行传输的波束测量上报方法及装置
WO2024026797A1 (zh) 上行mimo传输的预编码矩阵确定方法及其装置
WO2024077619A1 (zh) 一种信息确定方法/装置/设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21831794

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21831794

Country of ref document: EP

Kind code of ref document: A1