WO2023082254A1 - 无人机 - Google Patents

无人机 Download PDF

Info

Publication number
WO2023082254A1
WO2023082254A1 PCT/CN2021/130655 CN2021130655W WO2023082254A1 WO 2023082254 A1 WO2023082254 A1 WO 2023082254A1 CN 2021130655 W CN2021130655 W CN 2021130655W WO 2023082254 A1 WO2023082254 A1 WO 2023082254A1
Authority
WO
WIPO (PCT)
Prior art keywords
radar
drone
area
unmanned aerial
aerial vehicle
Prior art date
Application number
PCT/CN2021/130655
Other languages
English (en)
French (fr)
Inventor
劳同炳
汪越
舒展
李日照
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2021/130655 priority Critical patent/WO2023082254A1/zh
Publication of WO2023082254A1 publication Critical patent/WO2023082254A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D1/00Dropping, ejecting, releasing, or receiving articles, liquids, or the like, in flight
    • B64D1/16Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting
    • B64D1/18Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting by spraying, e.g. insecticides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/933Radar or analogous systems specially adapted for specific applications for anti-collision purposes of aircraft or spacecraft
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present application relates to the technical field of unmanned aerial vehicles, in particular to an unmanned aerial vehicle.
  • Omni-directional radar obstacle avoidance technology is the core technology for UAVs to achieve intelligence and safety.
  • Existing drones such as plant protection drones, have a lot of load on the drone, which is easy to block the radar module, and cannot realize omnidirectional radar obstacle avoidance, or in order to achieve omnidirectional radar obstacle avoidance, relatively large There are too many radar modules, so the UAV cannot meet the lightweight requirements.
  • the radar of existing plant protection drones is mostly installed on the tripod. The radar is close to the ground, which is prone to bump damage, and the position of the radar is low. The liquid sprayed by the nozzle is easy to splash on the radar and corrode the radar.
  • the present application proposes a drone.
  • the drones proposed in this application include:
  • the fuselage includes a machine frame and a stand, and the stand is installed on the bottom of the machine frame;
  • a power assembly installed on the arm, for providing the flight power of the drone
  • a first radar mounted on one of the top of the frame and the bottom of the frame;
  • a second radar mounted on the other of the top of the frame and the bottom of the frame;
  • the first radar is used to scan the surrounding area of the drone and the first area of the drone
  • the second radar is at least used to scan the second area of the drone
  • the One of the first area and the second area is an area above the drone
  • the other of the first area and the second area is an area below the drone.
  • the UAV proposed by this application installs the first radar and the second radar on the top of the machine frame and the bottom of the machine frame, and the first radar and the second radar can realize the upper and lower areas of the UAV. And all-round scanning of the surrounding area, realize the omnidirectional obstacle avoidance function of the drone, improve the safety of the drone, and the number of radars required to realize the omnidirectional obstacle avoidance function is small, and will not greatly increase the drone's
  • the weight is beneficial to the lightweight design and simplified design of the UAV.
  • the rigidity of the machine frame is good, and the first radar and the second radar are not easy to vibrate.
  • the first radar and the second radar are installed on the machine frame, which are relatively higher than the ground, and are not prone to collision damage.
  • the liquid sprayed by the nozzle is not easy to splash on the first radar and the second radar, which can reduce the impact of the liquid on the ground.
  • the first radar and the second radar form corrosion.
  • FIG. 1 is a schematic structural diagram of a first viewing angle of an unmanned aerial vehicle proposed by an embodiment of the present application
  • Fig. 2 is a schematic structural diagram of a second viewing angle of the UAV shown in Fig. 1;
  • Fig. 3 is a schematic structural diagram of a first viewing angle of an unmanned aerial vehicle proposed in another embodiment of the present application;
  • Fig. 4 is a schematic structural diagram of a second viewing angle of the UAV shown in Fig. 3;
  • Fig. 5 is a schematic structural diagram of a drone proposed in another embodiment of the present application.
  • Fig. 6 is a schematic structural diagram of a first viewing angle of an unmanned aerial vehicle proposed in another embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of a second viewing angle of the drone shown in Fig. 6;
  • FIG. 8 is a schematic structural diagram of the first radar proposed in the embodiment of the present application.
  • FIG. 9 is an exploded schematic diagram of the first radar proposed in the embodiment of the present application.
  • FIG. 10 is a schematic diagram of a partial structure of the second radar proposed in the embodiment of the present application.
  • FIG. 11 is a schematic diagram of a partial structure of the second radar proposed in the embodiment of the present application.
  • Fig. 12 is a partial cross-sectional schematic diagram of the second radar proposed in the embodiment of the present application.
  • Fig. 13 is a schematic structural diagram of the first casing proposed in the embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of the second radar proposed in the embodiment of the present application.
  • Fig. 15 is a schematic cross-sectional view of the second radar proposed by the embodiment of the present application.
  • the embodiment of this application proposes a drone, which can be a plant protection drone, a logistics drone, a consumer drone, and an industrial drone.
  • Body 10 machine arm 20, power assembly 30, first radar 40 and second radar 50
  • machine arm 20 is mechanically coupled with fuselage 10
  • power assembly 30 is installed on machine arm 20, and power assembly 30 is used to provide the Flight power
  • the first radar 40 is installed on one of the top of the fuselage 10 and the bottom of the fuselage 10
  • the second radar 50 is installed on the other of the top of the fuselage 10 and the bottom of the fuselage 10;
  • the first radar 40 For scanning the surrounding area of the drone and the first area of the drone
  • the second radar 50 is at least used for scanning the second area of the drone, and one of the first area and the second area is the area of the drone.
  • the upper area, the other of the first area and the second area is the lower area of the drone.
  • the surrounding area of the drone, the upper area of the drone and the lower area of the drone are relative to the orientation of the drone in
  • the first radar 40 is installed on the top of the fuselage 10, the first radar 40 is used to scan the area around the drone and the area above the drone, the second radar 50 is installed at the bottom of the fuselage 10, the second radar 50 at least for scanning the area below the drone.
  • the first radar 40 is installed on the bottom of the fuselage 10, the first radar 40 is used to scan the area around the drone and the area below the drone, the second radar 50 is installed on the top of the fuselage 10, and the second radar 50 is used at least to scan the area above the drone.
  • the first radar 40 and the second radar 50 can realize the upper and lower areas of the drone and
  • the omnidirectional scanning of the surrounding area realizes the omnidirectional obstacle avoidance function of the UAV, which improves the safety of the UAV, and the number of radars required to realize the omnidirectional obstacle avoidance function is small, and the weight of the UAV will not be greatly increased , which is beneficial to the lightweight design and simplified design of the UAV.
  • the fuselage 10 includes a frame 11 and a stand 12, the stand 12 is installed on the bottom of the frame 11, wherein the first radar 40 is installed on the top of the frame 11, and the second radar 50 is installed on the top of the frame 11.
  • the machine frame 11 has good rigidity, and the first radar 40 and the second radar 50 are not easy to vibrate.
  • the first radar 40 and the second radar 50 are installed on the machine frame 11 , which are higher than the ground and are not prone to collision damage.
  • the installation positions of the first radar 40 and the second radar 50 are relatively high, when the unmanned aerial vehicle is a plant protection unmanned aerial vehicle, the medicinal liquid sprayed by the nozzle is not easy to drench on the first radar 40 and the second radar 50, which can Reduce corrosion of the chemical solution to the first radar 40 and the second radar 50 . It should also be noted that by installing the first radar 40 and the second radar 50 on the machine frame 11, the first radar 40 and the second radar 50 do not occupy the height of the drone. When the drone is a plant protection drone , Plugging and unplugging the liquid storage tank does not need to be lifted very high, and it is easy to change the dressing.
  • the machine frame 11 is a ring frame, further, the machine frame 11 is a metal ring frame.
  • the frame 11 includes a front end 11a and a rear end 11b opposite to the front end 11a, the first radar 40 is mounted on the top of the front end 11a, and the first radar 40 For scanning the area around the drone and the area above the drone, the second radar 50 is installed at the bottom of the rear end 11b, and the second radar 50 is used to scan the area below the drone and the rear area of the drone .
  • the front end 11a corresponds to the nose of the drone
  • the rear end 11b corresponds to the tail of the drone.
  • the second radar 50 is installed on the bottom of the rear end 11b may be the second radar 50 is installed on the lower surface of the rear end 11b, or the second radar 50 is embedded in the bottom of the rear end 11b, and this definition continues to be used until Below.
  • the first radar 40 and the second radar 50 By installing the first radar 40 on the front end 11a of the machine frame 11 and the second radar 50 on the rear end 11b of the machine frame 11, the first radar 40 and the second radar 50 will not interfere with the two sides of the machine frame 11.
  • the power packs 30 form mutual interference.
  • front and rear directions are two important directions for UAV obstacle avoidance.
  • the first radar 40 and the second radar 50 can directly feed back the information of the front and rear directions of the drone, and there will be no blind spots due to obstruction by other objects.
  • the first radar 40 and the second radar 50 are not limited to being installed on the machine frame 11 in the above-mentioned manner.
  • the first radar 40 is installed At the bottom of the front end 11a, the first radar 40 is used to scan the surrounding area of the drone and the area below the drone, and the second radar 50 is installed on the top of the rear end 11b, and the second radar 50 is used to scan the drone. The area above the drone and the area behind the drone.
  • the second radar 50 is installed on the top of the rear end 11b may be the second radar 50 is installed on the upper surface of the rear end 11b, or the second radar 50 is embedded in the top of the rear end 11b, this definition continues to Below.
  • the first radar 40 is installed on the top of the rear end 11b, and the first radar 40 is used to scan the area around the drone and the area above the drone.
  • the second radar 50 is installed at the bottom of the front end 11a, and the second radar 50 is used to scan the area below the drone and the area in front of the drone.
  • the first radar 40 is installed at the bottom of the rear end 11b, and the first radar 40 is used to scan the surrounding area of the drone and the area around the drone.
  • the second radar 50 is installed on the top of the front end 11a, and the second radar 50 is used to scan the upper area and the front area of the drone.
  • the above three installation methods of the first radar 40 and the second radar 50 can also prevent mutual interference with the power components 30 on both sides of the machine frame 11 and can directly feed back information on the front and rear directions of the drone. There will be blind spots due to the obstruction of other objects.
  • first radar 40 and the second radar 50 are not limited to be arranged at the front end 11a and the rear end 11b of the frame 11, for example, in some other embodiments, the first radar 40 and the second radar 50 It can also be arranged on the left and right sides of the machine frame 11 .
  • the first radar 40 includes a radar base 41 and a radar body 42, the radar base 41 is mounted on the fuselage 10, and the radar body 42 is rotatably mounted on the radar base 41, wherein,
  • the radar base 41 is made of metal material.
  • the first radar 40 further includes a heat conduction member 43, which is arranged between the radar body 42 and the radar base 41, and the heat conduction member 43 is used to transfer the heat generated by the radar body 42 to the radar base 41 during operation. To dissipate heat.
  • the heat conducting member 43 can speed up the heat conduction between the radar body 42 and the radar base 41 .
  • the radar base 41 is provided with cooling fins 411 .
  • the heat dissipation fins 411 can play a role in enlarging the heat dissipation area and speeding up fan heat.
  • the radar base 41 includes a base body 412 and heat dissipation components 413 disposed on both sides of the base body 412 , and each heat sink is provided with a heat dissipation fin 411 .
  • the second radar 50 includes a radar bracket 51, a digital board 52, a first radio frequency board 53 and a second radio frequency board 54
  • the radar bracket 51 is installed on the fuselage 10
  • the digital Board 52 is installed on radar bracket 51
  • the first radio frequency board 53 is installed on the bottom of radar bracket 51 and is electrically connected with digital board 52
  • first radio frequency board 53 is used for scanning the upper area or the lower area of unmanned aerial vehicle
  • the second radio frequency board 54 is installed on the side of the radar bracket 51 and electrically connected with the digital board 52
  • the second radio frequency board 54 is used to scan the front area or the rear area of the drone.
  • the first radio frequency board 53 and the second radio frequency board 54 are arranged vertically. With this design, the first radio frequency board 53 and the second radio frequency board 54 can realize obstacle avoidance detection in the vertical area.
  • the radar bracket 51 is made of metal material, and the first radio frequency board 53 is in thermal contact with the radar bracket 51 .
  • the heat conduction contact between the first radio frequency board 53 and the radar bracket 51 may be a direct heat conduction contact or an indirect heat conduction contact. With this design, the heat generated by the first radio frequency board 53 during operation can be quickly transferred to the radar bracket 51 and diffused out through the radar bracket 51 .
  • the bottom of the radar bracket 51 is provided with a first heat conduction block 511 , and the first radio frequency board 53 is in thermal contact with the first heat conduction block 511 .
  • the heat generated during the operation of the first radio frequency board 53 can be transferred to the radar bracket 51 through the first heat conducting block 511 and dissipated.
  • the bottom of the radar bracket 51 may not be provided with the first heat conducting block 511 , and the first radio frequency board 53 is in direct contact with the radar bracket 51 to dissipate heat.
  • the radar bracket 51 is provided with a first guide part 512
  • the first radio frequency board 53 is provided with a second guide part 531
  • the first radio frequency board 53 is guided by the first guide part 512 and the second guide part 531 It can be attached to the first heat conduction block 511 .
  • the first radio frequency board 53 should be coated with conductive glue during installation. If the first radio frequency board 53 is tilted during installation, the conductive glue will not fit well with the first heat dissipation block, resulting in a decrease in the heat dissipation effect.
  • the first guide part 512 and the second guide part 531 can be avoided.
  • the radio frequency board 53 When the radio frequency board 53 is installed, it is tilted, so that the conductive glue fits well with the first heat conduction block 511 , and the heat dissipation effect is good.
  • the first radio frequency board 53 is not coated with conductive glue, and the first radio frequency board 53 is in direct contact with the first heat dissipation block to dissipate heat, guided by the first guide part 512 and the second guide part 531 As a result, the first radio frequency board 53 can be well attached to the first heat conduction block 511 , thereby achieving a better heat dissipation effect.
  • the first guide part 512 includes two L-shaped corner plates arranged diagonally
  • the second guide part 531 includes two corners arranged diagonally
  • the first radio frequency board 53 is located between the two L-shaped corner plates. In the area enclosed by the corner boards, two corners of the first radio frequency board 53 abut against two L-shaped corner boards provided on the radar bracket 51 respectively.
  • the first guide part 512 is not limited to two L-shaped gussets, it can also be three L-shaped gussets, and the connecting line of the three L-shaped gussets is a triangle, or it can be four L-shaped gussets, four The connecting line of the L-shaped gussets may be a quadrangle, or the first guide part 512 may be a closed surrounding wall.
  • the first guide part 512 and the second guide part 531 are not limited to the above-mentioned way, for example, in some other embodiments, the first guide part 512 may be a guide column provided on the radar bracket 51,
  • the second guide portion 531 is a guide hole provided on the first radio frequency board 53 , through the cooperation of the guide post and the guide hole, the first radio frequency board 53 can be well attached to the first heat conduction block 511 during installation.
  • the positions of the guide post and the guide hole can be interchanged, that is, the guide post is set on the first radio frequency board 53 , and the guide hole is set on the radar bracket 51 .
  • the second radio frequency board 54 is in thermal contact with the radar bracket 51 .
  • the heat conduction contact between the second radio frequency board 54 and the radar bracket 51 may be a direct heat conduction contact or an indirect heat conduction contact. With this design, the heat generated by the first radio frequency board 53 during operation can be quickly transferred to the radar bracket 51 and diffused out through the radar bracket 51 .
  • the side of the radar bracket 51 is provided with a second heat conduction block 513 , and the second radio frequency board 54 is in thermal contact with the second heat conduction block 513 .
  • the heat generated during the operation of the second radio frequency board 54 can be transferred to the radar bracket 51 through the second heat conducting block 513 and dissipated.
  • the bottom of the radar bracket 51 may not be provided with the second heat conduction block 513 , and the second radio frequency board 54 is in direct contact with the radar bracket 51 to dissipate heat.
  • the radar bracket 51 is provided with a third guide part 514
  • the second radio frequency board 54 is provided with a fourth guide part 541
  • the second radio frequency board 54 is guided by the third guide part 514 and the fourth guide part 541 It can be attached to the second heat conduction block 513 .
  • the second radio frequency board 54 should be coated with conductive glue during installation. If the second radio frequency board 54 is tilted during installation, the conductive glue will not fit well with the second heat dissipation block, resulting in reduced heat dissipation effect.
  • the first guide part 514 can be avoided.
  • the second radio frequency board 54 it is inclined, so that the conductive glue fits well with the second heat conduction block 513 , and the heat dissipation effect is good.
  • the second radio frequency board 54 is not coated with conductive glue, and the second radio frequency board 54 is in direct contact with the second heat sink to dissipate heat, guided by the third guide part 514 and the fourth guide part 541 As a result, the second radio frequency board 54 can be well attached to the second heat conduction block 513, thereby achieving a better heat dissipation effect.
  • the third guide part 514 includes two L-shaped corner plates arranged diagonally
  • the fourth guide part 541 includes two corners arranged diagonally
  • the second radio frequency board 54 is located between the two L-shaped corner plates. In the area enclosed by the corner boards, two corners of the second radio frequency board 54 abut against two L-shaped corner boards provided on the radar bracket 51 respectively.
  • the third guiding part 514 is not limited to two L-shaped gussets, it can also be three L-shaped gussets, and the connecting line of the three L-shaped gussets is triangular, or it can be four L-shaped gussets, four The connecting line of the L-shaped gussets is a quadrangle, or the third guide part 514 is a closed surrounding wall.
  • the third guide part 514 and the fourth guide part 541 are not limited to the above-mentioned way, for example, in some other embodiments, the third guide part 514 may be a guide column provided on the radar bracket 51,
  • the fourth guide portion 541 is a guide hole provided on the second radio frequency board 54 , through the cooperation of the guide post and the guide hole, the second radio frequency board 54 can be well attached to the second heat conduction block 513 during installation.
  • the positions of the guide post and the guide hole can be interchanged, that is, the guide post is set on the second radio frequency board 54 , and the guide hole is set on the radar bracket 51 .
  • the side of the radar bracket 51 is provided with an electromagnetic shielding structure 515, and the electromagnetic shielding structure 515 is used for electromagnetic shielding between the second radio frequency board 54 and the first radio frequency board 53 and/or on the second radio frequency board 54 Electromagnetic shielding between different electronic devices prevents signal interference between the second radio frequency board 54 and the first radio frequency board 53 and/or between different electronic devices.
  • the electromagnetic shielding structure 515 is formed on the side of the radar bracket 51 by using a laser engraving process.
  • the electromagnetic shielding structure 515 may also be an electromagnetic shielding member installed on the side of the radar bracket 51 in a mechanical fastening manner.
  • the digital board 52 is interposed between the radar bracket 51 and the first radio frequency board 53 .
  • the layout of the second radar 50 is made compact.
  • the digital board 52 may also be interposed between the radar bracket 51 and the second radio frequency board 54 .
  • the digital board 52 may also be separately provided on the side wall of the radar bracket 51 except for the second radio frequency board 54 installed thereon.
  • the first radio frequency board 53 is used to scan the upper area of the drone or the lower area of the drone
  • the second radio frequency board 54 is used to scan the front area of the drone or the rear area of the drone
  • the front area or the rear area is the main area for obstacle avoidance
  • the range to be collected is large, the signals are many, and the data frequency is high, so the heat generated by the second radio frequency board 54 is large during operation.
  • the first radio frequency board 53 simply fixes the height and avoids obstacles, with few signals, low data frequency and low heat generation. By sandwiching the digital board 52 between the radar bracket 51 and the first radio frequency board 53, the heat can be evenly dissipated to avoid excessive local temperature.
  • the digital board 52 is in thermal contact with the radar mount 51 .
  • the heat conduction contact between the digital board 52 and the radar bracket 51 may be a direct heat conduction contact or an indirect heat conduction contact. With this design, the heat generated by the digital board 52 during operation can be quickly transferred to the radar bracket 51 and diffused out through the radar bracket 51 .
  • the drone also includes a control board (not shown), the second radar 50 also includes a connector 55 and a cable 56, and the connector 55 is electrically connected to the digital board 52.
  • One end of the cable 56 is electrically connected to the connector 55, and the other end of the cable 56 is electrically connected to the control board.
  • the first radio frequency board 53 and the second radio frequency board 54 transmit data to the digital board 52 through cables, and the digital board 52 transmits data to the control board through the connector 55 and the cable 56.
  • the connector 55 is a Type-C connector, and the Type-C connector has fast data transmission and rich function expansion.
  • other types of connectors 55 can also be used as the connector 55, depending on actual design requirements.
  • the radar mount 51 has an inner cavity 516 within which the connector 55 is located. By arranging the connector 55 in the inner cavity 516, the radar bracket 51 can better protect the connector 55, preventing external liquid from pouring onto the connector 55, causing corrosion and/or short circuit of the connector 55 .
  • the second radar 50 further includes a first sealing member 57
  • the radar bracket 51 is provided with a wire hole 517
  • the cable 56 passes through the wire hole 517
  • the first sealing member 57 is installed at the wire hole 517
  • the first The sealing member 57 is used to prevent external liquid from entering the inner cavity 516 of the radar bracket 51 from the wire hole 517 , so as to avoid a short circuit of the connector 55 .
  • an opening is provided at one end of the radar bracket 51 connected to the fuselage 10 , and the opening extends on the radar bracket 51 to communicate with the inner chamber 516 and the outside world, and the connecting portion forms a wire hole 517 .
  • the connecting portion of this design is beneficial to the installation of the cable 56. During installation, it is only necessary to directly clamp the cable 56 on the connecting portion from the open end.
  • the wire hole 517 is not limited to the above-mentioned arrangement.
  • the wire hole 517 may also be formed by directly opening a through hole on the side wall of the radar bracket 51 .
  • the second radar 50 further includes a second seal 58
  • the cable 56 includes a plug-in end 561
  • the plug-in end 561 is plugged into the connector 55
  • the second seal 58 covers the plug-in end 561 .
  • the radar bracket 51 includes a first housing 518 and a second housing 519, the first housing 518 is mounted on the fuselage 10, the second housing 519 is connected to the first The housing 518 is detachably connected, and the digital board 52 , the first radio frequency board 53 and the second radio frequency board 54 are installed in the second housing 519 .
  • the connection between the cable 56 and the connector 55 is convenient.
  • the first housing 518 and the second housing 519 are disassembled, and the cable 56 is plugged into the connector 55 .
  • This design method also facilitates the processing and manufacturing of the radar bracket 51 , and the first housing 518 and the second housing 519 can be processed separately to reduce processing difficulty.
  • first housing 518 and the second housing 519 are fastened with bolts.
  • first housing 518 and the second housing 519 are not limited to being connected by bolts, and may also be connected by clamping.
  • a surrounding wall 5181 protrudes from the end surface of the first housing 518 toward the second housing 519 , the second housing 519 is sleeved on the surrounding wall 5181 , and the second housing 519 and the surrounding wall 5181 are fastened by bolts.
  • the drone also includes a liquid storage tank 60, a water pump 70 and a nozzle 80, the liquid storage tank 60 is installed on the inside of the machine frame 11, the water pump 70 is installed on the liquid storage tank 60, and the water pump 70 is connected to the liquid storage tank 60 through a pipeline, and the spray head 80 is in communication with the water pump 70 , wherein the first radar 40 and the second radar 50 are located above the spray head 80 .
  • the first radar 40 and the second radar 50 By arranging the first radar 40 and the second radar 50 above the nozzle 80, the liquid ejected from the nozzle 80 can be prevented from dripping onto the first radar 40 and the second radar 50, causing corrosion of the first radar 40 and the second radar 50 and/or short circuit conditions.
  • the drone further includes an energy storage battery 90 installed inside the frame 11 .
  • the drone further includes a camera device 101 installed on the front end 11 a of the machine frame 11 .
  • the drone further includes a supplementary light 102 installed on the front end 11 a of the machine frame 11 .
  • the drone further includes a positioning antenna 103 installed on the machine frame 11 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Thermal Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种无人机,包括机身(10)、机臂(20)、动力组件(30)、第一雷达(40)以及第二雷达(50),机身(10)包括机框(11)和安装于机框(11)底部的脚架(12),机臂(20)与机身(10)机械耦合,动力组件(30)安装于机臂(20),第一雷达(40)安装于机身(10)顶部和机身底部中的一者,第二雷达(50)安装于机身顶部和机身底部中的另一者,第一雷达(40)用于扫描无人机的四周区域和无人机的第一区域,第二雷达(50)至少用于扫描无人机的第二区域,第一区域和第二区域中的一者为无人机的上方区域,第一区域和第二区域中的另一者为无人机的下方区域。本申请提出的无人机,可以减少第一雷达(40)和第二雷达(50)的磕碰以及药液腐蚀。

Description

无人机 技术领域
本申请涉及无人机技术领域,尤其涉及一种无人机。
背景技术
随着无人机的应用越来越广泛,提高其智能性和安全性已经成为行业的发展趋势,全向雷达避障技术是无人机能够实现智能性和安全性的核心技术。现有的无人机,例如植保无人机,无人机上负载多,容易对雷达模块形成遮挡,不能实现全向雷达避障,或者为了实现全向雷达避障,在无人机上安装了较多的雷达模块,导致无人机不能满足轻量化需求。此外,现有植保无人机的雷达多安装在脚架,雷达离地面近,容易出现磕碰损坏,且雷达的位置较低,喷头喷出的药液容易淋到雷达,腐蚀雷达。
发明内容
有鉴于此,本申请提出了一种无人机。
本申请提出的无人机,包括:
机身,包括机框和脚架,所述脚架安装于所述机框的底部;
机臂,与所述机身机械耦合;
动力组件,安装于所述机臂,用于提供所述无人机的飞行动力;
第一雷达,安装于所述机框顶部和所述机框底部中的一者;
第二雷达,安装于所述机框顶部和所述机框底部中的另一者;
其中,所述第一雷达用于扫描所述无人机的四周区域和所述无人机的第一区域,所述第二雷达至少用于扫描所述无人机的第二区域,所述第一区域和所述第二区域中的一者为所述无人机的上方区域,所述第一区域和所述第二区域中的另一者为所述无人机的下方区域。
从上述的技术方案可以看出,本申请提出的无人机,通过在机框顶部和机框底部设安装第一雷达和第二雷达,第一雷达和第二雷达可以实现无人机上下区域和四周区域的全方位扫描,实现无人机的全向避障功能,提高了无人机的安全性,而且实现全向避障功能所需的雷达数量少,不会大幅增加无人机的重量,利于无人机的轻量化设计和简化设计。其次,机框的刚度好,第一雷达和 第二雷达不容易振动。再者,第一雷达和第二雷达安装于机框,相对于地面较高,不容易发生磕碰损坏。此外,由于第一雷达和第二雷达的安装位置较高,当无人机为植保无人机时,喷头喷出的药液不容易淋到第一雷达和第二雷达,可以减少药液对第一雷达和第二雷达形成腐蚀。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一实施例提出的无人机的第一视角结构示意图;
图2是图1所示无人机的第二视角结构示意图;
图3是本申请另一实施例提出的无人机的第一视角结构示意图;
图4是图3所示无人机的第二视角结构示意图;
图5是本申请另一实施例提出的无人机的结构示意图;
图6是本申请另一实施例提出的无人机的第一视角结构示意图;
图7是图6所示无人机的第二视角结构示意图;
图8是本申请实施例提出的第一雷达的结构示意图;
图9是本申请实施例提出的第一雷达的爆炸示意图;
图10是本申请实施例提出的第二雷达的局部结构示意图;
图11是本申请实施例提出的第二雷达的局部结构示意图;
图12是本申请实施例提出的第二雷达的局部剖视示意图;
图13是本申请实施例提出的第一壳体的结构示意图;
图14是本申请实施例提出的第二雷达的结构示意图;
图15是本申请实施例提出的第二雷达的剖视示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳 动前提下所获得的所有其他实施例,都属于本申请保护的范围。
还应当理解,在此本申请说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。如在本申请说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
还应当进一步理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
如图1和图2所示,本申请的实施例提出一种无人机,可以是植保无人机、物流无人机、消费无人机以及行业无人机,提出的无人机包括机身10、机臂20、动力组件30、第一雷达40以及第二雷达50,机臂20与机身10机械耦合,动力组件30安装于机臂20,动力组件30用于提供无人机的飞行动力,第一雷达40安装于机身10顶部和机身10底部中的一者,第二雷达50安装于机身10顶部和机身10底部中的另一者;其中,第一雷达40用于扫描无人机的四周区域和无人机的第一区域,第二雷达50至少用于扫描无人机的第二区域,第一区域和第二区域中的一者为无人机的上方区域,第一区域和第二区域中的另一者为无人机的下方区域。所述无人机的四周区域、无人机的上方区域和无人机的下方区域是相对于无人机在正常使用状态下的方位而言的。
示例性地,第一雷达40安装于机身10顶部,第一雷达40用于扫描无人机的四周区域和无人机的上方区域,第二雷达50安装于机身10底部,第二雷达50至少用于扫描无人机的下方区域。或者第一雷达40安装于机身10底部,第一雷达40用于扫描无人机的四周区域和无人机的下方区域,第二雷达50安装于机身10顶部,第二雷达50至少用于扫描无人机的上方区域。
本申请实施例提出的无人机,通过在机身10顶部和机身10底部设安装第一雷达40和第二雷达50,第一雷达40和第二雷达50可以实现无人机上下区域和四周区域的全方位扫描,实现无人机的全向避障功能,提高了无人机的安全性,而且实现全向避障功能所需的雷达数量少,不会大幅增加无人机的重量,利于无人机的轻量化设计和简化设计。
在一些实施例中,机身10包括机框11和脚架12,脚架12安装于机框11的底部,其中,第一雷达40安装于机框11的顶部,第二雷达50安装于机框11的底部,或者第一雷达40安装于机框11的底部,第二雷达50安装于机框11 的顶部。通过将第一雷达40和第二雷达50安装于机框11,机框11刚度好,第一雷达40和第二雷达50不容易振动。再者,第一雷达40和第二雷达50安装于机框11,相对于地面较高,不容易发生磕碰损坏。此外,由于第一雷达40和第二雷达50的安装位置较高,当无人机为植保无人机时,喷头喷出的药液不容易淋到第一雷达40和第二雷达50,可以减少药液对第一雷达40和第二雷达50形成腐蚀。还需要说明的是,通过将第一雷达40和第二雷达50安装于机框11,第一雷达40和第二雷达50不占用无人机的高度,当无人机为植保无人机时,插拔储液箱不需要提的很高,换药轻松。
可选地,机框11为环形框,进一步地,机框11为金属环形框。
如图1和图2所示,在一些实施例中,机框11包括前端部11a和与前端部11a相对的后端部11b,第一雷达40安装于前端部11a的顶部,第一雷达40用于扫描无人机的四周区域和无人机的上方区域,第二雷达50安装于后端部11b的底部,第二雷达50用于扫描无人机的下方区域和无人机的后方区域。所述前端部11a对应无人机的机头,所述后端部11b对应无人机的机尾。
其中,第二雷达50安装于后端部11b的底部可以是第二雷达50安装于后端部11b的下表面,或者是第二雷达50内嵌于后端部11b的底部,该定义沿用至下文。
通过将第一雷达40安装于机框11的前端部11a,将第二雷达50安装于机框11的后端部11b,第一雷达40和第二雷达50不会和机框11两侧的动力组件30形成相互干扰。一般来说,前后方向是无人机避障的两个重要方向,通过将第一雷达40安装于机框11的前端部11a,将第二雷达50安装于机框11的后端部11b,第一雷达40和第二雷达50可以直接反馈无人机前后方向的信息,不会出现由于其他物件的阻挡,导致出现盲区的情况。
需要说明的是,第一雷达40和第二雷达50不局限于采用上述的方式安装于机框11,例如,在其他一些实施例中,如图3和图4所示,第一雷达40安装于前端部11a的底部,第一雷达40用于扫描无人机的四周区域和无人机的下方区域,第二雷达50安装于后端部11b的顶部,第二雷达50用于扫描无人机的上方区域和无人机的后方区域。
其中,第二雷达50安装于后端部11b的顶部可以是第二雷达50安装于后端部11b的上表面,或者是第二雷达50内嵌于后端部11b的顶部,该定义沿用至下文。
再例如,在其他一些实施例中,如图5所示,第一雷达40安装于后端部11b的顶部,第一雷达40用于扫描无人机的四周区域和无人机的上方区域,第二雷达50安装于前端部11a的底部,第二雷达50用于扫描无人机的下方区域和无人机的前方区域。
再例如,在其他一些实施例中,如图6和图7所示,第一雷达40安装于后端部11b的底部,第一雷达40用于扫描无人机的四周区域和无人机的下方区域,第二雷达50安装于前端部11a的顶部,第二雷达50用于扫描无人机的上方区域和无人机的前方区域。
同理,第一雷达40和第二雷达50上述的三种安装方式同样可以起到不会和机框11两侧的动力组件30形成相互干扰以及可以直接反馈无人机前后方向的信息,不会出现由于其他物件的阻挡,导致出现盲区的情况。
需要说明的是,第一雷达40和第二雷达50不局限于设置在机框11的前端部11a和后端部11b,例如,在其他一些实施例中,第一雷达40和第二雷达50也可以设置于机框11的左右两侧。
如图8和图9所示,在一些实施例中,第一雷达40包括雷达底座41和雷达本体42,雷达底座41安装于机身10,雷达本体42可转动安装于雷达底座41,其中,雷达底座41采用金属材料制成。通过设置雷达底座41采用金属材料制成,不仅可以对雷达本体42运行时产生的热量起到较好的散发效果,而且可以将雷达本体42运行时产生的热量快速传导到机框11进行散热。
在一些实施例中,第一雷达40还包括导热件43,导热件43设于雷达本体42和雷达底座41之间,导热件43用于将雷达本体42运行时产生的热量传递至雷达底座41进行散热。导热件43可以加快雷达本体42和雷达底座41之间的热传导。
在一些实施例中,雷达底座41设有散热翅片411。散热翅片411可以起到加大散热面积的作用,加快扇热。
在一些实施例中,雷达底座41包括底座本体412和设于底座本体412两侧的散热组件413,每个散热设有散热翅片411。
如图10至图12所示,在一些实施例中,第二雷达50包括雷达支架51、数字板52、第一射频板53和第二射频板54,雷达支架51安装于机身10,数字板52安装于雷达支架51,第一射频板53安装于雷达支架51的底部并与数字板52电连接,第一射频板53用于扫描无人机的上方区域或下方区域,第二射频板54 安装于雷达支架51的侧部并与数字板52电连接,第二射频板54用于扫描无人机的前方区域或后方区域。可选地,第一射频板53和第二射频板54垂直设置。以该设计方式,第一射频板53和第二射频板54可以实现垂直区域的避障物检测。
在一些实施例中,雷达支架51采用金属材料制成,第一射频板53与雷达支架51导热接触。第一射频板53与雷达支架51的导热接触可以是直接导热接触或者间接导热接触。以该设计方式,第一射频板53运行时产生的热量,可以快速地传递给雷达支架51并通过雷达支架51扩散出去。
在一些实施例中,雷达支架51的底部设有第一导热块511,第一射频板53与第一导热块511导热接触。以该设计方式,第一射频板53运行时产生的热量可以通过第一导热块511传递给雷达支架51扩散出去。需要说明的是,雷达支架51的底部也可以不设有第一导热块511,第一射频板53与雷达支架51直接接触散热。
在一些实施例中,雷达支架51设有第一导向部512,第一射频板53设有第二导向部531,第一射频板53通过第一导向部512和第二导向部531的导向作用能够与第一导热块511贴合。在一些实施例中,第一射频板53在安装时要涂抹导电胶,如果第一射频板53在安装时倾斜,会导致导电胶与第一散热块不能很好地贴合,导致散热效果下降,本实施例中,通过在雷达支架51设置第一导向部512,在第一射频板53设置第二导向部531,通过第一导向部512和第二导向部531的导向作用,可以避免第一射频板53安装的时候发生倾斜,使得导电胶很好地与第一导热块511贴合,散热效果好。
需要说明的是,在其他一些实施例中,第一射频板53不涂抹导电胶,第一射频板53与第一散热块直接接触散热,通过第一导向部512和第二导向部531的导向作用,可以使得第一射频板53很好地贴合于第一导热块511,从而起到较好的散热效果。
在一些实施例中,第一导向部512包括两个对角线设置的L型角板,第二导向部531包括两个对角线设置的边角,第一射频板53位于两个L型角板围合形成的区域内,第一射频板53的两个边角分别抵接设于雷达支架51的两个L型角板。当然,第一导向部512不局限于是两个L型角板,也可以是三个L型角板,三个L型角板连线呈三角形,也可以是四个L型角板,四个L型角板连线呈四边形,或者第一导向部512为闭合的围壁都是可以的。
需要说明的是,第一导向部512和第二导向部531不局限于设置为上述的方式,例如,在其他一些实施例中,第一导向部512可以是设于雷达支架51的导向柱,第二导向部531为设于第一射频板53的导向孔,通过导向柱和导向孔的配合使得第一射频板53安装时能够很好地贴合于第一导热块511。导向柱和导向孔的位置可以互换,即导向柱设于第一射频板53,导向孔设于雷达支架51。
在一些实施例中,第二射频板54与雷达支架51导热接触。第二射频板54与雷达支架51的导热接触可以是直接导热接触或者间接导热接触。以该设计方式,第一射频板53运行时产生的热量,可以快速地传递给雷达支架51并通过雷达支架51扩散出去。
在一些实施例中,雷达支架51的侧部设有第二导热块513,第二射频板54与第二导热块513导热接触。以该设计方式,第二射频板54运行时产生的热量可以通过第二导热块513传递给雷达支架51扩散出去。需要说明的是,雷达支架51的底部也可以不设有第二导热块513,第二射频板54与雷达支架51直接接触散热。
在一些实施例中,雷达支架51设有第三导向部514,第二射频板54设有第四导向部541,第二射频板54通过第三导向部514和第四导向部541的导向作用能够与第二导热块513贴合。在一些实施例中,第二射频板54在安装时要涂抹导电胶,如果第二射频板54在安装时倾斜,会导致导电胶与第二散热块不能很好地贴合,导致散热效果下降,本实施例中,通过在雷达支架51设置第三导向部514,在第二射频板54设置第四导向部541,通过第三导向部514和第四导向部541的导向作用,可以避免第二射频板54安装的时候发生倾斜,使得导电胶很好地与第二导热块513贴合,散热效果好。
需要说明的是,在其他一些实施例中,第二射频板54不涂抹导电胶,第二射频板54与第二散热块直接接触散热,通过第三导向部514和第四导向部541的导向作用,可以使得第二射频板54很好地贴合于第二导热块513,从而起到较好的散热效果。
在一些实施例中,第三导向部514包括两个对角线设置的L型角板,第四导向部541包括两个对角线设置的边角,第二射频板54位于两个L型角板围合形成的区域内,第二射频板54的两个边角分别抵接设于雷达支架51的两个L型角板。当然,第三导向部514不局限于是两个L型角板,也可以是三个L型角板,三个L型角板连线呈三角形,也可以是四个L型角板,四个L型角板连 线呈四边形,或者第三导向部514为闭合的围壁都是可以的。
需要说明的是,第三导向部514和第四导向部541不局限于设置为上述的方式,例如,在其他一些实施例中,第三导向部514可以是设于雷达支架51的导向柱,第四导向部541为设于第二射频板54的导向孔,通过导向柱和导向孔的配合使得第二射频板54安装时能够很好地贴合于第二导热块513。导向柱和导向孔的位置可以互换,即导向柱设于第二射频板54,导向孔设于雷达支架51。
在一些实施例中,雷达支架51的侧部设有电磁屏蔽结构515,电磁屏蔽结构515用于第二射频板54和第一射频板53之间的电磁屏蔽和/或第二射频板54上不同电子器件之间的电磁屏蔽,避免第二射频板54和第一射频板53之间和/或不同电子器件之间产生信号干扰。
在一些实施例中,电磁屏蔽结构515采用镭雕工艺成型于雷达支架51的侧部。当然,不局限于采用上述的方式,例如,在其他一些实施例中,电磁屏蔽结构515也可以是电磁屏蔽件采用机械紧固的方式安装于雷达支架51的侧部。
在一些实施例中,数字板52夹设于雷达支架51和第一射频板53之间。以该设计方式,使得第二雷达50的布局紧凑。当然,数字板52也可以夹设雷达支架51和第二射频板54之间。或者,数字板52也可以单独设于雷达支架51除安装有第二射频板54的其他侧壁。
在一些实施例中,第一射频板53用于扫描无人机的上方区域或无人机的下方区域,第二射频板54用于扫描无人机的前方区域或无人机的后方区域,由于前方区域或后方区域是避障的主要区域,需要采集的范围大、信号多、数据频率高,运行时第二射频板54的发热量大。而第一射频板53只是简单的定高避障,信号少、数据频率较低、发热量较小。通过将数字板52夹设于雷达支架51和第一射频板53之间,热量可以均匀散发,避免出现局部温度过高。
在一些实施例中,数字板52与雷达支架51导热接触。数字板52与雷达支架51的导热接触可以是直接导热接触或者间接导热接触。以该设计方式,数字板52运行时产生的热量,可以快速地传递给雷达支架51并通过雷达支架51扩散出去。
如图13至图15所示,在一些实施例中,无人机还包括控制板(图未示),第二雷达50还包括连接器55和线缆56,连接器55与数字板52电连接,线缆56的一端与连接器55电连接,线缆56的另一端与控制板电连接。使用时,第一射频板53和第二射频板54通过排线将数据传输到数字板52,数字板52通过 连接器55和线缆56传输给控制板。
可选地,连接器55为Type-C连接器,Type-C连接器传输数据快、功能扩展丰富。当然连接器55也可以采用其他类型的连接器55,具体根据实际设计需要而定。
在一些实施例中,雷达支架51具有内腔516,连接器55位于内腔516内。通过将连接器55设于内腔516内,雷达支架51可以对连接器55起到较好的防护效果,避免外界的液体淋到连接器55,导致连接器55出现腐蚀和/或短路的情况。
在一些实施例中,第二雷达50还包括第一密封件57,雷达支架51设有线孔517,线缆56穿设于线孔517,第一密封件57安装于线孔517处,第一密封件57用于阻止外界的液体从线孔517进入雷达支架51的内腔516,避免连接器55出现短路的情况。
在一些实施例中,雷达支架51与机身10连接的一端设有开口,开口在雷达支架51上延伸有连通内腔516和外界的连通部,连通部形成线孔517。该设计方式的连通部有利线缆56的安装,安装时只需将线缆56从开口端直接卡设于连通部即可,当然,线孔517不局限于上述的设置方式,例如,在其他一些实施例中,线孔517也可以是在雷达支架51的侧壁直接开设通孔形成。
在一些实施例中,第二雷达50还包括第二密封件58,线缆56包括插接端561,插接端561插接于连接器55,第二密封件58包覆于插接端561。以该设计方式,可以阻止液体顺着线缆56流到插接端561,避免插接端561出现腐蚀和/或短路的情况。
如图10和图13所示,在一些实施例中,雷达支架51包括第一壳体518和第二壳体519,第一壳体518安装于机身10,第二壳体519与第一壳体518可拆卸连接,数字板52、第一射频板53和第二射频板54安装于第二壳体519。以该设计方式,方便线缆56与连接器55的连接,连接时将第一壳体518和第二壳体519拆开,将线缆56插接于连接器55即可。该设计方式也方便雷达支架51的加工制作,第一壳体518和第二壳体519可以分开加工,降低加工难度。
在一些实施例中,第一壳体518和第二壳体519螺栓紧固连接。当然,第一壳体518和第二壳体519不局限于采用螺栓连接,也可以采用卡接的方式进行连接。
在一些实施例中,第一壳体518朝向第二壳体519的端面凸设围壁5181, 第二壳体519套设于围壁5181,螺栓紧固第二壳体519和围壁5181。
如图1所示,在一些实施例中,无人机还包括储液箱60、水泵70以及喷头80,储液箱60安装于机框11的内侧,水泵70安装于储液箱60,水泵70通过管道与储液箱60连接,喷头80与水泵70连通,其中,第一雷达40和第二雷达50位于喷头80的上方。通过将第一雷达40和第二雷达50设于喷头80的上方,可以避免喷头80喷出的液体淋到第一雷达40和第二雷达50,导致第一雷达40和第二雷达50出现腐蚀和/或短路的情况。
在一些实施例中,无人机还包括储能电池90,储能电池90安装于机框11的内侧。在一些实施例中,无人机还包括摄像装置101,摄像装置101安装于机框11的前端部11a。在一些实施例中,无人机还包括补光灯102,补光灯102安装于机框11的前端部11a。在一些实施例中,无人机还包括定位天线103,定位天线103安装于机框11。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (29)

  1. 一种无人机,其特征在于,包括:
    机身,包括机框和脚架,所述脚架安装于所述机框的底部;
    机臂,与所述机身机械耦合;
    动力组件,安装于所述机臂,用于提供所述无人机的飞行动力;
    第一雷达,安装于所述机框顶部和所述机框底部中的一者;
    第二雷达,安装于所述机框顶部和所述机框底部中的另一者;
    其中,所述第一雷达用于扫描所述无人机的四周区域和所述无人机的第一区域,所述第二雷达至少用于扫描所述无人机的第二区域,所述第一区域和所述第二区域中的一者为所述无人机的上方区域,所述第一区域和所述第二区域中的另一者为所述无人机的下方区域。
  2. 如权利要求1所述的无人机,其特征在于,所述机框包括前端部和与所述前端部相对的后端部;
    所述第一雷达安装于所述前端部的顶部,所述第一雷达用于扫描所述无人机的四周区域和所述无人机的上方区域;
    所述第二雷达安装于所述后端部的底部,所述第二雷达用于扫描所述无人机的下方区域和所述无人机的后方区域。
  3. 如权利要求1所述的无人机,其特征在于,所述机框包括前端部和与所述前端部相对的后端部;
    所述第一雷达安装于所述前端部的底部,所述第一雷达用于扫描所述无人机的四周区域和所述无人机的下方区域;
    所述第二雷达安装于所述后端部的顶部,所述第二雷达用于扫描所述无人机的上方区域和所述无人机的后方区域。
  4. 如权利要求1所述的无人机,其特征在于,所述机框包括前端部和与所述前端部相对的后端部;
    所述第一雷达安装于所述后端部的顶部,所述第一雷达用于扫描所述无人机的四周区域和所述无人机的上方区域;
    所述第二雷达安装于所述前端部的底部,所述第二雷达用于扫描所述无人机的下方区域和所述无人机的前方区域。
  5. 如权利要求1所述的无人机,其特征在于,所述机框包括前端部和与所述前端部相对的后端部;
    所述第一雷达安装于所述后端部的底部,所述第一雷达用于扫描所述无人机的四周区域和所述无人机的下方区域;
    所述第二雷达安装于所述前端部的顶部,所述第二雷达用于扫描所述无人机的上方区域和所述无人机的前方区域。
  6. 如权利要求1所述的无人机,其特征在于,所述第一雷达包括:
    雷达底座,安装于所述机身;
    雷达本体,可转动安装于所述雷达底座;
    其中,所述雷达底座采用金属材料制成。
  7. 如权利要求6所述的无人机,其特征在于,所述第一雷达还包括导热件,所述导热件设于所述雷达本体和所述雷达底座之间,所述导热件用于将所述雷达本体运行时产生的热量传递至所述雷达底座进行散热。
  8. 如权利要求6所述的无人机,其特征在于,所述雷达底座设有散热翅片。
  9. 如权利要求1所述的无人机,其特征在于,所述第二雷达包括:
    雷达支架,安装于所述机身;
    数字板,安装于所述雷达支架;
    第一射频板,安装于所述雷达支架的底部并与所述数字板电连接,所述第一射频板用于扫描所述无人机的上方区域或下方区域;
    第二射频板,安装于所述雷达支架的侧部并与所述数字板电连接,所述第二射频板用于扫描所述无人机的前方区域或后方区域。
  10. 如权利要求9所述的无人机,其特征在于,所述雷达支架采用金属材料制成,所述第一射频板与所述雷达支架导热接触。
  11. 如权利要求10所述的无人机,其特征在于,所述雷达支架的底部设有第一导热块,所述第一射频板与所述第一导热块导热接触。
  12. 如权利要求11所述的无人机,其特征在于,所述雷达支架设有第一导向部,所述第一射频板设有第二导向部,所述第一射频板通过所述第一导向部和所述第二导向部的导向作用能够与所述第一导热块贴合。
  13. 如权利要求9所述的无人机,其特征在于,所述第二射频板与所述雷达支架导热接触。
  14. 如权利要求13所述的无人机,其特征在于,所述雷达支架的侧部设有第二导热块,所述第二射频板与所述第二导热块导热接触。
  15. 如权利要求14所述的无人机,其特征在于,所述雷达支架设有第三导 向部,所述第二射频板设有第四导向部,所述第二射频板通过所述第三导向部和所述第四导向部的导向作用能够与所述第二导热块贴合。
  16. 如权利要求9所述的无人机,其特征在于,所述雷达支架的侧部设有电磁屏蔽结构。
  17. 如权利要求16所述的无人机,其特征在于,所述电磁屏蔽结构采用镭雕工艺成型于所述雷达支架的侧部。
  18. 如权利要求9所述的无人机,其特征在于,所述数字板夹设于所述雷达支架和所述第一射频板之间。
  19. 如权利要求18所述的无人机,其特征在于,所述数字板与所述雷达支架导热接触。
  20. 如权利要求9所述的无人机,其特征在于,所述无人机还包括控制板,所述第二雷达还包括:
    连接器,与所述数字板电连接;
    线缆,一端与所述连接器电连接、另一端与所述控制板电连接。
  21. 如权利要求20所述的无人机,其特征在于,所述雷达支架具有内腔,所述连接器位于所述内腔内。
  22. 如权利要求21所述的无人机,其特征在于,所述第二雷达还包括第一密封件,所述雷达支架设有线孔,所述线缆穿设于所述线孔,所述第一密封件安装于所述线孔处,所述第一密封件用于阻止外界的液体从所述线孔进入所述雷达支架的内腔。
  23. 如权利要求22所述的无人机,其特征在于,所述雷达支架与所述机身连接的一端设有开口,所述开口在所述雷达支架上延伸有连通所述内腔和外界的连通部,所述连通部形成所述线孔。
  24. 如权利要求21所述的无人机,其特征在于,所述第二雷达还包括第二密封件,所述线缆包括插接端,所述插接端插接于所述连接器,所述第二密封件包覆于所述插接端。
  25. 如权利要求21所述的无人机,其特征在于,所述雷达支架包括:
    第一壳体,安装于所述机身;
    第二壳体,与所述第一壳体可拆卸连接;
    所述数字板、所述第一射频板和所述第二射频板安装于所述第二壳体。
  26. 如权利要求25所述的无人机,其特征在于,所述第一壳体和所述第二 壳体螺栓紧固连接。
  27. 如权利要求26所述的无人机,其特征在于,所述第一壳体朝向所述第二壳体的端面凸设围壁,所述第二壳体套设于所述围壁,所述螺栓紧固所述第二壳体和所述围壁。
  28. 如权利要求1所述的无人机,其特征在于,所述无人机还包括:
    储液箱,安装于所述机框的内侧;
    水泵,安装于所述储液箱,所述水泵通过管道与所述储液箱连接;
    喷头,与所述水泵连通;
    其中,所述第一雷达和所述第二雷达位于所述喷头的上方。
  29. 如权利要求28所述的无人机,其特征在于,所述无人机还包括摄像装置,所述摄像装置安装于所述机框的前端部;或/及,
    所述无人机还包括补光灯,所述补光灯安装于所述机框的前端部;或/及,
    所述无人机还包括定位天线,所述定位天线安装于所述机框。
PCT/CN2021/130655 2021-11-15 2021-11-15 无人机 WO2023082254A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/130655 WO2023082254A1 (zh) 2021-11-15 2021-11-15 无人机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/130655 WO2023082254A1 (zh) 2021-11-15 2021-11-15 无人机

Publications (1)

Publication Number Publication Date
WO2023082254A1 true WO2023082254A1 (zh) 2023-05-19

Family

ID=86334947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130655 WO2023082254A1 (zh) 2021-11-15 2021-11-15 无人机

Country Status (1)

Country Link
WO (1) WO2023082254A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206684581U (zh) * 2017-04-18 2017-11-28 深圳城际快机科技有限公司 自动避障无人机
CN208675850U (zh) * 2018-03-08 2019-04-02 贵州电网有限责任公司 一种自动避障的可纵向弯曲树障清理空中机器人
CN109725315A (zh) * 2018-12-26 2019-05-07 成都优艾维智能科技有限责任公司 一种用于电力巡检无人机的避障探测装置
CN209905079U (zh) * 2019-05-24 2020-01-07 成都铂贝科技有限公司 一种无人机
CN212410857U (zh) * 2020-03-27 2021-01-26 深圳市大疆创新科技有限公司 雷达
CN112470032A (zh) * 2019-11-04 2021-03-09 深圳市大疆创新科技有限公司 起伏地面的地形预测方法、装置、雷达、无人机和作业控制方法
CN113109815A (zh) * 2021-04-13 2021-07-13 深圳市道通科技股份有限公司 一种毫米波雷达及无人机
CN113138397A (zh) * 2021-06-01 2021-07-20 中国计量大学 一种无人机避障装置及无人机
CN113148156A (zh) * 2021-04-14 2021-07-23 广州科腾信息技术有限公司 一种具有激光智能避障功能的多旋翼无人机
CN214451816U (zh) * 2020-11-24 2021-10-22 深圳市大疆创新科技有限公司 植保无人机
WO2021212870A1 (zh) * 2020-04-20 2021-10-28 深圳市大疆创新科技有限公司 无人机

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206684581U (zh) * 2017-04-18 2017-11-28 深圳城际快机科技有限公司 自动避障无人机
CN208675850U (zh) * 2018-03-08 2019-04-02 贵州电网有限责任公司 一种自动避障的可纵向弯曲树障清理空中机器人
CN109725315A (zh) * 2018-12-26 2019-05-07 成都优艾维智能科技有限责任公司 一种用于电力巡检无人机的避障探测装置
CN209905079U (zh) * 2019-05-24 2020-01-07 成都铂贝科技有限公司 一种无人机
CN112470032A (zh) * 2019-11-04 2021-03-09 深圳市大疆创新科技有限公司 起伏地面的地形预测方法、装置、雷达、无人机和作业控制方法
CN212410857U (zh) * 2020-03-27 2021-01-26 深圳市大疆创新科技有限公司 雷达
WO2021212870A1 (zh) * 2020-04-20 2021-10-28 深圳市大疆创新科技有限公司 无人机
CN214451816U (zh) * 2020-11-24 2021-10-22 深圳市大疆创新科技有限公司 植保无人机
CN113109815A (zh) * 2021-04-13 2021-07-13 深圳市道通科技股份有限公司 一种毫米波雷达及无人机
CN113148156A (zh) * 2021-04-14 2021-07-23 广州科腾信息技术有限公司 一种具有激光智能避障功能的多旋翼无人机
CN113138397A (zh) * 2021-06-01 2021-07-20 中国计量大学 一种无人机避障装置及无人机

Similar Documents

Publication Publication Date Title
KR102551121B1 (ko) 제어 유닛 및 이를 포함하는 디스플레이 디바이스
US11343924B2 (en) Unmanned aerial vehicle and avionics system thereof
CN206394889U (zh) 无人机
WO2021147865A1 (zh) 一种雷达装置和移动平台
WO2019163267A1 (ja) 車両用アンテナ装置
WO2020113387A1 (zh) 无线通信组件、遥控器及飞行器
WO2021208099A1 (zh) 电路盒及无人飞行器
WO2020135639A1 (zh) 一种无人机基站及无人机通讯系统
WO2023082254A1 (zh) 无人机
CN211603626U (zh) 一种光模块
WO2021179932A1 (zh) 一种激光种子源系统及激光雷达
EP3780922B1 (en) Electronic equipment, imaging device, and mobile body
CN216269956U (zh) 植保无人机
WO2022222781A1 (zh) 毫米波雷达及汽车行驶控制系统
WO2022184061A1 (zh) 电子装置、终端设备及雷达
CN209455013U (zh) 一种无人机避障装置及无人机
JP7397991B2 (ja) 電子制御装置
CN211893622U (zh) 一种图传装置及无人机
WO2022000378A1 (zh) 雷达装置及可移动设备
CN207550497U (zh) 一种无人机
WO2021062657A1 (zh) 雷达装置及可移动平台
CN207424771U (zh) 一种基于cpci架构的综合测控设备加固机箱
CN214852310U (zh) 机器人及电池主控箱
WO2019242014A1 (zh) Rtk定位装置及无人机
CN207346087U (zh) 一种无人机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21963700

Country of ref document: EP

Kind code of ref document: A1