WO2023079667A1 - Scroll compressor and refrigeration cycle device provided with scroll compressor - Google Patents

Scroll compressor and refrigeration cycle device provided with scroll compressor Download PDF

Info

Publication number
WO2023079667A1
WO2023079667A1 PCT/JP2021/040687 JP2021040687W WO2023079667A1 WO 2023079667 A1 WO2023079667 A1 WO 2023079667A1 JP 2021040687 W JP2021040687 W JP 2021040687W WO 2023079667 A1 WO2023079667 A1 WO 2023079667A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
shell
scroll compressor
scroll
pipe
Prior art date
Application number
PCT/JP2021/040687
Other languages
French (fr)
Japanese (ja)
Inventor
航 佐々野
浩平 達脇
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/040687 priority Critical patent/WO2023079667A1/en
Publication of WO2023079667A1 publication Critical patent/WO2023079667A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents

Definitions

  • the present disclosure relates to a scroll compressor used for refrigeration or air conditioning applications, and a refrigeration cycle device provided with this scroll compressor.
  • a scroll compressor has an orbiting scroll supported on the upper surface of a frame fixed inside a shell, and a fixed scroll is provided facing the orbiting scroll.
  • the frame extends in the axial direction of the shell and has a cylindrical peripheral wall located on the outer peripheral side of the spiral teeth of the fixed scroll.
  • a rotating shaft is attached to the orbiting scroll, and the rotating shaft is rotated by an electric motor arranged below the frame, thereby causing the orbiting scroll to perform an orbiting motion with respect to the fixed scroll, thereby separating the orbiting scroll and the fixed scroll.
  • Refrigerant is compressed in a compression chamber formed by
  • a suction pipe that draws refrigerant into the shell is connected to the shell.
  • the intake pipe is connected to the shell at a position below the frame to cool the motor with the intake refrigerant.
  • a suction port cut in a rectangular shape when viewed in the axial direction of the rotating shaft is cut in the axial direction of the rotating shaft in order to guide the refrigerant sucked into the shell below the frame to the compression chamber. is formed through the Refrigerant sucked into the shell from the suction pipe is taken into the compression chamber through the suction port and compressed in the compression chamber.
  • the scroll compressor with the above configuration can increase the compression efficiency by increasing the capacity of the compression chamber. For this reason, conventionally, there is a scroll compressor in which the peripheral wall of the frame is eliminated to increase the size of the orbiting scroll and expand the capacity of the compression chamber (see, for example, Patent Document 1).
  • the size of the oscillating base plate of the oscillating scroll must be such that it fits inside the intake port so as not to block the intake port provided on the frame during the oscillating motion. For this reason, the scroll compressor of Patent Document 1 cannot sufficiently expand the capacity of the compression chamber.
  • suction pressure loss the pressure loss
  • the opening of the suction port is increased. There is a need. In order to increase the opening of the suction port, the opening of the suction port must be expanded inward in the radial direction of the rotating shaft. Can not. In other words, in Patent Document 1, there is a problem that it is difficult to achieve both a reduction in suction pressure loss and an increase in capacity.
  • the present disclosure has been made in order to solve the above-described problems, and is a scroll compressor capable of achieving both reduction in suction pressure loss and increase in capacity, and a refrigeration system equipped with the scroll compressor.
  • An object of the present invention is to provide a cycle device.
  • a scroll compressor includes a fixed scroll having a shell, an intake pipe for sucking refrigerant into the shell, a fixed base plate provided with a first spiral projection, and a first spiral projection engaged with the first spiral projection.
  • An oscillating scroll having an oscillating base plate provided with spiral projections and forming a compression chamber for compressing the refrigerant between the oscillating scroll and the fixed scroll; an electric motor driving the oscillating scroll; a frame that is fixed and supports the orbiting scroll on the side opposite to the compression chamber with respect to the orbiting scroll, and the refrigerant sucked into the shell from the suction pipe is introduced through the suction port formed in the frame.
  • a scroll compressor in which refrigerant is drawn into a compression chamber and compressed after being taken into a refrigerant intake space on the outer peripheral side of a first spiral projection and a second spiral projection, wherein the suction pipe has a plurality of branch pipes.
  • each of the plurality of branch pipes is connected to the shell so as to communicate with the interior of the shell, and some of the plurality of branch pipes communicate with the refrigerant intake space.
  • a refrigeration cycle device includes the scroll compressor, the condenser, the decompression device, and the evaporator, and includes a refrigerant circuit in which refrigerant circulates.
  • the suction pipe has a plurality of branch pipes, and some of the plurality of branch pipes communicate with the refrigerant intake space, so that the refrigerant is drawn into the shell. A portion of the refrigerant is taken directly into the refrigerant take-in space without passing through the intake port of the frame, and then taken into the compression chamber. Therefore, in the scroll compressor, all the refrigerant sucked into the shell is sucked into the space on the opposite side of the frame from the orbiting scroll, and the suction pressure loss is reduced compared to the configuration in which the refrigerant passes through the suction port. be able to. In this way, the scroll compressor can reduce the suction pressure loss without increasing the size of the suction port. Therefore, the scroll compressor can expand the capacity of the compression chamber. In other words, the scroll compressor and the refrigeration cycle device provided with this scroll compressor can achieve both a reduction in suction pressure loss and an increase in capacity.
  • FIG. 1 is a front view showing an appearance of a scroll compressor according to Embodiment 1;
  • FIG. 1 is a schematic longitudinal sectional view showing an internal structure of a scroll compressor according to Embodiment 1;
  • FIG. 1 is a schematic perspective view showing an exploded main part of a scroll compressor according to Embodiment 1;
  • FIG. 2 is a diagram showing a refrigerant suction path of the scroll compressor according to Embodiment 1;
  • FIG. FIG. 7 is a diagram showing a refrigerant suction path of a scroll compressor according to Embodiment 2;
  • FIG. 7 is a diagram showing a refrigerant circuit of a refrigeration cycle device according to Embodiment 3;
  • Embodiment 1. 1 is a front view showing the appearance of a scroll compressor according to Embodiment 1.
  • FIG. 2 is a schematic longitudinal sectional view showing the internal structure of the scroll compressor according to Embodiment 1.
  • FIG. 3 is a schematic perspective view showing an exploded main part of the scroll compressor according to Embodiment 1.
  • the scroll compressor according to Embodiment 1 is one of the components of a refrigerant circuit used in, for example, a refrigerator, a freezer, an air conditioner, a refrigerating device, a water heater, or the like.
  • the scroll compressor 100 draws in the refrigerant circulating in the refrigerant circuit, compresses it, and discharges it in a state of high temperature and high pressure.
  • the scroll compressor 100 includes a shell 1 forming an outer shell, a frame 2, a compression mechanism section 3 having a fixed scroll 4 and an orbiting scroll 5, an electric motor 6, and a compression mechanism. and a rotary shaft 7 that connects the portion 3 and the electric motor 6 .
  • the shell 1 is a conductive member such as metal, and is formed in a cylindrical shape having a closed space. Inside the shell 1, a frame 2, a compression mechanism section 3, an electric motor 6, and a rotating shaft 7 are accommodated. Inside the shell 1 , the compression mechanism 3 is arranged above the frame 2 and the electric motor 6 is arranged below the frame 2 .
  • the scroll compressor 100 is a so-called low-pressure shell type in which a low-pressure refrigerant gas is once taken into the shell 1 and then compressed.
  • FIG. 1 and FIG. 2 show a so-called vertical type scroll compressor that is used with the rotating shaft 7 in the direction of gravity, it may be a horizontal type scroll compressor.
  • the shell 1 has a cylindrical main shell 1a, a substantially hemispherical upper shell 1b that closes the upper opening of the main shell 1a, and a substantially hemispherical lower shell 1c that closes the lower opening of the main shell 1a.
  • the upper shell 1b and the lower shell 1c are fixed to the main shell 1a by welding or the like.
  • the shell 1 is supported by a fixed base 1d fixed to the lower shell 1c.
  • the inner wall surface of the main shell 1a includes a large-diameter first inner wall surface 10a formed at the upper end, a second inner wall surface 10b formed below the first inner wall surface 10a, and a second inner wall surface 10b. and a third inner wall surface 10c formed below the second inner wall surface 10b.
  • the first inner wall surface 10a, the second inner wall surface 10b, and the third inner wall surface 10c are configured such that the inner diameters thereof decrease in this order.
  • a first step portion 11 a formed by the lower end of the first inner wall surface 10 a and the upper end of the second inner wall surface 10 b functions as a positioning portion for the fixed scroll 4 .
  • a second step portion 11 b formed by the lower end of the second inner wall surface 10 b and the upper end of the third inner wall surface 10 c functions as a positioning portion for the frame 2 .
  • a suction pipe 13 for sucking refrigerant into the shell 1 is connected to the main shell 1a, as shown in FIGS.
  • the intake pipe 13 has a plurality of branch pipes, here a main branch pipe 13a and a sub-branch pipe 13b.
  • the main branch pipe 13a and the sub-branch pipe 13b are connected to the main shell 1a so as to communicate with the inside of the shell 1 respectively.
  • the main branch pipe 13a and the sub-branch pipe 13b are connected by brazing or the like while being partially inserted into a hole formed in the side wall of the main shell 1a.
  • the main branch pipe 13a communicates with the low-pressure space 16b below the frame 2 inside the shell 1, in other words, the space on the opposite side of the frame 2 from the orbiting scroll 5.
  • the sub-branch pipe 13b communicates with a refrigerant intake space 37, which will be described later.
  • the main branch pipe 13a and the sub-branch pipe 13b are connected to the main shell 1a in the same phase, but it is not limited to this.
  • the pipe diameter of the main branch pipe 13a and the pipe diameter of the sub-branch pipe 13b may be the same or different.
  • the main branch pipe 13a is the suction pipe that mainly draws the refrigerant into the shell 1, if the pipe diameter of the main branch pipe 13a and the sub-branch pipe 13b are different, the pipe diameter of the main branch pipe 13a > It is desirable to satisfy the pipe diameter of the sub-branch pipe 13b.
  • the main shell 1a is provided with a power supply section 19 for supplying power to the scroll compressor 100 as shown in FIGS.
  • the power supply unit 19 includes a cover 19a, power supply terminals 19b, and wiring 19c.
  • the power supply terminal 19b is a metal member, one end of which is arranged so as to be surrounded by the cover 19a, and the other end of which is arranged inside the main shell 1a.
  • the wiring 19 c has one end connected to the power supply terminal 19 b and the other end connected to the electric motor 6 .
  • a discharge pipe 14 for discharging the compressed refrigerant from the shell 1 is connected to the upper shell 1b.
  • the discharge pipe 14 is partially inserted into a hole formed in the upper portion of the upper shell 1b and connected by brazing or the like.
  • an oil reservoir 18 for storing lubricating oil is provided in the inner bottom portion of the shell 1 .
  • the frame 2 as shown in FIGS. 2 and 3, is a cylindrical metal frame that tapers downward in stages, and supports the orbiting scroll 5 so that it can oscillate.
  • the outer peripheral surface of the frame 2 is fixed to the inner wall surface of the main shell 1a by, for example, shrink fitting.
  • An annular flat surface 20 is formed on the upper surface of the frame 2 as shown in FIG.
  • a ring-shaped thrust plate 25 made of a steel plate material such as valve steel is provided on the flat surface 20 .
  • the thrust plate 25 functions as a thrust sliding surface of the frame 2 and supports the thrust load of the compression mechanism section 3 .
  • the thrust plate 25 is formed to have an outer diameter slightly smaller than the inner diameter of the first inner wall surface 10a of the main shell 1a.
  • the inside of the cylinder of the frame 2 is composed of a housing portion 21 and a main bearing portion 22 that supports the rotating shaft 7 .
  • the housing portion 21 is provided on the upper side of the frame 2 .
  • the main bearing portion 22 is provided on the lower side of the frame 2 .
  • the accommodating portion 21 is formed so that the inner diameter gradually decreases downward.
  • the accommodation portion 21 has an Oldham accommodation portion 21a at a stepped portion located on the flat surface 20 side, and a bush accommodation portion 21b at a stepped portion located on the main bearing portion 22 side.
  • a pair of first Oldham grooves 21c are provided in the Oldham housing portion 21a and a portion of the flat surface 20 so as to face each other with the shaft hole interposed therebetween.
  • the first Oldham groove 21c is a key groove into which a first key portion 54b of an Oldham ring 54, which will be described later, is fitted.
  • an oil return pipe 24 is inserted into and fixed to an oil return hole 23 formed through the inside and outside of the frame 2. As shown in FIG.
  • the oil return hole 23 communicates with the bush accommodating portion 21b.
  • the oil return pipe 24 is provided to return the lubricating oil accumulated in the housing portion 21 to the oil reservoir 18 provided in the lower shell 1c.
  • the number of the oil return hole 23 and the oil return pipe 24 is not limited to one, and a plurality of them may be provided.
  • the outer peripheral portion of the frame 2 is provided with a suction port 26, which is a communication passage for communicating the low-pressure space 16b and a refrigerant intake space 37, which will be described later. It is provided so as to pass through the rotating shaft 7 in the axial direction.
  • the suction port 26 is formed in an elongated shape along the circumferential direction of the inner wall surface of the main shell 1a. Refrigerant sucked into the shell 1 from the main branch pipe 13a passes through the suction port 26, is taken into the refrigerant take-in space 37, and is taken into the later-described compression chamber 30. As shown in FIG. Refrigerant sucked from the sub-branch pipe 13 b is directly taken into the refrigerant take-in space 37 and then taken into the compression chamber 30 .
  • connection port 13ba of the sub-branch pipe 13b with the main shell 1a and the suction port 26 are in a positional relationship of about 45° when viewed in the axial direction about the rotation shaft 7. , a positional relationship of about 180° is preferred.
  • the sub-branch pipe 13b is preferably connected to a side surface of the shell 1 facing the intake port 26 across the rotating shaft 7 when viewed in the axial direction of the rotating shaft 7 of the electric motor 6 . This is because the refrigerant intake ports to the plurality of compression chambers 30 configured by meshing the first spiral projection portion 4b and the second spiral projection portion 5b of the compression mechanism portion 3 are arranged around the rotating shaft 7.
  • connection port 13ba and the suction port 26 have a positional relationship of about 180° when viewed in the axial direction, the scroll compressor 100 balances the refrigerant intake amount of each compression chamber 30 from each refrigerant intake port. be able to.
  • the main branch pipe 13a is also connected to the sub-branch pipe. It is provided at a position that satisfies the same positional relationship as 13b.
  • FIG. 2 shows an example of one suction port 26, there may be two, a main port and a sub port.
  • the sub-branch pipe 13b and the main branch pipe 13a are preferably connected to the side surface of the shell 1 with reference to the intake port on the main side. That is, the sub-branch pipe 13b and the main branch pipe 13a are connected to the side surface of the shell 1 that faces the main intake port across the rotating shaft 7 when viewed in the axial direction of the rotating shaft 7 of the electric motor 6. is desirable.
  • the compression mechanism section 3 is driven by the electric motor 6 and has a function of compressing the refrigerant sucked from the main branch pipe 13a and the sub-branch pipe 13b.
  • the compression mechanism section 3 includes a fixed scroll 4 and an orbiting scroll 5 .
  • the fixed scroll 4 has a disk-shaped fixed base plate 4a and a first spiral protrusion 4b provided on the lower surface of the fixed base plate 4a.
  • the oscillating scroll 5 has a disk-shaped oscillating base plate 5a and a second spiral projection 5b provided on the upper surface of the oscillating base plate 5a and meshing with the first spiral projection 4b.
  • the orbiting scroll 5 is installed eccentrically with respect to the fixed scroll 4 .
  • the first spiral protrusion 4b of the fixed scroll 4 and the second spiral protrusion 5b of the orbiting scroll 5 are engaged with each other to form a compression chamber 30 for compressing the refrigerant.
  • the compression chambers 30 are composed of a plurality of compression chambers whose volumes decrease from the radially outer side to the inner side of the scroll as the orbiting scroll 5 swings.
  • the compression chamber 30 is sealed by a tip seal 41 and a rocking base plate 5a provided at the tip of the first spiral projection 4b and a tip seal 52 and a fixed bed plate 4a provided at the tip of the second spiral projection 5b. It is A coolant intake space 37 is formed between the inner wall surface of the shell 1 and the outer peripheral side of the first spiral protrusion 4b and the second spiral protrusion 5b.
  • the fixed scroll 4 is made of metal such as cast iron.
  • the fixed scroll 4 is fixed to the first inner wall surface 10a by shrink fitting or the like while the outer peripheral surface of the fixed base plate 4a is supported by the first step portion 11a of the main shell 1a.
  • FIG. 2 shows an example of a so-called frame outer wall-less structure in which the frame 2 does not have a peripheral wall and the fixed scroll 4 is fixed to the inner wall surface of the shell 1, but it is not limited to this. do not have.
  • the scroll compressor 100 may be a type of scroll compressor in which the frame 2 has a peripheral wall and the fixed scroll 4 is fixed to the peripheral wall of the frame 2 .
  • a discharge port 40 for discharging compressed high-temperature and high-pressure refrigerant is formed in the center of the fixed base plate 4a.
  • a discharge chamber 15 having a discharge hole 15 a communicating with a discharge port 40 is provided on the upper surface of the fixed scroll 4 .
  • the discharge chamber 15 is provided with a discharge valve 17 that opens and closes the discharge hole 15a according to the pressure of the refrigerant.
  • the discharge valve 17 opens the discharge hole 15a when the refrigerant in the compression chamber 30 communicating with the discharge port 40 reaches a predetermined pressure.
  • the compressed high-temperature, high-pressure refrigerant is discharged from the discharge port 40 into the high-pressure space 16 a above the fixed scroll 4 , passes through the discharge pipe 14 , and is discharged to the outside of the shell 1 .
  • a groove is formed at the tip of the first spiral projection 4b, and a tip seal 41 made of hard plastic, for example, is provided in this groove.
  • the orbiting scroll 5 is made of metal such as aluminum. As shown in FIGS. 2 and 3, the orbiting scroll 5 revolves around the fixed scroll 4 without rotating due to an Oldham ring 54 for preventing rotation.
  • the surface of the rocking base plate 5a on which the second spiral projection 5b is not formed acts as a rocking scroll thrust bearing surface.
  • a hollow cylindrical boss portion 51 is provided at the center of the orbiting scroll thrust bearing surface.
  • a swing bearing is provided on the inner peripheral surface of the boss portion 51 .
  • the swing bearing rotatably supports a slider 80 of the bush 8, which will be described later.
  • the rocking bearing is a so-called journal bearing.
  • the swing bearing is provided so that its central axis is parallel to the central axis of the rotating shaft 7 . As the eccentric shaft portion 71 of the rotating shaft 7 inserted into the boss portion 51 rotates, the orbiting scroll 5 revolves on the thrust sliding surface of the frame 2 .
  • a groove is formed at the tip of the second spiral projection 5b, and a chip seal 52 made of hard plastic, for example, is provided in the groove.
  • the orbiting scroll thrust bearing surface is provided with a pair of second Oldham grooves 53 formed to face each other with the boss portion 51 interposed therebetween as shown in FIG.
  • the second Oldham groove 53 is an oblong key groove into which a second key portion 54c of an Oldham ring 54, which will be described later, is fitted.
  • the pair of second Oldham grooves 53 are arranged such that the line connecting the pair of second Oldham grooves 53 is perpendicular to the line connecting the pair of first Oldham grooves 21c.
  • the Oldham ring 54 includes a ring portion 54a, a first key portion 54b, and a second key portion 54c, as shown in FIG.
  • the ring portion 54 a has an annular shape and is arranged in the Oldham housing portion 21 a of the frame 2 .
  • the first key portion 54b is provided on the lower surface of the ring portion 54a.
  • the first key portions 54b are composed of a pair and are accommodated in the pair of first Oldham grooves 21c of the frame 2, respectively.
  • the second key portion 54c is provided on the upper surface of the ring portion 54a.
  • the second key portions 54c are formed in pairs and are accommodated in the pair of second Oldham grooves 53 of the orbiting scroll 5, respectively.
  • the Oldham's ring 54 positions the orbiting scroll 5 with respect to the frame 2 and determines the phase of the second spiral projection 5b with respect to the frame 2 .
  • Refrigerants can be used, for example, halogenated hydrocarbons with double carbon bonds in their composition, halogenated hydrocarbons without double carbon bonds, natural refrigerants, or mixtures containing them.
  • Halogenated hydrocarbons without carbon double bonds include R32 ( CH3F2 ) , R41 ( CH3F ), R125 ( C2HF3 ), R134a ( CH2FCF2 ), R143a ( CF3CH 3 ), HFC refrigerants such as R410A (R32/R125) or R407C (R32/R125/R134a).
  • R32 ( difluoromethane ) represented by CH2F2 , R41, etc. are exemplified as mixed refrigerants.
  • Natural refrigerants include ammonia ( NH3 ), carbon dioxide ( CO2 ), propane ( C3H8 ), propylene ( C3H6 ), butane ( C4H10 ) or isobutane ( CH3 ), and the like .
  • the refrigerant has zero ozone depletion potential and low GWP.
  • the electric motor 6 includes an annular stator 6a fixedly supported on the inner wall surface of the shell 1 by shrink fitting or the like, and a rotor 6b rotatably mounted facing the inner surface of the stator 6a.
  • the stator 6a has, for example, an iron core formed by laminating a plurality of electromagnetic steel sheets, and windings are wound through an insulating layer. formed.
  • the rotor 6b has a structure in which a permanent magnet is built in an iron core formed by laminating a plurality of electromagnetic steel sheets, and has a through hole penetrating vertically in the center.
  • the rotating shaft 7 is a rod-shaped member made of metal, as shown in FIG.
  • the rotating shaft 7 includes a main shaft portion 70 and an eccentric shaft portion 71 .
  • the main shaft portion 70 is a shaft that constitutes the main portion of the rotating shaft 7, and is arranged so that its central axis coincides with the central axis of the main shell 1a.
  • the main shaft portion 70 is inserted into a central through hole of the rotor 6b and fixed to the rotor 6b by shrink fitting or the like.
  • the balancer 12 eccentric with respect to the main shaft portion 70 is also fixed to the main shaft portion 70 by shrink fitting or the like.
  • the balancer 12 rotates together with the main shaft portion 70 to cancel the imbalance with other parts.
  • the rotating shaft 7 is freely rotatable by a main bearing 22 provided in the center of the frame 2 and a sub-bearing 90 provided in the center of a sub-frame 9 fixed to the lower part of the shell 1 by welding or the like. supported by
  • the eccentric shaft portion 71 is provided at the upper end portion of the main shaft portion 70 so that its central axis is eccentric with respect to the central axis of the main shaft portion 70 .
  • the eccentric shaft portion 71 is connected to the orbiting scroll 5 through a slider 80 of a bushing 8 (to be described later), which is a metal member such as iron, and is rotatably supported by a boss portion 51 of the orbiting scroll 5 .
  • the rotating shaft 7 rotates with the rotation of the rotor 6b, and the eccentric shaft portion 71 causes the orbiting scroll 5 to perform a revolving motion, which is an oscillating motion.
  • an oil passage hole 72 is provided so as to penetrate vertically along the axial direction.
  • the bushing 8 includes a slider 80 and a balance weight 81, as shown in FIGS.
  • the slider 80 is a tubular member having a flange, and is rotatably inserted into the boss portion 51 .
  • An eccentric shaft portion 71 is inserted inside the slider 80 . That is, the slider 80 is inserted between the orbiting scroll 5 and the eccentric shaft portion 71 .
  • the slider 80 allows the swing radius of the swing scroll 5 to be variable and supports the swing scroll 5 to revolve.
  • the balance weight 81 is provided to offset the centrifugal force of the orbiting scroll 5 generated by the revolution orbiting motion.
  • the balance weight 81 has an annular shape and has a substantially C-shaped weight portion 81 a on the side opposite to the direction of the centrifugal force acting on the orbiting scroll 5 .
  • the balance weight 81 can reduce the pressure of the second spiral protrusion 5b against the first spiral protrusion 4b.
  • the balance weight 81 is fixed to the collar of the slider 80 by shrink fitting or the like, for example.
  • the subframe 9 is a metal frame.
  • the sub-frame 9 is provided with a sub-bearing portion 90 and an oil pump 91 as shown in FIG.
  • the sub-bearing portion 90 is a ball bearing provided in the center of the sub-frame 9 .
  • the oil pump 91 is a pump for sucking up lubricating oil stored in the oil sump 18 of the shell 1 and is provided below the sub-bearing portion 90 .
  • the lubricating oil is stored in the oil reservoir 18 as shown in FIG.
  • the lubricating oil is sucked up by the oil pump 91, passes through the oil passage hole 72 of the rotating shaft 7, and is used to reduce wear between mechanically contacting parts such as the compression mechanism 3, adjust the temperature of the sliding parts, and improve sealing performance. make improvements.
  • As the lubricating oil an oil that has excellent lubricating properties, electrical insulation properties, stability, refrigerant solubility, low-temperature fluidity, etc., and an appropriate viscosity is suitable.
  • Lubricating oils can be, for example, naphthenic, polyol ester (POE), polyvinyl ether (PVE) or polyalkylene glycol (PAG) oils.
  • the refrigerant sucked into the shell 1 from the suction pipe 13 is taken into the compression chamber 30 .
  • the flow of the refrigerant from each of the main branch pipe 13a and the sub-branch pipe 13b that constitute the suction pipe 13 will be explained again.
  • the refrigerant taken into the compression chamber 30 is reduced in volume and compressed while moving from the outside to the inside in the radial direction of the scroll as the orbiting scroll 5 eccentrically revolves.
  • the orbiting scroll 5 moves in the radial direction together with the bush 8 due to its own centrifugal force, and the side wall surfaces of the second spiral projection 5b and the first spiral projection 4b come into close contact with each other.
  • the compressed refrigerant flows from the discharge port 40 of the fixed scroll 4 to the discharge hole 15 a of the discharge chamber 15 and is discharged outside the shell 1 against the discharge valve 17 .
  • the refrigerant discharged from the scroll compressor 100 is separated into refrigerant and oil by an oil separator in the refrigerant circuit.
  • the refrigerant circulates through the refrigerant circuit as it is and is sucked into the scroll compressor 100 again.
  • the separated oil does not circulate in the refrigerant circuit and is returned to a pipe 133 (described later) of the scroll compressor 100 (see FIG. 4 described later).
  • the sub-branch pipe 13b communicating with the refrigerant intake space 37 is connected to the shell 1, so that the suction pressure loss It is possible to achieve both a reduction in power consumption and an increase in capacity. This point will be described below.
  • FIG. 4 is a diagram showing a refrigerant intake path of the scroll compressor according to Embodiment 1.
  • An inlet end 132a of a three-pronged pipe 132 is connected to an outlet end 133a of the pipe 133 constituting the refrigerant circuit on the side of the scroll compressor 100 by, for example, brazing.
  • the suction pipe 13 is connected to two outlet ends 132b and 132c of the three-pronged pipe 132 via connecting pipes 131a and 131b.
  • the main branch pipe 13a is connected to the outlet end 132b of the three-pronged pipe 132 via a connecting pipe 131a
  • the sub-branch pipe 13b is connected to the outlet end 132c of the three-pronged pipe 132 via a connecting pipe 131b. It is connected.
  • the main branch pipe 13a and the sub-branch pipe 13b are connected to the three-way pipe 132 by brazing or the like.
  • Refrigerant sucked into the scroll compressor 100 from the refrigerant circuit passes through a pipe 133 and is branched into two paths by a three-way pipe 132, and is sucked into the shell 1 from each of the main branch pipe 13a and the sub-branch pipe 13b.
  • the pipe 133 may be a straight pipe or a curved pipe depending on the orientation of the downstream end of the pipe of the refrigerant circuit to which the pipe 133 is connected. Specifically, when the downstream end of the pipe of the refrigerant circuit faces downward and is positioned above the inlet end 132a of the three-pronged pipe 132, the pipe 133 becomes a straight pipe as indicated by the solid line in FIG. On the other hand, when the downstream end of the pipe of the refrigerant circuit is oriented horizontally, the pipe 133 becomes a curved pipe as indicated by the dotted line in FIG.
  • the refrigerant sucked into the low-pressure space 16b inside the shell from the main branch pipe 13a cools the stator 6a and the rotor 6b, which are the parts of the electric motor, and is drawn into the refrigerant intake space 37 through the intake port 26 of the frame 2. After that, it is taken into the compression chamber 30 .
  • Refrigerant sucked into the shell from the other sub-branch pipe 13 b is taken directly into the refrigerant take-in space 37 without going through the suction port 26 and then taken into the compression chamber 30 .
  • the refrigerant that has entered the low-pressure space 16b inside the shell from the main branch pipe 13a passes through the suction port 26 before being taken into the compression chamber 30, thereby causing suction pressure loss.
  • the refrigerant sucked into the shell from the sub-branch pipe 13b is directly taken into the refrigerant take-in space 37 without going through the suction port 26, and then taken into the compression chamber 30, thereby reducing the suction pressure loss. can.
  • the scroll compressor 100 takes part of the refrigerant sucked into the shell 1 from the suction pipe 13 directly into the refrigerant intake space 37 from the sub-branch pipe 13b.
  • the scroll compressor 100 can reduce the suction pressure loss compared to the case where all the refrigerant sucked into the shell 1 is taken into the refrigerant take-in space 37 via the main branch pipe 13 a and the suction port 26 . Therefore, the scroll compressor 100 cools the motor parts by the refrigerant sucked into the low-pressure space 16b from the main branch pipe 13a as in the conventional art, while increasing the suction pressure without extending the opening of the suction port 26 radially inward. Loss can be reduced.
  • the scroll compressor 100 can reduce the suction pressure loss without enlarging the suction port 26, and as a result, it is not necessary to reduce the size of the rocking bed plate 5a. Therefore, the scroll compressor 100 can expand the capacity of the compression chamber 30 . That is, the scroll compressor 100 can achieve both a reduction in suction pressure loss and an increase in capacity.
  • the scroll compressor 100 rotates at a high speed
  • the refrigerant containing oil drawn into the low-pressure space 16b from the main branch pipe 13a is drawn up by the rotating rotor 6b and the balancer 12.
  • the amount of oil taken into the compression chamber 30 together with the refrigerant increases, which tends to increase the oil discharge.
  • part of the refrigerant from the refrigerant circuit is branched to the sub-branch pipe 13b to reduce the amount of refrigerant sucked from the main branch pipe 13a into the low-pressure space 16b. can be expected to be reduced.
  • downstream of the pipe 133 is branched into two here, it may be branched into three or more.
  • some of the plurality of branch pipes are connected to the shell 1 so as to communicate with the refrigerant intake space 37, and the rest of the plurality of branch pipes is connected to the shell 1 so as to communicate with the low-pressure space 16b.
  • the scroll compressor 100 of the first embodiment includes the shell 1, the suction pipe 13 for sucking the refrigerant into the shell 1, and the fixed base plate 4a provided with the first spiral protrusion 4b. and a rocking bed plate 5a provided with a second spiral protrusion 5b that meshes with the first spiral protrusion 4b.
  • a swing scroll 5 is provided.
  • the scroll compressor 100 further includes an electric motor 6 that drives the orbiting scroll 5, and a frame that is fixed to the inner wall surface of the shell 1 and supports the orbiting scroll 5 on the opposite side of the orbiting scroll 5 from the compression chamber 30. 2 and a.
  • the scroll compressor 100 passes the refrigerant sucked into the shell 1 from the suction pipe 13 through the suction port 26 formed in the frame 2 to the outer peripheral side of the first spiral projection 4b and the second spiral projection 5b. After being taken into the refrigerant take-in space 37, it is taken into the compression chamber 30 and compressed.
  • the intake pipe 13 has a plurality of branch pipes, and each of the plurality of branch pipes is connected to the shell 1 so as to communicate with the inside of the shell 1 .
  • a sub-branch pipe 13 b that is a part of the plurality of branch pipes communicates with the refrigerant intake space 37 .
  • the scroll compressor 100 can achieve both a reduction in suction pressure loss and an increase in capacity.
  • the electric motor 6 is arranged in a space on the opposite side of the frame 2 to the orbiting scroll 5 inside the shell 1, and in that space is the main branch pipe which is the remaining branch pipe of the plurality of branch pipes.
  • the branch pipe 13a is in communication.
  • the scroll compressor 100 can cool the parts that make up the electric motor 6 with the refrigerant sucked into the shell 1 from the main branch pipe 13a.
  • the scroll compressor 100 satisfies the relationship of pipe diameter of the main branch pipe 13a>pipe diameter of the sub-branch pipe 13b.
  • the scroll compressor 100 can suck refrigerant mainly from the main branch pipe 13a.
  • main branch pipe 13a and the sub-branch pipe 13b are connected to a side surface of the shell 1 facing the intake port 26 across the rotation shaft 7 when viewed in the axial direction of the rotation shaft 7 of the electric motor 6 .
  • the scroll compressor 100 can balance the refrigerant intake amount from each refrigerant intake port to each compression chamber 30 .
  • Embodiment 2 is a configuration in which scroll compressor 100 according to Embodiment 1 is further provided with flow rate control valve 134 .
  • Other configurations are the same as or equivalent to those of the first embodiment.
  • the second embodiment will be described with a focus on the configuration different from the first embodiment, and the configurations not described in the second embodiment are the same as those in the first embodiment.
  • FIG. 5 is a diagram showing a refrigerant intake path of a scroll compressor according to Embodiment 2.
  • FIG. Embodiment 2 differs from Embodiment 1 in that it further includes a flow control valve 134 that regulates the flow rate of refrigerant in sub-branch pipe 13b.
  • the flow regulating valve 134 is composed of, for example, an electronic expansion valve.
  • the flow control valve 134 is provided on the pipe 1310b.
  • the pipe 1310b has a connection port 13ba (see FIG. 3) with the shell 1 of the sub-branch pipe 13b, and a branch port that is upstream of the connection port 13ba and branches the refrigerant from the refrigerant circuit toward the sub-branch pipe 13b.
  • 132d and a pipe connecting the .
  • the branch port 132 d is located inside the three-way pipe 132 .
  • the pipe 1310b specifically includes a sub-branch pipe 13b, a connecting pipe 131b, and a pipe portion downstream of the branch port 132d in the three-pronged pipe 132.
  • FIG. 5 shows a configuration in which the flow rate adjustment valve 134 is provided in the connecting pipe 131b, it may be provided in the sub-branch pipe 13b, or in the three-pronged pipe 132, a pipe portion downstream of the branch port 132d. may be provided in In short, the flow regulating valve 134 may be provided in the pipe 1310b connecting the connection port 13ba and the branch port 132d as described above.
  • the flow control valve 134 is controlled by a control device (not shown). Control of the flow regulating valve 134 is divided into the following two types depending on the purpose.
  • the flow control valve 134 when the flow control valve 134 is controlled for the purpose of cooling the electric motor 6, the flow control valve 134 is closed when the rotation speed of the electric motor 6 is lower than the preset first rotation speed.
  • the scroll compressor 100 sucks all the refrigerant from the refrigerant circuit into the low-pressure space 16b from the main branch pipe 13a without branching, and uses it for cooling the motor parts.
  • the scroll compressor 100 can suppress insufficient cooling of the electric motor parts at low rotational speeds, and can sufficiently cool the electric motor parts.
  • linearly functional refers to a mode in which the amount of increase in the degree of opening is constant from the start to the end of change in the degree of opening.
  • quadratic function refers to a form in which the amount of increase in the opening degree increases from the start to the end of the change in the opening degree.
  • the degree of opening of the flow control valve 134 is gradually increased, so that the amount of refrigerant sucked into the refrigerant intake space 37 from the sub-branch pipe 13b gradually increases. .
  • the amount of refrigerant sucked from the main branch pipe 13a into the low-pressure space 16b is gradually reduced, and the scroll compressor 100 can suppress oil rise.
  • the scroll compressor 100 can suppress a decrease in the amount of oil inside.
  • the flow control valve 134 is controlled based on the rotation speed of the electric motor 6, it may be controlled based on the suction pressure of the refrigerant. Specifically, when the suction pressure increases, the flow rate of the refrigerant increases and more oil is swirled up. , the degree of opening is gradually increased. Further, the flow control valve 134 may be controlled based on both the rotation speed of the electric motor 6 and the suction pressure of the refrigerant. In other words, the flow control valve 134 is controlled based on one or both of the rotational speed of the electric motor 6 and the suction pressure of the refrigerant.
  • the scroll compressor 100 of Embodiment 2 can obtain the same effect as that of Embodiment 1, and the flow control valve 134 is provided in the pipe 1310b between the connection port 13ba and the branch port 132d. effect is obtained. That is, the scroll compressor 100 is controlled by the flow control valve 134 to suppress insufficient cooling of the motor parts at low rotational speeds and reduce the oil inside the scroll compressor 100 when the rotational speed is increased from low to high. It is possible to suppress the reduction of the amount.
  • Embodiment 3 relates to a refrigeration cycle apparatus including the scroll compressor 100 of the second embodiment.
  • FIG. 6 is a diagram showing a refrigerant circuit of a refrigeration cycle apparatus according to Embodiment 3.
  • FIG. Refrigeration cycle device 105 includes scroll compressor 100 of Embodiment 2, condenser 101, expansion valve 102 as a decompression device, and evaporator 103, and includes refrigerant circuit 104 in which refrigerant circulates.
  • the gas refrigerant discharged from the scroll compressor 100 flows into the condenser 101, exchanges heat with the air passing through the condenser 101, and flows out as a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant that has flowed out of the condenser 101 is decompressed by the expansion valve 102 to become a low-pressure gas-liquid two-phase refrigerant and flows into the evaporator 103 .
  • the low-pressure gas-liquid two-phase refrigerant that has flowed into the evaporator 103 exchanges heat with the air passing through the evaporator 103 to become a low-pressure gas refrigerant, and is supplied to the scroll compressor 100 again via the main branch pipe 13a and the sub-branch pipe 13b. inhaled.
  • the refrigeration cycle device 105 further includes a control device 106 that controls the refrigerant circuit 104 .
  • the control device 106 is composed of a microprocessor unit and includes a CPU, RAM, ROM, etc. Control programs and the like are stored in the ROM. Controller 106 is not limited to a microprocessor unit. For example, controller 106 may be configured with something that can be updated, such as firmware. Also, the control device 106 may be a program module that is executed by a command from a CPU (not shown) or the like.
  • the control device 106 controls the rotation speed of the electric motor 6 according to the temperature difference between the room temperature and the set temperature. Specifically, the control device 106 performs control to increase the rotational speed of the electric motor 6 as the temperature difference increases, in other words, as the load on the scroll compressor 100 increases. Further, as described in the second embodiment, the control device 106 performs control to close the flow control valve 134 when the rotational speed of the electric motor 6 is lower than the preset first rotational speed. Further, the control device 106 performs control to gradually increase the opening degree of the flow control valve 134 when increasing the rotational speed of the electric motor 6 above the preset second rotational speed.
  • the refrigeration cycle device 105 can sufficiently cool the electric motor parts as described above, and can suppress a decrease in the amount of oil inside the scroll compressor 100, thereby improving the reliability of the scroll compressor 100. can improve sexuality.
  • the refrigeration cycle device 105 includes the scroll compressor 100 of the second embodiment, but it may be configured to include the scroll compressor 100 of the first embodiment.
  • Refrigerating cycle device 105 is included in scroll compressor 100 of the first or second embodiment, so that both reduction in suction pressure loss and increase in capacity can be achieved.
  • the refrigeration cycle device 105 including the scroll compressor 100 of Embodiment 2 can further improve the reliability of the scroll compressor 100 .

Abstract

This scroll compressor includes a suction pipe that sucks refrigerant into a shell, the intake pipe has a plurality of branch pipes, and each of the plurality of branch pipes is connected to the shell so as to communicate with the interior of the shell. Some of the plurality of branch pipes are in communication with a refrigerant intake space which is on the outer peripheral side of a first spiral projection and a second spiral projection, and which takes in refrigerant before the refrigerant is taken into a compression chamber.

Description

スクロール圧縮機およびこのスクロール圧縮機を備えた冷凍サイクル装置Scroll compressor and refrigeration cycle device provided with this scroll compressor
 本開示は、冷凍または空調用途等に用いられるスクロール圧縮機およびこのスクロール圧縮機を備えた冷凍サイクル装置に関するものである。 The present disclosure relates to a scroll compressor used for refrigeration or air conditioning applications, and a refrigeration cycle device provided with this scroll compressor.
 スクロール圧縮機は、シェルの内部に固定されたフレームの上面に揺動スクロールが支持され、その揺動スクロールに対向して固定スクロールが設けられている。フレームは、シェルの軸方向に延び、且つ固定スクロールの渦巻歯の外周側に位置する筒状の周壁を有しており、周壁の外周面でシェルの内壁に焼嵌等で固定されている。揺動スクロールには回転軸が取り付けられ、この回転軸をフレームより下方に配置された電動機により回転させることで、揺動スクロールが固定スクロールに対して揺動運動し、揺動スクロールと固定スクロールとで形成された圧縮室で冷媒を圧縮する。 A scroll compressor has an orbiting scroll supported on the upper surface of a frame fixed inside a shell, and a fixed scroll is provided facing the orbiting scroll. The frame extends in the axial direction of the shell and has a cylindrical peripheral wall located on the outer peripheral side of the spiral teeth of the fixed scroll. A rotating shaft is attached to the orbiting scroll, and the rotating shaft is rotated by an electric motor arranged below the frame, thereby causing the orbiting scroll to perform an orbiting motion with respect to the fixed scroll, thereby separating the orbiting scroll and the fixed scroll. Refrigerant is compressed in a compression chamber formed by
 シェルには、冷媒をシェル内に吸入する吸入管が接続されている。吸入管は、吸入冷媒で電動機を冷却するため、フレームよりも下方の位置でシェルに接続されている。フレームの周壁の外周面には、フレームよりも下方でシェル内に吸入された冷媒を圧縮室に導くため、回転軸の軸方向に見て矩形状に切り欠いた吸入ポートが回転軸の軸方向に貫通して形成されている。そして、吸入管からシェルの内部に吸入された冷媒は、吸入ポートを介して圧縮室に取り込まれ、圧縮室にて圧縮される。 A suction pipe that draws refrigerant into the shell is connected to the shell. The intake pipe is connected to the shell at a position below the frame to cool the motor with the intake refrigerant. On the outer peripheral surface of the peripheral wall of the frame, a suction port cut in a rectangular shape when viewed in the axial direction of the rotating shaft is cut in the axial direction of the rotating shaft in order to guide the refrigerant sucked into the shell below the frame to the compression chamber. is formed through the Refrigerant sucked into the shell from the suction pipe is taken into the compression chamber through the suction port and compressed in the compression chamber.
 上記構成のスクロール圧縮機は、圧縮室の容量を拡大することで圧縮効率を高めることができる。このため、従来、フレームの周壁を無くすことで揺動スクロールを大きくし、圧縮室の容量を拡大するようにしたスクロール圧縮機がある(たとえば、特許文献1参照)。 The scroll compressor with the above configuration can increase the compression efficiency by increasing the capacity of the compression chamber. For this reason, conventionally, there is a scroll compressor in which the peripheral wall of the frame is eliminated to increase the size of the orbiting scroll and expand the capacity of the compression chamber (see, for example, Patent Document 1).
国際公開第2018/163233号WO2018/163233
 しかしながら、揺動スクロールの揺動台板の大きさは、フレームに設けた吸入ポートを揺動運動中に塞がないように、吸入ポートよりも内側に収まる大きさにする必要がある。このため、特許文献1のスクロール圧縮機は、圧縮室の容量を十分に拡大することができない。また、特許文献1のスクロール圧縮機において、冷媒がシェル内に吸入されてから圧縮室に取り込まれるまでの圧力損失(以下、吸入圧力損失)を低減しようとした場合、吸入ポートの開口を大きくする必要がある。吸入ポートの開口を大きくするには、吸入ポートの開口を回転軸の径方向内側に向けて拡大することになり、結果として揺動台板を小さくする必要が生じ、大容量化を図ることができない。つまり、特許文献1では、吸入圧力損失の低減と大容量化との両立を図ることが難しいという問題があった。 However, the size of the oscillating base plate of the oscillating scroll must be such that it fits inside the intake port so as not to block the intake port provided on the frame during the oscillating motion. For this reason, the scroll compressor of Patent Document 1 cannot sufficiently expand the capacity of the compression chamber. In addition, in the scroll compressor of Patent Document 1, when trying to reduce the pressure loss (hereinafter referred to as suction pressure loss) from when the refrigerant is sucked into the shell until it is taken into the compression chamber, the opening of the suction port is increased. There is a need. In order to increase the opening of the suction port, the opening of the suction port must be expanded inward in the radial direction of the rotating shaft. Can not. In other words, in Patent Document 1, there is a problem that it is difficult to achieve both a reduction in suction pressure loss and an increase in capacity.
 本開示は、上記のような課題を解決するためになされたものであり、吸入圧力損失の低減と大容量化との両立を図ることが可能なスクロール圧縮機およびこのスクロール圧縮機を備えた冷凍サイクル装置を提供することを目的とする。 The present disclosure has been made in order to solve the above-described problems, and is a scroll compressor capable of achieving both reduction in suction pressure loss and increase in capacity, and a refrigeration system equipped with the scroll compressor. An object of the present invention is to provide a cycle device.
 本開示に係るスクロール圧縮機は、シェルと、冷媒をシェルの内部に吸入する吸入管と、第1渦巻突起部が設けられた固定台板を有する固定スクロールと、第1渦巻突起部と噛み合う第2渦巻突起部が設けられた揺動台板を有し、固定スクロールとの間に冷媒を圧縮する圧縮室を形成する揺動スクロールと、揺動スクロールを駆動する電動機と、シェルの内壁面に固定され、揺動スクロールに対して圧縮室とは反対側で揺動スクロールを支持するフレームと、を備え、吸入管からシェルの内部に吸入された冷媒を、フレームに形成された吸入ポートを介して、第1渦巻突起部および第2渦巻突起部の外周側の冷媒取込空間に取り込んだ後、圧縮室に取り込んで圧縮するスクロール圧縮機であって、吸入管は複数の分岐管を有し、複数の分岐管のそれぞれがシェルの内部に連通するようにシェルに接続されており、複数の分岐管のうちの一部の分岐管が冷媒取込空間に連通しているものである。 A scroll compressor according to the present disclosure includes a fixed scroll having a shell, an intake pipe for sucking refrigerant into the shell, a fixed base plate provided with a first spiral projection, and a first spiral projection engaged with the first spiral projection. 2. An oscillating scroll having an oscillating base plate provided with spiral projections and forming a compression chamber for compressing the refrigerant between the oscillating scroll and the fixed scroll; an electric motor driving the oscillating scroll; a frame that is fixed and supports the orbiting scroll on the side opposite to the compression chamber with respect to the orbiting scroll, and the refrigerant sucked into the shell from the suction pipe is introduced through the suction port formed in the frame. A scroll compressor in which refrigerant is drawn into a compression chamber and compressed after being taken into a refrigerant intake space on the outer peripheral side of a first spiral projection and a second spiral projection, wherein the suction pipe has a plurality of branch pipes. , each of the plurality of branch pipes is connected to the shell so as to communicate with the interior of the shell, and some of the plurality of branch pipes communicate with the refrigerant intake space.
 本開示に係る冷凍サイクル装置は、上記のスクロール圧縮機と、凝縮器と、減圧装置と、蒸発器とを有し、冷媒が循環する冷媒回路を備えたものである。 A refrigeration cycle device according to the present disclosure includes the scroll compressor, the condenser, the decompression device, and the evaporator, and includes a refrigerant circuit in which refrigerant circulates.
 本開示に係るスクロール圧縮機は、吸入管が複数の分岐管を有し、複数の分岐管のうちの一部の分岐管が冷媒取込空間に連通しているので、シェル内に吸入される冷媒の一部がフレームの吸入ポートを介さず、直接、冷媒取込空間に取り込まれた後、圧縮室に取り込まれる。よって、スクロール圧縮機は、シェル内に吸入される冷媒の全てをフレームに対して揺動スクロールとは反対側の空間に吸入し、吸入ポートを通過させる構成に比べて、吸入圧力損失を低減することができる。このように、スクロール圧縮機は、吸入ポートを大きくすることなく吸入圧力損失を低減できるため、結果として揺動台板を小さくする必要がない。このため、スクロール圧縮機は、圧縮室の容量を拡大することができる。つまり、スクロール圧縮機およびこのスクロール圧縮機を備えた冷凍サイクル装置は、吸入圧力損失の低減と大容量化との両立を図ることができる。 In the scroll compressor according to the present disclosure, the suction pipe has a plurality of branch pipes, and some of the plurality of branch pipes communicate with the refrigerant intake space, so that the refrigerant is drawn into the shell. A portion of the refrigerant is taken directly into the refrigerant take-in space without passing through the intake port of the frame, and then taken into the compression chamber. Therefore, in the scroll compressor, all the refrigerant sucked into the shell is sucked into the space on the opposite side of the frame from the orbiting scroll, and the suction pressure loss is reduced compared to the configuration in which the refrigerant passes through the suction port. be able to. In this way, the scroll compressor can reduce the suction pressure loss without increasing the size of the suction port. Therefore, the scroll compressor can expand the capacity of the compression chamber. In other words, the scroll compressor and the refrigeration cycle device provided with this scroll compressor can achieve both a reduction in suction pressure loss and an increase in capacity.
実施の形態1に係るスクロール圧縮機の外観を示した正面図である。1 is a front view showing an appearance of a scroll compressor according to Embodiment 1; FIG. 実施の形態1に係るスクロール圧縮機の内部構造を示した概略縦断面図である。1 is a schematic longitudinal sectional view showing an internal structure of a scroll compressor according to Embodiment 1; FIG. 実施の形態1に係るスクロール圧縮機の要部を分解して示した概略斜視図である。1 is a schematic perspective view showing an exploded main part of a scroll compressor according to Embodiment 1; FIG. 実施の形態1に係るスクロール圧縮機の冷媒吸入経路を示す図である。FIG. 2 is a diagram showing a refrigerant suction path of the scroll compressor according to Embodiment 1; FIG. 実施の形態2に係るスクロール圧縮機の冷媒吸入経路を示す図である。FIG. 7 is a diagram showing a refrigerant suction path of a scroll compressor according to Embodiment 2; 実施の形態3に係る冷凍サイクル装置の冷媒回路を示す図である。FIG. 7 is a diagram showing a refrigerant circuit of a refrigeration cycle device according to Embodiment 3;
 以下、図面に基づいて実施の形態について説明する。なお、各図中、同一または相当する部分には、同一符号を付して、その説明を適宜省略または簡略化する。 Embodiments will be described below based on the drawings. In each figure, the same or corresponding parts are denoted by the same reference numerals, and the description thereof will be omitted or simplified as appropriate.
実施の形態1.
 図1は、実施の形態1に係るスクロール圧縮機の外観を示した正面図である。図2は、実施の形態1に係るスクロール圧縮機の内部構造を示した概略縦断面図である。図3は、実施の形態1に係るスクロール圧縮機の要部を分解して示した概略斜視図である。本実施の形態1に係るスクロール圧縮機は、例えば、冷蔵庫、冷凍庫、空気調和装置、冷凍装置または給湯器等に用いられる冷媒回路の構成要素の一つとなるものである。
Embodiment 1.
1 is a front view showing the appearance of a scroll compressor according to Embodiment 1. FIG. 2 is a schematic longitudinal sectional view showing the internal structure of the scroll compressor according to Embodiment 1. FIG. FIG. 3 is a schematic perspective view showing an exploded main part of the scroll compressor according to Embodiment 1. FIG. The scroll compressor according to Embodiment 1 is one of the components of a refrigerant circuit used in, for example, a refrigerator, a freezer, an air conditioner, a refrigerating device, a water heater, or the like.
 スクロール圧縮機100は、冷媒回路を循環する冷媒を吸入して圧縮し、高温高圧の状態として吐出させるものである。スクロール圧縮機100は、図1および図2に示すように、外郭を形成するシェル1と、フレーム2と、固定スクロール4および揺動スクロール5を有する圧縮機構部3と、電動機6と、圧縮機構部3と電動機6とを連結する回転軸7と、を備えている。 The scroll compressor 100 draws in the refrigerant circulating in the refrigerant circuit, compresses it, and discharges it in a state of high temperature and high pressure. As shown in FIGS. 1 and 2, the scroll compressor 100 includes a shell 1 forming an outer shell, a frame 2, a compression mechanism section 3 having a fixed scroll 4 and an orbiting scroll 5, an electric motor 6, and a compression mechanism. and a rotary shaft 7 that connects the portion 3 and the electric motor 6 .
 シェル1は、図1に示すように、金属などの導電性部材であり、密閉空間を有する筒状に形成されたものである。シェル1の内部には、フレーム2と、圧縮機構部3と、電動機6と、回転軸7と、が収容されている。シェル1の内部において、圧縮機構部3はフレーム2の上方に配置され、電動機6はフレーム2の下方に配置されている。スクロール圧縮機100は、シェル1の内部に低圧の冷媒ガスを一旦取り込んでから圧縮するいわゆる低圧シェル型である。図1および図2には、回転軸7が重力方向となる状態で使用される、いわゆる縦置き型のスクロール圧縮機を図示しているが、横置き型でもよい。 As shown in FIG. 1, the shell 1 is a conductive member such as metal, and is formed in a cylindrical shape having a closed space. Inside the shell 1, a frame 2, a compression mechanism section 3, an electric motor 6, and a rotating shaft 7 are accommodated. Inside the shell 1 , the compression mechanism 3 is arranged above the frame 2 and the electric motor 6 is arranged below the frame 2 . The scroll compressor 100 is a so-called low-pressure shell type in which a low-pressure refrigerant gas is once taken into the shell 1 and then compressed. Although FIG. 1 and FIG. 2 show a so-called vertical type scroll compressor that is used with the rotating shaft 7 in the direction of gravity, it may be a horizontal type scroll compressor.
 シェル1は、円筒状のメインシェル1aと、メインシェル1aの上面開口を塞ぐ略半球状のアッパーシェル1bと、メインシェル1aの下面開口を塞ぐ略半球状のロアシェル1cと、を有する。アッパーシェル1bおよびロアシェル1cは、それぞれメインシェル1aに溶接等で固定されている。シェル1は、ロアシェル1cに固定された固定台1dによって支持されている。 The shell 1 has a cylindrical main shell 1a, a substantially hemispherical upper shell 1b that closes the upper opening of the main shell 1a, and a substantially hemispherical lower shell 1c that closes the lower opening of the main shell 1a. The upper shell 1b and the lower shell 1c are fixed to the main shell 1a by welding or the like. The shell 1 is supported by a fixed base 1d fixed to the lower shell 1c.
 メインシェル1aの内壁面は、図3に示すように、上端部に形成された大径の第1内壁面10aと、第1内壁面10aの下方に形成された第2内壁面10bと、第2内壁面10bの下方に形成された第3内壁面10cと、を有している。第1内壁面10a、第2内壁面10bおよび第3内壁面10cは、この順に内径が小さくなるように構成されている。第1内壁面10aの下端と第2内壁面10bの上端とで形成された第1段部11aは、固定スクロール4の位置決め部として機能する。第2内壁面10bの下端と第3内壁面10cの上端とで形成された第2段部11bは、フレーム2の位置決め部として機能する。 As shown in FIG. 3, the inner wall surface of the main shell 1a includes a large-diameter first inner wall surface 10a formed at the upper end, a second inner wall surface 10b formed below the first inner wall surface 10a, and a second inner wall surface 10b. and a third inner wall surface 10c formed below the second inner wall surface 10b. The first inner wall surface 10a, the second inner wall surface 10b, and the third inner wall surface 10c are configured such that the inner diameters thereof decrease in this order. A first step portion 11 a formed by the lower end of the first inner wall surface 10 a and the upper end of the second inner wall surface 10 b functions as a positioning portion for the fixed scroll 4 . A second step portion 11 b formed by the lower end of the second inner wall surface 10 b and the upper end of the third inner wall surface 10 c functions as a positioning portion for the frame 2 .
 メインシェル1aには、図1および図2に示すように、シェル1の内部に冷媒を吸入するための吸入管13が接続されている。吸入管13は、複数の分岐管を有し、ここでは、メイン分岐管13aとサブ分岐管13bとを有する。メイン分岐管13aおよびサブ分岐管13bは、それぞれシェル1の内部に連通するようにメインシェル1aに接続されている。メイン分岐管13aおよびサブ分岐管13bは、メインシェル1aの側壁に形成された孔に、一部が挿入された状態でろう付け等により接続されている。 A suction pipe 13 for sucking refrigerant into the shell 1 is connected to the main shell 1a, as shown in FIGS. The intake pipe 13 has a plurality of branch pipes, here a main branch pipe 13a and a sub-branch pipe 13b. The main branch pipe 13a and the sub-branch pipe 13b are connected to the main shell 1a so as to communicate with the inside of the shell 1 respectively. The main branch pipe 13a and the sub-branch pipe 13b are connected by brazing or the like while being partially inserted into a hole formed in the side wall of the main shell 1a.
 メイン分岐管13aは、シェル1の内部においてフレーム2よりも下部の低圧空間16b、言い換えればフレーム2に対して揺動スクロール5とは反対側の空間に連通している。サブ分岐管13bは、後述の冷媒取込空間37に連通している。メイン分岐管13aおよびサブ分岐管13bは、同位相でメインシェル1aに接続されているが、これに限られない。メイン分岐管13aの管径とサブ分岐管13bの管径とは同じでもよいし、異なっていても良い。シェル1内に主として冷媒を吸入する吸入管はあくまでもメイン分岐管13aであるので、メイン分岐管13aの管径とサブ分岐管13bの管径とが異なる場合には、メイン分岐管13aの管径>サブ分岐管13bの管径を満たすことが望ましい。 The main branch pipe 13a communicates with the low-pressure space 16b below the frame 2 inside the shell 1, in other words, the space on the opposite side of the frame 2 from the orbiting scroll 5. The sub-branch pipe 13b communicates with a refrigerant intake space 37, which will be described later. The main branch pipe 13a and the sub-branch pipe 13b are connected to the main shell 1a in the same phase, but it is not limited to this. The pipe diameter of the main branch pipe 13a and the pipe diameter of the sub-branch pipe 13b may be the same or different. Since the main branch pipe 13a is the suction pipe that mainly draws the refrigerant into the shell 1, if the pipe diameter of the main branch pipe 13a and the sub-branch pipe 13b are different, the pipe diameter of the main branch pipe 13a > It is desirable to satisfy the pipe diameter of the sub-branch pipe 13b.
 また、メインシェル1aには、図1および図2に示すようにスクロール圧縮機100に給電するための給電部19が設けられている。給電部19は、カバー19aと、給電端子19bと、配線19cと、を備えている。給電端子19bは、金属部材であり、一端がカバー19aに囲まれるように配置され、他端がメインシェル1aの内部に配置されている。配線19cは、一端が給電端子19bと接続され、他端が電動機6に接続されている。 Further, the main shell 1a is provided with a power supply section 19 for supplying power to the scroll compressor 100 as shown in FIGS. The power supply unit 19 includes a cover 19a, power supply terminals 19b, and wiring 19c. The power supply terminal 19b is a metal member, one end of which is arranged so as to be surrounded by the cover 19a, and the other end of which is arranged inside the main shell 1a. The wiring 19 c has one end connected to the power supply terminal 19 b and the other end connected to the electric motor 6 .
 アッパーシェル1bには、圧縮した冷媒をシェル1から吐き出す吐出管14が接続されている。吐出管14は、アッパーシェル1bの上部に形成された孔に、一部が挿入された状態でろう付け等により接続されている。また、シェル1の内底部には、潤滑油を貯留する油溜め18が設けられている。 A discharge pipe 14 for discharging the compressed refrigerant from the shell 1 is connected to the upper shell 1b. The discharge pipe 14 is partially inserted into a hole formed in the upper portion of the upper shell 1b and connected by brazing or the like. Further, an oil reservoir 18 for storing lubricating oil is provided in the inner bottom portion of the shell 1 .
 フレーム2は、図2および図3に示すように、下方に向かって段階的に先細る円筒状の金属フレームであり、揺動スクロール5を揺動自在に支持するものである。フレーム2の外周面は、例えば焼嵌め等で、メインシェル1aの内壁面に固定されている。フレーム2の上面には、図3に示すように環状の平坦面20が形成されている。平坦面20には、バルブ鋼などの鋼板系材料からなるリング状のスラストプレート25が設けられている。スラストプレート25は、フレーム2のスラスト摺動面として機能し、圧縮機構部3のスラスト荷重を支持する。スラストプレート25は、メインシェル1aの第1内壁面10aの内径よりわずかに小さい外径となるように形成されている。 The frame 2, as shown in FIGS. 2 and 3, is a cylindrical metal frame that tapers downward in stages, and supports the orbiting scroll 5 so that it can oscillate. The outer peripheral surface of the frame 2 is fixed to the inner wall surface of the main shell 1a by, for example, shrink fitting. An annular flat surface 20 is formed on the upper surface of the frame 2 as shown in FIG. A ring-shaped thrust plate 25 made of a steel plate material such as valve steel is provided on the flat surface 20 . The thrust plate 25 functions as a thrust sliding surface of the frame 2 and supports the thrust load of the compression mechanism section 3 . The thrust plate 25 is formed to have an outer diameter slightly smaller than the inner diameter of the first inner wall surface 10a of the main shell 1a.
 また、図3に示すように、フレーム2の筒内部は、収容部21と、回転軸7を支持する主軸受部22と、で構成されている。収容部21は、フレーム2の上部側に設けられている。主軸受部22は、フレーム2の下部側に設けられている。 Further, as shown in FIG. 3 , the inside of the cylinder of the frame 2 is composed of a housing portion 21 and a main bearing portion 22 that supports the rotating shaft 7 . The housing portion 21 is provided on the upper side of the frame 2 . The main bearing portion 22 is provided on the lower side of the frame 2 .
 収容部21は、図3に示すように、下方に向かって段階的に内径が小さくなるように形成されている。収容部21は、平坦面20側に位置する段差部分がオルダム収容部21aとされ、主軸受部22側に位置する段差部分がブッシュ収容部21bとされている。また、オルダム収容部21aおよび平坦面20の一部には、軸孔を挟んで対向するように形成された一対の第1オルダム溝21cが設けられている。第1オルダム溝21cは、後述のオルダムリング54の第1キー部54bが嵌まるキー溝である。 As shown in FIG. 3, the accommodating portion 21 is formed so that the inner diameter gradually decreases downward. The accommodation portion 21 has an Oldham accommodation portion 21a at a stepped portion located on the flat surface 20 side, and a bush accommodation portion 21b at a stepped portion located on the main bearing portion 22 side. A pair of first Oldham grooves 21c are provided in the Oldham housing portion 21a and a portion of the flat surface 20 so as to face each other with the shaft hole interposed therebetween. The first Oldham groove 21c is a key groove into which a first key portion 54b of an Oldham ring 54, which will be described later, is fitted.
 また、フレーム2には、図2に示すように、フレーム2の内外を貫通して形成された返油孔23に、返油管24が挿入されて固定されている。返油孔23は、ブッシュ収容部21bと連通している。返油管24は、収容部21に溜まった潤滑油をロアシェル1cに設けられた油溜め18に戻すために設けられている。なお、返油孔23および返油管24は、一つに限らず、複数設けてもよい。 Further, in the frame 2, as shown in FIG. 2, an oil return pipe 24 is inserted into and fixed to an oil return hole 23 formed through the inside and outside of the frame 2. As shown in FIG. The oil return hole 23 communicates with the bush accommodating portion 21b. The oil return pipe 24 is provided to return the lubricating oil accumulated in the housing portion 21 to the oil reservoir 18 provided in the lower shell 1c. In addition, the number of the oil return hole 23 and the oil return pipe 24 is not limited to one, and a plurality of them may be provided.
 また、フレーム2の外周部には、図1および図2に示すように、低圧空間16bと後述の冷媒取込空間37とを連通する連通路であって、冷媒の通り道である吸入ポート26が回転軸7の軸方向に貫通して設けられている。吸入ポート26は、図3に示すようにメインシェル1aの内壁面の周方向に沿うように長穴形状に形成されている。メイン分岐管13aからシェル1の内部に吸入された冷媒は、吸入ポート26を通り、冷媒取込空間37へ取り込まれた後、後述の圧縮室30に取り込まれる。サブ分岐管13bから吸入された冷媒は、直接、冷媒取込空間37に取り込まれ、その後、圧縮室30に取り込まれる。 As shown in FIGS. 1 and 2, the outer peripheral portion of the frame 2 is provided with a suction port 26, which is a communication passage for communicating the low-pressure space 16b and a refrigerant intake space 37, which will be described later. It is provided so as to pass through the rotating shaft 7 in the axial direction. As shown in FIG. 3, the suction port 26 is formed in an elongated shape along the circumferential direction of the inner wall surface of the main shell 1a. Refrigerant sucked into the shell 1 from the main branch pipe 13a passes through the suction port 26, is taken into the refrigerant take-in space 37, and is taken into the later-described compression chamber 30. As shown in FIG. Refrigerant sucked from the sub-branch pipe 13 b is directly taken into the refrigerant take-in space 37 and then taken into the compression chamber 30 .
 なお、サブ分岐管13bのメインシェル1aとの接続口13baと、吸入ポート26とは、図3では、回転軸7を中心とした角度で軸方向に見て約45°の位置関係にあるように図示されているが、約180°の位置関係が好ましい。言い換えれば、サブ分岐管13bは、電動機6の回転軸7の軸方向に見て吸入ポート26に対して回転軸7を挟んで対向するシェル1の側面に接続されていることが好ましい。これは、圧縮機構部3の後述の第1渦巻突起部4bと第2渦巻突起部5bとを噛み合わせて構成される複数の圧縮室30への冷媒取込口が、回転軸7を中心とした角度で軸方向に見て約180°の位置に2つあるためである。接続口13baと吸入ポート26とが軸方向に見て約180°の位置関係にあることで、スクロール圧縮機100は、各冷媒取込口から各圧縮室30の冷媒取込量のバランスを取ることができる。 In FIG. 3, the connection port 13ba of the sub-branch pipe 13b with the main shell 1a and the suction port 26 are in a positional relationship of about 45° when viewed in the axial direction about the rotation shaft 7. , a positional relationship of about 180° is preferred. In other words, the sub-branch pipe 13b is preferably connected to a side surface of the shell 1 facing the intake port 26 across the rotating shaft 7 when viewed in the axial direction of the rotating shaft 7 of the electric motor 6 . This is because the refrigerant intake ports to the plurality of compression chambers 30 configured by meshing the first spiral projection portion 4b and the second spiral projection portion 5b of the compression mechanism portion 3 are arranged around the rotating shaft 7. This is because there are two at positions of about 180° when viewed in the axial direction at an angle of about 180°. Since the connection port 13ba and the suction port 26 have a positional relationship of about 180° when viewed in the axial direction, the scroll compressor 100 balances the refrigerant intake amount of each compression chamber 30 from each refrigerant intake port. be able to.
 サブ分岐管13bが電動機6の回転軸7の軸方向に見て吸入ポート26に対して回転軸7を挟んで対向するシェル1の側面に接続されている場合、メイン分岐管13aもサブ分岐管13bと同様の位置関係を満たす位置に設けられる。また、図2では吸入ポート26が1つの例を示しているが、メインとサブとの2つあってもよい。この場合、サブ分岐管13bおよびメイン分岐管13aは、メイン側の吸入ポートを基準としてシェル1の側面に対する接続位置を決定することが望ましい。すなわち、サブ分岐管13bおよびメイン分岐管13aは、電動機6の回転軸7の軸方向に見てメイン側の吸入ポートに対して回転軸7を挟んで対向するシェル1の側面に接続されていることが望ましい。 When the sub-branch pipe 13b is connected to the side surface of the shell 1 facing the intake port 26 across the rotating shaft 7 when viewed in the axial direction of the rotating shaft 7 of the electric motor 6, the main branch pipe 13a is also connected to the sub-branch pipe. It is provided at a position that satisfies the same positional relationship as 13b. Also, although FIG. 2 shows an example of one suction port 26, there may be two, a main port and a sub port. In this case, the sub-branch pipe 13b and the main branch pipe 13a are preferably connected to the side surface of the shell 1 with reference to the intake port on the main side. That is, the sub-branch pipe 13b and the main branch pipe 13a are connected to the side surface of the shell 1 that faces the main intake port across the rotating shaft 7 when viewed in the axial direction of the rotating shaft 7 of the electric motor 6. is desirable.
 圧縮機構部3は、電動機6により駆動されることで、メイン分岐管13aおよびサブ分岐管13bから吸入した冷媒を圧縮する機能を有している。圧縮機構部3は、固定スクロール4と揺動スクロール5とを備えている。固定スクロール4は、図2および図3に示すように、円板状の固定台板4aと、固定台板4aの下面に設けられた第1渦巻突起部4bと、を有している。揺動スクロール5は、円板状の揺動台板5aと、揺動台板5aの上面に設けられ、第1渦巻突起部4bと噛み合う第2渦巻突起部5bと、を有している。揺動スクロール5は、固定スクロール4に対して偏心して設置されている。 The compression mechanism section 3 is driven by the electric motor 6 and has a function of compressing the refrigerant sucked from the main branch pipe 13a and the sub-branch pipe 13b. The compression mechanism section 3 includes a fixed scroll 4 and an orbiting scroll 5 . As shown in FIGS. 2 and 3, the fixed scroll 4 has a disk-shaped fixed base plate 4a and a first spiral protrusion 4b provided on the lower surface of the fixed base plate 4a. The oscillating scroll 5 has a disk-shaped oscillating base plate 5a and a second spiral projection 5b provided on the upper surface of the oscillating base plate 5a and meshing with the first spiral projection 4b. The orbiting scroll 5 is installed eccentrically with respect to the fixed scroll 4 .
 固定スクロール4の第1渦巻突起部4bと揺動スクロール5の第2渦巻突起部5bとが噛み合わされて、冷媒を圧縮する圧縮室30が形成されている。圧縮室30は、揺動スクロール5の揺動運動に伴って、スクロールの半径方向の外側から内側へ向かうにしたがって容積が縮小する複数の圧縮室で構成されている。圧縮室30は、第1渦巻突起部4bの先端に設けたチップシール41および揺動台板5aと、第2渦巻突起部5bの先端に設けたチップシール52および固定台板4aと、でシールされている。また、第1渦巻突起部4bおよび第2渦巻突起部5bの外周側には、シェル1の内壁面との間に冷媒取込空間37が形成されている。 The first spiral protrusion 4b of the fixed scroll 4 and the second spiral protrusion 5b of the orbiting scroll 5 are engaged with each other to form a compression chamber 30 for compressing the refrigerant. The compression chambers 30 are composed of a plurality of compression chambers whose volumes decrease from the radially outer side to the inner side of the scroll as the orbiting scroll 5 swings. The compression chamber 30 is sealed by a tip seal 41 and a rocking base plate 5a provided at the tip of the first spiral projection 4b and a tip seal 52 and a fixed bed plate 4a provided at the tip of the second spiral projection 5b. It is A coolant intake space 37 is formed between the inner wall surface of the shell 1 and the outer peripheral side of the first spiral protrusion 4b and the second spiral protrusion 5b.
 固定スクロール4は、例えば鋳鉄等の金属で形成されている。固定スクロール4は、固定台板4aの外周面が、メインシェル1aの第1段部11aに支持された状態で、第1内壁面10aに焼き嵌め等で固定されている。ここで、図2には、フレーム2が周壁を有しておらず、固定スクロール4がシェル1の内壁面に固定されているいわゆるフレーム外壁レス構造の例を示しているが、これに限られない。スクロール圧縮機100は、フレーム2が周壁を有し、固定スクロール4がフレーム2の周壁に固定されているタイプのスクロール圧縮機でもよい。 The fixed scroll 4 is made of metal such as cast iron. The fixed scroll 4 is fixed to the first inner wall surface 10a by shrink fitting or the like while the outer peripheral surface of the fixed base plate 4a is supported by the first step portion 11a of the main shell 1a. Here, FIG. 2 shows an example of a so-called frame outer wall-less structure in which the frame 2 does not have a peripheral wall and the fixed scroll 4 is fixed to the inner wall surface of the shell 1, but it is not limited to this. do not have. The scroll compressor 100 may be a type of scroll compressor in which the frame 2 has a peripheral wall and the fixed scroll 4 is fixed to the peripheral wall of the frame 2 .
 固定台板4aの中央部には、圧縮されて高温かつ高圧となった冷媒を吐出する吐出ポート40が形成されている。固定スクロール4の上面には、吐出ポート40に連通する吐出孔15aが形成された吐出チャンバー15が設けられている。吐出チャンバー15には、冷媒の圧力に応じて吐出孔15aを開閉する吐出弁17がネジ止めして設けられている。吐出弁17は、吐出ポート40に連通する圧縮室30の冷媒が所定の圧力に達したときに、吐出孔15aを開状態にする。圧縮された高温かつ高圧冷媒は、吐出ポート40から固定スクロール4の上部の高圧空間16aに排出され、吐出管14を通り、シェル1の外部へ吐出される。また、第1渦巻突起部4bの先端部には、溝が形成されており、この溝に例えば硬質プラスチックからなるチップシール41が設けられている。 A discharge port 40 for discharging compressed high-temperature and high-pressure refrigerant is formed in the center of the fixed base plate 4a. A discharge chamber 15 having a discharge hole 15 a communicating with a discharge port 40 is provided on the upper surface of the fixed scroll 4 . The discharge chamber 15 is provided with a discharge valve 17 that opens and closes the discharge hole 15a according to the pressure of the refrigerant. The discharge valve 17 opens the discharge hole 15a when the refrigerant in the compression chamber 30 communicating with the discharge port 40 reaches a predetermined pressure. The compressed high-temperature, high-pressure refrigerant is discharged from the discharge port 40 into the high-pressure space 16 a above the fixed scroll 4 , passes through the discharge pipe 14 , and is discharged to the outside of the shell 1 . A groove is formed at the tip of the first spiral projection 4b, and a tip seal 41 made of hard plastic, for example, is provided in this groove.
 揺動スクロール5は、例えばアルミニウム等の金属で形成されている。揺動スクロール5は、図2および図3に示すように、自転運動を阻止するためのオルダムリング54により、固定スクロール4に対して自転運動することなく公転運動を行う。なお、揺動台板5aの第2渦巻突起部5bが形成されていない側の面(図示例の場合は下面)は、揺動スクロールスラスト軸受面として作用する。また、揺動スクロールスラスト軸受面の中心部には、中空円筒形状のボス部51が設けられている。ボス部51の内周面には、揺動軸受が設けられている。揺動軸受は、後述のブッシュ8のスライダ80を回転自在に支持するものである。揺動軸受は、いわゆるジャーナル軸受である。揺動軸受は、中心軸が回転軸7の中心軸と平行になるように設けられている。ボス部51に挿入された回転軸7の偏心軸部71が回転することで、揺動スクロール5はフレーム2のスラスト摺動面上で公転運動する。 The orbiting scroll 5 is made of metal such as aluminum. As shown in FIGS. 2 and 3, the orbiting scroll 5 revolves around the fixed scroll 4 without rotating due to an Oldham ring 54 for preventing rotation. The surface of the rocking base plate 5a on which the second spiral projection 5b is not formed (lower surface in the illustrated example) acts as a rocking scroll thrust bearing surface. A hollow cylindrical boss portion 51 is provided at the center of the orbiting scroll thrust bearing surface. A swing bearing is provided on the inner peripheral surface of the boss portion 51 . The swing bearing rotatably supports a slider 80 of the bush 8, which will be described later. The rocking bearing is a so-called journal bearing. The swing bearing is provided so that its central axis is parallel to the central axis of the rotating shaft 7 . As the eccentric shaft portion 71 of the rotating shaft 7 inserted into the boss portion 51 rotates, the orbiting scroll 5 revolves on the thrust sliding surface of the frame 2 .
 また、第2渦巻突起部5bの先端部には、溝が形成されており、この溝に例えば硬質プラスチックからなるチップシール52が設けられている。揺動スクロールスラスト軸受面には、図2に示すようにボス部51を挟んで対向するように形成された一対の第2オルダム溝53が設けられている。第2オルダム溝53は、後述のオルダムリング54の第2キー部54cが嵌まる長丸形状のキー溝である。一対の第2オルダム溝53は、一対の第2オルダム溝53同士を結ぶ線が、一対の第1オルダム溝21c同士を結ぶ線に対して、直交する関係となるように配置されている。 A groove is formed at the tip of the second spiral projection 5b, and a chip seal 52 made of hard plastic, for example, is provided in the groove. The orbiting scroll thrust bearing surface is provided with a pair of second Oldham grooves 53 formed to face each other with the boss portion 51 interposed therebetween as shown in FIG. The second Oldham groove 53 is an oblong key groove into which a second key portion 54c of an Oldham ring 54, which will be described later, is fitted. The pair of second Oldham grooves 53 are arranged such that the line connecting the pair of second Oldham grooves 53 is perpendicular to the line connecting the pair of first Oldham grooves 21c.
 オルダムリング54は、図3に示すようにリング部54aと、第1キー部54bと、第2キー部54cと、を備えている。リング部54aは、環状であり、フレーム2のオルダム収容部21aに配置されている。第1キー部54bは、リング部54aの下面に設けられている。第1キー部54bは、一対で構成され、フレーム2の一対の第1オルダム溝21cに各々収容される。第2キー部54cは、リング部54aの上面に設けられている。第2キー部54cは、一対で構成され、揺動スクロール5の一対の第2オルダム溝53に各々収容される。揺動スクロール5の第2オルダム溝53をオルダムリング54の第2キー部54cに合わせることで、揺動スクロール5の第2渦巻突起部5bの回転方向の位置が決まる。つまり、オルダムリング54により、フレーム2に対して揺動スクロール5が位置決めされ、フレーム2に対する第2渦巻突起部5bの位相が決定する。 The Oldham ring 54 includes a ring portion 54a, a first key portion 54b, and a second key portion 54c, as shown in FIG. The ring portion 54 a has an annular shape and is arranged in the Oldham housing portion 21 a of the frame 2 . The first key portion 54b is provided on the lower surface of the ring portion 54a. The first key portions 54b are composed of a pair and are accommodated in the pair of first Oldham grooves 21c of the frame 2, respectively. The second key portion 54c is provided on the upper surface of the ring portion 54a. The second key portions 54c are formed in pairs and are accommodated in the pair of second Oldham grooves 53 of the orbiting scroll 5, respectively. By aligning the second Oldham groove 53 of the orbiting scroll 5 with the second key portion 54c of the Oldham ring 54, the rotational position of the second spiral protrusion 5b of the orbiting scroll 5 is determined. That is, the Oldham's ring 54 positions the orbiting scroll 5 with respect to the frame 2 and determines the phase of the second spiral projection 5b with respect to the frame 2 .
 冷媒は、例えば、組成中に、炭素の二重結合を有するハロゲン化炭化水素、炭素の二重結合を有しないハロゲン化炭化水素、自然冷媒、またはそれらを含む混合物を使用することができる。炭素の二重結合を有するハロゲン化炭化水素は、R1234yf(CFCF=CH)、R1234ze(CFCH=CHF)またはR1233zd(CFCH=CHCl)等のHFO冷媒が挙げられる。炭素の二重結合を有しないハロゲン化炭化水素は、R32(CH)、R41(CHF)、R125(CHF)、R134a(CHFCF)、R143a(CFCH)、R410A(R32/R125)またはR407C(R32/R125/R134a)等のHFC冷媒が挙げられる。CHで表されるR32(ジフルオロメタン)、R41等が、混合された冷媒として例示される。自然冷媒は、アンモニア(NH)、二酸化炭素(CO)、プロパン(C)、プロピレン(C)、ブタン(C10)またはイソブタン(CH)等が挙げられる。冷媒は、オゾン層破壊係数がゼロで、低GWPの冷媒が望ましい。 Refrigerants can be used, for example, halogenated hydrocarbons with double carbon bonds in their composition, halogenated hydrocarbons without double carbon bonds, natural refrigerants, or mixtures containing them. Halogenated hydrocarbons having carbon double bonds include HFO refrigerants such as R1234yf ( CF3CF = CH2 ), R1234ze ( CF3CH =CHF) or R1233zd ( CF3CH =CHCl). Halogenated hydrocarbons without carbon double bonds include R32 ( CH3F2 ) , R41 ( CH3F ), R125 ( C2HF3 ), R134a ( CH2FCF2 ), R143a ( CF3CH 3 ), HFC refrigerants such as R410A (R32/R125) or R407C (R32/R125/R134a). R32 ( difluoromethane ) represented by CH2F2 , R41, etc. are exemplified as mixed refrigerants. Natural refrigerants include ammonia ( NH3 ), carbon dioxide ( CO2 ), propane ( C3H8 ), propylene ( C3H6 ), butane ( C4H10 ) or isobutane ( CH3 ), and the like . . Desirably, the refrigerant has zero ozone depletion potential and low GWP.
 電動機6は、図2に示すように、回転軸7を介して連結された圧縮機構部3を駆動させるものである。電動機6は、シェル1の内壁面に焼き嵌め等により固着支持された円環状のステータ6aと、ステータ6aの内側面に対向して回転可能に取り付けられたロータ6bとを備えている。ステータ6aは、例えば電磁鋼板を複数枚積層してなる鉄心に、絶縁層を介して巻線が巻回された構成であり、平面視で、つまり回転軸7の軸方向に見てリング状に形成されている。ロータ6bは、電磁鋼板を複数枚積層してなる鉄心の内部に永久磁石が内蔵された構成であり、中央に上下方向に貫通する貫通孔を有している。 The electric motor 6, as shown in FIG. 2, drives the compression mechanism section 3 connected via the rotating shaft 7. The electric motor 6 includes an annular stator 6a fixedly supported on the inner wall surface of the shell 1 by shrink fitting or the like, and a rotor 6b rotatably mounted facing the inner surface of the stator 6a. The stator 6a has, for example, an iron core formed by laminating a plurality of electromagnetic steel sheets, and windings are wound through an insulating layer. formed. The rotor 6b has a structure in which a permanent magnet is built in an iron core formed by laminating a plurality of electromagnetic steel sheets, and has a through hole penetrating vertically in the center.
 回転軸7は、図2に示すように、金属製の棒状部材である。回転軸7は、主軸部70と、偏心軸部71と、を備えている。主軸部70は、回転軸7の主要部を構成する軸であり、その中心軸がメインシェル1aの中心軸と一致するよう配置されている。主軸部70は、ロータ6bの中心の貫通孔に挿入されてロータ6bに焼嵌め等により固定されている。また、主軸部70には、主軸部70に対して偏心したバランサ12も焼嵌め等により固定されている。バランサ12が主軸部70と一緒に回転することで、他部品とのアンバランスを打ち消している。回転軸7は、フレーム2の中央部に設けられた主軸受部22と、シェル1の下部に溶接等で固着されたサブフレーム9の中央部に設けられた副軸受部90と、によって回転自在に支持されている。  The rotating shaft 7 is a rod-shaped member made of metal, as shown in FIG. The rotating shaft 7 includes a main shaft portion 70 and an eccentric shaft portion 71 . The main shaft portion 70 is a shaft that constitutes the main portion of the rotating shaft 7, and is arranged so that its central axis coincides with the central axis of the main shell 1a. The main shaft portion 70 is inserted into a central through hole of the rotor 6b and fixed to the rotor 6b by shrink fitting or the like. Further, the balancer 12 eccentric with respect to the main shaft portion 70 is also fixed to the main shaft portion 70 by shrink fitting or the like. The balancer 12 rotates together with the main shaft portion 70 to cancel the imbalance with other parts. The rotating shaft 7 is freely rotatable by a main bearing 22 provided in the center of the frame 2 and a sub-bearing 90 provided in the center of a sub-frame 9 fixed to the lower part of the shell 1 by welding or the like. supported by
 偏心軸部71は、その中心軸が主軸部70の中心軸に対して偏心するように、主軸部70の上端部に設けられている。偏心軸部71は、例えば鉄等の金属部材である後述のブッシュ8のスライダ80を介して揺動スクロール5に接続され、揺動スクロール5のボス部51に回転自在に支持されている。回転軸7は、ロータ6bの回転に伴って回転し、偏心軸部71により揺動スクロール5を揺動運動である公転旋回運動させる。また、主軸部70および偏心軸部71の内部には、通油孔72が、軸方向に沿って上下に貫通して設けられている。 The eccentric shaft portion 71 is provided at the upper end portion of the main shaft portion 70 so that its central axis is eccentric with respect to the central axis of the main shaft portion 70 . The eccentric shaft portion 71 is connected to the orbiting scroll 5 through a slider 80 of a bushing 8 (to be described later), which is a metal member such as iron, and is rotatably supported by a boss portion 51 of the orbiting scroll 5 . The rotating shaft 7 rotates with the rotation of the rotor 6b, and the eccentric shaft portion 71 causes the orbiting scroll 5 to perform a revolving motion, which is an oscillating motion. Further, inside the main shaft portion 70 and the eccentric shaft portion 71, an oil passage hole 72 is provided so as to penetrate vertically along the axial direction.
 ブッシュ8は、図2および図3に示すように、スライダ80と、バランスウェイト81と、を備えている。スライダ80は、鍔が形成された筒状の部材であり、ボス部51に回転自在に挿入されている。スライダ80の内部には、偏心軸部71が挿入されている。つまり、スライダ80は、揺動スクロール5と偏心軸部71との間に挿入されている。スライダ80は、揺動スクロール5の揺動半径を可変とするとともに、揺動スクロール5を公転旋回運動させるために支承するものである。 The bushing 8 includes a slider 80 and a balance weight 81, as shown in FIGS. The slider 80 is a tubular member having a flange, and is rotatably inserted into the boss portion 51 . An eccentric shaft portion 71 is inserted inside the slider 80 . That is, the slider 80 is inserted between the orbiting scroll 5 and the eccentric shaft portion 71 . The slider 80 allows the swing radius of the swing scroll 5 to be variable and supports the swing scroll 5 to revolve.
 バランスウェイト81は、公転旋回運動により発生する揺動スクロール5の遠心力を相殺するために設けられている。バランスウェイト81は、円環状であり、揺動スクロール5に働く遠心力の方向と反対側に略C字状のウェイト部81aを備えている。スクロール圧縮機100は、バランスウェイト81によって、第2渦巻突起部5bが第1渦巻突起部4bに押し付けられることを軽減できる。バランスウェイト81は、例えばスライダ80の鍔に焼嵌め等により固定されている。 The balance weight 81 is provided to offset the centrifugal force of the orbiting scroll 5 generated by the revolution orbiting motion. The balance weight 81 has an annular shape and has a substantially C-shaped weight portion 81 a on the side opposite to the direction of the centrifugal force acting on the orbiting scroll 5 . In the scroll compressor 100, the balance weight 81 can reduce the pressure of the second spiral protrusion 5b against the first spiral protrusion 4b. The balance weight 81 is fixed to the collar of the slider 80 by shrink fitting or the like, for example.
 サブフレーム9は、金属製のフレームである。サブフレーム9には、図2に示すように、副軸受部90と、オイルポンプ91と、が設けられている。副軸受部90は、サブフレーム9の中央に設けられたボールベアリングである。オイルポンプ91は、シェル1の油溜め18に貯留された潤滑油を吸い上げるためのポンプであり、副軸受部90の下側に設けられている。 The subframe 9 is a metal frame. The sub-frame 9 is provided with a sub-bearing portion 90 and an oil pump 91 as shown in FIG. The sub-bearing portion 90 is a ball bearing provided in the center of the sub-frame 9 . The oil pump 91 is a pump for sucking up lubricating oil stored in the oil sump 18 of the shell 1 and is provided below the sub-bearing portion 90 .
 潤滑油は、図2に示すように、油溜め18に貯留されている。潤滑油は、オイルポンプ91で吸い上げられて、回転軸7の通油孔72を通り、圧縮機構部3等の機械的に接触するパーツ同士の摩耗低減、摺動部の温度調節およびシール性の改善を行う。潤滑油としては、潤滑特性、電気絶縁性、安定性、冷媒溶解性および低温流動性などに優れるとともに、適度な粘度の油が好適である。潤滑油には、例えばナフテン系、ポリオールエステル(POE)、ポリビニールエーテル(PVE)またはポリアルキレングリコール(PAG)の油を使用することができる。 The lubricating oil is stored in the oil reservoir 18 as shown in FIG. The lubricating oil is sucked up by the oil pump 91, passes through the oil passage hole 72 of the rotating shaft 7, and is used to reduce wear between mechanically contacting parts such as the compression mechanism 3, adjust the temperature of the sliding parts, and improve sealing performance. make improvements. As the lubricating oil, an oil that has excellent lubricating properties, electrical insulation properties, stability, refrigerant solubility, low-temperature fluidity, etc., and an appropriate viscosity is suitable. Lubricating oils can be, for example, naphthenic, polyol ester (POE), polyvinyl ether (PVE) or polyalkylene glycol (PAG) oils.
 次に、スクロール圧縮機100の動作について説明する。給電部19の給電端子19bに通電すると、ステータ6aとロータ6bとにトルクが発生し、これに伴って回転軸7が回転する。回転軸7の回転は、偏心軸部71およびブッシュ8を介して揺動スクロール5に伝えられる。回転駆動力が伝達された揺動スクロール5は、オルダムリング54より自転を規制され、固定スクロール4に対して偏心公転運動する。その際、揺動スクロール5の他方の面がスラストプレート25と摺動する。 Next, the operation of the scroll compressor 100 will be described. When the power supply terminal 19b of the power supply unit 19 is energized, torque is generated between the stator 6a and the rotor 6b, and the rotary shaft 7 rotates accordingly. Rotation of the rotating shaft 7 is transmitted to the orbiting scroll 5 via the eccentric shaft portion 71 and the bushing 8 . The orbiting scroll 5 , to which the rotational driving force is transmitted, is restrained from rotating by the Oldham ring 54 and performs eccentric orbital motion with respect to the fixed scroll 4 . At that time, the other surface of the orbiting scroll 5 slides on the thrust plate 25 .
 揺動スクロール5の揺動運動に伴い、吸入管13からシェル1の内部に吸入された冷媒は圧縮室30に取り込まれる。なお、吸入管13を構成するメイン分岐管13aおよびサブ分岐管13bのそれぞれからの冷媒の流れについては改めて説明する。圧縮室30に取り込まれた冷媒は、揺動スクロール5の偏心公転運動に伴い、スクロールの半径方向の外側から内側へ移動しながら体積を減じられて圧縮される。揺動スクロール5の偏心公転運転時、揺動スクロール5は自身の遠心力により、ブッシュ8とともに径方向に移動し、第2渦巻突起部5bと第1渦巻突起部4bの側壁面同士が密接する。圧縮された冷媒は、固定スクロール4の吐出ポート40から吐出チャンバー15の吐出孔15aに至り、吐出弁17に逆らってシェル1の外部に吐出される。 As the orbiting scroll 5 swings, the refrigerant sucked into the shell 1 from the suction pipe 13 is taken into the compression chamber 30 . The flow of the refrigerant from each of the main branch pipe 13a and the sub-branch pipe 13b that constitute the suction pipe 13 will be explained again. The refrigerant taken into the compression chamber 30 is reduced in volume and compressed while moving from the outside to the inside in the radial direction of the scroll as the orbiting scroll 5 eccentrically revolves. During the eccentric orbital operation of the orbiting scroll 5, the orbiting scroll 5 moves in the radial direction together with the bush 8 due to its own centrifugal force, and the side wall surfaces of the second spiral projection 5b and the first spiral projection 4b come into close contact with each other. . The compressed refrigerant flows from the discharge port 40 of the fixed scroll 4 to the discharge hole 15 a of the discharge chamber 15 and is discharged outside the shell 1 against the discharge valve 17 .
 そして、スクロール圧縮機100から吐出された冷媒は、冷媒回路内の油分離機により冷媒と油とに分離される。冷媒は、そのまま冷媒回路を循環し、再びスクロール圧縮機100に吸入される。分離された油は、冷媒回路を循環せず、スクロール圧縮機100の後述の配管133(後述の図4参照)に返油される。 The refrigerant discharged from the scroll compressor 100 is separated into refrigerant and oil by an oil separator in the refrigerant circuit. The refrigerant circulates through the refrigerant circuit as it is and is sucked into the scroll compressor 100 again. The separated oil does not circulate in the refrigerant circuit and is returned to a pipe 133 (described later) of the scroll compressor 100 (see FIG. 4 described later).
 ところで、従来のスクロール圧縮機は、吸入圧力損失の低減を図ろうとすると、フレームに設けた吸入ポートを回転軸の径方向内側に延ばして拡大する必要があり、結果として揺動スクロールの揺動台板を小さくせざるを得ず、大容量化を図れない。 By the way, in order to reduce the suction pressure loss in the conventional scroll compressor, it is necessary to expand the suction port provided in the frame radially inwardly of the rotating shaft. The plate must be made small, and a large capacity cannot be achieved.
 これに対し、実施の形態1のスクロール圧縮機100は、メイン分岐管13aの他に、冷媒取込空間37に連通するサブ分岐管13bをシェル1に接続した構成としたことで、吸入圧力損失の低減と大容量化との両立を可能としている。以下、この点について説明する。 On the other hand, in the scroll compressor 100 of Embodiment 1, in addition to the main branch pipe 13a, the sub-branch pipe 13b communicating with the refrigerant intake space 37 is connected to the shell 1, so that the suction pressure loss It is possible to achieve both a reduction in power consumption and an increase in capacity. This point will be described below.
 図4は、実施の形態1に係るスクロール圧縮機の冷媒吸入経路を示す図である。冷媒回路を構成する配管133のスクロール圧縮機100側の出口端133aには、三又配管132の入口端132aがたとえばろう付けなどで接続されている。三又配管132の二つの出口端132bおよび132cには、連結管131aおよび131bを介して吸入管13が接続されている。具体的には、三又配管132の出口端132bには連結管131aを介してメイン分岐管13aが接続され、三又配管132の出口端132cには連結管131bを介してサブ分岐管13bが接続されている。メイン分岐管13aおよびサブ分岐管13bは、ろう付けなどで三又配管132に接続されている。 FIG. 4 is a diagram showing a refrigerant intake path of the scroll compressor according to Embodiment 1. FIG. An inlet end 132a of a three-pronged pipe 132 is connected to an outlet end 133a of the pipe 133 constituting the refrigerant circuit on the side of the scroll compressor 100 by, for example, brazing. The suction pipe 13 is connected to two outlet ends 132b and 132c of the three-pronged pipe 132 via connecting pipes 131a and 131b. Specifically, the main branch pipe 13a is connected to the outlet end 132b of the three-pronged pipe 132 via a connecting pipe 131a, and the sub-branch pipe 13b is connected to the outlet end 132c of the three-pronged pipe 132 via a connecting pipe 131b. It is connected. The main branch pipe 13a and the sub-branch pipe 13b are connected to the three-way pipe 132 by brazing or the like.
 冷媒回路からスクロール圧縮機100に吸入される冷媒は、配管133を通って三又配管132により二経路に分岐され、メイン分岐管13aおよびサブ分岐管13bのそれぞれからシェル1の内部に吸入される。なお、配管133は、配管133が接続される冷媒回路の配管の下流端の向きによって直線配管または屈曲配管となる。具体的には、冷媒回路の配管の下流端が下向きで且つ三又配管132の入口端132aの上方に位置する場合、配管133は図4の実線で示すように直線配管となる。一方、冷媒回路の配管の下流端が横向きの場合、図4の点線で示すように配管133は屈曲配管となる。 Refrigerant sucked into the scroll compressor 100 from the refrigerant circuit passes through a pipe 133 and is branched into two paths by a three-way pipe 132, and is sucked into the shell 1 from each of the main branch pipe 13a and the sub-branch pipe 13b. . The pipe 133 may be a straight pipe or a curved pipe depending on the orientation of the downstream end of the pipe of the refrigerant circuit to which the pipe 133 is connected. Specifically, when the downstream end of the pipe of the refrigerant circuit faces downward and is positioned above the inlet end 132a of the three-pronged pipe 132, the pipe 133 becomes a straight pipe as indicated by the solid line in FIG. On the other hand, when the downstream end of the pipe of the refrigerant circuit is oriented horizontally, the pipe 133 becomes a curved pipe as indicated by the dotted line in FIG.
 メイン分岐管13aからシェル内部の低圧空間16bに吸入された冷媒は、電動機部品であるステータ6aおよびロータ6bを冷却しつつ、フレーム2の吸入ポート26を通って冷媒取込空間37に取り込まれた後、圧縮室30に取り込まれる。もう一方のサブ分岐管13bからシェル内部に吸入された冷媒は、吸入ポート26を介さずに直接、冷媒取込空間37に取り込まれた後、圧縮室30に取り込まれる。ここで、メイン分岐管13aからシェル内部の低圧空間16bに入った冷媒は、圧縮室30に取り込まれるまでの間に吸入ポート26を通過することで吸入圧力損失が生じる。一方、サブ分岐管13bからシェル内部に吸入された冷媒は、吸入ポート26を介さず、直接、冷媒取込空間37に取り込まれた後、圧縮室30に取り込まれることで、吸入圧力損失を低減できる。 The refrigerant sucked into the low-pressure space 16b inside the shell from the main branch pipe 13a cools the stator 6a and the rotor 6b, which are the parts of the electric motor, and is drawn into the refrigerant intake space 37 through the intake port 26 of the frame 2. After that, it is taken into the compression chamber 30 . Refrigerant sucked into the shell from the other sub-branch pipe 13 b is taken directly into the refrigerant take-in space 37 without going through the suction port 26 and then taken into the compression chamber 30 . Here, the refrigerant that has entered the low-pressure space 16b inside the shell from the main branch pipe 13a passes through the suction port 26 before being taken into the compression chamber 30, thereby causing suction pressure loss. On the other hand, the refrigerant sucked into the shell from the sub-branch pipe 13b is directly taken into the refrigerant take-in space 37 without going through the suction port 26, and then taken into the compression chamber 30, thereby reducing the suction pressure loss. can.
 以上のように、スクロール圧縮機100は、吸入管13からシェル1の内部に吸入される冷媒の一部を、サブ分岐管13bから直接、冷媒取込空間37に取り込む。これにより、スクロール圧縮機100は、シェル1の内部に吸入する冷媒の全部をメイン分岐管13aから吸入ポート26を介して冷媒取込空間37に取り込む場合に比べて吸入圧力損失を低減できる。よって、スクロール圧縮機100は、メイン分岐管13aから低圧空間16b内に吸入した冷媒によって従来通り電動機部品を冷却しつつ、吸入ポート26の開口を径方向内側に延ばして大きくすることなく、吸入圧力損失の低減を図ることができる。 As described above, the scroll compressor 100 takes part of the refrigerant sucked into the shell 1 from the suction pipe 13 directly into the refrigerant intake space 37 from the sub-branch pipe 13b. As a result, the scroll compressor 100 can reduce the suction pressure loss compared to the case where all the refrigerant sucked into the shell 1 is taken into the refrigerant take-in space 37 via the main branch pipe 13 a and the suction port 26 . Therefore, the scroll compressor 100 cools the motor parts by the refrigerant sucked into the low-pressure space 16b from the main branch pipe 13a as in the conventional art, while increasing the suction pressure without extending the opening of the suction port 26 radially inward. Loss can be reduced.
 このように、スクロール圧縮機100は、吸入ポート26を大きくすることなく吸入圧力損失を低減できるため、結果として揺動台板5aを小さくする必要がない。このため、スクロール圧縮機100は、圧縮室30の容量を拡大することができる。つまり、スクロール圧縮機100は、吸入圧力損失の低減と大容量化とを両立することができる。 In this way, the scroll compressor 100 can reduce the suction pressure loss without enlarging the suction port 26, and as a result, it is not necessary to reduce the size of the rocking bed plate 5a. Therefore, the scroll compressor 100 can expand the capacity of the compression chamber 30 . That is, the scroll compressor 100 can achieve both a reduction in suction pressure loss and an increase in capacity.
 また、スクロール圧縮機100の高回転数時には、メイン分岐管13aから低圧空間16bに取り込まれた油を含む冷媒が、回転するロータ6bおよびバランサ12により巻き上げられる。これにより、冷媒とともに圧縮室30に取り込まれる油量が多くなり、油上がりが増加する傾向にある。しかし、スクロール圧縮機100では、冷媒回路からの冷媒の一部をサブ分岐管13bに分岐させ、メイン分岐管13aから低圧空間16bに吸入する冷媒の量を減らすことで、巻き上げに起因する油上がりを抑えることが期待できる。 Also, when the scroll compressor 100 rotates at a high speed, the refrigerant containing oil drawn into the low-pressure space 16b from the main branch pipe 13a is drawn up by the rotating rotor 6b and the balancer 12. As a result, the amount of oil taken into the compression chamber 30 together with the refrigerant increases, which tends to increase the oil discharge. However, in the scroll compressor 100, part of the refrigerant from the refrigerant circuit is branched to the sub-branch pipe 13b to reduce the amount of refrigerant sucked from the main branch pipe 13a into the low-pressure space 16b. can be expected to be reduced.
 なお、ここでは、配管133の下流が2つに分岐しているが、3つ以上に分岐した構成としてもよい。配管133の下流が3つ以上に分岐した構成では、複数の分岐管のうちの一部の配管が冷媒取込空間37に連通するようにシェル1に接続され、複数の分岐管のうちの残りの配管が、低圧空間16bに連通するようにシェル1に接続されていればよい。 Although the downstream of the pipe 133 is branched into two here, it may be branched into three or more. In a configuration in which the downstream of the pipe 133 branches into three or more, some of the plurality of branch pipes are connected to the shell 1 so as to communicate with the refrigerant intake space 37, and the rest of the plurality of branch pipes is connected to the shell 1 so as to communicate with the low-pressure space 16b.
 以上説明したように、実施の形態1のスクロール圧縮機100は、シェル1と、冷媒をシェル1の内部に吸入する吸入管13と、第1渦巻突起部4bが設けられた固定台板4aを有する固定スクロール4と、第1渦巻突起部4bと噛み合う第2渦巻突起部5bが設けられた揺動台板5aを有し、固定スクロール4との間に冷媒を圧縮する圧縮室30を形成する揺動スクロール5と、を備える。スクロール圧縮機100はさらに、揺動スクロール5を駆動する電動機6と、シェル1の内壁面に固定され、揺動スクロール5に対して圧縮室30とは反対側で揺動スクロール5を支持するフレーム2と、を備える。スクロール圧縮機100は、吸入管13からシェル1の内部に吸入された冷媒を、フレーム2に形成された吸入ポート26を介して、第1渦巻突起部4bおよび第2渦巻突起部5bの外周側の冷媒取込空間37に取り込んだ後、圧縮室30に取り込んで圧縮する。吸入管13は複数の分岐管を有し、複数の分岐管のそれぞれがシェル1の内部に連通するようにシェル1に接続されている。複数の分岐管のうちの一部の分岐管であるサブ分岐管13bは、冷媒取込空間37に連通している。 As described above, the scroll compressor 100 of the first embodiment includes the shell 1, the suction pipe 13 for sucking the refrigerant into the shell 1, and the fixed base plate 4a provided with the first spiral protrusion 4b. and a rocking bed plate 5a provided with a second spiral protrusion 5b that meshes with the first spiral protrusion 4b. A swing scroll 5 is provided. The scroll compressor 100 further includes an electric motor 6 that drives the orbiting scroll 5, and a frame that is fixed to the inner wall surface of the shell 1 and supports the orbiting scroll 5 on the opposite side of the orbiting scroll 5 from the compression chamber 30. 2 and a. The scroll compressor 100 passes the refrigerant sucked into the shell 1 from the suction pipe 13 through the suction port 26 formed in the frame 2 to the outer peripheral side of the first spiral projection 4b and the second spiral projection 5b. After being taken into the refrigerant take-in space 37, it is taken into the compression chamber 30 and compressed. The intake pipe 13 has a plurality of branch pipes, and each of the plurality of branch pipes is connected to the shell 1 so as to communicate with the inside of the shell 1 . A sub-branch pipe 13 b that is a part of the plurality of branch pipes communicates with the refrigerant intake space 37 .
 上記構成により、スクロール圧縮機100は、吸入圧力損失の低減と大容量化との両立を図ることができる。 With the above configuration, the scroll compressor 100 can achieve both a reduction in suction pressure loss and an increase in capacity.
 また、電動機6は、シェル1の内部においてフレーム2に対して揺動スクロール5とは反対側の空間に配置されており、その空間に、複数の分岐管のうちの残りの分岐管であるメイン分岐管13aが連通している。 Also, the electric motor 6 is arranged in a space on the opposite side of the frame 2 to the orbiting scroll 5 inside the shell 1, and in that space is the main branch pipe which is the remaining branch pipe of the plurality of branch pipes. The branch pipe 13a is in communication.
 上記構成により、スクロール圧縮機100は、メイン分岐管13aからシェル1内に吸入した冷媒によって電動機6を構成する部品を冷却することができる。 With the above configuration, the scroll compressor 100 can cool the parts that make up the electric motor 6 with the refrigerant sucked into the shell 1 from the main branch pipe 13a.
 また、スクロール圧縮機100は、メイン分岐管13aの管径>サブ分岐管13bの管径の関係を満たす。 Further, the scroll compressor 100 satisfies the relationship of pipe diameter of the main branch pipe 13a>pipe diameter of the sub-branch pipe 13b.
 上記構成により、スクロール圧縮機100は主としてメイン分岐管13aから冷媒を吸入できる。 With the above configuration, the scroll compressor 100 can suck refrigerant mainly from the main branch pipe 13a.
 また、メイン分岐管13aおよびサブ分岐管13bは、電動機6の回転軸7の軸方向に見て吸入ポート26に対して回転軸7を挟んで対向するシェル1の側面に接続されている。 Also, the main branch pipe 13a and the sub-branch pipe 13b are connected to a side surface of the shell 1 facing the intake port 26 across the rotation shaft 7 when viewed in the axial direction of the rotation shaft 7 of the electric motor 6 .
 上記構成により、スクロール圧縮機100は、各冷媒取込口から各圧縮室30への冷媒取込量のバランスを取ることができる。 With the above configuration, the scroll compressor 100 can balance the refrigerant intake amount from each refrigerant intake port to each compression chamber 30 .
実施の形態2.
 実施の形態2は、実施の形態1に係るスクロール圧縮機100にさらに流量調整弁134を備えた構成である。その他の構成については実施の形態1と同一または同等である。以下、実施の形態2が実施の形態1と異なる構成を中心に説明するものとし、本実施の形態2で説明されていない構成は実施の形態1と同様である。
Embodiment 2.
Embodiment 2 is a configuration in which scroll compressor 100 according to Embodiment 1 is further provided with flow rate control valve 134 . Other configurations are the same as or equivalent to those of the first embodiment. Hereinafter, the second embodiment will be described with a focus on the configuration different from the first embodiment, and the configurations not described in the second embodiment are the same as those in the first embodiment.
 図5は、実施の形態2に係るスクロール圧縮機の冷媒吸入経路を示す図である。実施の形態2は、サブ分岐管13bの冷媒流量を調整する流量調整弁134をさらに備えた点が実施の形態1と異なる。流量調整弁134は、例えば電子膨張弁で構成される。流量調整弁134は、配管1310bに設けられている。配管1310bは、サブ分岐管13bのシェル1との接続口13ba(図3参照)と、接続口13baよりも上流であって、冷媒回路からの冷媒をサブ分岐管13bに向けて分岐する分岐口132dと、を接続する配管である。分岐口132dは、三又配管132内に位置している。 FIG. 5 is a diagram showing a refrigerant intake path of a scroll compressor according to Embodiment 2. FIG. Embodiment 2 differs from Embodiment 1 in that it further includes a flow control valve 134 that regulates the flow rate of refrigerant in sub-branch pipe 13b. The flow regulating valve 134 is composed of, for example, an electronic expansion valve. The flow control valve 134 is provided on the pipe 1310b. The pipe 1310b has a connection port 13ba (see FIG. 3) with the shell 1 of the sub-branch pipe 13b, and a branch port that is upstream of the connection port 13ba and branches the refrigerant from the refrigerant circuit toward the sub-branch pipe 13b. 132d and a pipe connecting the . The branch port 132 d is located inside the three-way pipe 132 .
 配管1310bは、具体的にはサブ分岐管13bと、連結管131bと、三又配管132において分岐口132dよりも下流の配管部分と、を含んでいる。図5には、連結管131bに流量調整弁134が設けられた構成を示しているが、サブ分岐管13bに設けられてもよいし、三又配管132において分岐口132dよりも下流の配管部分に設けられてもよい。要するに、流量調整弁134は、上述したように接続口13baと分岐口132dとを接続する配管1310bに設けられていればよい。 The pipe 1310b specifically includes a sub-branch pipe 13b, a connecting pipe 131b, and a pipe portion downstream of the branch port 132d in the three-pronged pipe 132. Although FIG. 5 shows a configuration in which the flow rate adjustment valve 134 is provided in the connecting pipe 131b, it may be provided in the sub-branch pipe 13b, or in the three-pronged pipe 132, a pipe portion downstream of the branch port 132d. may be provided in In short, the flow regulating valve 134 may be provided in the pipe 1310b connecting the connection port 13ba and the branch port 132d as described above.
 流量調整弁134は、図示しない制御装置によって制御される。流量調整弁134の制御は、目的によって以下の2通りに分けられる。 The flow control valve 134 is controlled by a control device (not shown). Control of the flow regulating valve 134 is divided into the following two types depending on the purpose.
(1)電動機6を冷却する目的
 スクロール圧縮機100の低回転数時には、冷媒回路の冷媒循環量が少なくなるため、シェル1の内部に吸入される冷媒自体も少なくなる。シェル1の内部に吸入される冷媒が少なくなるなか、その一部がサブ分岐管13bからシェル1の内部に吸入されると、メイン分岐管13aから低圧空間16b内に流入する冷媒量がより少なくなり、電動機部品を十分に冷却できなくなる。つまり、低回転数時には、電動機部品の冷却不足が生じる可能性がある。
(1) Purpose of Cooling Electric Motor 6 When the scroll compressor 100 rotates at a low speed, the amount of refrigerant circulating in the refrigerant circuit decreases, so the amount of refrigerant sucked into the shell 1 decreases. As the amount of refrigerant drawn into the shell 1 decreases, if a portion of the refrigerant is drawn into the shell 1 through the sub-branch pipe 13b, the amount of refrigerant flowing into the low-pressure space 16b from the main branch pipe 13a is reduced. It becomes impossible to sufficiently cool the electric motor parts. In other words, there is a possibility of insufficient cooling of the motor components at low rotational speeds.
 よって、電動機6を冷却する目的で流量調整弁134を制御する場合には、電動機6の回転数が予め設定された第1回転数よりも低いとき、流量調整弁134は閉じられる。流量調整弁134が閉じられることで、スクロール圧縮機100は、冷媒回路からの冷媒を分岐せずに全てメイン分岐管13aから低圧空間16bに吸入し、電動機部品の冷却に用いる。これにより、スクロール圧縮機100は、低回転数時の電動機部品の冷却不足を抑制でき、電動機部品を十分に冷却することができる。 Therefore, when the flow control valve 134 is controlled for the purpose of cooling the electric motor 6, the flow control valve 134 is closed when the rotation speed of the electric motor 6 is lower than the preset first rotation speed. When the flow control valve 134 is closed, the scroll compressor 100 sucks all the refrigerant from the refrigerant circuit into the low-pressure space 16b from the main branch pipe 13a without branching, and uses it for cooling the motor parts. As a result, the scroll compressor 100 can suppress insufficient cooling of the electric motor parts at low rotational speeds, and can sufficiently cool the electric motor parts.
(2)スクロール圧縮機100内の油量が減らないように油量を調整する目的
 電動機6の回転数が低回転数から高回転数に上昇すると、冷媒回路の冷媒循環量が増加し、シェル1の内部に吸入される冷媒も多くなる。シェル1の内部に吸入される冷媒が多くなると、巻き上げに起因する油上がりが増加する。よって、電動機6の回転数が低回転数から高回転数に上昇する際には、流量調整弁134の開度は徐々に大きくされる。具体的には、回転数が予め設定された第2回転数よりも高い回転数に上昇する際には、流量調整弁134の開度は徐々に大きくされる。なお、「徐々に」とは、段階的、一次関数的および二次関数的、の形態を含むものとする。ここで、一次関数的とは、開度の増加量が開度の変更開始から終了に渡って一定である形態を指す。二次関数的とは、開度の増加量が開度の変更開始から終了に向かうに連れて増加する形態を指す。
(2) The purpose of adjusting the amount of oil in the scroll compressor 100 so that the amount of oil in the scroll compressor 100 does not decrease When the rotation speed of the electric motor 6 increases from low rotation speed to high rotation speed, the amount of refrigerant circulating in the refrigerant circuit increases. Refrigerant sucked into the inside of 1 also increases. As the amount of refrigerant sucked into the shell 1 increases, the amount of oil that rises due to hoisting increases. Therefore, when the number of revolutions of the electric motor 6 increases from the low number of revolutions to the high number of revolutions, the opening degree of the flow control valve 134 is gradually increased. Specifically, when the rotation speed increases to a rotation speed higher than the preset second rotation speed, the opening degree of the flow control valve 134 is gradually increased. It should be noted that "gradually" includes stepwise, linear and quadratic forms. Here, linearly functional refers to a mode in which the amount of increase in the degree of opening is constant from the start to the end of change in the degree of opening. The quadratic function refers to a form in which the amount of increase in the opening degree increases from the start to the end of the change in the opening degree.
 このように、電動機6の回転数の上昇に伴い、流量調整弁134の開度が徐々に大きくされることで、サブ分岐管13bから冷媒取込空間37に吸入される冷媒が徐々に多くなる。これにより、メイン分岐管13aから低圧空間16bに吸入される冷媒が徐々に減り、スクロール圧縮機100は油上がりを抑えることができる。その結果、スクロール圧縮機100は、内部の油量が減ることを抑制できる。 In this way, as the rotational speed of the electric motor 6 increases, the degree of opening of the flow control valve 134 is gradually increased, so that the amount of refrigerant sucked into the refrigerant intake space 37 from the sub-branch pipe 13b gradually increases. . As a result, the amount of refrigerant sucked from the main branch pipe 13a into the low-pressure space 16b is gradually reduced, and the scroll compressor 100 can suppress oil rise. As a result, the scroll compressor 100 can suppress a decrease in the amount of oil inside.
 なお、ここでは、流量調整弁134の制御が、電動機6の回転数に基づいて行われる例を説明したが、冷媒の吸入圧力に基づいて行われるようにしてもよい。具体的には、吸入圧力が高くなると冷媒の流量が多くなって油の巻き上げが多くなるため、電動機6の回転数に基づく場合と同様に、吸入圧力が高くなる際には、流量調整弁134は、開度が徐々に大きく制御される。また、流量調整弁134の制御は、電動機6の回転数および冷媒の吸入圧力の両方に基づいて行われるようにしてもよい。つまり、流量調整弁134の制御は、電動機6の回転数および冷媒の吸入圧力の一方または両方に基づいて行われる。 Although the flow control valve 134 is controlled based on the rotation speed of the electric motor 6, it may be controlled based on the suction pressure of the refrigerant. Specifically, when the suction pressure increases, the flow rate of the refrigerant increases and more oil is swirled up. , the degree of opening is gradually increased. Further, the flow control valve 134 may be controlled based on both the rotation speed of the electric motor 6 and the suction pressure of the refrigerant. In other words, the flow control valve 134 is controlled based on one or both of the rotational speed of the electric motor 6 and the suction pressure of the refrigerant.
 実施の形態2のスクロール圧縮機100は、実施の形態1と同様の効果が得られるとともに、接続口13baと分岐口132dとの間の配管1310bに流量調整弁134が設けられているので、以下の効果が得られる。すなわち、スクロール圧縮機100は、流量調整弁134の制御次第で、低回転数時の電動機部品の冷却不足の抑制と、低回転数から高回転数に上昇する際のスクロール圧縮機100内部の油量の低減の抑制と、を図ることができる。 The scroll compressor 100 of Embodiment 2 can obtain the same effect as that of Embodiment 1, and the flow control valve 134 is provided in the pipe 1310b between the connection port 13ba and the branch port 132d. effect is obtained. That is, the scroll compressor 100 is controlled by the flow control valve 134 to suppress insufficient cooling of the motor parts at low rotational speeds and reduce the oil inside the scroll compressor 100 when the rotational speed is increased from low to high. It is possible to suppress the reduction of the amount.
実施の形態3.
 本実施の形態3は、実施の形態2のスクロール圧縮機100を備えた冷凍サイクル装置に関するものである。
Embodiment 3.
The third embodiment relates to a refrigeration cycle apparatus including the scroll compressor 100 of the second embodiment.
 図6は、実施の形態3に係る冷凍サイクル装置の冷媒回路を示す図である。
 冷凍サイクル装置105は、実施の形態2のスクロール圧縮機100と、凝縮器101と、減圧装置としての膨張弁102と、蒸発器103と、を有し、冷媒が循環する冷媒回路104を備えている。スクロール圧縮機100から吐出されたガス冷媒は凝縮器101に流入し、凝縮器101を通過する空気と熱交換して高圧液冷媒となって流出する。凝縮器101を流出した高圧液冷媒は膨張弁102で減圧されて低圧の気液二相冷媒となり、蒸発器103に流入する。蒸発器103に流入した低圧の気液二相冷媒は、蒸発器103を通過する空気と熱交換して低圧ガス冷媒となり、メイン分岐管13aおよびサブ分岐管13bを介して再びスクロール圧縮機100に吸入される。
6 is a diagram showing a refrigerant circuit of a refrigeration cycle apparatus according to Embodiment 3. FIG.
Refrigeration cycle device 105 includes scroll compressor 100 of Embodiment 2, condenser 101, expansion valve 102 as a decompression device, and evaporator 103, and includes refrigerant circuit 104 in which refrigerant circulates. there is The gas refrigerant discharged from the scroll compressor 100 flows into the condenser 101, exchanges heat with the air passing through the condenser 101, and flows out as a high-pressure liquid refrigerant. The high-pressure liquid refrigerant that has flowed out of the condenser 101 is decompressed by the expansion valve 102 to become a low-pressure gas-liquid two-phase refrigerant and flows into the evaporator 103 . The low-pressure gas-liquid two-phase refrigerant that has flowed into the evaporator 103 exchanges heat with the air passing through the evaporator 103 to become a low-pressure gas refrigerant, and is supplied to the scroll compressor 100 again via the main branch pipe 13a and the sub-branch pipe 13b. inhaled.
 冷凍サイクル装置105はさらに、冷媒回路104を制御する制御装置106を備えている。制御装置106は、マイクロプロセッサユニットにより構成され、CPU、RAMおよびROM等を備えており、ROMには制御プログラム等が記憶されている。制御装置106は、マイクロプロセッサユニットに限定するものではない。例えば、制御装置106は、ファームウェア等の更新可能なもので構成されていてもよい。また、制御装置106は、プログラムモジュールであって、図示しないCPU等からの指令により、実行されるものであってもよい。 The refrigeration cycle device 105 further includes a control device 106 that controls the refrigerant circuit 104 . The control device 106 is composed of a microprocessor unit and includes a CPU, RAM, ROM, etc. Control programs and the like are stored in the ROM. Controller 106 is not limited to a microprocessor unit. For example, controller 106 may be configured with something that can be updated, such as firmware. Also, the control device 106 may be a program module that is executed by a command from a CPU (not shown) or the like.
 制御装置106は、冷凍サイクル装置105が室内の空調を行う空気調和装置である場合、室内温度と設定温度との温度差に応じて電動機6の回転数を制御する。具体的には、制御装置106は、温度差が大きくなるに連れ、言い換えればスクロール圧縮機100の負荷が大きくなるに連れ、電動機6の回転数を上昇させる制御を行う。また、制御装置106は、上記実施の形態2で説明したように、電動機6の回転数が予め設定された第1回転数よりも低いとき、流量調整弁134を閉じる制御を行う。また、制御装置106は、電動機6の回転数を予め設定された第2回転数よりも上昇させる際には、流量調整弁134の開度を徐々に大きくする制御を行う。 When the refrigeration cycle device 105 is an air conditioner that air-conditions the room, the control device 106 controls the rotation speed of the electric motor 6 according to the temperature difference between the room temperature and the set temperature. Specifically, the control device 106 performs control to increase the rotational speed of the electric motor 6 as the temperature difference increases, in other words, as the load on the scroll compressor 100 increases. Further, as described in the second embodiment, the control device 106 performs control to close the flow control valve 134 when the rotational speed of the electric motor 6 is lower than the preset first rotational speed. Further, the control device 106 performs control to gradually increase the opening degree of the flow control valve 134 when increasing the rotational speed of the electric motor 6 above the preset second rotational speed.
 上記制御により、冷凍サイクル装置105は、上述したように、電動機部品を十分に冷却することができ、また、スクロール圧縮機100の内部の油量が減ることを抑制でき、スクロール圧縮機100の信頼性を向上できる。 With the above-described control, the refrigeration cycle device 105 can sufficiently cool the electric motor parts as described above, and can suppress a decrease in the amount of oil inside the scroll compressor 100, thereby improving the reliability of the scroll compressor 100. can improve sexuality.
 ここでは、冷凍サイクル装置105が実施の形態2のスクロール圧縮機100を備えた構成を示したが、実施の形態1のスクロール圧縮機100を備えた構成としてもよい。冷凍サイクル装置105は、実施の形態1または実施の形態2のスクロール圧縮機100の備えることで、吸入圧力損失の低減と大容量化との両立を図ることができる。また、実施の形態2のスクロール圧縮機100を備えた冷凍サイクル装置105はさらに、スクロール圧縮機100の信頼性を向上できる。 Here, the configuration in which the refrigeration cycle device 105 includes the scroll compressor 100 of the second embodiment is shown, but it may be configured to include the scroll compressor 100 of the first embodiment. Refrigerating cycle device 105 is included in scroll compressor 100 of the first or second embodiment, so that both reduction in suction pressure loss and increase in capacity can be achieved. Moreover, the refrigeration cycle device 105 including the scroll compressor 100 of Embodiment 2 can further improve the reliability of the scroll compressor 100 .
 1 シェル、1a メインシェル、1b アッパーシェル、1c ロアシェル、1d 固定台、2 フレーム、3 圧縮機構部、4 固定スクロール、4a 固定台板、4b 第1渦巻突起部、5 揺動スクロール、5a 揺動台板、5b 第2渦巻突起部、6 電動機、6a ステータ、6b ロータ、7 回転軸、8 ブッシュ、9 サブフレーム、10a 第1内壁面、10b 第2内壁面、10c 第3内壁面、11a 第1段部、11b 第2段部、12 バランサ、13 吸入管、13a メイン分岐管、13b サブ分岐管、13ba 接続口、14 吐出管、15 吐出チャンバー、15a 吐出孔、16a 高圧空間、16b 低圧空間、17 吐出弁、18 油溜め、19 給電部、19a カバー、19b 給電端子、19c 配線、20 平坦面、21 収容部、21a オルダム収容部、21b ブッシュ収容部、21c 第1オルダム溝、22 主軸受部、23 返油孔、24 返油管、25 スラストプレート、26 吸入ポート、30 圧縮室、37 冷媒取込空間、40 吐出ポート、41 チップシール、51 ボス部、52 チップシール、53 第2オルダム溝、54 オルダムリング、54a リング部、54b 第1キー部、54c 第2キー部、70 主軸部、71 偏心軸部、72 通油孔、80 スライダ、81 バランスウェイト、81a ウェイト部、90 副軸受部、91 オイルポンプ、100 スクロール圧縮機、101 凝縮器、102 膨張弁、103 蒸発器、104 冷媒回路、105 冷凍サイクル装置、106 制御装置、131a 連結管、131b 連結管、132 三又配管、132a 入口端、132b 出口端、132c 出口端、132d 分岐口、133 配管、133a 出口端、134 流量調整弁、1310b 配管。 1 shell, 1a main shell, 1b upper shell, 1c lower shell, 1d fixed base, 2 frame, 3 compression mechanism, 4 fixed scroll, 4a fixed base plate, 4b first spiral projection, 5 oscillating scroll, 5a oscillating base plate, 5b second spiral projection, 6 electric motor, 6a stator, 6b rotor, 7 rotating shaft, 8 bushing, 9 subframe, 10a first inner wall surface, 10b second inner wall surface, 10c third inner wall surface, 11a third 1 step portion, 11b second step portion, 12 balancer, 13 suction pipe, 13a main branch pipe, 13b sub-branch pipe, 13ba connection port, 14 discharge pipe, 15 discharge chamber, 15a discharge hole, 16a high pressure space, 16b low pressure space , 17 discharge valve, 18 oil sump, 19 power supply part, 19a cover, 19b power supply terminal, 19c wiring, 20 flat surface, 21 accommodation part, 21a Oldham accommodation part, 21b bush accommodation part, 21c first Oldham groove, 22 main bearing part, 23 oil return hole, 24 oil return pipe, 25 thrust plate, 26 suction port, 30 compression chamber, 37 refrigerant intake space, 40 discharge port, 41 tip seal, 51 boss, 52 tip seal, 53 second Oldham groove , 54 Oldham ring, 54a ring portion, 54b first key portion, 54c second key portion, 70 main shaft portion, 71 eccentric shaft portion, 72 oil passage hole, 80 slider, 81 balance weight, 81a weight portion, 90 auxiliary bearing portion , 91 oil pump, 100 scroll compressor, 101 condenser, 102 expansion valve, 103 evaporator, 104 refrigerant circuit, 105 refrigeration cycle device, 106 control device, 131a connecting pipe, 131b connecting pipe, 132 three-pronged pipe, 132a inlet End, 132b outlet end, 132c outlet end, 132d branch port, 133 pipe, 133a outlet end, 134 flow control valve, 1310b pipe.

Claims (10)

  1.  シェルと、冷媒を前記シェルの内部に吸入する吸入管と、第1渦巻突起部が設けられた固定台板を有する固定スクロールと、前記第1渦巻突起部と噛み合う第2渦巻突起部が設けられた揺動台板を有し、前記固定スクロールとの間に冷媒を圧縮する圧縮室を形成する揺動スクロールと、前記揺動スクロールを駆動する電動機と、前記シェルの内壁面に固定され、前記揺動スクロールに対して前記圧縮室とは反対側で前記揺動スクロールを支持するフレームと、を備え、前記吸入管から前記シェルの内部に吸入された冷媒を、前記フレームに形成された吸入ポートを介して、前記第1渦巻突起部および前記第2渦巻突起部の外周側の冷媒取込空間に取り込んだ後、前記圧縮室に取り込んで圧縮するスクロール圧縮機であって、
     前記吸入管は複数の分岐管を有し、前記複数の分岐管のそれぞれが前記シェルの内部に連通するように前記シェルに接続されており、前記複数の分岐管のうちの一部の分岐管が前記冷媒取込空間に連通しているスクロール圧縮機。
    A shell, a suction pipe for sucking refrigerant into the shell, a fixed scroll having a fixed base plate provided with a first spiral projection, and a second spiral projection meshing with the first spiral projection are provided. an oscillating scroll forming a compression chamber for compressing a refrigerant between itself and the fixed scroll; an electric motor for driving the oscillating scroll; a frame supporting the orbiting scroll on a side opposite to the compression chamber with respect to the orbiting scroll, the refrigerant sucked into the shell from the suction pipe being introduced into an intake port formed in the frame; A scroll compressor in which refrigerant is taken into a refrigerant intake space on the outer peripheral side of the first spiral protrusion and the second spiral protrusion via a refrigerant intake space, and then taken into the compression chamber and compressed,
    The suction pipe has a plurality of branch pipes, each of the plurality of branch pipes is connected to the shell so as to communicate with the inside of the shell, and some of the plurality of branch pipes are branch pipes. is in communication with the refrigerant intake space.
  2.  前記電動機は、前記シェルの内部において前記フレームに対して前記揺動スクロールとは反対側の空間に配置されており、前記空間に前記複数の分岐管のうちの残りの分岐管が連通している請求項1記載のスクロール圧縮機。 The electric motor is arranged in a space inside the shell on the opposite side of the frame from the orbiting scroll, and the remaining branch pipes of the plurality of branch pipes communicate with the space. A scroll compressor according to claim 1.
  3.  前記一部の分岐管の前記シェルとの接続口と、前記接続口よりも上流であって、冷媒回路からの冷媒を前記一部の分岐管に向けて分岐する分岐口と、を接続する、前記一部の分岐管を含む配管に流量調整弁が設けられている請求項1または請求項2記載のスクロール圧縮機。 connecting a connection port of the part of the branch pipe with the shell, and a branch port upstream of the connection port that branches the refrigerant from the refrigerant circuit toward the part of the branch pipe; 3. The scroll compressor according to claim 1, wherein a flow control valve is provided in the piping including said part of the branch pipes.
  4.  前記複数の分岐管のうちの残りの分岐管の管径>前記一部の分岐管の管径の関係を満たす請求項1~請求項3のいずれか一項に記載のスクロール圧縮機。 The scroll compressor according to any one of claims 1 to 3, which satisfies the relationship of the diameter of the remaining branch pipe among the plurality of branch pipes>the diameter of the part of the branch pipes.
  5.  前記複数の分岐管は、前記電動機の回転軸の軸方向に見て前記吸入ポートに対して前記回転軸を挟んで対向する前記シェルの側面に接続されている請求項1~請求項4のいずれか一項に記載のスクロール圧縮機。 5. The plurality of branch pipes are connected to a side surface of the shell facing the intake port across the rotation shaft when viewed in the axial direction of the rotation shaft of the electric motor. or the scroll compressor according to claim 1.
  6.  前記固定スクロールは、前記シェルの内壁面に固定されている請求項1~請求項5のいずれか一項に記載のスクロール圧縮機。 The scroll compressor according to any one of claims 1 to 5, wherein the fixed scroll is fixed to the inner wall surface of the shell.
  7.  請求項1~請求項6のいずれか一項に記載のスクロール圧縮機と、凝縮器と、減圧装置と、蒸発器とを有し、冷媒が循環する冷媒回路を備えた冷凍サイクル装置。 A refrigeration cycle apparatus comprising the scroll compressor according to any one of claims 1 to 6, a condenser, a decompression device, and an evaporator, and comprising a refrigerant circuit in which refrigerant circulates.
  8.  前記冷媒回路を制御する制御装置を備え、
     前記制御装置は、前記電動機の回転数および前記冷媒の吸入圧力の一方または両方に基づいて前記流量調整弁を制御する請求項3に従属する請求項7記載の冷凍サイクル装置。
    A control device that controls the refrigerant circuit,
    8. The refrigeration cycle apparatus according to claim 7, wherein said control device controls said flow control valve based on one or both of the number of revolutions of said electric motor and the suction pressure of said refrigerant.
  9.  前記冷媒回路を制御する制御装置を備え、
     前記制御装置は、前記スクロール圧縮機の負荷が大きくなるに連れ、前記電動機の回転数を上昇させる制御を行っており、前記電動機の回転数が予め設定された第1回転数よりも低いとき、前記流量調整弁を閉じる請求項3に従属する請求項7記載の冷凍サイクル装置。
    A control device that controls the refrigerant circuit,
    The control device performs control to increase the rotation speed of the electric motor as the load on the scroll compressor increases, and when the rotation speed of the electric motor is lower than a preset first rotation speed, 8. The refrigeration cycle apparatus according to claim 7, wherein said flow control valve is closed.
  10.  前記冷媒回路を制御する制御装置を備え、
     前記制御装置は、前記スクロール圧縮機の負荷が大きくなるに連れ、前記電動機の回転数を上昇させる制御を行っており、前記電動機の回転数を予め設定された第2回転数よりも上昇させる際、前記流量調整弁の開度を徐々に大きくする請求項3に従属する請求項7記載の冷凍サイクル装置。
    A control device that controls the refrigerant circuit,
    The control device performs control to increase the rotation speed of the electric motor as the load on the scroll compressor increases. 8. The refrigeration cycle apparatus according to claim 7, wherein the opening degree of said flow control valve is gradually increased.
PCT/JP2021/040687 2021-11-05 2021-11-05 Scroll compressor and refrigeration cycle device provided with scroll compressor WO2023079667A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/040687 WO2023079667A1 (en) 2021-11-05 2021-11-05 Scroll compressor and refrigeration cycle device provided with scroll compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/040687 WO2023079667A1 (en) 2021-11-05 2021-11-05 Scroll compressor and refrigeration cycle device provided with scroll compressor

Publications (1)

Publication Number Publication Date
WO2023079667A1 true WO2023079667A1 (en) 2023-05-11

Family

ID=86240850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040687 WO2023079667A1 (en) 2021-11-05 2021-11-05 Scroll compressor and refrigeration cycle device provided with scroll compressor

Country Status (1)

Country Link
WO (1) WO2023079667A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH029979A (en) * 1988-06-27 1990-01-12 Mitsubishi Electric Corp Scroll compressor
JPH062680A (en) * 1992-06-17 1994-01-11 Mitsubishi Heavy Ind Ltd Closed type motor-driven compressor
WO2016079805A1 (en) * 2014-11-18 2016-05-26 三菱電機株式会社 Scroll compressor and refrigeration cycle device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH029979A (en) * 1988-06-27 1990-01-12 Mitsubishi Electric Corp Scroll compressor
JPH062680A (en) * 1992-06-17 1994-01-11 Mitsubishi Heavy Ind Ltd Closed type motor-driven compressor
WO2016079805A1 (en) * 2014-11-18 2016-05-26 三菱電機株式会社 Scroll compressor and refrigeration cycle device

Similar Documents

Publication Publication Date Title
JP2008101559A (en) Scroll compressor and refrigeration cycle using the same
JP6444540B2 (en) Scroll compressor and refrigeration cycle apparatus
US10590931B2 (en) Scroll compressor and air conditioner having the same
JPWO2019087227A1 (en) Scroll compressor
JP7118177B2 (en) scroll compressor
WO2021084607A1 (en) Scroll compressor and refrigeration cycle device
WO2023079667A1 (en) Scroll compressor and refrigeration cycle device provided with scroll compressor
CN110914607B (en) Refrigeration cycle device
WO2021245754A1 (en) Scroll compressor and refrigeration cycle device
JP7076537B2 (en) Scroll compressor
JP2018009537A (en) Scroll compressor and refrigeration cycle device
CN114072580B (en) Scroll compressor having a rotor with a rotor shaft having a rotor shaft with a
WO2022059195A1 (en) Scroll compressor
WO2023119625A1 (en) Scroll compressor
JP7055245B2 (en) Scroll compressor and method for manufacturing the scroll compressor
JP7130106B2 (en) scroll compressor
JP2013238191A (en) Compressor
JP7213382B1 (en) Scroll compressor and refrigeration cycle device
JP7174288B1 (en) Scroll compressor and refrigeration system
JP7253655B1 (en) Scroll compressor and refrigeration cycle device
WO2022157967A1 (en) Scroll compressor and refrigeration cycle device with scroll compressor
WO2023026651A1 (en) Scroll compressor and refrigeration device
WO2023135731A1 (en) Compressor suction and oil-return pipe, scroll compressor, and refrigeration cycle device
JP6429943B2 (en) Scroll compressor
CN114616394A (en) Scroll compressor and refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21963263

Country of ref document: EP

Kind code of ref document: A1