WO2022059195A1 - Scroll compressor - Google Patents

Scroll compressor Download PDF

Info

Publication number
WO2022059195A1
WO2022059195A1 PCT/JP2020/035569 JP2020035569W WO2022059195A1 WO 2022059195 A1 WO2022059195 A1 WO 2022059195A1 JP 2020035569 W JP2020035569 W JP 2020035569W WO 2022059195 A1 WO2022059195 A1 WO 2022059195A1
Authority
WO
WIPO (PCT)
Prior art keywords
movement
scroll
convex portion
thrust plate
movement restricting
Prior art date
Application number
PCT/JP2020/035569
Other languages
French (fr)
Japanese (ja)
Inventor
修也 福田
浩二 増本
友寿 松井
浩平 達脇
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/035569 priority Critical patent/WO2022059195A1/en
Priority to JP2022550313A priority patent/JP7313570B2/en
Publication of WO2022059195A1 publication Critical patent/WO2022059195A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents

Definitions

  • the present disclosure relates to a scroll compressor used in an air conditioner, a refrigerating device, or the like.
  • the conventional scroll compressor is equipped with a shell, a frame fixed to the inner wall surface of the shell, and a compression mechanism for compressing the refrigerant.
  • the compression mechanism is a fixed scroll having a fixed base plate provided with a first spiral protrusion, and a swing provided with a second spiral protrusion that is swingably supported by the frame and meshes with the first spiral protrusion. It is equipped with a swing scroll having a base plate.
  • the compression mechanism portion meshes the first spiral protrusion portion with the second spiral protrusion portion to form a compression chamber for compressing the refrigerant between the first spiral protrusion portion and the second spiral protrusion portion.
  • the frame is provided with a thrust plate for receiving the thrust load of the swing scroll generated during the swing motion.
  • the thrust plate is fixed to the frame by a fixing member at a position outside the swing scroll in order to suppress the rotation of the thrust plate.
  • the present disclosure has been made to solve the above-mentioned problems, and provides a scroll compressor capable of expanding the capacity of the compression chamber without the need for a member for suppressing the rotation of the thrust plate.
  • the purpose is.
  • the scroll compressor according to the present disclosure includes a shell, a frame fixed to the inner wall surface of the shell, a fixed scroll having a fixed base plate fixed to the inner wall surface of the shell and provided with a first spiral protrusion, and a frame.
  • the oscillating scroll has a oscillating base plate that is oscillatingly supported and provided with a second vortex protrusion that meshes with the first vortex protrusion, and forms a compression chamber that compresses the refrigerant between the fixed scroll and the oscillating scroll.
  • a rotating shaft connected to the oscillating scroll to cause the oscillating scroll to oscillate, and a thrust plate provided between the frame and the oscillating scroll.
  • a movement-restricting recess is formed, and the thrust plate is provided with a movement-restricting convex portion that is formed so as to project toward the frame side and is inserted into the movement-restricting recess to regulate the movement of the thrust plate.
  • the movement of the thrust plate can be restricted by inserting the movement-restricting convex portion provided on the thrust plate into the movement-restricting concave portion provided on the frame, so that a member for suppressing the rotation of the thrust plate is unnecessary.
  • the capacity of the compression chamber can be expanded.
  • FIG. 3 is a schematic perspective view showing a main part of the scroll compressor according to the first embodiment in an exploded manner. It is a schematic vertical sectional view of the compression mechanism part of the scroll compressor which concerns on Embodiment 1.
  • FIG. 4 is an enlarged view of a portion surrounded by a circle in FIG. It is a schematic diagram of the thrust plate of the scroll compressor which concerns on Embodiment 1.
  • FIG. It is a figure which shows the modification of the movement regulation convex part and the movement regulation concave part of the scroll compressor which concerns on Embodiment 1.
  • FIG. 3 It is a schematic diagram which looked at the rocking scroll of the scroll compressor which concerns on Embodiment 2 from the lower side.
  • FIG. 3 is a schematic cross-sectional view (1/3) showing the positional relationship between the oscillating scroll of the scroll compressor according to the second embodiment and the thrust plate. It is a schematic cross-sectional view (2/3) which showed the positional relationship between the rocking scroll of the scroll compressor which concerns on Embodiment 2 and a thrust plate.
  • FIG. 3 is a schematic cross-sectional view (3/3) showing the positional relationship between the oscillating scroll of the scroll compressor according to the second embodiment and the thrust plate.
  • FIG. 3 is a schematic vertical cross-sectional view showing the positional relationship between the oscillating scroll and the thrust plate in the state of FIG.
  • FIG. 10 is a schematic diagram of the thrust plate of the scroll compressor which concerns on Embodiment 3.
  • FIG. It is a schematic diagram of the thrust plate of the scroll compressor which concerns on Embodiment 4.
  • FIG. FIG. 3 is a schematic perspective view of a thrust plate and a frame in the scroll compressor according to the fourth embodiment.
  • FIG. 5 is a schematic cross-sectional view (1/5) showing the positional relationship between the oscillating scroll of the scroll compressor according to the fourth embodiment and the thrust plate.
  • FIG. 5 is a schematic cross-sectional view (2/5) showing the positional relationship between the oscillating scroll of the scroll compressor according to the fourth embodiment and the thrust plate.
  • FIG. 3 is a schematic cross-sectional view (3/5) showing the positional relationship between the oscillating scroll of the scroll compressor according to the fourth embodiment and the thrust plate.
  • FIG. 5 is a schematic cross-sectional view (4/5) showing the positional relationship between the oscillating scroll of the scroll compressor according to the fourth embodiment and the thrust plate.
  • FIG. 5 is a schematic cross-sectional view (5/5) showing the positional relationship between the oscillating scroll of the scroll compressor according to the fourth embodiment and the thrust plate.
  • FIG. 1 is a front view showing the appearance of the scroll compressor according to the first embodiment.
  • FIG. 2 is a schematic vertical sectional view showing the internal structure of the scroll compressor according to the first embodiment.
  • FIG. 3 is a schematic perspective view showing a main part of the scroll compressor according to the first embodiment in an exploded manner.
  • the scroll compressor 100 according to the first embodiment is one of the components of a refrigerating cycle used in, for example, a refrigerator, a freezer, an air conditioner, a refrigerating device, a water heater, and the like.
  • the scroll compressor 100 sucks in the refrigerant circulating in the refrigeration cycle, compresses it, and discharges it in a high temperature and high pressure state.
  • the scroll compressor 100 includes a shell 1 forming an outer shell, a frame 2, a compression mechanism unit 3 having a fixed scroll 4 and a swing scroll 5, an electric motor 6, and a compression mechanism.
  • a rotating shaft 7 for connecting the portion 3 and the electric motor 6 is provided.
  • the shell 1 is a conductive member such as metal, and is formed in a cylindrical shape having a closed space. Inside the shell 1, a frame 2, a compression mechanism unit 3, an electric motor 6, and a rotating shaft 7 are housed. 1 and 2 show a so-called vertical scroll compressor used in a state where the rotation axis 7 is in the direction of gravity, but a horizontal scroll compressor may be used.
  • the shell 1 has a cylindrical main shell 1a, a substantially hemispherical upper shell 1b that closes the upper surface opening of the main shell 1a, and a substantially hemispherical lower shell 1c that closes the lower surface opening of the main shell 1a.
  • the upper shell 1b and the lower shell 1c are respectively fixed to the main shell 1a by welding or the like.
  • the shell 1 is supported by a fixing base 1d fixed to the lower shell 1c.
  • the inner wall surface of the main shell 1a includes a large-diameter first inner wall surface 10a formed at the upper end portion, a second inner wall surface 10b formed below the first inner wall surface 10a, and a second inner wall surface 10b. It has a third inner wall surface 10c formed below the second inner wall surface 10b.
  • the first inner wall surface 10a, the second inner wall surface 10b, and the third inner wall surface 10c are configured so that the inner diameters become smaller in this order.
  • the first step portion 11a formed by the lower end of the first inner wall surface 10a and the upper end of the second inner wall surface 10b functions as a positioning portion of the fixed scroll 4.
  • the second step portion 11b formed by the lower end of the second inner wall surface 10b and the upper end of the third inner wall surface 10c functions as a positioning portion of the frame 2.
  • the main shell 1a is provided with a suction pipe 13 for taking in a refrigerant inside the shell 1 and a feeding unit 19 for supplying power to the scroll compressor 100. ..
  • the suction pipe 13 is connected to a hole formed in the side wall of the main shell 1a by brazing or the like with a part inserted.
  • the suction pipe 13 communicates with the low pressure space 16b in the shell 1.
  • the power feeding unit 19 includes a cover 19a, a power feeding terminal 19b, and a wiring 19c.
  • the power feeding terminal 19b is a metal member, one end thereof is arranged so as to be surrounded by the cover 19a, and the other end is arranged inside the main shell 1a.
  • One end of the wiring 19c is connected to the power feeding terminal 19b, and the other end is connected to the motor 6.
  • a discharge pipe 14 for discharging the compressed refrigerant from the shell 1 is connected to the upper shell 1b.
  • the discharge pipe 14 is connected to a hole formed in the upper part of the upper shell 1b by brazing or the like with a part inserted.
  • an oil reservoir 18 for storing lubricating oil is provided on the inner bottom portion of the shell 1.
  • the frame 2 is a cylindrical metal frame that gradually tapers downward, and supports the swing scroll 5 swingably.
  • the outer peripheral surface of the frame 2 is fixed to the inner wall surface of the main shell 1a by, for example, shrink fitting.
  • an annular flat surface 20 is formed on the upper surface of the frame 2.
  • the flat surface 20 is provided with a ring-shaped thrust plate 25 made of a steel plate-based material such as valve steel.
  • the thrust plate 25 functions as a thrust sliding surface of the frame 2 and supports the thrust load of the compression mechanism portion 3.
  • the thrust plate 25 is formed so as to have an outer diameter slightly smaller than the inner diameter of the first inner wall surface 10a of the main shell 1a.
  • the inside of the cylinder of the frame 2 is composed of a housing portion 21 and a main bearing portion 22 for supporting the rotating shaft 7.
  • the accommodating portion 21 is provided on the upper side of the frame 2.
  • the main bearing portion 22 is provided on the lower side of the frame 2.
  • the accommodating portion 21 is formed so that the inner diameter gradually decreases downward.
  • the stepped portion located on the flat surface 20 side is the oldham accommodating portion 21a
  • the stepped portion located on the main bearing portion 22 side is the bush accommodating portion 21b.
  • a pair of first Oldham grooves 21c formed so as to face each other with a shaft hole interposed therebetween are provided in a part of the Oldham accommodating portion 21a and the flat surface 20.
  • the first old dam groove 21c is a key groove into which the first key portion 54b of the old dam ring 54 described later is fitted.
  • the oil return pipe 24 is inserted into and fixed to the oil return hole 23 formed through the inside and outside of the frame 2 in the frame 2.
  • the oil return hole 23 communicates with the bush accommodating portion 21b.
  • the oil return pipe 24 is provided to return the lubricating oil accumulated in the accommodating portion 21 to the oil reservoir 18 provided in the lower shell 1c.
  • the oil return hole 23 and the oil return pipe 24 are not limited to one, and a plurality of oil return holes 23 may be provided.
  • the frame 2 is provided with a suction port 26 which is a path for the refrigerant, and the thrust plate 25 is provided with a notch 251 having a size that does not block the suction port 26. There is.
  • the refrigerant sucked from the suction pipe 13 passes through the suction port 26 and is taken into the compression chamber described later.
  • the compression mechanism unit 3 has a function of compressing the refrigerant sucked from the suction pipe 13 by being driven by the electric motor 6.
  • the compression mechanism unit 3 includes a fixed scroll 4 and a swing scroll 5.
  • the fixed scroll 4 has a disk-shaped fixed base plate 4a and a first spiral protrusion 4b provided on the lower surface of the fixed base plate 4a.
  • the swing scroll 5 has a disk-shaped swing base plate 5a and a second spiral protrusion 5b provided on the upper surface of the swing base plate 5a and meshing with the first spiral protrusion 4b.
  • the swing scroll 5 is installed eccentrically with respect to the fixed scroll 4.
  • the first spiral protrusion 4b of the fixed scroll 4 and the second spiral protrusion 5b of the swing scroll 5 are meshed with each other to form a plurality of compression chambers 30 for compressing the refrigerant.
  • the fixed scroll 4 is made of a metal such as cast iron.
  • the fixed scroll 4 is fixed to the first inner wall surface 10a by shrink fitting or the like in a state where the outer peripheral surface of the fixed base plate 4a is supported by the first step portion 11a of the main shell 1a.
  • a discharge port 40 for discharging a compressed, high-temperature and high-pressure refrigerant is formed in the central portion of the fixed base plate 4a.
  • a chamber 15 having a discharge hole 15a communicating with the discharge port 40 is provided on the upper surface of the fixed scroll 4.
  • the chamber 15 is provided with a discharge valve 17 screwed to open and close the discharge hole 15a according to the pressure of the refrigerant.
  • the discharge valve 17 opens the discharge hole 15a when the refrigerant in the compression chamber 30 communicating with the discharge port 40 reaches a predetermined pressure.
  • the compressed high-temperature and high-pressure refrigerant is discharged from the discharge port 40 into the high-pressure space 16a above the fixed scroll 4, passes through the discharge pipe 14, and is discharged to the outside of the shell 1.
  • a groove is formed at the tip of the first spiral protrusion 4b, and a tip seal 41 made of, for example, hard plastic is provided in the groove.
  • the swing scroll 5 is made of a metal such as aluminum. As shown in FIGS. 2 and 3, the swing scroll 5 revolves without rotating with respect to the fixed scroll 4 by the old dam ring 54 for blocking the rotation.
  • the surface of the rocking base plate 5a on the side where the second spiral protrusion 5b is not formed acts as a rocking scroll thrust bearing surface.
  • a hollow cylindrical boss portion 51 is provided at the center of the swing scroll thrust bearing surface.
  • a swing bearing is provided on the inner peripheral surface of the boss portion 51.
  • the oscillating bearing rotatably supports the slider 80 of the bush 8 described later.
  • the plain bearing is a so-called journal bearing.
  • the oscillating bearing is provided so that the central axis is parallel to the central axis of the rotating shaft 7. As the eccentric shaft portion 71 of the rotating shaft 7 inserted into the boss portion 51 rotates, the swing scroll 5 revolves on the thrust sliding surface of the frame 2.
  • a groove is formed at the tip of the second spiral protrusion 5b, and a tip seal 52 made of, for example, hard plastic is provided in this groove.
  • the swing scroll thrust bearing surface is provided with a pair of second Oldham grooves 53 formed so as to face each other with the boss portion 51 interposed therebetween.
  • the second Oldham groove 53 is an oval-shaped key groove into which the second key portion 54c of the Oldham ring 54, which will be described later, is fitted.
  • the pair of second Oldham grooves 53 are arranged so that the lines connecting the pair of second Oldam grooves 53 are orthogonal to the lines connecting the pair of first Oldam grooves 21c.
  • the Oldham ring 54 includes a ring portion 54a, a first key portion 54b, and a second key portion 54c.
  • the ring portion 54a is annular and is arranged in the old dam accommodating portion 21a of the frame 2.
  • the first key portion 54b is provided on the lower surface of the ring portion 54a.
  • the first key portion 54b is composed of a pair and is accommodated in each pair of first old dam grooves 21c of the frame 2.
  • the second key portion 54c is provided on the upper surface of the ring portion 54a.
  • the second key portion 54c is composed of a pair and is housed in each pair of the second oldham grooves 53 of the swing scroll 5.
  • the position of the second spiral protrusion portion 5b of the swing scroll 5 in the rotational direction is determined. That is, the old dam ring 54 positions the swing scroll 5 with respect to the frame 2, and determines the phase of the second spiral protrusion 5b with respect to the frame 2.
  • the compression chamber 30 is formed by engaging the first spiral protrusion 4b of the fixed scroll 4 and the second spiral protrusion 5b of the swing scroll 5 with each other.
  • the compression chamber 30 is sealed by a tip seal 41 and a swing base plate 5a provided at the tip of the first spiral protrusion 4b, and a tip seal 52 and a fixed base plate 4a provided at the tip of the second spiral protrusion 5b.
  • the compression chamber 30 is composed of a plurality of compression chambers whose volume decreases from the outside to the inside in the radial direction of the scroll.
  • a halogenated hydrocarbon having a carbon double bond for example, a halogenated hydrocarbon having a carbon double bond, a halogenated hydrocarbon having no carbon double bond, a natural refrigerant, or a mixture containing them can be used in the composition.
  • the halogenated hydrocarbons having no carbon double bond are R32 (CH 2 F 2 ), R 41 (CH 3 F), R125 (C 2 HF 3 ), R134a (CH 2 FCF 2 ), R143a (CF 3 CH).
  • HFC refrigerants such as R410A (R32 / R125) or R407C (R32 / R125 / R134a) can be mentioned.
  • R32 (difluoromethane), R41 and the like represented by CH 2 F 2 are exemplified as the mixed refrigerant.
  • Natural refrigerants are ammonia (NH 3 ), carbon dioxide (CO 2 ), propane (C 3 H 8 ), propylene (C 3 H 6 ), butane (C 4 H 10 ) or isobutane (CH (CH 3 ) 3 ). And so on.
  • the refrigerant is preferably a low GWP refrigerant having an ozone depletion potential of zero.
  • the electric motor 6 drives the compression mechanism unit 3 connected via the rotating shaft 7.
  • the electric motor 6 includes an annular stator 6a fixedly supported on the inner wall surface of the shell 1 by shrink fitting or the like, and a rotor 6b rotatably attached to face the inner side surface of the stator 6a.
  • the stator 6a has a configuration in which windings are wound around an iron core formed by laminating a plurality of electrical steel sheets, for example, via an insulating layer, and has a ring shape in a plan view, that is, in the axial direction of the rotating shaft 7. It is formed.
  • the rotor 6b has a structure in which a permanent magnet is built in an iron core formed by laminating a plurality of electromagnetic steel sheets, and has a through hole penetrating in the vertical direction in the center.
  • the rotating shaft 7 is a metal rod-shaped member.
  • the rotating shaft 7 includes a spindle portion 70 and an eccentric shaft portion 71.
  • the spindle portion 70 is an axis constituting the main portion of the rotating shaft 7, and the central axis thereof is arranged so as to coincide with the central axis of the main shell 1a.
  • the spindle portion 70 is fixed to the through hole at the center of the rotor 6b by shrink fitting or the like.
  • the rotary shaft 7 is rotatable by a main bearing portion 22 provided in the central portion of the frame 2 and an auxiliary bearing portion 90 provided in the central portion of the subframe 9 fixed to the lower part of the shell 1 by welding or the like. Is supported by.
  • the eccentric shaft portion 71 is provided at the upper end portion of the spindle portion 70 so that the central shaft thereof is eccentric with respect to the central axis of the spindle portion 70.
  • the eccentric shaft portion 71 is connected to the swing scroll 5 via a bush 8 which is a metal member such as iron, and is rotatably supported by the boss portion 51 of the swing scroll 5.
  • the rotary shaft 7 rotates with the rotation of the rotor 6b, and the eccentric shaft portion 71 causes the swing scroll 5 to revolve and swivel, which is a swing motion.
  • an oil passage hole 72 is provided so as to penetrate vertically along the axial direction.
  • the bush 8 includes a slider 80 and a balance weight 81.
  • the slider 80 is a tubular member on which a collar is formed, and is rotatably inserted into the boss portion 51.
  • An eccentric shaft portion 71 is inserted in the slide surface of the slider 80. That is, the slider 80 is inserted between the swing scroll 5 and the eccentric shaft portion 71.
  • the slider 80 is provided to make the swing radius of the swing scroll 5 variable and to make the swing scroll 5 revolve and turn.
  • the balance weight 81 is provided to cancel the centrifugal force of the swing scroll 5 generated by the revolution turning motion.
  • the balance weight 81 has an annular shape, and is provided with a substantially C-shaped weight portion 81a on the side opposite to the direction of the centrifugal force acting on the swing scroll 5.
  • the scroll compressor 100 can reduce the pressure of the second spiral protrusion 5b against the first spiral protrusion 4b by the balance weight 81.
  • the balance weight 81 is fitted, for example, to the collar of the slider 80 by shrink fitting or the like.
  • the subframe 9 is a metal frame. As shown in FIG. 2, the subframe 9 is provided with an auxiliary bearing portion 90 and an oil pump 91.
  • the sub-bearing portion 90 is a ball bearing provided in the center of the sub-frame 9.
  • the oil pump 91 is a pump for sucking up the lubricating oil stored in the oil reservoir 18 of the shell 1, and is provided under the auxiliary bearing portion 90.
  • the lubricating oil is stored in the oil reservoir 18.
  • Lubricating oil is sucked up by the oil pump 91, passes through the oil passage hole 72 of the rotating shaft 7, and reduces wear between mechanically contacting parts such as the compression mechanism portion 3, temperature control of the sliding portion, and sealing performance.
  • the lubricating oil an oil having excellent lubrication characteristics, electrical insulation, stability, refrigerant solubility, low temperature fluidity and the like, and having an appropriate viscosity is suitable.
  • a naphthene-based oil, a polyol ester (POE), a polyvinyl ether (PVE) or a polyalkylene glycol (PAG) oil can be used.
  • FIG. 4 is a schematic vertical sectional view of the compression mechanism portion of the scroll compressor according to the first embodiment.
  • FIG. 5 is an enlarged view of a portion surrounded by a circle in FIG.
  • FIG. 6 is a schematic view of the thrust plate of the scroll compressor according to the first embodiment.
  • a movement restricting recess 27 is provided on the flat surface 20 of the frame 2 and the contact surface 20a of the frame 2 with the thrust plate 25.
  • the movement restricting recess 27 has a circular shape in a plan view, and the cross-sectional shape along the axial direction is rectangular.
  • the thrust plate 25 is provided with a movement restricting convex portion 252 formed so as to project toward the flat surface 20 side of the frame 2.
  • the movement restricting convex portion 252 has a circular shape in a plan view, and the cross-sectional shape along the axial direction is a semicircular shape.
  • the movement restricting convex portion 252 is inserted into the movement restricting concave portion 27 to restrict the movement of the thrust plate 25.
  • the movement restricting convex portion 252 is formed, for example, by press working.
  • the thrust plate 25 needs to be positioned on the frame 2 so that the notch 251 faces the suction port 26 of the frame 2.
  • the movement restricting convex portion 252 is inserted into the movement restricting recess 27.
  • the position of the thrust plate 25 with respect to the frame 2 is also determined. Therefore, the movement restricting convex portion 252 and the movement restricting concave portion 27 function not only as the movement restricting portion but also as the positioning portion.
  • the following gaps are provided between the movement restricting concave portion 27 and the movement restricting convex portion 252.
  • a first gap C is provided between the opening edge portion 27a of the movement restricting recess 27 and the root edge portion 252a of the movement restricting convex portion 252.
  • a second gap S is provided between the bottom surface 27b of the movement restricting recess 27 and the tip surface 252b on the protruding side of the movement restricting convex portion 252.
  • first gap C and the second gap S are not provided, the root edge portion 252a of the movement restricting convex portion 252 is caught by the opening edge portion 27a of the movement restricting recess 27, and the thrust plate 25 has a flat surface 20. May rise from.
  • a first gap C and a second gap S are provided between the movement restricting concave portion 27 and the movement restricting convex portion 252.
  • the first gap C is preferably as small as possible in order to prevent the thrust plate 25 from rattling during operation.
  • the movement of the thrust plate 25 can be restricted by inserting the movement restriction convex portion 252 into the movement restriction recess 27. Therefore, it is possible to prevent the thrust plate 25 from rotating due to the swinging motion of the swinging scroll 5. Further, since the movement of the thrust plate 25 can be restricted by inserting the movement regulation convex portion 252 into the movement regulation recess 27, the conventional fixing member for suppressing the rotation of the thrust plate 25 becomes unnecessary. Therefore, the scroll compressor 100 can expand the outer diameter of the swing scroll 5 to the position of the suction port 26 provided in the frame 2. Specifically, the outer diameter of the swing scroll can be expanded to the very limit of the suction port 26 provided on the flat surface 20 of the frame 2. As a result, the capacity of the compression chamber can be expanded. In addition, the cost can be reduced because the fixing member is not required.
  • the outer diameter of the thrust plate 25 is formed to be slightly smaller than the inner diameter of the first inner wall surface 10a of the main shell 1a. Therefore, during the swinging motion of the swinging scroll 5, the outer peripheral surface of the thrust plate 25 comes into contact with the first inner wall surface 10a of the main shell 1a, and the radial movement of the thrust plate 25 can be restricted. Therefore, in the first embodiment, the movement of the thrust plate 25 in the radial direction can be restricted in addition to the rotation suppression by the movement regulation convex portion 252, and the movement of the thrust plate 25 in the main shell 1a can be substantially suppressed.
  • the shape of the movement restricting concave portion 27 and the movement restricting convex portion 252 in a plan view is circular, but the shape of the movement restricting concave portion 27 and the movement restricting convex portion 252 does not have to be circular.
  • the shape of the movement restricting concave portion 27 and the movement restricting convex portion 252 may be any shape as long as the movement restricting convex portion 252 can be inserted into the movement restricting concave portion 27, and the shapes can be appropriately changed in consideration of ease of processing.
  • the following FIG. 7 may be used.
  • FIG. 7 is a diagram showing a modified example of the movement restricting convex portion and the movement restricting concave portion of the scroll compressor according to the first embodiment.
  • the bottom surface 27b of the movement restricting recess 27 has a shape along the tip surface 252b on the protruding side of the movement restricting convex portion 252. Even with such a shape, the movement of the thrust plate 25 can be restricted.
  • the scroll compressor of the first embodiment is between the shell 1, the frame 2, the fixed scroll 4, the swing scroll 5, the rotation axis 7, and the frame 2 and the swing scroll 5.
  • the thrust plate 25 provided in the above is provided.
  • a movement restricting recess 27 is formed on the contact surface 20a with the thrust plate 25.
  • the thrust plate 25 is provided with a movement restricting convex portion 252 that is formed so as to project toward the frame 2 side and is inserted into the movement restricting recess 27 to restrict the movement of the thrust plate 25.
  • the movement restriction protrusion 252 provided on the thrust plate 25 is inserted into the movement restriction recess 27 provided on the frame 2 to restrict the movement of the thrust plate 25, so that the rotation of the thrust plate 25 can be suppressed. It is possible to eliminate the need for a fixing member. Since the fixing member for suppressing the rotation of the thrust plate 25 can be eliminated, the capacity of the compression chamber 30 can be expanded as a result.
  • a first gap C is formed between the opening edge portion 27a of the movement restricting recess 27 and the root edge portion 252a of the movement restricting convex portion 252, and the bottom surface 27b of the movement restricting recess 27 and the movement restricting convex portion 252.
  • a second gap S is formed between the surface and the tip surface 252b on the protruding side of the above.
  • FIG. 8 is a schematic view of the swing scroll of the scroll compressor according to the second embodiment as viewed from below.
  • 9 to 11 are schematic cross-sectional views showing the positional relationship between the oscillating scroll of the scroll compressor according to the second embodiment and the thrust plate.
  • the hatched portion in FIG. 8 shows the thrust surface of the rocking scroll 5, and the thrust surface is provided with an intermittent oil supply passage 55 composed of recesses.
  • the position of the intermittent oil supply passage 55 is d ⁇ when the distance from the outer peripheral portion 56 of the rocking base plate 5a to the outer peripheral portion of the intermittent oil supply passage 55 is d and the diameter of the movement restricting convex portion 252 of the thrust plate 25 is D. It is set to the position that becomes D.
  • FIG. 12 is a schematic vertical cross-sectional view showing the positional relationship between the oscillating scroll and the thrust plate in the state of FIG. 10 in the scroll compressor according to the second embodiment.
  • the oil passage passage indicated by the arrow in FIG. 57 is formed.
  • the movement restricting convex portion 252 is recessed on the side opposite to the protruding side, and the recessed portion forms an internal space 253. Therefore, the intermittent oil supply passage 55 and the outer space 56a of the swing scroll 5 communicate with each other through the internal space 253, and the oil passage 57 is formed.
  • the outer space 56a of the swing scroll 5 is specifically the outer space 56a of the outer peripheral portion 56 of the swing base plate 5a.
  • the lubricating oil accumulated in the intermittent oil passage 55 is ejected to the side surface of the rocking scroll 5 through the oil passage 57.
  • the lubricating oil ejected on the side surface of the rocking scroll 5 is sucked into the compression chamber 30 together with the refrigerant. That is, when the positional relationship shown in FIG. 10 is established, the oil passage 57 is formed, and the lubricating oil in the intermittent oil supply passage 55 is positively supplied into the compression chamber 30 through the oil passage 57. Since the positional relationship of FIG. 10 is established for a certain period of time while the rotating shaft 7 makes one rotation, refueling is intermittently performed using the intermittent oil supply passage 55 while the rotating shaft 7 is rotating. It will be.
  • the amount of refueling into the compression chamber 30 can be adjusted by the size of the intermittent refueling passage 55 and the movement regulation convex portion 252.
  • the size of the intermittent oil supply passage 55 is expanded, the time during which the positional relationship shown in FIG. 10 is established while the rotation shaft 7 makes one rotation, that is, the time during which the oil passage passage 57 is formed (hereinafter referred to as communication time). ) Becomes longer. As the communication time becomes longer, the amount of lubricating oil supplied into the compression chamber 30 through the oil passage 57 increases. On the other hand, if the size of the intermittent oil supply passage 55 is reduced, the communication time is shortened and the amount of lubricating oil supplied into the compression chamber 30 is reduced.
  • the size of the movement restricting convex portion 252 and the amount of lubricating oil supplied into the compression chamber 30 have the same relationship. Since the size of the intermittent oil supply passage 55 and the movement regulation convex portion 252 and the amount of lubricating oil supplied into the compression chamber 30 have the above-mentioned relationship, the intermittent oil supply passage 55 and the movement according to the target oil supply amount. The size of the regulation convex portion 252 may be determined.
  • the position of the intermittent refueling passage 55 is set to the position where d ⁇ D, but the reason is as follows. That is, when d ⁇ D, the range in which the intermittent refueling passage 55 overlaps with the movement restricting convex portion 252 is too narrow or does not overlap, and the intermittent refueling passage 55 does not function as a refueling hole.
  • FIGS. 8 to 11 show an example in which the diameter of the intermittent oil supply passage 55 is larger than the width of the second Oldham groove 53
  • the diameter of the intermittent oil supply passage 55 may be the same as the width of the second Oldham groove 53. ..
  • the second Oldham groove 53 may be extended radially outward, and the extended portion thereof may be the intermittent oil supply passage 55.
  • the radial outer end of the inner surface forming the intermittent oil supply passage 55 may be formed in a slope shape. ..
  • the scroll compressor of the second embodiment has an intermittent oil supply passage 55 composed of a movement restricting recess 27 on the thrust surface of the swing scroll 5.
  • the intermittent refueling passage 55 is a refueling passage that intermittently communicates with the internal space 253 of the movement restricting convex portion 252 by the rotation of the rotating shaft 7.
  • the intermittent oil supply passage 55 communicates with the outer space 56a of the swing scroll 5 via the internal space 253 of the movement restricting convex portion 252 for a certain period of one rotation of the rotation shaft 7, and forms the oil passage 57.
  • the oil passage 57 is formed for a certain period of one rotation of the rotary shaft 7, and the lubricating oil in the intermittent oil supply passage 55 can be positively supplied into the compression chamber 30. Therefore, the compression chamber 30 can be used. Can be lubricated and sealed.
  • FIG. 13 is a schematic view of the thrust plate of the scroll compressor according to the third embodiment.
  • the configuration in which the third embodiment is different from the first embodiment will be mainly described, and the configurations not described in the third embodiment are the same as those in the first embodiment.
  • the movement restricting recess 27 provided in the frame 2 and the movement restricting convex portion 252 provided in the thrust plate 25 are one set.
  • two sets of the movement restricting concave portion 27 and the movement restricting convex portion 252 are provided. One of the two sets and the other set are provided at symmetrical positions with respect to the center O of the thrust plate 25.
  • the movement in the radial direction is also suppressed. Is possible. Therefore, it is not necessary to regulate the radial movement of the thrust plate 25 by the first inner wall surface 10a of the main shell 1a as described above. Therefore, it is possible to set the outer diameter of the thrust plate 25 to a size that does not come into contact with the first inner wall surface 10a of the main shell 1a. As a result, it is possible to prevent the first inner wall surface 10a from being damaged due to the thrust plate 25 coming into contact with the first inner wall surface 10a of the main shell 1a during operation.
  • the scroll compressor of the third embodiment includes two sets of the movement restricting concave portion 27 and the movement restricting convex portion 252, in addition to suppressing the movement of the thrust plate 25 in the rotation direction. , The radial movement of the thrust plate 25 can also be suppressed.
  • the intermittent oil supply passage 55 of the second embodiment may be provided in the scroll compressor of the third embodiment.
  • the movement regulation convex portion 252 can be used as a part of the intermittent refueling mechanism. Then, by providing the intermittent oil supply passage 55 corresponding to each set, the lubricating oil can be positively supplied into the compression chamber 30 as compared with the second embodiment.
  • one set and the other set of the two sets of the movement control concave portion 27 and the movement control convex portion 252 are provided at symmetrical positions with respect to the center O of the thrust plate 25. Although shown, it is not limited to this position. In short, one set and the other set may be provided at a position where the effect of suppressing the radial movement of the thrust plate 25 can be obtained. Further, although the example in which the set of the movement restricting concave portion 27 and the movement restricting convex portion 252 is two sets is shown here, three or more sets may be used. However, since the effect of suppressing the radial movement of the thrust plate 25 can be sufficiently obtained with two sets, two sets are desirable.
  • FIG. 14 is a schematic view of the thrust plate of the scroll compressor according to the fourth embodiment.
  • FIG. 15 is a schematic perspective view of a thrust plate and a frame in the scroll compressor according to the fourth embodiment.
  • 16 to 18 are schematic cross-sectional views showing the positional relationship between the oscillating scroll of the scroll compressor according to the fourth embodiment and the thrust plate.
  • two sets of the movement restricting convex portion 252 and the movement restricting concave portion 27 are provided as in the third embodiment. Further, two intermittent oil supply passages 55 are provided in the same number as the set of the movement regulation convex portion 252 and the movement regulation concave portion 27.
  • the center O of the thrust plate 25 is the origin
  • the axis passing through the origin and the notch 251 is the Y axis
  • the axis passing through the origin and orthogonal to the Y axis is the X axis.
  • the movement-restricted convex portion 252 whose X coordinate is in the negative position is the first movement-restricted convex portion 252-1
  • the movement-restricted convex portion 252 whose X-coordinate is in the positive position is the second movement-restricted convex portion 252-2.
  • the first movement restricting convex portion 252-1 and the second movement restricting convex portion 252-2 are located on opposite sides of each other with respect to a straight line passing through the center O (here, the Y axis).
  • the movement-restricted recess 27 into which the first movement-restricted convex portion 252-1 is inserted is designated as the first movement-restricted recess 27-1
  • the second movement-restricted convex portion 252-2 is designated as the first movement-restricted recess 27-1
  • the movement restricting recess 27 to be inserted is referred to as a second movement restricting recess 27-2.
  • the intermittent refueling passage 55 that forms a continuous passage together with the first movement regulation convex portion 252-1 is referred to as the first intermittent refueling passage 55-1 (see FIG. 16).
  • the intermittent refueling passage 55 forming a continuous passage together with the second movement restricting convex portion 252-2 is designated as the second intermittent refueling passage 55-2 (not shown, for convenience, the reference numeral. Is attached).
  • each of the first movement regulation convex portion 252-1 and the second movement regulation convex portion 252-2 is a shape extending in the Y-axis direction as shown in FIG. 14 in a plan view.
  • the outer shape of the first movement regulation convex portion 252-1 is specified by a pair of straight lines facing each other at intervals and a pair of arcs in which both ends of the pair of straight lines are connected in an arc shape. It is a shape to be made.
  • the second movement regulation convex portion 252-2 has the same shape.
  • each of the first movement regulation convex portion 252-1 and the second movement regulation convex portion 252-2 in the Y-axis direction is set to a position shifted in the positive direction of the Y axis from the center O.
  • the arc portions 252c of the first movement restricting convex portion 252-1 and the second movement restricting convex portion 252-2 are set to a size and position that do not interfere with the outer peripheral portion 56 of the rocking base plate 5a during operation. ing.
  • does not interfere means that the outer peripheral portion 56 of the rocking base plate 5a does not overlap the arc portion 252c in the axial direction of the rotating shaft 7.
  • the shape of the first movement restricting recess 27-1 and the second movement restricting recess 27-2 in a plan view is the same as that of the first movement restricting convex portion 252-1 and the second movement restricting convex portion 252-2.
  • the cross-sectional shape of the first movement restricting recess 27-1 and the second movement restricting recess 27-2 may be rectangular or may be a shape along the tip surface on the protruding side of the movement restricting convex portion 252.
  • the shape of the first intermittent refueling passage 55-1 and the second intermittent refueling passage 55-2 in a plan view is circular as in the second embodiment.
  • the dotted line, dot portion, and ⁇ in FIG. 14 will be described later.
  • the first intermittent oil supply passage 55-1 separates from the first movement restricting convex portion 252-1, and only the outer peripheral portion 56 of the rocking base plate 5a has the first movement restricting convex portion. It overlaps with the part 252-1 and becomes the state of FIG.
  • the outer peripheral portion 56 of the rocking base plate 5a separates from the first movement restricting convex portion 252-1. After that, when the rotation shaft 7 further rotates, the outer peripheral portion 56 of the rocking base plate 5a gradually approaches the first movement restricting convex portion 252-1 again, and returns to the state of FIG.
  • the positional relationship between the second intermittent refueling passage 55-2 and the second movement restricting convex portion 252-2 is also the first intermittent refueling passage 55-1 and the first due to the oscillating motion of the oscillating scroll 5.
  • the movement restriction changes in the same manner as the change in the positional relationship with the convex portion 252-1.
  • the first movement regulation convex portion 252-1 and the second movement regulation convex portion 252-2 are used as a part of the intermittent refueling mechanism as in the second and third embodiments.
  • the dot region is a region formed by two straight lines (dotted lines in FIG. 14) connecting the arcs on opposite sides of the first movement restricting convex portion 252-1 and the second movement restricting convex portion 252-2. ..
  • the communication time between the intermittent refueling passage 55 and the compression chamber 30 will be described.
  • the communication time is determined by the size and positional relationship of the movement restricting convex portion 252 and the intermittent refueling passage 55, respectively. ..
  • the positional relationship between the movement regulation convex portion 252 and the intermittent oil supply passage 55 changes due to the rattling of the thrust plate 25 during operation. Therefore, the communication time during one rotation of the rotating shaft 7 is not constant but changes.
  • the amount of lubricating oil intermittently supplied to the compression chamber 30 during operation of the compressor also changes, so that the amount of lubricating oil supplied to the compression chamber 30 is insufficient or excessive. There is a concern that it will become.
  • the variation in the communication time due to the rattling of the thrust plate 25 is suppressed.
  • the reason why the variation in the communication time due to the rattling of the thrust plate 25 can be suppressed will be described by citing three deviation patterns of the thrust plate 25 due to the rattling.
  • the thrust plate 25 When the thrust plate 25 is displaced in the X-axis direction, the distance between the first movement restricting convex portion 252-1 and the first intermittent oil passage 55-1 is increased, so that the first movement restricting convex portion 252-1 and the first 1 The communication time with the intermittent refueling channel 55-1 is shortened.
  • the first movement regulation convex portion 252-1 and the second movement regulation convex portion 252-2 are located on opposite sides of each other with respect to the Y axis.
  • the thrust plate 25 when the thrust plate 25 is displaced in the positive direction of the X axis, the distance between the second movement restricting convex portion 252-2 and the second intermittent oil supply passage 55-2 becomes closer, and the second movement restricting convex portion 252-2 becomes the same.
  • the communication time with the second intermittent refueling channel 55-2 becomes longer. That is, when the thrust plate 25 is displaced in the X-axis direction, the communication time between the first movement restricting convex portion 252-1 and the first intermittent oil supply passage 55-1 is shortened, while the second movement restricting convex portion 252-2. And the communication time with the second intermittent refueling channel 55-2 becomes longer. Therefore, the total of each communication time is almost the same as the total of each communication time before the deviation.
  • the thrust plate 25 is displaced in the negative direction of the X-axis, the distance between the first movement restricting convex portion 252-1 and the first intermittent oil supply passage 55-1 becomes shorter, the communication time becomes longer, and the second movement.
  • the distance between the regulation convex portion 252-2 and the second intermittent oil supply passage 55-2 is increased, and the communication time is shortened. Therefore, the total of each communication time is almost the same as the total of each communication time before the deviation.
  • the arc portions 252c of the first movement restricting convex portion 252-1 and the second movement restricting convex portion 252-2 are set to a size and position that do not interfere with the outer peripheral portion 56 of the rocking base plate 5a. ing. Therefore, even if the thrust plate 25 is displaced in the positive direction of the Y axis, the area shown by the shaded area in FIG. 17 (hereinafter referred to as the opening area) does not change, so that the communication time does not change either. Further, even when the thrust plate 25 is displaced in the negative direction of the Y axis, the opening area does not change, so that the communication time does not change.
  • FIG. 19 shows the positional relationship between the first movement restricting convex portion 252-1 and the first intermittent oil supply passage 55-1 when the thrust plate 25 rotates and shifts in the positive direction in the ⁇ direction.
  • FIG. 20 shows the positional relationship between the first movement restricting convex portion 252-1 and the first intermittent oil supply passage 55-1 when the thrust plate 25 rotates and shifts in the negative direction in the ⁇ direction.
  • the positional relationship between the first movement restricting convex portion 252-1 and the first intermittent oil supply passage 55-1 changes as shown in FIG.
  • the opening area (hatched portion in FIG. 19) formed by the first movement restricting convex portion 252-1 and the first intermittent oil supply passage 55-1 becomes smaller. Therefore, the communication time between the first movement regulation convex portion 252-1 and the first intermittent oil supply passage 55-1 is shortened.
  • the positional relationship between the second movement regulation convex portion 252-2 and the second intermittent oil supply passage 55-2 also changes, and is formed by the second movement regulation convex portion 252-2 and the second intermittent oil supply passage 55-2.
  • the opening area (not shown) becomes large.
  • the communication time between the second movement regulation convex portion 252-2 and the second intermittent oil supply passage 55-2 becomes long. Therefore, the communication time between the first movement regulation convex portion 252-1 and the first intermittent refueling passage 55-1 and the communication time between the second movement regulation convex portion 252-2 and the second intermittent refueling passage 55-2, The total of is almost the same as the total of each communication time before the deviation.
  • the opening area formed by the first movement restricting convex portion 252-1 and the first intermittent oil supply passage 55-1 becomes larger. Therefore, the communication time between the first movement regulation convex portion 252-1 and the first intermittent oil supply passage 55-1 becomes long.
  • the opening area (not shown) formed by the second movement restricting convex portion 252-2 and the second intermittent oil supply passage 55-2 becomes smaller. Therefore, the communication time between the second movement regulation convex portion 252-2 and the second intermittent oil supply passage 55-2 is shortened.
  • the center positions of the first movement restricting convex portion 252-1 and the second movement restricting convex portion 252-2 in the Y-axis direction are shifted from the center O in the positive direction of the Y axis. Is set to. This positional relationship is used to obtain a form in which, as described here, when the thrust plate 25 is displaced in the ⁇ direction, the communication time of one becomes shorter and the communication time of the other becomes longer. be.
  • the center position of each of the first movement regulation convex portion 252-1 and the second movement regulation convex portion 252-2 in the Y-axis direction is a position shifted in the positive direction of the Y axis from the center O, but is negative. It may be set to a position shifted in the direction. Further, the shift direction has been described here as the Y-axis, but in short, it may be any direction as long as each pair of straight lines of the first movement restricting convex portion 252-1 and the second movement restricting convex portion 252-2 extends.
  • the movement restricting concave portion 27 and the movement restricting convex portion 252 have the following external shapes when viewed in the axial direction of the rotating shaft 7.
  • the movement restricting concave portion 27 and the movement restricting convex portion 252 have a shape specified by a pair of straight lines facing each other at intervals and a pair of arcs in which both ends of the pair of straight lines are connected in an arc shape. Then, one of the two sets and the other set are located on opposite sides of each other with respect to a straight line passing through the center O of the thrust plate 25.
  • center positions of the first movement restricting convex portion 252-1 and the second movement restricting convex portion 252-2 in the direction in which the pair of straight lines extend are such that the pair of straight lines extend from the center O of the thrust plate 25. It is set to a position shifted with respect to the direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

This scroll compressor is provided with a shell, a frame, a fixed scroll, an orbiting scroll, a rotational shaft, and a thrust plate provided between the frame and the orbiting scroll. A movement-regulating recess is formed in a surface of the frame in contact with the thrust plate. The thrust plate comprises a movement-regulating projection projecting toward the frame side and inserted into the movement-regulating recess to regulate movement of the thrust plate.

Description

スクロール圧縮機Scroll compressor
 本開示は、空気調和装置または冷凍装置等に用いられるスクロール圧縮機に関するものである。 The present disclosure relates to a scroll compressor used in an air conditioner, a refrigerating device, or the like.
 従来のスクロール圧縮機は、シェルと、シェルの内壁面に固定されたフレームと、冷媒を圧縮する圧縮機構部とを備えている。圧縮機構部は、第1渦巻突起部が設けられた固定台板を有する固定スクロールと、フレームに揺動自在に支持され、第1渦巻突起部と噛み合う第2渦巻突起部が設けられた揺動台板を有する揺動スクロールと、を備えている。圧縮機構部は、第1渦巻突起部と第2渦巻突起部とを噛み合わせることにより、第1渦巻突起部と第2渦巻突起部との間に冷媒を圧縮する圧縮室を形成している。フレームには、揺動運動の際に発生する揺動スクロールのスラスト荷重を受けるためのスラストプレートが設けられている。スラストプレートは、スラストプレートの自転を抑制するため、揺動スクロールよりも外側の位置にて、固定部材によってフレームに固定されている。 The conventional scroll compressor is equipped with a shell, a frame fixed to the inner wall surface of the shell, and a compression mechanism for compressing the refrigerant. The compression mechanism is a fixed scroll having a fixed base plate provided with a first spiral protrusion, and a swing provided with a second spiral protrusion that is swingably supported by the frame and meshes with the first spiral protrusion. It is equipped with a swing scroll having a base plate. The compression mechanism portion meshes the first spiral protrusion portion with the second spiral protrusion portion to form a compression chamber for compressing the refrigerant between the first spiral protrusion portion and the second spiral protrusion portion. The frame is provided with a thrust plate for receiving the thrust load of the swing scroll generated during the swing motion. The thrust plate is fixed to the frame by a fixing member at a position outside the swing scroll in order to suppress the rotation of the thrust plate.
特開2018-91219号公報Japanese Unexamined Patent Publication No. 2018-91219
 ところで、スクロール圧縮機の圧縮効率を高める方法として、圧縮室の容量を拡大させる方法が考えられる。圧縮室の容量を拡大するには、揺動スクロールの外径を大きくすればよい。しかし、特許文献1では、スラストプレートの自転を抑制するための固定部材を揺動スクロールの外側に設置しており、揺動スクロールの外周とシェルの内周面との間に固定部材を設置するスペースを確保する必要がある。このため、揺動スクロールの大きさに制限があり、圧縮室の容量拡大が図れないという問題があった。 By the way, as a method of increasing the compression efficiency of the scroll compressor, a method of expanding the capacity of the compression chamber can be considered. To increase the capacity of the compression chamber, the outer diameter of the swing scroll may be increased. However, in Patent Document 1, a fixing member for suppressing the rotation of the thrust plate is installed on the outside of the swing scroll, and the fixing member is installed between the outer periphery of the swing scroll and the inner peripheral surface of the shell. It is necessary to secure space. Therefore, there is a problem that the size of the swing scroll is limited and the capacity of the compression chamber cannot be expanded.
 本開示は、上記のような課題を解決するためになされたものであり、スラストプレートの自転抑制のための部材を不要として、圧縮室の容量拡大を図ることが可能なスクロール圧縮機を提供することを目的とする。 The present disclosure has been made to solve the above-mentioned problems, and provides a scroll compressor capable of expanding the capacity of the compression chamber without the need for a member for suppressing the rotation of the thrust plate. The purpose is.
 本開示に係るスクロール圧縮機は、シェルと、シェルの内壁面に固定されたフレームと、シェルの内壁面に固定され、第1渦巻突起部が設けられた固定台板を有する固定スクロールと、フレームに揺動自在に支持され、第1渦巻突起部と噛み合う第2渦巻突起部が設けられた揺動台板を有し、固定スクロールとの間に冷媒を圧縮する圧縮室を形成する揺動スクロールと、揺動スクロールに連結され、揺動スクロールを揺動運動させる回転軸と、フレームと揺動スクロールとの間に設けられたスラストプレートと、を備え、フレームにおいてスラストプレートとの接触面には移動規制凹部が形成されており、スラストプレートには、フレーム側に突出して形成され、移動規制凹部内に挿入されてスラストプレートの移動を規制する移動規制凸部が設けられているものである。 The scroll compressor according to the present disclosure includes a shell, a frame fixed to the inner wall surface of the shell, a fixed scroll having a fixed base plate fixed to the inner wall surface of the shell and provided with a first spiral protrusion, and a frame. The oscillating scroll has a oscillating base plate that is oscillatingly supported and provided with a second vortex protrusion that meshes with the first vortex protrusion, and forms a compression chamber that compresses the refrigerant between the fixed scroll and the oscillating scroll. A rotating shaft connected to the oscillating scroll to cause the oscillating scroll to oscillate, and a thrust plate provided between the frame and the oscillating scroll. A movement-restricting recess is formed, and the thrust plate is provided with a movement-restricting convex portion that is formed so as to project toward the frame side and is inserted into the movement-restricting recess to regulate the movement of the thrust plate.
 本開示によれば、スラストプレートに設けた移動規制凸部の、フレームに設けた移動規制凹部内への挿入によりスラストプレートの移動規制を行えるため、スラストプレートの自転抑制のための部材を不要とでき、結果として圧縮室の容量拡大を図ることができる。 According to the present disclosure, the movement of the thrust plate can be restricted by inserting the movement-restricting convex portion provided on the thrust plate into the movement-restricting concave portion provided on the frame, so that a member for suppressing the rotation of the thrust plate is unnecessary. As a result, the capacity of the compression chamber can be expanded.
実施の形態1に係るスクロール圧縮機の外観を示した正面図である。It is a front view which showed the appearance of the scroll compressor which concerns on Embodiment 1. FIG. 実施の形態1に係るスクロール圧縮機の内部構造を示した概略縦断面図である。It is a schematic vertical sectional view which showed the internal structure of the scroll compressor which concerns on Embodiment 1. FIG. 実施の形態1に係るスクロール圧縮機の要部を分解して示した概略斜視図である。FIG. 3 is a schematic perspective view showing a main part of the scroll compressor according to the first embodiment in an exploded manner. 実施の形態1に係るスクロール圧縮機の圧縮機構部の概略縦断面図である。It is a schematic vertical sectional view of the compression mechanism part of the scroll compressor which concerns on Embodiment 1. FIG. 図4において円で囲った部分の拡大図である。FIG. 4 is an enlarged view of a portion surrounded by a circle in FIG. 実施の形態1に係るスクロール圧縮機のスラストプレートの模式図である。It is a schematic diagram of the thrust plate of the scroll compressor which concerns on Embodiment 1. FIG. 実施の形態1に係るスクロール圧縮機の移動規制凸部および移動規制凹部の変形例を示す図である。It is a figure which shows the modification of the movement regulation convex part and the movement regulation concave part of the scroll compressor which concerns on Embodiment 1. FIG. 実施の形態2に係るスクロール圧縮機の揺動スクロールを下側から見た模式図である。It is a schematic diagram which looked at the rocking scroll of the scroll compressor which concerns on Embodiment 2 from the lower side. 実施の形態2に係るスクロール圧縮機の揺動スクロールとスラストプレートとの位置関係を示した概略横断面図(1/3)である。FIG. 3 is a schematic cross-sectional view (1/3) showing the positional relationship between the oscillating scroll of the scroll compressor according to the second embodiment and the thrust plate. 実施の形態2に係るスクロール圧縮機の揺動スクロールとスラストプレートとの位置関係を示した概略横断面図(2/3)である。It is a schematic cross-sectional view (2/3) which showed the positional relationship between the rocking scroll of the scroll compressor which concerns on Embodiment 2 and a thrust plate. 実施の形態2に係るスクロール圧縮機の揺動スクロールとスラストプレートとの位置関係を示した概略横断面図(3/3)である。FIG. 3 is a schematic cross-sectional view (3/3) showing the positional relationship between the oscillating scroll of the scroll compressor according to the second embodiment and the thrust plate. 実施の形態2に係るスクロール圧縮機における図10の状態の時の、揺動スクロールとスラストプレートとの位置関係を示した概略縦断面図である。FIG. 3 is a schematic vertical cross-sectional view showing the positional relationship between the oscillating scroll and the thrust plate in the state of FIG. 10 in the scroll compressor according to the second embodiment. 実施の形態3に係るスクロール圧縮機のスラストプレートの模式図である。It is a schematic diagram of the thrust plate of the scroll compressor which concerns on Embodiment 3. FIG. 実施の形態4に係るスクロール圧縮機のスラストプレートの模式図である。It is a schematic diagram of the thrust plate of the scroll compressor which concerns on Embodiment 4. FIG. 実施の形態4に係るスクロール圧縮機におけるスラストプレートおよびフレームの概略斜視図である。FIG. 3 is a schematic perspective view of a thrust plate and a frame in the scroll compressor according to the fourth embodiment. 実施の形態4に係るスクロール圧縮機の揺動スクロールとスラストプレートとの位置関係を示した概略横断面図(1/5)である。FIG. 5 is a schematic cross-sectional view (1/5) showing the positional relationship between the oscillating scroll of the scroll compressor according to the fourth embodiment and the thrust plate. 実施の形態4に係るスクロール圧縮機の揺動スクロールとスラストプレートとの位置関係を示した概略横断面図(2/5)である。FIG. 5 is a schematic cross-sectional view (2/5) showing the positional relationship between the oscillating scroll of the scroll compressor according to the fourth embodiment and the thrust plate. 実施の形態4に係るスクロール圧縮機の揺動スクロールとスラストプレートとの位置関係を示した概略横断面図(3/5)である。FIG. 3 is a schematic cross-sectional view (3/5) showing the positional relationship between the oscillating scroll of the scroll compressor according to the fourth embodiment and the thrust plate. 実施の形態4に係るスクロール圧縮機の揺動スクロールとスラストプレートとの位置関係を示した概略横断面図(4/5)である。FIG. 5 is a schematic cross-sectional view (4/5) showing the positional relationship between the oscillating scroll of the scroll compressor according to the fourth embodiment and the thrust plate. 実施の形態4に係るスクロール圧縮機の揺動スクロールとスラストプレートとの位置関係を示した概略横断面図(5/5)である。FIG. 5 is a schematic cross-sectional view (5/5) showing the positional relationship between the oscillating scroll of the scroll compressor according to the fourth embodiment and the thrust plate.
 以下、図面を参照して、実施の形態について説明する。なお、各図中、同一または相当する部分には、同一符号を付して、その説明を適宜省略または簡略化する。また、各図に記載の構成について、その形状、大きさ、および配置等は、適宜変更することができる。 Hereinafter, embodiments will be described with reference to the drawings. In each figure, the same or corresponding parts are designated by the same reference numerals, and the description thereof will be omitted or simplified as appropriate. In addition, the shape, size, arrangement, and the like of the configurations shown in each figure can be appropriately changed.
実施の形態1.
 図1は、実施の形態1に係るスクロール圧縮機の外観を示した正面図である。図2は、実施の形態1に係るスクロール圧縮機の内部構造を示した概略縦断面図である。図3は、実施の形態1に係るスクロール圧縮機の要部を分解して示した概略斜視図である。本実施の形態1に係るスクロール圧縮機100は、例えば、冷蔵庫、冷凍庫、空気調和装置、冷凍装置または給湯器等に用いられる冷凍サイクルの構成要素の一つとなるものである。
Embodiment 1.
FIG. 1 is a front view showing the appearance of the scroll compressor according to the first embodiment. FIG. 2 is a schematic vertical sectional view showing the internal structure of the scroll compressor according to the first embodiment. FIG. 3 is a schematic perspective view showing a main part of the scroll compressor according to the first embodiment in an exploded manner. The scroll compressor 100 according to the first embodiment is one of the components of a refrigerating cycle used in, for example, a refrigerator, a freezer, an air conditioner, a refrigerating device, a water heater, and the like.
 スクロール圧縮機100は、冷凍サイクルを循環する冷媒を吸入して圧縮し、高温高圧の状態として吐出させるものである。スクロール圧縮機100は、図1および図2に示すように、外郭を形成するシェル1と、フレーム2と、固定スクロール4および揺動スクロール5を有する圧縮機構部3と、電動機6と、圧縮機構部3と電動機6とを連結する回転軸7と、を備えている。 The scroll compressor 100 sucks in the refrigerant circulating in the refrigeration cycle, compresses it, and discharges it in a high temperature and high pressure state. As shown in FIGS. 1 and 2, the scroll compressor 100 includes a shell 1 forming an outer shell, a frame 2, a compression mechanism unit 3 having a fixed scroll 4 and a swing scroll 5, an electric motor 6, and a compression mechanism. A rotating shaft 7 for connecting the portion 3 and the electric motor 6 is provided.
 シェル1は、図1に示すように、金属などの導電性部材であり、密閉空間を有する筒状に形成されたものである。シェル1の内部には、フレーム2と、圧縮機構部3と、電動機6と、回転軸7とが収容されている。図1および図2には、回転軸7が重力方向となる状態で使用される、いわゆる縦置き型のスクロール圧縮機を図示しているが、横置き型でもよい。 As shown in FIG. 1, the shell 1 is a conductive member such as metal, and is formed in a cylindrical shape having a closed space. Inside the shell 1, a frame 2, a compression mechanism unit 3, an electric motor 6, and a rotating shaft 7 are housed. 1 and 2 show a so-called vertical scroll compressor used in a state where the rotation axis 7 is in the direction of gravity, but a horizontal scroll compressor may be used.
 シェル1は、円筒状のメインシェル1aと、メインシェル1aの上面開口を塞ぐ略半球状のアッパーシェル1bと、メインシェル1aの下面開口を塞ぐ略半球状のロアシェル1cと、を有する。アッパーシェル1bおよびロアシェル1cは、それぞれメインシェル1aに溶接等で固着されている。シェル1は、ロアシェル1cに固定された固定台1dによって支持されている。 The shell 1 has a cylindrical main shell 1a, a substantially hemispherical upper shell 1b that closes the upper surface opening of the main shell 1a, and a substantially hemispherical lower shell 1c that closes the lower surface opening of the main shell 1a. The upper shell 1b and the lower shell 1c are respectively fixed to the main shell 1a by welding or the like. The shell 1 is supported by a fixing base 1d fixed to the lower shell 1c.
 メインシェル1aの内壁面は、図3に示すように、上端部に形成された大径の第1内壁面10aと、第1内壁面10aの下方に形成された第2内壁面10bと、第2内壁面10bの下方に形成された第3内壁面10cと、を有している。第1内壁面10a、第2内壁面10bおよび第3内壁面10cは、この順に内径が小さくなるように構成されている。第1内壁面10aの下端と第2内壁面10bの上端とで形成された第1段部11aは、固定スクロール4の位置決め部として機能する。第2内壁面10bの下端と第3内壁面10cの上端とで形成された第2段部11bは、フレーム2の位置決め部として機能する。 As shown in FIG. 3, the inner wall surface of the main shell 1a includes a large-diameter first inner wall surface 10a formed at the upper end portion, a second inner wall surface 10b formed below the first inner wall surface 10a, and a second inner wall surface 10b. It has a third inner wall surface 10c formed below the second inner wall surface 10b. The first inner wall surface 10a, the second inner wall surface 10b, and the third inner wall surface 10c are configured so that the inner diameters become smaller in this order. The first step portion 11a formed by the lower end of the first inner wall surface 10a and the upper end of the second inner wall surface 10b functions as a positioning portion of the fixed scroll 4. The second step portion 11b formed by the lower end of the second inner wall surface 10b and the upper end of the third inner wall surface 10c functions as a positioning portion of the frame 2.
 メインシェル1aには、図1および図2に示すように、シェル1の内部に冷媒を取り込むための吸入管13と、スクロール圧縮機100に給電するための給電部19と、が設けられている。吸入管13は、メインシェル1aの側壁に形成された孔に、一部が挿入された状態でろう付け等により接続されている。吸入管13は、シェル1内の低圧空間16bに連通している。給電部19は、カバー19aと、給電端子19bと、配線19cと、を備えている。給電端子19bは、金属部材であり、一端がカバー19aに囲まれるように配置され、他端がメインシェル1aの内部に配置されている。配線19cは、一端が給電端子19bと接続され、他端が電動機6に接続されている。 As shown in FIGS. 1 and 2, the main shell 1a is provided with a suction pipe 13 for taking in a refrigerant inside the shell 1 and a feeding unit 19 for supplying power to the scroll compressor 100. .. The suction pipe 13 is connected to a hole formed in the side wall of the main shell 1a by brazing or the like with a part inserted. The suction pipe 13 communicates with the low pressure space 16b in the shell 1. The power feeding unit 19 includes a cover 19a, a power feeding terminal 19b, and a wiring 19c. The power feeding terminal 19b is a metal member, one end thereof is arranged so as to be surrounded by the cover 19a, and the other end is arranged inside the main shell 1a. One end of the wiring 19c is connected to the power feeding terminal 19b, and the other end is connected to the motor 6.
 アッパーシェル1bには、圧縮した冷媒をシェル1から吐き出す吐出管14が接続されている。吐出管14は、アッパーシェル1bの上部に形成された孔に、一部が挿入された状態でろう付け等により接続されている。また、シェル1の内底部には、潤滑油を貯留する油溜め18が設けられている。 A discharge pipe 14 for discharging the compressed refrigerant from the shell 1 is connected to the upper shell 1b. The discharge pipe 14 is connected to a hole formed in the upper part of the upper shell 1b by brazing or the like with a part inserted. Further, an oil reservoir 18 for storing lubricating oil is provided on the inner bottom portion of the shell 1.
 フレーム2は、図2および図3に示すように、下方に向かって段階的に先細る円筒状の金属フレームであり、揺動スクロール5を揺動自在に支持するものである。フレーム2の外周面は、例えば焼嵌め等で、メインシェル1aの内壁面に固着されている。フレーム2の上面には、図3に示すように環状の平坦面20が形成されている。平坦面20には、バルブ鋼などの鋼板系材料からなるリング状のスラストプレート25が設けられている。スラストプレート25は、フレーム2のスラスト摺動面として機能し、圧縮機構部3のスラスト荷重を支持する。スラストプレート25は、メインシェル1aの第1内壁面10aの内径よりわずかに小さい外径となるように形成されている。 As shown in FIGS. 2 and 3, the frame 2 is a cylindrical metal frame that gradually tapers downward, and supports the swing scroll 5 swingably. The outer peripheral surface of the frame 2 is fixed to the inner wall surface of the main shell 1a by, for example, shrink fitting. As shown in FIG. 3, an annular flat surface 20 is formed on the upper surface of the frame 2. The flat surface 20 is provided with a ring-shaped thrust plate 25 made of a steel plate-based material such as valve steel. The thrust plate 25 functions as a thrust sliding surface of the frame 2 and supports the thrust load of the compression mechanism portion 3. The thrust plate 25 is formed so as to have an outer diameter slightly smaller than the inner diameter of the first inner wall surface 10a of the main shell 1a.
 また、図3に示すように、フレーム2の筒内部は、収容部21と、回転軸7を支持する主軸受部22と、で構成されている。収容部21は、フレーム2の上部側に設けられている。主軸受部22は、フレーム2の下部側に設けられている。 Further, as shown in FIG. 3, the inside of the cylinder of the frame 2 is composed of a housing portion 21 and a main bearing portion 22 for supporting the rotating shaft 7. The accommodating portion 21 is provided on the upper side of the frame 2. The main bearing portion 22 is provided on the lower side of the frame 2.
 収容部21は、図3に示すように、下方に向かって段階的に内径が小さくなるように形成されている。収容部21は、平坦面20側に位置する段差部分がオルダム収容部21aとされ、主軸受部22側に位置する段差部分がブッシュ収容部21bとされている。また、オルダム収容部21aおよび平坦面20の一部には、軸孔を挟んで対向するように形成された一対の第1オルダム溝21cが設けられている。第1オルダム溝21cは、後述のオルダムリング54の第1キー部54bが嵌まるキー溝である。 As shown in FIG. 3, the accommodating portion 21 is formed so that the inner diameter gradually decreases downward. In the accommodating portion 21, the stepped portion located on the flat surface 20 side is the oldham accommodating portion 21a, and the stepped portion located on the main bearing portion 22 side is the bush accommodating portion 21b. Further, a pair of first Oldham grooves 21c formed so as to face each other with a shaft hole interposed therebetween are provided in a part of the Oldham accommodating portion 21a and the flat surface 20. The first old dam groove 21c is a key groove into which the first key portion 54b of the old dam ring 54 described later is fitted.
 また、フレーム2には、図2に示すように、フレーム2の内外を貫通して形成された返油孔23に、返油管24が挿入されて固定されている。返油孔23は、ブッシュ収容部21bと連通している。返油管24は、収容部21に溜まった潤滑油をロアシェル1cに設けられた油溜め18に戻すために設けられている。なお、返油孔23および返油管24は、一つに限らず、複数設けてもよい。 Further, as shown in FIG. 2, the oil return pipe 24 is inserted into and fixed to the oil return hole 23 formed through the inside and outside of the frame 2 in the frame 2. The oil return hole 23 communicates with the bush accommodating portion 21b. The oil return pipe 24 is provided to return the lubricating oil accumulated in the accommodating portion 21 to the oil reservoir 18 provided in the lower shell 1c. The oil return hole 23 and the oil return pipe 24 are not limited to one, and a plurality of oil return holes 23 may be provided.
 また、フレーム2には、図3に示すように、冷媒の通り道である吸入ポート26が設けられており、スラストプレート25には、吸入ポート26を閉塞しない大きさで切欠き251が設けられている。吸入管13から吸入された冷媒は、吸入ポート26を通り、後述の圧縮室へ取り込まれる。 Further, as shown in FIG. 3, the frame 2 is provided with a suction port 26 which is a path for the refrigerant, and the thrust plate 25 is provided with a notch 251 having a size that does not block the suction port 26. There is. The refrigerant sucked from the suction pipe 13 passes through the suction port 26 and is taken into the compression chamber described later.
 圧縮機構部3は、電動機6により駆動されることで、吸入管13から吸入した冷媒を圧縮する機能を有している。圧縮機構部3は、固定スクロール4と揺動スクロール5とを備えている。固定スクロール4は、図2および図3に示すように、円板状の固定台板4aと、固定台板4aの下面に設けられた第1渦巻突起部4bと、を有している。揺動スクロール5は、円板状の揺動台板5aと、揺動台板5aの上面に設けられ、第1渦巻突起部4bと噛み合う第2渦巻突起部5bと、を有している。揺動スクロール5は、固定スクロール4に対して偏心して設置されている。固定スクロール4の第1渦巻突起部4bと揺動スクロール5の第2渦巻突起部5bとが噛み合わされて、冷媒を圧縮する複数の圧縮室30が形成されている。 The compression mechanism unit 3 has a function of compressing the refrigerant sucked from the suction pipe 13 by being driven by the electric motor 6. The compression mechanism unit 3 includes a fixed scroll 4 and a swing scroll 5. As shown in FIGS. 2 and 3, the fixed scroll 4 has a disk-shaped fixed base plate 4a and a first spiral protrusion 4b provided on the lower surface of the fixed base plate 4a. The swing scroll 5 has a disk-shaped swing base plate 5a and a second spiral protrusion 5b provided on the upper surface of the swing base plate 5a and meshing with the first spiral protrusion 4b. The swing scroll 5 is installed eccentrically with respect to the fixed scroll 4. The first spiral protrusion 4b of the fixed scroll 4 and the second spiral protrusion 5b of the swing scroll 5 are meshed with each other to form a plurality of compression chambers 30 for compressing the refrigerant.
 固定スクロール4は、例えば鋳鉄等の金属で形成されている。固定スクロール4は、固定台板4aの外周面が、メインシェル1aの第1段部11aに支持された状態で、第1内壁面10aに焼き嵌め等で固着されている。 The fixed scroll 4 is made of a metal such as cast iron. The fixed scroll 4 is fixed to the first inner wall surface 10a by shrink fitting or the like in a state where the outer peripheral surface of the fixed base plate 4a is supported by the first step portion 11a of the main shell 1a.
 固定台板4aの中央部には、圧縮されて高温かつ高圧となった冷媒を吐出する吐出ポート40が形成されている。固定スクロール4の上面には、吐出ポート40に連通する吐出孔15aが形成されたチャンバー15が設けられている。チャンバー15には、冷媒の圧力に応じて吐出孔15aを開閉する吐出弁17がネジ止めして設けられている。吐出弁17は、吐出ポート40に連通する圧縮室30の冷媒が所定の圧力に達したときに、吐出孔15aを開状態にする。圧縮された高温かつ高圧冷媒は、吐出ポート40から固定スクロール4の上部の高圧空間16aに排出され、吐出管14を通り、シェル1の外部へ吐出される。また、第1渦巻突起部4bの先端部には、溝が形成されており、この溝に例えば硬質プラスチックからなるチップシール41が設けられている。 A discharge port 40 for discharging a compressed, high-temperature and high-pressure refrigerant is formed in the central portion of the fixed base plate 4a. A chamber 15 having a discharge hole 15a communicating with the discharge port 40 is provided on the upper surface of the fixed scroll 4. The chamber 15 is provided with a discharge valve 17 screwed to open and close the discharge hole 15a according to the pressure of the refrigerant. The discharge valve 17 opens the discharge hole 15a when the refrigerant in the compression chamber 30 communicating with the discharge port 40 reaches a predetermined pressure. The compressed high-temperature and high-pressure refrigerant is discharged from the discharge port 40 into the high-pressure space 16a above the fixed scroll 4, passes through the discharge pipe 14, and is discharged to the outside of the shell 1. Further, a groove is formed at the tip of the first spiral protrusion 4b, and a tip seal 41 made of, for example, hard plastic is provided in the groove.
 揺動スクロール5は、例えばアルミニウム等の金属で形成されている。揺動スクロール5は、図2および図3に示すように、自転運動を阻止するためのオルダムリング54により、固定スクロール4に対して自転運動することなく公転運動を行う。なお、揺動台板5aの第2渦巻突起部5bが形成されていない側の面(図示例の場合は下面)は、揺動スクロールスラスト軸受面として作用する。また、揺動スクロールスラスト軸受面の中心部には、中空円筒形状のボス部51が設けられている。ボス部51の内周面には、揺動軸受が設けられている。揺動軸受は、後述のブッシュ8のスライダ80を回転自在に支持するものである。揺動軸受は、いわゆるジャーナル軸受である。揺動軸受は、中心軸が回転軸7の中心軸と平行になるように設けられている。ボス部51に挿入された回転軸7の偏心軸部71が回転することで、揺動スクロール5はフレーム2のスラスト摺動面上で公転運動する。 The swing scroll 5 is made of a metal such as aluminum. As shown in FIGS. 2 and 3, the swing scroll 5 revolves without rotating with respect to the fixed scroll 4 by the old dam ring 54 for blocking the rotation. The surface of the rocking base plate 5a on the side where the second spiral protrusion 5b is not formed (lower surface in the case of the illustrated example) acts as a rocking scroll thrust bearing surface. Further, a hollow cylindrical boss portion 51 is provided at the center of the swing scroll thrust bearing surface. A swing bearing is provided on the inner peripheral surface of the boss portion 51. The oscillating bearing rotatably supports the slider 80 of the bush 8 described later. The plain bearing is a so-called journal bearing. The oscillating bearing is provided so that the central axis is parallel to the central axis of the rotating shaft 7. As the eccentric shaft portion 71 of the rotating shaft 7 inserted into the boss portion 51 rotates, the swing scroll 5 revolves on the thrust sliding surface of the frame 2.
 また、第2渦巻突起部5bの先端部には、溝が形成されており、この溝に例えば硬質プラスチックからなるチップシール52が設けられている。また、揺動スクロールスラスト軸受面には、ボス部51を挟んで対向するように形成された一対の第2オルダム溝53が設けられている。第2オルダム溝53は、後述のオルダムリング54の第2キー部54cが嵌まる長丸形状のキー溝である。一対の第2オルダム溝53は、一対の第2オルダム溝53同士を結ぶ線が、一対の第1オルダム溝21c同士を結ぶ線に対して、直交する関係となるように配置されている。 Further, a groove is formed at the tip of the second spiral protrusion 5b, and a tip seal 52 made of, for example, hard plastic is provided in this groove. Further, the swing scroll thrust bearing surface is provided with a pair of second Oldham grooves 53 formed so as to face each other with the boss portion 51 interposed therebetween. The second Oldham groove 53 is an oval-shaped key groove into which the second key portion 54c of the Oldham ring 54, which will be described later, is fitted. The pair of second Oldham grooves 53 are arranged so that the lines connecting the pair of second Oldam grooves 53 are orthogonal to the lines connecting the pair of first Oldam grooves 21c.
 オルダムリング54は、リング部54aと、第1キー部54bと、第2キー部54cと、を備えている。リング部54aは、環状であり、フレーム2のオルダム収容部21aに配置されている。第1キー部54bは、リング部54aの下面に設けられている。第1キー部54bは、一対で構成され、フレーム2の一対の第1オルダム溝21cに各々収容される。第2キー部54cは、リング部54aの上面に設けられている。第2キー部54cは、一対で構成され、揺動スクロール5の一対の第2オルダム溝53に各々収容される。揺動スクロール5の第2オルダム溝53をオルダムリング54の第2キー部54cに合わせることで、揺動スクロール5の第2渦巻突起部5bの回転方向の位置が決まる。つまり、オルダムリング54により、フレーム2に対して揺動スクロール5が位置決めされ、フレーム2に対する第2渦巻突起部5bの位相が決定する。 The Oldham ring 54 includes a ring portion 54a, a first key portion 54b, and a second key portion 54c. The ring portion 54a is annular and is arranged in the old dam accommodating portion 21a of the frame 2. The first key portion 54b is provided on the lower surface of the ring portion 54a. The first key portion 54b is composed of a pair and is accommodated in each pair of first old dam grooves 21c of the frame 2. The second key portion 54c is provided on the upper surface of the ring portion 54a. The second key portion 54c is composed of a pair and is housed in each pair of the second oldham grooves 53 of the swing scroll 5. By aligning the second Oldham groove 53 of the swing scroll 5 with the second key portion 54c of the Oldam ring 54, the position of the second spiral protrusion portion 5b of the swing scroll 5 in the rotational direction is determined. That is, the old dam ring 54 positions the swing scroll 5 with respect to the frame 2, and determines the phase of the second spiral protrusion 5b with respect to the frame 2.
 圧縮室30は、固定スクロール4の第1渦巻突起部4bと、揺動スクロール5の第2渦巻突起部5bと、を互いに噛み合わせることによって形成されている。圧縮室30は、第1渦巻突起部4bの先端に設けたチップシール41および揺動台板5aと、第2渦巻突起部5bの先端に設けたチップシール52および固定台板4aと、でシールされている。圧縮室30は、スクロールの半径方向において、外側から内側へ向かうにしたがって容積が縮小する複数の圧縮室で構成される。 The compression chamber 30 is formed by engaging the first spiral protrusion 4b of the fixed scroll 4 and the second spiral protrusion 5b of the swing scroll 5 with each other. The compression chamber 30 is sealed by a tip seal 41 and a swing base plate 5a provided at the tip of the first spiral protrusion 4b, and a tip seal 52 and a fixed base plate 4a provided at the tip of the second spiral protrusion 5b. Has been done. The compression chamber 30 is composed of a plurality of compression chambers whose volume decreases from the outside to the inside in the radial direction of the scroll.
 冷媒は、例えば、組成中に、炭素の二重結合を有するハロゲン化炭化水素、炭素の二重結合を有しないハロゲン化炭化水素、自然冷媒、またはそれらを含む混合物を使用することができる。炭素の二重結合を有するハロゲン化炭化水素は、R1234yf(CFCF=CH)、R1234ze(CFCH=CHF)またはR1233zd(CFCH=CHCl)等のHFO冷媒が挙げられる。炭素の二重結合を有しないハロゲン化炭化水素は、R32(CH)、R41(CHF)、R125(CHF)、R134a(CHFCF)、R143a(CFCH)、R410A(R32/R125)またはR407C(R32/R125/R134a)等のHFC冷媒が挙げられる。CHで表されるR32(ジフルオロメタン)、R41等が、混合された冷媒として例示される。自然冷媒は、アンモニア(NH)、二酸化炭素(CO)、プロパン(C)、プロピレン(C)、ブタン(C10)またはイソブタン(CH(CH)等が挙げられる。冷媒は、オゾン層破壊係数がゼロで、低GWPの冷媒が望ましい。 As the refrigerant, for example, a halogenated hydrocarbon having a carbon double bond, a halogenated hydrocarbon having no carbon double bond, a natural refrigerant, or a mixture containing them can be used in the composition. Examples of the halogenated hydrocarbon having a carbon double bond include HFO refrigerants such as R1234yf (CF 3 CF = CH 2 ), R1234ze (CF 3 CH = CHF) or R1233zd (CF 3 CH = CHCl). The halogenated hydrocarbons having no carbon double bond are R32 (CH 2 F 2 ), R 41 (CH 3 F), R125 (C 2 HF 3 ), R134a (CH 2 FCF 2 ), R143a (CF 3 CH). 3 ), HFC refrigerants such as R410A (R32 / R125) or R407C (R32 / R125 / R134a) can be mentioned. R32 (difluoromethane), R41 and the like represented by CH 2 F 2 are exemplified as the mixed refrigerant. Natural refrigerants are ammonia (NH 3 ), carbon dioxide (CO 2 ), propane (C 3 H 8 ), propylene (C 3 H 6 ), butane (C 4 H 10 ) or isobutane (CH (CH 3 ) 3 ). And so on. The refrigerant is preferably a low GWP refrigerant having an ozone depletion potential of zero.
 電動機6は、図2に示すように、回転軸7を介して連結された圧縮機構部3を駆動させるものである。電動機6は、シェル1の内壁面に焼き嵌め等により固着支持された円環状のステータ6aと、ステータ6aの内側面に対向して回転可能に取り付けられたロータ6bとを備えている。ステータ6aは、例えば電磁鋼板を複数枚積層してなる鉄心に、絶縁層を介して巻線が巻回された構成であり、平面視で、つまり回転軸7の軸方向に見てリング状に形成されている。ロータ6bは、電磁鋼板を複数枚積層してなる鉄心の内部に永久磁石が内蔵された構成であり、中央に上下方向に貫通する貫通孔を有している。 As shown in FIG. 2, the electric motor 6 drives the compression mechanism unit 3 connected via the rotating shaft 7. The electric motor 6 includes an annular stator 6a fixedly supported on the inner wall surface of the shell 1 by shrink fitting or the like, and a rotor 6b rotatably attached to face the inner side surface of the stator 6a. The stator 6a has a configuration in which windings are wound around an iron core formed by laminating a plurality of electrical steel sheets, for example, via an insulating layer, and has a ring shape in a plan view, that is, in the axial direction of the rotating shaft 7. It is formed. The rotor 6b has a structure in which a permanent magnet is built in an iron core formed by laminating a plurality of electromagnetic steel sheets, and has a through hole penetrating in the vertical direction in the center.
 回転軸7は、図2に示すように、金属製の棒状部材である。回転軸7は、主軸部70と、偏心軸部71と、を備えている。主軸部70は、回転軸7の主要部を構成する軸であり、その中心軸がメインシェル1aの中心軸と一致するように配置されている。主軸部70は、ロータ6bの中心の貫通孔に焼嵌め等により固定されている。回転軸7は、フレーム2の中央部に設けられた主軸受部22と、シェル1の下部に溶接等で固着されたサブフレーム9の中央部に設けられた副軸受部90と、によって回転自在に支持されている。 As shown in FIG. 2, the rotating shaft 7 is a metal rod-shaped member. The rotating shaft 7 includes a spindle portion 70 and an eccentric shaft portion 71. The spindle portion 70 is an axis constituting the main portion of the rotating shaft 7, and the central axis thereof is arranged so as to coincide with the central axis of the main shell 1a. The spindle portion 70 is fixed to the through hole at the center of the rotor 6b by shrink fitting or the like. The rotary shaft 7 is rotatable by a main bearing portion 22 provided in the central portion of the frame 2 and an auxiliary bearing portion 90 provided in the central portion of the subframe 9 fixed to the lower part of the shell 1 by welding or the like. Is supported by.
 偏心軸部71は、その中心軸が主軸部70の中心軸に対して偏心するように、主軸部70の上端部に設けられている。偏心軸部71は、例えば鉄等の金属部材であるブッシュ8を介して揺動スクロール5に接続され、揺動スクロール5のボス部51に回転自在に支持されている。回転軸7は、ロータ6bの回転に伴って回転し、偏心軸部71により揺動スクロール5を揺動運動である公転旋回運動させる。また、主軸部70および偏心軸部71の内部には、通油孔72が、軸方向に沿って上下に貫通して設けられている。 The eccentric shaft portion 71 is provided at the upper end portion of the spindle portion 70 so that the central shaft thereof is eccentric with respect to the central axis of the spindle portion 70. The eccentric shaft portion 71 is connected to the swing scroll 5 via a bush 8 which is a metal member such as iron, and is rotatably supported by the boss portion 51 of the swing scroll 5. The rotary shaft 7 rotates with the rotation of the rotor 6b, and the eccentric shaft portion 71 causes the swing scroll 5 to revolve and swivel, which is a swing motion. Further, inside the main shaft portion 70 and the eccentric shaft portion 71, an oil passage hole 72 is provided so as to penetrate vertically along the axial direction.
 ブッシュ8は、図2および図3に示すように、スライダ80と、バランスウェイト81と、を備えている。スライダ80は、鍔が形成された筒状の部材であり、ボス部51に回転自在に挿入されている。スライダ80のスライド面には、偏心軸部71が挿入されている。つまり、スライダ80は、揺動スクロール5と偏心軸部71との間に挿入されている。スライダ80は、揺動スクロール5の揺動半径を可変とすると共に、揺動スクロール5を公転旋回運動させるために支承するものである。 As shown in FIGS. 2 and 3, the bush 8 includes a slider 80 and a balance weight 81. The slider 80 is a tubular member on which a collar is formed, and is rotatably inserted into the boss portion 51. An eccentric shaft portion 71 is inserted in the slide surface of the slider 80. That is, the slider 80 is inserted between the swing scroll 5 and the eccentric shaft portion 71. The slider 80 is provided to make the swing radius of the swing scroll 5 variable and to make the swing scroll 5 revolve and turn.
 バランスウェイト81は、公転旋回運動により発生する揺動スクロール5の遠心力を相殺するために設けられている。バランスウェイト81は、円環状であり、揺動スクロール5に働く遠心力の方向と反対側に略C字状のウェイト部81aを備えている。スクロール圧縮機100は、バランスウェイト81によって、第2渦巻突起部5bが第1渦巻突起部4bに押し付けられることを軽減できる。バランスウェイト81は、例えばスライダ80の鍔に焼嵌め等により嵌合されている。 The balance weight 81 is provided to cancel the centrifugal force of the swing scroll 5 generated by the revolution turning motion. The balance weight 81 has an annular shape, and is provided with a substantially C-shaped weight portion 81a on the side opposite to the direction of the centrifugal force acting on the swing scroll 5. The scroll compressor 100 can reduce the pressure of the second spiral protrusion 5b against the first spiral protrusion 4b by the balance weight 81. The balance weight 81 is fitted, for example, to the collar of the slider 80 by shrink fitting or the like.
 サブフレーム9は、金属製のフレームである。サブフレーム9には、図2に示すように、副軸受部90と、オイルポンプ91と、が設けられている。副軸受部90は、サブフレーム9の中央に設けられたボールベアリングである。オイルポンプ91は、シェル1の油溜め18に貯留された潤滑油を吸い上げるためのポンプであり、副軸受部90の下側に設けられている。 The subframe 9 is a metal frame. As shown in FIG. 2, the subframe 9 is provided with an auxiliary bearing portion 90 and an oil pump 91. The sub-bearing portion 90 is a ball bearing provided in the center of the sub-frame 9. The oil pump 91 is a pump for sucking up the lubricating oil stored in the oil reservoir 18 of the shell 1, and is provided under the auxiliary bearing portion 90.
 潤滑油は、図2に示すように、油溜め18に貯留されている。潤滑油は、オイルポンプ91で吸い上げられて、回転軸7の通油孔72を通り、圧縮機構部3等の機械的に接触するパーツ同士の摩耗低減、摺動部の温度調節およびシール性の改善を行う。潤滑油としては、潤滑特性、電気絶縁性、安定性、冷媒溶解性および低温流動性などに優れると共に、適度な粘度の油が好適である。潤滑油は、例えばナフテン系、ポリオールエステル(POE)、ポリビニールエーテル(PVE)またはポリアルキレングリコール(PAG)の油を使用することができる。 As shown in FIG. 2, the lubricating oil is stored in the oil reservoir 18. Lubricating oil is sucked up by the oil pump 91, passes through the oil passage hole 72 of the rotating shaft 7, and reduces wear between mechanically contacting parts such as the compression mechanism portion 3, temperature control of the sliding portion, and sealing performance. Make improvements. As the lubricating oil, an oil having excellent lubrication characteristics, electrical insulation, stability, refrigerant solubility, low temperature fluidity and the like, and having an appropriate viscosity is suitable. As the lubricating oil, for example, a naphthene-based oil, a polyol ester (POE), a polyvinyl ether (PVE) or a polyalkylene glycol (PAG) oil can be used.
 次に、図1~図3を参照しつつ、図4および図5に基づいてフレーム2とスラストプレート25との関係を詳しく説明する。図4は、実施の形態1に係るスクロール圧縮機の圧縮機構部の概略縦断面図である。図5は、図4において円で囲った部分の拡大図である。図6は、実施の形態1に係るスクロール圧縮機のスラストプレートの模式図である。 Next, the relationship between the frame 2 and the thrust plate 25 will be described in detail with reference to FIGS. 1 to 3 with reference to FIGS. 4 and 5. FIG. 4 is a schematic vertical sectional view of the compression mechanism portion of the scroll compressor according to the first embodiment. FIG. 5 is an enlarged view of a portion surrounded by a circle in FIG. FIG. 6 is a schematic view of the thrust plate of the scroll compressor according to the first embodiment.
 図3および図4に示すように、フレーム2の平坦面20であってフレーム2におけるスラストプレート25との接触面20aには、移動規制凹部27が設けられている。移動規制凹部27は平面視で円形状であって、軸方向に沿った断面形状は矩形状となっている。スラストプレート25には、フレーム2の平坦面20側に突出して形成された移動規制凸部252が設けられている。移動規制凸部252は平面視で円形状であって、軸方向に沿った断面形状は半円状となっている。移動規制凸部252は、移動規制凹部27に挿入されてスラストプレート25の移動を規制する。移動規制凸部252は、例えばプレス加工にて形成される。 As shown in FIGS. 3 and 4, a movement restricting recess 27 is provided on the flat surface 20 of the frame 2 and the contact surface 20a of the frame 2 with the thrust plate 25. The movement restricting recess 27 has a circular shape in a plan view, and the cross-sectional shape along the axial direction is rectangular. The thrust plate 25 is provided with a movement restricting convex portion 252 formed so as to project toward the flat surface 20 side of the frame 2. The movement restricting convex portion 252 has a circular shape in a plan view, and the cross-sectional shape along the axial direction is a semicircular shape. The movement restricting convex portion 252 is inserted into the movement restricting concave portion 27 to restrict the movement of the thrust plate 25. The movement restricting convex portion 252 is formed, for example, by press working.
 スラストプレート25は、図3に示すように切欠き251がフレーム2の吸入ポート26に対向するように位置合わせしてフレーム2に設置する必要がある。スラストプレート25をフレーム2に設置する際には、移動規制凸部252を移動規制凹部27に挿入する。移動規制凸部252を移動規制凹部27に挿入することでフレーム2に対するスラストプレート25の位置も決まる。よって、移動規制凸部252および移動規制凹部27は、移動規制部として機能する以外に、位置決め部としても機能する。 As shown in FIG. 3, the thrust plate 25 needs to be positioned on the frame 2 so that the notch 251 faces the suction port 26 of the frame 2. When installing the thrust plate 25 on the frame 2, the movement restricting convex portion 252 is inserted into the movement restricting recess 27. By inserting the movement restricting convex portion 252 into the movement restricting concave portion 27, the position of the thrust plate 25 with respect to the frame 2 is also determined. Therefore, the movement restricting convex portion 252 and the movement restricting concave portion 27 function not only as the movement restricting portion but also as the positioning portion.
 移動規制凹部27と移動規制凸部252との間には、以下の隙間が設けられている。図5に示すように、移動規制凹部27の開口縁部27aと移動規制凸部252の根元縁部252aとの間に、第1隙間Cが設けられている。また、移動規制凹部27の底面27bと移動規制凸部252の突出側の先端面252bとの間に、第2隙間Sが設けられている。第1隙間Cおよび第2隙間Sを設けたことで、移動規制凸部252が移動規制凹部27に挿入された状態において、スラストプレート25がフレーム2の平坦面20から浮き上がることを防止している。仮に、第1隙間Cおよび第2隙間Sが設けられていない場合、移動規制凸部252の根元縁部252aが移動規制凹部27の開口縁部27aに引っかかるなどしてスラストプレート25が平坦面20から浮き上がる可能性がある。この浮き上がりを防止するため、移動規制凹部27と移動規制凸部252との間に第1隙間Cおよび第2隙間Sが設けられている。なお、第1隙間Cは、運転中のスラストプレート25のがたつきを防止するため、できるだけ小さい方が望ましい。 The following gaps are provided between the movement restricting concave portion 27 and the movement restricting convex portion 252. As shown in FIG. 5, a first gap C is provided between the opening edge portion 27a of the movement restricting recess 27 and the root edge portion 252a of the movement restricting convex portion 252. Further, a second gap S is provided between the bottom surface 27b of the movement restricting recess 27 and the tip surface 252b on the protruding side of the movement restricting convex portion 252. By providing the first gap C and the second gap S, the thrust plate 25 is prevented from rising from the flat surface 20 of the frame 2 in a state where the movement restricting convex portion 252 is inserted into the movement restricting recess 27. .. If the first gap C and the second gap S are not provided, the root edge portion 252a of the movement restricting convex portion 252 is caught by the opening edge portion 27a of the movement restricting recess 27, and the thrust plate 25 has a flat surface 20. May rise from. In order to prevent this floating, a first gap C and a second gap S are provided between the movement restricting concave portion 27 and the movement restricting convex portion 252. The first gap C is preferably as small as possible in order to prevent the thrust plate 25 from rattling during operation.
 以上のように移動規制凸部252の移動規制凹部27への挿入によってスラストプレート25の移動規制を行える。このため、揺動スクロール5の揺動運動時に、その揺動運動に伴ってスラストプレート25が自転することを抑制できる。また、移動規制凸部252の移動規制凹部27への挿入によってスラストプレート25の移動規制を行えるため、スラストプレート25の自転抑制のための従来の固定部材が不要となる。よって、スクロール圧縮機100は、フレーム2に設けられている吸入ポート26の位置まで揺動スクロール5の外径を拡大できる。具体的には、フレーム2の平坦面20に設けられている吸入ポート26ぎりぎりまで揺動スクロールの外径を拡大できる。これにより、圧縮室容量を拡大できる。また、固定部材が不要となる分、コストを抑えることができる。 As described above, the movement of the thrust plate 25 can be restricted by inserting the movement restriction convex portion 252 into the movement restriction recess 27. Therefore, it is possible to prevent the thrust plate 25 from rotating due to the swinging motion of the swinging scroll 5. Further, since the movement of the thrust plate 25 can be restricted by inserting the movement regulation convex portion 252 into the movement regulation recess 27, the conventional fixing member for suppressing the rotation of the thrust plate 25 becomes unnecessary. Therefore, the scroll compressor 100 can expand the outer diameter of the swing scroll 5 to the position of the suction port 26 provided in the frame 2. Specifically, the outer diameter of the swing scroll can be expanded to the very limit of the suction port 26 provided on the flat surface 20 of the frame 2. As a result, the capacity of the compression chamber can be expanded. In addition, the cost can be reduced because the fixing member is not required.
 また、上述したように、スラストプレート25の外径は、メインシェル1aの第1内壁面10aの内径よりもわずかに小さい外径に形成されている。このため、揺動スクロール5の揺動運動時、スラストプレート25の外周面がメインシェル1aの第1内壁面10aに接触し、スラストプレート25の径方向の動きを規制できる。よって、本実施の形態1では、移動規制凸部252による自転抑制と併せてスラストプレート25の径方向の動きを規制でき、メインシェル1a内のスラストプレート25の動きをほぼ抑制することができる。 Further, as described above, the outer diameter of the thrust plate 25 is formed to be slightly smaller than the inner diameter of the first inner wall surface 10a of the main shell 1a. Therefore, during the swinging motion of the swinging scroll 5, the outer peripheral surface of the thrust plate 25 comes into contact with the first inner wall surface 10a of the main shell 1a, and the radial movement of the thrust plate 25 can be restricted. Therefore, in the first embodiment, the movement of the thrust plate 25 in the radial direction can be restricted in addition to the rotation suppression by the movement regulation convex portion 252, and the movement of the thrust plate 25 in the main shell 1a can be substantially suppressed.
 なお、上記では、移動規制凹部27および移動規制凸部252の平面視での形状を円形状としているが、移動規制凹部27および移動規制凸部252の形状は円形状でなくてもよい。移動規制凹部27および移動規制凸部252の形状は、移動規制凹部27に移動規制凸部252を挿入できる形状であればよく、加工の容易さを考慮して、適宜形状を変更可能である。他の形状の具体例として、例えば次の図7のようにしてもよい。 In the above, the shape of the movement restricting concave portion 27 and the movement restricting convex portion 252 in a plan view is circular, but the shape of the movement restricting concave portion 27 and the movement restricting convex portion 252 does not have to be circular. The shape of the movement restricting concave portion 27 and the movement restricting convex portion 252 may be any shape as long as the movement restricting convex portion 252 can be inserted into the movement restricting concave portion 27, and the shapes can be appropriately changed in consideration of ease of processing. As a specific example of another shape, for example, the following FIG. 7 may be used.
 図7は、実施の形態1に係るスクロール圧縮機の移動規制凸部および移動規制凹部の変形例を示す図である。
 図7では、移動規制凹部27の底面27bを移動規制凸部252の突出側の先端面252bに沿う形状としている。このような形状としても、スラストプレート25の移動規制を行うことができる。
FIG. 7 is a diagram showing a modified example of the movement restricting convex portion and the movement restricting concave portion of the scroll compressor according to the first embodiment.
In FIG. 7, the bottom surface 27b of the movement restricting recess 27 has a shape along the tip surface 252b on the protruding side of the movement restricting convex portion 252. Even with such a shape, the movement of the thrust plate 25 can be restricted.
 以上説明したように、実施の形態1のスクロール圧縮機は、シェル1と、フレーム2と、固定スクロール4と、揺動スクロール5と、回転軸7と、フレーム2と揺動スクロール5との間に設けられたスラストプレート25と、を備えている。フレーム2においてスラストプレート25との接触面20aには移動規制凹部27が形成されている。スラストプレート25には、フレーム2側に突出して形成され、移動規制凹部27内に挿入されてスラストプレート25の移動を規制する移動規制凸部252が設けられている。 As described above, the scroll compressor of the first embodiment is between the shell 1, the frame 2, the fixed scroll 4, the swing scroll 5, the rotation axis 7, and the frame 2 and the swing scroll 5. The thrust plate 25 provided in the above is provided. In the frame 2, a movement restricting recess 27 is formed on the contact surface 20a with the thrust plate 25. The thrust plate 25 is provided with a movement restricting convex portion 252 that is formed so as to project toward the frame 2 side and is inserted into the movement restricting recess 27 to restrict the movement of the thrust plate 25.
 このようにスラストプレート25に設けた移動規制凸部252の、フレーム2に設けた移動規制凹部27への挿入によってスラストプレート25の移動規制を行うようにしたので、スラストプレート25の自転抑制のための固定部材を不要とできる。スラストプレート25の自転抑制のための固定部材を不要とできることで、結果として圧縮室30の容量拡大を図ることができる。 In this way, the movement restriction protrusion 252 provided on the thrust plate 25 is inserted into the movement restriction recess 27 provided on the frame 2 to restrict the movement of the thrust plate 25, so that the rotation of the thrust plate 25 can be suppressed. It is possible to eliminate the need for a fixing member. Since the fixing member for suppressing the rotation of the thrust plate 25 can be eliminated, the capacity of the compression chamber 30 can be expanded as a result.
 また、移動規制凹部27の開口縁部27aと移動規制凸部252の根元縁部252aとの間に第1隙間Cが形成されていると共に、移動規制凹部27の底面27bと移動規制凸部252の突出側の先端面252bとの間に第2隙間Sが形成されている。 Further, a first gap C is formed between the opening edge portion 27a of the movement restricting recess 27 and the root edge portion 252a of the movement restricting convex portion 252, and the bottom surface 27b of the movement restricting recess 27 and the movement restricting convex portion 252. A second gap S is formed between the surface and the tip surface 252b on the protruding side of the above.
 これにより、移動規制凸部252が移動規制凹部27に挿入された状態において、スラストプレート25が平坦面20から浮き上がることを防止できる。 This makes it possible to prevent the thrust plate 25 from floating from the flat surface 20 in a state where the movement restricting convex portion 252 is inserted into the movement restricting recess 27.
実施の形態2.
 図8は、実施の形態2に係るスクロール圧縮機の揺動スクロールを下側から見た模式図である。図9~図11は、実施の形態2に係るスクロール圧縮機の揺動スクロールとスラストプレートとの位置関係を示した概略横断面図である。
Embodiment 2.
FIG. 8 is a schematic view of the swing scroll of the scroll compressor according to the second embodiment as viewed from below. 9 to 11 are schematic cross-sectional views showing the positional relationship between the oscillating scroll of the scroll compressor according to the second embodiment and the thrust plate.
 図8においてハッチングした部分は、揺動スクロール5のスラスト面を示しており、スラスト面には凹部で構成された間欠給油路55が設けられている。間欠給油路55の位置は、揺動台板5aの外周部56から間欠給油路55の外周部までの距離をd、スラストプレート25の移動規制凸部252の直径をDとしたとき、d<Dとなる位置に設定されている。間欠給油路55がd<Dとなる位置に設定されていることにより、移動規制凸部252を、スラストプレート25の自転抑制だけでなく、以下に説明するように間欠給油機構の一部として用いることができる。 The hatched portion in FIG. 8 shows the thrust surface of the rocking scroll 5, and the thrust surface is provided with an intermittent oil supply passage 55 composed of recesses. The position of the intermittent oil supply passage 55 is d <when the distance from the outer peripheral portion 56 of the rocking base plate 5a to the outer peripheral portion of the intermittent oil supply passage 55 is d and the diameter of the movement restricting convex portion 252 of the thrust plate 25 is D. It is set to the position that becomes D. By setting the intermittent refueling passage 55 at a position where d <D, the movement restricting convex portion 252 is used not only for suppressing the rotation of the thrust plate 25 but also as a part of the intermittent refueling mechanism as described below. be able to.
 次に図9~図11を用いて、実施の形態2におけるスクロール圧縮機の動作について説明する。揺動スクロール5は、回転軸7の回転によってスラストプレート25の上で揺動運動をしている。このため、揺動スクロール5に設けられた間欠給油路55とスラストプレート25に設けられた移動規制凸部252との位置関係は、揺動スクロール5の位置によって変化する。 Next, the operation of the scroll compressor according to the second embodiment will be described with reference to FIGS. 9 to 11. The swing scroll 5 swings on the thrust plate 25 due to the rotation of the rotation shaft 7. Therefore, the positional relationship between the intermittent oil supply passage 55 provided in the swing scroll 5 and the movement restricting convex portion 252 provided in the thrust plate 25 changes depending on the position of the swing scroll 5.
 揺動スクロール5が回転軸7の回転によって揺動運動すると、間欠給油路55は移動規制凸部252の上に重なり、図9の状態となる。図9の状態からさらに回転軸7が回転すると、揺動台板5aの外周部56と間欠給油路55とがどちらも移動規制凸部252に重なり、図10の状態となる。 When the swing scroll 5 swings due to the rotation of the rotation shaft 7, the intermittent oil supply passage 55 overlaps the movement restricting convex portion 252, and the state shown in FIG. 9 is obtained. When the rotary shaft 7 further rotates from the state of FIG. 9, both the outer peripheral portion 56 of the rocking base plate 5a and the intermittent oil supply passage 55 overlap the movement restricting convex portion 252, and the state of FIG. 10 is obtained.
 図10の状態からさらに回転軸7が回転すると、間欠給油路55は移動規制凸部252から離れ、揺動台板5aの外周部56のみが移動規制凸部252に重なり、図11の状態となる。図11の状態からさらに回転軸7が回転すると、揺動台板5aの外周部56は移動規制凸部252から離れる。その後さらに回転軸7が回転すると、間欠給油路55は移動規制凸部252に徐々に近づき、図9の状態に戻る。 When the rotary shaft 7 further rotates from the state of FIG. 10, the intermittent oil supply passage 55 is separated from the movement restricting convex portion 252, and only the outer peripheral portion 56 of the rocking base plate 5a overlaps with the movement restricting convex portion 252. Become. When the rotation shaft 7 further rotates from the state shown in FIG. 11, the outer peripheral portion 56 of the rocking base plate 5a separates from the movement restricting convex portion 252. After that, when the rotation shaft 7 further rotates, the intermittent oil supply passage 55 gradually approaches the movement restricting convex portion 252 and returns to the state shown in FIG.
 図12は、実施の形態2に係るスクロール圧縮機における図10の状態の時の、揺動スクロールとスラストプレートとの位置関係を示した概略縦断面図である。
 上記図10の状態の場合、つまり揺動台板5aの外周部56と間欠給油路55とがどちらも移動規制凸部252に重なっている位置関係の場合、図12の矢印で示す通油路57が形成される。移動規制凸部252は、突出側とは反対側が凹んでおり、凹んだ部分によって内部空間253を形成している。よって、この内部空間253を介して間欠給油路55と揺動スクロール5の外側空間56aとが連通し、通油路57が形成される。揺動スクロール5の外側空間56aとは、具体的には揺動台板5aの外周部56の外側空間56aである。
FIG. 12 is a schematic vertical cross-sectional view showing the positional relationship between the oscillating scroll and the thrust plate in the state of FIG. 10 in the scroll compressor according to the second embodiment.
In the case of the state of FIG. 10, that is, in the case of the positional relationship in which the outer peripheral portion 56 of the rocking base plate 5a and the intermittent oil supply passage 55 both overlap the movement restricting convex portion 252, the oil passage passage indicated by the arrow in FIG. 57 is formed. The movement restricting convex portion 252 is recessed on the side opposite to the protruding side, and the recessed portion forms an internal space 253. Therefore, the intermittent oil supply passage 55 and the outer space 56a of the swing scroll 5 communicate with each other through the internal space 253, and the oil passage 57 is formed. The outer space 56a of the swing scroll 5 is specifically the outer space 56a of the outer peripheral portion 56 of the swing base plate 5a.
 このような通油路57が形成されることで、間欠給油路55に溜まっている潤滑油が、通油路57を通って揺動スクロール5の側面に噴出する。揺動スクロール5の側面に噴出した潤滑油は、冷媒と共に圧縮室30に吸入される。つまり、図10の位置関係が成立することで通油路57が形成され、間欠給油路55内の潤滑油が通油路57を通って圧縮室30内に積極的に供給される。図10の位置関係は、回転軸7が1回転する間に、一定時間の間、成立するため、回転軸7が回転している間、間欠的に間欠給油路55を用いた給油が行われることになる。 By forming such an oil passage 57, the lubricating oil accumulated in the intermittent oil passage 55 is ejected to the side surface of the rocking scroll 5 through the oil passage 57. The lubricating oil ejected on the side surface of the rocking scroll 5 is sucked into the compression chamber 30 together with the refrigerant. That is, when the positional relationship shown in FIG. 10 is established, the oil passage 57 is formed, and the lubricating oil in the intermittent oil supply passage 55 is positively supplied into the compression chamber 30 through the oil passage 57. Since the positional relationship of FIG. 10 is established for a certain period of time while the rotating shaft 7 makes one rotation, refueling is intermittently performed using the intermittent oil supply passage 55 while the rotating shaft 7 is rotating. It will be.
 圧縮室30内への給油量は、間欠給油路55および移動規制凸部252の大きさによって調整可能である。例えば、間欠給油路55の大きさを拡大すると、回転軸7が1回転する間に図10の位置関係が成立する時間、つまり通油路57が形成される時間(以下、連通時間と呼称する)が長くなる。連通時間が長くなると、通油路57を通って圧縮室30内へ供給される潤滑油の量が増える。一方、間欠給油路55の大きさを縮小すると、連通時間が短くなって圧縮室30内へ供給される潤滑油の量が減る。移動規制凸部252の大きさと圧縮室30内へ供給される潤滑油の量とについても、同様の関係を有する。間欠給油路55および移動規制凸部252の大きさと、圧縮室30内へ供給される潤滑油の量とは以上のような関係を有するため、目的の給油量に応じて間欠給油路55および移動規制凸部252の大きさを決めればよい。 The amount of refueling into the compression chamber 30 can be adjusted by the size of the intermittent refueling passage 55 and the movement regulation convex portion 252. For example, when the size of the intermittent oil supply passage 55 is expanded, the time during which the positional relationship shown in FIG. 10 is established while the rotation shaft 7 makes one rotation, that is, the time during which the oil passage passage 57 is formed (hereinafter referred to as communication time). ) Becomes longer. As the communication time becomes longer, the amount of lubricating oil supplied into the compression chamber 30 through the oil passage 57 increases. On the other hand, if the size of the intermittent oil supply passage 55 is reduced, the communication time is shortened and the amount of lubricating oil supplied into the compression chamber 30 is reduced. The size of the movement restricting convex portion 252 and the amount of lubricating oil supplied into the compression chamber 30 have the same relationship. Since the size of the intermittent oil supply passage 55 and the movement regulation convex portion 252 and the amount of lubricating oil supplied into the compression chamber 30 have the above-mentioned relationship, the intermittent oil supply passage 55 and the movement according to the target oil supply amount. The size of the regulation convex portion 252 may be determined.
 ところで、間欠給油路55の位置はd<Dとなる位置に設定されているとしたが、その理由は以下の通りである。すなわち、d≧Dであると、間欠給油路55が移動規制凸部252と重なる範囲が狭すぎるかまたは重ならない状態となり、給油穴として機能しなくなるためである。 By the way, the position of the intermittent refueling passage 55 is set to the position where d <D, but the reason is as follows. That is, when d ≧ D, the range in which the intermittent refueling passage 55 overlaps with the movement restricting convex portion 252 is too narrow or does not overlap, and the intermittent refueling passage 55 does not function as a refueling hole.
 なお、図8~図11には間欠給油路55の径が第2オルダム溝53の幅よりも大きい例を示したが、間欠給油路55の径は第2オルダム溝53の幅と同じでもよい。間欠給油路55の径を第2オルダム溝53の幅と同じとする場合、第2オルダム溝53を径方向外側に延長し、その延長部分を間欠給油路55とすればよい。 Although FIGS. 8 to 11 show an example in which the diameter of the intermittent oil supply passage 55 is larger than the width of the second Oldham groove 53, the diameter of the intermittent oil supply passage 55 may be the same as the width of the second Oldham groove 53. .. When the diameter of the intermittent oil supply passage 55 is the same as the width of the second Oldham groove 53, the second Oldham groove 53 may be extended radially outward, and the extended portion thereof may be the intermittent oil supply passage 55.
 また、通油路57における油の流れをスムーズにするため、図12の点線で示すように、間欠給油路55を形成する内面のうち径方向外側の端部をスロープ状に形成してもよい。 Further, in order to smooth the flow of oil in the oil passage 57, as shown by the dotted line in FIG. 12, the radial outer end of the inner surface forming the intermittent oil supply passage 55 may be formed in a slope shape. ..
 以上説明したように、実施の形態2のスクロール圧縮機は、揺動スクロール5のスラスト面に、移動規制凹部27で構成された間欠給油路55を有する。間欠給油路55は、回転軸7の回転により、移動規制凸部252の内部空間253と間欠的に連通する給油路である。間欠給油路55は、回転軸7の1回転のうちの一定期間、移動規制凸部252の内部空間253を介して揺動スクロール5の外側空間56aに連通し、通油路57を形成する。 As described above, the scroll compressor of the second embodiment has an intermittent oil supply passage 55 composed of a movement restricting recess 27 on the thrust surface of the swing scroll 5. The intermittent refueling passage 55 is a refueling passage that intermittently communicates with the internal space 253 of the movement restricting convex portion 252 by the rotation of the rotating shaft 7. The intermittent oil supply passage 55 communicates with the outer space 56a of the swing scroll 5 via the internal space 253 of the movement restricting convex portion 252 for a certain period of one rotation of the rotation shaft 7, and forms the oil passage 57.
 このように回転軸7の1回転のうちの一定期間、通油路57が形成されて圧縮室30内に積極的に間欠給油路55内の潤滑油を供給することができるため、圧縮室30の潤滑およびシールを行うことができる。 In this way, the oil passage 57 is formed for a certain period of one rotation of the rotary shaft 7, and the lubricating oil in the intermittent oil supply passage 55 can be positively supplied into the compression chamber 30. Therefore, the compression chamber 30 can be used. Can be lubricated and sealed.
実施の形態3.
 図13は、実施の形態3に係るスクロール圧縮機のスラストプレートの模式図である。以下、本実施の形態3が上記実施の形態1と異なる構成を中心に説明するものとし、本実施の形態3で説明されていない構成は実施の形態1と同様である。
Embodiment 3.
FIG. 13 is a schematic view of the thrust plate of the scroll compressor according to the third embodiment. Hereinafter, the configuration in which the third embodiment is different from the first embodiment will be mainly described, and the configurations not described in the third embodiment are the same as those in the first embodiment.
 実施の形態1では、フレーム2に設けられている移動規制凹部27と、スラストプレート25に設けられている移動規制凸部252と、の組が1組であった。これに対し、本実施の形態3では、移動規制凹部27と移動規制凸部252との組が、2組設けられている。2組のうちの一方の組と他方の組とは、スラストプレート25の中心Oを中心として対称の位置に設けられている。 In the first embodiment, the movement restricting recess 27 provided in the frame 2 and the movement restricting convex portion 252 provided in the thrust plate 25 are one set. On the other hand, in the third embodiment, two sets of the movement restricting concave portion 27 and the movement restricting convex portion 252 are provided. One of the two sets and the other set are provided at symmetrical positions with respect to the center O of the thrust plate 25.
 本実施の形態3では、移動規制凹部27と移動規制凸部252との組を2組とすることで、スラストプレート25の自転方向の動きの抑制に加えて、径方向の動きも抑制することが可能となる。そのため、スラストプレート25の径方向の動きを、上述したようにメインシェル1aの第1内壁面10aで規制する必要がない。したがって、スラストプレート25の外径を、メインシェル1aの第1内壁面10aに接触しない大きさに設定することが可能となる。これにより、運転中にスラストプレート25がメインシェル1aの第1内壁面10aに接触することによる第1内壁面10aの傷つきを防止できる。 In the third embodiment, by forming two sets of the movement restricting concave portion 27 and the movement restricting convex portion 252, in addition to suppressing the movement of the thrust plate 25 in the rotation direction, the movement in the radial direction is also suppressed. Is possible. Therefore, it is not necessary to regulate the radial movement of the thrust plate 25 by the first inner wall surface 10a of the main shell 1a as described above. Therefore, it is possible to set the outer diameter of the thrust plate 25 to a size that does not come into contact with the first inner wall surface 10a of the main shell 1a. As a result, it is possible to prevent the first inner wall surface 10a from being damaged due to the thrust plate 25 coming into contact with the first inner wall surface 10a of the main shell 1a during operation.
 以上説明したように、本実施の形態3のスクロール圧縮機は、移動規制凹部27と移動規制凸部252との組を2組備えたので、スラストプレート25の自転方向の動きの抑制に加えて、スラストプレート25の径方向の動きも抑制できる。 As described above, since the scroll compressor of the third embodiment includes two sets of the movement restricting concave portion 27 and the movement restricting convex portion 252, in addition to suppressing the movement of the thrust plate 25 in the rotation direction. , The radial movement of the thrust plate 25 can also be suppressed.
 なお、ここでは、上記実施の形態1と本実施の形態3とを組み合わせた構成について説明したが、上記実施の形態2と本実施の形態3とを組み合わせた構成としてもよい。つまり、上記実施の形態2の間欠給油路55を本実施の形態3のスクロール圧縮機に設けた構成としてもよい。この場合、実施の形態2と同じく、移動規制凸部252を間欠給油機構の一部として使用できる。そして、間欠給油路55を各組に対応して設けることで、実施の形態2よりも、圧縮室30内に潤滑油を積極的に供給することができる。 Although the configuration in which the above-described first embodiment and the present embodiment 3 are combined has been described here, a configuration in which the above-described second embodiment and the third embodiment may be combined may be used. That is, the intermittent oil supply passage 55 of the second embodiment may be provided in the scroll compressor of the third embodiment. In this case, as in the second embodiment, the movement regulation convex portion 252 can be used as a part of the intermittent refueling mechanism. Then, by providing the intermittent oil supply passage 55 corresponding to each set, the lubricating oil can be positively supplied into the compression chamber 30 as compared with the second embodiment.
 なお、ここでは、移動規制凹部27と移動規制凸部252との2組のうちの一方の組と他方の組とが、スラストプレート25の中心Oを中心として対称の位置に設けられた例を示したが、この位置に限られたものではない。要するに、スラストプレート25の径方向の動きを抑制する効果が得られる位置に、一方の組と他方の組とが設けられていればよい。また、移動規制凹部27と移動規制凸部252との組が、ここでは2組とした例を示したが、3組以上でもよい。しかし、スラストプレート25の径方向の動きを抑制する効果は2組あれば十分に得ることができるため、2組が望ましい。 Here, an example in which one set and the other set of the two sets of the movement control concave portion 27 and the movement control convex portion 252 are provided at symmetrical positions with respect to the center O of the thrust plate 25. Although shown, it is not limited to this position. In short, one set and the other set may be provided at a position where the effect of suppressing the radial movement of the thrust plate 25 can be obtained. Further, although the example in which the set of the movement restricting concave portion 27 and the movement restricting convex portion 252 is two sets is shown here, three or more sets may be used. However, since the effect of suppressing the radial movement of the thrust plate 25 can be sufficiently obtained with two sets, two sets are desirable.
実施の形態4.
 図14は、実施の形態4に係るスクロール圧縮機のスラストプレートの模式図である。図15は、実施の形態4に係るスクロール圧縮機におけるスラストプレートおよびフレームの概略斜視図である。図16~図18は、実施の形態4に係るスクロール圧縮機の揺動スクロールとスラストプレートとの位置関係を示した概略横断面図である。以下、本実施の形態4が上記実施の形態1と異なる構成を中心に説明するものとし、本実施の形態4で説明されていない構成は実施の形態1-3と同様である。
Embodiment 4.
FIG. 14 is a schematic view of the thrust plate of the scroll compressor according to the fourth embodiment. FIG. 15 is a schematic perspective view of a thrust plate and a frame in the scroll compressor according to the fourth embodiment. 16 to 18 are schematic cross-sectional views showing the positional relationship between the oscillating scroll of the scroll compressor according to the fourth embodiment and the thrust plate. Hereinafter, the configuration in which the present embodiment 4 is different from the above-described embodiment 1 will be mainly described, and the configurations not described in the present embodiment 4 are the same as those in the embodiment 1-3.
 図14および図15に示すように、実施の形態4では、実施の形態3と同様に移動規制凸部252と移動規制凹部27との組が2組設けられている。また、間欠給油路55も、移動規制凸部252と移動規制凹部27との組と同数の2つ設けられている。 As shown in FIGS. 14 and 15, in the fourth embodiment, two sets of the movement restricting convex portion 252 and the movement restricting concave portion 27 are provided as in the third embodiment. Further, two intermittent oil supply passages 55 are provided in the same number as the set of the movement regulation convex portion 252 and the movement regulation concave portion 27.
 ここで、図14に示すようにスラストプレート25の中心Oを原点とし、原点と切欠き251を通る軸をY軸、原点を通りY軸と直交する軸をX軸とする。このとき、X座標がマイナスの位置にある移動規制凸部252を第1移動規制凸部252-1、X座標がプラスの位置にある移動規制凸部252を第2移動規制凸部252-2とする。第1移動規制凸部252-1と第2移動規制凸部252-2とは、中心Oを通る直線(ここではY軸)を基準として互いに反対側に位置している。 Here, as shown in FIG. 14, the center O of the thrust plate 25 is the origin, the axis passing through the origin and the notch 251 is the Y axis, and the axis passing through the origin and orthogonal to the Y axis is the X axis. At this time, the movement-restricted convex portion 252 whose X coordinate is in the negative position is the first movement-restricted convex portion 252-1 and the movement-restricted convex portion 252 whose X-coordinate is in the positive position is the second movement-restricted convex portion 252-2. And. The first movement restricting convex portion 252-1 and the second movement restricting convex portion 252-2 are located on opposite sides of each other with respect to a straight line passing through the center O (here, the Y axis).
 2つ設けられた移動規制凹部27のうち、第1移動規制凸部252-1が挿入される移動規制凹部27を第1移動規制凹部27-1とし、第2移動規制凸部252-2が挿入される移動規制凹部27を第2移動規制凹部27-2とする。そして、2つ設けられた間欠給油路55のうち、第1移動規制凸部252-1と共に連通路を形成する間欠給油路55を第1間欠給油路55-1(図16参照)とする。また、2つ設けられた間欠給油路55のうち、第2移動規制凸部252-2と共に連通路を形成する間欠給油路55を第2間欠給油路55-2(図示せず。便宜上、符号を付している)。 Of the two movement-restricted recesses 27 provided, the movement-restricted recess 27 into which the first movement-restricted convex portion 252-1 is inserted is designated as the first movement-restricted recess 27-1, and the second movement-restricted convex portion 252-2 is designated as the first movement-restricted recess 27-1. The movement restricting recess 27 to be inserted is referred to as a second movement restricting recess 27-2. Of the two intermittent refueling passages 55, the intermittent refueling passage 55 that forms a continuous passage together with the first movement regulation convex portion 252-1 is referred to as the first intermittent refueling passage 55-1 (see FIG. 16). Further, of the two intermittent refueling passages 55, the intermittent refueling passage 55 forming a continuous passage together with the second movement restricting convex portion 252-2 is designated as the second intermittent refueling passage 55-2 (not shown, for convenience, the reference numeral. Is attached).
 第1移動規制凸部252-1および第2移動規制凸部252-2のそれぞれの外形形状は、平面視で、図14のようにY軸方向に延びた形状をしている。具体的には、第1移動規制凸部252-1の外形形状は、互いに間隔を置いて対向する一対の直線と、一対の直線の両端のそれぞれを円弧状に連結した一対の円弧とによって特定される形状である。第2移動規制凸部252-2も同様の形状となっている。 The outer shape of each of the first movement regulation convex portion 252-1 and the second movement regulation convex portion 252-2 is a shape extending in the Y-axis direction as shown in FIG. 14 in a plan view. Specifically, the outer shape of the first movement regulation convex portion 252-1 is specified by a pair of straight lines facing each other at intervals and a pair of arcs in which both ends of the pair of straight lines are connected in an arc shape. It is a shape to be made. The second movement regulation convex portion 252-2 has the same shape.
 第1移動規制凸部252-1および第2移動規制凸部252-2のそれぞれのY軸方向の中心位置は、中心OよりもY軸のプラス方向にシフトした位置に設定されている。また、第1移動規制凸部252-1および第2移動規制凸部252-2のそれぞれの円弧部分252cは、運転時に揺動台板5aの外周部56と干渉しない大きさおよび位置に設定されている。ここで、「干渉しない」とは、円弧部分252cに揺動台板5aの外周部56が回転軸7の軸方向に重ならないことを意味している。 The center position of each of the first movement regulation convex portion 252-1 and the second movement regulation convex portion 252-2 in the Y-axis direction is set to a position shifted in the positive direction of the Y axis from the center O. Further, the arc portions 252c of the first movement restricting convex portion 252-1 and the second movement restricting convex portion 252-2 are set to a size and position that do not interfere with the outer peripheral portion 56 of the rocking base plate 5a during operation. ing. Here, "does not interfere" means that the outer peripheral portion 56 of the rocking base plate 5a does not overlap the arc portion 252c in the axial direction of the rotating shaft 7.
 第1移動規制凹部27-1および第2移動規制凹部27-2の平面視の形状は、第1移動規制凸部252-1および第2移動規制凸部252-2と同じ形状である。第1移動規制凹部27-1および第2移動規制凹部27-2の断面形状は、矩形状でもよいし、移動規制凸部252の突出側の先端面に沿う形状でもよい。第1間欠給油路55-1および第2間欠給油路55-2の平面視の形状は、実施の形態2と同じく円形状となっている。図14の点線、ドット部およびθについては後述する。 The shape of the first movement restricting recess 27-1 and the second movement restricting recess 27-2 in a plan view is the same as that of the first movement restricting convex portion 252-1 and the second movement restricting convex portion 252-2. The cross-sectional shape of the first movement restricting recess 27-1 and the second movement restricting recess 27-2 may be rectangular or may be a shape along the tip surface on the protruding side of the movement restricting convex portion 252. The shape of the first intermittent refueling passage 55-1 and the second intermittent refueling passage 55-2 in a plan view is circular as in the second embodiment. The dotted line, dot portion, and θ in FIG. 14 will be described later.
 次に図16~図18を用いて、実施の形態4におけるスクロール圧縮機の動作について説明する。実施の形態1と同じく、回転軸7の回転によって、揺動スクロール5はスラストプレート25の上で揺動運動をしている。このため、「第1間欠給油路55-1と第1移動規制凸部252-1」、および「第2間欠給油路55-2と第2移動規制凸部252-2」、の位置関係は、揺動スクロール5の位置によって変化する。 Next, the operation of the scroll compressor according to the fourth embodiment will be described with reference to FIGS. 16 to 18. As in the first embodiment, the swing scroll 5 swings on the thrust plate 25 due to the rotation of the rotation shaft 7. Therefore, the positional relationship between the "first intermittent refueling passage 55-1 and the first movement regulation convex portion 252-1" and the "second intermittent refueling passage 55-2 and the second movement regulation convex portion 252-2" is , Varies depending on the position of the swing scroll 5.
 揺動スクロール5が回転軸7の回転によって揺動運動すると、揺動台板5aの外周部56は第1移動規制凸部252-1の上に重なり、図16の状態となる。図16の状態からさらに回転軸7が回転すると、揺動台板5aの外周部56と第1間欠給油路55-1とがどちらも第1移動規制凸部252-1に重なり、図17の状態となる。図17の状態では、第1間欠給油路55-1と、第1移動規制凸部252-1の内部空間253と、揺動スクロール5の外側空間56aと、が連通して通油路が形成される。このように図17の状態では通油路が形成されることで第1間欠給油路55-1に溜まっている潤滑油が通油路を通って揺動スクロール5の側面へと噴出し、圧縮室30(図2参照)内に供給される。 When the swing scroll 5 swings due to the rotation of the rotation shaft 7, the outer peripheral portion 56 of the swing base plate 5a overlaps with the first movement restricting convex portion 252-1, and the state shown in FIG. 16 is obtained. When the rotary shaft 7 further rotates from the state of FIG. 16, both the outer peripheral portion 56 of the rocking base plate 5a and the first intermittent oil supply passage 55-1 overlap with the first movement restricting convex portion 252-1, and FIG. It becomes a state. In the state of FIG. 17, the first intermittent oil supply passage 55-1, the internal space 253 of the first movement restricting convex portion 252-1, and the outer space 56a of the swing scroll 5 communicate with each other to form an oil passage. Will be done. As described above, in the state of FIG. 17, the oil passage is formed, so that the lubricating oil accumulated in the first intermittent oil supply passage 55-1 is ejected through the oil passage to the side surface of the swing scroll 5 and compressed. It is supplied into the chamber 30 (see FIG. 2).
 図17の状態からさらに回転軸7が回転すると、第1間欠給油路55-1は第1移動規制凸部252-1から離れ、揺動台板5aの外周部56のみが第1移動規制凸部252-1に重なり、図18の状態となる。図18の状態からさらに回転軸7が回転すると、揺動台板5aの外周部56は第1移動規制凸部252-1から離れる。その後さらに回転軸7が回転すると、再び揺動台板5aの外周部56は第1移動規制凸部252-1に徐々に近づき、図16の状態に戻る。図示省略するが、第2間欠給油路55-2と第2移動規制凸部252-2との位置関係も、揺動スクロール5の揺動運動によって、第1間欠給油路55-1および第1移動規制凸部252-1との位置関係の変化と同様に変化する。 When the rotation shaft 7 further rotates from the state of FIG. 17, the first intermittent oil supply passage 55-1 separates from the first movement restricting convex portion 252-1, and only the outer peripheral portion 56 of the rocking base plate 5a has the first movement restricting convex portion. It overlaps with the part 252-1 and becomes the state of FIG. When the rotation shaft 7 further rotates from the state of FIG. 18, the outer peripheral portion 56 of the rocking base plate 5a separates from the first movement restricting convex portion 252-1. After that, when the rotation shaft 7 further rotates, the outer peripheral portion 56 of the rocking base plate 5a gradually approaches the first movement restricting convex portion 252-1 again, and returns to the state of FIG. Although not shown, the positional relationship between the second intermittent refueling passage 55-2 and the second movement restricting convex portion 252-2 is also the first intermittent refueling passage 55-1 and the first due to the oscillating motion of the oscillating scroll 5. The movement restriction changes in the same manner as the change in the positional relationship with the convex portion 252-1.
 以上の動作により、第1移動規制凸部252-1および第2移動規制凸部252-2は、実施の形態2および実施の形態3と同様に、間欠給油機構の一部として用いられる。 Due to the above operation, the first movement regulation convex portion 252-1 and the second movement regulation convex portion 252-2 are used as a part of the intermittent refueling mechanism as in the second and third embodiments.
 なお、各間欠給油路内の潤滑油が各位置決め部から流出した後、圧縮室30内に供給されやすいように、以下の位置関係を採用することが望ましい。すなわち、固定スクロール4および揺動スクロール5のそれぞれの渦巻突起部の巻き終わりの位置を、図14のドット領域内に設定することが望ましい。ドット領域は、第1移動規制凸部252-1および第2移動規制凸部252-2の互いの反対側の円弧同士を結んだ2つの直線(図14の点線)で形成される領域である。固定スクロール4および揺動スクロール5のそれぞれの渦巻突起部の巻き終わりの位置をドット領域内に設定することで、各渦巻突起部の巻き終わりの位置と各位置決め部とが近くなる。このため、各位置決め部から流出した潤滑油が、各渦巻突起部の巻き終わり側から圧縮室30内に取り込まれやすくなり、圧縮室30に供給される潤滑油の量を増やすことができる。 It is desirable to adopt the following positional relationship so that the lubricating oil in each intermittent oil supply passage flows out from each positioning portion and then is easily supplied into the compression chamber 30. That is, it is desirable to set the position of the winding end of each of the spiral protrusions of the fixed scroll 4 and the swing scroll 5 within the dot region of FIG. The dot region is a region formed by two straight lines (dotted lines in FIG. 14) connecting the arcs on opposite sides of the first movement restricting convex portion 252-1 and the second movement restricting convex portion 252-2. .. By setting the position of the winding end of each of the spiral protrusions 4 of the fixed scroll 4 and the swing scroll 5 within the dot region, the position of the winding end of each spiral protrusion and each positioning portion become close to each other. Therefore, the lubricating oil flowing out from each positioning portion is easily taken into the compression chamber 30 from the winding end side of each spiral protrusion portion, and the amount of lubricating oil supplied to the compression chamber 30 can be increased.
 次に、間欠給油路55と圧縮室30との連通時間について説明する。例えば実施の形態2のように、移動規制凸部252および間欠給油路55のそれぞれが1つの場合、連通時間は、移動規制凸部252および間欠給油路55のそれぞれの大きさおよび位置関係によって決まる。移動規制凸部252と間欠給油路55との位置関係は、運転中のスラストプレート25のがたつきによって変化する。このため、回転軸7の1回転中における連通時間は一定ではなく変化する。連通時間が変化することで、圧縮機の運転中に間欠的に圧縮室30へ供給される潤滑油の量も変化するため、圧縮室30への潤滑油の供給量が不足する、または過剰になるといった懸念点がある。 Next, the communication time between the intermittent refueling passage 55 and the compression chamber 30 will be described. For example, when each of the movement restricting convex portion 252 and the intermittent refueling passage 55 is one as in the second embodiment, the communication time is determined by the size and positional relationship of the movement restricting convex portion 252 and the intermittent refueling passage 55, respectively. .. The positional relationship between the movement regulation convex portion 252 and the intermittent oil supply passage 55 changes due to the rattling of the thrust plate 25 during operation. Therefore, the communication time during one rotation of the rotating shaft 7 is not constant but changes. As the communication time changes, the amount of lubricating oil intermittently supplied to the compression chamber 30 during operation of the compressor also changes, so that the amount of lubricating oil supplied to the compression chamber 30 is insufficient or excessive. There is a concern that it will become.
 実施の形態4に係るスクロール圧縮機では、このようなスラストプレート25のがたつきによる連通時間のばらつきを抑制する。以下、スラストプレート25のがたつきによる連通時間のばらつきを抑制できる理由について、がたつきによるスラストプレート25のずれパターンを3つ挙げて説明する。 In the scroll compressor according to the fourth embodiment, the variation in the communication time due to the rattling of the thrust plate 25 is suppressed. Hereinafter, the reason why the variation in the communication time due to the rattling of the thrust plate 25 can be suppressed will be described by citing three deviation patterns of the thrust plate 25 due to the rattling.
(スラストプレート25がX軸方向にずれた場合)
 スラストプレート25がX軸のプラス方向にずれた場合、第1移動規制凸部252-1と第1間欠給油路55-1との距離が離れるため、第1移動規制凸部252-1と第1間欠給油路55-1との連通時間は短くなる。ここで、上述したように第1移動規制凸部252-1と第2移動規制凸部252-2とは、Y軸を基準として互いに反対側に位置している。よって、スラストプレート25がX軸のプラス方向にずれた場合、第2移動規制凸部252-2と第2間欠給油路55-2との距離は近づき、第2移動規制凸部252-2と第2間欠給油路55-2との連通時間は長くなる。つまり、スラストプレート25がX軸方向にずれた場合、第1移動規制凸部252-1と第1間欠給油路55-1との連通時間は短くなる一方、第2移動規制凸部252-2と第2間欠給油路55-2との連通時間は長くなる。よって、各連通時間の合計は、ずれる前の各連通時間の合計とほとんど変わらない。
(When the thrust plate 25 is displaced in the X-axis direction)
When the thrust plate 25 is displaced in the positive direction of the X axis, the distance between the first movement restricting convex portion 252-1 and the first intermittent oil passage 55-1 is increased, so that the first movement restricting convex portion 252-1 and the first 1 The communication time with the intermittent refueling channel 55-1 is shortened. Here, as described above, the first movement regulation convex portion 252-1 and the second movement regulation convex portion 252-2 are located on opposite sides of each other with respect to the Y axis. Therefore, when the thrust plate 25 is displaced in the positive direction of the X axis, the distance between the second movement restricting convex portion 252-2 and the second intermittent oil supply passage 55-2 becomes closer, and the second movement restricting convex portion 252-2 becomes the same. The communication time with the second intermittent refueling channel 55-2 becomes longer. That is, when the thrust plate 25 is displaced in the X-axis direction, the communication time between the first movement restricting convex portion 252-1 and the first intermittent oil supply passage 55-1 is shortened, while the second movement restricting convex portion 252-2. And the communication time with the second intermittent refueling channel 55-2 becomes longer. Therefore, the total of each communication time is almost the same as the total of each communication time before the deviation.
 また、スラストプレート25がX軸のマイナス方向にずれた場合でも、第1移動規制凸部252-1と第1間欠給油路55-1との距離が近づいて連通時間は長くなり、第2移動規制凸部252-2と第2間欠給油路55-2の距離が離れて連通時間は短くなる。このため、各連通時間の合計は、ずれる前の各連通時間の合計とほとんど変わらない。 Further, even when the thrust plate 25 is displaced in the negative direction of the X-axis, the distance between the first movement restricting convex portion 252-1 and the first intermittent oil supply passage 55-1 becomes shorter, the communication time becomes longer, and the second movement. The distance between the regulation convex portion 252-2 and the second intermittent oil supply passage 55-2 is increased, and the communication time is shortened. Therefore, the total of each communication time is almost the same as the total of each communication time before the deviation.
(スラストプレート25がY軸方向にずれた場合)
 第1移動規制凸部252-1および第2移動規制凸部252-2のそれぞれの円弧部分252cは、上述したように揺動台板5aの外周部56に干渉しない大きさおよび位置に設定されている。このため、スラストプレート25がY軸のプラス方向にずれたとしても、図17の斜線部で示される面積(以下、開口面積と呼称する)は変わらないため、連通時間も変わらない。また、スラストプレート25がY軸のマイナス方向にずれた場合でも、同様に開口面積は変わらないため、連通時間は変わらない。
(When the thrust plate 25 is displaced in the Y-axis direction)
As described above, the arc portions 252c of the first movement restricting convex portion 252-1 and the second movement restricting convex portion 252-2 are set to a size and position that do not interfere with the outer peripheral portion 56 of the rocking base plate 5a. ing. Therefore, even if the thrust plate 25 is displaced in the positive direction of the Y axis, the area shown by the shaded area in FIG. 17 (hereinafter referred to as the opening area) does not change, so that the communication time does not change either. Further, even when the thrust plate 25 is displaced in the negative direction of the Y axis, the opening area does not change, so that the communication time does not change.
(スラストプレート25がθ方向にずれた場合)
 θは、スラストプレート25が自転する方向であり、反時計回り方向をプラスとする。図19および図20は、実施の形態4に係るスクロール圧縮機の揺動スクロールとスラストプレートとの位置関係を示した概略横断面図である。図19は、スラストプレート25が自転してθ方向のプラス方向にずれた場合の第1移動規制凸部252-1と第1間欠給油路55-1の位置関係を示している。図20は、スラストプレート25が自転してθ方向のマイナス方向にずれた場合の第1移動規制凸部252-1と第1間欠給油路55-1の位置関係を示している。
(When the thrust plate 25 is displaced in the θ direction)
θ is the direction in which the thrust plate 25 rotates on its axis, and the counterclockwise direction is positive. 19 and 20 are schematic cross-sectional views showing the positional relationship between the oscillating scroll of the scroll compressor according to the fourth embodiment and the thrust plate. FIG. 19 shows the positional relationship between the first movement restricting convex portion 252-1 and the first intermittent oil supply passage 55-1 when the thrust plate 25 rotates and shifts in the positive direction in the θ direction. FIG. 20 shows the positional relationship between the first movement restricting convex portion 252-1 and the first intermittent oil supply passage 55-1 when the thrust plate 25 rotates and shifts in the negative direction in the θ direction.
スラストプレート25が自転してθ方向のプラス方向にずれた場合、図19に示すように第1移動規制凸部252-1と第1間欠給油路55-1との位置関係が変わることで、第1移動規制凸部252-1と第1間欠給油路55-1とで形成される開口面積(図19の斜線部)が小さくなる。よって、第1移動規制凸部252-1と第1間欠給油路55-1との連通時間は短くなる。一方、第2移動規制凸部252-2と第2間欠給油路55-2との位置関係も変わり、第2移動規制凸部252-2と第2間欠給油路55-2とで形成される開口面積(図示せず)が大きくなる。よって、第2移動規制凸部252-2と第2間欠給油路55-2との連通時間は長くなる。したがって、第1移動規制凸部252-1と第1間欠給油路55-1との連通時間と、第2移動規制凸部252-2と第2間欠給油路55-2との連通時間と、の合計は、ずれる前の各連通時間の合計とほとんど変わらない。 When the thrust plate 25 rotates and shifts in the positive direction in the θ direction, the positional relationship between the first movement restricting convex portion 252-1 and the first intermittent oil supply passage 55-1 changes as shown in FIG. The opening area (hatched portion in FIG. 19) formed by the first movement restricting convex portion 252-1 and the first intermittent oil supply passage 55-1 becomes smaller. Therefore, the communication time between the first movement regulation convex portion 252-1 and the first intermittent oil supply passage 55-1 is shortened. On the other hand, the positional relationship between the second movement regulation convex portion 252-2 and the second intermittent oil supply passage 55-2 also changes, and is formed by the second movement regulation convex portion 252-2 and the second intermittent oil supply passage 55-2. The opening area (not shown) becomes large. Therefore, the communication time between the second movement regulation convex portion 252-2 and the second intermittent oil supply passage 55-2 becomes long. Therefore, the communication time between the first movement regulation convex portion 252-1 and the first intermittent refueling passage 55-1 and the communication time between the second movement regulation convex portion 252-2 and the second intermittent refueling passage 55-2, The total of is almost the same as the total of each communication time before the deviation.
スラストプレート25が自転してθ方向のマイナス方向にずれた場合、図20に示すように、第1移動規制凸部252-1と第1間欠給油路55-1とで形成される開口面積(図20の斜線部)が大きくなる。よって、第1移動規制凸部252-1と第1間欠給油路55-1との連通時間は長くなる。一方、第2移動規制凸部252-2と第2間欠給油路55-2とで形成される開口面積(図示せず)が小さくなる。よって、第2移動規制凸部252-2と第2間欠給油路55-2との連通時間は短くなる。したがって、第1移動規制凸部252-1と第1間欠給油路55-1との連通時間と、第2移動規制凸部252-2と第2間欠給油路55-2との連通時間と、の合計は、ずれる前の各連通時間の合計とほとんど変わらない。 When the thrust plate 25 rotates and shifts in the negative direction in the θ direction, as shown in FIG. 20, the opening area formed by the first movement restricting convex portion 252-1 and the first intermittent oil supply passage 55-1 ( The shaded area in FIG. 20) becomes larger. Therefore, the communication time between the first movement regulation convex portion 252-1 and the first intermittent oil supply passage 55-1 becomes long. On the other hand, the opening area (not shown) formed by the second movement restricting convex portion 252-2 and the second intermittent oil supply passage 55-2 becomes smaller. Therefore, the communication time between the second movement regulation convex portion 252-2 and the second intermittent oil supply passage 55-2 is shortened. Therefore, the communication time between the first movement regulation convex portion 252-1 and the first intermittent refueling passage 55-1 and the communication time between the second movement regulation convex portion 252-2 and the second intermittent refueling passage 55-2, The total of is almost the same as the total of each communication time before the deviation.
 以上より、スラストプレート25が運転中にX軸方向、Y軸方向およびθ方向のいずれの方向にずれたとしても、連通時間はほぼ一定に保たれる。よって、圧縮機運転中に、圧縮室30への潤滑油の供給量がばらつくことを抑えることができる。 From the above, even if the thrust plate 25 is displaced in any of the X-axis direction, the Y-axis direction, and the θ direction during operation, the communication time is kept substantially constant. Therefore, it is possible to prevent the amount of lubricating oil supplied to the compression chamber 30 from fluctuating during the operation of the compressor.
 なお、第1移動規制凸部252-1および第2移動規制凸部252-2のそれぞれのY軸方向の中心位置は、上述したように、中心OよりもY軸のプラス方向にシフトした位置に設定されている。この位置関係としたのは、ここで説明したように、スラストプレート25がθ方向にずれた場合に、片方の連通時間が短くなり、もう片方の連通時間が長くなる、という形態を得るためである。第1移動規制凸部252-1および第2移動規制凸部252-2のそれぞれのY軸方向の中心位置は、ここでは中心OよりもY軸のプラス方向にシフトした位置としたが、マイナス方向にシフトした位置に設定されていてもよい。また、シフトする方向は、ここではY軸として説明したが、要するに第1移動規制凸部252-1および第2移動規制凸部252-2のそれぞれの一対の直線が延びる方向であればよい。 As described above, the center positions of the first movement restricting convex portion 252-1 and the second movement restricting convex portion 252-2 in the Y-axis direction are shifted from the center O in the positive direction of the Y axis. Is set to. This positional relationship is used to obtain a form in which, as described here, when the thrust plate 25 is displaced in the θ direction, the communication time of one becomes shorter and the communication time of the other becomes longer. be. The center position of each of the first movement regulation convex portion 252-1 and the second movement regulation convex portion 252-2 in the Y-axis direction is a position shifted in the positive direction of the Y axis from the center O, but is negative. It may be set to a position shifted in the direction. Further, the shift direction has been described here as the Y-axis, but in short, it may be any direction as long as each pair of straight lines of the first movement restricting convex portion 252-1 and the second movement restricting convex portion 252-2 extends.
 以上説明したように、本実施の形態4のスクロール圧縮機は、移動規制凹部27および移動規制凸部252が、回転軸7の軸方向に見た外形形状が次の形状を有する。移動規制凹部27および移動規制凸部252は、互いに間隔を置いて対向する一対の直線と、一対の直線の両端のそれぞれを円弧状に連結した一対の円弧とにより特定される形状である。そして、2組のうちの一方の組と他方の組とが、スラストプレート25の中心Oを通る直線を基準として互いに反対側に位置している。また、第1移動規制凸部252-1および第2移動規制凸部252-2のそれぞれの、一対の直線が延びる方向の中心位置は、スラストプレート25の中心Oよりも、一対の直線が延びる方向に対してシフトした位置に設定されている。 As described above, in the scroll compressor of the fourth embodiment, the movement restricting concave portion 27 and the movement restricting convex portion 252 have the following external shapes when viewed in the axial direction of the rotating shaft 7. The movement restricting concave portion 27 and the movement restricting convex portion 252 have a shape specified by a pair of straight lines facing each other at intervals and a pair of arcs in which both ends of the pair of straight lines are connected in an arc shape. Then, one of the two sets and the other set are located on opposite sides of each other with respect to a straight line passing through the center O of the thrust plate 25. Further, the center positions of the first movement restricting convex portion 252-1 and the second movement restricting convex portion 252-2 in the direction in which the pair of straight lines extend are such that the pair of straight lines extend from the center O of the thrust plate 25. It is set to a position shifted with respect to the direction.
 これにより、スラストプレート25のがたつきによる連通時間のばらつきを抑制することができる。 This makes it possible to suppress variations in the communication time due to rattling of the thrust plate 25.
 1 シェル、1a メインシェル、1b アッパーシェル、1c ロアシェル、1d 固定台、2 フレーム、3 圧縮機構部、4 固定スクロール、4a 固定台板、4b 第1渦巻突起部、5 揺動スクロール、5a 揺動台板、5b 第2渦巻突起部、6 電動機、6a ステータ、6b ロータ、7 回転軸、8 ブッシュ、9 サブフレーム、10a 第1内壁面、10b 第2内壁面、10c 第3内壁面、11a 第1段部、11b 第2段部、13 吸入管、14 吐出管、15 チャンバー、15a 吐出孔、16a 高圧空間、16b 低圧空間、17 吐出弁、18 油溜め、19 給電部、19a カバー、19b 給電端子、19c 配線、20 平坦面、20a 接触面、21 収容部、21a オルダム収容部、21b ブッシュ収容部、21c 第1オルダム溝、22 主軸受部、23 返油孔、24 返油管、25 スラストプレート、26 吸入ポート、27 移動規制凹部、27-1 第1移動規制凹部、27-2 第2移動規制凹部、27a 開口縁部、27b 底面、30 圧縮室、40 吐出ポート、41 チップシール、51 ボス部、52 チップシール、53 第2オルダム溝、54 オルダムリング、54a リング部、54b 第1キー部、54c 第2キー部、55 間欠給油路、55-1 第1間欠給油路、55-2 第2間欠給油路、56 外周部、56a 外側空間、57 通油路、70 主軸部、71 偏心軸部、72 通油孔、80 スライダ、81 バランスウェイト、81a ウェイト部、90 副軸受部、91 オイルポンプ、100 スクロール圧縮機、251 切欠き、252 移動規制凸部、252-1 第1移動規制凸部、252-2 第2移動規制凸部、252a 根元縁部、252b 先端面、252c 円弧部分、253 内部空間。 1 shell, 1a main shell, 1b upper shell, 1c lower shell, 1d fixed base, 2 frame, 3 compression mechanism, 4 fixed scroll, 4a fixed base plate, 4b first spiral protrusion, 5 swing scroll, 5a swing Base plate, 5b, 2nd spiral protrusion, 6 electric motor, 6a stator, 6b rotor, 7 rotating shaft, 8 bush, 9 subframe, 10a 1st inner wall surface, 10b 2nd inner wall surface, 10c 3rd inner wall surface, 11a first 1st stage, 11b 2nd stage, 13 suction pipe, 14 discharge pipe, 15 chamber, 15a discharge hole, 16a high pressure space, 16b low pressure space, 17 discharge valve, 18 oil reservoir, 19 power supply part, 19a cover, 19b power supply Terminal, 19c wiring, 20 flat surface, 20a contact surface, 21 accommodating part, 21a oldham accommodating part, 21b bush accommodating part, 21c 1st oldam groove, 22 main bearing part, 23 oil return hole, 24 oil return pipe, 25 thrust plate , 26 suction port, 27 movement regulation recess, 27-1 first movement regulation recess, 27-2 second movement regulation recess, 27a opening edge, 27b bottom surface, 30 compression chamber, 40 discharge port, 41 chip seal, 51 boss Part, 52 Chip seal, 53 2nd Oldam groove, 54 Oldam ring, 54a ring part, 54b 1st key part, 54c 2nd key part, 55 intermittent oil passage, 55-1 1st intermittent oil passage, 55-2 first 2 intermittent oil supply passage, 56 outer peripheral part, 56a outer space, 57 oil passage, 70 spindle part, 71 eccentric shaft part, 72 oil passage hole, 80 slider, 81 balance weight, 81a weight part, 90 auxiliary bearing part, 91 oil Pump, 100 scroll compressor, 251 notch, 252 movement regulation convex part, 252-1 first movement regulation convex part, 252-2 second movement regulation convex part, 252a root edge part, 252b tip surface, 252c arc part, 253 Internal space.

Claims (8)

  1.  シェルと、
     前記シェルの内壁面に固定されたフレームと、
     前記シェルの内壁面に固定され、第1渦巻突起部が設けられた固定台板を有する固定スクロールと、
     前記フレームに揺動自在に支持され、前記第1渦巻突起部と噛み合う第2渦巻突起部が設けられた揺動台板を有し、前記固定スクロールとの間に冷媒を圧縮する圧縮室を形成する揺動スクロールと、
     前記揺動スクロールに連結され、前記揺動スクロールを揺動運動させる回転軸と、
     前記フレームと前記揺動スクロールとの間に設けられたスラストプレートと、を備え、
     前記フレームにおいて前記スラストプレートとの接触面には移動規制凹部が形成されており、
     前記スラストプレートには、前記フレーム側に突出して形成され、前記移動規制凹部内に挿入されて前記スラストプレートの移動を規制する移動規制凸部が設けられているスクロール圧縮機。
    With the shell
    The frame fixed to the inner wall surface of the shell and
    A fixed scroll fixed to the inner wall surface of the shell and having a fixed base plate provided with a first spiral protrusion,
    It has a swing base plate that is swingably supported by the frame and is provided with a second spiral protrusion that meshes with the first spiral protrusion, and forms a compression chamber that compresses the refrigerant between the fixed scroll and the fixed scroll. Swirling scroll and
    A rotation axis connected to the swing scroll and swinging the swing scroll,
    A thrust plate provided between the frame and the swing scroll is provided.
    In the frame, a movement restricting recess is formed on the contact surface with the thrust plate.
    The scroll compressor is provided with a movement restricting convex portion formed on the thrust plate so as to project toward the frame side and inserted into the movement restricting recess to regulate the movement of the thrust plate.
  2.  前記揺動スクロールのスラスト面に形成された凹部で構成され、前記回転軸の回転により前記移動規制凸部の内部空間と間欠的に連通する間欠給油路を有し、
     前記間欠給油路が前記移動規制凸部の前記内部空間を介して前記揺動スクロールの外側空間に連通する通油路が、前記回転軸の1回転のうちの一定期間、形成される請求項1記載のスクロール圧縮機。
    It is composed of recesses formed on the thrust surface of the swing scroll, and has an intermittent oil supply passage that intermittently communicates with the internal space of the movement restricting convex portion by the rotation of the rotation shaft.
    Claim 1 in which an oil passage in which the intermittent oil passage communicates with the outer space of the swing scroll through the internal space of the movement restricting convex portion is formed for a certain period of one rotation of the rotation axis. The scroll compressor described.
  3.  前記移動規制凹部と前記移動規制凸部との組を2組備えている請求項1または請求項2記載のスクロール圧縮機。 The scroll compressor according to claim 1 or 2, further comprising two sets of the movement restricting concave portion and the movement restricting convex portion.
  4.  前記間欠給油路が前記組と同数、設けられている請求項2に従属する請求項3記載のスクロール圧縮機。 The scroll compressor according to claim 3, wherein the intermittent refueling passages have the same number as the set and are subordinate to claim 2.
  5.  前記移動規制凹部および前記移動規制凸部は、前記回転軸の軸方向に見た外形形状が、互いに間隔を置いて対向する一対の直線と、一対の直線の両端のそれぞれを円弧状に連結した一対の円弧とにより特定される形状である請求項3または請求項4記載のスクロール圧縮機。 The movement-restricting concave portion and the movement-restricting convex portion are formed by connecting a pair of straight lines whose outer shapes seen in the axial direction of the rotation axis face each other at intervals and both ends of the pair of straight lines in an arc shape. The scroll compressor according to claim 3 or 4, which has a shape specified by a pair of arcs.
  6.  前記2組のうちの一方の組と他方の組とが、前記スラストプレートの中心を通る直線を基準として互いに反対側に位置しており、
    前記2組の前記移動規制凸部のそれぞれの、前記一対の直線が延びる方向の中心位置は、前記スラストプレートの中心よりも、前記一対の直線が延びる方向に対してシフトした位置に設定されている請求項5記載のスクロール圧縮機。
    One of the two sets and the other set are located on opposite sides of each other with respect to a straight line passing through the center of the thrust plate.
    The center position of each of the two sets of the movement restricting convex portions in the direction in which the pair of straight lines extends is set to a position shifted from the center of the thrust plate in the direction in which the pair of straight lines extend. The scroll compressor according to claim 5.
  7.  前記固定スクロールの前記第1渦巻突起部および前記揺動スクロールの前記第2渦巻突起部のそれぞれの巻き終わりの位置が、前記2組のうちの一方の前記移動規制凸部と他方の前記移動規制凸部との互いの反対側の前記円弧同士を結んだ2つの直線で形成される領域内に設定されている請求項6記載のスクロール圧縮機。 The positions of the winding ends of the first spiral protrusion of the fixed scroll and the second spiral protrusion of the rocking scroll are the movement-restricted convex portions of one of the two sets and the movement-restricted portion of the other. The scroll compressor according to claim 6, wherein the scroll compressor is set in a region formed by two straight lines connecting the arcs on opposite sides to the convex portion.
  8.  前記移動規制凹部の開口縁部と前記移動規制凸部の根元縁部との間に第1隙間が形成されていると共に、前記移動規制凹部の底面と前記移動規制凸部の突出側の先端面との間に第2隙間が形成されている請求項1~請求項7のいずれか一項に記載のスクロール圧縮機。 A first gap is formed between the opening edge of the movement-restricted recess and the root edge of the movement-restricted convex portion, and the bottom surface of the movement-restricted recess and the tip surface of the protruding side of the movement-restricted convex portion. The scroll compressor according to any one of claims 1 to 7, wherein a second gap is formed between the two.
PCT/JP2020/035569 2020-09-18 2020-09-18 Scroll compressor WO2022059195A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/035569 WO2022059195A1 (en) 2020-09-18 2020-09-18 Scroll compressor
JP2022550313A JP7313570B2 (en) 2020-09-18 2020-09-18 scroll compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/035569 WO2022059195A1 (en) 2020-09-18 2020-09-18 Scroll compressor

Publications (1)

Publication Number Publication Date
WO2022059195A1 true WO2022059195A1 (en) 2022-03-24

Family

ID=80776615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035569 WO2022059195A1 (en) 2020-09-18 2020-09-18 Scroll compressor

Country Status (2)

Country Link
JP (1) JP7313570B2 (en)
WO (1) WO2022059195A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012144489A1 (en) * 2011-04-19 2012-10-26 サンデン株式会社 Scroll fluid machine
WO2018078787A1 (en) * 2016-10-28 2018-05-03 三菱電機株式会社 Scroll compressor, refrigeration cycle device, and shell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012144489A1 (en) * 2011-04-19 2012-10-26 サンデン株式会社 Scroll fluid machine
WO2018078787A1 (en) * 2016-10-28 2018-05-03 三菱電機株式会社 Scroll compressor, refrigeration cycle device, and shell

Also Published As

Publication number Publication date
JP7313570B2 (en) 2023-07-24
JPWO2022059195A1 (en) 2022-03-24

Similar Documents

Publication Publication Date Title
JP6678762B2 (en) Scroll compressor, refrigeration cycle device and shell
JP6444540B2 (en) Scroll compressor and refrigeration cycle apparatus
JP6678811B2 (en) Scroll compressor and refrigeration cycle device
JP7118177B2 (en) scroll compressor
WO2022059195A1 (en) Scroll compressor
JP2013224606A (en) Refrigerant compressor
JP7076537B2 (en) Scroll compressor
JPWO2019207759A1 (en) Scroll compressor
WO2021245754A1 (en) Scroll compressor and refrigeration cycle device
JP6017269B2 (en) Scroll compressor
JP2018009537A (en) Scroll compressor and refrigeration cycle device
JP7055245B2 (en) Scroll compressor and method for manufacturing the scroll compressor
WO2023119625A1 (en) Scroll compressor
WO2023079667A1 (en) Scroll compressor and refrigeration cycle device provided with scroll compressor
WO2018198811A1 (en) Rolling-cylinder-type displacement compressor
CN114072580B (en) Scroll compressor having a rotor with a rotor shaft having a rotor shaft with a
KR20200057544A (en) A compressor
WO2023100304A1 (en) Scroll compressor
JP7130106B2 (en) scroll compressor
CN218598359U (en) Compressor
KR102124491B1 (en) A compressor
JP6903228B2 (en) Scroll compressor and refrigeration cycle equipment
JP2008309150A (en) Scroll compressor
WO2018150525A1 (en) Scroll compressor
JP2006070711A (en) Scroll compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20954180

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022550313

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20954180

Country of ref document: EP

Kind code of ref document: A1