WO2023119625A1 - Scroll compressor - Google Patents

Scroll compressor Download PDF

Info

Publication number
WO2023119625A1
WO2023119625A1 PCT/JP2021/048198 JP2021048198W WO2023119625A1 WO 2023119625 A1 WO2023119625 A1 WO 2023119625A1 JP 2021048198 W JP2021048198 W JP 2021048198W WO 2023119625 A1 WO2023119625 A1 WO 2023119625A1
Authority
WO
WIPO (PCT)
Prior art keywords
main frame
port
scroll compressor
shell
refrigerant
Prior art date
Application number
PCT/JP2021/048198
Other languages
French (fr)
Japanese (ja)
Inventor
政哉 岡本
浩二 増本
修平 小山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/048198 priority Critical patent/WO2023119625A1/en
Publication of WO2023119625A1 publication Critical patent/WO2023119625A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents

Definitions

  • the present disclosure relates to scroll compressors.
  • scroll compressors are known as compressors used in, for example, air conditioners or refrigeration systems.
  • the scroll compressor disclosed in Patent Document 1 includes a shell, a main frame fixed to the inner wall surface of the shell, and a fixed bed plate fixed to the inner wall surface of the shell and provided with a first spiral body. and an orbiting scroll having an orbiting bed plate which is pivotally supported by a main frame and provided with a second spiral body that meshes with the first spiral body.
  • a compression chamber for compressing refrigerant is formed between the first spiral body and the second spiral body by meshing the first spiral body and the second spiral body.
  • the main frame is formed with an intake port for drawing refrigerant from the low pressure space of the shell into the compression chamber.
  • the intake port is a space formed along the axial direction of the crankshaft so that the lower space and upper space of the main frame communicate with each other.
  • Refrigerant flows into the interior of the shell from a suction pipe provided on the side of the shell, and flows into the compression chamber through a suction port provided on the main frame while rotating around the crankshaft axis in the lower space of the main frame.
  • the intake port formed in the main frame is formed in a direction perpendicular to the direction in which the crankshaft revolves around the axis.
  • the intake port is not formed along the flow of the refrigerant moving from the lower space to the upper space of the main frame. Therefore, in this scroll compressor, when the refrigerant swirling in the lower space of the main frame flows into the suction port, it is likely to be subject to resistance, which may cause pressure loss of the refrigerant.
  • the compressor rotates at a higher speed, the amount of refrigerant circulated increases, and when the flow velocity of the refrigerant increases, the pressure loss increases, and there is a risk that the performance will deteriorate.
  • An object of the present invention is to provide a scroll compressor capable of
  • a scroll compressor of the present disclosure includes a shell having a closed space, a main frame fixed to an inner wall surface of the shell, a fixed scroll having a first substrate provided with a first spiral body, an orbiting scroll that is swingably supported by the main frame, has a second substrate provided with a second spiral body that meshes with the first spiral body, and forms a compression chamber that compresses a refrigerant together with the fixed scroll; and a crankshaft for transmitting rotational driving force to the orbiting scroll, and the main frame is provided with a coolant that revolves around the crankshaft in a lower space of the main frame to supply the compression chamber.
  • the intake port is inclined with respect to the axial direction of the crankshaft along the direction in which the refrigerant flows from the lower space to the upper space of the main frame. be.
  • the intake port is formed to be inclined along the direction in which the refrigerant flows with respect to the axial direction of the crankshaft.
  • the resistance that the refrigerant receives can be reduced. Therefore, even if the circulation amount of the refrigerant increases and the flow velocity of the refrigerant increases, the increase in the pressure loss of the refrigerant can be reduced, and the deterioration of the performance can be suppressed.
  • FIG. 1 is a longitudinal sectional view showing an internal structure of a scroll compressor according to an embodiment
  • FIG. BRIEF DESCRIPTION OF THE DRAWINGS It is the perspective view which decomposed
  • FIG. 4 is an explanatory diagram showing the flow of refrigerant in the scroll compressor according to the embodiment; It is an explanatory view showing roughly the suction port of the main frame of the scroll compressor concerning an embodiment. It is a cross-sectional view of the compression mechanism part of the scroll compressor which concerns on embodiment.
  • FIG. 2 is an enlarged vertical cross-sectional view of the internal structure of the scroll compressor according to the embodiment, showing a portion in which a suction port is formed; It is explanatory drawing which looked at the main frame of the scroll compressor which concerns on embodiment from the downward side. It is explanatory drawing which looked at the main frame of the scroll compressor which concerns on embodiment from the downward side. It is a modification of the scroll compressor which concerns on embodiment, Comprising: It is a cross-sectional view of a compression mechanism part.
  • FIG. 1 is a vertical cross-sectional view showing the internal structure of a scroll compressor 100 according to an embodiment.
  • FIG. 2 is an exploded perspective view showing the essential parts of the scroll compressor 100 according to the embodiment.
  • FIG. 3 is an enlarged view of section III shown in FIG.
  • the scroll compressor 100 according to the present embodiment shown in FIG. 1 is a so-called vertical scroll compressor that is used with the central axis of the crankshaft 7 substantially perpendicular to the ground.
  • the scroll compressor 100 is one of the components of a refrigeration cycle used in, for example, refrigerators, freezers, air conditioners, refrigeration systems, water heaters, and the like.
  • the scroll compressor 100 sucks and compresses the refrigerant circulating in the refrigeration cycle, and discharges it in a high-temperature, high-pressure state.
  • the scroll compressor 100 as shown in FIGS.
  • the shell 1, as shown in FIG. 1, is made of a conductive member such as metal.
  • the shell 1 has a sealed space formed therein by closing both ends of a cylindrical body.
  • a main frame 2 , a compression mechanism portion 3 , a drive mechanism portion 6 , and a crankshaft 7 are housed inside the shell 1 .
  • the shell 1 has a cylindrical main shell 1a, a substantially hemispherical upper shell 1b that closes the upper opening of the main shell 1a, and a substantially hemispherical lower shell 1c that closes the lower opening of the main shell 1a.
  • Each of the upper shell 1b and the lower shell 1c has a part of the side wall fixed to the main shell 1a by welding or the like.
  • the shell 1 is supported by a fixed base 1d fixed to the lower shell 1c.
  • the inner wall surface of the main shell 1a consists of a large-diameter first inner wall surface 10a formed at the upper end, and a large-diameter first inner wall surface 10a formed below the first inner wall surface 10a. a second inner wall surface 10b having a smaller diameter than the second inner wall surface 10b; and a third inner wall surface 10c formed below the second inner wall surface 10b and having a smaller diameter than the inner diameter of the second inner wall surface 10b.
  • a first stepped portion 11a formed by the lower end of the first inner wall surface 10a and the upper end of the second inner wall surface 10b and projecting radially from the inner wall surface of the shell 1 functions as a positioning portion for the fixed scroll 4.
  • a second stepped portion 11b formed by the lower end of the second inner wall surface 10b and the upper end of the third inner wall surface 10c and projecting radially from the inner wall surface of the shell 1 functions as a positioning portion for the main frame 2.
  • the main shell 1a is provided with a suction pipe 13 for taking refrigerant into the interior of the shell 1 and a power supply section 19 for supplying power to the scroll compressor 100.
  • the suction pipe 13 is connected to a hole formed in the side wall of the main shell 1a by welding or the like while being partially inserted.
  • the intake pipe 13 communicates with the internal space of the shell 1 .
  • the power supply unit 19 includes a cover 19a, power supply terminals 19b, and wiring 19c.
  • the power supply terminal 19b is a metal member, one end of which is arranged so as to be surrounded by the cover 19a, and the other end of which is arranged inside the main shell 1a.
  • the wiring 19 c has one end connected to the power supply terminal 19 b and the other end connected to the drive mechanism section 6 .
  • a discharge pipe 14 for discharging the compressed refrigerant to the outside of the shell 1 is connected to the upper shell 1b.
  • the discharge pipe 14 communicates with the internal space of the shell 1 .
  • the discharge pipe 14 is connected by welding or the like while being partially inserted into a hole formed in the upper portion of the upper shell 1b.
  • an oil reservoir 18 for storing lubricating oil is provided in the inner bottom portion of the shell 1 .
  • the main frame 2 is a cylindrical metal frame tapering downward in stages, and supports the swing scroll 5 so as to swing freely.
  • the outer peripheral wall of the main frame 2 is fixed to the second inner wall surface 10b of the main shell 1a by shrink fitting or the like while the outer peripheral wall is supported by the second step portion 11b of the main shell 1a.
  • An annular flat surface 20 is formed on the upper surface of the main frame 2 .
  • a ring-shaped thrust plate 25 made of a steel plate material such as valve steel is provided on the flat surface 20 .
  • the thrust plate 25 functions as a thrust sliding surface of the main frame 2 and supports the thrust load of the compression mechanism section 3 .
  • the inside of the cylinder of the main frame 2 is composed of a housing portion 21 and a main bearing portion 22 that supports the crankshaft 7.
  • the housing portion 21 is provided on the upper side of the main frame 2 .
  • the main bearing portion 22 is provided on the lower side of the main frame 2 .
  • the accommodating portion 21 is formed such that the inner diameter gradually decreases downward.
  • the accommodation portion 21 has an Oldham accommodation portion 21a at a step portion located on the flat surface 20 side, and a bush accommodation portion 21b at a step portion located on the main bearing portion 22 side.
  • a pair of first Oldham grooves 21c are provided in the Oldham housing portion 21a and a part of the flat surface 20 so as to face each other with the shaft hole interposed therebetween.
  • the first Oldham groove 21c is a key groove.
  • the first Oldham groove 21c partially overlaps the thrust plate 25 when the main frame 2 is viewed from above.
  • the main frame 2 is formed with an intake port 26 for supplying the compression mechanism 3 with refrigerant that revolves around the crankshaft 7 in the lower space of the main frame 2 .
  • the intake port 26 is formed vertically through the outer end side of the flat surface 20 of the main frame 2 so as to communicate the lower space and the upper space of the main frame 2 .
  • a concave portion 27 is formed along the circumferential direction of the main frame 2 so as to allow communication between the lower space and the upper space of the main frame 2 .
  • the intake port 26 is a space surrounded by the recess 27 and the inner wall surface of the shell 1, as shown in FIGS.
  • the thrust plate 25 is formed with a notch portion 25a formed by notching a portion of the outer periphery at a position corresponding to the suction port 26 of the main frame 2. As shown in FIG.
  • the notch 25a has the same shape as the suction port 26 or is larger than it so as not to cover the suction port 26. As shown in FIG.
  • the main frame 2 is fixed by inserting an oil return pipe 24 into an oil return hole 23 formed through the inside and outside.
  • the oil return hole 23 communicates with the bush accommodating portion 21b.
  • the oil return pipe 24 is provided to return the lubricating oil accumulated in the housing portion 21 to the oil reservoir 18 provided in the lower shell 1c.
  • the number of the oil return hole 23 and the oil return pipe 24 is not limited to one, and a plurality of them may be provided.
  • the main frame 2 is made of iron-based metal or aluminum-based metal.
  • the shape is formed by casting.
  • the main frame 2 is formed using a carbon steel material for machine structural use, it is formed by machining.
  • the main frame 2 is formed by casting or forging when using an aluminum-based material.
  • the compression mechanism section 3 has a fixed scroll 4 and an orbiting scroll 5 .
  • the fixed scroll 4 has a disk-shaped first substrate 4a and a first spiral body 4b provided on the lower surface of the first substrate 4a.
  • the orbiting scroll 5 has a disk-shaped second substrate 5a and a second spiral body 5b provided on the upper surface of the second substrate 5a and meshing with the first spiral body 4b.
  • the orbiting scroll 5 is installed eccentrically with respect to the fixed scroll 4 .
  • the first spiral body 4b of the fixed scroll 4 and the second spiral body 5b of the orbiting scroll 5 are combined to form a compression chamber 30 for compressing the refrigerant.
  • the fixed scroll 4 is made of metal such as cast iron.
  • the fixed scroll 4 is fixed to the first inner wall surface 10a by shrink fitting or the like while the outer peripheral surface of the first substrate 4a is supported by the first step portion 11a of the main shell 1a.
  • the fixed scroll 4 is not limited to being fixed to the first inner wall surface 10a, and may be fixed to the main frame 2 by screwing or the like.
  • a discharge port 40 is formed in the central portion of the first substrate 4a for discharging the compressed high-temperature and high-pressure refrigerant.
  • a chamber 15 having a discharge hole 15 a communicating with a discharge port 40 is provided on the upper surface of the fixed scroll 4 .
  • the chamber 15 is provided with a discharge valve 17 that opens and closes the discharge hole 15a according to the pressure of the refrigerant.
  • the discharge valve 17 opens the discharge hole 15a when the refrigerant in the compression chamber 30 communicating with the discharge port 40 reaches a predetermined pressure.
  • the compressed high-temperature and high-pressure refrigerant is discharged from the discharge port 40 into the high-pressure space 16 above the fixed scroll 4 and discharged to the outside of the shell 1 through the discharge pipe 14 .
  • a groove is formed at the tip of the first spiral body 4b, and a tip seal 41 made of hard plastic, for example, is provided in the groove.
  • the orbiting scroll 5 is made of metal such as aluminum. As shown in FIGS. 1 to 3, the orbiting scroll 5 revolves around the fixed scroll 4 without rotating due to an Oldham ring 54 for preventing rotation.
  • the surface of the second substrate 5a on which the second spiral body 5b is not formed functions as an orbiting scroll thrust bearing surface.
  • a hollow cylindrical boss portion 51 is provided at the center of the orbiting scroll thrust bearing surface.
  • a rocking bearing that rotatably supports the slider 80 of the bush 8 is provided on the inner peripheral surface of the boss portion 51 .
  • the rocking bearing is a so-called journal bearing.
  • the swing bearing is provided so that its central axis is parallel to the central axis of the crankshaft 7 .
  • the orbiting scroll 5 revolves on the thrust sliding surface of the main frame 2 by rotating the eccentric shaft portion 71 of the crankshaft 7 inserted into the boss portion 51 .
  • a groove is formed at the tip of the second spiral body 5b, and a tip seal 52 made of hard plastic, for example, is provided in this groove.
  • a pair of second Oldham grooves 53 are provided on the orbiting scroll thrust bearing surface so as to face each other with the boss portion 51 interposed therebetween.
  • the second Oldham groove 53 is an elongated key groove.
  • the pair of second Oldham grooves 53 are arranged so that the line connecting them is perpendicular to the line connecting the pair of first Oldham grooves 21c.
  • the Oldham ring 54 includes a ring portion 54a, a first key portion 54b, and a second key portion 54c.
  • the ring portion 54 a has an annular shape and is housed in the Oldham housing portion 21 a of the main frame 2 .
  • the first key portion 54b is provided on the lower surface of the ring portion 54a.
  • the first key portions 54b are formed in pairs and are accommodated in the pair of first Oldham grooves 21c of the main frame 2, respectively.
  • the second key portion 54c is provided on the upper surface of the ring portion 54a.
  • the second key portions 54c are formed in pairs and are accommodated in the pair of second Oldham grooves 53 of the orbiting scroll 5, respectively.
  • the rotational position of the second spiral body 5b of the orbiting scroll 5 is determined. That is, the Oldham ring 54 positions the orbiting scroll 5 with respect to the main frame 2 and determines the phase of the second spiral body 5 b with respect to the main frame 2 .
  • the first key portion 54b slides in the first Oldham groove 21c and the second key portion 54c slides in the second Oldham groove 53 when the orbiting scroll 5 revolves due to the rotation of the crankshaft 7. By doing so, the orbiting scroll 5 is prevented from rotating.
  • the compression chamber 30 is formed by meshing the first spiral body 4b of the fixed scroll 4 and the second spiral body 5b of the orbiting scroll 5, and a tip seal 41 and a second seal 41 provided at the tip of the first spiral body 4b. It is formed by sealing with the substrate 5a, the tip seal 52 provided at the tip of the second spiral body 5b, and the first substrate 4a.
  • the compression chambers 30 are composed of a plurality of compression chambers whose volumes decrease from the outside toward the inside in the radial direction of the scroll.
  • the refrigerant consists of, for example, a halogenated hydrocarbon having a carbon double bond, a halogenated hydrocarbon not having a carbon double bond, a hydrocarbon, or a mixture containing them.
  • Halogenated hydrocarbons having carbon double bonds are HFC refrigerants with zero ozone depletion potential, Freon-based low GWP refrigerants, and tetrafluoropropenes such as HFO1234yf, HFO1234ze, and HFO1243zf represented by the chemical formula C3H2F4. exemplified.
  • Halogenated hydrocarbons having no carbon double bond are exemplified by refrigerants mixed with R32 (difluoromethane) represented by CH2F2, R41 and the like.
  • Hydrocarbons are exemplified by natural refrigerants such as propane and propylene.
  • the mixture is exemplified by a mixed refrigerant obtained by mixing HFO1234yf, HFO1234ze, HFO1243zf and the like with R32, R41 and the like.
  • the drive mechanism section 6 drives the compression mechanism section 3 connected via the crankshaft 7, as shown in FIG.
  • the drive mechanism 6 is composed of an annular stator 6a fixedly supported by shrink fitting or the like on the inner wall surface of the shell 1, and a rotor 6b rotatably mounted facing the inner surface of the stator 6a.
  • the stator 6a has, for example, a core formed by laminating a plurality of electromagnetic steel sheets and a winding wound through an insulating layer, and is formed in a ring shape in a plan view.
  • the rotor 6b has a structure in which a permanent magnet is built in an iron core formed by laminating a plurality of electromagnetic steel sheets, and has a through hole penetrating vertically in the center.
  • the rotor 6b is arranged with its outer peripheral surface maintaining a predetermined gap from the inner peripheral surface of the stator 6a.
  • the crankshaft 7 is a rod-shaped member made of metal, as shown in FIG.
  • the crankshaft 7 has a main shaft portion 70 and an eccentric shaft portion 71 .
  • the main shaft portion 70 is a shaft forming a main portion of the crankshaft 7, and is arranged so that its central axis coincides with the central axis of the main shell 1a.
  • the main shaft portion 70 is fixed to the central through hole of the rotor 6b by shrink fitting or the like, and is fixed to the main bearing portion 22 provided in the central portion of the main frame 2 and the lower portion of the shell 1 by welding or shrink fitting. It is rotatably supported by a sub-bearing portion 90 provided in the central portion of the sub-frame 9 .
  • the eccentric shaft portion 71 is provided at the upper end portion of the main shaft portion 70 so that its central axis is eccentric with respect to the central axis of the main shaft portion 70, as shown in FIGS.
  • the eccentric shaft portion 71 is connected to the orbiting scroll 5 via a bush 8 that is a metal member such as iron, and is rotatably supported by a boss portion 51 of the orbiting scroll 5 .
  • the crankshaft 7 rotates with the rotation of the rotor 6b, and rotates the orbiting scroll 5 with the eccentric shaft portion 71.
  • An oil passage 72 is provided inside the main shaft portion 70 and the eccentric shaft portion 71 so as to penetrate vertically along the axial direction.
  • the bushing 8 includes a slider 80 and a balance weight 81, as shown in FIGS.
  • the slider 80 is a tubular member having a flange, and is rotatably inserted into the boss portion 51 .
  • An eccentric shaft portion 71 is inserted into the slide surface of the slider 80 .
  • the slider 80 is interposed between the orbiting scroll 5 and the eccentric shaft portion 71 to vary the radius of oscillation of the orbiting scroll 5 and to support the orbiting scroll 5 to revolve. be.
  • the balance weight 81 is provided to offset the centrifugal force of the orbiting scroll 5 generated by the orbiting motion.
  • the balance weight 81 is provided eccentrically with respect to the center of rotation.
  • the balance weight 81 has an annular lower portion, and a substantially C-shaped weight portion 81 a is provided on the upper portion on the side opposite to the direction of the centrifugal force acting on the orbiting scroll 5 .
  • the scroll compressor 100 can reduce the pressing of the second spiral body 5 b against the first spiral body 4 b by the balance weight 81 .
  • the balance weight 81 is fitted to the collar of the slider 80 by shrink fitting, for example.
  • the subframe 9 is a metal frame.
  • the sub-frame 9 includes a sub-bearing portion 90 and an oil pump 91, as shown in FIG.
  • the sub-bearing portion 90 is a ball bearing provided in the center of the sub-frame 9 .
  • the oil pump 91 is a pump for sucking up lubricating oil stored in the oil sump 18 of the shell 1 and is provided below the sub-bearing portion 90 .
  • the oil pump 91 is arranged so that at least a portion of it is immersed in lubricating oil.
  • the lubricating oil is stored in the oil reservoir 18.
  • the lubricating oil is sucked up by the oil pump 91, passes through the oil passage 72 of the crankshaft 7, and is used to reduce wear between mechanically contacting parts such as the compression mechanism 3, adjust the temperature of the sliding parts, and improve the sealing performance.
  • As the lubricating oil an oil that is excellent in lubricating properties, electrical insulation, stability, refrigerant solubility, low-temperature fluidity, etc. and has an appropriate viscosity is suitable.
  • Lubricating oils that can be used include, for example, naphthenic, polyol ester (POE), polyvinyl ether (PVE), and polyalkylene glycol (PAG) oils.
  • FIG. 4 is an explanatory diagram showing the flow of refrigerant in the scroll compressor 100 according to the embodiment.
  • FIG. 5 is an explanatory diagram schematically showing the intake port 26 of the main frame 2 of the scroll compressor 100 according to the embodiment.
  • FIG. 6 is a cross-sectional view of the compression mechanism section 3 of the scroll compressor 100 according to the embodiment.
  • FIG. 7 is a vertical cross-sectional view of the internal structure of the scroll compressor 100 according to the embodiment, and is an enlarged view of a main part showing a portion where the suction port 26 is formed.
  • FIG. 8 is an explanatory diagram of the main frame 2 of the scroll compressor 100 according to the embodiment viewed from below.
  • FIG. 9 is an explanatory diagram of the main frame 2 of the scroll compressor 100 according to the embodiment viewed from below.
  • the black arrow indicates the direction in which the refrigerant flows
  • the white arrow indicates the direction of rotation of the crankshaft 7 .
  • FIG. 5 only the features of the present embodiment are described, and other constituent elements are omitted.
  • Refrigerant flowing into the shell 1 from the suction pipe 13 may be divided into clockwise and counterclockwise directions around the boss portion 51. Only the same turning direction as the outline arrow) remains, and it turns in one direction, which is the rotation direction of the crankshaft 7 (the outline arrow in FIG. 4). That is, the whirling direction of the refrigerant is determined according to the rotating direction of the crankshaft 7 no matter how many times the scroll compressor 100 is started.
  • the scroll compressor 100 if the intake port 26 formed in the main frame 2 is formed in a direction perpendicular to the direction in which the crankshaft 7 revolves around the axis, then revolving in the lower space of the main frame 2 will occur.
  • the refrigerant flows into the suction port 26, it is susceptible to resistance, causing pressure loss in the refrigerant.
  • the scroll compressor 100 rotates at a higher speed, the circulation amount of the refrigerant increases, and when the flow velocity of the refrigerant increases, the pressure loss increases, and there is a possibility that the performance of the scroll compressor 100 deteriorates.
  • the intake port 26 of the scroll compressor 100 is formed to be inclined with respect to the axial direction of the crankshaft 7 along the direction in which the refrigerant flows. That is, the intake port 26 is formed to be inclined in accordance with the rotational direction of the crankshaft 7 . Therefore, the inlet 26 a and the outlet 26 b of the suction port 26 are out of alignment along the circumferential direction of the main frame 2 .
  • two intake ports 26 are provided so as to face each other in the radial direction of the main frame 2 .
  • the outlet 26b of one of the intake ports 26 is located between the outer edge of the main frame 2 and a straight line X1 extending from the outer end 4c (winding end portion) of the first spiral body 4b toward the outer edge of the main frame 2.
  • the intersection point O1 as a base point, it is formed at a position away from the outer end portion 4c of the first spiral body 4b.
  • the outlet 26b of the other suction port 26 is located between the outer edge of the main frame 2 and a straight line X2 extending from the outer end 5c (winding end portion) of the second spiral body 5b toward the outer edge of the main frame 2.
  • the intersection point O2 as a base point, it is formed at a position away from the outer end 5c of the second spiral body 5b.
  • a recessed portion 27 that constitutes the intake port 26 is formed as a twisted groove in the outer wall surface of the main frame 2 . Therefore, the refrigerant taken into the suction port 26 is caused to flow along the inner wall surface of the shell 1 by centrifugal force. At this time, if the outlet 26b of the suction port 26 is arranged in the immediate vicinity of the outer end 4c of the first spiral body 4b or the outer end 5c of the second spiral body 5b, the refrigerant flowing out of the suction port 26 will flow into the shell. 1, the refrigerant flows to the outside of the first spiral body 4b or the second spiral body 5b, and is not properly taken into the vortices of the first spiral body 4b or the second spiral body 5b.
  • the outlet 26b of the suction port 26 is arranged at the position shown in FIG. Keeping distance is desirable.
  • the refrigerant flowing out of the suction port 26 can be prevented from flowing to the outside of the first spiral body 4b or the second spiral body 5b, and can efficiently flow into the vortex of the first spiral body 4b or the second spiral body 5b. It is captured.
  • the outlet 26b of the suction port 26 through which the refrigerant is taken in from the outer end 4c of the first spiral body 4b is positioned closer to the outer end 4c of the first spiral body 4b than to the outer end 5c of the second spiral body 5b.
  • the outlet 26b of the suction port 26, through which the refrigerant is taken in from the outer end 5c of the second spiral body 5b, is closer to the outer end 5c of the second spiral body 5b than to the outer end 4c of the first spiral body 4b. position.
  • the outlet 26b of the intake port 26 should be positioned so that when the crankshaft 7 makes one revolution and the orbiting scroll 5 rocks, the intake port 26 and the second spiral body 5b do not overlap with each other due to the rocking motion. is desirable. This is because when the outlet 26b of the suction port 26 and the second spiral body 5b overlap, pressure loss occurs due to the narrow opening area of the outlet 26b at that moment.
  • the shell 1 has a second stepped portion 11b that protrudes radially from the inner wall surface and supports the outer peripheral wall of the main frame 2. As shown in FIG. Therefore, if the space surrounded by the recessed portion 27 formed in the outer peripheral wall of the main frame 2 and the inner wall surface of the shell 1 is defined as the suction port 26, the opening of the inlet 26a through which the refrigerant passes is equal to the dimension of the second stepped portion 11b. The area is smaller than the opening area of the outlet 26b.
  • the inlet 26a of the suction port 26 is formed radially larger than the outlet 26b of the suction port 26 by the dimension of the second stepped portion 11b protruding in the radial direction. At this time, the inner surface of the recess 27 is inclined radially outward from the inlet 26a toward the outlet 26b.
  • the opening area of the inlet 26a of the suction port 26 and the opening area of the outlet 26b of the suction port 26 can be made substantially the same, the pressure loss of the inlet 26a can be suppressed.
  • the opening area of the inlet 26a of the suction port 26 and the opening area of the outlet 26b of the suction port 26 may be different if there is no problem such as pressure loss.
  • the two suction ports 26 may be a main port 260 and a sub-port 261 having an opening area smaller than that of the main port 260.
  • the reason for changing the opening area of the suction port 26 is that the size of the opening area is restricted by the arrangement relationship of the reinforcing rib 28 provided on the main frame 2, the suction pipe 13 connected to the shell 1, and other members. Because there is In this case, the sub-port 261 is desirably formed at a position closer to the suction pipe 13 than the main port 260 is. Further, desirably, as shown in FIG. 9, the main port 260 is formed at a position opposed to the intake pipe 13 with the main bearing portion 22 interposed therebetween.
  • the sub-port 261 is formed in the circumferential direction of the main frame 2 between the main port 260 and the main bearing portion 22 .
  • the refrigerant can easily enter from the sub-port 261, and the amount of refrigerant taken in by the first spiral body 4b and the second spiral body 5b can be made approximately the same.
  • the hole shape and size of the inlet 26a and the outlet 26b of the suction port 26 may be the same or different.
  • the intake port 26 is arranged such that the inlet 26a is positioned on the inner diameter side or the outer diameter side of the main frame 2, and the outlet 26b is positioned on the outer diameter side or the inner diameter side. , the inlet 26a and the outlet 26b may be shifted in the radial direction of the main frame 2.
  • the inner wall surface 26c of the suction port 26 is formed in a fine uneven surface so that the surface roughness of the inner wall surface 26c of the suction port 26 is moderately rough.
  • the surface roughness of the inner wall of the suction port 26 for example, if it is cast, it is the casting surface, and if it is machined, it is a medium-grade machined surface or higher.
  • the first substrate 4a of the fixed scroll 4 is provided with an inflow hole for injection at a position corresponding to the portion A shown in FIG.
  • the injection coolant can be efficiently taken into the vortex together with the coolant that has flowed in from 26 .
  • FIG. 10 is a cross-sectional view of the compression mechanism section 3, which is a modification of the scroll compressor 100 according to the embodiment.
  • the suction port 26 is not limited to the configuration shown in FIGS. 1-9.
  • the intake port 26 is formed as a through hole extending vertically through the outer end side of the flat surface 20 of the main frame 2 so as to communicate between the lower space and the upper space of the main frame 2. It may be configured as
  • each suction port 26 is provided so that the position of the outlet 26 b faces the refrigerant intake position B that is taken into the compression chamber 30 .
  • the position B where the refrigerant that has flowed into the upper space of the main frame 2 from the outlet 26b is taken into the compression chamber 30 is the outer end portion 5c (winding end portion) of the second spiral body 5b of the orbiting scroll 5 and the end portion of the fixed scroll 4. There are two points at the outer end portion 4c (winding end portion) of the first spiral body 4b.
  • the intake port 26 of the present embodiment has, as an example, an oval shape in a plan view.
  • the long axis direction of the ellipse is the same as the tangential direction of the outer periphery of the main frame 2 , and it is preferable that the extension of the long axis passes through the position A where the refrigerant is taken into the compression chamber 30 .
  • the outlet 26b of the intake port 26 should preferably be positioned so that when the crankshaft 7 makes one revolution and the orbiting scroll 5 rocks, the intake port 26 and the second spiral body 5b do not overlap with each other due to the rocking motion. . This is because when the outlet 26b of the suction port 26 and the second spiral body 5b overlap, pressure loss occurs due to the narrow opening area at that moment.
  • the hole shape and size of the inlet 26a and the outlet 26b of the suction port 26 shown in FIG. 10 may be the same or different.
  • the intake port 26 is arranged such that the inlet 26a is positioned on the inner diameter side or the outer diameter side of the main frame 2, and the outlet 26b is positioned on the outer diameter side or the inner diameter side.
  • the inlet 26a and the outlet 26b may be shifted in the radial direction of the main frame 2.
  • the suction port 26 may have an inner wall surface 26c formed in a fine uneven surface so that the surface roughness of the inner wall surface 26c of the suction port 26 is moderately rough.
  • the scroll compressor 100 includes a shell 1 having a sealed space, a main frame 2 fixed to the inner wall surface of the shell 1, and a first spiral body 4b provided with a first spiral body 4b. It has a fixed scroll 4 having a substrate 4a, and a second substrate 5a which is swingably supported by the main frame 2 and provided with a second spiral body 5b which meshes with the first spiral body 4b. and a crankshaft 7 for transmitting rotational driving force to the orbiting scroll 5 .
  • the main frame 2 has a suction port 26 for supplying the refrigerant swirling around the crankshaft 7 in the lower space of the main frame 2 into the compression chamber 30 .
  • the intake port 26 is formed to be inclined with respect to the axial direction of the crankshaft 7 along the direction in which the coolant flows from the lower space to the upper space of the main frame 2 .
  • the intake port 26 is inclined with respect to the axial direction of the crankshaft 7 along the direction in which the refrigerant flows, that is, along the direction in which the refrigerant revolves around the axis of the crankshaft 7.
  • the outlet 26b of the suction port 26 has a base point at the intersection O1 between the straight line X1 extending from the outer end 4c of the first spiral body 4b toward the outer peripheral edge of the main frame 2 and the outer peripheral edge of the main frame 2 .
  • a straight line X2 extending from a position away from the outer end portion 4c of the first spiral body 4b and the outer end portion 5c of the second spiral body 5b toward the outer peripheral edge of the main frame 2, and It is formed at one or both of the positions separated from the outer end portion 5c of the second spiral body 5b with the point of intersection O2 with the peripheral edge as a base point.
  • the outlet 26b of the intake port 26 can be provided at a constant distance from the outer end 4c of the first spiral body 4b or the outer end 5c of the second spiral body 5b. Therefore, the scroll compressor 100 can prevent the refrigerant flowing out of the suction port 26 from flowing to the outside of the first spiral body 4b or the second spiral body 5b. It is entrapped in the vortex of 5b.
  • the intake port 26 has a main port 260 and a sub-port 261 having an opening area smaller than that of the main port 260 . Accordingly, it is possible to cope with the case where the size of the opening area of the suction port 26 is restricted by the arrangement relationship of the reinforcing rib 28 provided on the main frame 2, the suction pipe 13 connected to the shell 1, and other members. can be done.
  • the scroll compressor 100 further includes a suction pipe 13 that is connected to the shell 1 and sucks refrigerant from the outside of the shell 1 into the inside.
  • the sub-port 261 is formed at a position closer to the intake pipe 13 than the main port 260 is. That is, by bringing the sub-port 261 closer to the suction pipe 13, the refrigerant can easily enter from the sub-port 261, and the amount of refrigerant taken in by the first spiral body 4b and the second spiral body 5b can be made approximately the same.
  • the main frame 2 has a main bearing portion 22 that supports the crankshaft 7 in its central portion.
  • the main port 260 is formed at a position facing the intake pipe 13 with the main bearing portion 22 interposed therebetween.
  • the sub-port 261 is formed between the main port 260 and the main bearing portion 22 in the circumferential direction of the main frame 2 . That is, by bringing the sub-port 261 closer to the suction pipe 13, the refrigerant can easily enter from the sub-port 261, and the amount of refrigerant taken in by the first spiral body 4b and the second spiral body 5b can be made approximately the same.
  • the shell 1 has a second step portion 11b that protrudes radially from the inner wall surface and supports the main frame 2.
  • the inlet 26a of the suction port 26 is formed radially larger than the outlet 26b of the suction port 26 by the dimension of the second stepped portion 11b protruding in the radial direction.
  • the opening area of the inlet 26a of the suction port 26 and the opening area of the outlet 26b of the suction port 26 are substantially the same even when the second step portion 11b is provided. Since the area can be reduced, the pressure loss of the inlet 26a can be suppressed.
  • the suction port 26 has an inner wall surface 26c formed in a fine uneven surface.
  • the scroll compressor 100 has been described above based on the embodiment, the scroll compressor 100 is not limited to the configuration of the embodiment described above.
  • the illustrated internal configuration of the scroll compressor 100 is not limited to the contents described above, and may include other components.
  • the number of suction ports 26 is not limited to two as shown in the figure, and may be one or three or more.
  • the scroll compressor 100 includes a range of design changes and application variations that are normally made by those skilled in the art within a range that does not deviate from the technical idea.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

This scroll compressor comprises a shell (1), a main frame (2), a fixed scroll (4), an orbiting scroll (5), and a crankshaft (7), wherein the main frame (2) has an intake port (26) for supplying a refrigerant, which whirls around the crankshaft (7) in a space under the main frame (2), to a compression chamber. The intake port (26) is formed so as to be inclined, with respect to the axial direction of the crankshaft (7), along a direction in which the refrigerant flows from the space under the main frame (2) towards a space over the same.

Description

スクロール圧縮機scroll compressor
 本開示は、スクロール圧縮機に関するものである。 The present disclosure relates to scroll compressors.
 従来、例えば空気調和装置又は冷凍装置等に用いられる圧縮機として、スクロール圧縮機が知られている。例えば特許文献1に開示されたスクロール圧縮機は、シェルと、シェルの内壁面に固定されたメインフレームと、シェルの内壁面に固定され、第1渦巻体が設けられた固定台板を有する固定スクロールと、メインフレームに揺動自在に支持され、第1渦巻体と噛み合う第2渦巻体が設けられた揺動台板を有する揺動スクロールと、を備えている。スクロール圧縮機は、第1渦巻体と第2渦巻体とを噛み合わせることにより、第1渦巻体と第2渦巻体との間に冷媒を圧縮する圧縮室が形成される。メインフレームには、シェルの低圧空間から圧縮室に冷媒を取り込むための吸入ポートが形成されている。吸入ポートは、メインフレームの下部空間と上部空間とが連通するように、クランクシャフトの軸方向に沿って形成された空間である。冷媒は、シェルの側面に設けられた吸入管からシェルの内部に流入し、メインフレームの下部空間においてクランクシャフト軸を中心に旋回しながら、メインフレームに設けられた吸入ポートを通じて圧縮室へ流入される。 Conventionally, scroll compressors are known as compressors used in, for example, air conditioners or refrigeration systems. For example, the scroll compressor disclosed in Patent Document 1 includes a shell, a main frame fixed to the inner wall surface of the shell, and a fixed bed plate fixed to the inner wall surface of the shell and provided with a first spiral body. and an orbiting scroll having an orbiting bed plate which is pivotally supported by a main frame and provided with a second spiral body that meshes with the first spiral body. In the scroll compressor, a compression chamber for compressing refrigerant is formed between the first spiral body and the second spiral body by meshing the first spiral body and the second spiral body. The main frame is formed with an intake port for drawing refrigerant from the low pressure space of the shell into the compression chamber. The intake port is a space formed along the axial direction of the crankshaft so that the lower space and upper space of the main frame communicate with each other. Refrigerant flows into the interior of the shell from a suction pipe provided on the side of the shell, and flows into the compression chamber through a suction port provided on the main frame while rotating around the crankshaft axis in the lower space of the main frame. be.
特開2020-515425号公報JP 2020-515425 A
 特許文献1に開示されたスクロール圧縮機では、メインフレームに形成された吸入ポートが、クランクシャフトの軸周りを旋回する方向に対して垂直方向に形成されている。つまり、吸入ポートは、メインフレームの下部空間から上部空間へ移動する冷媒の流れに沿って形成されたものではない。そのため、このスクロール圧縮機では、メインフレームの下部空間において旋回する冷媒が吸入ポートに流入する際に、抵抗を受けやすく、冷媒の圧力損失を生じさせるおそれがある。また、圧縮機の高速回転化に伴い、冷媒循環量が大きくなり、冷媒の流速が大きくなると、さらに圧力損失が大きくなり、性能が低下するおそれがある。 In the scroll compressor disclosed in Patent Document 1, the intake port formed in the main frame is formed in a direction perpendicular to the direction in which the crankshaft revolves around the axis. In other words, the intake port is not formed along the flow of the refrigerant moving from the lower space to the upper space of the main frame. Therefore, in this scroll compressor, when the refrigerant swirling in the lower space of the main frame flows into the suction port, it is likely to be subject to resistance, which may cause pressure loss of the refrigerant. In addition, as the compressor rotates at a higher speed, the amount of refrigerant circulated increases, and when the flow velocity of the refrigerant increases, the pressure loss increases, and there is a risk that the performance will deteriorate.
 本開示は、上記のような課題を解決するためになされたものであり、冷媒循環量が大きくなり、冷媒の流速が大きくなっても、冷媒の圧力損失の増加を低減でき、性能低下を抑制することができるスクロール圧縮機を提供することを目的とする。 The present disclosure has been made to solve the above problems, and even if the refrigerant circulation amount increases and the refrigerant flow velocity increases, the increase in refrigerant pressure loss can be reduced, and performance deterioration can be suppressed. An object of the present invention is to provide a scroll compressor capable of
 本開示のスクロール圧縮機は、密閉空間を有するシェルと、前記シェルの内壁面に固定されたメインフレームと、第1渦巻体が設けられた第1基板を有する固定スクロールと、
 前記メインフレームに揺動自在に支持され、前記第1渦巻体と噛み合う第2渦巻体が設けられた第2基板を有し、前記固定スクロールと共に冷媒を圧縮する圧縮室を形成する揺動スクロールと、前記揺動スクロールに回転駆動力を伝達するクランクシャフトと、を備え、前記メインフレームには、該メインフレームの下部空間において前記クランクシャフトの周りを旋回する冷媒を、前記圧縮室内に供給するための吸入ポートを有しており、前記吸入ポートは、前記クランクシャフトの軸方向に対し、前記メインフレームの前記下部空間から上部空間へ冷媒の流れる方向に沿って傾斜させて形成されているものである。
A scroll compressor of the present disclosure includes a shell having a closed space, a main frame fixed to an inner wall surface of the shell, a fixed scroll having a first substrate provided with a first spiral body,
an orbiting scroll that is swingably supported by the main frame, has a second substrate provided with a second spiral body that meshes with the first spiral body, and forms a compression chamber that compresses a refrigerant together with the fixed scroll; and a crankshaft for transmitting rotational driving force to the orbiting scroll, and the main frame is provided with a coolant that revolves around the crankshaft in a lower space of the main frame to supply the compression chamber. The intake port is inclined with respect to the axial direction of the crankshaft along the direction in which the refrigerant flows from the lower space to the upper space of the main frame. be.
 本開示によれば、吸入ポートが、クランクシャフトの軸方向に対し、冷媒の流れる方向に沿って傾斜させて形成されているので、メインフレームの下部空間において旋回する冷媒が吸入ポートに流入する際に、冷媒が受ける抵抗を低減させることができる。よって、冷媒循環量が大きくなり、冷媒の流速が大きくなっても、冷媒の圧力損失の増加を低減でき、性能低下を抑制することができる。 According to the present disclosure, the intake port is formed to be inclined along the direction in which the refrigerant flows with respect to the axial direction of the crankshaft. In addition, the resistance that the refrigerant receives can be reduced. Therefore, even if the circulation amount of the refrigerant increases and the flow velocity of the refrigerant increases, the increase in the pressure loss of the refrigerant can be reduced, and the deterioration of the performance can be suppressed.
実施の形態に係るスクロール圧縮機の内部構造を示した縦断面図である。1 is a longitudinal sectional view showing an internal structure of a scroll compressor according to an embodiment; FIG. 実施の形態に係るスクロール圧縮機の要部を分解して示した斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the perspective view which decomposed|disassembled and showed the principal part of the scroll compressor which concerns on embodiment. 図1に示したIII部の拡大図である。It is an enlarged view of the III section shown in FIG. 実施の形態に係るスクロール圧縮機の冷媒の流れを示した説明図である。FIG. 4 is an explanatory diagram showing the flow of refrigerant in the scroll compressor according to the embodiment; 実施の形態に係るスクロール圧縮機のメインフレームの吸入ポートを概略的に示した説明図である。It is an explanatory view showing roughly the suction port of the main frame of the scroll compressor concerning an embodiment. 実施の形態に係るスクロール圧縮機の圧縮機構部の横断面図である。It is a cross-sectional view of the compression mechanism part of the scroll compressor which concerns on embodiment. 実施の形態に係るスクロール圧縮機の内部構造の縦断面であって、吸入ポートを形成した部分を示した要部拡大図である。FIG. 2 is an enlarged vertical cross-sectional view of the internal structure of the scroll compressor according to the embodiment, showing a portion in which a suction port is formed; 実施の形態に係るスクロール圧縮機のメインフレームを下方側から見た説明図である。It is explanatory drawing which looked at the main frame of the scroll compressor which concerns on embodiment from the downward side. 実施の形態に係るスクロール圧縮機のメインフレームを下方側から見た説明図である。It is explanatory drawing which looked at the main frame of the scroll compressor which concerns on embodiment from the downward side. 実施の形態に係るスクロール圧縮機の変形例であって、圧縮機構部の横断面図である。It is a modification of the scroll compressor which concerns on embodiment, Comprising: It is a cross-sectional view of a compression mechanism part.
 以下、図面を参照して、本開示の実施の形態について説明する。なお、各図中、同一又は相当する部分には、同一符号を付して、その説明を適宜省略又は簡略化する。また、各図に記載の構成について、その形状、大きさ、及び配置等は、適宜変更することができる。 Embodiments of the present disclosure will be described below with reference to the drawings. In each figure, the same or corresponding parts are denoted by the same reference numerals, and the description thereof will be omitted or simplified as appropriate. Further, the shape, size, arrangement, etc. of the configuration described in each drawing can be changed as appropriate.
実施の形態.
 図1は、実施の形態に係るスクロール圧縮機100の内部構造を示した縦断面図である。図2は、実施の形態に係るスクロール圧縮機100の要部を分解して示した斜視図である。図3は、図1に示したIII部の拡大図である。なお、図1に示した本実施の形態に係るスクロール圧縮機100は、クランクシャフト7の中心軸が地面に対して略垂直の状態で使用される、いわゆる縦型のスクロール圧縮機である。スクロール圧縮機100は、例えば、冷蔵庫、冷凍庫、空気調和装置、冷凍装置又は給湯器等に用いられる冷凍サイクルの構成要素の一つとなる。
Embodiment.
FIG. 1 is a vertical cross-sectional view showing the internal structure of a scroll compressor 100 according to an embodiment. FIG. 2 is an exploded perspective view showing the essential parts of the scroll compressor 100 according to the embodiment. FIG. 3 is an enlarged view of section III shown in FIG. The scroll compressor 100 according to the present embodiment shown in FIG. 1 is a so-called vertical scroll compressor that is used with the central axis of the crankshaft 7 substantially perpendicular to the ground. The scroll compressor 100 is one of the components of a refrigeration cycle used in, for example, refrigerators, freezers, air conditioners, refrigeration systems, water heaters, and the like.
 スクロール圧縮機100は、冷凍サイクルを循環する冷媒を吸入して圧縮し、高温高圧の状態として吐出させるものである。スクロール圧縮機100は、図1及び図2に示すように、外郭を形成するシェル1と、シェル1の内壁面に固着されたメインフレーム2と、冷媒を圧縮する圧縮機構部3と、圧縮機構部3を駆動させる駆動機構部6と、圧縮機構部3と駆動機構部6を連結するクランクシャフト7と、を備えている。 The scroll compressor 100 sucks and compresses the refrigerant circulating in the refrigeration cycle, and discharges it in a high-temperature, high-pressure state. The scroll compressor 100, as shown in FIGS. A drive mechanism portion 6 that drives the portion 3 and a crankshaft 7 that connects the compression mechanism portion 3 and the drive mechanism portion 6 are provided.
 シェル1は、図1に示すように、金属などの導電性部材により構成されている。シェル1は、筒体の両端が閉塞されることにより、内部に密閉空間が形成されたものである。シェル1の内部には、メインフレーム2と、圧縮機構部3と、駆動機構部6と、クランクシャフト7とが収容されている。 The shell 1, as shown in FIG. 1, is made of a conductive member such as metal. The shell 1 has a sealed space formed therein by closing both ends of a cylindrical body. A main frame 2 , a compression mechanism portion 3 , a drive mechanism portion 6 , and a crankshaft 7 are housed inside the shell 1 .
 シェル1は、円筒状のメインシェル1aと、メインシェル1aの上面開口を塞ぐ略半球状のアッパーシェル1bと、メインシェル1aの下面開口を塞ぐ略半球状のロアシェル1cと、を有している。アッパーシェル1b及びロアシェル1cは、それぞれ側壁の一部がメインシェル1aに溶接等で固着されている。シェル1は、ロアシェル1cに固定された固定台1dによって支持されている。 The shell 1 has a cylindrical main shell 1a, a substantially hemispherical upper shell 1b that closes the upper opening of the main shell 1a, and a substantially hemispherical lower shell 1c that closes the lower opening of the main shell 1a. . Each of the upper shell 1b and the lower shell 1c has a part of the side wall fixed to the main shell 1a by welding or the like. The shell 1 is supported by a fixed base 1d fixed to the lower shell 1c.
 メインシェル1aの内壁面は、図2に示すように、上端部に形成された大径の第1内壁面10aと、第1内壁面10aの下方に形成され、第1内壁面10aの内径よりも小径の第2内壁面10bと、第2内壁面10bの下方に形成され、第2内壁面10bの内径よりも小径の第3内壁面10cと、を有している。第1内壁面10aの下端と第2内壁面10bの上端とで形成され、シェル1の内壁面から径方向に突き出した第1段部11aは、固定スクロール4の位置決め部として機能する。第2内壁面10bの下端と第3内壁面10cの上端とで形成され、シェル1の内壁面から径方向に突き出した第2段部11bが、メインフレーム2の位置決め部として機能する。 As shown in FIG. 2, the inner wall surface of the main shell 1a consists of a large-diameter first inner wall surface 10a formed at the upper end, and a large-diameter first inner wall surface 10a formed below the first inner wall surface 10a. a second inner wall surface 10b having a smaller diameter than the second inner wall surface 10b; and a third inner wall surface 10c formed below the second inner wall surface 10b and having a smaller diameter than the inner diameter of the second inner wall surface 10b. A first stepped portion 11a formed by the lower end of the first inner wall surface 10a and the upper end of the second inner wall surface 10b and projecting radially from the inner wall surface of the shell 1 functions as a positioning portion for the fixed scroll 4. As shown in FIG. A second stepped portion 11b formed by the lower end of the second inner wall surface 10b and the upper end of the third inner wall surface 10c and projecting radially from the inner wall surface of the shell 1 functions as a positioning portion for the main frame 2. As shown in FIG.
 メインシェル1aには、図1に示すように、シェル1の内部に冷媒を取り込むための吸入管13と、スクロール圧縮機100に給電するための給電部19と、が設けられている。吸入管13は、メインシェル1aの側壁に形成された孔に、一部が挿入された状態で溶接等により接続されている。吸入管13は、シェル1の内部空間と連通している。給電部19は、カバー19aと、給電端子19bと、配線19cと、を備えている。給電端子19bは、金属部材であり、一端がカバー19aに囲まれるように配置され、他端がメインシェル1aの内部に配置されている。配線19cは、一端が給電端子19bと接続され、他端が駆動機構部6に接続されている。 As shown in FIG. 1, the main shell 1a is provided with a suction pipe 13 for taking refrigerant into the interior of the shell 1 and a power supply section 19 for supplying power to the scroll compressor 100. As shown in FIG. The suction pipe 13 is connected to a hole formed in the side wall of the main shell 1a by welding or the like while being partially inserted. The intake pipe 13 communicates with the internal space of the shell 1 . The power supply unit 19 includes a cover 19a, power supply terminals 19b, and wiring 19c. The power supply terminal 19b is a metal member, one end of which is arranged so as to be surrounded by the cover 19a, and the other end of which is arranged inside the main shell 1a. The wiring 19 c has one end connected to the power supply terminal 19 b and the other end connected to the drive mechanism section 6 .
 アッパーシェル1bには、圧縮した冷媒をシェル1の外部へ吐出する吐出管14が接続されている。吐出管14は、シェル1の内部空間と連通している。吐出管14は、アッパーシェル1bの上部に形成された孔に、一部が挿入された状態で溶接等により接続されている。また、シェル1の内底部には、潤滑油を貯留する油溜め18が設けられている。 A discharge pipe 14 for discharging the compressed refrigerant to the outside of the shell 1 is connected to the upper shell 1b. The discharge pipe 14 communicates with the internal space of the shell 1 . The discharge pipe 14 is connected by welding or the like while being partially inserted into a hole formed in the upper portion of the upper shell 1b. Further, an oil reservoir 18 for storing lubricating oil is provided in the inner bottom portion of the shell 1 .
 メインフレーム2は、図1及び図2に示すように、下方に向かって段階的に先細る筒状の金属フレームであり、揺動スクロール5を揺動自在に支持するものである。メインフレーム2は、メインシェル1aの第2段部11bに外周壁が支持された状態で、該外周壁がメインシェル1aの第2内壁面10bに焼嵌め等により固定されている。メインフレーム2の上面には、環状の平坦面20が形成されている。平坦面20には、バルブ鋼などの鋼板系材料からなるリング状のスラストプレート25が設けられている。スラストプレート25は、メインフレーム2のスラスト摺動面として機能し、圧縮機構部3のスラスト荷重を支持する。 As shown in FIGS. 1 and 2, the main frame 2 is a cylindrical metal frame tapering downward in stages, and supports the swing scroll 5 so as to swing freely. The outer peripheral wall of the main frame 2 is fixed to the second inner wall surface 10b of the main shell 1a by shrink fitting or the like while the outer peripheral wall is supported by the second step portion 11b of the main shell 1a. An annular flat surface 20 is formed on the upper surface of the main frame 2 . A ring-shaped thrust plate 25 made of a steel plate material such as valve steel is provided on the flat surface 20 . The thrust plate 25 functions as a thrust sliding surface of the main frame 2 and supports the thrust load of the compression mechanism section 3 .
 また、図2に示すように、メインフレーム2の筒内部は、収容部21と、クランクシャフト7を支持する主軸受部22と、で構成されている。収容部21は、メインフレーム2の上部側に設けられている。主軸受部22は、メインフレーム2の下部側に設けられている。 Further, as shown in FIG. 2, the inside of the cylinder of the main frame 2 is composed of a housing portion 21 and a main bearing portion 22 that supports the crankshaft 7. As shown in FIG. The housing portion 21 is provided on the upper side of the main frame 2 . The main bearing portion 22 is provided on the lower side of the main frame 2 .
 収容部21は、図2に示すように、下方に向かって段階的に内径が小さくなるように形成されている。収容部21は、平坦面20側に位置する段差部分がオルダム収容部21aとされ、主軸受部22側に位置する段差部分がブッシュ収容部21bとされている。また、オルダム収容部21a及び平坦面20の一部には、軸孔を挟んで対向するように形成された一対の第1オルダム溝21cが設けられている。第1オルダム溝21cは、キー溝である。第1オルダム溝21cは、メインフレーム2を上方側から見たときに、一部分がスラストプレート25と重なっている。 As shown in FIG. 2, the accommodating portion 21 is formed such that the inner diameter gradually decreases downward. The accommodation portion 21 has an Oldham accommodation portion 21a at a step portion located on the flat surface 20 side, and a bush accommodation portion 21b at a step portion located on the main bearing portion 22 side. A pair of first Oldham grooves 21c are provided in the Oldham housing portion 21a and a part of the flat surface 20 so as to face each other with the shaft hole interposed therebetween. The first Oldham groove 21c is a key groove. The first Oldham groove 21c partially overlaps the thrust plate 25 when the main frame 2 is viewed from above.
 また、メインフレーム2には、該メインフレーム2の下部空間においてクランクシャフト7の周りを旋回する冷媒を圧縮機構部3に供給するための吸入ポート26が形成されている。吸入ポート26は、メインフレーム2の平坦面20の外端側において、メインフレーム2の下部空間と上部空間とを連通させるように、上下方向に貫通して形成されている。具体的には、メインフレーム2の外周壁には、メインフレーム2の下部空間と上部空間とを連通させる凹部27が、メインフレーム2の周方向に沿って形成されている。吸入ポート26は、図1~図3に示すように、凹部27とシェル1の内壁面とで囲まれた空間である。また、スラストプレート25には、メインフレーム2の吸入ポート26に対応する位置に、外周の一部を切欠いた切欠き部25aが形成されている。切欠き部25aは、吸入ポート26を覆わないように、吸入ポート26と同じ形状か、それよりも大きく形成されている。 In addition, the main frame 2 is formed with an intake port 26 for supplying the compression mechanism 3 with refrigerant that revolves around the crankshaft 7 in the lower space of the main frame 2 . The intake port 26 is formed vertically through the outer end side of the flat surface 20 of the main frame 2 so as to communicate the lower space and the upper space of the main frame 2 . Specifically, in the outer peripheral wall of the main frame 2 , a concave portion 27 is formed along the circumferential direction of the main frame 2 so as to allow communication between the lower space and the upper space of the main frame 2 . The intake port 26 is a space surrounded by the recess 27 and the inner wall surface of the shell 1, as shown in FIGS. Further, the thrust plate 25 is formed with a notch portion 25a formed by notching a portion of the outer periphery at a position corresponding to the suction port 26 of the main frame 2. As shown in FIG. The notch 25a has the same shape as the suction port 26 or is larger than it so as not to cover the suction port 26. As shown in FIG.
 また、メインフレーム2には、図1及び図3に示すように、内外を貫通して形成された返油孔23に返油管24が挿入されて固定されている。返油孔23は、ブッシュ収容部21bと連通している。返油管24は、収容部21に溜まった潤滑油をロアシェル1cに設けられた油溜め18に戻すために設けられている。なお、返油孔23及び返油管24は、一つに限らず、複数設けてもよい。 In addition, as shown in FIGS. 1 and 3, the main frame 2 is fixed by inserting an oil return pipe 24 into an oil return hole 23 formed through the inside and outside. The oil return hole 23 communicates with the bush accommodating portion 21b. The oil return pipe 24 is provided to return the lubricating oil accumulated in the housing portion 21 to the oil reservoir 18 provided in the lower shell 1c. In addition, the number of the oil return hole 23 and the oil return pipe 24 is not limited to one, and a plurality of them may be provided.
 上記のメインフレーム2は、鉄系金属、又はアルミ系金属で形成されている。メインフレーム2は、鉄系の材料を使用して形成する場合には、鋳造により形状を形成される。また、メインフレーム2は、機械構造用炭素鋼鋼材を使用して形成する場合には、機械加工によって形成される。メインフレーム2は、アルミ系の材料を使用する場合には、鋳造又は鍛造により形成される。 The main frame 2 is made of iron-based metal or aluminum-based metal. When the main frame 2 is formed using a ferrous material, the shape is formed by casting. Further, when the main frame 2 is formed using a carbon steel material for machine structural use, it is formed by machining. The main frame 2 is formed by casting or forging when using an aluminum-based material.
 圧縮機構部3は、固定スクロール4と、揺動スクロール5と、を有している。固定スクロール4は、図2及び図3に示すように、円板状の第1基板4aと、第1基板4aの下面に設けられた第1渦巻体4bと、を有している。揺動スクロール5は、円板状の第2基板5aと、第2基板5aの上面に設けられ、第1渦巻体4bと噛み合う第2渦巻体5bと、を有している。揺動スクロール5は、固定スクロール4に対して偏心させて設置されている。固定スクロール4の第1渦巻体4bと揺動スクロール5の第2渦巻体5bとが組み合わされて冷媒を圧縮する圧縮室30が形成されている。 The compression mechanism section 3 has a fixed scroll 4 and an orbiting scroll 5 . As shown in FIGS. 2 and 3, the fixed scroll 4 has a disk-shaped first substrate 4a and a first spiral body 4b provided on the lower surface of the first substrate 4a. The orbiting scroll 5 has a disk-shaped second substrate 5a and a second spiral body 5b provided on the upper surface of the second substrate 5a and meshing with the first spiral body 4b. The orbiting scroll 5 is installed eccentrically with respect to the fixed scroll 4 . The first spiral body 4b of the fixed scroll 4 and the second spiral body 5b of the orbiting scroll 5 are combined to form a compression chamber 30 for compressing the refrigerant.
 固定スクロール4は、例えば鋳鉄等の金属で形成されている。固定スクロール4は、第1基板4aの外周面が、メインシェル1aの第1段部11aに支持された状態で、第1内壁面10aに焼き嵌め等で固着されている。なお、固定スクロール4は、第1内壁面10aに固着された構成に限定されず、メインフレーム2にネジ止め等されて固定された構成でもよい。 The fixed scroll 4 is made of metal such as cast iron. The fixed scroll 4 is fixed to the first inner wall surface 10a by shrink fitting or the like while the outer peripheral surface of the first substrate 4a is supported by the first step portion 11a of the main shell 1a. The fixed scroll 4 is not limited to being fixed to the first inner wall surface 10a, and may be fixed to the main frame 2 by screwing or the like.
 第1基板4aの中央部には、圧縮されて高温かつ高圧となった冷媒を吐出する吐出ポート40が形成されている。固定スクロール4の上面には、吐出ポート40に連通する吐出孔15aが形成されたチャンバー15が設けられている。チャンバー15には、冷媒の圧力に応じて吐出孔15aを開閉する吐出弁17がネジ止めして設けられている。吐出弁17は、吐出ポート40に連通する圧縮室30の冷媒が所定の圧力に達したときに、吐出孔15aを開状態にする。圧縮された高温かつ高圧冷媒は、吐出ポート40から固定スクロール4の上部の高圧空間16に排出され、吐出管14を通り、シェル1の外部へ吐出される。また、第1渦巻体4bの先端部には、溝が形成されており、この溝に例えば硬質プラスチックからなるチップシール41が設けられている。 A discharge port 40 is formed in the central portion of the first substrate 4a for discharging the compressed high-temperature and high-pressure refrigerant. A chamber 15 having a discharge hole 15 a communicating with a discharge port 40 is provided on the upper surface of the fixed scroll 4 . The chamber 15 is provided with a discharge valve 17 that opens and closes the discharge hole 15a according to the pressure of the refrigerant. The discharge valve 17 opens the discharge hole 15a when the refrigerant in the compression chamber 30 communicating with the discharge port 40 reaches a predetermined pressure. The compressed high-temperature and high-pressure refrigerant is discharged from the discharge port 40 into the high-pressure space 16 above the fixed scroll 4 and discharged to the outside of the shell 1 through the discharge pipe 14 . A groove is formed at the tip of the first spiral body 4b, and a tip seal 41 made of hard plastic, for example, is provided in the groove.
 揺動スクロール5は、例えばアルミニウム等の金属で形成されている。揺動スクロール5は、図1~図3に示すように、自転運動を阻止するためのオルダムリング54により、固定スクロール4に対して自転運動することなく公転運動を行う。なお、第2基板5aの第2渦巻体5bが形成されていない側の面(図示例の場合は下面)は、揺動スクロールスラスト軸受面として作用する。また、揺動スクロールスラスト軸受面の中心部には、中空円筒形状のボス部51が設けられている。ボス部51の内周面には、ブッシュ8のスライダ80を回転自在に支持する揺動軸受が設けられている。揺動軸受は、いわゆるジャーナル軸受である。揺動軸受は、中心軸がクランクシャフト7の中心軸と平行になるように設けられている。揺動スクロール5は、ボス部51に挿入されたクランクシャフト7の偏心軸部71が回転することで、メインフレーム2のスラスト摺動面上で公転運動する。 The orbiting scroll 5 is made of metal such as aluminum. As shown in FIGS. 1 to 3, the orbiting scroll 5 revolves around the fixed scroll 4 without rotating due to an Oldham ring 54 for preventing rotation. The surface of the second substrate 5a on which the second spiral body 5b is not formed (lower surface in the illustrated example) functions as an orbiting scroll thrust bearing surface. A hollow cylindrical boss portion 51 is provided at the center of the orbiting scroll thrust bearing surface. A rocking bearing that rotatably supports the slider 80 of the bush 8 is provided on the inner peripheral surface of the boss portion 51 . The rocking bearing is a so-called journal bearing. The swing bearing is provided so that its central axis is parallel to the central axis of the crankshaft 7 . The orbiting scroll 5 revolves on the thrust sliding surface of the main frame 2 by rotating the eccentric shaft portion 71 of the crankshaft 7 inserted into the boss portion 51 .
 また、第2渦巻体5bの先端部には、溝が形成されており、この溝に例えば硬質プラスチックからなるチップシール52が設けられている。また、揺動スクロールスラスト軸受面には、ボス部51を挟んで対向するように形成された一対の第2オルダム溝53が設けられている。第2オルダム溝53は、長丸形状のキー溝である。一対の第2オルダム溝53は、それらを結ぶ線が、一対の第1オルダム溝21cを結ぶ線に対して、直交する関係となるように配置されている。 A groove is formed at the tip of the second spiral body 5b, and a tip seal 52 made of hard plastic, for example, is provided in this groove. A pair of second Oldham grooves 53 are provided on the orbiting scroll thrust bearing surface so as to face each other with the boss portion 51 interposed therebetween. The second Oldham groove 53 is an elongated key groove. The pair of second Oldham grooves 53 are arranged so that the line connecting them is perpendicular to the line connecting the pair of first Oldham grooves 21c.
 オルダムリング54は、リング部54aと、第1キー部54bと、第2キー部54cと、を備えている。リング部54aは、環状であり、メインフレーム2のオルダム収容部21aに収容される。第1キー部54bは、リング部54aの下面に設けられている。第1キー部54bは、一対で構成され、メインフレーム2の一対の第1オルダム溝21cに各々収容される。第2キー部54cは、リング部54aの上面に設けられている。第2キー部54cは、一対で構成され、揺動スクロール5の一対の第2オルダム溝53に各々収容される。揺動スクロール5の第2オルダム溝53をオルダムリング54の第2キー部54cに合わせることで、揺動スクロール5の第2渦巻体5bの回転方向の位置が決まる。つまり、オルダムリング54により、メインフレーム2に対して揺動スクロール5が位置決めされ、メインフレーム2に対する第2渦巻体5bの位相が決定する。オルダムリング54は、クランクシャフト7の回転によって揺動スクロール5が公転旋回する際に、第1キー部54bが第1オルダム溝21cをスライドし、第2キー部54cが第2オルダム溝53をスライドすることにより、揺動スクロール5が自転することを防止する。 The Oldham ring 54 includes a ring portion 54a, a first key portion 54b, and a second key portion 54c. The ring portion 54 a has an annular shape and is housed in the Oldham housing portion 21 a of the main frame 2 . The first key portion 54b is provided on the lower surface of the ring portion 54a. The first key portions 54b are formed in pairs and are accommodated in the pair of first Oldham grooves 21c of the main frame 2, respectively. The second key portion 54c is provided on the upper surface of the ring portion 54a. The second key portions 54c are formed in pairs and are accommodated in the pair of second Oldham grooves 53 of the orbiting scroll 5, respectively. By aligning the second Oldham groove 53 of the orbiting scroll 5 with the second key portion 54c of the Oldham ring 54, the rotational position of the second spiral body 5b of the orbiting scroll 5 is determined. That is, the Oldham ring 54 positions the orbiting scroll 5 with respect to the main frame 2 and determines the phase of the second spiral body 5 b with respect to the main frame 2 . In the Oldham ring 54, the first key portion 54b slides in the first Oldham groove 21c and the second key portion 54c slides in the second Oldham groove 53 when the orbiting scroll 5 revolves due to the rotation of the crankshaft 7. By doing so, the orbiting scroll 5 is prevented from rotating.
 圧縮室30は、固定スクロール4の第1渦巻体4bと、揺動スクロール5の第2渦巻体5bと、を互いに噛み合わせるとともに、第1渦巻体4bの先端に設けたチップシール41及び第2基板5aと、第2渦巻体5bの先端に設けたチップシール52及び第1基板4aと、でシールすることによって形成される。圧縮室30は、スクロールの半径方向において、外側から内側へ向かうに従って容積が縮小する複数の圧縮室で構成される。 The compression chamber 30 is formed by meshing the first spiral body 4b of the fixed scroll 4 and the second spiral body 5b of the orbiting scroll 5, and a tip seal 41 and a second seal 41 provided at the tip of the first spiral body 4b. It is formed by sealing with the substrate 5a, the tip seal 52 provided at the tip of the second spiral body 5b, and the first substrate 4a. The compression chambers 30 are composed of a plurality of compression chambers whose volumes decrease from the outside toward the inside in the radial direction of the scroll.
 冷媒は、例えば、組成中に、炭素の二重結合を有するハロゲン化炭化水素、炭素の二重結合を有しないハロゲン化炭化水素、炭化水素、又は、それらを含む混合物からなる。炭素の二重結合を有するハロゲン化炭化水素は、オゾン層破壊係数がゼロであるHFC冷媒、フロン系低GWP冷媒であり、化学式がC3H2F4で表されるHFO1234yf、HFO1234ze、HFO1243zf等のテトラフルオロプロペンが例示される。炭素の二重結合を有しないハロゲン化炭化水素は、CH2F2で表されるR32(ジフルオロメタン)、R41等が混合された冷媒が例示される。炭化水素は、自然冷媒であるプロパンやプロピレン等が例示される。混合物は、HFO1234yf、HFO1234ze、HFO1243zf等に、R32、R41等を混合した混合冷媒が例示される。 The refrigerant consists of, for example, a halogenated hydrocarbon having a carbon double bond, a halogenated hydrocarbon not having a carbon double bond, a hydrocarbon, or a mixture containing them. Halogenated hydrocarbons having carbon double bonds are HFC refrigerants with zero ozone depletion potential, Freon-based low GWP refrigerants, and tetrafluoropropenes such as HFO1234yf, HFO1234ze, and HFO1243zf represented by the chemical formula C3H2F4. exemplified. Halogenated hydrocarbons having no carbon double bond are exemplified by refrigerants mixed with R32 (difluoromethane) represented by CH2F2, R41 and the like. Hydrocarbons are exemplified by natural refrigerants such as propane and propylene. The mixture is exemplified by a mixed refrigerant obtained by mixing HFO1234yf, HFO1234ze, HFO1243zf and the like with R32, R41 and the like.
 駆動機構部6は、図1に示すように、クランクシャフト7を介して連結された圧縮機構部3を駆動させるものである。駆動機構部6は、シェル1の内壁面に焼き嵌め等により固着支持された円環状のステータ6aと、ステータ6aの内側面に対向して回転可能に取り付けられたロータ6bとで構成されている。ステータ6aは、例えば電磁鋼板を複数枚積層してなる鉄心に、絶縁層を介して巻線が巻回された構成であり、平面視でリング状に形成されている。ロータ6bは、電磁鋼板を複数枚積層してなる鉄心の内部に永久磁石が内蔵された構成であり、中央に上下方向に貫通する貫通孔を有している。ロータ6bは、その外周面がステータ6aの内周面と所定の隙間を保って配置されている。 The drive mechanism section 6 drives the compression mechanism section 3 connected via the crankshaft 7, as shown in FIG. The drive mechanism 6 is composed of an annular stator 6a fixedly supported by shrink fitting or the like on the inner wall surface of the shell 1, and a rotor 6b rotatably mounted facing the inner surface of the stator 6a. . The stator 6a has, for example, a core formed by laminating a plurality of electromagnetic steel sheets and a winding wound through an insulating layer, and is formed in a ring shape in a plan view. The rotor 6b has a structure in which a permanent magnet is built in an iron core formed by laminating a plurality of electromagnetic steel sheets, and has a through hole penetrating vertically in the center. The rotor 6b is arranged with its outer peripheral surface maintaining a predetermined gap from the inner peripheral surface of the stator 6a.
 クランクシャフト7は、図1に示すように、金属製の棒状部材である。クランクシャフト7は、主軸部70と、偏心軸部71と、を備えている。主軸部70は、クランクシャフト7の主要部を構成する軸であり、その中心軸がメインシェル1aの中心軸と一致するように配置されている。主軸部70は、ロータ6bの中心の貫通孔に焼嵌め等により固定され、メインフレーム2の中央部に設けられた主軸受部22と、シェル1の下部に溶接又は焼き嵌め等で固着されたサブフレーム9の中央部に設けられた副軸受部90と、によって回転自在に支持されている。 The crankshaft 7 is a rod-shaped member made of metal, as shown in FIG. The crankshaft 7 has a main shaft portion 70 and an eccentric shaft portion 71 . The main shaft portion 70 is a shaft forming a main portion of the crankshaft 7, and is arranged so that its central axis coincides with the central axis of the main shell 1a. The main shaft portion 70 is fixed to the central through hole of the rotor 6b by shrink fitting or the like, and is fixed to the main bearing portion 22 provided in the central portion of the main frame 2 and the lower portion of the shell 1 by welding or shrink fitting. It is rotatably supported by a sub-bearing portion 90 provided in the central portion of the sub-frame 9 .
 偏心軸部71は、図1~図3に示すように、その中心軸が主軸部70の中心軸に対して偏心するように、主軸部70の上端部に設けられている。偏心軸部71は、例えば鉄等の金属部材であるブッシュ8を介して揺動スクロール5に接続され、揺動スクロール5のボス部51に回転自在に支持されている。クランクシャフト7は、ロータ6bの回転に伴って回転し、偏心軸部71で揺動スクロール5を旋回させる。また、主軸部70及び偏心軸部71の内部には、通油路72が、軸方向に沿って上下に貫通して設けられている。 The eccentric shaft portion 71 is provided at the upper end portion of the main shaft portion 70 so that its central axis is eccentric with respect to the central axis of the main shaft portion 70, as shown in FIGS. The eccentric shaft portion 71 is connected to the orbiting scroll 5 via a bush 8 that is a metal member such as iron, and is rotatably supported by a boss portion 51 of the orbiting scroll 5 . The crankshaft 7 rotates with the rotation of the rotor 6b, and rotates the orbiting scroll 5 with the eccentric shaft portion 71. As shown in FIG. An oil passage 72 is provided inside the main shaft portion 70 and the eccentric shaft portion 71 so as to penetrate vertically along the axial direction.
 ブッシュ8は、図2及び図3に示すように、スライダ80と、バランスウェイト81と、を備えている。スライダ80は、鍔が形成された筒状の部材であり、ボス部51に回転自在に挿入されている。スライダ80のスライド面には、偏心軸部71が挿入されている。つまり、スライダ80は、揺動スクロール5と偏心軸部71との間に介在され、揺動スクロール5の揺動半径を可変とすると共に、揺動スクロール5を公転運動させるために支承するものである。 The bushing 8 includes a slider 80 and a balance weight 81, as shown in FIGS. The slider 80 is a tubular member having a flange, and is rotatably inserted into the boss portion 51 . An eccentric shaft portion 71 is inserted into the slide surface of the slider 80 . In other words, the slider 80 is interposed between the orbiting scroll 5 and the eccentric shaft portion 71 to vary the radius of oscillation of the orbiting scroll 5 and to support the orbiting scroll 5 to revolve. be.
 バランスウェイト81は、揺動運動により発生する揺動スクロール5の遠心力を相殺するために設けられている。バランスウェイト81は、回転中心に対して偏心させて設けられている。バランスウェイト81は、下部が円環状であり、上部において揺動スクロール5に働く遠心力の方向と反対側に略C字状のウェイト部81aが設けられている。スクロール圧縮機100は、バランスウェイト81によって第2渦巻体5bが第1渦巻体4bに押し付けられることを軽減することができる。バランスウェイト81は、例えばスライダ80の鍔に焼嵌め等により嵌合されている。 The balance weight 81 is provided to offset the centrifugal force of the orbiting scroll 5 generated by the orbiting motion. The balance weight 81 is provided eccentrically with respect to the center of rotation. The balance weight 81 has an annular lower portion, and a substantially C-shaped weight portion 81 a is provided on the upper portion on the side opposite to the direction of the centrifugal force acting on the orbiting scroll 5 . The scroll compressor 100 can reduce the pressing of the second spiral body 5 b against the first spiral body 4 b by the balance weight 81 . The balance weight 81 is fitted to the collar of the slider 80 by shrink fitting, for example.
 サブフレーム9は、金属製のフレームである。サブフレーム9には、図1に示すように、副軸受部90と、オイルポンプ91と、を備えている。副軸受部90は、サブフレーム9の中央に設けられたボールベアリングである。オイルポンプ91は、シェル1の油溜め18に貯留された潤滑油を吸い上げるためのポンプであり、副軸受部90の下側に設けられている。オイルポンプ91は、少なくとも一部が潤滑油に浸漬するように配置されている。 The subframe 9 is a metal frame. The sub-frame 9 includes a sub-bearing portion 90 and an oil pump 91, as shown in FIG. The sub-bearing portion 90 is a ball bearing provided in the center of the sub-frame 9 . The oil pump 91 is a pump for sucking up lubricating oil stored in the oil sump 18 of the shell 1 and is provided below the sub-bearing portion 90 . The oil pump 91 is arranged so that at least a portion of it is immersed in lubricating oil.
 潤滑油は、油溜め18に貯留されている。潤滑油は、オイルポンプ91で吸い上げられて、クランクシャフト7の通油路72を通り、圧縮機構部3等の機械的に接触するパーツ同士の摩耗低減、摺動部の温度調節、シール性を改善する。潤滑油としては、潤滑特性、電気絶縁性、安定性、冷媒溶解性、低温流動性などに優れるとともに、適度な粘度の油が好適である。潤滑油は、例えばナフテン系、ポリオールエステル(POE)、ポリビニールエーテル(PVE)、ポリアルキレングリコール(PAG)の油を使用することができる。 The lubricating oil is stored in the oil reservoir 18. The lubricating oil is sucked up by the oil pump 91, passes through the oil passage 72 of the crankshaft 7, and is used to reduce wear between mechanically contacting parts such as the compression mechanism 3, adjust the temperature of the sliding parts, and improve the sealing performance. Improve. As the lubricating oil, an oil that is excellent in lubricating properties, electrical insulation, stability, refrigerant solubility, low-temperature fluidity, etc. and has an appropriate viscosity is suitable. Lubricating oils that can be used include, for example, naphthenic, polyol ester (POE), polyvinyl ether (PVE), and polyalkylene glycol (PAG) oils.
 次に、図1~図3を参照しつつ、図4~図9を参照してメインフレーム2の吸入ポート26の特徴について説明する。図4は、実施の形態に係るスクロール圧縮機100の冷媒の流れを示した説明図である。図5は、実施の形態に係るスクロール圧縮機100のメインフレーム2の吸入ポート26を概略的に示した説明図である。図6は、実施の形態に係るスクロール圧縮機100の圧縮機構部3の横断面図である。図7は、実施の形態に係るスクロール圧縮機100の内部構造の縦断面であって、吸入ポート26を形成した部分を示した要部拡大図である。図8は、実施の形態に係るスクロール圧縮機100のメインフレーム2を下方側から見た説明図である。図9は、実施の形態に係るスクロール圧縮機100のメインフレーム2を下方側から見た説明図である。なお、図4では、黒色の矢印が冷媒の流れる方向を示し、白抜き矢印がクランクシャフト7の回転方向を示している。また、図5では、本実施の形態の特徴のみを記載し、その他の構成要素については省略している。 Next, while referring to FIGS. 1 to 3, the features of the intake port 26 of the main frame 2 will be described with reference to FIGS. 4 to 9. FIG. FIG. 4 is an explanatory diagram showing the flow of refrigerant in the scroll compressor 100 according to the embodiment. FIG. 5 is an explanatory diagram schematically showing the intake port 26 of the main frame 2 of the scroll compressor 100 according to the embodiment. FIG. 6 is a cross-sectional view of the compression mechanism section 3 of the scroll compressor 100 according to the embodiment. FIG. 7 is a vertical cross-sectional view of the internal structure of the scroll compressor 100 according to the embodiment, and is an enlarged view of a main part showing a portion where the suction port 26 is formed. FIG. 8 is an explanatory diagram of the main frame 2 of the scroll compressor 100 according to the embodiment viewed from below. FIG. 9 is an explanatory diagram of the main frame 2 of the scroll compressor 100 according to the embodiment viewed from below. In FIG. 4 , the black arrow indicates the direction in which the refrigerant flows, and the white arrow indicates the direction of rotation of the crankshaft 7 . Moreover, in FIG. 5, only the features of the present embodiment are described, and other constituent elements are omitted.
 冷媒は、図4に示した黒色の矢印のように、シェル1の側面に設けられた吸入管13からシェル1の内部に流入し、メインフレーム2の下部空間においてクランクシャフト7を中心に旋回しながら、メインフレーム2に設けられた吸入ポート26を通じて圧縮室30へ流入される。なお、吸入管13からシェル1の内部に流入した冷媒は、ボス部51の周りに時計回りと、反時計回りとに分かれることはあるが、その後、クランクシャフト7の回転方向(図4の白抜き矢印)と同じ旋回方向だけが残り、クランクシャフト7の回転方向(図4の白抜き矢印)である一方向の旋回となる。つまり、冷媒の旋回方向は、スクロール圧縮機100を何回起動しても、クランクシャフト7の回転方向に応じて決まる。 Refrigerant flows into the shell 1 through a suction pipe 13 provided on the side surface of the shell 1 as indicated by the black arrows in FIG. Meanwhile, it flows into the compression chamber 30 through the intake port 26 provided in the main frame 2 . Refrigerant flowing into the shell 1 from the suction pipe 13 may be divided into clockwise and counterclockwise directions around the boss portion 51. Only the same turning direction as the outline arrow) remains, and it turns in one direction, which is the rotation direction of the crankshaft 7 (the outline arrow in FIG. 4). That is, the whirling direction of the refrigerant is determined according to the rotating direction of the crankshaft 7 no matter how many times the scroll compressor 100 is started.
 ところで、スクロール圧縮機100では、メインフレーム2に形成された吸入ポート26が、クランクシャフト7の軸周りを旋回する方向に対して垂直方向に形成されていると、メインフレーム2の下部空間において旋回する冷媒が吸入ポート26に流入する際に、抵抗を受けやすく、冷媒の圧力損失を生じさせる。また、スクロール圧縮機100の高速回転化に伴い、冷媒循環量が大きくなり、冷媒の流速が大きくなると、さらに圧力損失が大きくなり、性能が低下するおそれがある。 By the way, in the scroll compressor 100 , if the intake port 26 formed in the main frame 2 is formed in a direction perpendicular to the direction in which the crankshaft 7 revolves around the axis, then revolving in the lower space of the main frame 2 will occur. When the refrigerant flows into the suction port 26, it is susceptible to resistance, causing pressure loss in the refrigerant. In addition, as the scroll compressor 100 rotates at a higher speed, the circulation amount of the refrigerant increases, and when the flow velocity of the refrigerant increases, the pressure loss increases, and there is a possibility that the performance of the scroll compressor 100 deteriorates.
 そこで、本実施の形態に係るスクロール圧縮機100の吸入ポート26は、図5に示すように、クランクシャフト7の軸方向に対し、冷媒の流れる方向に沿って傾斜させて形成されている。つまり、吸入ポート26は、クランクシャフト7の回転方向に合わせて傾斜させて形成されている。このため、吸入ポート26の入口26aと出口26bは、メインフレーム2の周方向に沿って位置がずれている。吸入ポート26は、傾斜角度が大きければ大きいほど冷媒の流れる方向に沿うことができるため好適であるが、メインフレーム2の構造、吸入ポート26の孔の形状、吸入ポート26のサイズ及び設置位置等により、傾斜角度が制約される。そのため、吸入ポート26の傾斜角度は、これらの制約を考慮して設定される。 Therefore, as shown in FIG. 5, the intake port 26 of the scroll compressor 100 according to the present embodiment is formed to be inclined with respect to the axial direction of the crankshaft 7 along the direction in which the refrigerant flows. That is, the intake port 26 is formed to be inclined in accordance with the rotational direction of the crankshaft 7 . Therefore, the inlet 26 a and the outlet 26 b of the suction port 26 are out of alignment along the circumferential direction of the main frame 2 . The larger the inclination angle of the suction port 26 is, the more suitable it can follow the direction in which the refrigerant flows. constrains the angle of inclination. Therefore, the inclination angle of the intake port 26 is set in consideration of these restrictions.
 また、吸入ポート26は、図6に示すように、メインフレーム2の径方向に対向させて2つ設けられている。一方の吸入ポート26の出口26bは、第1渦巻体4bの外端部4c(巻き終り部分)からメインフレーム2の外周縁に向かって延長した直線Xと、メインフレーム2の外周縁との交点Oを基点とし、第1渦巻体4bの外端部4cから離れた位置に形成されている。他方の吸入ポート26の出口26bは、第2渦巻体5bの外端部5c(巻き終り部分)からメインフレーム2の外周縁に向かって延長した直線Xと、メインフレーム2の外周縁との交点Oを基点とし、第2渦巻体5bの外端部5cから離れた位置に形成されている。 In addition, as shown in FIG. 6, two intake ports 26 are provided so as to face each other in the radial direction of the main frame 2 . The outlet 26b of one of the intake ports 26 is located between the outer edge of the main frame 2 and a straight line X1 extending from the outer end 4c (winding end portion) of the first spiral body 4b toward the outer edge of the main frame 2. With the intersection point O1 as a base point, it is formed at a position away from the outer end portion 4c of the first spiral body 4b. The outlet 26b of the other suction port 26 is located between the outer edge of the main frame 2 and a straight line X2 extending from the outer end 5c (winding end portion) of the second spiral body 5b toward the outer edge of the main frame 2. With the intersection point O2 as a base point, it is formed at a position away from the outer end 5c of the second spiral body 5b.
 吸入ポート26を構成する凹部27は、メインフレーム2の外壁面にねじれるような溝として形成される。そのため、吸入ポート26に取り込まれた冷媒は、遠心力が作用して、シェル1の内壁面に沿うように流れることになる。このとき、第1渦巻体4bの外端部4c又は第2渦巻体5bの外端部5cのすぐ近くに吸入ポート26の出口26bを配置してしまうと、吸入ポート26から流出した冷媒がシェル1の内壁面に沿って、第1渦巻体4b又は第2渦巻体5bの外側に流れてしまい、第1渦巻体4b又は第2渦巻体5bの渦内に冷媒がうまく取り込まれない。 A recessed portion 27 that constitutes the intake port 26 is formed as a twisted groove in the outer wall surface of the main frame 2 . Therefore, the refrigerant taken into the suction port 26 is caused to flow along the inner wall surface of the shell 1 by centrifugal force. At this time, if the outlet 26b of the suction port 26 is arranged in the immediate vicinity of the outer end 4c of the first spiral body 4b or the outer end 5c of the second spiral body 5b, the refrigerant flowing out of the suction port 26 will flow into the shell. 1, the refrigerant flows to the outside of the first spiral body 4b or the second spiral body 5b, and is not properly taken into the vortices of the first spiral body 4b or the second spiral body 5b.
 そこで、上記したように、吸入ポート26の出口26bは、図6に示した位置に配置して、第1渦巻体4bの外端部4c又は第2渦巻体5bの外端部5cから所定の距離を設けることが望ましい。これにより、吸入ポート26から流出した冷媒が、第1渦巻体4b又は第2渦巻体5bの外側に流れる事態を抑制でき、効率良く、第1渦巻体4b又は第2渦巻体5bの渦内に取り込まれる。但し、第1渦巻体4bの外端部4cから冷媒が取り込まれる吸入ポート26の出口26bは、第2渦巻体5bの外端部5cよりも第1渦巻体4bの外端部4cに近い位置に設けるものとする。同様に、第2渦巻体5bの外端部5cから冷媒が取り込まれる吸入ポート26の出口26bは、第1渦巻体4bの外端部4cよりも第2渦巻体5bの外端部5cに近い位置に設けるものとする。 Therefore, as described above, the outlet 26b of the suction port 26 is arranged at the position shown in FIG. Keeping distance is desirable. As a result, the refrigerant flowing out of the suction port 26 can be prevented from flowing to the outside of the first spiral body 4b or the second spiral body 5b, and can efficiently flow into the vortex of the first spiral body 4b or the second spiral body 5b. It is captured. However, the outlet 26b of the suction port 26 through which the refrigerant is taken in from the outer end 4c of the first spiral body 4b is positioned closer to the outer end 4c of the first spiral body 4b than to the outer end 5c of the second spiral body 5b. shall be provided in Similarly, the outlet 26b of the suction port 26, through which the refrigerant is taken in from the outer end 5c of the second spiral body 5b, is closer to the outer end 5c of the second spiral body 5b than to the outer end 4c of the first spiral body 4b. position.
 なお、吸入ポート26の出口26bは、クランクシャフト7が一回転して揺動スクロール5が揺動した場合に、その揺動運動によって吸入ポート26と第2渦巻体5bと重ならない位置とすることが望ましい。吸入ポート26の出口26bと第2渦巻体5bとが重なると、その瞬間に出口26bの開口面積が狭くなることによる圧損が発生するからである。 The outlet 26b of the intake port 26 should be positioned so that when the crankshaft 7 makes one revolution and the orbiting scroll 5 rocks, the intake port 26 and the second spiral body 5b do not overlap with each other due to the rocking motion. is desirable. This is because when the outlet 26b of the suction port 26 and the second spiral body 5b overlap, pressure loss occurs due to the narrow opening area of the outlet 26b at that moment.
 また、図7に示すように、シェル1は、内壁面から径方向に向かって突き出し、メインフレーム2の外周壁を支持する第2段部11bを有している。そのため、メインフレーム2の外周壁に形成された凹部27とシェル1の内壁面とで囲まれた空間を吸入ポート26とすると、第2段部11bの寸法だけ、冷媒が通過する入口26aの開口面積が出口26bの開口面積よりも小さくなる。冷媒が通過する入口26aの開口面積が、出口26bの開口面積よりも小さくなると、出口26b付近の冷媒の速度が僅かに低下し、出口26bに対して入口26aの圧損が大きくなる。そこで、吸入ポート26の入口26aは、吸入ポート26の出口26bよりも、径方向に突き出す第2段部11bの寸法だけ、径方向に大きく形成されている。このとき、凹部27の内面は、入口26aから出口26bに向かって外径側に傾斜している。よって、吸入ポート26の入口26aの開口面積と、吸入ポート26の出口26bの開口面積と、をほぼ同じ面積とすることができるので、該入口26aの圧損を抑制できる。なお、特に圧損等の問題がなければ、吸入ポート26の入口26aの開口面積と、吸入ポート26の出口26bの開口面積は異なっていてもよい。 Further, as shown in FIG. 7, the shell 1 has a second stepped portion 11b that protrudes radially from the inner wall surface and supports the outer peripheral wall of the main frame 2. As shown in FIG. Therefore, if the space surrounded by the recessed portion 27 formed in the outer peripheral wall of the main frame 2 and the inner wall surface of the shell 1 is defined as the suction port 26, the opening of the inlet 26a through which the refrigerant passes is equal to the dimension of the second stepped portion 11b. The area is smaller than the opening area of the outlet 26b. When the opening area of the inlet 26a through which the refrigerant passes becomes smaller than the opening area of the outlet 26b, the speed of the refrigerant near the outlet 26b decreases slightly, and the pressure loss of the inlet 26a increases with respect to the outlet 26b. Therefore, the inlet 26a of the suction port 26 is formed radially larger than the outlet 26b of the suction port 26 by the dimension of the second stepped portion 11b protruding in the radial direction. At this time, the inner surface of the recess 27 is inclined radially outward from the inlet 26a toward the outlet 26b. Therefore, since the opening area of the inlet 26a of the suction port 26 and the opening area of the outlet 26b of the suction port 26 can be made substantially the same, the pressure loss of the inlet 26a can be suppressed. The opening area of the inlet 26a of the suction port 26 and the opening area of the outlet 26b of the suction port 26 may be different if there is no problem such as pressure loss.
 また、図8に示すように、二つの吸入ポート26は、メインポート260と、メインポート260よりも開口面積が小さいサブポート261と、をしてもよい。吸入ポート26の開口面積を変える理由は、メインフレーム2に設けられた補強リブ28、シェル1に接続された吸入管13、その他の部材の配置関係により、開口面積の大きさが制約される場合があるからである。この場合、サブポート261は、メインポート260よりも吸入管13に近い位置に形成することが望ましい。更に、望ましくは、図9に示すように、メインポート260は、主軸受部22を間に挟んで吸入管13と対向させた位置に形成される。そして、サブポート261は、メインポート260と主軸受部22との中間であって、メインフレーム2の周方向に形成することが最適である。このように、サブポート261を吸入管13に近づけることで、サブポート261から冷媒が入りやすくなり、第1渦巻体4b及び第2渦巻体5bでの冷媒取込量を同程度とすることができる。 Also, as shown in FIG. 8, the two suction ports 26 may be a main port 260 and a sub-port 261 having an opening area smaller than that of the main port 260. The reason for changing the opening area of the suction port 26 is that the size of the opening area is restricted by the arrangement relationship of the reinforcing rib 28 provided on the main frame 2, the suction pipe 13 connected to the shell 1, and other members. because there is In this case, the sub-port 261 is desirably formed at a position closer to the suction pipe 13 than the main port 260 is. Further, desirably, as shown in FIG. 9, the main port 260 is formed at a position opposed to the intake pipe 13 with the main bearing portion 22 interposed therebetween. Optimally, the sub-port 261 is formed in the circumferential direction of the main frame 2 between the main port 260 and the main bearing portion 22 . By bringing the sub-port 261 closer to the suction pipe 13 in this way, the refrigerant can easily enter from the sub-port 261, and the amount of refrigerant taken in by the first spiral body 4b and the second spiral body 5b can be made approximately the same.
 つまり、吸入ポート26の入口26aと出口26bの穴形状及びサイズは、同じでもよいし、異なってもよい。また、吸入ポート26は、メインフレーム2の下部構造を考慮して、例えば入口26aがメインフレーム2の内径側又は外径側に位置し、出口26bが外径側又は内径側に位置するように、入口26aと出口26bをメインフレーム2の径方向にずらして形成してもよい。 That is, the hole shape and size of the inlet 26a and the outlet 26b of the suction port 26 may be the same or different. In addition, considering the lower structure of the main frame 2, the intake port 26 is arranged such that the inlet 26a is positioned on the inner diameter side or the outer diameter side of the main frame 2, and the outlet 26b is positioned on the outer diameter side or the inner diameter side. , the inlet 26a and the outlet 26b may be shifted in the radial direction of the main frame 2.
 また、吸入ポート26を傾斜させ、冷媒が吸入ポート26に流入する際の抵抗が減ることで、メインフレーム2の下部空間を旋回する冷媒の流速が上がり、冷媒とともに圧縮室30に取り込まれる冷凍機油の量が増加する可能性がある。そこで、吸入ポート26は、図5に示すように、内壁表面26cが細かい凹凸面状に形成し、吸入ポート26の内壁表面26cの面粗さを適度に粗い状態とすることが望ましい。吸入ポート26の内壁の面粗さについては、例えば、鋳造であれば鋳肌のまま、機械加工であれば中級の機械仕上げ面以上である。このようにすることで、この吸入ポート26の内壁の細かい凹凸面に、冷媒とともに圧縮室30に取り込まれる冷凍機油が付着し、取り込まれる冷凍機油の量を抑えることができる。 In addition, by tilting the suction port 26 and reducing the resistance when the refrigerant flows into the suction port 26, the flow velocity of the refrigerant swirling in the lower space of the main frame 2 increases, and the refrigerating machine oil is taken into the compression chamber 30 together with the refrigerant. may increase the amount of Therefore, as shown in FIG. 5, it is desirable that the inner wall surface 26c of the suction port 26 is formed in a fine uneven surface so that the surface roughness of the inner wall surface 26c of the suction port 26 is moderately rough. As for the surface roughness of the inner wall of the suction port 26, for example, if it is cast, it is the casting surface, and if it is machined, it is a medium-grade machined surface or higher. By doing so, the refrigerating machine oil taken into the compression chamber 30 together with the refrigerant adheres to the fine uneven surface of the inner wall of the suction port 26, and the amount of refrigerating machine oil taken in can be suppressed.
 因みに、インジェクション冷媒を圧縮室30に注入する場合には、固定スクロール4の第1基板4aにおいて、図6に示したA部に対応する位置にインジェクショ用の流入孔を設けることで、吸入ポート26から流入した冷媒と共に、インジェクション冷媒を効率よく、渦内に取り込むことができる。 Incidentally, when injecting the injection refrigerant into the compression chamber 30, the first substrate 4a of the fixed scroll 4 is provided with an inflow hole for injection at a position corresponding to the portion A shown in FIG. The injection coolant can be efficiently taken into the vortex together with the coolant that has flowed in from 26 .
 なお、図10は、実施の形態に係るスクロール圧縮機100の変形例であって、圧縮機構部3の横断面図である。吸入ポート26は、図1~図9に示した構成に限定されない。吸入ポート26は、図10に示すように、メインフレーム2の平坦面20の外端側において、メインフレーム2の下部空間と上部空間とを連通させるように、上下方向に貫通した貫通孔として形成した構成でもよい。 Note that FIG. 10 is a cross-sectional view of the compression mechanism section 3, which is a modification of the scroll compressor 100 according to the embodiment. The suction port 26 is not limited to the configuration shown in FIGS. 1-9. As shown in FIG. 10, the intake port 26 is formed as a through hole extending vertically through the outer end side of the flat surface 20 of the main frame 2 so as to communicate between the lower space and the upper space of the main frame 2. It may be configured as
 この場合、各吸入ポート26は、出口26bの位置が圧縮室30へ取り込まれる冷媒の取込み位置Bに対向させて設けられている。出口26bからメインフレーム2の上部空間に流入した冷媒が圧縮室30に取り込まれる位置Bは、揺動スクロール5の第2渦巻体5bの外端部5c(巻き終り部分)と、固定スクロール4の第1渦巻体4bの外端部4c(巻き終り部分)の2箇所である。吸入ポート26の出口26bを、圧縮室30へ取り込まれる冷媒の取込み位置Aに対向させて設けることで、吸入ポート26から出た冷媒が、最短距離で圧縮室30に取り込まれるため、冷媒が受ける抵抗を抑制できる。なお、本実施の形態の吸入ポート26は、一例として、平面視において長円形状である。長円の長軸方向は、メインフレーム2の外周の接線方向と同方向であり、冷媒が圧縮室30に取り込まれる位置Aを長軸の延長線が通過するように構成するとよい。更に、吸入ポート26の出口26bは、クランクシャフト7が一回転して揺動スクロール5が揺動した場合に、その揺動運動によって吸入ポート26と第2渦巻体5bと重ならない位置とするとよい。吸入ポート26の出口26bと第2渦巻体5bとが重なると、その瞬間に開口面積が狭くなることによる圧損が発生するからである。 In this case, each suction port 26 is provided so that the position of the outlet 26 b faces the refrigerant intake position B that is taken into the compression chamber 30 . The position B where the refrigerant that has flowed into the upper space of the main frame 2 from the outlet 26b is taken into the compression chamber 30 is the outer end portion 5c (winding end portion) of the second spiral body 5b of the orbiting scroll 5 and the end portion of the fixed scroll 4. There are two points at the outer end portion 4c (winding end portion) of the first spiral body 4b. By providing the outlet 26b of the intake port 26 so as to face the intake position A of the refrigerant taken into the compression chamber 30, the refrigerant coming out of the intake port 26 is taken into the compression chamber 30 in the shortest distance, so that the refrigerant is received. Can suppress resistance. In addition, the intake port 26 of the present embodiment has, as an example, an oval shape in a plan view. The long axis direction of the ellipse is the same as the tangential direction of the outer periphery of the main frame 2 , and it is preferable that the extension of the long axis passes through the position A where the refrigerant is taken into the compression chamber 30 . Furthermore, the outlet 26b of the intake port 26 should preferably be positioned so that when the crankshaft 7 makes one revolution and the orbiting scroll 5 rocks, the intake port 26 and the second spiral body 5b do not overlap with each other due to the rocking motion. . This is because when the outlet 26b of the suction port 26 and the second spiral body 5b overlap, pressure loss occurs due to the narrow opening area at that moment.
 また、図10に示した吸入ポート26の入口26aと出口26bの穴形状及びサイズは、同じでもよいし、異なってもよい。また、吸入ポート26は、メインフレーム2の下部構造を考慮して、例えば入口26aがメインフレーム2の内径側又は外径側に位置し、出口26bが外径側又は内径側に位置するように、入口26aと出口26bをメインフレーム2の径方向にずらして形成してもよい。また、吸入ポート26は、図5に示すように、内壁表面26cが細かい凹凸面状に形成し、吸入ポート26の内壁表面26cの面粗さを適度に粗い状態としてもよい。 Also, the hole shape and size of the inlet 26a and the outlet 26b of the suction port 26 shown in FIG. 10 may be the same or different. In addition, considering the lower structure of the main frame 2, the intake port 26 is arranged such that the inlet 26a is positioned on the inner diameter side or the outer diameter side of the main frame 2, and the outlet 26b is positioned on the outer diameter side or the inner diameter side. , the inlet 26a and the outlet 26b may be shifted in the radial direction of the main frame 2. Further, as shown in FIG. 5, the suction port 26 may have an inner wall surface 26c formed in a fine uneven surface so that the surface roughness of the inner wall surface 26c of the suction port 26 is moderately rough.
 以上のように、本実施の形態に係るスクロール圧縮機100は、密閉空間を有するシェル1と、シェル1の内壁面に固定されたメインフレーム2と、第1渦巻体4bが設けられた第1基板4aを有する固定スクロール4と、メインフレーム2に揺動自在に支持され、第1渦巻体4bと噛み合う第2渦巻体5bが設けられた第2基板5aを有し、固定スクロール4との間に冷媒を圧縮する圧縮室30を形成する揺動スクロール5と、揺動スクロール5に回転駆動力を伝達するクランクシャフト7と、を備えている。メインフレーム2には、該メインフレーム2の下部空間においてクランクシャフト7の周りを旋回する冷媒を、圧縮室30内に供給するための吸入ポート26を有している。吸入ポート26は、クランクシャフト7の軸方向に対し、メインフレーム2の下部空間から上部空間へ冷媒の流れる方向に沿って傾斜させて形成されている。 As described above, the scroll compressor 100 according to the present embodiment includes a shell 1 having a sealed space, a main frame 2 fixed to the inner wall surface of the shell 1, and a first spiral body 4b provided with a first spiral body 4b. It has a fixed scroll 4 having a substrate 4a, and a second substrate 5a which is swingably supported by the main frame 2 and provided with a second spiral body 5b which meshes with the first spiral body 4b. and a crankshaft 7 for transmitting rotational driving force to the orbiting scroll 5 . The main frame 2 has a suction port 26 for supplying the refrigerant swirling around the crankshaft 7 in the lower space of the main frame 2 into the compression chamber 30 . The intake port 26 is formed to be inclined with respect to the axial direction of the crankshaft 7 along the direction in which the coolant flows from the lower space to the upper space of the main frame 2 .
 本実施の形態に係るスクロール圧縮機100は、吸入ポート26が、クランクシャフト7の軸方向に対し、冷媒の流れる方向、つまりクランクシャフト7の軸周りを冷媒が旋回する方向に沿って傾斜させて形成されているので、メインフレーム2の下部空間において旋回する冷媒が吸入ポート26に流入する際に、冷媒が受ける抵抗を低減させることができる。よって、冷媒循環量が大きくなり、冷媒の流速が大きくなっても、冷媒の圧力損失の増加を低減でき、性能低下を抑制することができる。 In the scroll compressor 100 according to the present embodiment, the intake port 26 is inclined with respect to the axial direction of the crankshaft 7 along the direction in which the refrigerant flows, that is, along the direction in which the refrigerant revolves around the axis of the crankshaft 7. As a result, when the refrigerant swirling in the lower space of the main frame 2 flows into the suction port 26, the resistance received by the refrigerant can be reduced. Therefore, even if the circulation amount of the refrigerant increases and the flow velocity of the refrigerant increases, the increase in the pressure loss of the refrigerant can be reduced, and the deterioration of the performance can be suppressed.
 また、吸入ポート26の出口26bは、第1渦巻体4bの外端部4cからメインフレーム2の外周縁に向かって延長した直線Xと、メインフレーム2の外周縁との交点Oを基点とし、第1渦巻体4bの外端部4cから離れた位置、及び第2渦巻体5bの外端部5cからメインフレーム2の外周縁に向かって延長した直線Xと、メインフレーム2の外周縁との交点Oを基点とし、第2渦巻体5bの外端部5cから離れた位置のうち、一方又は双方に形成されている。これにより、吸入ポート26の出口26bは、第1渦巻体4bの外端部4c又は第2渦巻体5bの外端部5cから一定の距離を設けることができる。よって、スクロール圧縮機100は、吸入ポート26から流出した冷媒が、第1渦巻体4b又は第2渦巻体5bの外側に流れる事態を抑制でき、効率良く、第1渦巻体4b又は第2渦巻体5bの渦内に取り込まれる。 The outlet 26b of the suction port 26 has a base point at the intersection O1 between the straight line X1 extending from the outer end 4c of the first spiral body 4b toward the outer peripheral edge of the main frame 2 and the outer peripheral edge of the main frame 2 . , a straight line X2 extending from a position away from the outer end portion 4c of the first spiral body 4b and the outer end portion 5c of the second spiral body 5b toward the outer peripheral edge of the main frame 2, and It is formed at one or both of the positions separated from the outer end portion 5c of the second spiral body 5b with the point of intersection O2 with the peripheral edge as a base point. Thereby, the outlet 26b of the intake port 26 can be provided at a constant distance from the outer end 4c of the first spiral body 4b or the outer end 5c of the second spiral body 5b. Therefore, the scroll compressor 100 can prevent the refrigerant flowing out of the suction port 26 from flowing to the outside of the first spiral body 4b or the second spiral body 5b. It is entrapped in the vortex of 5b.
 吸入ポート26は、メインポート260と、メインポート260よりも開口面積が小さいサブポート261と、を有している。これにより、メインフレーム2に設けられた補強リブ28、シェル1に接続された吸入管13、その他の部材の配置関係によって、吸入ポート26の開口面積の大きさが制約される場合に対応することができる。 The intake port 26 has a main port 260 and a sub-port 261 having an opening area smaller than that of the main port 260 . Accordingly, it is possible to cope with the case where the size of the opening area of the suction port 26 is restricted by the arrangement relationship of the reinforcing rib 28 provided on the main frame 2, the suction pipe 13 connected to the shell 1, and other members. can be done.
 本実施の形態に係るスクロール圧縮機100は、シェル1に接続され、シェル1の外部から内部に冷媒を吸入する吸入管13を更に備えている。サブポート261は、メインポート260よりも吸入管13に近い位置に形成されている。つまり、サブポート261を吸入管13に近づけることで、サブポート261から冷媒が入りやすくなり、第1渦巻体4b及び第2渦巻体5bでの冷媒取込量を同程度とすることができる。 The scroll compressor 100 according to the present embodiment further includes a suction pipe 13 that is connected to the shell 1 and sucks refrigerant from the outside of the shell 1 into the inside. The sub-port 261 is formed at a position closer to the intake pipe 13 than the main port 260 is. That is, by bringing the sub-port 261 closer to the suction pipe 13, the refrigerant can easily enter from the sub-port 261, and the amount of refrigerant taken in by the first spiral body 4b and the second spiral body 5b can be made approximately the same.
 また、メインフレーム2は、中央部分にクランクシャフト7を支持する主軸受部22を有している。メインポート260は、主軸受部22を間に挟んで吸入管13と対向させた位置に形成されている。サブポート261は、メインポート260と主軸受部22との中間であって、メインフレーム2の周方向に形成されている。つまり、サブポート261を吸入管13に近づけることで、サブポート261から冷媒が入りやすくなり、第1渦巻体4b及び第2渦巻体5bでの冷媒取込量を同程度とすることができる。 In addition, the main frame 2 has a main bearing portion 22 that supports the crankshaft 7 in its central portion. The main port 260 is formed at a position facing the intake pipe 13 with the main bearing portion 22 interposed therebetween. The sub-port 261 is formed between the main port 260 and the main bearing portion 22 in the circumferential direction of the main frame 2 . That is, by bringing the sub-port 261 closer to the suction pipe 13, the refrigerant can easily enter from the sub-port 261, and the amount of refrigerant taken in by the first spiral body 4b and the second spiral body 5b can be made approximately the same.
 シェル1は、内壁面から径方向に向かって突き出し、メインフレーム2を支持する第2段部11bを有している。吸入ポート26の入口26aは、吸入ポート26の出口26bよりも、径方向に突き出す第2段部11bの寸法だけ、径方向に大きく形成されている。本実施の形態に係るスクロール圧縮機100は、第2段部11bを有する構成であっても、吸入ポート26の入口26aの開口面積と、吸入ポート26の出口26bの開口面積と、をほぼ同じ面積とすることができるので、該入口26aの圧損を抑制できる。 The shell 1 has a second step portion 11b that protrudes radially from the inner wall surface and supports the main frame 2. The inlet 26a of the suction port 26 is formed radially larger than the outlet 26b of the suction port 26 by the dimension of the second stepped portion 11b protruding in the radial direction. In the scroll compressor 100 according to the present embodiment, the opening area of the inlet 26a of the suction port 26 and the opening area of the outlet 26b of the suction port 26 are substantially the same even when the second step portion 11b is provided. Since the area can be reduced, the pressure loss of the inlet 26a can be suppressed.
 吸入ポート26は、内壁表面26cが細かい凹凸面状に形成されている。これにより、吸入ポート26の内壁の細かい凹凸面に、冷媒とともに圧縮室30に取り込まれる冷凍機油が付着し、取り込まれる冷凍機油の量を抑えることができる。 The suction port 26 has an inner wall surface 26c formed in a fine uneven surface. As a result, the refrigerating machine oil taken into the compression chamber 30 together with the refrigerant adheres to the fine uneven surface of the inner wall of the suction port 26, and the amount of refrigerating machine oil taken in can be suppressed.
 以上に、スクロール圧縮機100を実施の形態に基づいて説明したが、スクロール圧縮機100は上述した実施の形態の構成に限定されない。例えば、図示したスクロール圧縮機100の内部構成は、上述した内容に限定されるものではなく、他の構成要素を含んでもよい。また、吸入ポート26は、図示した2つに限定されず、1つでもよいし、3つ以上設けてもよい。要するに、スクロール圧縮機100は、その技術的思想を逸脱しない範囲において、当業者が通常に行う設計変更及び応用のバリエーションの範囲を含むものである。 Although the scroll compressor 100 has been described above based on the embodiment, the scroll compressor 100 is not limited to the configuration of the embodiment described above. For example, the illustrated internal configuration of the scroll compressor 100 is not limited to the contents described above, and may include other components. Further, the number of suction ports 26 is not limited to two as shown in the figure, and may be one or three or more. In short, the scroll compressor 100 includes a range of design changes and application variations that are normally made by those skilled in the art within a range that does not deviate from the technical idea.
 1 シェル、1a メインシェル、1b アッパーシェル、1c ロアシェル、1d 固定台、2 メインフレーム、3 圧縮機構部、4 固定スクロール、4a 第1基板、4b 第1渦巻体、4c 外端部、5 揺動スクロール、5a 第2基板、5b 第2渦巻体、5c 外端部、6 駆動機構部、6a ステータ、6b ロータ、7 クランクシャフト、8 ブッシュ、9 サブフレーム、10a 第1内壁面、10b 第2内壁面、10c 第3内壁面、11a 第1段部、11b 第2段部、13 吸入管、14 吐出管、15 チャンバー、15a 吐出孔、16 高圧空間、17 吐出弁、18 油溜め、19 給電部、19a カバー、19b 給電端子、19c 配線、20 平坦面、21 収容部、21a オルダム収容部、21b ブッシュ収容部、21c 第1オルダム溝、22 主軸受部、23 返油孔、24 返油管、25 スラストプレート、25a 切欠き部、26 吸入ポート、26a 入口、26b 出口、26c 内壁表面、27 凹部、28 補強リブ、30 圧縮室、40 吐出ポート、41 チップシール、51 ボス部、52 チップシール、53 第2オルダム溝、54 オルダムリング、54a リング部、54b 第1キー部、54c 第2キー部、70 主軸部、71 偏心軸部、72 通油路、80 スライダ、81 バランスウェイト、81a ウェイト部、90 副軸受部、91 オイルポンプ、100 スクロール圧縮機、260 メインポート、261 サブポート。 1 shell, 1a main shell, 1b upper shell, 1c lower shell, 1d fixed base, 2 main frame, 3 compression mechanism, 4 fixed scroll, 4a first substrate, 4b first spiral, 4c outer end, 5 rocking Scroll 5a Second substrate 5b Second spiral body 5c Outer end 6 Drive mechanism 6a Stator 6b Rotor 7 Crankshaft 8 Bushing 9 Subframe 10a First inner wall surface 10b Second inner wall Wall surface, 10c Third inner wall surface, 11a First stepped portion, 11b Second stepped portion, 13 Suction pipe, 14 Discharge pipe, 15 Chamber, 15a Discharge hole, 16 High pressure space, 17 Discharge valve, 18 Oil reservoir, 19 Power supply section , 19a cover, 19b power supply terminal, 19c wiring, 20 flat surface, 21 accommodating portion, 21a Oldham accommodating portion, 21b bush accommodating portion, 21c first Oldham groove, 22 main bearing portion, 23 oil return hole, 24 oil return pipe, 25 Thrust plate, 25a notch, 26 suction port, 26a inlet, 26b outlet, 26c inner wall surface, 27 recess, 28 reinforcing rib, 30 compression chamber, 40 discharge port, 41 tip seal, 51 boss, 52 tip seal, 53 Second Oldham groove, 54 Oldham ring, 54a ring portion, 54b first key portion, 54c second key portion, 70 main shaft portion, 71 eccentric shaft portion, 72 oil passage, 80 slider, 81 balance weight, 81a weight portion, 90 auxiliary bearing, 91 oil pump, 100 scroll compressor, 260 main port, 261 sub port.

Claims (11)

  1.  密閉空間を有するシェルと、
     前記シェルの内壁面に固定されたメインフレームと、
     第1渦巻体が設けられた第1基板を有する固定スクロールと、
     前記メインフレームに揺動自在に支持され、前記第1渦巻体と噛み合う第2渦巻体が設けられた第2基板を有し、前記固定スクロールと共に冷媒を圧縮する圧縮室を形成する揺動スクロールと、
     前記揺動スクロールに回転駆動力を伝達するクランクシャフトと、を備え、
     前記メインフレームには、該メインフレームの下部空間において前記クランクシャフトの周りを旋回する冷媒を、前記圧縮室内に供給するための吸入ポートを有しており、
     前記吸入ポートは、前記クランクシャフトの軸方向に対し、前記メインフレームの前記下部空間から上部空間へ冷媒の流れる方向に沿って傾斜させて形成されている、スクロール圧縮機。
    a shell having an enclosed space;
    a main frame fixed to the inner wall surface of the shell;
    a fixed scroll having a first substrate provided with a first spiral body;
    an orbiting scroll that is swingably supported by the main frame, has a second substrate provided with a second spiral body that meshes with the first spiral body, and forms a compression chamber that compresses a refrigerant together with the fixed scroll; ,
    a crankshaft that transmits rotational driving force to the orbiting scroll,
    The main frame has an intake port for supplying the refrigerant swirling around the crankshaft in the lower space of the main frame into the compression chamber,
    The scroll compressor, wherein the intake port is inclined with respect to the axial direction of the crankshaft along the direction in which the refrigerant flows from the lower space to the upper space of the main frame.
  2.  前記メインフレームの外周壁には、前記メインフレームの前記下部空間と前記上部空間とを連通させる凹部が、前記メインフレームの周方向に沿って形成されており、
     前記吸入ポートは、前記凹部と前記シェルの内壁面とで囲まれて形成されている、請求項1に記載のスクロール圧縮機。
    The outer peripheral wall of the main frame is formed with a recess that communicates the lower space and the upper space of the main frame along the circumferential direction of the main frame,
    2. The scroll compressor according to claim 1, wherein said intake port is surrounded by said recess and an inner wall surface of said shell.
  3.  前記吸入ポートの入口と出口は、前記メインフレームの周方向に位置をずらして形成されている、請求項1又は2に記載のスクロール圧縮機。 The scroll compressor according to claim 1 or 2, wherein the inlet and the outlet of said intake port are formed with their positions shifted in the circumferential direction of said main frame.
  4.  前記吸入ポートは、前記クランクシャフトの回転方向に合わせて傾斜させて形成されている、請求項1~3のいずれか一項に記載のスクロール圧縮機。 The scroll compressor according to any one of claims 1 to 3, wherein the suction port is formed to be inclined in accordance with the rotational direction of the crankshaft.
  5.  前記吸入ポートの出口は、前記第1渦巻体の外端部から前記メインフレームの外周縁に向かって延長した直線と、前記メインフレームの外周縁との交点を基点とし、前記第1渦巻体の外端部から離れた位置、及び前記第2渦巻体の外端部から前記メインフレームの外周縁に向かって延長した直線と、前記メインフレームの外周縁との交点を基点とし、前記第2渦巻体の外端部から離れた位置のうち、一方又は双方に形成されている、請求項1~4のいずれか一項に記載のスクロール圧縮機。 The outlet of the intake port has a base point at the intersection of a straight line extending from the outer end of the first spiral body toward the outer peripheral edge of the main frame and the outer peripheral edge of the main frame. A position away from the outer end and a straight line extending from the outer end of the second spiral body toward the outer peripheral edge of the main frame intersects with the outer peripheral edge of the main frame as a base point, and the second spiral The scroll compressor according to any one of claims 1 to 4, wherein the scroll compressor is formed at one or both of the positions remote from the outer end of the body.
  6.  前記吸入ポートは、メインポートと、前記メインポートよりも開口面積が小さいサブポートと、を有している、請求項1~5のいずれか一項に記載のスクロール圧縮機。 The scroll compressor according to any one of claims 1 to 5, wherein the suction port has a main port and a sub-port having an opening area smaller than that of the main port.
  7.  前記シェルに接続され、前記シェルの外部から内部に冷媒を吸入する吸入管を更に備えており、
     前記サブポートは、前記メインポートよりも前記吸入管に近い位置に形成されている、請求項6に記載のスクロール圧縮機。
    further comprising a suction pipe that is connected to the shell and sucks refrigerant from the outside of the shell to the inside;
    7. The scroll compressor according to claim 6, wherein said sub-port is formed at a position closer to said intake pipe than said main port.
  8.  前記メインフレームは、中央部分に前記クランクシャフトを支持する軸受部を有しており、
     前記メインポートは、前記軸受部を間に挟んで前記吸入管と対向させた位置に形成されており、
     前記サブポートは、前記メインポートと前記軸受部との中間であって、前記メインフレームの周方向に形成されている、請求項7に記載のスクロール圧縮機。
    The main frame has a bearing portion that supports the crankshaft in a central portion,
    The main port is formed at a position facing the suction pipe with the bearing interposed therebetween,
    8. The scroll compressor according to claim 7, wherein said sub-port is intermediate between said main port and said bearing portion and is formed in the circumferential direction of said main frame.
  9.  前記シェルは、内壁面から径方向に向かって突き出し、前記メインフレームを支持する段部を有しており、
     前記吸入ポートの入口は、前記吸入ポートの出口よりも、径方向に突き出す前記段部の寸法だけ、径方向に大きく形成されている、請求項1~8のいずれか一項に記載のスクロール圧縮機。
    The shell has a stepped portion that protrudes radially from an inner wall surface and supports the main frame,
    The scroll compression according to any one of claims 1 to 8, wherein the inlet of the suction port is formed radially larger than the outlet of the suction port by the dimension of the radially projecting stepped portion. machine.
  10.  前記吸入ポートは、内壁表面が細かい凹凸面状に形成されている、請求項1~9のいずれか一項に記載のスクロール圧縮機。 The scroll compressor according to any one of claims 1 to 9, wherein the suction port has an inner wall surface formed in a fine uneven surface.
  11.  前記吸入ポートは、前記内壁表面の面粗さが、鋳肌、又は中級の機械仕上げ面以上である、請求項10に記載のスクロール圧縮機。 11. The scroll compressor according to claim 10, wherein the suction port has a surface roughness of the inner wall surface equal to or higher than a casting surface or a medium grade machine finish surface.
PCT/JP2021/048198 2021-12-24 2021-12-24 Scroll compressor WO2023119625A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/048198 WO2023119625A1 (en) 2021-12-24 2021-12-24 Scroll compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/048198 WO2023119625A1 (en) 2021-12-24 2021-12-24 Scroll compressor

Publications (1)

Publication Number Publication Date
WO2023119625A1 true WO2023119625A1 (en) 2023-06-29

Family

ID=86901813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/048198 WO2023119625A1 (en) 2021-12-24 2021-12-24 Scroll compressor

Country Status (1)

Country Link
WO (1) WO2023119625A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57212389A (en) * 1981-06-22 1982-12-27 Hitachi Ltd Enclosed scroll compressor
JPH02181084A (en) * 1988-12-29 1990-07-13 Daikin Ind Ltd Scroll type fluid device
JP2000337273A (en) * 1999-05-31 2000-12-05 Mitsubishi Electric Corp Scroll compressor
WO2021084607A1 (en) * 2019-10-29 2021-05-06 三菱電機株式会社 Scroll compressor and refrigeration cycle device
WO2021186499A1 (en) * 2020-03-16 2021-09-23 三菱電機株式会社 Compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57212389A (en) * 1981-06-22 1982-12-27 Hitachi Ltd Enclosed scroll compressor
JPH02181084A (en) * 1988-12-29 1990-07-13 Daikin Ind Ltd Scroll type fluid device
JP2000337273A (en) * 1999-05-31 2000-12-05 Mitsubishi Electric Corp Scroll compressor
WO2021084607A1 (en) * 2019-10-29 2021-05-06 三菱電機株式会社 Scroll compressor and refrigeration cycle device
WO2021186499A1 (en) * 2020-03-16 2021-09-23 三菱電機株式会社 Compressor

Similar Documents

Publication Publication Date Title
JP6444540B2 (en) Scroll compressor and refrigeration cycle apparatus
WO2017168672A1 (en) Scroll compressor and refrigeration cycle device
JP7118177B2 (en) scroll compressor
WO2023119625A1 (en) Scroll compressor
CN112005012B (en) Scroll compressor having a scroll compressor with a suction chamber
JP7076537B2 (en) Scroll compressor
WO2021245754A1 (en) Scroll compressor and refrigeration cycle device
WO2023276020A1 (en) Scroll compressor
JP7313570B2 (en) scroll compressor
CN115038871A (en) Scroll compressor having a discharge port for discharging refrigerant from a discharge chamber
WO2023079667A1 (en) Scroll compressor and refrigeration cycle device provided with scroll compressor
CN114072580B (en) Scroll compressor having a rotor with a rotor shaft having a rotor shaft with a
CN111989493A (en) Scroll compressor having a plurality of scroll members
JP7055245B2 (en) Scroll compressor and method for manufacturing the scroll compressor
WO2022097299A1 (en) Scroll compressor
EP4321756A1 (en) Scroll compressor
WO2023100304A1 (en) Scroll compressor
KR102548470B1 (en) Compressor having oldham's ring
WO2024116308A1 (en) Compressor and refrigeration cycle device
WO2018150525A1 (en) Scroll compressor
WO2021014641A1 (en) Scroll compressor
JP6429943B2 (en) Scroll compressor
JPH1182340A (en) Horizontal scroll compressor
KR20190129371A (en) Compressor having oldham's ring
JPWO2019207784A1 (en) Scroll compressor and refrigeration cycle equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969056

Country of ref document: EP

Kind code of ref document: A1