WO2021245754A1 - Scroll compressor and refrigeration cycle device - Google Patents

Scroll compressor and refrigeration cycle device Download PDF

Info

Publication number
WO2021245754A1
WO2021245754A1 PCT/JP2020/021625 JP2020021625W WO2021245754A1 WO 2021245754 A1 WO2021245754 A1 WO 2021245754A1 JP 2020021625 W JP2020021625 W JP 2020021625W WO 2021245754 A1 WO2021245754 A1 WO 2021245754A1
Authority
WO
WIPO (PCT)
Prior art keywords
swing
hole
scroll
lubricating oil
base plate
Prior art date
Application number
PCT/JP2020/021625
Other languages
French (fr)
Japanese (ja)
Inventor
修也 福田
浩二 増本
友寿 松井
祐司 ▲高▼村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/021625 priority Critical patent/WO2021245754A1/en
Publication of WO2021245754A1 publication Critical patent/WO2021245754A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents

Definitions

  • the present disclosure relates to a scroll compressor and a refrigerating cycle device used in an air conditioner, a refrigerator, a refrigerator, or the like.
  • the conventional scroll compressor includes a fixed scroll in which a fixed spiral protrusion is formed on a fixed base plate, and a swing scroll in which a swing spiral protrusion is formed on a rocking base plate.
  • the fixed scroll and the swing scroll are combined so that the spiral protrusions mesh with each other to form a compression chamber. Then, when the oscillating scroll oscillates with respect to the fixed scroll, the refrigerant is sucked into the compression chamber from the radial outside of the spiral protrusion portion, and the refrigerant sucked into the compression chamber is compressed and the spiral protrusion portion. It is discharged from the discharge port opened in the center.
  • This type of scroll compressor has a structure in which lubricating oil is supplied to the inside of the compression chamber in order to improve the lubricity between the swing scroll and the fixed scroll and the sealing property of the compression chamber.
  • Patent Document 1 a through hole extending radially outward from the central portion of the swing base plate and opening on the surface of the swing base plate on the spiral protrusion forming side is formed in the swing base plate of the swing scroll. There is.
  • the through hole is opened at a position on the outer side in the radial direction on the surface of the rocking base plate on the side where the spiral protrusion is formed, and the lubricating oil is supplied to the inside of the compression chamber through this opening.
  • Patent Document 1 the opening on the downstream side of the through hole for supplying the lubricating oil to the compression chamber is opened on the radial outer side of the rocking base plate. Therefore, the lubricating oil flowing out from the through hole is sucked into the compression chamber together with the refrigerant from the radial outside of the spiral protrusion portion, and spreads throughout the compression chamber. That is, the lubricating oil flowing out from the through hole is not supplied aiming at an effective portion for improving the sealing property of the compression chamber. Therefore, it is doubtful whether the expected improvement in sealing performance can be obtained.
  • the present disclosure has been made to solve the above-mentioned problems, and an object of the present disclosure is to provide a scroll compressor and a refrigerating cycle device capable of improving the sealing property of a compression chamber by using a lubricating oil. ..
  • the scroll compressor according to the present disclosure has a fixed base plate and a fixed scroll having a fixed spiral protrusion formed on the fixed base plate, and a swing base plate and a swing spiral protrusion formed on the swing base plate.
  • a oscillating scroll in which the oscillating spiral protrusion is combined with the fixed vortex protrusion to form a compression chamber, a rotating shaft connected to the oscillating scroll and having an oil passage through which lubricating oil flows, and a oscillating spiral protrusion. It is equipped with a swing-side tip seal inserted into the swing-side groove formed at the tip of the portion, and the swing scroll supplies lubricating oil flowing out of the oil passage of the rotating shaft to the swing-side groove.
  • a through hole is provided, and the swing-side chip seal is pressed toward the fixed base plate side by the lubricating oil supplied from the through-hole to the swing-side groove portion.
  • the lubricating oil flowing out from the oil passage of the rotating shaft is supplied to the swinging gutter through a through hole provided in the swinging scroll, and is arranged in the swinging gutter by the pressure of the lubricating oil.
  • the rocking side tip seal is pressed against the fixed base plate of the fixed scroll.
  • the lubricating oil is concentrated and supplied to the rocking side tip seal through the through hole with the aim of pressing the rocking side tip seal against the fixed base plate of the fixed scroll, so the lubricating oil is effectively used. Therefore, the sealing performance of the compression chamber can be improved.
  • FIG. It is a front view which showed the appearance of the scroll compressor which concerns on Embodiment 1.
  • FIG. It is a schematic vertical sectional view which showed the internal structure of the scroll compressor which concerns on Embodiment 1.
  • FIG. It is a figure which shows the outline of the structure of the compression mechanism part of Embodiment 1.
  • FIG. It is a schematic cross-sectional view of the compression mechanism part of the scroll compressor which concerns on Embodiment 1.
  • FIG. It is an enlarged view of the part surrounded by the dotted line A of FIG.
  • FIG. It is a figure which shows the modification 1 of the scroll compressor which concerns on Embodiment 1.
  • FIG. It is a figure which shows the modification 2 of the scroll compressor which concerns on Embodiment 1.
  • FIG. It is a figure which shows the modification 3 of the scroll compressor which concerns on Embodiment 1.
  • FIG. It is a figure which shows the refrigerant circuit of the refrigerating cycle apparatus which concerns on Embodiment 2.
  • FIG. 1 is a front view showing the appearance of the scroll compressor according to the first embodiment.
  • FIG. 2 is a schematic vertical sectional view showing the internal structure of the scroll compressor according to the first embodiment.
  • FIG. 3 is a schematic vertical sectional view showing the internal structure of the compression chamber of the scroll compressor according to the first embodiment.
  • FIG. 3 is a diagram showing an outline of the configuration of the compression mechanism portion of the first embodiment, and there is a part that does not strictly correspond to FIG. 2.
  • FIG. 4 is a schematic cross-sectional view of the compression mechanism portion of the scroll compressor according to the first embodiment.
  • the scroll compressor 100 according to the first embodiment is one of the components of a refrigerating cycle used in, for example, a refrigerator, a freezer, an air conditioner, a refrigerating device, a water heater, and the like.
  • the scroll compressor 100 sucks in the refrigerant circulating in the refrigeration cycle, compresses it, and discharges it in a high temperature and high pressure state.
  • the scroll compressor 100 includes a shell 1 forming an outer shell, a main frame 2 fixed to the inner wall surface of the shell 1, a compression mechanism unit 3 for compressing a refrigerant, and a compression mechanism. It is provided with an electric motor 6 for driving the unit 3.
  • the scroll compressor 100 further includes a rotating shaft 7 for connecting the compression mechanism unit 3 and the electric motor 6.
  • the direction in which the rotating shaft 7 extends is referred to as an axial direction
  • the direction perpendicular to the axial direction is referred to as a radial direction.
  • the shell 1 is a conductive member such as metal, and is formed in a cylindrical shape having a closed space. Inside the shell 1, a main frame 2, a compression mechanism unit 3, an electric motor 6, and a rotating shaft 7 are housed.
  • the shell 1 is composed of a cylindrical main shell 1a, a substantially hemispherical upper shell 1b that closes the upper surface opening of the main shell 1a, and a substantially hemispherical lower shell 1c that closes the lower surface opening of the main shell 1a. ..
  • the upper shell 1b and the lower shell 1c are respectively fixed to the main shell 1a by welding or the like.
  • the shell 1 is supported by a fixing base 1d fixed to the lower shell 1c.
  • the inner wall surface of the main shell 1a is formed below the large-diameter first inner wall surface 10a formed at the upper end portion and the first inner wall surface 10a, and is larger than the inner diameter of the first inner wall surface 10a. It has a second inner wall surface 10b having a small diameter.
  • the step portion 11 formed by the lower end of the first inner wall surface 10a and the upper end of the second inner wall surface 10b functions as a positioning portion of the main frame 2.
  • the main shell 1a is provided with a suction pipe 13 for taking in a refrigerant inside the shell 1 and a feeding unit 19 for supplying power to the scroll compressor 100. ..
  • the suction pipe 13 is connected to a hole formed in the side wall of the main shell 1a by brazing or the like with a part inserted.
  • the suction pipe 13 communicates with the low pressure space 16b in the shell 1.
  • the power feeding unit 19 includes a cover 19a, a power feeding terminal 19b, and a wiring 19c.
  • the power feeding terminal 19b is a metal member, one end thereof is arranged so as to be surrounded by the cover 19a, and the other end is arranged inside the main shell 1a.
  • One end of the wiring 19c is connected to the power feeding terminal 19b, and the other end is connected to the motor 6.
  • a discharge pipe 14 for discharging the compressed refrigerant from the shell 1 is connected to the upper shell 1b.
  • the discharge pipe 14 is connected to a hole formed in the upper part of the upper shell 1b by brazing or the like with a part inserted.
  • an oil reservoir 18 for storing lubricating oil is provided on the inner bottom portion of the shell 1.
  • the main frame 2 is a cylindrical metal frame that gradually tapers downward, and supports the swing scroll 5 swingably.
  • the central portion of the main frame 2 is a shaft hole through which the rotating shaft 7 passes.
  • the outer peripheral surface of the main frame 2 is fixed to the inner wall surface of the main shell 1a by, for example, shrink fitting.
  • An annular flat surface 20 is formed on the upper surface of the main frame 2.
  • a ring-shaped thrust plate 25 made of a steel plate-based material such as valve steel is arranged on the flat surface 20.
  • the thrust plate 25 functions as a thrust sliding surface of the main frame 2 and supports the thrust load of the compression mechanism portion 3.
  • the accommodating portion 21 is formed inside the main frame 2.
  • the main frame 2 includes a main bearing portion 22 that supports the rotating shaft 7.
  • the accommodating portion 21 is formed on the upper side of the main frame 2.
  • the main bearing portion 22 is provided on the lower side of the main frame 2.
  • the accommodating portion 21 is formed so that the inner diameter gradually decreases downward.
  • the stepped portion located on the flat surface 20 side is the oldham accommodating portion 21a
  • the stepped portion located on the main bearing portion 22 side is the bush accommodating portion 21b.
  • a pair of key grooves formed so as to face each other with the shaft hole of the main frame 2 interposed therebetween are provided in a part of the Oldam accommodating portion 21a and the flat surface 20.
  • the main frame 2 is formed with an oil return hole 23 penetrating inside and outside.
  • the oil return hole 23 communicates with the bush accommodating portion 21b.
  • An oil return pipe 24 is inserted and fixed in the oil return hole 23.
  • the oil return pipe 24 is provided to return the lubricating oil accumulated in the accommodating portion 21 to the oil reservoir 18 provided in the lower shell 1c.
  • the oil return hole 23 and the oil return pipe 24 are not limited to one, and a plurality of oil return holes 23 may be provided.
  • the fixed scroll 4 has a disk-shaped fixed base plate 4a and a fixed spiral protrusion portion 4b formed on the lower surface of the fixed base plate 4a.
  • the swing scroll 5 has a disk-shaped swing base plate 5a and a swing spiral protrusion 5b formed on the upper surface of the swing base plate 5a and meshing with the fixed spiral protrusion 4b.
  • the swing scroll 5 is installed so as to be eccentric with respect to the fixed scroll 4.
  • the fixed spiral protrusion 4b of the fixed scroll 4 and the swing spiral protrusion 5b of the swing scroll 5 are combined to form a compression chamber 30 for compressing the refrigerant.
  • the fixed scroll 4 is made of a metal such as cast iron.
  • the fixed scroll 4 is fixed by fastening the fixed base plate 4a to the upper part of the main frame 2, for example, by bolting.
  • a discharge port 40 for discharging a compressed, high-temperature and high-pressure refrigerant is formed in the central portion of the fixed base plate 4a.
  • a chamber 15 having a discharge hole 15a communicating with the discharge port 40 is arranged on the upper surface of the fixed scroll 4.
  • the chamber 15 is provided with a discharge valve 17 screwed to open and close the discharge hole 15a according to the pressure of the refrigerant.
  • the discharge valve 17 opens the discharge hole 15a when the refrigerant in the compression chamber 30 communicating with the discharge port 40 reaches a predetermined pressure.
  • the compressed high-temperature and high-pressure refrigerant is discharged from the discharge port 40 into the high-pressure space 16a above the fixed scroll 4, passes through the discharge pipe 14, and is discharged to the outside of the shell 1.
  • a fixed side groove portion 42 is formed at the tip of the fixed spiral protrusion portion 4b along the spiral direction, and the fixed side groove portion 42 is formed with, for example, a fixed side tip made of hard plastic.
  • the seal 41 is inserted.
  • the radial width of the fixed-side groove portion 42 (left-right direction in FIG. 3) is larger than the radial width of the fixed-side chip seal 41.
  • the swing scroll 5 is made of a metal such as aluminum. As shown in FIG. 2, the swing scroll 5 revolves with respect to the fixed scroll 4 without rotating with respect to the fixed scroll 4 by the old dam ring 54 for blocking the rotation.
  • the surface (lower surface in the case of the illustrated example) on the side of the rocking base plate 5a on which the swinging spiral protrusion 5b is not formed acts as a swinging scroll thrust bearing surface.
  • a cylindrical boss portion 51 is provided at the center of the swing scroll thrust bearing surface.
  • a swing bearing that rotatably supports the slider 80 of the bush 8 described later is provided on the inner peripheral surface of the boss portion 51.
  • the plain bearing is a so-called journal bearing.
  • the oscillating bearing is provided so that the central axis is parallel to the central axis of the rotating shaft 7.
  • the oscillating scroll 5 revolves on the thrust sliding surface of the main frame 2 by rotating the eccentric shaft portion 71, which will be described later, of the rotating shaft 7 inserted into the boss portion 51.
  • a swing gutter 55 is formed at the tip of the swing spiral protrusion 5b along the spiral direction, and the swing gutter 55 is made of, for example, hard plastic.
  • the rocking side tip seal 52 is movably inserted in the axial direction (vertical direction in FIG. 3).
  • the radial width of the swing-side groove portion 55 (left-right direction in FIG. 3) is larger than the radial width of the swing-side tip seal 52.
  • the swing scroll thrust bearing surface is provided with a pair of old dam grooves 53 formed so as to face each other with the boss portion 51 interposed therebetween.
  • the old dam groove 53 is an oval key groove.
  • the pair of Oldham grooves 53 are arranged so that the lines connecting them are orthogonal to the lines connecting the key grooves of the main frame 2.
  • the oldam ring 54 includes a ring portion 54a and a key portion 54b.
  • the ring portion 54a is annular and is provided in the old dam accommodating portion 21a of the main frame 2.
  • Two key portions 54b are provided on the lower surface and the upper surface of the ring portion 54a.
  • the key portion 54b provided on the lower surface of the ring portion 54a is housed in the key groove of the main frame 2, and the key portion 54b provided on the upper surface of the ring portion 54a is housed in the old dam groove 53 of the swing scroll 5. Has been done.
  • the position of the swing spiral protrusion portion 5b of the swing scroll 5 in the rotational direction is determined. That is, the old dam ring 54 positions the swing scroll 5 with respect to the main frame 2, and determines the phase of the swing spiral protrusion 5b with respect to the main frame 2.
  • the compression chamber 30 is composed of a plurality of compression chambers 30 whose volume decreases from the outside to the inside in the radial direction of the scroll.
  • a halogenated hydrocarbon having a carbon double bond for example, a halogenated hydrocarbon having a carbon double bond, a halogenated hydrocarbon having no carbon double bond, a natural refrigerant, or a mixture containing them can be used in the composition.
  • the halogenated hydrocarbons having no carbon double bond are R32 (CH 2 F 2 ), R 41 (CH 3 F), R125 (C 2 HF 3 ), R134a (CH 2 FCF 2 ), R143a (CF 3 CH).
  • HFC refrigerants such as R410A (R32 / R125) or R407C (R32 / R125 / R134a) can be mentioned.
  • An example is a refrigerant mixed with R32 (difluoromethane), R41, etc. represented by CH 2 F 2.
  • Natural refrigerants are ammonia (NH 3 ), carbon dioxide (CO 2 ), propane (C 3 H 8 ), propylene (C 3 H 6 ), butane (C 4 H 10 ) or isobutane (CH (CH 3 ) 3 ). And so on.
  • the refrigerant is preferably a low GWP refrigerant having an ozone depletion potential of zero.
  • the electric motor 6 drives the compression mechanism unit 3 connected via the rotating shaft 7.
  • the electric motor 6 has an annular stator 6a fixedly supported on the inner wall surface of the shell 1 by shrink fitting or the like, and a rotor 6b rotatably attached to face the inner side surface of the stator 6a.
  • the stator 6a has a structure in which windings are wound around an iron core formed by laminating a plurality of electrical steel sheets, for example, via an insulating layer, and is formed in a ring shape in a plan view.
  • the rotor 6b has a structure in which a permanent magnet is built in an iron core formed by laminating a plurality of electromagnetic steel sheets, and has a through hole penetrating in the vertical direction in the center.
  • the rotating shaft 7 is a metal rod-shaped member.
  • the rotating shaft 7 includes a spindle portion 70 and an eccentric shaft portion 71.
  • the spindle portion 70 is an axis constituting the main portion of the rotating shaft 7, and is arranged in the shell 1 so that the central axis thereof coincides with the central axis of the main shell 1a.
  • the spindle portion 70 is fixed to the through hole at the center of the rotor 6b by shrink fitting or the like.
  • the spindle portion 70 is rotated by a main bearing portion 22 provided in the central portion of the main frame 2 and an auxiliary bearing portion 90 provided in the central portion of the subframe 9 fixed to the lower part of the shell 1 by welding or the like. It is supported freely.
  • the eccentric shaft portion 71 is provided at the upper end portion of the spindle portion 70 so that the central shaft thereof is eccentric with respect to the central axis of the spindle portion 70.
  • the eccentric shaft portion 71 is connected to the swing scroll 5 via a bush 8 which is a metal member such as iron, and is rotatably supported by the boss portion 51 of the swing scroll 5.
  • the rotary shaft 7 rotates with the rotation of the rotor 6b, and the swing scroll 5 is swiveled by the eccentric shaft portion 71.
  • an oil passage 72 is provided along the axial direction and penetrates to both end faces in the axial direction of the rotating shaft 7.
  • the bush 8 includes a slider 80 and a balance weight 81a.
  • the slider 80 is a tubular member on which a collar is formed, and is rotatably inserted into the boss portion 51.
  • An eccentric shaft portion 71 is inserted inside the slider 80. That is, the slider 80 is interposed between the swing scroll 5 and the eccentric shaft portion 71, the swing radius of the swing scroll 5 is variable, and the swing scroll 5 is revolved in order to revolve the swing scroll 5. Is to be supported.
  • the balance weight 81a is provided to cancel the centrifugal force of the swing scroll 5 generated by the swing motion.
  • the balance weight 81a is annular and is formed in a substantially C shape when viewed in a plane on the side opposite to the direction of the centrifugal force acting on the swing scroll 5.
  • the scroll compressor 100 can reduce the pressure of the swinging spiral protrusion 5b against the fixed spiral protrusion 4b by the balance weight 81a.
  • the balance weight 81a is fixed to the collar of the slider 80, for example, by shrink fitting or the like.
  • the subframe 9 is a metal frame. As shown in FIG. 2, the subframe 9 is provided with an auxiliary bearing portion 90 and an oil pump 91.
  • the sub-bearing portion 90 is a ball bearing provided in the center of the sub-frame 9.
  • the oil pump 91 is a pump for sucking up the lubricating oil stored in the oil reservoir 18 of the shell 1, and is provided under the auxiliary bearing portion 90.
  • Lubricating oil is stored in the oil reservoir 18. Lubricating oil is sucked up by the oil pump 91, passes through the oil passage 72 of the rotating shaft 7, and reduces wear between mechanically contacting parts such as the compression mechanism portion 3, temperature control of the sliding portion, and sealing performance. Make improvements.
  • As the lubricating oil an oil having excellent lubrication characteristics, electrical insulation, stability, refrigerant solubility, low temperature fluidity and the like, and having an appropriate viscosity is suitable.
  • the lubricating oil for example, naphthenic, polyol ester (POE), polyvinyl ether (PVE) or polyalkylene glycol (PAG) oil can be used.
  • the refrigerant is sucked into the shell 1 through the suction pipe 13 and is taken into the compression chamber 30.
  • the compression chamber 30 that has taken in the refrigerant reduces the volume while moving from the outer peripheral portion toward the center along with the rocking motion of the rocking scroll 5, and compresses the refrigerant.
  • the refrigerant compressed in the compression chamber 30 is discharged from the discharge port 40 provided in the fixed scroll 4 into the high-pressure space 16a, and is discharged from the discharge pipe 14 to the outside of the shell 1.
  • lubricating oil is supplied to each sliding portion of the compression mechanism portion 3. Specifically, when the rotary shaft 7 is rotationally driven, the lubricating oil stored in the oil reservoir 18 of the shell 1 is pumped up by the oil pump 91. The pumped lubricating oil flows in through the opening on the upstream side of the oil passage 72 formed in the rotary shaft 7, and flows out through the opening on the downstream side. The lubricating oil that has flowed out from the opening on the downstream side of the oil passage 72 flows into the inner space of the boss portion 51. A part of the lubricating oil that has flowed into the inner space of the boss portion 51 lubricates the swing bearing.
  • a part of the lubricating oil that lubricates the oscillating bearing is supplied to the thrust plate 25 and then flows into the compression mechanism unit 3 to seal the compression chamber 30.
  • the rest of the lubricating oil that lubricated the oscillating bearing lubricates the spindle portion and the like and returns to the oil reservoir 18.
  • the fixed side tip seal 41 and the rocking side tip seal 52 are also pressed to the outside in the radial direction due to this pressure difference. Therefore, as shown in FIG. 3, the fixed-side chip seal 41 is radially outward in the fixed-side groove portion 42, and the radial outer side surface 41a of the fixed-side chip seal 41 is the same as the fixed-side groove portion 42. It is in contact with the side surface on the directional side. Similarly, the swing-side tip seal 52 is radially outward in the swing-side groove portion 55, and the radial outer side surface 52a of the swing-side tip seal 52 is on the same direction side of the swing-side groove portion 55. It is in contact with the side surface.
  • the compression chamber 30 is sealed by pressing the fixed side chip seal 41 and the rocking side chip seal 52 against the opposing base plates, and the leakage of the compressed refrigerant between the adjacent compression chambers is suppressed. Will be done.
  • the first embodiment has a structure in which the lubricating oil is efficiently used to further enhance the sealing property of the compression chamber 30.
  • this structure will be described with reference to FIG.
  • the swing scroll 5 is formed with a through hole 58 that communicates the space inside the boss portion 51 with the swing side groove portion 55 formed in the swing spiral protrusion portion 5b.
  • the through hole 58 has a vertical hole 57 provided in the swing spiral protrusion 5b and a horizontal hole 56 provided in the swing base plate 5a.
  • two vertical holes 57 are provided symmetrically about the eccentric shaft portion 71 on the radial outer portion of the swing spiral protrusion portion 5b.
  • the vertical hole 57 communicates with the swing gutter 55.
  • the horizontal hole 56 is provided corresponding to each vertical hole 57, and communicates the vertical hole 57 with the space inside the boss portion 51.
  • two horizontal holes 56 are provided symmetrically about the eccentric shaft portion 71 as shown in FIGS. 3 and 4.
  • the lateral hole 56 is opened on the outer peripheral surface of the rocking base plate 5a, and this opening is closed by the set screw 59.
  • FIG. 5 is an enlarged view of the portion surrounded by the dotted line A in FIG.
  • the dotted arrow indicates the flow of lubricating oil.
  • the lubricating oil that has flowed out from the opening on the downstream side of the oil passage 72 flows into the space inside the boss portion 51.
  • a part of the lubricating oil that has flowed into the space inside the boss portion 51 passes through the horizontal hole 56 and the vertical hole 57 of the through hole 58 as shown by the dotted line arrow in FIG. It is supplied to 52. Since the set screw 59 (see FIG. 3) is provided in the radially outer opening of the horizontal hole 56, the lubricating oil that has flowed into the horizontal hole 56 does not flow out from this opening but flows into the vertical hole 57. ..
  • the rocking side chip seal 52 By supplying the lubricating oil to the rocking side chip seal 52 in this way, the pressure in the direction of the solid arrow in FIG. 5 acts on the rocking side chip seal 52. Due to this pressure, the swing-side tip seal 52 rises from the swing-side groove portion 55 and is pressed against the fixed base plate 4a.
  • a gap 303 having a size equal to or less than the thickness of the swing-side tip seal 52 is provided between the tip surface of the swing spiral protrusion 5b and the fixed base plate 4a.
  • the lubricating oil supplied to the swing-side groove portion 55 and causing the swing-side tip seal 52 to rise is the radial inner side surface 52b of the swing-side tip seal 52 and the side surface in the same direction of the swing-side groove portion 55. It is ejected into the compression chamber 301 from the gap between the two.
  • the swing scroll 5 since the swing scroll 5 is provided with the through hole 58, the lubricating oil flowing out from the oil passage 72 of the rotating shaft 7 flows through the swing hole 58 to the swing gutter portion. It is concentrated and supplied to the rocking side chip seal 52 of 55.
  • the hydraulic pressure of the lubricating oil supplied to the swing-side tip seal 52 acts as a force for pressing the swing-side tip seal 52 against the fixed base plate 4a.
  • the rocking side tip seal 52 is attached to the fixed base plate 4a.
  • the pressing force can be increased and the sealing performance can be improved.
  • two vertical holes 57 of the through hole 58 are provided at symmetrical positions about the eccentric shaft portion 71, a well-balanced pressing force is applied to the swing-side tip seal 52. Can act.
  • the flow velocity of the lubricating oil ejected from the swing gutter 55 to the compression chamber 301 can be adjusted by the diameter of the vertical hole 57.
  • the smaller the diameter of the vertical hole 57 the faster the flow velocity of the lubricating oil ejected from the vertical hole 57 through the swing gutter portion 55.
  • the force for pressing the rocking side tip seal 52 against the fixing base plate 4a becomes stronger, and the sealing property can be improved.
  • the vertical hole 57 is formed in the radial outer portion of the swinging spiral protrusion 5b, and the reason and the more detailed position of the vertical hole 57 will be described below. Since the space inside the boss portion 51 is a part of the low pressure space 16b, the pressure in the space inside the boss portion 51 is lower than the pressure in the compression chamber 30. The pressure in the compression chamber 30 increases as it approaches the vicinity of the center of the swing scroll 5. Therefore, the pressure difference between the pressure of the compression chamber 30 near the center of the swing scroll 5 and the pressure of the space inside the boss portion 51 is the pressure of the compression chamber 30 outside the radial direction of the swing scroll 5 and the pressure inside the boss portion 51. It is higher than the pressure difference with the pressure in the space.
  • the pressure of the compression chamber (hereinafter referred to as the communication compression chamber) through which the vertical hole 57 communicates through the swing gutter 55 is increased. It becomes higher than the pressure of the space in the boss portion 51 with a large difference. Then, the lubricating oil in the communication compression chamber may flow back toward the space inside the boss portion 51 via the through hole 58. Therefore, the position of the vertical hole 57 is set to the radial outer portion in the oscillating spiral protrusion 5b so as not to cause the backflow of the lubricating oil.
  • the position of the vertical hole 57 is set so that the pressure in the communication compression chamber is lower than the pressure of the lubricating oil supplied from the vertical hole 57 to the rocking side chip seal 52. do it.
  • the pressure difference between the pressure in the communication compression chamber and the pressure in the boss portion 51 becomes smaller as the position of the vertical hole 57 is radially outward from the center of the spiral. Therefore, when setting the position of the vertical hole 57, a compression chamber 30 having a pressure smaller than the pressure of the lubricating oil ejected from the vertical hole 57 to the communication compression chamber via the swing side groove portion 55 is specified and specified. It may be outside the compression chamber 30 in the radial direction.
  • FIG. 4 shows an example in which a vertical hole 57 is provided at a winding end portion of the swing spiral protrusion 5b and a position symmetrical with respect to the eccentric shaft portion 71 at the winding end portion.
  • the number of vertical holes 57 is set to two in FIG. 4, the number of vertical holes 57 is not limited to two. Any number of vertical holes 57 may be provided in the swing scroll 5 as long as the backflow of the lubricating oil is not caused. As the number of vertical holes 57 increases, the amount of lubricating oil supplied to the inside of the compression chamber 30 increases, so that the sealing property is improved. However, if the number of vertical holes 57 is too large, the amount of lubricating oil supplied to the inside of the compression chamber 30 increases too much, and the amount of lubricating oil taken out from the scroll compressor 100 increases.
  • the number of the vertical holes 57 may be set to an appropriate number in consideration of the amount of lubricating oil and the processing cost.
  • the sealing property of the rocking side tip seal 52 depends on the amount of lubricating oil sucked up by the oil pump 91. Specifically, the larger the amount of lubricating oil, the better the sealing property, and the smaller the amount of lubricating oil, the lower the sealing property. Therefore, when the operating frequency of the scroll compressor 100 is low and the amount of lubricating oil sucked up is reduced, the diameter of the vertical hole 57 of the through hole 58 is reduced. Specifically, for example, the diameter of the vertical hole 57 is made smaller than the diameter of the horizontal hole 56.
  • the lubricating oil in the vertical hole 57 is configured to be ejected into the compression chamber 30 through the swing gutter portion 55. Therefore, even if the operating frequency is high and a large amount of lubricating oil is supplied into the vertical hole 57, the lubricating oil is ejected into the compression chamber 30 through the swing gutter portion 55 and does not stay in the vertical hole 57.
  • the rocking gutter 52 does not rise from the rocking gutter 55, the following problems may occur when the operating frequency is high. .. That is, when the operating frequency is high, the amount of lubricating oil supplied into the vertical hole 57 increases, and the lubricating oil stays in the vertical hole 57 so that the lubricating oil can be applied to the fixing base plate 4a of the rocking side tip seal 52. The pressing force may be excessive. In this case, the swing-side tip seal 52 is worn.
  • the rocking side tip seal 52 floats up from the rocking side groove portion 55, and the lubricating oil in the vertical hole 57 is ejected to the compression chamber 30 through the rocking side groove portion 55. There is no concern about wear of the rocking side chip seal 52.
  • the present disclosure also includes a configuration in which the lubricating oil in the vertical hole 57 is not ejected into the compression chamber 30 through the swing gutter portion 55.
  • the scroll compressor 100 of the present disclosure is not limited to the structure shown in FIGS. 1 to 5, and can be modified as follows, for example, within the range not deviating from the gist of the present disclosure. Is.
  • FIG. 6 is a diagram showing a modification 1 of the scroll compressor according to the first embodiment.
  • FIG. 7 is a diagram showing a modification 2 of the scroll compressor according to the first embodiment.
  • the position of the vertical hole 57 in the thickness direction of the swinging spiral protrusion 5b was the central portion in the thickness direction of the swinging spiral protrusion 5b in FIG. 3 and the like above, but as shown in FIG. 6, it deviates from the central portion. May be.
  • FIG. 6 was the central portion in the thickness direction of the swinging spiral protrusion 5b in FIG. 3 and the like above, but as shown in FIG. 6, it deviates from the central portion. May be.
  • FIG. 6 shows an example in which a vertical hole 57 is provided at a position on the radial side of the central portion, in other words, on the side where the rocking side tip seal 52 approaches during operation.
  • a vertical hole 57 is provided at a position on the radial side of the central portion, in other words, on the side where the rocking side tip seal 52 approaches during operation.
  • the vertical hole 57 may be provided so as to be inclined with respect to the axial direction.
  • a vertical hole 57 is provided so as to incline outward in the radial direction from the upstream side to the downstream side of the vertical hole 57, in other words, to incline toward the swinging side tip seal 52 during operation.
  • the facing surface 52c of the swing-side tip seal 52 with the vertical hole 57 is a vertical surface perpendicular to the axial direction of the vertical hole 57.
  • FIG. 8 is a diagram showing a modification 3 of the scroll compressor according to the first embodiment.
  • a lubrication hole 62 is further formed in the rocking base plate 5a.
  • the lubrication hole 62 is a hole for supplying lubricating oil to the thrust surface of the swing scroll 5, and has a conventional configuration.
  • the thrust plate 25 is arranged on the thrust surface of the swing scroll 5, the lubrication hole 62 specifically supplies the lubricating oil to the thrust plate 25.
  • the refueling hole 62 has a horizontal hole 60 and an oblique hole 61.
  • the through hole 58 of the first embodiment When the through hole 58 of the first embodiment is applied to the scroll compressor provided with such a refueling hole 62, the through hole 58 is provided independently of the refueling hole 62 as shown in FIG. prepare. If the horizontal hole 60 of the refueling hole 62 is shared with the horizontal hole 56 of the through hole 58, the lubricating oil flowing into the horizontal hole 60 will flow preferentially to the diagonal hole 61 and will flow to the vertical hole 57 of the through hole 58. This is because it disappears.
  • the scroll compressor 100 of the first embodiment has a fixed scroll 4 having a fixed base plate 4a and a fixed spiral protrusion 4b formed on the fixed base plate 4a, a swing base plate 5a, and a rocking base plate 4a. It has a swinging spiral protrusion 5b formed on the moving table plate 5a, and includes a swinging scroll 5 in which the swinging spiral protrusion 5b is combined with the fixed spiral protrusion 4b to form a compression chamber 30.
  • the scroll compressor 100 is further connected to the swing scroll 5 and inserted into a rotary shaft 7 having an oil passage 72 through which lubricating oil flows and a swing gutter portion 55 formed at the tip of the swing spiral protrusion 5b.
  • the rocking side chip seal 52 is provided.
  • the swing scroll 5 is provided with a through hole 58 for supplying the lubricating oil flowing out from the oil passage 72 of the rotary shaft 7 to the swing side groove portion 55.
  • the swing-side tip seal 52 is pressed toward the fixed base plate 4a by the lubricating oil supplied from the through hole 58 to the swing-side groove portion 55.
  • the lubricating oil is concentrated and supplied to the rocking side chip seal 52 through the through hole 58 with the aim of pressing the rocking side chip seal 52 against the fixed base plate 4a of the fixed scroll 4, so that lubrication is performed.
  • the oil can be effectively used to improve the sealing performance of the compression chamber 30.
  • the scroll compressor 100 of the first embodiment is provided on the surface of the rocking base plate 5a on the side opposite to the surface on which the rocking spiral protrusion 5b is formed, and the eccentric shaft portion 71 of the rotating shaft 7 is inserted.
  • a cylindrical boss portion 51 is provided. The space inside the boss portion 51 communicates with the oil passage 72 of the rotating shaft 7.
  • the through hole 58 is a vertical hole 57 formed in the swing spiral protrusion portion 5b and communicating with the swing side groove portion 55, and a horizontal hole formed in the swing base plate 5a and communicating the vertical hole 57 and the space in the boss portion 51. Has 56.
  • the through hole 58 for supplying the lubricating oil flowing out from the oil passage 72 of the rotary shaft 7 to the swing gutter portion 55 is formed in the vertical hole 57 and the swing base plate 5a formed in the swing spiral protrusion portion 5b. It can be configured by the formed lateral hole 56.
  • the swing-side chip seal 52 is movably arranged in the swing-side groove portion 55 in the axial direction of the rotary shaft 7, and the swing-side chip seal 52 is provided with the lubricating oil supplied from the vertical hole 57 to the swing-side chip seal 52.
  • the pressure of the communicating compression chamber which is the compression chamber 30 through which the vertical hole 57 communicates, is lower than the pressure of the lubricating oil supplied from the vertical hole 57 to the rocking side chip seal 52. , The position of the vertical hole 57 is set.
  • rocking side tip seal 52 can be stably pressed against the fixed base plate 4a of the fixed scroll 4 by the lubricating oil.
  • the vertical hole 57 is provided in the swinging spiral protrusion 5b closer to the outer side in the radial direction than the central portion in the thickness direction.
  • the vertical hole 57 is provided in the swinging spiral protrusion 5b so as to be inclined toward the outside in the radial direction from the upstream side to the downstream side of the flow of the lubricating oil.
  • a lubrication hole 62 for supplying the lubricating oil flowing out from the oil passage 72 of the rotating shaft 7 to the thrust surface of the rocking scroll 5 is formed independently of the through hole 58.
  • Two vertical holes 57 are provided at symmetrical positions about the eccentric shaft portion 71, and two horizontal holes 56 are provided corresponding to each vertical hole 57.
  • the pressing force can be applied to the swinging side tip seal 52 in a well-balanced manner.
  • Embodiment 2 relates to a refrigeration cycle apparatus provided with the scroll compressor 100 of the first embodiment.
  • FIG. 9 is a diagram showing a refrigerant circuit of the refrigeration cycle device according to the second embodiment.
  • the refrigerating cycle device 110 includes the scroll compressor 100 of the first embodiment, a condenser 111, an expansion valve 112 as a depressurizing device, and an evaporator 113.
  • the gas refrigerant discharged from the scroll compressor 100 flows into the condenser 111, exchanges heat with the air passing through the condenser 111, and flows out as a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant flowing out of the condenser 111 is depressurized by the expansion valve 112 to become a low-pressure gas-liquid two-phase refrigerant, and flows into the evaporator 113.
  • the low-pressure gas-liquid two-phase refrigerant flowing into the evaporator 113 exchanges heat with the air passing through the evaporator 113 to become a low-pressure gas refrigerant, and is sucked into
  • the refrigerating cycle device 110 configured in this way is provided with the scroll compressor 100 of the first embodiment, so that the amount of lubricating oil discharged from the scroll compressor 100 together with the refrigerant at high speed can be adjusted to an appropriate amount. Therefore, the inconvenience that the heat exchange efficiency is lowered in the condenser 111 can be suppressed, and the refrigeration cycle device 110 having high heat exchange efficiency can be configured.
  • the refrigerating cycle device 110 can be applied to an air conditioner, a refrigerator, a refrigerator, or the like.

Abstract

This scroll compressor comprises: a fixed scroll which has a fixed base plate and a fixed spiral protruding part formed on the fixed base plate; and an oscillating scroll which has an oscillating base plate and an oscillating spiral protruding part formed on the oscillating base plate, the oscillating spiral protruding part forming, in combination with the fixed spiral protruding part, a compression chamber. The scroll compressor further comprises a rotating shaft which is linked to the oscillating scroll and has an oil passage through which a lubricating oil flows, and an oscillation-side tip seal which is inserted into an oscillation-side groove formed in the tip end section of the oscillating spiral protruding part. The oscillating scroll is provided with a through hole for supplying, to the oscillation-side groove, the lubricating oil flowing out from the oil passage of the rotating shaft. The oscillation-side tip seal is pressed to the fixed base plate side by the lubricating oil supplied from the through hole to the oscillation-side groove.

Description

スクロール圧縮機及び冷凍サイクル装置Scroll compressor and refrigeration cycle device
 本開示は、空気調和機、冷蔵庫又は冷凍機等に用いられるスクロール圧縮機及び冷凍サイクル装置に関するものである。 The present disclosure relates to a scroll compressor and a refrigerating cycle device used in an air conditioner, a refrigerator, a refrigerator, or the like.
 従来のスクロール圧縮機は、固定台板上に固定渦巻突起部が形成された固定スクロールと、揺動台板上に揺動渦巻突起部が形成された揺動スクロールとを備えている。固定スクロールと揺動スクロールとは、それぞれの渦巻突起部が噛み合うように組み合わされて圧縮室を構成している。そして、揺動スクロールが固定スクロールに対して揺動運動することにより、冷媒が渦巻突起部の径方向外側から圧縮室へ吸入され、圧縮室へ吸入された冷媒は、圧縮されて渦巻突起部の中心部に開口した吐出口から吐出される。この種のスクロール圧縮機では、揺動スクロールと固定スクロールとの潤滑性及び圧縮室のシール性を向上するため、圧縮室の内部に潤滑油が供給される構造となっている。 The conventional scroll compressor includes a fixed scroll in which a fixed spiral protrusion is formed on a fixed base plate, and a swing scroll in which a swing spiral protrusion is formed on a rocking base plate. The fixed scroll and the swing scroll are combined so that the spiral protrusions mesh with each other to form a compression chamber. Then, when the oscillating scroll oscillates with respect to the fixed scroll, the refrigerant is sucked into the compression chamber from the radial outside of the spiral protrusion portion, and the refrigerant sucked into the compression chamber is compressed and the spiral protrusion portion. It is discharged from the discharge port opened in the center. This type of scroll compressor has a structure in which lubricating oil is supplied to the inside of the compression chamber in order to improve the lubricity between the swing scroll and the fixed scroll and the sealing property of the compression chamber.
 特許文献1では、揺動スクロールの揺動台板に、揺動台板の中央部から径方向外側に延びて揺動台板の渦巻突起部形成側の面に開口する貫通穴が形成されている。貫通穴は、揺動台板の渦巻突起部形成側の面において径方向外側の位置にて開口しており、この開口を通じて圧縮室の内部に潤滑油が供給される構造となっている。 In Patent Document 1, a through hole extending radially outward from the central portion of the swing base plate and opening on the surface of the swing base plate on the spiral protrusion forming side is formed in the swing base plate of the swing scroll. There is. The through hole is opened at a position on the outer side in the radial direction on the surface of the rocking base plate on the side where the spiral protrusion is formed, and the lubricating oil is supplied to the inside of the compression chamber through this opening.
特開2003-286976号公報Japanese Unexamined Patent Publication No. 2003-286976
 特許文献1では、圧縮室に潤滑油を供給する貫通穴の下流側の開口が揺動台板における径方向外側にて開口されている。このため、貫通穴から流出した潤滑油は、渦巻突起部の径方向外側から冷媒と共に圧縮室内に吸入され、圧縮室内全体に広がる。つまり、貫通穴から流出した潤滑油は、圧縮室のシール性を向上するために有効な部分を狙って供給されるわけではない。このため、期待されるシール性の向上が得られるかは疑問である。 In Patent Document 1, the opening on the downstream side of the through hole for supplying the lubricating oil to the compression chamber is opened on the radial outer side of the rocking base plate. Therefore, the lubricating oil flowing out from the through hole is sucked into the compression chamber together with the refrigerant from the radial outside of the spiral protrusion portion, and spreads throughout the compression chamber. That is, the lubricating oil flowing out from the through hole is not supplied aiming at an effective portion for improving the sealing property of the compression chamber. Therefore, it is doubtful whether the expected improvement in sealing performance can be obtained.
 本開示は、上記のような課題を解決するためになされたもので、潤滑油を用いて圧縮室のシール性を向上することのできるスクロール圧縮機及び冷凍サイクル装置を提供することを目的としている。 The present disclosure has been made to solve the above-mentioned problems, and an object of the present disclosure is to provide a scroll compressor and a refrigerating cycle device capable of improving the sealing property of a compression chamber by using a lubricating oil. ..
 本開示に係るスクロール圧縮機は、固定台板及び固定台板に形成された固定渦巻突起部を有する固定スクロールと、揺動台板及び揺動台板に形成された揺動渦巻突起部を有し、揺動渦巻突起部が固定渦巻突起部に組み合わされて圧縮室を形成する揺動スクロールと、揺動スクロールに連結され、潤滑油が流れる通油路を有する回転軸と、揺動渦巻突起部の先端部に形成された揺動側溝部に挿入された揺動側チップシールとを備え、揺動スクロールには、回転軸の通油路から流出した潤滑油を揺動側溝部へ供給する貫通穴が設けられており、揺動側チップシールは、貫通穴から揺動側溝部に供給された潤滑油により固定台板側に押圧されるものである。 The scroll compressor according to the present disclosure has a fixed base plate and a fixed scroll having a fixed spiral protrusion formed on the fixed base plate, and a swing base plate and a swing spiral protrusion formed on the swing base plate. A oscillating scroll in which the oscillating spiral protrusion is combined with the fixed vortex protrusion to form a compression chamber, a rotating shaft connected to the oscillating scroll and having an oil passage through which lubricating oil flows, and a oscillating spiral protrusion. It is equipped with a swing-side tip seal inserted into the swing-side groove formed at the tip of the portion, and the swing scroll supplies lubricating oil flowing out of the oil passage of the rotating shaft to the swing-side groove. A through hole is provided, and the swing-side chip seal is pressed toward the fixed base plate side by the lubricating oil supplied from the through-hole to the swing-side groove portion.
 本開示によれば、回転軸の通油路から流出した潤滑油が、揺動スクロールに設けられた貫通穴を通じて揺動側溝部に供給され、潤滑油の圧力により、揺動側溝部に配置された揺動側チップシールが固定スクロールの固定台板に押し付けられる。つまり、揺動側チップシールを固定スクロールの固定台板に押し付ける作用を狙って、潤滑油が貫通穴を介して揺動側チップシールに集中して供給されるため、潤滑油を効果的に用いて圧縮室のシール性を向上できる。 According to the present disclosure, the lubricating oil flowing out from the oil passage of the rotating shaft is supplied to the swinging gutter through a through hole provided in the swinging scroll, and is arranged in the swinging gutter by the pressure of the lubricating oil. The rocking side tip seal is pressed against the fixed base plate of the fixed scroll. In other words, the lubricating oil is concentrated and supplied to the rocking side tip seal through the through hole with the aim of pressing the rocking side tip seal against the fixed base plate of the fixed scroll, so the lubricating oil is effectively used. Therefore, the sealing performance of the compression chamber can be improved.
実施の形態1に係るスクロール圧縮機の外観を示した正面図である。It is a front view which showed the appearance of the scroll compressor which concerns on Embodiment 1. FIG. 実施の形態1に係るスクロール圧縮機の内部構造を示した概略縦断面図である。It is a schematic vertical sectional view which showed the internal structure of the scroll compressor which concerns on Embodiment 1. FIG. 実施の形態1の圧縮機構部の構成の概要を示す図である。It is a figure which shows the outline of the structure of the compression mechanism part of Embodiment 1. 実施の形態1に係るスクロール圧縮機の圧縮機構部の概略横断面図である。It is a schematic cross-sectional view of the compression mechanism part of the scroll compressor which concerns on Embodiment 1. FIG. 図3の点線Aで囲った部分の拡大図である。It is an enlarged view of the part surrounded by the dotted line A of FIG. 実施の形態1に係るスクロール圧縮機の変形例1を示す図である。It is a figure which shows the modification 1 of the scroll compressor which concerns on Embodiment 1. FIG. 実施の形態1に係るスクロール圧縮機の変形例2を示す図である。It is a figure which shows the modification 2 of the scroll compressor which concerns on Embodiment 1. FIG. 実施の形態1に係るスクロール圧縮機の変形例3を示す図である。It is a figure which shows the modification 3 of the scroll compressor which concerns on Embodiment 1. FIG. 実施の形態2に係る冷凍サイクル装置の冷媒回路を示す図である。It is a figure which shows the refrigerant circuit of the refrigerating cycle apparatus which concerns on Embodiment 2. FIG.
 以下、図面を参照して実施の形態について説明する。なお、各図中、同一又は相当する部分には、同一符号を付して、その説明を適宜省略又は簡略化する。また、各図に記載の構成について、その形状、大きさ、及び配置等は、本開示の範囲内で適宜変更することができる。 Hereinafter, embodiments will be described with reference to the drawings. In each figure, the same or corresponding parts are designated by the same reference numerals, and the description thereof will be omitted or simplified as appropriate. In addition, the shape, size, arrangement, etc. of the configurations shown in each figure can be appropriately changed within the scope of the present disclosure.
実施の形態1.
 図1は、実施の形態1に係るスクロール圧縮機の外観を示した正面図である。図2は、実施の形態1に係るスクロール圧縮機の内部構造を示した概略縦断面図である。図3は、実施の形態1に係るスクロール圧縮機の圧縮室の内部構造を示した概略縦断面図である。図3は、本実施の形態1の圧縮機構部の構成の概要を示す図であり、厳密には図2と対応していない部分がある。図4は、実施の形態1に係るスクロール圧縮機の圧縮機構部の概略横断面図である。本実施の形態1に係るスクロール圧縮機100は、例えば、冷蔵庫、冷凍庫、空気調和装置、冷凍装置又は給湯器等に用いられる冷凍サイクルの構成要素の一つとなるものである。
Embodiment 1.
FIG. 1 is a front view showing the appearance of the scroll compressor according to the first embodiment. FIG. 2 is a schematic vertical sectional view showing the internal structure of the scroll compressor according to the first embodiment. FIG. 3 is a schematic vertical sectional view showing the internal structure of the compression chamber of the scroll compressor according to the first embodiment. FIG. 3 is a diagram showing an outline of the configuration of the compression mechanism portion of the first embodiment, and there is a part that does not strictly correspond to FIG. 2. FIG. 4 is a schematic cross-sectional view of the compression mechanism portion of the scroll compressor according to the first embodiment. The scroll compressor 100 according to the first embodiment is one of the components of a refrigerating cycle used in, for example, a refrigerator, a freezer, an air conditioner, a refrigerating device, a water heater, and the like.
 スクロール圧縮機100は、冷凍サイクルを循環する冷媒を吸入して圧縮し、高温高圧の状態として吐出させるものである。スクロール圧縮機100は、図1及び図2に示すように、外郭を形成するシェル1と、シェル1の内壁面に固着されたメインフレーム2と、冷媒を圧縮する圧縮機構部3と、圧縮機構部3を駆動させる電動機6とを備えている。また、スクロール圧縮機100は更に、圧縮機構部3と電動機6とを連結する回転軸7を備えている。なお、以下の説明において、回転軸7が延びる方向を軸方向、軸方向に垂直な方向を径方向という。 The scroll compressor 100 sucks in the refrigerant circulating in the refrigeration cycle, compresses it, and discharges it in a high temperature and high pressure state. As shown in FIGS. 1 and 2, the scroll compressor 100 includes a shell 1 forming an outer shell, a main frame 2 fixed to the inner wall surface of the shell 1, a compression mechanism unit 3 for compressing a refrigerant, and a compression mechanism. It is provided with an electric motor 6 for driving the unit 3. Further, the scroll compressor 100 further includes a rotating shaft 7 for connecting the compression mechanism unit 3 and the electric motor 6. In the following description, the direction in which the rotating shaft 7 extends is referred to as an axial direction, and the direction perpendicular to the axial direction is referred to as a radial direction.
 シェル1は、図1に示すように、金属などの導電性部材であり、密閉空間を有する筒状に形成されたものである。シェル1の内部には、メインフレーム2と、圧縮機構部3と、電動機6と、回転軸7とが収容されている。 As shown in FIG. 1, the shell 1 is a conductive member such as metal, and is formed in a cylindrical shape having a closed space. Inside the shell 1, a main frame 2, a compression mechanism unit 3, an electric motor 6, and a rotating shaft 7 are housed.
 シェル1は、円筒状のメインシェル1aと、メインシェル1aの上面開口を塞ぐ略半球状のアッパーシェル1bと、メインシェル1aの下面開口を塞ぐ略半球状のロアシェル1cと、で構成されている。アッパーシェル1b及びロアシェル1cは、それぞれメインシェル1aに溶接等で固着されている。シェル1は、ロアシェル1cに固定された固定台1dによって支持されている。 The shell 1 is composed of a cylindrical main shell 1a, a substantially hemispherical upper shell 1b that closes the upper surface opening of the main shell 1a, and a substantially hemispherical lower shell 1c that closes the lower surface opening of the main shell 1a. .. The upper shell 1b and the lower shell 1c are respectively fixed to the main shell 1a by welding or the like. The shell 1 is supported by a fixing base 1d fixed to the lower shell 1c.
 図3に示すようにメインシェル1aの内壁面は、上端部に形成された大径の第1内壁面10aと、第1内壁面10aの下方に形成され、第1内壁面10aの内径よりも小径の第2内壁面10bと、を有している。第1内壁面10aの下端と第2内壁面10bの上端とで形成された段部11は、メインフレーム2の位置決め部として機能する。 As shown in FIG. 3, the inner wall surface of the main shell 1a is formed below the large-diameter first inner wall surface 10a formed at the upper end portion and the first inner wall surface 10a, and is larger than the inner diameter of the first inner wall surface 10a. It has a second inner wall surface 10b having a small diameter. The step portion 11 formed by the lower end of the first inner wall surface 10a and the upper end of the second inner wall surface 10b functions as a positioning portion of the main frame 2.
 メインシェル1aには、図1及び図2に示すように、シェル1の内部に冷媒を取り込むための吸入管13と、スクロール圧縮機100に給電するための給電部19と、が設けられている。吸入管13は、メインシェル1aの側壁に形成された孔に、一部が挿入された状態でろう付け等により接続されている。吸入管13は、シェル1内の低圧空間16bに連通している。給電部19は、カバー19aと、給電端子19bと、配線19cと、を備えている。給電端子19bは、金属部材であり、一端がカバー19aに囲まれるように配置され、他端がメインシェル1aの内部に配置されている。配線19cは、一端が給電端子19bに接続され、他端が電動機6に接続されている。 As shown in FIGS. 1 and 2, the main shell 1a is provided with a suction pipe 13 for taking in a refrigerant inside the shell 1 and a feeding unit 19 for supplying power to the scroll compressor 100. .. The suction pipe 13 is connected to a hole formed in the side wall of the main shell 1a by brazing or the like with a part inserted. The suction pipe 13 communicates with the low pressure space 16b in the shell 1. The power feeding unit 19 includes a cover 19a, a power feeding terminal 19b, and a wiring 19c. The power feeding terminal 19b is a metal member, one end thereof is arranged so as to be surrounded by the cover 19a, and the other end is arranged inside the main shell 1a. One end of the wiring 19c is connected to the power feeding terminal 19b, and the other end is connected to the motor 6.
 アッパーシェル1bには、圧縮した冷媒をシェル1から吐き出す吐出管14が接続されている。吐出管14は、アッパーシェル1bの上部に形成された孔に、一部が挿入された状態でろう付け等により接続されている。また、シェル1の内底部には、潤滑油を貯留する油溜め18が設けられている。 A discharge pipe 14 for discharging the compressed refrigerant from the shell 1 is connected to the upper shell 1b. The discharge pipe 14 is connected to a hole formed in the upper part of the upper shell 1b by brazing or the like with a part inserted. Further, an oil reservoir 18 for storing lubricating oil is provided on the inner bottom portion of the shell 1.
 メインフレーム2は、図2及び図3に示すように、下方に向かって段階的に先細る円筒状の金属フレームであり、揺動スクロール5を揺動自在に支持するものである。メインフレーム2の中心部は、回転軸7を通す軸孔となっている。メインフレーム2の外周面は、例えば焼嵌め等で、メインシェル1aの内壁面に固着されている。メインフレーム2の上面には、環状の平坦面20が形成されている。平坦面20には、バルブ鋼などの鋼板系材料からなるリング状のスラストプレート25が配置されている。スラストプレート25は、メインフレーム2のスラスト摺動面として機能し、圧縮機構部3のスラスト荷重を支持する。 As shown in FIGS. 2 and 3, the main frame 2 is a cylindrical metal frame that gradually tapers downward, and supports the swing scroll 5 swingably. The central portion of the main frame 2 is a shaft hole through which the rotating shaft 7 passes. The outer peripheral surface of the main frame 2 is fixed to the inner wall surface of the main shell 1a by, for example, shrink fitting. An annular flat surface 20 is formed on the upper surface of the main frame 2. A ring-shaped thrust plate 25 made of a steel plate-based material such as valve steel is arranged on the flat surface 20. The thrust plate 25 functions as a thrust sliding surface of the main frame 2 and supports the thrust load of the compression mechanism portion 3.
 また、図2及び図3に示すように、メインフレーム2の内部には、収容部21が形成されている。メインフレーム2は、回転軸7を支持する主軸受部22を備えている。収容部21は、メインフレーム2の上部側に形成されている。主軸受部22は、メインフレーム2の下部側に設けられている。 Further, as shown in FIGS. 2 and 3, the accommodating portion 21 is formed inside the main frame 2. The main frame 2 includes a main bearing portion 22 that supports the rotating shaft 7. The accommodating portion 21 is formed on the upper side of the main frame 2. The main bearing portion 22 is provided on the lower side of the main frame 2.
 収容部21は、図2及び図3に示すように、下方に向かって段階的に内径が小さくなるように形成されている。収容部21は、図3に示すように平坦面20側に位置する段差部分がオルダム収容部21aとされ、主軸受部22側に位置する段差部分がブッシュ収容部21bとされている。また、オルダム収容部21a及び平坦面20の一部には、メインフレーム2の軸孔を挟んで対向するように形成された一対のキー溝が設けられている。 As shown in FIGS. 2 and 3, the accommodating portion 21 is formed so that the inner diameter gradually decreases downward. As shown in FIG. 3, in the accommodating portion 21, the stepped portion located on the flat surface 20 side is the oldham accommodating portion 21a, and the stepped portion located on the main bearing portion 22 side is the bush accommodating portion 21b. Further, a pair of key grooves formed so as to face each other with the shaft hole of the main frame 2 interposed therebetween are provided in a part of the Oldam accommodating portion 21a and the flat surface 20.
 また、メインフレーム2には、図2に示すように、内外を貫通して返油孔23が形成されている。返油孔23は、ブッシュ収容部21bと連通している。返油孔23には返油管24が挿入されて固定されている。返油管24は、収容部21に溜まった潤滑油をロアシェル1cに設けられた油溜め18に戻すために設けられている。なお、返油孔23及び返油管24は、一つに限らず、複数設けてもよい。 Further, as shown in FIG. 2, the main frame 2 is formed with an oil return hole 23 penetrating inside and outside. The oil return hole 23 communicates with the bush accommodating portion 21b. An oil return pipe 24 is inserted and fixed in the oil return hole 23. The oil return pipe 24 is provided to return the lubricating oil accumulated in the accommodating portion 21 to the oil reservoir 18 provided in the lower shell 1c. The oil return hole 23 and the oil return pipe 24 are not limited to one, and a plurality of oil return holes 23 may be provided.
 固定スクロール4は、図2及び図3に示すように、円板状の固定台板4aと、固定台板4aの下面に形成された固定渦巻突起部4bと、を有している。揺動スクロール5は、円板状の揺動台板5aと、揺動台板5aの上面に形成され、固定渦巻突起部4bと噛み合う揺動渦巻突起部5bと、を有している。揺動スクロール5は、固定スクロール4に対して偏心させて設置されている。固定スクロール4の固定渦巻突起部4bと揺動スクロール5の揺動渦巻突起部5bとが組み合わされて冷媒を圧縮する圧縮室30が形成されている。 As shown in FIGS. 2 and 3, the fixed scroll 4 has a disk-shaped fixed base plate 4a and a fixed spiral protrusion portion 4b formed on the lower surface of the fixed base plate 4a. The swing scroll 5 has a disk-shaped swing base plate 5a and a swing spiral protrusion 5b formed on the upper surface of the swing base plate 5a and meshing with the fixed spiral protrusion 4b. The swing scroll 5 is installed so as to be eccentric with respect to the fixed scroll 4. The fixed spiral protrusion 4b of the fixed scroll 4 and the swing spiral protrusion 5b of the swing scroll 5 are combined to form a compression chamber 30 for compressing the refrigerant.
 固定スクロール4は、例えば鋳鉄等の金属で形成されている。固定スクロール4は、固定台板4aをメインフレーム2の上部に、例えばボルト締結されることで固定されている。 The fixed scroll 4 is made of a metal such as cast iron. The fixed scroll 4 is fixed by fastening the fixed base plate 4a to the upper part of the main frame 2, for example, by bolting.
 固定台板4aの中央部には、圧縮されて高温かつ高圧となった冷媒を吐出する吐出ポート40が形成されている。固定スクロール4の上面には、吐出ポート40に連通する吐出孔15aが形成されたチャンバー15が配置されている。チャンバー15には、冷媒の圧力に応じて吐出孔15aを開閉する吐出弁17がねじ止めして設けられている。吐出弁17は、吐出ポート40に連通する圧縮室30の冷媒が所定の圧力に達したときに、吐出孔15aを開状態にする。圧縮された高温かつ高圧冷媒は、吐出ポート40から固定スクロール4の上部の高圧空間16aに排出され、吐出管14を通り、シェル1の外部へ吐出される。また、図3に示すように固定渦巻突起部4bの先端部には、渦巻方向に沿って固定側溝部42が形成されており、この固定側溝部42には、例えば硬質プラスチックからなる固定側チップシール41が挿入されている。固定側溝部42の径方向(図3の左右方向)の幅は、固定側チップシール41の径方向の幅よりも大きく構成されている。 A discharge port 40 for discharging a compressed, high-temperature and high-pressure refrigerant is formed in the central portion of the fixed base plate 4a. On the upper surface of the fixed scroll 4, a chamber 15 having a discharge hole 15a communicating with the discharge port 40 is arranged. The chamber 15 is provided with a discharge valve 17 screwed to open and close the discharge hole 15a according to the pressure of the refrigerant. The discharge valve 17 opens the discharge hole 15a when the refrigerant in the compression chamber 30 communicating with the discharge port 40 reaches a predetermined pressure. The compressed high-temperature and high-pressure refrigerant is discharged from the discharge port 40 into the high-pressure space 16a above the fixed scroll 4, passes through the discharge pipe 14, and is discharged to the outside of the shell 1. Further, as shown in FIG. 3, a fixed side groove portion 42 is formed at the tip of the fixed spiral protrusion portion 4b along the spiral direction, and the fixed side groove portion 42 is formed with, for example, a fixed side tip made of hard plastic. The seal 41 is inserted. The radial width of the fixed-side groove portion 42 (left-right direction in FIG. 3) is larger than the radial width of the fixed-side chip seal 41.
 揺動スクロール5は、例えばアルミニウム等の金属で形成されている。揺動スクロール5は、図2に示すように、自転運動を阻止するためのオルダムリング54により、固定スクロール4に対して自転運動することなく公転運動を行う。なお、揺動台板5aの揺動渦巻突起部5bが形成されていない側の面(図示例の場合は下面)は、揺動スクロールスラスト軸受面として作用する。 The swing scroll 5 is made of a metal such as aluminum. As shown in FIG. 2, the swing scroll 5 revolves with respect to the fixed scroll 4 without rotating with respect to the fixed scroll 4 by the old dam ring 54 for blocking the rotation. The surface (lower surface in the case of the illustrated example) on the side of the rocking base plate 5a on which the swinging spiral protrusion 5b is not formed acts as a swinging scroll thrust bearing surface.
 揺動スクロールスラスト軸受面の中心部には、円筒形状のボス部51が設けられている。ボス部51の内周面には、後述のブッシュ8のスライダ80を回転自在に支持する揺動軸受が設けられている。揺動軸受は、いわゆるジャーナル軸受である。揺動軸受は、中心軸が回転軸7の中心軸と平行になるように設けられている。揺動スクロール5は、ボス部51に挿入された回転軸7の後述の偏心軸部71が回転することで、メインフレーム2のスラスト摺動面上で公転運動する。 A cylindrical boss portion 51 is provided at the center of the swing scroll thrust bearing surface. On the inner peripheral surface of the boss portion 51, a swing bearing that rotatably supports the slider 80 of the bush 8 described later is provided. The plain bearing is a so-called journal bearing. The oscillating bearing is provided so that the central axis is parallel to the central axis of the rotating shaft 7. The oscillating scroll 5 revolves on the thrust sliding surface of the main frame 2 by rotating the eccentric shaft portion 71, which will be described later, of the rotating shaft 7 inserted into the boss portion 51.
 また、図3に示すように揺動渦巻突起部5bの先端部には、渦巻方向に沿って揺動側溝部55が形成されており、この揺動側溝部55には、例えば硬質プラスチックからなる揺動側チップシール52が軸方向(図3の上下方向)に移動自在に挿入されている。揺動側溝部55の径方向(図3の左右方向)の幅は、揺動側チップシール52の径方向の幅よりも大きく構成されている。 Further, as shown in FIG. 3, a swing gutter 55 is formed at the tip of the swing spiral protrusion 5b along the spiral direction, and the swing gutter 55 is made of, for example, hard plastic. The rocking side tip seal 52 is movably inserted in the axial direction (vertical direction in FIG. 3). The radial width of the swing-side groove portion 55 (left-right direction in FIG. 3) is larger than the radial width of the swing-side tip seal 52.
 図2に示すように揺動スクロールスラスト軸受面には、ボス部51を挟んで対向するように形成された一対のオルダム溝53が設けられている。オルダム溝53は、長丸形状のキー溝である。一対のオルダム溝53は、それらを結ぶ線が、メインフレーム2のキー溝を結ぶ線に対して、直交する関係となるように配置されている。 As shown in FIG. 2, the swing scroll thrust bearing surface is provided with a pair of old dam grooves 53 formed so as to face each other with the boss portion 51 interposed therebetween. The old dam groove 53 is an oval key groove. The pair of Oldham grooves 53 are arranged so that the lines connecting them are orthogonal to the lines connecting the key grooves of the main frame 2.
 図2に示すようにオルダムリング54は、リング部54aと、キー部54bと、を備えている。リング部54aは、環状であり、メインフレーム2のオルダム収容部21aに設けられている。キー部54bは、リング部54aの下面と上面に2か所ずつ設けられている。リング部54aの下面に設けられているキー部54bは、メインフレーム2のキー溝に収容され、リング部54aの上面に設けられているキー部54bは、揺動スクロール5のオルダム溝53に収容されている。揺動スクロール5のオルダム溝53をオルダムリング54のキー部54bに合わせることで、揺動スクロール5の揺動渦巻突起部5bの回転方向の位置が決まる。つまり、オルダムリング54により、メインフレーム2に対して揺動スクロール5が位置決めされ、メインフレーム2に対する揺動渦巻突起部5bの位相が決定する。 As shown in FIG. 2, the oldam ring 54 includes a ring portion 54a and a key portion 54b. The ring portion 54a is annular and is provided in the old dam accommodating portion 21a of the main frame 2. Two key portions 54b are provided on the lower surface and the upper surface of the ring portion 54a. The key portion 54b provided on the lower surface of the ring portion 54a is housed in the key groove of the main frame 2, and the key portion 54b provided on the upper surface of the ring portion 54a is housed in the old dam groove 53 of the swing scroll 5. Has been done. By aligning the old dam groove 53 of the swing scroll 5 with the key portion 54b of the old dam ring 54, the position of the swing spiral protrusion portion 5b of the swing scroll 5 in the rotational direction is determined. That is, the old dam ring 54 positions the swing scroll 5 with respect to the main frame 2, and determines the phase of the swing spiral protrusion 5b with respect to the main frame 2.
 圧縮室30は、固定渦巻突起部4bの先端部に設けた固定側チップシール41と揺動台板5aとが接触すると共に、揺動渦巻突起部5bの先端部に設けた揺動側チップシール52と固定台板4aとが接触することで、シールされている。圧縮室30は、スクロールの半径方向において、外側から内側へ向かうに従って容積が縮小する複数の圧縮室30で構成されている。 In the compression chamber 30, the fixed-side tip seal 41 provided at the tip of the fixed spiral protrusion 4b and the rocking base plate 5a come into contact with each other, and the swing-side tip seal provided at the tip of the swinging spiral protrusion 5b. The 52 and the fixed base plate 4a are in contact with each other to be sealed. The compression chamber 30 is composed of a plurality of compression chambers 30 whose volume decreases from the outside to the inside in the radial direction of the scroll.
 冷媒は、例えば、組成中に、炭素の二重結合を有するハロゲン化炭化水素、炭素の二重結合を有しないハロゲン化炭化水素、自然冷媒、又はそれらを含む混合物を使用することができる。炭素の二重結合を有するハロゲン化炭化水素は、R1234yf(CFCF=CH)、R1234ze(CFCH=CHF)又はR1233zd(CFCH=CHCl)等のHFO冷媒が挙げられる。炭素の二重結合を有しないハロゲン化炭化水素は、R32(CH)、R41(CHF)、R125(CHF)、R134a(CHFCF)、R143a(CFCH)、R410A(R32/R125)又はR407C(R32/R125/R134a)等のHFC冷媒が挙げられる。CHで表されるR32(ジフルオロメタン)、R41等が混合された冷媒が例示される。自然冷媒は、アンモニア(NH)、二酸化炭素(CO)、プロパン(C)、プロピレン(C)、ブタン(C10)又はイソブタン(CH(CH)等が挙げられる。冷媒は、オゾン層破壊係数がゼロで、低GWPの冷媒が望ましい。 As the refrigerant, for example, a halogenated hydrocarbon having a carbon double bond, a halogenated hydrocarbon having no carbon double bond, a natural refrigerant, or a mixture containing them can be used in the composition. Examples of the halogenated hydrocarbon having a carbon double bond include HFO refrigerants such as R1234yf (CF 3 CF = CH 2 ), R1234ze (CF 3 CH = CHF) or R1233zd (CF 3 CH = CHCl). The halogenated hydrocarbons having no carbon double bond are R32 (CH 2 F 2 ), R 41 (CH 3 F), R125 (C 2 HF 3 ), R134a (CH 2 FCF 2 ), R143a (CF 3 CH). 3 ), HFC refrigerants such as R410A (R32 / R125) or R407C (R32 / R125 / R134a) can be mentioned. An example is a refrigerant mixed with R32 (difluoromethane), R41, etc. represented by CH 2 F 2. Natural refrigerants are ammonia (NH 3 ), carbon dioxide (CO 2 ), propane (C 3 H 8 ), propylene (C 3 H 6 ), butane (C 4 H 10 ) or isobutane (CH (CH 3 ) 3 ). And so on. The refrigerant is preferably a low GWP refrigerant having an ozone depletion potential of zero.
 電動機6は、図2に示すように、回転軸7を介して連結された圧縮機構部3を駆動させるものである。電動機6は、シェル1の内壁面に焼き嵌め等により固着支持された円環状のステータ6aと、ステータ6aの内側面に対向して回転可能に取り付けられたロータ6bとを有している。ステータ6aは、例えば電磁鋼板を複数枚積層してなる鉄心に、絶縁層を介して巻線が巻回された構成であり、平面視でリング状に形成されている。ロータ6bは、電磁鋼板を複数枚積層してなる鉄心の内部に永久磁石が内蔵された構成であり、中央に上下方向に貫通する貫通孔を有している。 As shown in FIG. 2, the electric motor 6 drives the compression mechanism unit 3 connected via the rotating shaft 7. The electric motor 6 has an annular stator 6a fixedly supported on the inner wall surface of the shell 1 by shrink fitting or the like, and a rotor 6b rotatably attached to face the inner side surface of the stator 6a. The stator 6a has a structure in which windings are wound around an iron core formed by laminating a plurality of electrical steel sheets, for example, via an insulating layer, and is formed in a ring shape in a plan view. The rotor 6b has a structure in which a permanent magnet is built in an iron core formed by laminating a plurality of electromagnetic steel sheets, and has a through hole penetrating in the vertical direction in the center.
 回転軸7は、図2及び図3に示すように、金属製の棒状部材である。回転軸7は、主軸部70と、偏心軸部71と、を備えている。主軸部70は、回転軸7の主要部を構成する軸であり、その中心軸がメインシェル1aの中心軸と一致するようにシェル1内に配置されている。主軸部70は、ロータ6bの中心の貫通孔に焼嵌め等により固定されている。主軸部70は、メインフレーム2の中央部に設けられた主軸受部22と、シェル1の下部に溶接等で固着されたサブフレーム9の中央部に設けられた副軸受部90と、によって回転自在に支持されている。 As shown in FIGS. 2 and 3, the rotating shaft 7 is a metal rod-shaped member. The rotating shaft 7 includes a spindle portion 70 and an eccentric shaft portion 71. The spindle portion 70 is an axis constituting the main portion of the rotating shaft 7, and is arranged in the shell 1 so that the central axis thereof coincides with the central axis of the main shell 1a. The spindle portion 70 is fixed to the through hole at the center of the rotor 6b by shrink fitting or the like. The spindle portion 70 is rotated by a main bearing portion 22 provided in the central portion of the main frame 2 and an auxiliary bearing portion 90 provided in the central portion of the subframe 9 fixed to the lower part of the shell 1 by welding or the like. It is supported freely.
 偏心軸部71は、その中心軸が主軸部70の中心軸に対して偏心するように、主軸部70の上端部に設けられている。偏心軸部71は、例えば鉄等の金属部材であるブッシュ8を介して揺動スクロール5に接続され、揺動スクロール5のボス部51に回転自在に支持されている。回転軸7は、ロータ6bの回転に伴って回転し、偏心軸部71で揺動スクロール5を旋回させる。また、主軸部70及び偏心軸部71の内部には、通油路72が、軸方向に沿って設けられ、回転軸7の軸方向の両端面まで貫通している。 The eccentric shaft portion 71 is provided at the upper end portion of the spindle portion 70 so that the central shaft thereof is eccentric with respect to the central axis of the spindle portion 70. The eccentric shaft portion 71 is connected to the swing scroll 5 via a bush 8 which is a metal member such as iron, and is rotatably supported by the boss portion 51 of the swing scroll 5. The rotary shaft 7 rotates with the rotation of the rotor 6b, and the swing scroll 5 is swiveled by the eccentric shaft portion 71. Further, inside the spindle portion 70 and the eccentric shaft portion 71, an oil passage 72 is provided along the axial direction and penetrates to both end faces in the axial direction of the rotating shaft 7.
 ブッシュ8は、図2及び図3に示すように、スライダ80と、バランスウェイト81aと、を備えている。スライダ80は、鍔が形成された筒状の部材であり、ボス部51に回転自在に挿入されている。スライダ80の内側には偏心軸部71が挿入されている。つまり、スライダ80は、揺動スクロール5と偏心軸部71との間に介在され、揺動スクロール5の揺動半径を可変とすると共に、揺動スクロール5を公転運動させるために揺動スクロール5を支承するものである。 As shown in FIGS. 2 and 3, the bush 8 includes a slider 80 and a balance weight 81a. The slider 80 is a tubular member on which a collar is formed, and is rotatably inserted into the boss portion 51. An eccentric shaft portion 71 is inserted inside the slider 80. That is, the slider 80 is interposed between the swing scroll 5 and the eccentric shaft portion 71, the swing radius of the swing scroll 5 is variable, and the swing scroll 5 is revolved in order to revolve the swing scroll 5. Is to be supported.
 バランスウェイト81aは、揺動運動により発生する揺動スクロール5の遠心力を相殺するために設けられている。バランスウェイト81aは、円環状であり、揺動スクロール5に働く遠心力の方向と反対側に、平面的に見て略C字状に形成されている。スクロール圧縮機100は、バランスウェイト81aによって揺動渦巻突起部5bが固定渦巻突起部4bに押し付けられることを軽減することができる。バランスウェイト81aは、例えばスライダ80の鍔に焼嵌め等により固定されている。 The balance weight 81a is provided to cancel the centrifugal force of the swing scroll 5 generated by the swing motion. The balance weight 81a is annular and is formed in a substantially C shape when viewed in a plane on the side opposite to the direction of the centrifugal force acting on the swing scroll 5. The scroll compressor 100 can reduce the pressure of the swinging spiral protrusion 5b against the fixed spiral protrusion 4b by the balance weight 81a. The balance weight 81a is fixed to the collar of the slider 80, for example, by shrink fitting or the like.
 サブフレーム9は、金属製のフレームである。サブフレーム9には、図2に示すように、副軸受部90と、オイルポンプ91と、が設けられている。副軸受部90は、サブフレーム9の中央に設けられたボールベアリングである。オイルポンプ91は、シェル1の油溜め18に貯留された潤滑油を吸い上げるためのポンプであり、副軸受部90の下側に設けられている。 The subframe 9 is a metal frame. As shown in FIG. 2, the subframe 9 is provided with an auxiliary bearing portion 90 and an oil pump 91. The sub-bearing portion 90 is a ball bearing provided in the center of the sub-frame 9. The oil pump 91 is a pump for sucking up the lubricating oil stored in the oil reservoir 18 of the shell 1, and is provided under the auxiliary bearing portion 90.
 潤滑油は、油溜め18に貯留されている。潤滑油は、オイルポンプ91で吸い上げられて、回転軸7の通油路72を通り、圧縮機構部3等の機械的に接触するパーツ同士の摩耗低減、摺動部の温度調節及びシール性の改善を行う。潤滑油としては、潤滑特性、電気絶縁性、安定性、冷媒溶解性及び低温流動性などに優れると共に、適度な粘度の油が好適である。潤滑油は、例えばナフテン系、ポリオールエステル(POE)、ポリビニールエーテル(PVE)又はポリアルキレングリコール(PAG)の油を使用することができる。 Lubricating oil is stored in the oil reservoir 18. Lubricating oil is sucked up by the oil pump 91, passes through the oil passage 72 of the rotating shaft 7, and reduces wear between mechanically contacting parts such as the compression mechanism portion 3, temperature control of the sliding portion, and sealing performance. Make improvements. As the lubricating oil, an oil having excellent lubrication characteristics, electrical insulation, stability, refrigerant solubility, low temperature fluidity and the like, and having an appropriate viscosity is suitable. As the lubricating oil, for example, naphthenic, polyol ester (POE), polyvinyl ether (PVE) or polyalkylene glycol (PAG) oil can be used.
 次に、スクロール圧縮機100の動作について説明する。
 給電部19に通電されると、電動機6のロータ6bが回転する。それに伴い、ロータ6bに固定された回転軸7が回転駆動される。回転軸7が回転駆動されると、圧縮機構部3の揺動スクロール5がオルダムリング54により自転を規制されて揺動運動する。
Next, the operation of the scroll compressor 100 will be described.
When the power feeding unit 19 is energized, the rotor 6b of the electric motor 6 rotates. Along with this, the rotary shaft 7 fixed to the rotor 6b is rotationally driven. When the rotation shaft 7 is rotationally driven, the swing scroll 5 of the compression mechanism unit 3 is restricted from rotating by the old dam ring 54 and swings.
 圧縮機構部3の駆動に伴い、冷媒が吸入管13を介してシェル1内に吸入され、圧縮室30に取り込まれる。冷媒を取り込んだ圧縮室30は、揺動スクロール5の揺動運動に伴い、外周部から中心方向に移動しながら容積を減じ、冷媒を圧縮する。圧縮室30で圧縮された冷媒は、固定スクロール4に設けた吐出ポート40から高圧空間16aへと吐出され、吐出管14からシェル1外に排出される。 Along with the drive of the compression mechanism unit 3, the refrigerant is sucked into the shell 1 through the suction pipe 13 and is taken into the compression chamber 30. The compression chamber 30 that has taken in the refrigerant reduces the volume while moving from the outer peripheral portion toward the center along with the rocking motion of the rocking scroll 5, and compresses the refrigerant. The refrigerant compressed in the compression chamber 30 is discharged from the discharge port 40 provided in the fixed scroll 4 into the high-pressure space 16a, and is discharged from the discharge pipe 14 to the outside of the shell 1.
 スクロール圧縮機100の動作中、圧縮機構部3の各摺動部には、潤滑油が供給される。具体的には、回転軸7が回転駆動されると、シェル1の油溜め18に貯留されている潤滑油がオイルポンプ91によって汲み上げられる。汲み上げられた潤滑油は、回転軸7に形成された通油路72の上流側の開口から流入し、下流側の開口から流出する。通油路72の下流側の開口から流出した潤滑油は、ボス部51の内側空間に流入する。ボス部51の内側空間に流入した潤滑油の一部は、揺動軸受を潤滑する。揺動軸受を潤滑した潤滑油の一部はスラストプレート25に供給された後、圧縮機構部3に流入して圧縮室30のシールを行う。揺動軸受を潤滑した潤滑油の残りは、主軸部等を潤滑して油溜め18に戻る。 During the operation of the scroll compressor 100, lubricating oil is supplied to each sliding portion of the compression mechanism portion 3. Specifically, when the rotary shaft 7 is rotationally driven, the lubricating oil stored in the oil reservoir 18 of the shell 1 is pumped up by the oil pump 91. The pumped lubricating oil flows in through the opening on the upstream side of the oil passage 72 formed in the rotary shaft 7, and flows out through the opening on the downstream side. The lubricating oil that has flowed out from the opening on the downstream side of the oil passage 72 flows into the inner space of the boss portion 51. A part of the lubricating oil that has flowed into the inner space of the boss portion 51 lubricates the swing bearing. A part of the lubricating oil that lubricates the oscillating bearing is supplied to the thrust plate 25 and then flows into the compression mechanism unit 3 to seal the compression chamber 30. The rest of the lubricating oil that lubricated the oscillating bearing lubricates the spindle portion and the like and returns to the oil reservoir 18.
 ここで、揺動スクロール5が揺動運動をしている際、固定側チップシール41は、隣接する圧縮室間の圧力差により、揺動スクロール5の揺動台板5aに押し付けられて摺動する。揺動側チップシール52も同様に、隣接する圧縮室間の圧力差により固定スクロール4の固定台板4aに押し付けられて摺動する。この圧力差とは、具体的には、図3において点線Aで囲った部分に着目して説明すると、揺動スクロール5の中心側の圧縮室301と、その圧縮室301よりも1つ径方向外側の圧縮室302との圧力差である。 Here, when the swing scroll 5 is swinging, the fixed-side tip seal 41 is pressed against the swing base plate 5a of the swing scroll 5 due to the pressure difference between the adjacent compression chambers and slides. do. Similarly, the rocking side tip seal 52 is pressed against the fixed base plate 4a of the fixed scroll 4 due to the pressure difference between the adjacent compression chambers and slides. Specifically, this pressure difference will be described by focusing on the portion surrounded by the dotted line A in FIG. 3. The compression chamber 301 on the center side of the rocking scroll 5 and one radial direction from the compression chamber 301. It is a pressure difference with the outer compression chamber 302.
 固定側チップシール41及び揺動側チップシール52は、この圧力差により径方向外側にも押圧されている。このため、固定側チップシール41は、図3に示すように固定側溝部42内において径方向外側に寄っており、固定側チップシール41の径方方向外側の側面41aが固定側溝部42の同方向側の側面に接触している。揺動側チップシール52も同様に、揺動側溝部55内において径方向外側に寄っており、揺動側チップシール52の径方方向外側の側面52aが揺動側溝部55の同方向側の側面に接触している。 The fixed side tip seal 41 and the rocking side tip seal 52 are also pressed to the outside in the radial direction due to this pressure difference. Therefore, as shown in FIG. 3, the fixed-side chip seal 41 is radially outward in the fixed-side groove portion 42, and the radial outer side surface 41a of the fixed-side chip seal 41 is the same as the fixed-side groove portion 42. It is in contact with the side surface on the directional side. Similarly, the swing-side tip seal 52 is radially outward in the swing-side groove portion 55, and the radial outer side surface 52a of the swing-side tip seal 52 is on the same direction side of the swing-side groove portion 55. It is in contact with the side surface.
 以上のように、固定側チップシール41及び揺動側チップシール52のそれぞれが相対する台板に押し付けられることにより、圧縮室30はシールされ、隣接する圧縮室間での圧縮冷媒の漏れが抑制される。このとき、圧縮室301及び圧縮室302に取り込まれる潤滑油の量が多いほど、シール性が向上する。 As described above, the compression chamber 30 is sealed by pressing the fixed side chip seal 41 and the rocking side chip seal 52 against the opposing base plates, and the leakage of the compressed refrigerant between the adjacent compression chambers is suppressed. Will be done. At this time, the larger the amount of the lubricating oil taken into the compression chamber 301 and the compression chamber 302, the better the sealing property.
 本実施の形態1は、潤滑油を効率的に用いて圧縮室30のシール性を更に高める構造を有している。以下、この構造について図3を参照して説明する。 The first embodiment has a structure in which the lubricating oil is efficiently used to further enhance the sealing property of the compression chamber 30. Hereinafter, this structure will be described with reference to FIG.
 揺動スクロール5には、ボス部51内の空間と揺動渦巻突起部5bに形成された揺動側溝部55とを連通する貫通穴58が形成されている。貫通穴58は、図3に示すように揺動渦巻突起部5bに設けられた縦穴57と、揺動台板5aに設けられた横穴56とを有する。縦穴57は、図3及び図4に示すように揺動渦巻突起部5bにおける径方向外側部分に、偏心軸部71を中心として対称に2つ設けられている。縦穴57は揺動側溝部55に連通している。横穴56は、各縦穴57に対応して設けられ、縦穴57とボス部51内の空間とを連通している。横穴56は、縦穴57と同様に、図3及び図4に示すように偏心軸部71を中心として対称に2つ設けられている。横穴56は揺動台板5aの外周面に開口しており、この開口部は止めねじ59によって閉塞されている。 The swing scroll 5 is formed with a through hole 58 that communicates the space inside the boss portion 51 with the swing side groove portion 55 formed in the swing spiral protrusion portion 5b. As shown in FIG. 3, the through hole 58 has a vertical hole 57 provided in the swing spiral protrusion 5b and a horizontal hole 56 provided in the swing base plate 5a. As shown in FIGS. 3 and 4, two vertical holes 57 are provided symmetrically about the eccentric shaft portion 71 on the radial outer portion of the swing spiral protrusion portion 5b. The vertical hole 57 communicates with the swing gutter 55. The horizontal hole 56 is provided corresponding to each vertical hole 57, and communicates the vertical hole 57 with the space inside the boss portion 51. Similar to the vertical hole 57, two horizontal holes 56 are provided symmetrically about the eccentric shaft portion 71 as shown in FIGS. 3 and 4. The lateral hole 56 is opened on the outer peripheral surface of the rocking base plate 5a, and this opening is closed by the set screw 59.
 このように構成された貫通穴58の作用について、次の図5を参照して説明する。図5は、図3の点線Aで囲った部分の拡大図である。図5において点線矢印は潤滑油の流れを示している。 The operation of the through hole 58 configured in this way will be described with reference to FIG. 5 below. FIG. 5 is an enlarged view of the portion surrounded by the dotted line A in FIG. In FIG. 5, the dotted arrow indicates the flow of lubricating oil.
 上述したように、通油路72の下流側の開口から流出した潤滑油は、ボス部51内の空間に流入する。ボス部51内の空間に流入した潤滑油の一部は、図5の点線矢印で示すように貫通穴58の横穴56及び縦穴57を通った後、揺動側溝部55の揺動側チップシール52に供給される。横穴56の径方向外側の開口部には止めねじ59(図3参照)が設けられているため、横穴56に流入した潤滑油が、この開口部から流出することはなく、縦穴57に流入する。 As described above, the lubricating oil that has flowed out from the opening on the downstream side of the oil passage 72 flows into the space inside the boss portion 51. A part of the lubricating oil that has flowed into the space inside the boss portion 51 passes through the horizontal hole 56 and the vertical hole 57 of the through hole 58 as shown by the dotted line arrow in FIG. It is supplied to 52. Since the set screw 59 (see FIG. 3) is provided in the radially outer opening of the horizontal hole 56, the lubricating oil that has flowed into the horizontal hole 56 does not flow out from this opening but flows into the vertical hole 57. ..
 このように、潤滑油が揺動側チップシール52に供給されることで、揺動側チップシール52には、図5の実線矢印方向の圧力が作用する。この圧力により、揺動側チップシール52は揺動側溝部55から浮き上がって固定台板4aに押し付けられる。ここで、揺動渦巻突起部5bの先端面と固定台板4aとの間には、揺動側チップシール52の厚み以下の大きさの隙間303が設けられている。揺動側チップシール52が固定台板4aに押し付けられることで、この隙間303が揺動側チップシール52によって塞がれるため、圧縮室30のシール性が向上する。その結果、隙間303を通って圧縮室301から圧縮室302へ冷媒漏れが生じることを、より抑制できる。そして、揺動側溝部55に供給されて揺動側チップシール52を浮き上がらせた潤滑油は、揺動側チップシール52の径方向内側の側面52bと揺動側溝部55の同方向の側面との隙間から圧縮室301に噴出する。 By supplying the lubricating oil to the rocking side chip seal 52 in this way, the pressure in the direction of the solid arrow in FIG. 5 acts on the rocking side chip seal 52. Due to this pressure, the swing-side tip seal 52 rises from the swing-side groove portion 55 and is pressed against the fixed base plate 4a. Here, a gap 303 having a size equal to or less than the thickness of the swing-side tip seal 52 is provided between the tip surface of the swing spiral protrusion 5b and the fixed base plate 4a. When the rocking-side chip seal 52 is pressed against the fixed base plate 4a, the gap 303 is closed by the rocking-side chip seal 52, so that the sealing performance of the compression chamber 30 is improved. As a result, it is possible to further suppress the leakage of the refrigerant from the compression chamber 301 to the compression chamber 302 through the gap 303. Then, the lubricating oil supplied to the swing-side groove portion 55 and causing the swing-side tip seal 52 to rise is the radial inner side surface 52b of the swing-side tip seal 52 and the side surface in the same direction of the swing-side groove portion 55. It is ejected into the compression chamber 301 from the gap between the two.
 このように、本実施の形態1では、揺動スクロール5に貫通穴58を設けたことにより、回転軸7の通油路72から流出した潤滑油が、貫通穴58を介して揺動側溝部55の揺動側チップシール52に集中して供給される。揺動側チップシール52に供給された潤滑油の油圧は、揺動側チップシール52を固定台板4aに押し付ける力として働く。これにより、貫通穴58の下流側の開口を揺動台板5aの径方向外周側に設けた従来構造に比べて、本実施の形態1は、揺動側チップシール52を固定台板4aに押し付ける力を大きくでき、シール性を向上できる。そして、本実施の形態1では、貫通穴58の縦穴57が、偏心軸部71を中心として対称の位置に2つ備えられているため、揺動側チップシール52に対してバランス良く押し付け力を作用させることができる。 As described above, in the first embodiment, since the swing scroll 5 is provided with the through hole 58, the lubricating oil flowing out from the oil passage 72 of the rotating shaft 7 flows through the swing hole 58 to the swing gutter portion. It is concentrated and supplied to the rocking side chip seal 52 of 55. The hydraulic pressure of the lubricating oil supplied to the swing-side tip seal 52 acts as a force for pressing the swing-side tip seal 52 against the fixed base plate 4a. As a result, compared to the conventional structure in which the opening on the downstream side of the through hole 58 is provided on the radial outer peripheral side of the rocking base plate 5a, in the first embodiment, the rocking side tip seal 52 is attached to the fixed base plate 4a. The pressing force can be increased and the sealing performance can be improved. Further, in the first embodiment, since two vertical holes 57 of the through hole 58 are provided at symmetrical positions about the eccentric shaft portion 71, a well-balanced pressing force is applied to the swing-side tip seal 52. Can act.
 ここで、揺動側溝部55から圧縮室301に噴出される潤滑油の流速は、縦穴57の径によって調整できる。例えば、縦穴57の径を小さくするほど、縦穴57から揺動側溝部55を介して噴出される潤滑油の流速が速くなる。潤滑油の流速が速くなると、その分、揺動側チップシール52を固定台板4aに押し付ける力が強くなり、シール性を向上できる。 Here, the flow velocity of the lubricating oil ejected from the swing gutter 55 to the compression chamber 301 can be adjusted by the diameter of the vertical hole 57. For example, the smaller the diameter of the vertical hole 57, the faster the flow velocity of the lubricating oil ejected from the vertical hole 57 through the swing gutter portion 55. As the flow velocity of the lubricating oil increases, the force for pressing the rocking side tip seal 52 against the fixing base plate 4a becomes stronger, and the sealing property can be improved.
 ところで、縦穴57は、揺動渦巻突起部5bにおける径方向外側部分に形成されるとしたが、その理由と、縦穴57の位置の更に詳細な位置とについて、以下に説明する。ボス部51内の空間は、低圧空間16bの一部であるため、ボス部51内の空間の圧力は、圧縮室30の圧力と比較して低い。圧縮室30の圧力は、揺動スクロール5の中心付近に近づくに連れて高くなる。このため、揺動スクロール5の中心付近の圧縮室30の圧力とボス部51内の空間の圧力との圧力差は、揺動スクロール5の径方向外側の圧縮室30の圧力とボス部51内の空間の圧力との圧力差に比べて高い。したがって、仮に縦穴57の位置を、揺動渦巻突起部5bにおける渦巻中心付近に設定すると、縦穴57が揺動側溝部55を介して連通する圧縮室(以下、連通圧縮室という)の圧力が、ボス部51内の空間の圧力よりも、大きな差を持って高くなる。そうすると、連通圧縮室内の潤滑油が貫通穴58を経由してボス部51内の空間に向けて逆流する可能性がある。そのため、縦穴57の位置は、潤滑油の逆流を招かないように、揺動渦巻突起部5bにおける径方向外側部分としている。 By the way, it is said that the vertical hole 57 is formed in the radial outer portion of the swinging spiral protrusion 5b, and the reason and the more detailed position of the vertical hole 57 will be described below. Since the space inside the boss portion 51 is a part of the low pressure space 16b, the pressure in the space inside the boss portion 51 is lower than the pressure in the compression chamber 30. The pressure in the compression chamber 30 increases as it approaches the vicinity of the center of the swing scroll 5. Therefore, the pressure difference between the pressure of the compression chamber 30 near the center of the swing scroll 5 and the pressure of the space inside the boss portion 51 is the pressure of the compression chamber 30 outside the radial direction of the swing scroll 5 and the pressure inside the boss portion 51. It is higher than the pressure difference with the pressure in the space. Therefore, if the position of the vertical hole 57 is set near the center of the spiral in the swing spiral protrusion 5b, the pressure of the compression chamber (hereinafter referred to as the communication compression chamber) through which the vertical hole 57 communicates through the swing gutter 55 is increased. It becomes higher than the pressure of the space in the boss portion 51 with a large difference. Then, the lubricating oil in the communication compression chamber may flow back toward the space inside the boss portion 51 via the through hole 58. Therefore, the position of the vertical hole 57 is set to the radial outer portion in the oscillating spiral protrusion 5b so as not to cause the backflow of the lubricating oil.
 潤滑油の逆流を招かないようにするには、連通圧縮室内の圧力が、縦穴57から揺動側チップシール52に供給される潤滑油の圧力よりも低くなるように、縦穴57の位置を設定すればよい。連通圧縮室内の圧力とボス部51内の圧力との圧力差は、縦穴57の位置が渦巻中心から径方向外側に向かうに連れて小さくなる。このため、縦穴57の位置を設定するにあたっては、縦穴57から揺動側溝部55を介して連通圧縮室に噴出する潤滑油の圧力よりも小さい圧力を有する圧縮室30を特定し、その特定された圧縮室30よりも径方向外側とすればよい。図4には、揺動渦巻突起部5bの巻き終わり部と、この巻き終わり部の、偏心軸部71を中心として対称の位置とに縦穴57を設けた例を示している。 To prevent backflow of lubricating oil, the position of the vertical hole 57 is set so that the pressure in the communication compression chamber is lower than the pressure of the lubricating oil supplied from the vertical hole 57 to the rocking side chip seal 52. do it. The pressure difference between the pressure in the communication compression chamber and the pressure in the boss portion 51 becomes smaller as the position of the vertical hole 57 is radially outward from the center of the spiral. Therefore, when setting the position of the vertical hole 57, a compression chamber 30 having a pressure smaller than the pressure of the lubricating oil ejected from the vertical hole 57 to the communication compression chamber via the swing side groove portion 55 is specified and specified. It may be outside the compression chamber 30 in the radial direction. FIG. 4 shows an example in which a vertical hole 57 is provided at a winding end portion of the swing spiral protrusion 5b and a position symmetrical with respect to the eccentric shaft portion 71 at the winding end portion.
 なお、図4では、縦穴57の個数が2個に設定されているが、縦穴57の個数は2個に限定されるものではない。潤滑油の逆流を招かなければ、揺動スクロール5に縦穴57をいくつ設けてもよい。縦穴57の個数が多ければ多いほど、圧縮室30の内部に供給される潤滑油の量が増えるため、シール性が向上する。ただし、縦穴57の個数を多くしすぎると、圧縮室30の内部に供給される潤滑油の量が増えすぎて、スクロール圧縮機100から持ち出される潤滑油の量が多くなる。スクロール圧縮機100から持ち出される潤滑油の量が多くなると、冷凍サイクルにおけるスクロール圧縮機100の下流に配置された熱交換器に流入する潤滑油の量が多くなり、熱交換器における熱交換効率が低下する可能性がある。また、縦穴57の個数を増やすと、その分加工コストが高くなることが考えられる。したがって、縦穴57は、潤滑油の量と加工コストとを考慮して、適切な個数に設定すればよい。 Although the number of vertical holes 57 is set to two in FIG. 4, the number of vertical holes 57 is not limited to two. Any number of vertical holes 57 may be provided in the swing scroll 5 as long as the backflow of the lubricating oil is not caused. As the number of vertical holes 57 increases, the amount of lubricating oil supplied to the inside of the compression chamber 30 increases, so that the sealing property is improved. However, if the number of vertical holes 57 is too large, the amount of lubricating oil supplied to the inside of the compression chamber 30 increases too much, and the amount of lubricating oil taken out from the scroll compressor 100 increases. When the amount of lubricating oil taken out from the scroll compressor 100 increases, the amount of lubricating oil flowing into the heat exchanger arranged downstream of the scroll compressor 100 in the refrigeration cycle increases, and the heat exchange efficiency in the heat exchanger increases. May decrease. Further, if the number of the vertical holes 57 is increased, the processing cost may be increased accordingly. Therefore, the number of vertical holes 57 may be set to an appropriate number in consideration of the amount of lubricating oil and the processing cost.
 次に、スクロール圧縮機100の運転周波数と、揺動側チップシール52によるシール性と、の関係について説明する。揺動側チップシール52によるシール性は、オイルポンプ91で吸い上げられる潤滑油の量に依存する。具体的には、潤滑油の量が多いほどシール性は向上し、潤滑油の量が少ないとシール性は低下する。このため、スクロール圧縮機100の運転周波数が低く、吸い上げられる潤滑油の量が減る場合には、貫通穴58の縦穴57の径を小さくする。具体的にはたとえば、縦穴57の径を、横穴56の径よりも小さくする。これにより、縦穴57から揺動側溝部55を介して圧縮室301に噴出される潤滑油の流速が速くなり、揺動側チップシール52を固定台板4aに押し付ける力が高まってシール性を向上できる。 Next, the relationship between the operating frequency of the scroll compressor 100 and the sealing property of the rocking side chip seal 52 will be described. The sealing property of the rocking side tip seal 52 depends on the amount of lubricating oil sucked up by the oil pump 91. Specifically, the larger the amount of lubricating oil, the better the sealing property, and the smaller the amount of lubricating oil, the lower the sealing property. Therefore, when the operating frequency of the scroll compressor 100 is low and the amount of lubricating oil sucked up is reduced, the diameter of the vertical hole 57 of the through hole 58 is reduced. Specifically, for example, the diameter of the vertical hole 57 is made smaller than the diameter of the horizontal hole 56. As a result, the flow velocity of the lubricating oil ejected from the vertical hole 57 to the compression chamber 301 through the swing side groove portion 55 becomes high, and the force for pressing the swing side tip seal 52 against the fixed base plate 4a increases to improve the sealing performance. can.
 一方、スクロール圧縮機100の運転周波数が高く、吸い上げられる潤滑油の量が多い場合には、揺動側チップシール52を固定台板4aに押し付ける力が十分に働き、シール性を確保できる。ここで、本実施の形態1では、縦穴57内の潤滑油が揺動側溝部55を介して圧縮室30に噴出する構成となっている。このため、運転周波数が高く、縦穴57内に供給される潤滑油が多くても、その潤滑油は揺動側溝部55を介して圧縮室30に噴出し、縦穴57内に留まることはない。 On the other hand, when the operating frequency of the scroll compressor 100 is high and the amount of lubricating oil sucked up is large, the force for pressing the rocking side tip seal 52 against the fixed base plate 4a works sufficiently to ensure the sealing property. Here, in the first embodiment, the lubricating oil in the vertical hole 57 is configured to be ejected into the compression chamber 30 through the swing gutter portion 55. Therefore, even if the operating frequency is high and a large amount of lubricating oil is supplied into the vertical hole 57, the lubricating oil is ejected into the compression chamber 30 through the swing gutter portion 55 and does not stay in the vertical hole 57.
 仮に潤滑油が縦穴57内に留まる構成、具体的には揺動側チップシール52が揺動側溝部55から浮き上がらない構成である場合、運転周波数が高いときに以下の問題が生じる可能性がある。すなわち、運転周波数が高いときには、縦穴57内に供給される潤滑油の量が多くなり、その潤滑油が縦穴57内に留まることで潤滑油による揺動側チップシール52の固定台板4aへの押し付け力が過大となる可能性がある。この場合、揺動側チップシール52の摩耗が生じる。しかし、本実施の形態1では、揺動側チップシール52が揺動側溝部55から浮き上がり、縦穴57内の潤滑油が揺動側溝部55を介して圧縮室30に噴出するため、このような揺動側チップシール52の摩耗の心配は生じない。 If the lubricating oil stays in the vertical hole 57, specifically, the rocking gutter 52 does not rise from the rocking gutter 55, the following problems may occur when the operating frequency is high. .. That is, when the operating frequency is high, the amount of lubricating oil supplied into the vertical hole 57 increases, and the lubricating oil stays in the vertical hole 57 so that the lubricating oil can be applied to the fixing base plate 4a of the rocking side tip seal 52. The pressing force may be excessive. In this case, the swing-side tip seal 52 is worn. However, in the first embodiment, the rocking side tip seal 52 floats up from the rocking side groove portion 55, and the lubricating oil in the vertical hole 57 is ejected to the compression chamber 30 through the rocking side groove portion 55. There is no concern about wear of the rocking side chip seal 52.
 以上の観点から、縦穴57内の潤滑油が揺動側溝部55を介して圧縮室30に噴出する構成が望ましいが、運転周波数が高くない範囲で使用する等、使用形態によっては揺動側チップシール52の摩耗は生じない。このため、本開示は、縦穴57内の潤滑油が揺動側溝部55を介して圧縮室30に噴出しない構成も含むものとする。 From the above viewpoint, it is desirable that the lubricating oil in the vertical hole 57 is ejected to the compression chamber 30 through the swing side groove portion 55, but depending on the usage mode, the swing side tip may be used in a range where the operating frequency is not high. No wear of the seal 52 occurs. Therefore, the present disclosure also includes a configuration in which the lubricating oil in the vertical hole 57 is not ejected into the compression chamber 30 through the swing gutter portion 55.
 なお、本開示のスクロール圧縮機100は、図1~図5に示した構造に限定されるものではなく、本開示の要旨を逸脱しない範囲で例えば以下のように変形して実施することが可能である。 The scroll compressor 100 of the present disclosure is not limited to the structure shown in FIGS. 1 to 5, and can be modified as follows, for example, within the range not deviating from the gist of the present disclosure. Is.
(変形例1及び変形例2:揺動渦巻突起部5bの厚み方向における縦穴57の位置)
 図6は、実施の形態1に係るスクロール圧縮機の変形例1を示す図である。図7は、実施の形態1に係るスクロール圧縮機の変形例2を示す図である。
 揺動渦巻突起部5bの厚み方向における縦穴57の位置は、上記の図3等では揺動渦巻突起部5bの厚み方向の中央部であったが、図6に示すように、中央部から外れていてもよい。図6には、中心部よりも径方向外側、言い換えれば運転中に揺動側チップシール52が寄る側、の位置に縦穴57を設けた例を示している。このように、運転中に揺動側チップシール52が寄る側に縦穴57を寄せて設けることで、縦穴57を通った潤滑油を、より集中して揺動側チップシール52に供給することができる。その結果、揺動側チップシール52の固定台板4aへの押し付け力をより向上できる。
(Deformation Example 1 and Deformation Example 2: Position of the vertical hole 57 in the thickness direction of the swinging spiral protrusion 5b)
FIG. 6 is a diagram showing a modification 1 of the scroll compressor according to the first embodiment. FIG. 7 is a diagram showing a modification 2 of the scroll compressor according to the first embodiment.
The position of the vertical hole 57 in the thickness direction of the swinging spiral protrusion 5b was the central portion in the thickness direction of the swinging spiral protrusion 5b in FIG. 3 and the like above, but as shown in FIG. 6, it deviates from the central portion. May be. FIG. 6 shows an example in which a vertical hole 57 is provided at a position on the radial side of the central portion, in other words, on the side where the rocking side tip seal 52 approaches during operation. In this way, by providing the vertical hole 57 closer to the side where the swing-side tip seal 52 is closer during operation, the lubricating oil that has passed through the vertical hole 57 can be more concentrated and supplied to the swing-side tip seal 52. can. As a result, the pressing force of the swing-side tip seal 52 against the fixed base plate 4a can be further improved.
 また、図7に示すように、縦穴57を、軸方向に対して傾斜して設けてもよい。図7には、縦穴57の上流側から下流側にかけて径方向外側に向かって傾斜するように、言い換えれば運転中に揺動側チップシール52が寄る方向に向かって傾斜するように縦穴57を設けた例を示している。更に、図7において揺動側チップシール52における縦穴57との対向面52cは、縦穴57の軸方向に対して垂直な垂直面となっている。これにより、縦穴57から流出した潤滑油による圧力が対向面52cに垂直に加わる。その結果、揺動側チップシール52の固定台板4aへの押し付け力をより向上できる。 Further, as shown in FIG. 7, the vertical hole 57 may be provided so as to be inclined with respect to the axial direction. In FIG. 7, a vertical hole 57 is provided so as to incline outward in the radial direction from the upstream side to the downstream side of the vertical hole 57, in other words, to incline toward the swinging side tip seal 52 during operation. An example is shown. Further, in FIG. 7, the facing surface 52c of the swing-side tip seal 52 with the vertical hole 57 is a vertical surface perpendicular to the axial direction of the vertical hole 57. As a result, the pressure due to the lubricating oil flowing out from the vertical hole 57 is applied vertically to the facing surface 52c. As a result, the pressing force of the swing-side tip seal 52 against the fixed base plate 4a can be further improved.
(変形例3:スラスト面に給油する給油穴との組み合わせ)
 図8は、実施の形態1に係るスクロール圧縮機の変形例3を示す図である。
 変形例3では、図3に示した構成に加えて更に、揺動台板5aに給油穴62が形成されている。給油穴62は、潤滑油を揺動スクロール5のスラスト面に供給するための穴であって、従来既存の構成である。図8の例では揺動スクロール5のスラスト面にスラストプレート25が配置されているため、給油穴62は、具体的にはスラストプレート25に潤滑油を供給する。給油穴62は、横穴60と斜め穴61とを有する。
(Deformation example 3: Combination with a refueling hole for refueling the thrust surface)
FIG. 8 is a diagram showing a modification 3 of the scroll compressor according to the first embodiment.
In the modified example 3, in addition to the configuration shown in FIG. 3, a lubrication hole 62 is further formed in the rocking base plate 5a. The lubrication hole 62 is a hole for supplying lubricating oil to the thrust surface of the swing scroll 5, and has a conventional configuration. In the example of FIG. 8, since the thrust plate 25 is arranged on the thrust surface of the swing scroll 5, the lubrication hole 62 specifically supplies the lubricating oil to the thrust plate 25. The refueling hole 62 has a horizontal hole 60 and an oblique hole 61.
 このような給油穴62を備えたスクロール圧縮機に、本実施の形態1の貫通穴58を適用する場合には、図8に示したように貫通穴58を給油穴62とは別に独立して設ける。仮に、給油穴62の横穴60を貫通穴58の横穴56と共用にした場合、横穴60に流入した潤滑油が斜め穴61の方に優先して流れてしまい、貫通穴58の縦穴57に流れなくなるためである。 When the through hole 58 of the first embodiment is applied to the scroll compressor provided with such a refueling hole 62, the through hole 58 is provided independently of the refueling hole 62 as shown in FIG. prepare. If the horizontal hole 60 of the refueling hole 62 is shared with the horizontal hole 56 of the through hole 58, the lubricating oil flowing into the horizontal hole 60 will flow preferentially to the diagonal hole 61 and will flow to the vertical hole 57 of the through hole 58. This is because it disappears.
 この構成によれば、貫通穴58によるシール性向上の効果に加え、スラストプレート25に十分な潤滑油を供給可能な効果も得ることができる。 According to this configuration, in addition to the effect of improving the sealing property by the through hole 58, it is possible to obtain the effect of being able to supply sufficient lubricating oil to the thrust plate 25.
 以上説明したように、本実施の形態1のスクロール圧縮機100は、固定台板4a及び固定台板4aに形成された固定渦巻突起部4bを有する固定スクロール4と、揺動台板5a及び揺動台板5aに形成された揺動渦巻突起部5bを有し、揺動渦巻突起部5bが固定渦巻突起部4bに組み合わされて圧縮室30を形成する揺動スクロール5とを備える。スクロール圧縮機100は更に、揺動スクロール5に連結され、潤滑油が流れる通油路72を有する回転軸7と、揺動渦巻突起部5bの先端部に形成された揺動側溝部55に挿入された揺動側チップシール52とを備える。揺動スクロール5には、回転軸7の通油路72から流出した潤滑油を揺動側溝部55へ供給する貫通穴58が設けられている。揺動側チップシール52は、貫通穴58から揺動側溝部55に供給された潤滑油により固定台板4a側に押圧される。 As described above, the scroll compressor 100 of the first embodiment has a fixed scroll 4 having a fixed base plate 4a and a fixed spiral protrusion 4b formed on the fixed base plate 4a, a swing base plate 5a, and a rocking base plate 4a. It has a swinging spiral protrusion 5b formed on the moving table plate 5a, and includes a swinging scroll 5 in which the swinging spiral protrusion 5b is combined with the fixed spiral protrusion 4b to form a compression chamber 30. The scroll compressor 100 is further connected to the swing scroll 5 and inserted into a rotary shaft 7 having an oil passage 72 through which lubricating oil flows and a swing gutter portion 55 formed at the tip of the swing spiral protrusion 5b. The rocking side chip seal 52 is provided. The swing scroll 5 is provided with a through hole 58 for supplying the lubricating oil flowing out from the oil passage 72 of the rotary shaft 7 to the swing side groove portion 55. The swing-side tip seal 52 is pressed toward the fixed base plate 4a by the lubricating oil supplied from the through hole 58 to the swing-side groove portion 55.
 これにより、揺動側チップシール52を固定スクロール4の固定台板4aに押し付ける作用を狙って、潤滑油が貫通穴58を介して揺動側チップシール52に集中して供給されるため、潤滑油を効果的に用いて圧縮室30のシール性を向上できる。 As a result, the lubricating oil is concentrated and supplied to the rocking side chip seal 52 through the through hole 58 with the aim of pressing the rocking side chip seal 52 against the fixed base plate 4a of the fixed scroll 4, so that lubrication is performed. The oil can be effectively used to improve the sealing performance of the compression chamber 30.
 また、本実施の形態1のスクロール圧縮機100は、揺動台板5aにおいて揺動渦巻突起部5bの形成面とは反対側の面に設けられ、回転軸7の偏心軸部71が挿入される円筒形状のボス部51を備える。ボス部51内の空間は回転軸7の通油路72に連通している。貫通穴58は、揺動渦巻突起部5bに形成され、揺動側溝部55に連通する縦穴57と、揺動台板5aに形成され、縦穴57とボス部51内の空間とを連通する横穴56とを有する。 Further, the scroll compressor 100 of the first embodiment is provided on the surface of the rocking base plate 5a on the side opposite to the surface on which the rocking spiral protrusion 5b is formed, and the eccentric shaft portion 71 of the rotating shaft 7 is inserted. A cylindrical boss portion 51 is provided. The space inside the boss portion 51 communicates with the oil passage 72 of the rotating shaft 7. The through hole 58 is a vertical hole 57 formed in the swing spiral protrusion portion 5b and communicating with the swing side groove portion 55, and a horizontal hole formed in the swing base plate 5a and communicating the vertical hole 57 and the space in the boss portion 51. Has 56.
 このように、回転軸7の通油路72から流出した潤滑油を揺動側溝部55へ供給する貫通穴58は、揺動渦巻突起部5bに形成された縦穴57と揺動台板5aに形成された横穴56とにより構成できる。 As described above, the through hole 58 for supplying the lubricating oil flowing out from the oil passage 72 of the rotary shaft 7 to the swing gutter portion 55 is formed in the vertical hole 57 and the swing base plate 5a formed in the swing spiral protrusion portion 5b. It can be configured by the formed lateral hole 56.
 揺動側チップシール52は揺動側溝部55に回転軸7の軸方向に移動自在に配置されており、縦穴57から揺動側チップシール52に供給される潤滑油により揺動側チップシール52が揺動側溝部55から浮き上がることで縦穴57が連通する圧縮室30である連通圧縮室の圧力が、縦穴57から揺動側チップシール52に供給される潤滑油の圧力よりも低くなるように、縦穴57の位置が設定されている。 The swing-side chip seal 52 is movably arranged in the swing-side groove portion 55 in the axial direction of the rotary shaft 7, and the swing-side chip seal 52 is provided with the lubricating oil supplied from the vertical hole 57 to the swing-side chip seal 52. The pressure of the communicating compression chamber, which is the compression chamber 30 through which the vertical hole 57 communicates, is lower than the pressure of the lubricating oil supplied from the vertical hole 57 to the rocking side chip seal 52. , The position of the vertical hole 57 is set.
 これにより、潤滑油により安定して揺動側チップシール52を固定スクロール4の固定台板4aに押し付けることができる。 Thereby, the rocking side tip seal 52 can be stably pressed against the fixed base plate 4a of the fixed scroll 4 by the lubricating oil.
 縦穴57は、揺動渦巻突起部5bにおいて厚み方向の中心部よりも径方向外側に寄って設けられている。又は、縦穴57は、揺動渦巻突起部5bにおいて、潤滑油の流れの上流側から下流側にかけて径方向外側に向かって傾斜して設けられている。 The vertical hole 57 is provided in the swinging spiral protrusion 5b closer to the outer side in the radial direction than the central portion in the thickness direction. Alternatively, the vertical hole 57 is provided in the swinging spiral protrusion 5b so as to be inclined toward the outside in the radial direction from the upstream side to the downstream side of the flow of the lubricating oil.
 これにより、揺動側チップシール52の固定台板4aへの押し付け力をより向上できる。 As a result, the pressing force of the swing-side tip seal 52 against the fixed base plate 4a can be further improved.
 揺動台板5aには、回転軸7の通油路72から流出した潤滑油を揺動スクロール5のスラスト面に供給する給油穴62が貫通穴58とは独立して形成されている。 In the rocking base plate 5a, a lubrication hole 62 for supplying the lubricating oil flowing out from the oil passage 72 of the rotating shaft 7 to the thrust surface of the rocking scroll 5 is formed independently of the through hole 58.
 これにより、貫通穴58によるシール性向上の効果に加え、揺動スクロール5のスラスト面に十分な潤滑油を供給可能な効果も得ることができる。 As a result, in addition to the effect of improving the sealing property by the through hole 58, it is possible to obtain the effect of being able to supply sufficient lubricating oil to the thrust surface of the swing scroll 5.
 縦穴57は、偏心軸部71を中心として対称の位置に2つ備えられ、横穴56は各縦穴57に対応して2つ備えられている。 Two vertical holes 57 are provided at symmetrical positions about the eccentric shaft portion 71, and two horizontal holes 56 are provided corresponding to each vertical hole 57.
 これにより、揺動側チップシール52に対してバランス良く押し付け力を作用させることができる。 As a result, the pressing force can be applied to the swinging side tip seal 52 in a well-balanced manner.
実施の形態2.
 本実施の形態2は、実施の形態1のスクロール圧縮機100を備えた冷凍サイクル装置に関するものである。
Embodiment 2.
The second embodiment relates to a refrigeration cycle apparatus provided with the scroll compressor 100 of the first embodiment.
 図9は、実施の形態2に係る冷凍サイクル装置の冷媒回路を示す図である。
 冷凍サイクル装置110は、実施の形態1のスクロール圧縮機100と、凝縮器111と、減圧装置としての膨張弁112と、蒸発器113とを備えている。スクロール圧縮機100から吐出されたガス冷媒は凝縮器111に流入し、凝縮器111を通過する空気と熱交換して高圧液冷媒となって流出する。凝縮器111を流出した高圧液冷媒は膨張弁112で減圧されて低圧の気液二相冷媒となり、蒸発器113に流入する。蒸発器113に流入した低圧の気液二相冷媒は、蒸発器113を通過する空気と熱交換して低圧ガス冷媒となり、再びスクロール圧縮機100に吸入される。
FIG. 9 is a diagram showing a refrigerant circuit of the refrigeration cycle device according to the second embodiment.
The refrigerating cycle device 110 includes the scroll compressor 100 of the first embodiment, a condenser 111, an expansion valve 112 as a depressurizing device, and an evaporator 113. The gas refrigerant discharged from the scroll compressor 100 flows into the condenser 111, exchanges heat with the air passing through the condenser 111, and flows out as a high-pressure liquid refrigerant. The high-pressure liquid refrigerant flowing out of the condenser 111 is depressurized by the expansion valve 112 to become a low-pressure gas-liquid two-phase refrigerant, and flows into the evaporator 113. The low-pressure gas-liquid two-phase refrigerant flowing into the evaporator 113 exchanges heat with the air passing through the evaporator 113 to become a low-pressure gas refrigerant, and is sucked into the scroll compressor 100 again.
 このように構成された冷凍サイクル装置110は、実施の形態1のスクロール圧縮機100を備えることで、高速時においてスクロール圧縮機100から冷媒と共に吐出される潤滑油の量を適量にできる。このため、凝縮器111において熱交換効率が低下する不都合を抑制でき、熱交換効率の高い冷凍サイクル装置110を構成できる。 The refrigerating cycle device 110 configured in this way is provided with the scroll compressor 100 of the first embodiment, so that the amount of lubricating oil discharged from the scroll compressor 100 together with the refrigerant at high speed can be adjusted to an appropriate amount. Therefore, the inconvenience that the heat exchange efficiency is lowered in the condenser 111 can be suppressed, and the refrigeration cycle device 110 having high heat exchange efficiency can be configured.
 なお、冷凍サイクル装置110は、空気調和機、冷蔵庫又は冷凍機等に適用することができる。 The refrigerating cycle device 110 can be applied to an air conditioner, a refrigerator, a refrigerator, or the like.
 1 シェル、1a メインシェル、1b アッパーシェル、1c ロアシェル、1d 固定台、2 メインフレーム、3 圧縮機構部、4 固定スクロール、4a 固定台板、4b 固定渦巻突起部、5 揺動スクロール、5a 揺動台板、5b 揺動渦巻突起部、6 電動機、6a ステータ、6b ロータ、7 回転軸、8 ブッシュ、9 サブフレーム、10a 第1内壁面、10b 第2内壁面、11 段部、13 吸入管、14 吐出管、15 チャンバー、15a 吐出孔、16a 高圧空間、16b 低圧空間、17 吐出弁、18 油溜め、19 給電部、19a カバー、19b 給電端子、19c 配線、20 平坦面、21 収容部、21a オルダム収容部、21b ブッシュ収容部、22 主軸受部、23 返油孔、24 返油管、25 スラストプレート、30 圧縮室、40 吐出ポート、41 固定側チップシール、42 固定側溝部、51 ボス部、52 揺動側チップシール、52a 対向面、52c 対向面、53 オルダム溝、54 オルダムリング、54a リング部、54b キー部、55 揺動側溝部、56 横穴、57 縦穴、58 貫通穴、59 止めねじ、60 横穴、61 斜め穴、62 給油穴、70 主軸部、71 偏心軸部、72 通油路、80 スライダ、81a バランスウェイト、90 副軸受部、91 オイルポンプ、100 スクロール圧縮機、110 冷凍サイクル装置、111 凝縮器、112 膨張弁、113 蒸発器、301 圧縮室、302 圧縮室、303 隙間。 1 shell, 1a main shell, 1b upper shell, 1c lower shell, 1d fixed base, 2 main frame, 3 compression mechanism, 4 fixed scroll, 4a fixed base plate, 4b fixed spiral protrusion, 5 swing scroll, 5a swing Base plate, 5b swinging spiral protrusion, 6 electric motor, 6a stator, 6b rotor, 7 rotating shaft, 8 bush, 9 subframe, 10a first inner wall surface, 10b second inner wall surface, 11 steps, 13 suction pipe, 14 discharge pipe, 15 chamber, 15a discharge hole, 16a high pressure space, 16b low pressure space, 17 discharge valve, 18 oil reservoir, 19 power supply part, 19a cover, 19b power supply terminal, 19c wiring, 20 flat surface, 21 accommodation part, 21a Oldham accommodating part, 21b bush accommodating part, 22 main bearing part, 23 oil return hole, 24 oil return pipe, 25 thrust plate, 30 compression chamber, 40 discharge port, 41 fixed side chip seal, 42 fixed side groove part, 51 boss part, 52 swinging side chip seal, 52a facing surface, 52c facing surface, 53 oldam groove, 54 oldam ring, 54a ring part, 54b key part, 55 swinging side groove part, 56 horizontal hole, 57 vertical hole, 58 through hole, 59 set screw , 60 horizontal hole, 61 diagonal hole, 62 refueling hole, 70 spindle part, 71 eccentric shaft part, 72 oil passage, 80 slider, 81a balance weight, 90 auxiliary bearing part, 91 oil pump, 100 scroll compressor, 110 refrigeration cycle Equipment, 111 condenser, 112 expansion valve, 113 evaporator, 301 compression chamber, 302 compression chamber, 303 gap.

Claims (8)

  1.  固定台板及び前記固定台板に形成された固定渦巻突起部を有する固定スクロールと、
     揺動台板及び前記揺動台板に形成された揺動渦巻突起部を有し、前記揺動渦巻突起部が前記固定渦巻突起部に組み合わされて圧縮室を形成する揺動スクロールと、
     前記揺動スクロールに連結され、潤滑油が流れる通油路を有する回転軸と、
     前記揺動渦巻突起部の先端部に形成された揺動側溝部に挿入された揺動側チップシールとを備え、
     前記揺動スクロールには、前記回転軸の前記通油路から流出した潤滑油を前記揺動側溝部へ供給する貫通穴が設けられており、
     前記揺動側チップシールは、前記貫通穴から前記揺動側溝部に供給された前記潤滑油により前記固定台板側に押圧されるスクロール圧縮機。
    A fixed base plate and a fixed scroll having a fixed spiral protrusion formed on the fixed base plate,
    A swing scroll having a swing base plate and a swing spiral protrusion formed on the swing base plate, and the swing spiral protrusion is combined with the fixed spiral protrusion to form a compression chamber.
    A rotating shaft connected to the swing scroll and having an oil passage through which lubricating oil flows,
    It is provided with a swinging side tip seal inserted into the swinging side groove formed at the tip of the swinging spiral protrusion.
    The swing scroll is provided with a through hole for supplying the lubricating oil flowing out from the oil passage of the rotary shaft to the swing gutter portion.
    The rocking side tip seal is a scroll compressor that is pressed toward the fixed base plate side by the lubricating oil supplied from the through hole to the rocking side groove portion.
  2.  前記揺動台板において前記揺動渦巻突起部の形成面とは反対側の面に設けられ、前記回転軸の偏心軸部が挿入された円筒形状のボス部を備え、
     前記ボス部内の空間は前記回転軸の前記通油路に連通しており、
     前記貫通穴は、前記揺動渦巻突起部に形成され、前記揺動側溝部に連通する縦穴と、前記揺動台板に形成され、前記縦穴と前記ボス部内の空間とを連通する横穴と、を有する請求項1記載のスクロール圧縮機。
    The rocking base plate is provided on a surface opposite to the surface on which the swinging spiral protrusion is formed, and has a cylindrical boss portion into which the eccentric shaft portion of the rotating shaft is inserted.
    The space inside the boss portion communicates with the oil passage of the rotating shaft.
    The through hole is a vertical hole formed in the swinging spiral protrusion portion and communicating with the swinging gutter portion, and a horizontal hole formed in the swinging base plate and communicating between the vertical hole and the space in the boss portion. The scroll compressor according to claim 1.
  3.  前記揺動側チップシールは前記揺動側溝部に前記回転軸の軸方向に移動自在に配置されており、前記縦穴から前記揺動側チップシールに供給される潤滑油により前記揺動側チップシールが前記揺動側溝部から浮き上がることで前記縦穴が連通する前記圧縮室の圧力が、前記縦穴から前記揺動側チップシールに供給される潤滑油の圧力よりも低くなるように、前記縦穴の位置が設定されている請求項2記載のスクロール圧縮機。 The swing-side chip seal is movably arranged in the swing-side groove portion in the axial direction of the rotation shaft, and the swing-side chip seal is provided with lubricating oil supplied from the vertical hole to the swing-side tip seal. The position of the vertical hole so that the pressure of the compression chamber through which the vertical hole communicates becomes lower than the pressure of the lubricating oil supplied from the vertical hole to the rocking side chip seal by floating from the swing side groove portion. The scroll compressor according to claim 2, wherein is set.
  4.  前記縦穴は、前記揺動渦巻突起部において厚み方向の中心部よりも径方向外側に寄って設けられている請求項2又は請求項3記載のスクロール圧縮機。 The scroll compressor according to claim 2 or 3, wherein the vertical hole is provided in the swinging spiral protrusion portion radially outside the central portion in the thickness direction.
  5.  前記縦穴は、前記揺動渦巻突起部において、前記潤滑油の流れの上流側から下流側にかけて径方向外側に向かって傾斜して設けられている請求項2又は請求項3記載のスクロール圧縮機。 The scroll compressor according to claim 2 or 3, wherein the vertical hole is provided at the swinging spiral protrusion portion so as to be inclined toward the outside in the radial direction from the upstream side to the downstream side of the flow of the lubricating oil.
  6.  前記縦穴は、前記偏心軸部を中心として対称の位置に2つ備えられ、前記横穴は各縦穴に対応して2つ備えられている請求項2~請求項5の何れか一項に記載のスクロール圧縮機。 The aspect according to any one of claims 2 to 5, wherein two vertical holes are provided at symmetrical positions about the eccentric shaft portion, and two horizontal holes are provided corresponding to each vertical hole. Scroll compressor.
  7.  前記揺動台板には、前記回転軸の前記通油路から流出した前記潤滑油を前記揺動スクロールのスラスト面に供給する給油穴が前記貫通穴とは独立して形成されている請求項1~請求項6の何れか一項に記載のスクロール圧縮機。 The claim that the rocking base plate is formed with a lubrication hole for supplying the lubricating oil flowing out from the oil passage of the rotating shaft to the thrust surface of the rocking scroll independently of the through hole. The scroll compressor according to any one of claims 1 to 6.
  8.  請求項1~請求項7の何れか一項に記載のスクロール圧縮機を備えた冷凍サイクル装置。 A refrigeration cycle device provided with the scroll compressor according to any one of claims 1 to 7.
PCT/JP2020/021625 2020-06-01 2020-06-01 Scroll compressor and refrigeration cycle device WO2021245754A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/021625 WO2021245754A1 (en) 2020-06-01 2020-06-01 Scroll compressor and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/021625 WO2021245754A1 (en) 2020-06-01 2020-06-01 Scroll compressor and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2021245754A1 true WO2021245754A1 (en) 2021-12-09

Family

ID=78830161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/021625 WO2021245754A1 (en) 2020-06-01 2020-06-01 Scroll compressor and refrigeration cycle device

Country Status (1)

Country Link
WO (1) WO2021245754A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04107494U (en) * 1991-01-31 1992-09-17 株式会社ゼクセル scroll fluid machine
JPH06288361A (en) * 1993-04-07 1994-10-11 Hitachi Ltd Scroll compressor
JP2005076545A (en) * 2003-09-01 2005-03-24 Matsushita Electric Ind Co Ltd Scroll compressor
JP2005147024A (en) * 2003-11-18 2005-06-09 Hitachi Ltd Scroll type fluid machine
JP2008309078A (en) * 2007-06-15 2008-12-25 Panasonic Corp Scroll compressor
JP2015048743A (en) * 2013-08-30 2015-03-16 株式会社ケーヒン Scroll-type compressor
WO2017169596A1 (en) * 2016-03-31 2017-10-05 三菱電機株式会社 Scroll compressor and refrigeration cycle device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04107494U (en) * 1991-01-31 1992-09-17 株式会社ゼクセル scroll fluid machine
JPH06288361A (en) * 1993-04-07 1994-10-11 Hitachi Ltd Scroll compressor
JP2005076545A (en) * 2003-09-01 2005-03-24 Matsushita Electric Ind Co Ltd Scroll compressor
JP2005147024A (en) * 2003-11-18 2005-06-09 Hitachi Ltd Scroll type fluid machine
JP2008309078A (en) * 2007-06-15 2008-12-25 Panasonic Corp Scroll compressor
JP2015048743A (en) * 2013-08-30 2015-03-16 株式会社ケーヒン Scroll-type compressor
WO2017169596A1 (en) * 2016-03-31 2017-10-05 三菱電機株式会社 Scroll compressor and refrigeration cycle device

Similar Documents

Publication Publication Date Title
WO2005088078A1 (en) Fluid machine
JP6444540B2 (en) Scroll compressor and refrigeration cycle apparatus
JP6896092B2 (en) Scroll compressor
KR102565824B1 (en) Scroll compressor
JP7118177B2 (en) scroll compressor
WO2021084607A1 (en) Scroll compressor and refrigeration cycle device
WO2021245754A1 (en) Scroll compressor and refrigeration cycle device
JP7076537B2 (en) Scroll compressor
WO2021186499A1 (en) Compressor
WO2023079667A1 (en) Scroll compressor and refrigeration cycle device provided with scroll compressor
WO2022059195A1 (en) Scroll compressor
WO2023119625A1 (en) Scroll compressor
JP7055245B2 (en) Scroll compressor and method for manufacturing the scroll compressor
JP2007247607A (en) Fluid machine
JP2020186672A (en) Scroll compressor and refrigeration cycle device using scroll compressor
JP7130106B2 (en) scroll compressor
WO2023135731A1 (en) Compressor suction and oil-return pipe, scroll compressor, and refrigeration cycle device
CN114072580B (en) Scroll compressor having a rotor with a rotor shaft having a rotor shaft with a
JP7170887B2 (en) scroll compressor
WO2023181173A1 (en) Scroll compressor
KR102124491B1 (en) A compressor
WO2019207784A1 (en) Scroll compressor and refrigeration cycle device
JP2008138574A (en) Scroll compressor
JPH11247771A (en) Scroll compressor
JP2009002221A (en) Scroll expander

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939232

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20939232

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP