WO2022157967A1 - Scroll compressor and refrigeration cycle device with scroll compressor - Google Patents

Scroll compressor and refrigeration cycle device with scroll compressor Download PDF

Info

Publication number
WO2022157967A1
WO2022157967A1 PCT/JP2021/002413 JP2021002413W WO2022157967A1 WO 2022157967 A1 WO2022157967 A1 WO 2022157967A1 JP 2021002413 W JP2021002413 W JP 2021002413W WO 2022157967 A1 WO2022157967 A1 WO 2022157967A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection
refrigerant
pressure
suction chamber
chamber injection
Prior art date
Application number
PCT/JP2021/002413
Other languages
French (fr)
Japanese (ja)
Inventor
俊貴 今西
浩平 達脇
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/002413 priority Critical patent/WO2022157967A1/en
Priority to DE112021006906.3T priority patent/DE112021006906T5/en
Priority to JP2022576932A priority patent/JPWO2022157967A1/ja
Publication of WO2022157967A1 publication Critical patent/WO2022157967A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0253Details concerning the base
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0253Details concerning the base
    • F04C18/0261Details of the ports, e.g. location, number, geometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • F04C29/042Heating; Cooling; Heat insulation by injecting a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • F04C2210/261Carbon dioxide (CO2)

Definitions

  • the present disclosure relates to a scroll compressor formed with an injection port and a refrigeration cycle device provided with the scroll compressor.
  • a refrigeration cycle apparatus equipped with a scroll compressor disclosed in Patent Document 1 includes an injection circuit branched from between a condenser and an expansion valve of a refrigerant circuit and connected to the scroll compressor, and an injection expansion valve provided in the injection circuit. and In the refrigeration cycle apparatus of Patent Document 1, the refrigerant in the injection circuit is decompressed by the injection expansion valve, and the decompressed liquid refrigerant is introduced into the intermediate pressure compression chamber from the intermediate chamber injection port provided in the fixed scroll.
  • the discharge temperature the temperature of the refrigerant discharged from the compression chamber
  • the injection expansion valve supplies the liquid refrigerant after decompression into the intermediate-pressure compression chamber to lower the discharge temperature.
  • the refrigerant is a refrigerant with a high operating pressure, such as carbon dioxide
  • the pressure in the compression chamber generally increases, and the pressure in the compression chamber communicating with the intermediate chamber injection port also increases.
  • the pressure in the compression chamber communicating with the intermediate chamber injection port increases, it becomes difficult to supply the liquid refrigerant from the injection circuit to the intermediate chamber injection port. Therefore, there is a problem that the flow rate of the liquid refrigerant for lowering the discharge temperature to the specified temperature or less cannot be ensured in the injection circuit, and the discharge temperature cannot be lowered to the specified temperature or less.
  • An object of the present invention is to provide a refrigerating cycle device equipped with a compressor.
  • a scroll compressor includes a fixed scroll in which a fixed scroll body is formed on a fixed base plate, and an oscillating scroll in which an oscillating scroll body is formed on an oscillating base plate.
  • An intermediate chamber injection port that opens to the high-pressure compression chamber and supplies two-phase refrigerant or supercritical refrigerant in a pressure state above the critical pressure to the intermediate-pressure compression chamber; a suction chamber injection port that opens into the provided suction chamber and supplies two-phase refrigerant or liquid refrigerant to the suction chamber.
  • a refrigeration cycle device includes a scroll compressor, a radiator, a high-pressure side pipe of a subcooling heat exchanger, a pressure reducing device, and an evaporator, which are connected to circulate the refrigerant.
  • the circuit is branched into an intermediate chamber injection circuit communicating with the intermediate chamber injection port and a suction chamber injection circuit communicating with the suction chamber injection port downstream of the low-pressure side piping of the subcooling heat exchanger.
  • the intermediate chamber injection port and the suction chamber injection port are provided on the fixed base plate, injection can be performed by appropriately switching the injection ports. Therefore, even if carbon dioxide alone or a mixed refrigerant containing carbon dioxide is used as the refrigerant, the discharge temperature can be lowered by injecting the refrigerant.
  • FIG. 1 is a schematic cross-sectional view of a scroll compressor according to Embodiment 1;
  • FIG. 2 is a schematic cross-sectional view showing a fixed scroll of the scroll compressor according to Embodiment 1;
  • FIG. 2 is a schematic plan view of a fixed scroll of the scroll compressor according to Embodiment 1;
  • FIG. 4 is an explanatory diagram of opening positions of an intermediate chamber injection port and a suction chamber injection port in the fixed scroll of the scroll compressor according to Embodiment 1.
  • FIG. 1 is a refrigerant circuit diagram showing a schematic configuration of a refrigeration cycle apparatus according to Embodiment 1;
  • FIG. 4 is a flow chart showing switching control of the injection circuit of the refrigeration cycle apparatus according to Embodiment 1.
  • FIG. 8 is a schematic cross-sectional view of a fixed scroll of a scroll compressor according to Embodiment 2;
  • FIG. 8 is a schematic plan view of a fixed scroll of a scroll compressor according to Embodiment 2;
  • FIG. 9 is an explanatory diagram of opening positions of an intermediate chamber injection port and a suction chamber injection port in a fixed scroll of a scroll compressor according to Embodiment 2;
  • FIG. 11 is an explanatory diagram of a positional relationship between a suction chamber injection port and a suction chamber in a scroll compressor according to Embodiment 3;
  • FIG. 11 is an explanatory diagram of a positional relationship between a suction chamber injection port and a compression chamber in a scroll compressor according to Embodiment 3;
  • Embodiment 1 will be described below with reference to the drawings.
  • the same reference numerals are assigned to the same or equivalent parts, and are common to the entire text of the embodiments described below.
  • the forms of the constituent elements shown in the entire specification are merely examples, and are not limited to the forms described in the specification.
  • the levels of temperature, pressure, etc. are not determined in relation to absolute values, but are relatively determined by the states and operations of systems and devices.
  • FIG. 1 is a schematic cross-sectional view of a scroll compressor according to Embodiment 1.
  • FIG. FIG. 1 shows an example of a so-called high pressure shell hermetic scroll compressor.
  • 2 is a schematic cross-sectional view showing a fixed scroll of the scroll compressor according to Embodiment 1.
  • FIG. 3 is a schematic plan view of a fixed scroll of the scroll compressor according to Embodiment 1.
  • FIG. 4 is an explanatory diagram of opening positions of an intermediate chamber injection port and a suction chamber injection port in the fixed scroll of the scroll compressor according to Embodiment 1.
  • the scroll compressor 100 has a function of sucking refrigerant, compressing it, and discharging it in a state of high temperature and high pressure.
  • refrigerant carbon dioxide (CO 2 ) alone or a mixed refrigerant containing carbon dioxide is used.
  • the scroll compressor 100 has a configuration in which a compression mechanism portion 35 having a fixed scroll 1 and an orbiting scroll 2, a drive mechanism portion 36, and other components are housed inside a shell 8, which is a closed container forming an outer shell. have.
  • the compression mechanism section 35 is arranged on the upper side
  • the drive mechanism section 36 is arranged on the lower side.
  • An oil reservoir 12 is provided below the shell 8 .
  • the shell 8 includes an upper shell 8a, a middle shell 8b and a lower shell 8c.
  • the upper shell 8a and the middle shell 8b are joined by a welded portion 80.
  • the middle shell 8b and the lower shell 8c are joined by any joining method such as welding.
  • a suction pipe 5 for sucking refrigerant is connected to the middle shell 8b of the shell 8.
  • An upper shell 8a of the shell 8 is connected with a discharge pipe 13 for discharging refrigerant, an intermediate chamber injection pipe 15-1, and a suction chamber injection pipe 15-2.
  • the frame 3 and the sub-frame 19 are arranged so as to face each other with the drive mechanism portion 36 interposed therebetween.
  • the frame 3 is arranged above the drive mechanism section 36 and positioned between the drive mechanism section 36 and the compression mechanism section 35 .
  • the subframe 19 is positioned below the drive mechanism section 36 .
  • the frame 3 and subframe 19 are fixed to the inner peripheral surface of the shell 8 by shrink fitting, welding, or the like.
  • a bearing portion 3b is provided in the central portion of the frame 3, and a sub-bearing 19a is provided in the central portion of the sub-frame 19.
  • the crankshaft 4 is rotatably supported by the bearing portion 3b and the auxiliary bearing 19a.
  • the drive mechanism portion 36 includes the stator 7, the rotor 6 fixed to the crankshaft 4, which is rotatably disposed on the inner peripheral surface side of the stator 7, and the drive mechanism portion 36 which is vertically accommodated in the shell 8 and serves as a rotation shaft. and a crankshaft 4.
  • the stator 7 has a function of rotationally driving the rotor 6 when energized.
  • the outer peripheral surface of the stator 7 is fixedly supported by the shell 8 by shrink fitting or the like.
  • the rotor 6 has a function of rotating the crankshaft 4 by being rotationally driven when the stator 7 is energized.
  • the rotor 6 is fixed to the outer periphery of the crankshaft 4, has a permanent magnet inside, and is held with a small gap between it and the stator 7. As shown in FIG.
  • the crankshaft 4 has an eccentric pin portion 4a at its upper end.
  • the eccentric pin portion 4 a is eccentric with respect to the central axis of the crankshaft 4 .
  • the eccentric pin portion 4a is inserted into a concave bearing 2d of the orbiting scroll 2, which will be described later.
  • the crankshaft 4 rotates as the rotor 6 rotates, causing the orbiting scroll 2 to make an eccentric orbiting motion.
  • An oil circuit 22 is provided inside the crankshaft 4 .
  • An oil pump 21 is fixed to the lower side of the crankshaft 4 .
  • the oil pump 21 is a positive displacement pump.
  • the oil pump 21 functions to supply the refrigerating machine oil held in the oil reservoir 12 to the concave bearing 2d and the bearing portion 3b through the oil circuit 22 inside the crankshaft 4 as the crankshaft 4 rotates.
  • an Oldham ring 20 is arranged in the shell 8 to prevent the orbiting scroll 2 from rotating during the eccentric orbiting motion.
  • the Oldham's ring 20 is disposed between the orbiting scroll 2 and the frame 3, and functions to prevent the orbiting scroll 2 from rotating on its axis and to enable the orbital movement.
  • the compression mechanism section 35 has a function of compressing the refrigerant sucked from the suction pipe 5 and discharging it into the high-pressure space 14 formed above in the shell 8 .
  • the high-pressure refrigerant discharged to the high-pressure space 14 is discharged from the discharge pipe 13 to the outside of the scroll compressor 100 .
  • the drive mechanism 36 functions to drive the orbiting scroll 2 of the compression mechanism 35 so that the compression mechanism 35 compresses the refrigerant. That is, the drive mechanism 36 drives the orbiting scroll 2 via the crankshaft 4 , thereby compressing the refrigerant in the compression mechanism 35 .
  • the compression mechanism section 35 has a fixed scroll 1 and an orbiting scroll 2 .
  • the orbiting scroll 2 is arranged on the lower side and the fixed scroll 1 is arranged on the upper side.
  • the fixed scroll 1 is fixed inside the middle shell 8b of the shell 8 via the frame 3.
  • the fixed scroll 1 has a fixed base plate 1c and a fixed spiral body 1b, which is a spiral projection formed on one surface of the fixed base plate 1c.
  • the orbiting scroll 2 has an orbiting bed plate 2c and an orbiting spiral body 2b, which is a spiral projection formed on one surface of the orbiting bed plate 2c.
  • the fixed scroll 1 and the orbiting scroll 2 are mounted inside the shell 8 in a state in which the fixed spiral body 1b and the orbiting scroll body 2b are combined with each other.
  • the fixed spiral body 1b and the oscillating spiral body 2b are formed following an involute curve.
  • a plurality of compression chambers 9 are formed between the fixed spiral body 1b and the oscillating spiral body 2b.
  • the plurality of compression chambers 9 are configured to have a plurality of pairs of compression chambers symmetrical with respect to the center of the compression mechanism portion 35 .
  • a suction chamber 3c into which the refrigerant before being taken into the plurality of compression chambers 9 flows is formed on the outer peripheral side of the plurality of compression chambers 9. As shown in FIG.
  • the orbiting scroll 2 is designed to perform an eccentric orbiting motion with respect to the fixed scroll 1 without rotating on its own axis.
  • a hollow cylindrical concave bearing 2d for receiving a driving force is formed in the substantially central portion of the surface of the orbiting scroll 2 opposite to the surface on which the orbiting spiral body 2b is formed (hereinafter referred to as the thrust surface). ing.
  • An eccentric pin portion 4a provided at the upper end of the crankshaft 4 is inserted into the concave bearing 2d.
  • a tip seal member 17a and a tip seal member 17a and a tip seal member 17a are provided along the spiral direction as indicated by the black-painted portions in FIG.
  • a seal member 17b is inserted.
  • the tip seal member 17a and the tip seal member 17b can move back and forth in the axial direction (vertical direction in FIG. 1) within the groove portion accommodating them.
  • the tip seal member 17a comes into sliding contact with the surface (tooth bottom surface) of the orbiting base plate 2c of the orbiting scroll 2.
  • the tip seal member 17b is in sliding contact with the fixed base plate 1c surface (tooth bottom surface) of the fixed scroll 1 .
  • radial gaps between adjacent compression chambers 9 are sealed.
  • a discharge port 1a is formed in the central portion of the fixed scroll 1 to discharge compressed and high-pressure refrigerant.
  • a plate spring valve 11 is arranged to cover the outlet opening and prevent the refrigerant from flowing backward.
  • a valve guard 10 is provided on one end side of the valve 11 to limit the amount of lift of the valve 11 .
  • the refrigerant compressed to a predetermined pressure in the compression chamber 9 lifts the valve 11 against its elastic force, is discharged from the discharge port 1a into the high-pressure space 14, passes through the discharge pipe 13, and exits the scroll compressor 100. It is designed to be discharged.
  • the fixed base plate 1c of the fixed scroll 1 is formed with an intermediate chamber injection pipe inlet hole 1E1 and a suction chamber injection pipe inlet hole 1E2 as shown in FIGS.
  • An intermediate chamber injection pipe inlet hole 1E1 is connected to the end of an intermediate chamber injection pipe 15-1 that penetrates through the upper shell 8a of the shell 8 and is located inside the upper shell 8a.
  • a suction chamber injection pipe 15-2 passing through the upper shell 8a of the shell 8 and positioned inside the upper shell 8a is connected to the suction chamber injection pipe inlet hole 1E2.
  • An intermediate chamber injection channel 40 is further formed on the fixed base plate 1c of the fixed scroll 1.
  • the intermediate chamber injection flow path 40 includes communication holes 41 and 42 communicating with the intermediate chamber injection pipe inlet hole 1E1, intermediate chamber injection ports 16-1-1 and 16-1-2, have The intermediate chamber injection ports 16-1-1 and 16-1-2 communicate with the communicating holes 41 and 42 and open to the pair of compression chambers 9 as shown in FIG.
  • a pair of compression chambers 9 opened by the intermediate chamber injection ports 16-1-1 and 16-1-2 are compression chambers having an intermediate pressure between the suction pressure and the discharge pressure.
  • the refrigerant supplied from the intermediate chamber injection pipe inlet hole 1E1 flows through the communication holes 41 and 42 from the intermediate chamber injection ports 16-1-1 and 16-1-2 to the pair of intermediate pressure compression chambers 9. Supplied as injection coolant.
  • the intermediate chamber injection ports 16-1-1 and 16-1-2 are provided so as to open to the pair of compression chambers 9 respectively. Therefore, when the injection refrigerant is supplied, the pressures in the pair of compression chambers 9 can be made equal to each other.
  • the number of intermediate chamber injection ports is not limited to one for each of the pair of compression chambers 9, and may be two or more. It suffices that the number of intermediate chamber injection ports opening to each of the pair of compression chambers 9 is the same. In other words, it is sufficient that the intermediate chamber injection ports are provided at least one and in the same number so as to open to each of the pair of compression chambers 9 .
  • FIG. 1 shows an example in which the intermediate chamber injection passage 40 is formed by a hole formed in the fixed scroll 1, it may be formed by a pipe independent of the fixed scroll 1.
  • the outflow side of the pipe penetrating the shell 8 may be branched in two directions, and each branched end may communicate with the intermediate chamber injection ports 16-1-1 and 16-1-2.
  • the fixed base plate 1c of the fixed scroll 1 is further formed with a suction chamber injection channel 50.
  • the suction chamber injection channel 50 is formed independently without communicating with the intermediate chamber injection channel 40 .
  • the suction chamber injection channel 50 has, as shown in FIG. 3, a communication hole 51 communicating with the suction chamber injection pipe inlet hole 1E2, and a suction chamber injection port 16-2.
  • the suction chamber injection port 16-2 opens into the suction chamber 3c as shown in FIG.
  • the suction chamber injection port 16-2 is provided at a position that opens to the suction chamber 3c but does not open to the compression chamber 9 during one rotation of the orbiting scroll 2.
  • the refrigerant supplied from the suction chamber injection pipe inlet hole 1E2 is supplied from the suction chamber injection port 16-2 to the suction chamber 3c as injection refrigerant.
  • the diameter of the suction chamber injection port 16-2 is configured to be larger than the diameters of the intermediate chamber injection ports 16-1-1 and 16-1-2. Since the intermediate chamber injection ports 16-1-1 and 16-1-2 are formed inside the spiral body, the diameters of the intermediate chamber injection ports 16-1-1 and 16-1-2 are adjusted to the size of the diameter to prevent communication between radially adjacent compression chambers. There are restrictions. On the other hand, since the suction chamber injection port 16-2 is formed outside the spiral body, there is no such limitation, the diameter can be increased, and the injected refrigerant can efficiently flow into the suction chamber 3c. .
  • the scroll compressor 100 of Embodiment 1 is configured such that two pipes, an intermediate chamber injection pipe 15-1 and a suction chamber injection pipe 15-2, pass through the upper shell 8a and are connected to the fixed base plate 1c.
  • a fixing structure is adopted in which the upper shell 8a and the middle shell 8b are fixed by fitting, high accuracy is required for alignment during assembly.
  • the upper shell 8a and the middle shell 8b are fitted together, it is necessary to establish a positional relationship in which the two pipes passing through the upper shell 8a can be connected to exactly the two injection pipe inlet holes. It is difficult in terms of manufacturing to manufacture each member with such accuracy as to form such a positional relationship.
  • the upper shell 8a and the middle shell 8b are not fitted but are set to have a dimensional relationship with a gap in the radial direction at the mutual joint portion, and the welded portion 80 (see FIG. 1). It is configured to be joined by
  • the intermediate chamber injection pipe 15-1 and the suction chamber injection pipe 15-2 are passed through the upper shell 8a.
  • the radial positions of the upper shell 8a and the fixed base plate 1c fixed to the middle shell 8b are adjusted. Specifically, the radial position of the fixed base plate 1c fixed to the upper shell 8a and the middle shell 8b is such that the end of the intermediate chamber injection pipe 15-1 is inserted into the intermediate chamber injection pipe inlet hole 1E1. to adjust.
  • the radial positions of the fixed base plate 1c fixed to the upper shell 8a and the middle shell 8b are adjusted so that the end of the suction chamber injection pipe 15-2 is inserted into the suction chamber injection pipe inlet hole 1E2. .
  • the refrigerant sucked into the shell 8 from the suction pipe 5 flows into the suction chamber 3c of the compression mechanism section 35.
  • the refrigerant that has flowed into the suction chamber 3 c is taken into the pair of compression chambers 9 on the outer circumference of the plurality of compression chambers 9 .
  • the pair of compression chambers 9, which have taken in the refrigerant move from the outer periphery toward the center as the orbiting scroll 2 moves eccentrically, thereby compressing the refrigerant.
  • the compressed refrigerant is discharged from the discharge port 1a provided in the fixed scroll 1 against the valve guard 10, and is discharged outside the shell 8 through the discharge pipe 13. As shown in FIG.
  • ⁇ Description of the refrigeration cycle device 200> 5 is a refrigerant circuit diagram showing a schematic configuration of a refrigeration cycle apparatus according to Embodiment 1.
  • FIG. Arrows in FIG. 5 indicate the flow of the coolant.
  • the refrigeration cycle device 200 is a refrigerant circuit in which a scroll compressor 100, a radiator 101, a high-pressure side pipe 104a of a supercooling heat exchanger 104, a pressure reducing device 102, an evaporator 103, and an accumulator 100a are connected. Prepare.
  • the radiator 101 is, for example, a fin-tube heat exchanger that includes a pipe through which a refrigerant flows and fins through which the pipe is inserted.
  • the radiator 101 may be a corrugated fin heat exchanger that includes a pipe through which a refrigerant flows and corrugated fins that join the pipes together.
  • the radiator 101 has a refrigerant outflow portion through which the refrigerant flows out below the refrigerant inflow portion through which the refrigerant flows in, and heat exchange is performed between the refrigerant and the air passing through the radiator 101 while allowing the refrigerant to pass through efficiently. be able to.
  • the decompression device 102 expands the refrigerant.
  • the decompression device 102 is formed of, for example, an electronic expansion valve whose degree of opening can be adjusted, or a thermal expansion valve or the like, but may be formed of a capillary tube whose degree of opening cannot be adjusted.
  • the evaporator 103 evaporates the refrigerant expanded by the decompression device 102 .
  • the evaporator 103 is, for example, a fin-tube heat exchanger including a pipe through which a refrigerant flows and fins inserted through the pipe.
  • the supercooling heat exchanger 104 includes a high-pressure side pipe 104a through which the high-pressure side refrigerant passes between the radiator 101 and the decompression device 102, and a low-pressure side refrigerant obtained by decompressing a part of the high-pressure side refrigerant by the injection expansion valve 105. and a low-pressure side pipe 104b.
  • the supercooling heat exchanger 104 performs heat exchange between the high-pressure side refrigerant and the low-pressure side refrigerant to supercool the high-pressure side refrigerant.
  • the injection expansion valve 105 expands the refrigerant and is composed of an electronic expansion valve whose opening degree can be adjusted.
  • a main circuit 113 is a circuit having the scroll compressor 100, the radiator 101, the high-pressure side pipe 104a of the subcooling heat exchanger 104, the decompression device 102, the evaporator 103, and the accumulator 100a.
  • the refrigerant that circulates through the circuit 113 is described as the main refrigerant.
  • the accumulator 100a can be omitted.
  • the refrigeration cycle device 200 further includes an injection circuit branched from between the radiator 101 and the decompression device 102 and connected to the scroll compressor 100 via the injection expansion valve 105 and the low-pressure side pipe 104b of the subcooling heat exchanger 104. 110 is provided.
  • the injection circuit 110 branches off into an intermediate chamber injection circuit 111 and a suction chamber injection circuit 112 downstream of the low-pressure side pipe 104b of the subcooling heat exchanger 104 .
  • the intermediate chamber injection circuit 111 is a circuit that supplies the refrigerant after passing through the low-pressure side pipe 104b of the supercooling heat exchanger 104 to the intermediate chamber injection pipe 15-1 of the scroll compressor 100.
  • FIG. The intermediate chamber injection circuit 111 is provided with an intermediate chamber injection on/off valve 106 for opening and closing the intermediate chamber injection circuit 111 .
  • the suction chamber injection circuit 112 is a circuit that supplies the refrigerant after passing through the low-pressure side pipe 14b of the supercooling heat exchanger 104 to the suction chamber injection pipe 15-2 of the scroll compressor 100.
  • the suction chamber injection circuit 112 is provided with a suction chamber injection opening/closing valve 107 that opens and closes the suction chamber injection circuit 112 .
  • Refrigeration cycle device 200 is filled with carbon dioxide (CO 2 ) as a refrigerant.
  • CO 2 carbon dioxide
  • a mixed refrigerant containing carbon dioxide may be used as the refrigerant.
  • the refrigeration cycle device 200 also includes a discharge temperature sensor 120 , a pressure sensor 121 and a control device 123 .
  • Discharge temperature sensor 120 measures the discharge temperature of the refrigerant discharged from scroll compressor 100 .
  • the pressure sensor 121 measures the pressure of the refrigerant between the injection expansion valve 105 in the injection circuit 110 and the low pressure side pipe 104b of the subcooling heat exchanger 104 .
  • the control device 123 controls the entire refrigeration cycle device 200 based on the measurement results of these sensors. Specifically, the control device 123 controls the opening degree of the injection expansion valve 105 based on the measurement result of the discharge temperature sensor 120 .
  • Control device 123 also controls intermediate chamber injection opening/closing valve 106 and suction chamber injection opening/closing valve 107 based on the measurement result of pressure sensor 121 . These controls will be explained again.
  • the control device 123 is composed of a microprocessor unit and is equipped with a CPU, RAM, ROM, etc. Control programs and the like are stored in the ROM. The control device 123 controls the entire refrigeration cycle device 200 according to a control program. Controller 123 is not limited to a microprocessor unit. For example, the control device 123 may be configured with something that can be updated, such as firmware. Also, the control device 123 may be a program module that is executed by a command from a CPU (not shown) or the like.
  • the main refrigerant discharged from the scroll compressor 100 passes through the radiator 101, the high-pressure side pipe 104a of the subcooling heat exchanger 104, the pressure reducing device 102, the evaporator 103, and the accumulator 100a. Return to 100.
  • the refrigerant that has flowed into the injection circuit 110 passes through the injection expansion valve 105 and flows into the low-pressure side pipe 104 b of the subcooling heat exchanger 104 .
  • the refrigerant flows into the intermediate chamber injection circuit 111 or the suction chamber injection circuit 112.
  • Refrigerant that has flowed into intermediate chamber injection circuit 111 is supplied from intermediate chamber injection ports 16-1-1 and 16-1-2 of scroll compressor 100 to a pair of intermediate pressure compression chambers 9 .
  • the refrigerant that has flowed into the suction chamber injection circuit 112 is supplied from the suction chamber injection port 16-2 of the scroll compressor 100 to the suction chamber 3c.
  • ⁇ Injection operation> In operation with a large differential pressure between high pressure and low pressure (hereinafter referred to as high compression ratio operation), the temperature of the refrigerant discharged from the discharge pipe 13 becomes high.
  • the refrigeration cycle device 200 performs an injection operation using the injection circuit 110 in order to lower the discharge temperature.
  • the injection operation includes intermediate chamber injection using the intermediate chamber injection circuit 111 and suction chamber injection using the suction chamber injection circuit 112 .
  • a two-phase refrigerant of liquid and gas or a supercritical refrigerant is supplied from the intermediate chamber injection circuit 111 to the intermediate pressure compression chamber 9 .
  • a supercritical refrigerant is a refrigerant in a pressure state equal to or higher than the critical pressure.
  • a two-phase refrigerant of liquid and gas or liquid refrigerant is supplied from the suction chamber injection circuit 112 to the suction chamber 3c.
  • the refrigerant in the suction chamber 3c can be cooled, and as a result, the discharge temperature can be lowered. Note that when suction chamber injection is performed, intermediate chamber injection is not performed. Intermediate chamber injection and suction chamber injection are performed alternatively.
  • the volume of chamber 9) is constant whether or not suction chamber injection is performed. Therefore, in the suction chamber injection, the amount of refrigerant drawn into the compression chamber 9 does not increase. Therefore, since the amount of refrigerant circulating in the main circuit 113 does not change, part of the refrigerant flowing through the main circuit 113 is allowed to flow into the suction chamber injection circuit 112, that is, by performing suction chamber injection, the refrigerant flows into the evaporator 103. The refrigerant flow rate to be applied is reduced.
  • the refrigeration cycle apparatus 200 first prioritizes lowering the discharge temperature using intermediate chamber injection when the discharge temperature exceeds a predetermined temperature.
  • carbon dioxide alone or a mixed refrigerant containing carbon dioxide is used as the refrigerant, there are cases where the discharge temperature cannot be lowered to the specified temperature or less even if intermediate chamber injection is performed. This is the case where the injection circuit pressure measured by the pressure sensor 121 exceeds a predetermined pressure. Therefore, the refrigeration cycle device 200 switches the injection from the intermediate chamber injection to the suction chamber injection when the injection circuit pressure exceeds the specified pressure.
  • the refrigeration cycle device 200 switches the injection from the intermediate chamber injection to the suction chamber injection.
  • the pressure of the injection refrigerant supply destination is lowered to the pressure of the suction chamber 3c, that is, the suction pressure.
  • the refrigeration cycle device 200 can supply the refrigerant of the suction chamber injection circuit 112 to the suction chamber 3c, and can lower the discharge temperature.
  • the injection circuit pressure exceeds the specified pressure
  • the temperature of the refrigerant passing through the low-pressure side pipe 104b of the supercooling heat exchanger 104 increases.
  • the degree of subcooling of the main refrigerant cannot be increased. Therefore, in the first embodiment, when the injection circuit pressure exceeds the specified pressure, the injection is switched from the intermediate chamber injection to the suction chamber injection, and the opening degree of the injection expansion valve 105 is reduced. By narrowing the opening of the injection expansion valve 105, the temperature of the refrigerant passing through the low-pressure side pipe 104b of the supercooling heat exchanger 104 can be lowered. Cooling can be increased.
  • FIG. 6 is a flowchart showing switching control of the injection circuit of the refrigeration cycle apparatus according to Embodiment 1.
  • the control device 123 determines whether or not the discharge temperature measured by the discharge temperature sensor 120 exceeds a specified temperature (step S1). When the discharge temperature exceeds the specified temperature (YES in step S1), the control device 123 first opens the intermediate chamber injection opening/closing valve 106 fully and the suction chamber injection opening/closing valve 107 in order to reduce the discharge temperature by the intermediate chamber injection. is fully closed (step S2). That is, the control device 123 switches the downstream circuit of the injection circuit 110 to the intermediate chamber injection circuit 111 .
  • control device 123 opens the injection expansion valve 105 so that the discharge temperature becomes equal to or lower than the specified temperature (step S3), and starts intermediate chamber injection. Subsequently, the control device 123 determines whether or not the injection circuit pressure measured by the pressure sensor 121 is equal to or lower than the predetermined pressure (step S4).
  • step S5 determines whether the discharge temperature has dropped below the specified temperature due to the start of intermediate chamber injection. In step S5, if the discharge temperature is lower than the prescribed temperature (YES in step S5), the controller 123 returns to step S1. On the other hand, if the discharge temperature has not dropped below the specified temperature (NO in step S5), the control device 123 returns to step S3 and repeats the processing of steps S3 to S5. That is, in steps S3 to S5, while the injection circuit pressure is below a specified pressure, the injection expansion valve 105 is opened, for example, by a specified degree of opening, and the intermediate chamber injection is performed until the discharge temperature becomes below the specified temperature.
  • the control device 123 When the injection circuit pressure exceeds the specified pressure (NO in step S4) while the discharge temperature does not drop below the specified temperature while the processing of steps S3 to S5 is being repeatedly performed, the control device 123 causes the injection to be interrupted. Switch from chamber injection to inhalation injection. Specifically, the control device 123 fully closes the intermediate chamber injection on/off valve 106 and fully opens the suction chamber injection on/off valve 107 (step S6). That is, the control device 123 switches the downstream circuit of the injection circuit 110 to the suction chamber injection circuit 112 . Then, the control device 123 throttles the injection expansion valve 105 by, for example, a specified degree of opening (step S7).
  • the control device 123 determines whether the discharge temperature has dropped below the specified temperature by throttling the injection expansion valve 105 (step S8). If the discharge temperature has not dropped below the specified temperature (NO in step S8), step S4 back to That is, in steps S4 and steps S6 to S8, while the injection circuit pressure exceeds the specified pressure, the injection expansion valve 105 is throttled, for example, by a specified opening, and the suction chamber injection is continued until the discharge temperature becomes equal to or lower than the specified temperature. conduct. Then, when the ejection temperature drops to the specified temperature or less (YES in step S8), the process returns to step S1 and the above processing is repeated.
  • the refrigeration cycle device 200 performs the above processing and appropriately switches between the intermediate injection and the suction injection, so that the discharge temperature is lowered to a specified temperature or less even when a single carbon dioxide refrigerant or a mixed refrigerant containing carbon dioxide is used as the refrigerant.
  • the scroll compressor 100 of Embodiment 1 is open to the intermediate pressure compression chamber 9 between the suction pressure and the discharge pressure among the plurality of compression chambers 9, and is in a two-phase refrigerant or a pressure state equal to or higher than the critical pressure.
  • Intermediate chamber injection ports 16-1-1 and 16-1-2 that supply supercritical refrigerant to intermediate-pressure compression chambers;
  • a suction chamber injection port 16-2 that opens to the suction chamber and supplies two-phase refrigerant or liquid refrigerant to the suction chamber is provided on the fixed base plate 1c.
  • the scroll compressor 100 of Embodiment 1 can perform injection by appropriately switching the injection port. Therefore, the scroll compressor 100 of the first embodiment can reduce the discharge temperature by injecting the refrigerant even when using carbon dioxide alone or a mixed refrigerant containing carbon dioxide as the refrigerant.
  • the injection pipe is connected to the suction pipe and the injection refrigerant is supplied from the suction pipe into the shell.
  • the liquid refrigerant of the two-phase refrigerant used as the injection refrigerant may drop into the oil reservoir due to its own weight without being taken into the compression mechanism, diluting the refrigerating machine oil in the oil reservoir.
  • the refrigerating machine oil is diluted with the liquid refrigerant, the viscosity of the refrigerating machine oil supplied to the bearing portion is lowered, and the reliability of the bearing portion is lowered.
  • the gas refrigerant in the suction chamber 3c can be cooled by the latent heat and sensible heat of the liquid refrigerant by directly supplying the injection refrigerant to the suction chamber 3c. . Therefore, the scroll compressor 100 of Embodiment 1 can lower the discharge temperature with a smaller injection flow rate than the conventional scroll compressor. Therefore, the scroll compressor 100 of Embodiment 1 can prevent a decrease in refrigerating capacity due to suction chamber injection more effectively than the conventional scroll compressor. Therefore, the scroll compressor 100 of Embodiment 1 does not need to increase the compressor frequency in order to secure the required refrigerating capacity, and can also suppress an increase in power consumption.
  • the scroll compressor 100 of Embodiment 1 supplies the injection refrigerant directly to the suction chamber 3c, there is little possibility that the liquid refrigerant will drop into the oil reservoir 12 and dilute the oil. Therefore, the scroll compressor 100 of Embodiment 1 can suppress deterioration of the reliability of the compressor.
  • Embodiment 2 In Embodiment 1, there is one suction chamber injection port, but in Embodiment 2, there are two suction chamber injection ports.
  • the second embodiment will be described with a focus on the configuration different from the first embodiment, and the configurations not described in the second embodiment are the same as those in the first embodiment.
  • FIG. 7 is a schematic cross-sectional view of a fixed scroll of a scroll compressor according to Embodiment 2.
  • FIG. 8 is a schematic plan view of a fixed scroll of a scroll compressor according to Embodiment 2.
  • FIG. 9 is an explanatory diagram of the opening positions of the intermediate chamber injection port and the suction chamber injection port in the fixed scroll of the scroll compressor according to Embodiment 2.
  • the scroll compressor 100 of the second embodiment replaces the single suction chamber injection port in the scroll compressor 100 of the first embodiment with two suction chamber injection ports 16-2-1 and 16-2-2. and The diameter of the suction chamber injection port 16-2-2 and the diameter of the suction chamber injection port 16-2-1 are the same, and are larger than the diameters of the intermediate chamber injection ports 16-1-1 and 16-1-2. It is
  • the suction chamber injection port 16-2-1 is located at the same position as the suction chamber injection port 16-2 of the first embodiment.
  • the suction chamber injection port 16-2-2 is positioned symmetrically with the suction chamber injection port 16-2-1 across the center of the fixed spiral body 1b, as shown in FIG.
  • the scroll compressor 100 of the second embodiment has a pair of suction chamber injection ports 16-2-1 and 16-2-2 across the center of the fixed spiral body 1b.
  • the number of suction chamber injection ports is not limited to one pair, and two or more pairs may be provided.
  • suction chamber injection flow path 50A of the second embodiment includes suction chamber injection port 16-2-2 and suction chamber injection port 16-2-2 in addition to suction chamber injection flow path 50 of the first embodiment (see FIG. 3). , and a communication hole 52 .
  • the suction chamber injection channel 50A is formed independently without communicating with the intermediate chamber injection channel 40 .
  • the scroll compressor 100 of Embodiment 2 has a pair of suction chamber injection ports 16-2-1 and 16-2-2.
  • the scroll compressor 100 of the second embodiment can supply injection refrigerant to both of the pair of suction chambers 3c during suction chamber injection.
  • the interiors of both of the pair of compression chambers 9 downstream of the pair of suction chambers 3c in the flow of refrigerant can be cooled evenly.
  • the scroll compressor 100 of the second embodiment can obtain the same effect as that of the first embodiment, and has more than one pair of suction chamber injection ports arranged symmetrically with respect to the center of the fixed spiral body 1b. effect can be obtained. That is, in the scroll compressor 100 of the second embodiment, by performing injection into both of the pair of suction chambers 3c, the inside of both of the pair of compression chambers 9 downstream of the pair of suction chambers 3c in the refrigerant flow is It can be cooled evenly. Therefore, the scroll compressor 100 of the second embodiment can suppress uneven thermal expansion of the compression mechanism portion 35 when only one of the pair of compression chambers 9 is cooled.
  • liquid refrigerant can be supplied to both of the pair of suction chambers 3c, liquid refrigerant is supplied to one of the pair of compression chambers 9 downstream of the pair of suction chambers 3c in the refrigerant flow. Concerns about uneven distribution of the refrigerant can be reduced, and spiral damage due to liquid compression can be suppressed.
  • Embodiment 3 differs from Embodiment 2 in the opening position of the suction chamber injection port.
  • the following description will focus on the configuration of the third embodiment that differs from that of the second embodiment, and the configurations not described in the third embodiment are the same as those of the second embodiment.
  • FIG. 10 is an explanatory diagram of the positional relationship between the suction chamber injection port and the suction chamber in the scroll compressor according to Embodiment 3.
  • FIG. 11 is an explanatory diagram of the positional relationship between the suction chamber injection port and the compression chamber in the scroll compressor according to Embodiment 3.
  • FIG. FIG. 11 shows a state in which the swinging spiral body 2b rotates further from the state of FIG.
  • the suction chamber injection port is provided at a position where the suction chamber injection port opens only to the suction chamber 3c during one rotation of the orbiting scroll 2 and does not open to the compression chamber 9. rice field.
  • the suction chamber injection port is positioned so that it opens to the suction chamber 3c during one rotation of the orbiting scroll 2 and continues to open even after the suction chamber 3c becomes the compression chamber 9.
  • a suction chamber injection port is provided. Specifically, the suction chamber injection ports 16-2-1a and 16-2-2a are opened to the suction chamber 3c during a part of the suction process during one rotation of the orbiting scroll 2, and the suction process is completed.
  • FIG. 10 shows how the suction chamber injection ports 16-2-1a and 16-2-2a open into the suction chamber 3c.
  • FIG. 11 shows how the suction chamber injection ports 16-2-1a and 16-2-2a open into the compression chamber 9.
  • the suction chamber injection ports 16-2-1a and 16-2-2a at the above positions, injection is performed not only during the suction stroke but also during a part of the compression stroke. can be cooled directly. Therefore, in the suction chamber injection of the third embodiment, compared with the suction chamber injection of the first and second embodiments in which injection is performed only into the suction chamber 3c, the discharge temperature can be efficiently adjusted to the prescribed temperature with a smaller injection flow rate. can be lowered to
  • the scroll compressor 100 of Embodiment 3 can obtain the same effects as those of Embodiments 1 and 2, as well as the following effects.
  • the suction chamber injection ports 16-2-1a and 16-2-2a are opened to the suction chamber 3c during a part of the suction stroke during one rotation of the orbiting scroll 2 and , is provided at a position open to the compression chamber 9 even for a part of the period after the suction stroke is completed and the compression stroke is started. Therefore, in the scroll compressor 100 of Embodiment 3, injection is performed not only during the suction stroke but also during a part of the period after the start of the compression stroke. The temperature can be lowered to below the specified temperature.
  • injection refrigerant is supplied to the compression chambers 9, so the flow rate of refrigerant discharged from the scroll compressor 100 increases.
  • the amount of refrigerant flowing into the evaporator 103 increases. Therefore, in the scroll compressor 100 of the third embodiment, even when the injection is switched from the intermediate chamber injection to the suction chamber injection of the third embodiment, it is possible to prevent the refrigerating capacity from decreasing.
  • the suction chamber injection of Embodiment 3 the refrigerant in the compression process can be directly cooled. Therefore, the suction chamber injection of the third embodiment lowers the discharge temperature to the specified temperature with a smaller injection flow rate than the suction chamber injection of the first and second embodiments, in which injection is performed only into the suction chamber 3c. be able to.
  • the intermediate chamber injection ports 16-1-1 and 16-1-2 open to the compression chamber 9 which is in the middle of the compression process and has an intermediate pressure inside.
  • the suction chamber injection ports 16-2-1a and 16-2-2a open to the compression chamber 9 in the first half of the compression stroke. Therefore, the pressure in the suction chamber injection ports 16-2-1a and 16-2-2a is lower than the pressure in the intermediate chamber injection ports 16-1-1 and 16-1-2, suppressing the pressure rise. .
  • the position of the suction chamber injection port may be provided at a position that opens not only to the suction chamber 3c but also to the compression chamber 9 for a part of the period from the start of the compression stroke. good.

Abstract

The scroll compressor comprises a fixed scroll in which a fixed spiral body is formed on a fixed base plate, and a swing scroll in which a swing spiral body is formed on a rocking base plate, and the compressor compresses a refrigerant in a plurality of compression chambers of a compression mechanism unit in which the fixed spiral body and the swing spiral body are combined. The fixed base plate is provided with an intermediate chamber injection port that is opened in a compression chamber with an intermediate pressure between a suction pressure and a discharge pressure, from among the plurality of compression chambers, and supplies a two-phase refrigerant or a supercritical refrigerant that is in a pressure state equal to or higher than a critical pressure, and a suction chamber injection port that opens into a suction chamber provided on the outer peripheral side of the plurality of compression chambers in the compression mechanism unit and supplies a two-phase refrigerant or a liquid refrigerant to the suction chamber.

Description

スクロール圧縮機およびスクロール圧縮機を備えた冷凍サイクル装置Scroll compressor and refrigeration cycle device with scroll compressor
 本開示は、インジェクションポートが形成されたスクロール圧縮機およびスクロール圧縮機を備えた冷凍サイクル装置に関するものである。 The present disclosure relates to a scroll compressor formed with an injection port and a refrigeration cycle device provided with the scroll compressor.
 従来、それぞれ渦巻体を有する固定スクロールおよび揺動スクロールが協働して圧縮室を形成するように組み合わされたスクロール圧縮機が知られている(例えば、特許文献1参照)。特許文献1のスクロール圧縮機を備えた冷凍サイクル装置は、冷媒回路の凝縮器と膨張弁との間から分岐し、スクロール圧縮機に接続されたインジェクション回路と、インジェクション回路に設けられたインジェクション膨張弁とを備えている。特許文献1の冷凍サイクル装置では、インジェクション回路の冷媒をインジェクション膨張弁で減圧し、減圧後の液冷媒を、固定スクロールに設けられた中間室インジェクションポートから中間圧の圧縮室内に流入させている。このように液冷媒を中間圧の圧縮室内に流入させることにより、圧縮室内の冷媒ガスの温度を下げ、圧縮室から吐出される冷媒の温度(以下、吐出温度という)を低下させ、効率を上げるようにしている。 Conventionally, there is known a scroll compressor in which a fixed scroll and an orbiting scroll each having a spiral body are combined to form a compression chamber (for example, see Patent Document 1). A refrigeration cycle apparatus equipped with a scroll compressor disclosed in Patent Document 1 includes an injection circuit branched from between a condenser and an expansion valve of a refrigerant circuit and connected to the scroll compressor, and an injection expansion valve provided in the injection circuit. and In the refrigeration cycle apparatus of Patent Document 1, the refrigerant in the injection circuit is decompressed by the injection expansion valve, and the decompressed liquid refrigerant is introduced into the intermediate pressure compression chamber from the intermediate chamber injection port provided in the fixed scroll. By allowing the liquid refrigerant to flow into the intermediate-pressure compression chamber in this way, the temperature of the refrigerant gas in the compression chamber is lowered, the temperature of the refrigerant discharged from the compression chamber (hereinafter referred to as the discharge temperature) is lowered, and the efficiency is increased. I'm trying
特開2012-127222号公報JP 2012-127222 A
 近年、地球温暖化防止の観点から、従来のHFC冷媒から低GWPである冷媒への移行が進んでいる。HFC冷媒より低GWPである候補冷媒として二酸化炭素等がある。二酸化炭素は、その物性上、動作圧力が高く、また吐出温度が高くなりやすい冷媒である。 In recent years, from the perspective of preventing global warming, there has been a shift from conventional HFC refrigerants to refrigerants with low GWP. Carbon dioxide and the like are candidate refrigerants that have a lower GWP than HFC refrigerants. Due to its physical properties, carbon dioxide is a refrigerant that tends to have a high operating pressure and a high discharge temperature.
 特許文献1の冷凍サイクル装置では、インジェクション膨張弁で減圧後の液冷媒を中間圧の圧縮室内に供給し、吐出温度を低下させるようにしている。しかしながら、冷媒が二酸化炭素のように動作圧力が高い冷媒の場合、圧縮室内の圧力が総じて高くなり、中間室インジェクションポートに連通した圧縮室内の圧力も高くなる。中間室インジェクションポートに連通した圧縮室内の圧力が高くなると、インジェクション回路から中間室インジェクションポートへ液冷媒を供給し難くなる。このため、インジェクション回路において吐出温度を規定温度以下に低下させるための液冷媒の流量を確保できず、吐出温度を規定温度以下に下げられないという問題があった。 In the refrigeration cycle device of Patent Document 1, the injection expansion valve supplies the liquid refrigerant after decompression into the intermediate-pressure compression chamber to lower the discharge temperature. However, when the refrigerant is a refrigerant with a high operating pressure, such as carbon dioxide, the pressure in the compression chamber generally increases, and the pressure in the compression chamber communicating with the intermediate chamber injection port also increases. When the pressure in the compression chamber communicating with the intermediate chamber injection port increases, it becomes difficult to supply the liquid refrigerant from the injection circuit to the intermediate chamber injection port. Therefore, there is a problem that the flow rate of the liquid refrigerant for lowering the discharge temperature to the specified temperature or less cannot be ensured in the injection circuit, and the discharge temperature cannot be lowered to the specified temperature or less.
 本開示はこのような点を鑑みなされたもので、冷媒として二酸化炭素単体または二酸化炭素を含む混合冷媒を用いた場合でも、冷媒のインジェクションにより吐出温度を低下させることが可能なスクロール圧縮機およびスクロール圧縮機を備えた冷凍サイクル装置を提供することを目的とする。 The present disclosure has been made in view of such points, and a scroll compressor and a scroll that can reduce the discharge temperature by injecting refrigerant even when using carbon dioxide alone or a mixed refrigerant containing carbon dioxide as a refrigerant An object of the present invention is to provide a refrigerating cycle device equipped with a compressor.
 本開示に係るスクロール圧縮機は、固定台板に固定渦巻体が形成された固定スクロールと、揺動台板に揺動渦巻体が形成された揺動スクロールとを備え、固定渦巻体と揺動渦巻体とが組み合わされた圧縮機構部の複数の圧縮室で冷媒を圧縮するスクロール圧縮機であって、固定台板には、複数の圧縮室のうち、吸入圧と吐出圧との間の中間圧の圧縮室に開口し、二相冷媒または臨界圧力以上の圧力状態にある超臨界冷媒を中間圧の圧縮室に供給する中間室インジェクションポートと、圧縮機構部において複数の圧縮室の外周側に設けられている吸入室に開口し、二相冷媒または液冷媒を吸入室に供給する吸入室インジェクションポートと、が設けられているものである。 A scroll compressor according to the present disclosure includes a fixed scroll in which a fixed scroll body is formed on a fixed base plate, and an oscillating scroll in which an oscillating scroll body is formed on an oscillating base plate. A scroll compressor for compressing a refrigerant in a plurality of compression chambers of a compression mechanism unit combined with a spiral body, wherein a fixed base plate has an intermediate pressure between the suction pressure and the discharge pressure of the plurality of compression chambers. An intermediate chamber injection port that opens to the high-pressure compression chamber and supplies two-phase refrigerant or supercritical refrigerant in a pressure state above the critical pressure to the intermediate-pressure compression chamber; a suction chamber injection port that opens into the provided suction chamber and supplies two-phase refrigerant or liquid refrigerant to the suction chamber.
 本開示に係る冷凍サイクル装置は、スクロール圧縮機と、放熱器と、過冷却熱交換器の高圧側配管と、減圧装置と、蒸発器とを備え、これらが接続されて冷媒が循環するように構成された主回路と、放熱器と減圧装置との間から分岐し、インジェクション膨張弁および過冷却熱交換器の低圧側配管を介してスクロール圧縮機に接続されるインジェクション回路と、を備え、インジェクション回路は、過冷却熱交換器の低圧側配管の下流にて、中間室インジェクションポートに連通する中間室インジェクション回路と、吸入室インジェクションポートに連通する吸入室インジェクション回路と、に分岐しているものである。 A refrigeration cycle device according to the present disclosure includes a scroll compressor, a radiator, a high-pressure side pipe of a subcooling heat exchanger, a pressure reducing device, and an evaporator, which are connected to circulate the refrigerant. a configured main circuit, and an injection circuit branched from between the radiator and the pressure reducing device and connected to the scroll compressor via the injection expansion valve and the low-pressure side piping of the subcooling heat exchanger, The circuit is branched into an intermediate chamber injection circuit communicating with the intermediate chamber injection port and a suction chamber injection circuit communicating with the suction chamber injection port downstream of the low-pressure side piping of the subcooling heat exchanger. be.
 本開示によれば、中間室インジェクションポートと吸入室インジェクションポートとが固定台板に設けられているので、適宜インジェクションポートを切り替えてインジェクションを行える。よって、冷媒として二酸化炭素単体または二酸化炭素を含む混合冷媒を用いた場合でも、冷媒のインジェクションを行って吐出温度を低下させることができる。 According to the present disclosure, since the intermediate chamber injection port and the suction chamber injection port are provided on the fixed base plate, injection can be performed by appropriately switching the injection ports. Therefore, even if carbon dioxide alone or a mixed refrigerant containing carbon dioxide is used as the refrigerant, the discharge temperature can be lowered by injecting the refrigerant.
実施の形態1に係るスクロール圧縮機の概略断面図である。1 is a schematic cross-sectional view of a scroll compressor according to Embodiment 1; FIG. 実施の形態1に係るスクロール圧縮機の固定スクロールを示す概略断面図である。2 is a schematic cross-sectional view showing a fixed scroll of the scroll compressor according to Embodiment 1; FIG. 実施の形態1に係るスクロール圧縮機の固定スクロールの概略平面図である。2 is a schematic plan view of a fixed scroll of the scroll compressor according to Embodiment 1; FIG. 実施の形態1に係るスクロール圧縮機の固定スクロールにおける中間室インジェクションポートおよび吸入室インジェクションポートの開口位置の説明図である。4 is an explanatory diagram of opening positions of an intermediate chamber injection port and a suction chamber injection port in the fixed scroll of the scroll compressor according to Embodiment 1. FIG. 実施の形態1に係る冷凍サイクル装置の概略構成を示す冷媒回路図である。1 is a refrigerant circuit diagram showing a schematic configuration of a refrigeration cycle apparatus according to Embodiment 1; FIG. 実施の形態1に係る冷凍サイクル装置のインジェクション回路の切り替え制御を示すフローチャートである。4 is a flow chart showing switching control of the injection circuit of the refrigeration cycle apparatus according to Embodiment 1. FIG. 実施の形態2に係るスクロール圧縮機の固定スクロールの概略断面図である。FIG. 8 is a schematic cross-sectional view of a fixed scroll of a scroll compressor according to Embodiment 2; 実施の形態2に係るスクロール圧縮機の固定スクロールの概略平面図である。FIG. 8 is a schematic plan view of a fixed scroll of a scroll compressor according to Embodiment 2; 実施の形態2に係るスクロール圧縮機の固定スクロールにおける中間室インジェクションポートおよび吸入室インジェクションポートの開口位置の説明図である。FIG. 9 is an explanatory diagram of opening positions of an intermediate chamber injection port and a suction chamber injection port in a fixed scroll of a scroll compressor according to Embodiment 2; 実施の形態3に係るスクロール圧縮機における吸入室インジェクションポートと吸入室との位置関係の説明図である。FIG. 11 is an explanatory diagram of a positional relationship between a suction chamber injection port and a suction chamber in a scroll compressor according to Embodiment 3; 実施の形態3に係るスクロール圧縮機における吸入室インジェクションポートと圧縮室との位置関係の説明図である。FIG. 11 is an explanatory diagram of a positional relationship between a suction chamber injection port and a compression chamber in a scroll compressor according to Embodiment 3;
<実施の形態1>
 本実施の形態1を以下、図面を用いて説明する。ここで、以下の各図面において、同一の符号を付したものは、同一またはこれに相当するものであり、以下に記載する実施の形態の全文において共通することとする。そして、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、明細書に記載された形態に限定するものではない。また、温度、圧力等の高低については、特に絶対的な値との関係で高低等が定まっているものではなく、システムおよび装置等における状態および動作等において相対的に定まるものとする。
<Embodiment 1>
Embodiment 1 will be described below with reference to the drawings. Here, in the following drawings, the same reference numerals are assigned to the same or equivalent parts, and are common to the entire text of the embodiments described below. The forms of the constituent elements shown in the entire specification are merely examples, and are not limited to the forms described in the specification. Moreover, the levels of temperature, pressure, etc. are not determined in relation to absolute values, but are relatively determined by the states and operations of systems and devices.
 図1は、実施の形態1に係るスクロール圧縮機の概略断面図である。図1には、いわゆる高圧シェル型の密閉型スクロール圧縮機である場合を例に示している。図2は、実施の形態1に係るスクロール圧縮機の固定スクロールを示す概略断面図である。図3は、実施の形態1に係るスクロール圧縮機の固定スクロールの概略平面図である。図4は、実施の形態1に係るスクロール圧縮機の固定スクロールにおける中間室インジェクションポートおよび吸入室インジェクションポートの開口位置の説明図である。 FIG. 1 is a schematic cross-sectional view of a scroll compressor according to Embodiment 1. FIG. FIG. 1 shows an example of a so-called high pressure shell hermetic scroll compressor. 2 is a schematic cross-sectional view showing a fixed scroll of the scroll compressor according to Embodiment 1. FIG. 3 is a schematic plan view of a fixed scroll of the scroll compressor according to Embodiment 1. FIG. FIG. 4 is an explanatory diagram of opening positions of an intermediate chamber injection port and a suction chamber injection port in the fixed scroll of the scroll compressor according to Embodiment 1. FIG.
 このスクロール圧縮機100は、冷媒を吸入し、圧縮して高温且つ高圧の状態として吐出させる機能を有している。冷媒としては、二酸化炭素(CO)単体または二酸化炭素を含む混合冷媒が用いられる。スクロール圧縮機100は、外郭を構成する密閉容器であるシェル8の内部に、固定スクロール1および揺動スクロール2を有する圧縮機構部35、駆動機構部36およびその他の構成部品が収納された構成を有する。図1に示すように、シェル8内において、圧縮機構部35が上側に、駆動機構部36が下側に、それぞれ配置されている。シェル8の下方は油溜り12となっている。 The scroll compressor 100 has a function of sucking refrigerant, compressing it, and discharging it in a state of high temperature and high pressure. As the refrigerant, carbon dioxide (CO 2 ) alone or a mixed refrigerant containing carbon dioxide is used. The scroll compressor 100 has a configuration in which a compression mechanism portion 35 having a fixed scroll 1 and an orbiting scroll 2, a drive mechanism portion 36, and other components are housed inside a shell 8, which is a closed container forming an outer shell. have. As shown in FIG. 1, in the shell 8, the compression mechanism section 35 is arranged on the upper side, and the drive mechanism section 36 is arranged on the lower side. An oil reservoir 12 is provided below the shell 8 .
 シェル8は、アッパーシェル8aと、ミドルシェル8bと、ロアーシェル8cと、を備えている。アッパーシェル8aとミドルシェル8bとは溶接部80により接合されている。ミドルシェル8bとロアーシェル8cとは溶接等の任意の接合方法によって接合されている。 The shell 8 includes an upper shell 8a, a middle shell 8b and a lower shell 8c. The upper shell 8a and the middle shell 8b are joined by a welded portion 80. As shown in FIG. The middle shell 8b and the lower shell 8c are joined by any joining method such as welding.
 シェル8のミドルシェル8bには、冷媒を吸入するための吸入管5が接続されている。シェル8のアッパーシェル8aには、冷媒を吐出するための吐出管13と、中間室インジェクション配管15-1と、吸入室インジェクション配管15-2と、が接続されている。 A suction pipe 5 for sucking refrigerant is connected to the middle shell 8b of the shell 8. An upper shell 8a of the shell 8 is connected with a discharge pipe 13 for discharging refrigerant, an intermediate chamber injection pipe 15-1, and a suction chamber injection pipe 15-2.
 シェル8の内部には、駆動機構部36を挟んで対向するようにフレーム3とサブフレーム19とが配置されている。フレーム3は、駆動機構部36の上側に配置されて駆動機構部36と圧縮機構部35との間に位置している。サブフレーム19は、駆動機構部36の下側に位置している。フレーム3およびサブフレーム19は、焼き嵌めまたは溶接等によってシェル8の内周面に固着されている。フレーム3の中央部には軸受部3bが設けられており、サブフレーム19の中央部には副軸受19aが設けられている。そして、この軸受部3bおよび副軸受19aにクランクシャフト4が回転自在に支持されている。 Inside the shell 8, the frame 3 and the sub-frame 19 are arranged so as to face each other with the drive mechanism portion 36 interposed therebetween. The frame 3 is arranged above the drive mechanism section 36 and positioned between the drive mechanism section 36 and the compression mechanism section 35 . The subframe 19 is positioned below the drive mechanism section 36 . The frame 3 and subframe 19 are fixed to the inner peripheral surface of the shell 8 by shrink fitting, welding, or the like. A bearing portion 3b is provided in the central portion of the frame 3, and a sub-bearing 19a is provided in the central portion of the sub-frame 19. As shown in FIG. The crankshaft 4 is rotatably supported by the bearing portion 3b and the auxiliary bearing 19a.
 駆動機構部36は、ステータ7と、ステータ7の内周面側に回転可能に配設され、クランクシャフト4に固定されたロータ6と、シェル8内に垂直方向に収容され、回転軸であるクランクシャフト4と、で少なくとも構成されている。ステータ7は、通電されることによってロータ6を回転駆動させる機能を有している。また、ステータ7は、外周面が焼き嵌め等によりシェル8に固着支持されている。ロータ6は、ステータ7に通電がされることにより回転駆動し、クランクシャフト4を回転させる機能を有している。ロータ6は、クランクシャフト4の外周に固定されており、内部に永久磁石を有し、ステータ7との間に僅かな隙間を隔てて保持されている。 The drive mechanism portion 36 includes the stator 7, the rotor 6 fixed to the crankshaft 4, which is rotatably disposed on the inner peripheral surface side of the stator 7, and the drive mechanism portion 36 which is vertically accommodated in the shell 8 and serves as a rotation shaft. and a crankshaft 4. The stator 7 has a function of rotationally driving the rotor 6 when energized. The outer peripheral surface of the stator 7 is fixedly supported by the shell 8 by shrink fitting or the like. The rotor 6 has a function of rotating the crankshaft 4 by being rotationally driven when the stator 7 is energized. The rotor 6 is fixed to the outer periphery of the crankshaft 4, has a permanent magnet inside, and is held with a small gap between it and the stator 7. As shown in FIG.
 クランクシャフト4は、上端部に偏心ピン部4aを有する。偏心ピン部4aは、クランクシャフト4の中心軸に対して偏心している。偏心ピン部4aは、揺動スクロール2の後述の凹状軸受2dに挿入されている。クランクシャフト4はロータ6の回転に伴って回転し、揺動スクロール2を偏心旋回運動させる。 The crankshaft 4 has an eccentric pin portion 4a at its upper end. The eccentric pin portion 4 a is eccentric with respect to the central axis of the crankshaft 4 . The eccentric pin portion 4a is inserted into a concave bearing 2d of the orbiting scroll 2, which will be described later. The crankshaft 4 rotates as the rotor 6 rotates, causing the orbiting scroll 2 to make an eccentric orbiting motion.
 クランクシャフト4内部には、油回路22が設けられている。クランクシャフト4の下側には、オイルポンプ21が固着されている。オイルポンプ21は容積型ポンプである。オイルポンプ21は、クランクシャフト4の回転に従い、油溜り12に保有されている冷凍機油を、クランクシャフト4内部の油回路22を通して凹状軸受2dおよび軸受部3bに供給する機能を果たすようになっている。 An oil circuit 22 is provided inside the crankshaft 4 . An oil pump 21 is fixed to the lower side of the crankshaft 4 . The oil pump 21 is a positive displacement pump. The oil pump 21 functions to supply the refrigerating machine oil held in the oil reservoir 12 to the concave bearing 2d and the bearing portion 3b through the oil circuit 22 inside the crankshaft 4 as the crankshaft 4 rotates. there is
 また、シェル8内には、揺動スクロール2の偏心旋回運動中における自転運動を阻止するためのオルダムリング20が配設されている。このオルダムリング20は、揺動スクロール2とフレーム3との間に配設され、揺動スクロール2の自転運動を阻止すると共に、公転運動を可能とする機能を果たすようになっている。 In addition, an Oldham ring 20 is arranged in the shell 8 to prevent the orbiting scroll 2 from rotating during the eccentric orbiting motion. The Oldham's ring 20 is disposed between the orbiting scroll 2 and the frame 3, and functions to prevent the orbiting scroll 2 from rotating on its axis and to enable the orbital movement.
 圧縮機構部35は、吸入管5から吸入した冷媒を圧縮し、シェル8内の上方に形成されている高圧空間14に排出する機能を有している。高圧空間14に排出された高圧冷媒は、吐出管13からスクロール圧縮機100の外部に吐出される。駆動機構部36は、圧縮機構部35で冷媒を圧縮するために、圧縮機構部35の揺動スクロール2を駆動する機能を果たすようになっている。つまり、駆動機構部36がクランクシャフト4を介して揺動スクロール2を駆動することによって、圧縮機構部35で冷媒が圧縮されるようになっている。 The compression mechanism section 35 has a function of compressing the refrigerant sucked from the suction pipe 5 and discharging it into the high-pressure space 14 formed above in the shell 8 . The high-pressure refrigerant discharged to the high-pressure space 14 is discharged from the discharge pipe 13 to the outside of the scroll compressor 100 . The drive mechanism 36 functions to drive the orbiting scroll 2 of the compression mechanism 35 so that the compression mechanism 35 compresses the refrigerant. That is, the drive mechanism 36 drives the orbiting scroll 2 via the crankshaft 4 , thereby compressing the refrigerant in the compression mechanism 35 .
 圧縮機構部35は、固定スクロール1と揺動スクロール2とを備えている。図1に示すように、揺動スクロール2は下側に、固定スクロール1は上側に配置されている。固定スクロール1は、フレーム3を介してシェル8のミドルシェル8b内に固定されている。固定スクロール1は、固定台板1cと、固定台板1cの一方の面に形成された渦巻状突起である固定渦巻体1bと、を有する。揺動スクロール2は、揺動台板2cと、揺動台板2cの一方の面に形成された渦巻状突起である揺動渦巻体2bと、を有する。 The compression mechanism section 35 has a fixed scroll 1 and an orbiting scroll 2 . As shown in FIG. 1, the orbiting scroll 2 is arranged on the lower side and the fixed scroll 1 is arranged on the upper side. The fixed scroll 1 is fixed inside the middle shell 8b of the shell 8 via the frame 3. As shown in FIG. The fixed scroll 1 has a fixed base plate 1c and a fixed spiral body 1b, which is a spiral projection formed on one surface of the fixed base plate 1c. The orbiting scroll 2 has an orbiting bed plate 2c and an orbiting spiral body 2b, which is a spiral projection formed on one surface of the orbiting bed plate 2c.
 固定スクロール1および揺動スクロール2は、固定渦巻体1bと揺動渦巻体2bとを互いに組み合わせた状態でシェル8内に装着されている。固定渦巻体1bおよび揺動渦巻体2bは、インボリュート曲線にならって形成されている。固定渦巻体1bと揺動渦巻体2bとが組み合わされることで、固定渦巻体1bと揺動渦巻体2bとの間に、複数の圧縮室9が形成されている。複数の圧縮室9は、圧縮機構部35の中心を挟んで対称な一対の圧縮室が複数対ある構成となっている。そして、圧縮機構部35において、複数の圧縮室9の外周側には、複数の圧縮室9へ取り込まれる前の冷媒が流入する吸入室3cが形成されている。 The fixed scroll 1 and the orbiting scroll 2 are mounted inside the shell 8 in a state in which the fixed spiral body 1b and the orbiting scroll body 2b are combined with each other. The fixed spiral body 1b and the oscillating spiral body 2b are formed following an involute curve. By combining the fixed spiral body 1b and the oscillating spiral body 2b, a plurality of compression chambers 9 are formed between the fixed spiral body 1b and the oscillating spiral body 2b. The plurality of compression chambers 9 are configured to have a plurality of pairs of compression chambers symmetrical with respect to the center of the compression mechanism portion 35 . In the compression mechanism portion 35, a suction chamber 3c into which the refrigerant before being taken into the plurality of compression chambers 9 flows is formed on the outer peripheral side of the plurality of compression chambers 9. As shown in FIG.
 揺動スクロール2は、固定スクロール1に対して自転することなく偏心旋回運動を行うようになっている。また、揺動スクロール2の揺動渦巻体2bの形成面とは反対側の面(以下、スラスト面と称する)の略中心部には、駆動力を受ける中空円筒形状の凹状軸受2dが形成されている。この凹状軸受2dには、クランクシャフト4の上端に設けられた偏心ピン部4aが挿入されている。 The orbiting scroll 2 is designed to perform an eccentric orbiting motion with respect to the fixed scroll 1 without rotating on its own axis. A hollow cylindrical concave bearing 2d for receiving a driving force is formed in the substantially central portion of the surface of the orbiting scroll 2 opposite to the surface on which the orbiting spiral body 2b is formed (hereinafter referred to as the thrust surface). ing. An eccentric pin portion 4a provided at the upper end of the crankshaft 4 is inserted into the concave bearing 2d.
 また、固定スクロール1の固定渦巻体1bおよび揺動スクロール2の揺動渦巻体2bのそれぞれの先端部には、図1の黒塗り部分で示すように渦巻方向に沿ってチップシール部材17aおよびチップシール部材17bが挿入されている。チップシール部材17aおよびチップシール部材17bは、これらを収納する溝部内で軸方向(図1の上下方向に)に進退可能である。そして、揺動スクロール2が固定スクロール1に対して偏心旋回運動を行うことにより、チップシール部材17aが、揺動スクロール2の揺動台板2c表面(歯底面)と摺接する。また、チップシール部材17bが、固定スクロール1の固定台板1c表面(歯底面)と摺接する。これにより、隣接する圧縮室9間の径方向の隙間がシールされるようになっている。 Further, at the distal ends of the fixed spiral body 1b of the fixed scroll 1 and the oscillating spiral body 2b of the oscillating scroll 2, respectively, a tip seal member 17a and a tip seal member 17a and a tip seal member 17a are provided along the spiral direction as indicated by the black-painted portions in FIG. A seal member 17b is inserted. The tip seal member 17a and the tip seal member 17b can move back and forth in the axial direction (vertical direction in FIG. 1) within the groove portion accommodating them. As the orbiting scroll 2 performs an eccentric orbiting motion with respect to the fixed scroll 1, the tip seal member 17a comes into sliding contact with the surface (tooth bottom surface) of the orbiting base plate 2c of the orbiting scroll 2. As shown in FIG. Also, the tip seal member 17b is in sliding contact with the fixed base plate 1c surface (tooth bottom surface) of the fixed scroll 1 . As a result, radial gaps between adjacent compression chambers 9 are sealed.
 固定スクロール1の中央部には、圧縮されて高圧となった冷媒を吐出する吐出ポート1aが形成されている。吐出ポート1aの出口開口部には、この出口開口部を覆い、冷媒の逆流を防ぐ板バネ製の弁11が配設されている。弁11の一端側には、弁11のリフト量を制限する弁押さえ10が設けられている。圧縮室9内で所定圧力まで圧縮された冷媒は、弁11をその弾性力に逆らって持ち上げ、吐出ポート1aから高圧空間14内に吐出され、吐出管13を通ってスクロール圧縮機100の外部に吐出されるようになっている。 A discharge port 1a is formed in the central portion of the fixed scroll 1 to discharge compressed and high-pressure refrigerant. At the outlet opening of the discharge port 1a, a plate spring valve 11 is arranged to cover the outlet opening and prevent the refrigerant from flowing backward. A valve guard 10 is provided on one end side of the valve 11 to limit the amount of lift of the valve 11 . The refrigerant compressed to a predetermined pressure in the compression chamber 9 lifts the valve 11 against its elastic force, is discharged from the discharge port 1a into the high-pressure space 14, passes through the discharge pipe 13, and exits the scroll compressor 100. It is designed to be discharged.
 固定スクロール1の固定台板1cには、図2および図3に示すように中間室インジェクション配管入口孔1E1と、吸入室インジェクション配管入口孔1E2と、が形成されている。中間室インジェクション配管入口孔1E1には、シェル8のアッパーシェル8aを貫通し、アッパーシェル8aの内側に位置する中間室インジェクション配管15-1の端部が接続されている。吸入室インジェクション配管入口孔1E2には、シェル8のアッパーシェル8aを貫通し、アッパーシェル8aの内側に位置する吸入室インジェクション配管15-2が接続されている。 The fixed base plate 1c of the fixed scroll 1 is formed with an intermediate chamber injection pipe inlet hole 1E1 and a suction chamber injection pipe inlet hole 1E2 as shown in FIGS. An intermediate chamber injection pipe inlet hole 1E1 is connected to the end of an intermediate chamber injection pipe 15-1 that penetrates through the upper shell 8a of the shell 8 and is located inside the upper shell 8a. A suction chamber injection pipe 15-2 passing through the upper shell 8a of the shell 8 and positioned inside the upper shell 8a is connected to the suction chamber injection pipe inlet hole 1E2.
 固定スクロール1の固定台板1cにはさらに、中間室インジェクション流路40が形成されている。中間室インジェクション流路40は、図3に示すように中間室インジェクション配管入口孔1E1に連通する連通孔41および連通孔42と、中間室インジェクションポート16-1-1および16-1-2と、を有する。中間室インジェクションポート16-1-1および16-1-2は、連通孔41および42に連通すると共に、図4に示すように一対の圧縮室9に開口している。中間室インジェクションポート16-1-1および16-1-2が開口する一対の圧縮室9は、吸入圧と吐出圧との間の中間圧となっている圧縮室である。これにより、中間室インジェクション配管入口孔1E1から供給された冷媒は、連通孔41および42を介して中間室インジェクションポート16-1-1および16-1-2から中間圧の一対の圧縮室9にインジェクション冷媒として供給される。 An intermediate chamber injection channel 40 is further formed on the fixed base plate 1c of the fixed scroll 1. As shown in FIG. 3, the intermediate chamber injection flow path 40 includes communication holes 41 and 42 communicating with the intermediate chamber injection pipe inlet hole 1E1, intermediate chamber injection ports 16-1-1 and 16-1-2, have The intermediate chamber injection ports 16-1-1 and 16-1-2 communicate with the communicating holes 41 and 42 and open to the pair of compression chambers 9 as shown in FIG. A pair of compression chambers 9 opened by the intermediate chamber injection ports 16-1-1 and 16-1-2 are compression chambers having an intermediate pressure between the suction pressure and the discharge pressure. As a result, the refrigerant supplied from the intermediate chamber injection pipe inlet hole 1E1 flows through the communication holes 41 and 42 from the intermediate chamber injection ports 16-1-1 and 16-1-2 to the pair of intermediate pressure compression chambers 9. Supplied as injection coolant.
 中間室インジェクションポート16-1-1および16-1-2は、一対の圧縮室9にそれぞれ1個ずつ開口するように設けられている。このため、インジェクション冷媒の供給が行われた際に、一対の圧縮室9の圧力を互いに等しくすることができる。中間室インジェクションポートの個数は、一対の圧縮室9のそれぞれに1個に限定されず、2個以上でもよい。一対の圧縮室9のそれぞれに開口する中間室インジェクションポートの個数が同数であればよい。つまり、中間室インジェクションポートは、一対の圧縮室9のそれぞれに開口するように1個以上且つ同数、設けられていればよい。 The intermediate chamber injection ports 16-1-1 and 16-1-2 are provided so as to open to the pair of compression chambers 9 respectively. Therefore, when the injection refrigerant is supplied, the pressures in the pair of compression chambers 9 can be made equal to each other. The number of intermediate chamber injection ports is not limited to one for each of the pair of compression chambers 9, and may be two or more. It suffices that the number of intermediate chamber injection ports opening to each of the pair of compression chambers 9 is the same. In other words, it is sufficient that the intermediate chamber injection ports are provided at least one and in the same number so as to open to each of the pair of compression chambers 9 .
 また、図1では、中間室インジェクション流路40が固定スクロール1内に形成された穴で構成された例を示しているが、固定スクロール1から独立した配管で形成してもよい。具体的には、シェル8を貫通した配管の流出側が2方向に分岐し、各分岐端部が中間室インジェクションポート16-1-1および16-1-2に連通する構成でもよい。 In addition, although FIG. 1 shows an example in which the intermediate chamber injection passage 40 is formed by a hole formed in the fixed scroll 1, it may be formed by a pipe independent of the fixed scroll 1. Specifically, the outflow side of the pipe penetrating the shell 8 may be branched in two directions, and each branched end may communicate with the intermediate chamber injection ports 16-1-1 and 16-1-2.
 また、固定スクロール1の固定台板1cにはさらに、吸入室インジェクション流路50が形成されている。吸入室インジェクション流路50は、中間室インジェクション流路40と連通せずに独立して形成されている。吸入室インジェクション流路50は、図3に示すように吸入室インジェクション配管入口孔1E2に連通する連通孔51と、吸入室インジェクションポート16-2と、を有する。吸入室インジェクションポート16-2は、図4に示すように吸入室3cに開口している。吸入室インジェクションポート16-2は、吸入室3cに開口する一方、揺動スクロール2の一回転中において圧縮室9には開口しない位置に設けられている。これにより、吸入室インジェクション配管入口孔1E2から供給された冷媒は、吸入室インジェクションポート16-2から吸入室3cにインジェクション冷媒として供給される。 In addition, the fixed base plate 1c of the fixed scroll 1 is further formed with a suction chamber injection channel 50. As shown in FIG. The suction chamber injection channel 50 is formed independently without communicating with the intermediate chamber injection channel 40 . The suction chamber injection channel 50 has, as shown in FIG. 3, a communication hole 51 communicating with the suction chamber injection pipe inlet hole 1E2, and a suction chamber injection port 16-2. The suction chamber injection port 16-2 opens into the suction chamber 3c as shown in FIG. The suction chamber injection port 16-2 is provided at a position that opens to the suction chamber 3c but does not open to the compression chamber 9 during one rotation of the orbiting scroll 2. As shown in FIG. As a result, the refrigerant supplied from the suction chamber injection pipe inlet hole 1E2 is supplied from the suction chamber injection port 16-2 to the suction chamber 3c as injection refrigerant.
 ここで、吸入室インジェクションポート16-2の径は、中間室インジェクションポート16-1-1および16-1-2の径よりも大きく構成されている。中間室インジェクションポート16-1-1および16-1-2は、渦巻体の内側に形成されるため、径方向に隣接する圧縮室同士を連通させないようにする等の理由から径の大きさに制約がある。一方、吸入室インジェクションポート16-2は、渦巻体の外側に形成されるため、このような制約がなく、径の大きさを大きくでき、インジェクション冷媒を効率良く吸入室3cに流入させることができる。 Here, the diameter of the suction chamber injection port 16-2 is configured to be larger than the diameters of the intermediate chamber injection ports 16-1-1 and 16-1-2. Since the intermediate chamber injection ports 16-1-1 and 16-1-2 are formed inside the spiral body, the diameters of the intermediate chamber injection ports 16-1-1 and 16-1-2 are adjusted to the size of the diameter to prevent communication between radially adjacent compression chambers. There are restrictions. On the other hand, since the suction chamber injection port 16-2 is formed outside the spiral body, there is no such limitation, the diameter can be increased, and the injected refrigerant can efficiently flow into the suction chamber 3c. .
<スクロール圧縮機100の組み立てについて>
 本実施の形態1のスクロール圧縮機100は、中間室インジェクション配管15-1および吸入室インジェクション配管15-2といった2つの配管をアッパーシェル8aを貫通させて固定台板1cに接続する構成である。この構成を採用したスクロール圧縮機100では、アッパーシェル8aとミドルシェル8bとを嵌め合いで固定する固定構造を採用した場合、組立時の位置合わせに高い精度が求められる。具体的には、アッパーシェル8aとミドルシェル8bとを嵌め合わせたときに、アッパーシェル8aを貫通する2つの配管が、ちょうど2つのインジェクション配管入口孔に接続できる位置関係を形成する必要がある。このような位置関係を形成できる精度で各部材を製造することは、製造上難しい。このため、本実施の形態1では、アッパーシェル8aとミドルシェル8bとを、嵌め合いではなく、互いの接合部分において径方向に隙間のある寸法関係に設定し、溶接部80(図1参照)により接合する構成としている。
<Assembly of Scroll Compressor 100>
The scroll compressor 100 of Embodiment 1 is configured such that two pipes, an intermediate chamber injection pipe 15-1 and a suction chamber injection pipe 15-2, pass through the upper shell 8a and are connected to the fixed base plate 1c. In the scroll compressor 100 adopting this configuration, if a fixing structure is adopted in which the upper shell 8a and the middle shell 8b are fixed by fitting, high accuracy is required for alignment during assembly. Specifically, when the upper shell 8a and the middle shell 8b are fitted together, it is necessary to establish a positional relationship in which the two pipes passing through the upper shell 8a can be connected to exactly the two injection pipe inlet holes. It is difficult in terms of manufacturing to manufacture each member with such accuracy as to form such a positional relationship. For this reason, in the first embodiment, the upper shell 8a and the middle shell 8b are not fitted but are set to have a dimensional relationship with a gap in the radial direction at the mutual joint portion, and the welded portion 80 (see FIG. 1). It is configured to be joined by
 そして、組み立て時には、まず、アッパーシェル8aに中間室インジェクション配管15-1と吸入室インジェクション配管15-2とを貫通させる。次に、アッパーシェル8aとミドルシェル8bに固定された固定台板1cとの径方向の位置を調整する。具体的には、中間室インジェクション配管15-1の端部が中間室インジェクション配管入口孔1E1に挿入されるようにアッパーシェル8aとミドルシェル8bに固定された固定台板1cとの径方向の位置を調整する。また、吸入室インジェクション配管15-2の端部が吸入室インジェクション配管入口孔1E2に挿入されるようにアッパーシェル8aとミドルシェル8bに固定された固定台板1cとの径方向の位置を調整する。そして、アッパーシェル8aとミドルシェル8bとの隙間を埋めるように溶接すればよい。このように、アッパーシェル8aとミドルシェル8bとの間に径方向の隙間を設け、隙間の範囲で位置を調整できる構造としておくことで、製造が容易になる。 When assembling, first, the intermediate chamber injection pipe 15-1 and the suction chamber injection pipe 15-2 are passed through the upper shell 8a. Next, the radial positions of the upper shell 8a and the fixed base plate 1c fixed to the middle shell 8b are adjusted. Specifically, the radial position of the fixed base plate 1c fixed to the upper shell 8a and the middle shell 8b is such that the end of the intermediate chamber injection pipe 15-1 is inserted into the intermediate chamber injection pipe inlet hole 1E1. to adjust. Also, the radial positions of the fixed base plate 1c fixed to the upper shell 8a and the middle shell 8b are adjusted so that the end of the suction chamber injection pipe 15-2 is inserted into the suction chamber injection pipe inlet hole 1E2. . Then, welding is performed so as to fill the gap between the upper shell 8a and the middle shell 8b. In this manner, a radial gap is provided between the upper shell 8a and the middle shell 8b, and a structure in which the position can be adjusted within the range of the gap facilitates manufacturing.
<スクロール圧縮機100の動作>
 次に、スクロール圧縮機100の動作について簡単に説明する。
 シェル8に設けられた図示省略の電源端子に通電されると、ステータ7とロータ6とにトルクが発生し、クランクシャフト4が回転する。クランクシャフト4の回転により、揺動スクロール2がオルダムリング20により自転を規制されて偏心旋回運動する。クランクシャフト4の回転により、圧縮機構部35では吸入工程、圧縮工程および吐出工程を一サイクルとして、このサイクルが繰り返される。
<Operation of Scroll Compressor 100>
Next, the operation of scroll compressor 100 will be briefly described.
When a power supply terminal (not shown) provided on the shell 8 is energized, torque is generated in the stator 7 and the rotor 6, causing the crankshaft 4 to rotate. As the crankshaft 4 rotates, the orbiting scroll 2 is eccentrically orbiting while its rotation is restricted by the Oldham's ring 20 . As the crankshaft 4 rotates, the compression mechanism 35 repeats a cycle of intake, compression and discharge steps.
 吸入工程では、吸入管5からシェル8内に吸入された冷媒が、圧縮機構部35の吸入室3cに流入する。圧縮工程では、吸入室3cに流入した冷媒が複数の圧縮室9のうち外周部の一対の圧縮室9に取り込まれる。冷媒を取り込んだ一対の圧縮室9は、揺動スクロール2の偏心旋回運動に伴い、外周部から中心方向に移動しながら容積を減じ、冷媒を圧縮する。そして、吐出工程では、圧縮された冷媒が、固定スクロール1に設けた吐出ポート1aから弁押さえ10に逆らって吐出され、吐出管13からシェル8外に排出される。 In the suction process, the refrigerant sucked into the shell 8 from the suction pipe 5 flows into the suction chamber 3c of the compression mechanism section 35. In the compression process, the refrigerant that has flowed into the suction chamber 3 c is taken into the pair of compression chambers 9 on the outer circumference of the plurality of compression chambers 9 . The pair of compression chambers 9, which have taken in the refrigerant, move from the outer periphery toward the center as the orbiting scroll 2 moves eccentrically, thereby compressing the refrigerant. In the discharge process, the compressed refrigerant is discharged from the discharge port 1a provided in the fixed scroll 1 against the valve guard 10, and is discharged outside the shell 8 through the discharge pipe 13. As shown in FIG.
<冷凍サイクル装置200の説明>
 図5は、実施の形態1に係る冷凍サイクル装置の概略構成を示す冷媒回路図である。図5において矢印は冷媒の流れを示している。
 冷凍サイクル装置200は、スクロール圧縮機100と、放熱器101と、過冷却熱交換器104の高圧側配管104aと、減圧装置102と、蒸発器103と、アキュームレータ100aと、が接続された冷媒回路を備える。
<Description of the refrigeration cycle device 200>
5 is a refrigerant circuit diagram showing a schematic configuration of a refrigeration cycle apparatus according to Embodiment 1. FIG. Arrows in FIG. 5 indicate the flow of the coolant.
The refrigeration cycle device 200 is a refrigerant circuit in which a scroll compressor 100, a radiator 101, a high-pressure side pipe 104a of a supercooling heat exchanger 104, a pressure reducing device 102, an evaporator 103, and an accumulator 100a are connected. Prepare.
 放熱器101は、例えば、冷媒が流れる配管と、配管が挿通されたフィンと、を含んで形成されたフィンチューブ式の熱交換器である。放熱器101は、冷媒が流れる配管と、配管同士を接合するコルゲートフィンと含んで形成されたコルゲートフィン熱交換器であってもよい。放熱器101は、冷媒が流入する冷媒流入部の下部に、冷媒が流出する冷媒流出部を有しており、冷媒を効率よく通過させながら冷媒と放熱器101を通過する空気とを熱交換させることができる。 The radiator 101 is, for example, a fin-tube heat exchanger that includes a pipe through which a refrigerant flows and fins through which the pipe is inserted. The radiator 101 may be a corrugated fin heat exchanger that includes a pipe through which a refrigerant flows and corrugated fins that join the pipes together. The radiator 101 has a refrigerant outflow portion through which the refrigerant flows out below the refrigerant inflow portion through which the refrigerant flows in, and heat exchange is performed between the refrigerant and the air passing through the radiator 101 while allowing the refrigerant to pass through efficiently. be able to.
 減圧装置102は、冷媒を膨張させるものである。減圧装置102、例えば開度を調整できる電子膨張弁、または温度式膨張弁等で形成されているが、開度を調整できない毛細管等で形成されてもよい。蒸発器103は減圧装置102で膨張された冷媒を蒸発させるものである。蒸発器103は、例えば、冷媒が流れる配管と、配管に挿通されたフィンと、を含んで形成されているフィンチューブ式の熱交換器である。 The decompression device 102 expands the refrigerant. The decompression device 102 is formed of, for example, an electronic expansion valve whose degree of opening can be adjusted, or a thermal expansion valve or the like, but may be formed of a capillary tube whose degree of opening cannot be adjusted. The evaporator 103 evaporates the refrigerant expanded by the decompression device 102 . The evaporator 103 is, for example, a fin-tube heat exchanger including a pipe through which a refrigerant flows and fins inserted through the pipe.
 過冷却熱交換器104は、放熱器101と減圧装置102との間の高圧側冷媒が通過する高圧側配管104aと、高圧側冷媒の一部をインジェクション膨張弁105で減圧した低圧側冷媒が通過する低圧側配管104bとを有する。過冷却熱交換器104は、高圧側冷媒と低圧側冷媒とを熱交換させて高圧側冷媒を過冷却するものである。インジェクション膨張弁105は、冷媒を膨張させるものであり、開度を調整できる電子膨張弁で構成されている。 The supercooling heat exchanger 104 includes a high-pressure side pipe 104a through which the high-pressure side refrigerant passes between the radiator 101 and the decompression device 102, and a low-pressure side refrigerant obtained by decompressing a part of the high-pressure side refrigerant by the injection expansion valve 105. and a low-pressure side pipe 104b. The supercooling heat exchanger 104 performs heat exchange between the high-pressure side refrigerant and the low-pressure side refrigerant to supercool the high-pressure side refrigerant. The injection expansion valve 105 expands the refrigerant and is composed of an electronic expansion valve whose opening degree can be adjusted.
 以下では、スクロール圧縮機100、放熱器101と、過冷却熱交換器104の高圧側配管104aと、減圧装置102と、蒸発器103と、アキュームレータ100aと、を有する回路を主回路113、この主回路113を循環する冷媒を主冷媒、と記載する。なお、ここでは、主回路113にアキュームレータ100aを備えた構成を示したが、アキュームレータ100aは省略可能である。 Below, a main circuit 113 is a circuit having the scroll compressor 100, the radiator 101, the high-pressure side pipe 104a of the subcooling heat exchanger 104, the decompression device 102, the evaporator 103, and the accumulator 100a. The refrigerant that circulates through the circuit 113 is described as the main refrigerant. Although the configuration in which the main circuit 113 is provided with the accumulator 100a is shown here, the accumulator 100a can be omitted.
 冷凍サイクル装置200はさらに、放熱器101と減圧装置102との間から分岐し、インジェクション膨張弁105および過冷却熱交換器104の低圧側配管104bを介してスクロール圧縮機100に接続されるインジェクション回路110を備えている。 The refrigeration cycle device 200 further includes an injection circuit branched from between the radiator 101 and the decompression device 102 and connected to the scroll compressor 100 via the injection expansion valve 105 and the low-pressure side pipe 104b of the subcooling heat exchanger 104. 110 is provided.
 インジェクション回路110は、過冷却熱交換器104の低圧側配管104bの下流にて、中間室インジェクション回路111と吸入室インジェクション回路112とに分岐している。中間室インジェクション回路111は、過冷却熱交換器104の低圧側配管104bを通過後の冷媒をスクロール圧縮機100の中間室インジェクション配管15-1に供給する回路である。中間室インジェクション回路111には、中間室インジェクション回路111を開閉する中間室インジェクション開閉弁106が設けられている。吸入室インジェクション回路112は、過冷却熱交換器104の低圧側配管14bを通過後の冷媒をスクロール圧縮機100の吸入室インジェクション配管15-2に供給する回路である。吸入室インジェクション回路112には、吸入室インジェクション回路112を開閉する吸入室インジェクション開閉弁107が設けられている。 The injection circuit 110 branches off into an intermediate chamber injection circuit 111 and a suction chamber injection circuit 112 downstream of the low-pressure side pipe 104b of the subcooling heat exchanger 104 . The intermediate chamber injection circuit 111 is a circuit that supplies the refrigerant after passing through the low-pressure side pipe 104b of the supercooling heat exchanger 104 to the intermediate chamber injection pipe 15-1 of the scroll compressor 100. FIG. The intermediate chamber injection circuit 111 is provided with an intermediate chamber injection on/off valve 106 for opening and closing the intermediate chamber injection circuit 111 . The suction chamber injection circuit 112 is a circuit that supplies the refrigerant after passing through the low-pressure side pipe 14b of the supercooling heat exchanger 104 to the suction chamber injection pipe 15-2 of the scroll compressor 100. FIG. The suction chamber injection circuit 112 is provided with a suction chamber injection opening/closing valve 107 that opens and closes the suction chamber injection circuit 112 .
 冷凍サイクル装置200には、冷媒として二酸化炭素(CO)が充填されている。なお、冷媒としては、二酸化炭素を含む混合冷媒を用いても良い。 Refrigeration cycle device 200 is filled with carbon dioxide (CO 2 ) as a refrigerant. A mixed refrigerant containing carbon dioxide may be used as the refrigerant.
 また、冷凍サイクル装置200は、吐出温度センサ120と、圧力センサ121と、制御装置123と、を備えている。吐出温度センサ120は、スクロール圧縮機100から吐出された冷媒の吐出温度を計測する。圧力センサ121は、インジェクション回路110におけるインジェクション膨張弁105と過冷却熱交換器104の低圧側配管104bとの間の冷媒の圧力を計測する。制御装置123は、これらのセンサの計測結果に基づいて冷凍サイクル装置200全体を制御する。具体的には、制御装置123は、吐出温度センサ120の計測結果に基づいてインジェクション膨張弁105の開度を制御する。また、制御装置123は、圧力センサ121の計測結果に基づいて中間室インジェクション開閉弁106および吸入室インジェクション開閉弁107を制御する。これらの制御については改めて説明する。 The refrigeration cycle device 200 also includes a discharge temperature sensor 120 , a pressure sensor 121 and a control device 123 . Discharge temperature sensor 120 measures the discharge temperature of the refrigerant discharged from scroll compressor 100 . The pressure sensor 121 measures the pressure of the refrigerant between the injection expansion valve 105 in the injection circuit 110 and the low pressure side pipe 104b of the subcooling heat exchanger 104 . The control device 123 controls the entire refrigeration cycle device 200 based on the measurement results of these sensors. Specifically, the control device 123 controls the opening degree of the injection expansion valve 105 based on the measurement result of the discharge temperature sensor 120 . Control device 123 also controls intermediate chamber injection opening/closing valve 106 and suction chamber injection opening/closing valve 107 based on the measurement result of pressure sensor 121 . These controls will be explained again.
 制御装置123は、マイクロプロセッサユニットにより構成され、CPU、RAMおよびROM等を備えており、ROMには制御プログラム等が記憶されている。制御装置123は、制御プログラムにしたがって冷凍サイクル装置200全体を制御する。制御装置123はマイクロプロセッサユニットに限定するものではない。例えば、制御装置123は、ファームウェア等の更新可能なもので構成されていてもよい。また、制御装置123は、プログラムモジュールであって、図示しないCPU等からの指令により、実行されるものでもよい。 The control device 123 is composed of a microprocessor unit and is equipped with a CPU, RAM, ROM, etc. Control programs and the like are stored in the ROM. The control device 123 controls the entire refrigeration cycle device 200 according to a control program. Controller 123 is not limited to a microprocessor unit. For example, the control device 123 may be configured with something that can be updated, such as firmware. Also, the control device 123 may be a program module that is executed by a command from a CPU (not shown) or the like.
 次に冷凍サイクル装置200における冷媒の流れについて説明する。 Next, the refrigerant flow in the refrigeration cycle device 200 will be described.
<主冷媒の流れ>
 主回路113では、スクロール圧縮機100から吐出された主冷媒が、放熱器101、過冷却熱交換器104の高圧側配管104a、減圧装置102、蒸発器103およびアキュームレータ100aを経由してスクロール圧縮機100に戻る。
<Flow of main refrigerant>
In the main circuit 113, the main refrigerant discharged from the scroll compressor 100 passes through the radiator 101, the high-pressure side pipe 104a of the subcooling heat exchanger 104, the pressure reducing device 102, the evaporator 103, and the accumulator 100a. Return to 100.
<インジェクション冷媒の流れ>
 スクロール圧縮機100から吐出され、放熱器101および過冷却熱交換器104の高圧側配管104aを通過した主冷媒の一部は、インジェクション回路110に流入する。インジェクション回路110に流入した冷媒は、インジェクション膨張弁105を経て過冷却熱交換器104の低圧側配管104bに流入する。過冷却熱交換器104の低圧側配管104bを通過後の冷媒は、中間室インジェクション回路111または吸入室インジェクション回路112に流入する。中間室インジェクション回路111に流入した冷媒は、スクロール圧縮機100の中間室インジェクションポート16-1-1および16-1-2から中間圧の一対の圧縮室9に供給される。吸入室インジェクション回路112に流入した冷媒は、スクロール圧縮機100の吸入室インジェクションポート16-2から吸入室3cに供給される。
<Flow of injection refrigerant>
A part of the main refrigerant discharged from the scroll compressor 100 and passed through the radiator 101 and the high-pressure side pipe 104 a of the supercooling heat exchanger 104 flows into the injection circuit 110 . The refrigerant that has flowed into the injection circuit 110 passes through the injection expansion valve 105 and flows into the low-pressure side pipe 104 b of the subcooling heat exchanger 104 . After passing through the low-pressure side pipe 104b of the subcooling heat exchanger 104, the refrigerant flows into the intermediate chamber injection circuit 111 or the suction chamber injection circuit 112. Refrigerant that has flowed into intermediate chamber injection circuit 111 is supplied from intermediate chamber injection ports 16-1-1 and 16-1-2 of scroll compressor 100 to a pair of intermediate pressure compression chambers 9 . The refrigerant that has flowed into the suction chamber injection circuit 112 is supplied from the suction chamber injection port 16-2 of the scroll compressor 100 to the suction chamber 3c.
<インジェクション動作>
 高圧低圧の差圧が大きい運転(以下、高圧縮比運転という)では、吐出管13から吐出される冷媒は高温となる。冷凍サイクル装置200は、吐出温度を低下させるため、インジェクション回路110を用いたインジェクション動作を行う。インジェクション動作には、中間室インジェクション回路111を用いた中間室インジェクションと、吸入室インジェクション回路112を用いた吸入室インジェクションと、がある。
<Injection operation>
In operation with a large differential pressure between high pressure and low pressure (hereinafter referred to as high compression ratio operation), the temperature of the refrigerant discharged from the discharge pipe 13 becomes high. The refrigeration cycle device 200 performs an injection operation using the injection circuit 110 in order to lower the discharge temperature. The injection operation includes intermediate chamber injection using the intermediate chamber injection circuit 111 and suction chamber injection using the suction chamber injection circuit 112 .
<中間室インジェクション>
 中間室インジェクションでは、中間室インジェクション回路111から液とガスとの二相冷媒または超臨界冷媒を中間圧の圧縮室9へ供給する。超臨界冷媒とは、臨界圧力以上の圧力状態にある冷媒である。中間室インジェクション回路111から二相冷媒または超臨界冷媒を中間圧の圧縮室9へ供給することで、圧縮室9内において圧縮途中の冷媒を冷却でき、吐出温度を低下させることができる。
<Intermediate Chamber Injection>
In the intermediate chamber injection, a two-phase refrigerant of liquid and gas or a supercritical refrigerant is supplied from the intermediate chamber injection circuit 111 to the intermediate pressure compression chamber 9 . A supercritical refrigerant is a refrigerant in a pressure state equal to or higher than the critical pressure. By supplying the two-phase refrigerant or supercritical refrigerant from the intermediate chamber injection circuit 111 to the intermediate pressure compression chamber 9, the refrigerant in the process of being compressed in the compression chamber 9 can be cooled, and the discharge temperature can be lowered.
<吸入室インジェクション>
 吸入室インジェクションでは、吸入室インジェクション回路112から液とガスとの二相冷媒または液冷媒を吸入室3cへ供給する。吸入室インジェクション回路112から二相冷媒または液冷媒を吸入室3cへ供給することで、吸入室3c内の冷媒を冷却でき、結果的に吐出温度を低下させることができる。なお、吸入室インジェクションが行われる場合、中間室インジェクションは行われない。中間室インジェクションと吸入室インジェクションとは択一的に行われる。
<Inhalation chamber injection>
In the suction chamber injection, a two-phase refrigerant of liquid and gas or liquid refrigerant is supplied from the suction chamber injection circuit 112 to the suction chamber 3c. By supplying the two-phase refrigerant or liquid refrigerant from the suction chamber injection circuit 112 to the suction chamber 3c, the refrigerant in the suction chamber 3c can be cooled, and as a result, the discharge temperature can be lowered. Note that when suction chamber injection is performed, intermediate chamber injection is not performed. Intermediate chamber injection and suction chamber injection are performed alternatively.
<中間室インジェクションと吸入室インジェクションとの違い>
 中間室インジェクションでは、クランクシャフト4の回転数が一定であるとき、主回路113において蒸発器103に流入する冷媒流量は一定であり、冷凍能力は保たれる。一方、吸入室インジェクションでは、クランクシャフト4の回転数が一定であっても、以下の理由から蒸発器103に流入する冷媒流量が減少するため、冷凍能力が低下する。よって、冷凍サイクル装置200では、まず中間室インジェクションを用いて吐出温度を低下させることを優先する。
<Difference between intermediate chamber injection and suction chamber injection>
In the intermediate chamber injection, when the rotational speed of the crankshaft 4 is constant, the flow rate of refrigerant flowing into the evaporator 103 in the main circuit 113 is constant and the refrigerating capacity is maintained. On the other hand, in the suction chamber injection, even if the rotational speed of the crankshaft 4 is constant, the flow rate of refrigerant flowing into the evaporator 103 decreases for the following reasons, resulting in a decrease in refrigerating capacity. Therefore, in the refrigerating cycle apparatus 200, priority is first given to lowering the discharge temperature using the intermediate chamber injection.
 ここで、吸入室インジェクションにおいて蒸発器103に流入する冷媒流量が減少する理由について説明する。比較のため、まず、中間室インジェクションにおいて蒸発器103に流入する冷媒流量が減少しない理由について説明する。中間室インジェクションでは圧縮室9に冷媒を供給するため、その供給量分だけ圧縮室9内の冷媒量が増加し、スクロール圧縮機100から吐出される冷媒量も増加する。よって、主回路113を循環する冷媒量が増加することになるため、主回路113を流れる冷媒の一部を中間室インジェクション回路111に流入させても、つまり中間室インジェクションを行っても、蒸発器103に流入する冷媒流量は減少しない。 Here, the reason why the flow rate of refrigerant flowing into the evaporator 103 decreases during suction chamber injection will be described. For comparison, first, the reason why the flow rate of refrigerant flowing into the evaporator 103 does not decrease during intermediate chamber injection will be described. Since refrigerant is supplied to the compression chamber 9 in the intermediate chamber injection, the amount of refrigerant in the compression chamber 9 increases by the amount supplied, and the amount of refrigerant discharged from the scroll compressor 100 also increases. As a result, the amount of refrigerant circulating in the main circuit 113 increases. The coolant flow into 103 does not decrease.
 一方、渦巻体の渦巻の幾何学形状によって決定される、冷媒取り込み完了時の一対の圧縮室9の容積(後述の図11の複数対の圧縮室9のうち、最も径方向外側の一対の圧縮室9の容積)は、吸入室インジェクションを行うか否かにかかわらず一定である。このため、吸入室インジェクションでは、圧縮室9に吸入される冷媒量は増えない。したがって、主回路113を循環する冷媒量は変化しないため、主回路113を流れる冷媒の一部を吸入室インジェクション回路112に流入させることで、つまり吸入室インジェクションを行うことで、蒸発器103に流入する冷媒流量が減少する。 On the other hand, the volume of the pair of compression chambers 9 at the completion of taking in the refrigerant determined by the geometric shape of the spiral of the spiral body (out of the plurality of pairs of compression chambers 9 in FIG. The volume of chamber 9) is constant whether or not suction chamber injection is performed. Therefore, in the suction chamber injection, the amount of refrigerant drawn into the compression chamber 9 does not increase. Therefore, since the amount of refrigerant circulating in the main circuit 113 does not change, part of the refrigerant flowing through the main circuit 113 is allowed to flow into the suction chamber injection circuit 112, that is, by performing suction chamber injection, the refrigerant flows into the evaporator 103. The refrigerant flow rate to be applied is reduced.
<中間室インジェクションと吸入室インジェクションとの切り替え>
 冷凍サイクル装置200は、上記の理由から、吐出温度があらかじめ設定された規定温度超となると、まずは中間室インジェクションを用いて吐出温度を低下させることを優先する。しかし、冷媒として二酸化炭素単体または二酸化炭素を含む混合冷媒を用いた場合、中間室インジェクションを行っても吐出温度を規定温度以下に低下させることができない場合がある。これは、圧力センサ121にて計測されたインジェクション回路圧力があらかじめ設定された規定圧力超となった場合である。よって、冷凍サイクル装置200は、インジェクション回路圧力が規定圧力超となった場合には、インジェクションを中間室インジェクションから吸入室インジェクションに切り替える。
<Switching between intermediate chamber injection and suction chamber injection>
For the above reasons, the refrigeration cycle apparatus 200 first prioritizes lowering the discharge temperature using intermediate chamber injection when the discharge temperature exceeds a predetermined temperature. However, when carbon dioxide alone or a mixed refrigerant containing carbon dioxide is used as the refrigerant, there are cases where the discharge temperature cannot be lowered to the specified temperature or less even if intermediate chamber injection is performed. This is the case where the injection circuit pressure measured by the pressure sensor 121 exceeds a predetermined pressure. Therefore, the refrigeration cycle device 200 switches the injection from the intermediate chamber injection to the suction chamber injection when the injection circuit pressure exceeds the specified pressure.
 インジェクション回路圧力が規定圧力超の場合、中間圧の圧縮室9の圧力も高くなっている。このため、中間室インジェクション回路111の冷媒が中間圧の圧縮室9に入っていかず、それ故、吐出温度を低下させることができない。よって、冷凍サイクル装置200は、インジェクションを中間室インジェクションから吸入室インジェクションに切り替える。インジェクションを中間室インジェクションから吸入室インジェクションに切り替えることで、インジェクション冷媒の供給先の圧力が吸入室3cの圧力、つまり吸入圧、に下がる。これにより、冷凍サイクル装置200は、吸入室インジェクション回路112の冷媒を吸入室3cに供給することができ、吐出温度を低下させることができる。 When the injection circuit pressure exceeds the specified pressure, the pressure in the intermediate pressure compression chamber 9 is also high. Therefore, the refrigerant in the intermediate chamber injection circuit 111 does not enter the intermediate pressure compression chamber 9, and therefore the discharge temperature cannot be lowered. Therefore, the refrigeration cycle device 200 switches the injection from the intermediate chamber injection to the suction chamber injection. By switching the injection from the intermediate chamber injection to the suction chamber injection, the pressure of the injection refrigerant supply destination is lowered to the pressure of the suction chamber 3c, that is, the suction pressure. Thereby, the refrigeration cycle device 200 can supply the refrigerant of the suction chamber injection circuit 112 to the suction chamber 3c, and can lower the discharge temperature.
 また、インジェクション回路圧力が規定圧力超であると、過冷却熱交換器104の低圧側配管104bを通過する冷媒の温度が高くなるため、過冷却熱交換器104の高圧側配管104aを通過後の主冷媒の過冷却度を増加させることができない。そこで、実施の形態1では、インジェクション回路圧力が規定圧力超であるとき、インジェクションを中間室インジェクションから吸入室インジェクションに切り替えると共に、インジェクション膨張弁105の開度を絞っていく。インジェクション膨張弁105の開度を絞ることで、過冷却熱交換器104の低圧側配管104bを通過する冷媒の温度を下げることができるため、過冷却熱交換器104を通過後の主冷媒の過冷却度を増加させることができる。 Further, when the injection circuit pressure exceeds the specified pressure, the temperature of the refrigerant passing through the low-pressure side pipe 104b of the supercooling heat exchanger 104 increases. The degree of subcooling of the main refrigerant cannot be increased. Therefore, in the first embodiment, when the injection circuit pressure exceeds the specified pressure, the injection is switched from the intermediate chamber injection to the suction chamber injection, and the opening degree of the injection expansion valve 105 is reduced. By narrowing the opening of the injection expansion valve 105, the temperature of the refrigerant passing through the low-pressure side pipe 104b of the supercooling heat exchanger 104 can be lowered. Cooling can be increased.
 以下、インジェクション回路110の切り替え制御の具体的な制御の流れについて説明する。 A specific control flow of switching control of the injection circuit 110 will be described below.
 図6は、実施の形態1に係る冷凍サイクル装置のインジェクション回路の切り替え制御を示すフローチャートである。
 制御装置123は、吐出温度センサ120にて計測された吐出温度が規定温度超であるかを判断する(ステップS1)。制御装置123は、吐出温度が規定温度超である場合(ステップS1でYES)、まず中間室インジェクションにて吐出温度の低下を目指すため、中間室インジェクション開閉弁106を全開、吸入室インジェクション開閉弁107を全閉とする(ステップS2)。つまり、制御装置123は、インジェクション回路110の下流側の回路を中間室インジェクション回路111に切り替える。そして、制御装置123は、吐出温度が規定温度以下となるようにインジェクション膨張弁105を開き(ステップS3)、中間室インジェクションを開始する。続いて、制御装置123は、圧力センサ121にて計測されたインジェクション回路圧力が既定圧力以下か否かを判断する(ステップS4)。
6 is a flowchart showing switching control of the injection circuit of the refrigeration cycle apparatus according to Embodiment 1. FIG.
The control device 123 determines whether or not the discharge temperature measured by the discharge temperature sensor 120 exceeds a specified temperature (step S1). When the discharge temperature exceeds the specified temperature (YES in step S1), the control device 123 first opens the intermediate chamber injection opening/closing valve 106 fully and the suction chamber injection opening/closing valve 107 in order to reduce the discharge temperature by the intermediate chamber injection. is fully closed (step S2). That is, the control device 123 switches the downstream circuit of the injection circuit 110 to the intermediate chamber injection circuit 111 . Then, the control device 123 opens the injection expansion valve 105 so that the discharge temperature becomes equal to or lower than the specified temperature (step S3), and starts intermediate chamber injection. Subsequently, the control device 123 determines whether or not the injection circuit pressure measured by the pressure sensor 121 is equal to or lower than the predetermined pressure (step S4).
 制御装置123は、インジェクション回路圧力が規定圧力以下の場合(ステップS4でYES)、中間室インジェクションの開始によって吐出温度が規定温度以下に下がったかを判断する(ステップS5)。制御装置123は、ステップS5において、吐出温度が規定温度以下に下がっていれば(ステップS5でYES)、ステップS1に戻る。一方、制御装置123は、吐出温度が規定温度以下に下がっていなければ(ステップS5でNO)、ステップS3に戻り、ステップS3~ステップS5の処理を繰り返す。つまり、ステップS3~ステップS5では、インジェクション回路圧力が規定圧力以下の間は、インジェクション膨張弁105を例えば規定開度ずつ開いていき、吐出温度が規定温度以下となるまで中間室インジェクションを行う。 When the injection circuit pressure is equal to or lower than the specified pressure (YES in step S4), the control device 123 determines whether the discharge temperature has dropped below the specified temperature due to the start of intermediate chamber injection (step S5). In step S5, if the discharge temperature is lower than the prescribed temperature (YES in step S5), the controller 123 returns to step S1. On the other hand, if the discharge temperature has not dropped below the specified temperature (NO in step S5), the control device 123 returns to step S3 and repeats the processing of steps S3 to S5. That is, in steps S3 to S5, while the injection circuit pressure is below a specified pressure, the injection expansion valve 105 is opened, for example, by a specified degree of opening, and the intermediate chamber injection is performed until the discharge temperature becomes below the specified temperature.
 ステップS3~ステップS5の処理を繰り返し行っているなか、吐出温度が規定温度以下に下がらないまま、インジェクション回路圧力が規定圧力超となった場合(ステップS4でNO)、制御装置123はインジェクションを中間室インジェクションから吸入インジェクションに切り替える。具体的には、制御装置123は中間室インジェクション開閉弁106を全閉、吸入室インジェクション開閉弁107を全開とする(ステップS6)。つまり、制御装置123は、インジェクション回路110の下流側の回路を吸入室インジェクション回路112に切り替える。そして、制御装置123は、インジェクション膨張弁105を例えば規定開度だけ絞る(ステップS7)。 When the injection circuit pressure exceeds the specified pressure (NO in step S4) while the discharge temperature does not drop below the specified temperature while the processing of steps S3 to S5 is being repeatedly performed, the control device 123 causes the injection to be interrupted. Switch from chamber injection to inhalation injection. Specifically, the control device 123 fully closes the intermediate chamber injection on/off valve 106 and fully opens the suction chamber injection on/off valve 107 (step S6). That is, the control device 123 switches the downstream circuit of the injection circuit 110 to the suction chamber injection circuit 112 . Then, the control device 123 throttles the injection expansion valve 105 by, for example, a specified degree of opening (step S7).
 制御装置123は、インジェクション膨張弁105を絞ることで吐出温度が規定温度以下に下がったかを判断し(ステップS8)、吐出温度が規定温度以下に下がっていなければ(ステップS8でNO)、ステップS4に戻る。つまり、ステップS4、ステップS6~ステップS8では、インジェクション回路圧力が規定圧力超の間は、インジェクション膨張弁105を例えば規定開度ずつ絞っていき、吐出温度が規定温度以下となるまで吸入室インジェクションを行う。そして、吐出温度が規定温度以下まで下がった場合(ステップS8でYES)、ステップS1に戻り、上記の処理を繰り返す。 The control device 123 determines whether the discharge temperature has dropped below the specified temperature by throttling the injection expansion valve 105 (step S8). If the discharge temperature has not dropped below the specified temperature (NO in step S8), step S4 back to That is, in steps S4 and steps S6 to S8, while the injection circuit pressure exceeds the specified pressure, the injection expansion valve 105 is throttled, for example, by a specified opening, and the suction chamber injection is continued until the discharge temperature becomes equal to or lower than the specified temperature. conduct. Then, when the ejection temperature drops to the specified temperature or less (YES in step S8), the process returns to step S1 and the above processing is repeated.
 冷凍サイクル装置200は、以上の処理を行い、中間インジェクションと吸入インジェクションとを適宜切り替えることで、冷媒として二酸化炭素単体または二酸化炭素を含む混合冷媒を用いた場合でも、吐出温度を規定温度以下に低下させることができる。 The refrigeration cycle device 200 performs the above processing and appropriately switches between the intermediate injection and the suction injection, so that the discharge temperature is lowered to a specified temperature or less even when a single carbon dioxide refrigerant or a mixed refrigerant containing carbon dioxide is used as the refrigerant. can be made
<実施の形態1の効果>
 実施の形態1のスクロール圧縮機100は、複数の圧縮室9のうち、吸入圧と吐出圧との間の中間圧の圧縮室9に開口し、二相冷媒または臨界圧力以上の圧力状態にある超臨界冷媒を中間圧の圧縮室に供給する中間室インジェクションポート16-1-1、16-1-2と、圧縮機構部35において複数の圧縮室9の外周側に設けられている吸入室3cに開口し、二相冷媒または液冷媒を吸入室に供給する吸入室インジェクションポート16-2と、が固定台板1cに設けられている。
<Effect of Embodiment 1>
The scroll compressor 100 of Embodiment 1 is open to the intermediate pressure compression chamber 9 between the suction pressure and the discharge pressure among the plurality of compression chambers 9, and is in a two-phase refrigerant or a pressure state equal to or higher than the critical pressure. Intermediate chamber injection ports 16-1-1 and 16-1-2 that supply supercritical refrigerant to intermediate-pressure compression chambers; A suction chamber injection port 16-2 that opens to the suction chamber and supplies two-phase refrigerant or liquid refrigerant to the suction chamber is provided on the fixed base plate 1c.
 これにより、実施の形態1のスクロール圧縮機100は、適宜、インジェクションポートを切り替えてインジェクションを行える。よって、実施の形態1のスクロール圧縮機100は、冷媒として二酸化炭素単体または二酸化炭素を含む混合冷媒を用いた場合でも、冷媒のインジェクションを行って吐出温度を低下させることができる。 As a result, the scroll compressor 100 of Embodiment 1 can perform injection by appropriately switching the injection port. Therefore, the scroll compressor 100 of the first embodiment can reduce the discharge temperature by injecting the refrigerant even when using carbon dioxide alone or a mixed refrigerant containing carbon dioxide as the refrigerant.
 ところで、従来、インジェクション配管を吸入管に接続し、吸入管からシェル内にインジェクション冷媒を供給するスクロール圧縮機がある。この従来のスクロール圧縮機では、インジェクション冷媒として用いられる二相冷媒のうちの液冷媒が、圧縮機構部に取り込まれずに自重で油溜りに落下し、油溜りの冷凍機油を希釈することがある。冷凍機油が液冷媒で希釈されると、軸受部へ供給される冷凍機油の粘度が低下し、軸受部の信頼性が低下する。 By the way, conventionally, there is a scroll compressor in which the injection pipe is connected to the suction pipe and the injection refrigerant is supplied from the suction pipe into the shell. In this conventional scroll compressor, the liquid refrigerant of the two-phase refrigerant used as the injection refrigerant may drop into the oil reservoir due to its own weight without being taken into the compression mechanism, diluting the refrigerating machine oil in the oil reservoir. When the refrigerating machine oil is diluted with the liquid refrigerant, the viscosity of the refrigerating machine oil supplied to the bearing portion is lowered, and the reliability of the bearing portion is lowered.
 これを改善すべく、アキュームレータの吸入側にインジェクション配管を接続した構成とした場合、以下の理由から冷凍能力が大幅に低下する。インジェクション配管からのインジェクション冷媒は、まずはアキュームレータに吸入される。このため、インジェクション冷媒として用いられる二相冷媒のうちの液冷媒はアキュームレータに溜まることになり、ガス冷媒のみがインジェクション冷媒としてスクロール圧縮機に供給される。この場合、ガス冷媒の顕熱のみでスクロール圧縮機に取り込まれる冷媒の温度を下げる必要があり、大量の冷媒流量が必要となり、その分、蒸発器に流れる冷媒流量が減り、冷凍能力が大幅に低下する。 In order to improve this, if an injection pipe is connected to the intake side of the accumulator, the refrigeration capacity will be greatly reduced for the following reasons. The injection refrigerant from the injection pipe is first sucked into the accumulator. Therefore, the liquid refrigerant of the two-phase refrigerant used as the injection refrigerant accumulates in the accumulator, and only the gas refrigerant is supplied to the scroll compressor as the injection refrigerant. In this case, it is necessary to lower the temperature of the refrigerant taken into the scroll compressor only by the sensible heat of the gas refrigerant, which requires a large amount of refrigerant flow. descend.
 それに対して、実施の形態1のスクロール圧縮機100では、吸入室3cに直接インジェクション冷媒を供給することで、液冷媒の潜熱と顕熱とで吸入室3c内のガス冷媒を冷却することができる。このため、実施の形態1のスクロール圧縮機100は、上記従来のスクロール圧縮機よりも少ないインジェクション流量で吐出温度を低下させることができる。よって、実施の形態1のスクロール圧縮機100は、吸入室インジェクションによる冷凍能力低下を上記従来のスクロール圧縮機よりも防ぐことができる。したがって、実施の形態1のスクロール圧縮機100は、必要な冷凍能力を確保するために圧縮機周波数を増加させる必要が無く、消費電力の増加も抑えることができる。 In contrast, in the scroll compressor 100 of Embodiment 1, the gas refrigerant in the suction chamber 3c can be cooled by the latent heat and sensible heat of the liquid refrigerant by directly supplying the injection refrigerant to the suction chamber 3c. . Therefore, the scroll compressor 100 of Embodiment 1 can lower the discharge temperature with a smaller injection flow rate than the conventional scroll compressor. Therefore, the scroll compressor 100 of Embodiment 1 can prevent a decrease in refrigerating capacity due to suction chamber injection more effectively than the conventional scroll compressor. Therefore, the scroll compressor 100 of Embodiment 1 does not need to increase the compressor frequency in order to secure the required refrigerating capacity, and can also suppress an increase in power consumption.
 また、実施の形態1のスクロール圧縮機100は、インジェクション冷媒を直接吸入室3cに供給するため、液冷媒が油溜り12へ落下して油を希釈させる可能性が少ない。よって、実施の形態1のスクロール圧縮機100は、圧縮機の信頼性を損なうことを抑制できる。 In addition, since the scroll compressor 100 of Embodiment 1 supplies the injection refrigerant directly to the suction chamber 3c, there is little possibility that the liquid refrigerant will drop into the oil reservoir 12 and dilute the oil. Therefore, the scroll compressor 100 of Embodiment 1 can suppress deterioration of the reliability of the compressor.
<実施の形態2>
 実施の形態1では、吸入室インジェクションポートが1つであったが、実施の形態2では、吸入室インジェクションポートを2つとしたものである。以下、実施の形態2が実施の形態1と異なる構成を中心に説明するものとし、実施の形態2で説明されていない構成は実施の形態1と同様である。
<Embodiment 2>
In Embodiment 1, there is one suction chamber injection port, but in Embodiment 2, there are two suction chamber injection ports. Hereinafter, the second embodiment will be described with a focus on the configuration different from the first embodiment, and the configurations not described in the second embodiment are the same as those in the first embodiment.
 図7は、実施の形態2に係るスクロール圧縮機の固定スクロールの概略断面図である。図8は、実施の形態2に係るスクロール圧縮機の固定スクロールの概略平面図である。図9は、実施の形態2に係るスクロール圧縮機の固定スクロールにおける中間室インジェクションポートおよび吸入室インジェクションポートの開口位置の説明図である。 FIG. 7 is a schematic cross-sectional view of a fixed scroll of a scroll compressor according to Embodiment 2. FIG. 8 is a schematic plan view of a fixed scroll of a scroll compressor according to Embodiment 2. FIG. FIG. 9 is an explanatory diagram of the opening positions of the intermediate chamber injection port and the suction chamber injection port in the fixed scroll of the scroll compressor according to Embodiment 2. FIG.
 実施の形態2のスクロール圧縮機100は、実施の形態1のスクロール圧縮機100において1つであった吸入室インジェクションポートを、吸入室インジェクションポート16-2-1および16-2-2の2個としたものである。吸入室インジェクションポート16-2-2の径と吸入室インジェクションポート16-2-1の径とは同じであり、中間室インジェクションポート16-1-1および16-1-2の径よりも大きく構成されている。 The scroll compressor 100 of the second embodiment replaces the single suction chamber injection port in the scroll compressor 100 of the first embodiment with two suction chamber injection ports 16-2-1 and 16-2-2. and The diameter of the suction chamber injection port 16-2-2 and the diameter of the suction chamber injection port 16-2-1 are the same, and are larger than the diameters of the intermediate chamber injection ports 16-1-1 and 16-1-2. It is
 吸入室インジェクションポート16-2-1は実施の形態1の吸入室インジェクションポート16-2と同様の位置にある。吸入室インジェクションポート16-2-2は、図9に示すように固定渦巻体1bの中心を挟んで吸入室インジェクションポート16-2-1と対称の位置にある。つまり、実施の形態2のスクロール圧縮機100は、固定渦巻体1bの中心を挟んで一対の吸入室インジェクションポート16-2-1および16-2-2を有する。なお、吸入室インジェクションポートは一対に限らず、二対以上でもよい。 The suction chamber injection port 16-2-1 is located at the same position as the suction chamber injection port 16-2 of the first embodiment. The suction chamber injection port 16-2-2 is positioned symmetrically with the suction chamber injection port 16-2-1 across the center of the fixed spiral body 1b, as shown in FIG. In other words, the scroll compressor 100 of the second embodiment has a pair of suction chamber injection ports 16-2-1 and 16-2-2 across the center of the fixed spiral body 1b. The number of suction chamber injection ports is not limited to one pair, and two or more pairs may be provided.
 図8に示すように実施の形態2の吸入室インジェクション流路50Aは、実施の形態1の吸入室インジェクション流路50(図3参照)に加えてさらに、吸入室インジェクションポート16-2-2と、連通孔52と、を有する。吸入室インジェクション流路50Aは、中間室インジェクション流路40と連通せずに独立して形成されている。 As shown in FIG. 8, suction chamber injection flow path 50A of the second embodiment includes suction chamber injection port 16-2-2 and suction chamber injection port 16-2-2 in addition to suction chamber injection flow path 50 of the first embodiment (see FIG. 3). , and a communication hole 52 . The suction chamber injection channel 50A is formed independently without communicating with the intermediate chamber injection channel 40 .
 このように実施の形態2のスクロール圧縮機100は、一対の吸入室インジェクションポート16-2-1および16-2-2を有する。これにより、実施の形態2のスクロール圧縮機100は、吸入室インジェクションの際に、一対の吸入室3cの両方にインジェクション冷媒を供給できる。その結果、一対の吸入室3cよりも冷媒の流れの下流の一対の圧縮室9の両方の内部を偏りなく冷却できる。 Thus, the scroll compressor 100 of Embodiment 2 has a pair of suction chamber injection ports 16-2-1 and 16-2-2. Thereby, the scroll compressor 100 of the second embodiment can supply injection refrigerant to both of the pair of suction chambers 3c during suction chamber injection. As a result, the interiors of both of the pair of compression chambers 9 downstream of the pair of suction chambers 3c in the flow of refrigerant can be cooled evenly.
<実施の形態2の効果>
 実施の形態2のスクロール圧縮機100は、実施の形態1と同様の効果が得られると共に、吸入室インジェクションポートを固定渦巻体1bの中心を挟んで対称に一対以上設けたことで、さらに以下の効果を得ることができる。すなわち、実施の形態2のスクロール圧縮機100は、一対の吸入室3cの両方にインジェクションを行うことで、一対の吸入室3cよりも冷媒の流れの下流の一対の圧縮室9の両方の内部を偏りなく冷却することができる。このため、実施の形態2のスクロール圧縮機100は、一対の圧縮室9の片方だけを冷却する場合の圧縮機構部35の熱膨張の偏りを抑制できる。仮に一対の圧縮室9の片方だけを冷却して圧縮機構部35の熱膨張に偏りが生じた場合、片方の圧縮室9のみ渦巻体の歯先と相手側の渦巻体の歯底とが接触して破損する可能性が生じる。しかし、実施の形態2のスクロール圧縮機100では、一対の圧縮室9の両方を冷却できるため、圧縮機構部35の熱膨張の偏りを抑制でき、上記のような破損の不都合を抑制できる。
<Effect of Embodiment 2>
The scroll compressor 100 of the second embodiment can obtain the same effect as that of the first embodiment, and has more than one pair of suction chamber injection ports arranged symmetrically with respect to the center of the fixed spiral body 1b. effect can be obtained. That is, in the scroll compressor 100 of the second embodiment, by performing injection into both of the pair of suction chambers 3c, the inside of both of the pair of compression chambers 9 downstream of the pair of suction chambers 3c in the refrigerant flow is It can be cooled evenly. Therefore, the scroll compressor 100 of the second embodiment can suppress uneven thermal expansion of the compression mechanism portion 35 when only one of the pair of compression chambers 9 is cooled. If only one of the pair of compression chambers 9 is cooled and uneven thermal expansion occurs in the compression mechanism 35, only one of the compression chambers 9 contacts the tip of the spiral body and the bottom of the spiral body of the other side. may be damaged. However, in the scroll compressor 100 of Embodiment 2, since both of the pair of compression chambers 9 can be cooled, uneven thermal expansion of the compression mechanism portion 35 can be suppressed, and the inconvenience of damage as described above can be suppressed.
 また、実施の形態2のスクロール圧縮機100では、一対の吸入室3cの両方に液冷媒を供給できるため、一対の吸入室3cよりも冷媒の流れの下流の一対の圧縮室9の片方に液冷媒が偏る懸念が少なくなり、液圧縮による渦巻破損を抑制できる。 Further, in the scroll compressor 100 of Embodiment 2, since the liquid refrigerant can be supplied to both of the pair of suction chambers 3c, liquid refrigerant is supplied to one of the pair of compression chambers 9 downstream of the pair of suction chambers 3c in the refrigerant flow. Concerns about uneven distribution of the refrigerant can be reduced, and spiral damage due to liquid compression can be suppressed.
<実施の形態3>
 実施の形態3は、吸入室インジェクションポートの開口位置が実施の形態2と異なる。以下、実施の形態3が実施の形態2と異なる構成を中心に説明するものとし、実施の形態3で説明されていない構成は実施の形態2と同様である。
<Embodiment 3>
Embodiment 3 differs from Embodiment 2 in the opening position of the suction chamber injection port. The following description will focus on the configuration of the third embodiment that differs from that of the second embodiment, and the configurations not described in the third embodiment are the same as those of the second embodiment.
 図10は、実施の形態3に係るスクロール圧縮機における吸入室インジェクションポートと吸入室との位置関係の説明図である。図11は、実施の形態3に係るスクロール圧縮機における吸入室インジェクションポートと圧縮室との位置関係の説明図である。図11は、図10の状態から揺動渦巻体2bがさらに回転して吸入室3cへの冷媒の吸入が完了し、吸入室3cが圧縮室9となった状態を示している。 FIG. 10 is an explanatory diagram of the positional relationship between the suction chamber injection port and the suction chamber in the scroll compressor according to Embodiment 3. FIG. 11 is an explanatory diagram of the positional relationship between the suction chamber injection port and the compression chamber in the scroll compressor according to Embodiment 3. FIG. FIG. 11 shows a state in which the swinging spiral body 2b rotates further from the state of FIG.
 実施の形態1および実施の形態2では、吸入室インジェクションポートが揺動スクロール2の一回転中において吸入室3cのみに開口し、圧縮室9には開口しない位置に吸入室インジェクションポートが設けられていた。これに対し、実施の形態3では、吸入室インジェクションポートが揺動スクロール2の一回転中において吸入室3cに開口すると共に、その吸入室3cが圧縮室9となってからも開口し続ける位置に吸入室インジェクションポートが設けられている。具体的には、吸入室インジェクションポート16-2-1aおよび16-2-2aは、揺動スクロール2の一回転中において吸入工程の一部期間で吸入室3cに開口すると共に、吸入工程を完了し圧縮工程を開始してからの一部期間においても圧縮室9に開口する位置に設けられている。図10は、吸入室インジェクションポート16-2-1aおよび16-2-2aが吸入室3cに開口している様子を示している。図11は、吸入室インジェクションポート16-2-1aおよび16-2-2aが圧縮室9に開口している様子を示している。 In Embodiments 1 and 2, the suction chamber injection port is provided at a position where the suction chamber injection port opens only to the suction chamber 3c during one rotation of the orbiting scroll 2 and does not open to the compression chamber 9. rice field. On the other hand, in the third embodiment, the suction chamber injection port is positioned so that it opens to the suction chamber 3c during one rotation of the orbiting scroll 2 and continues to open even after the suction chamber 3c becomes the compression chamber 9. A suction chamber injection port is provided. Specifically, the suction chamber injection ports 16-2-1a and 16-2-2a are opened to the suction chamber 3c during a part of the suction process during one rotation of the orbiting scroll 2, and the suction process is completed. However, it is provided at a position where it opens to the compression chamber 9 for a part of the period after the compression process is started. FIG. 10 shows how the suction chamber injection ports 16-2-1a and 16-2-2a open into the suction chamber 3c. FIG. 11 shows how the suction chamber injection ports 16-2-1a and 16-2-2a open into the compression chamber 9. FIG.
 以上の位置に吸入室インジェクションポート16-2-1aおよび16-2-2aが設けられていることで、吸入工程に加えて圧縮工程の一部期間においてもインジェクションが行われるため、圧縮過程の冷媒を直接冷却することができる。このため、実施の形態3の吸入室インジェクションは、吸入室3cのみにインジェクションを行う実施の形態1および実施の形態2の吸入室インジェクションに比べて、より少ないインジェクション流量で効率良く吐出温度を規定温度以下まで低下させることができる。 By providing the suction chamber injection ports 16-2-1a and 16-2-2a at the above positions, injection is performed not only during the suction stroke but also during a part of the compression stroke. can be cooled directly. Therefore, in the suction chamber injection of the third embodiment, compared with the suction chamber injection of the first and second embodiments in which injection is performed only into the suction chamber 3c, the discharge temperature can be efficiently adjusted to the prescribed temperature with a smaller injection flow rate. can be lowered to
<実施の形態3の効果>
 実施の形態3のスクロール圧縮機100は、実施の形態1および実施の形態2と同様の効果が得られると共に、以下の効果が得られる。実施の形態3のスクロール圧縮機100では、吸入室インジェクションポート16-2-1aおよび16-2-2aが揺動スクロール2の一回転中において吸入工程の一部期間で吸入室3cに開口すると共に、吸入工程を完了し圧縮工程を開始してからの一部期間においても圧縮室9に開口する位置に設けられている。このため、実施の形態3のスクロール圧縮機100では、吸入工程に加えて圧縮工程を開始してからの一部期間においてもインジェクションが行われるため、圧縮過程の冷媒を直接冷却でき、効率良く吐出温度を規定温度以下まで低下させることができる。
<Effect of Embodiment 3>
The scroll compressor 100 of Embodiment 3 can obtain the same effects as those of Embodiments 1 and 2, as well as the following effects. In the scroll compressor 100 of the third embodiment, the suction chamber injection ports 16-2-1a and 16-2-2a are opened to the suction chamber 3c during a part of the suction stroke during one rotation of the orbiting scroll 2 and , is provided at a position open to the compression chamber 9 even for a part of the period after the suction stroke is completed and the compression stroke is started. Therefore, in the scroll compressor 100 of Embodiment 3, injection is performed not only during the suction stroke but also during a part of the period after the start of the compression stroke. The temperature can be lowered to below the specified temperature.
 また、実施の形態3のスクロール圧縮機100では、圧縮室9にインジェクション冷媒の供給が行われるため、スクロール圧縮機100から吐出される冷媒流量が増える。スクロール圧縮機100から吐出される冷媒流量が増えることで、蒸発器103に流入する冷媒量が増える。よって、実施の形態3のスクロール圧縮機100では、中間室インジェクションから実施の形態3の吸入室インジェクションにインジェクションを切り替えた場合でも、冷凍能力の低下を防ぐことができる。また、実施の形態3の吸入室インジェクションでは、圧縮過程の冷媒を直接冷却することができる。このため、実施の形態3の吸入室インジェクションは、吸入室3cのみにインジェクションを行う実施の形態1および実施の形態2の吸入室インジェクションよりも、より少ないインジェクション流量で吐出温度を規定温度まで低下させることができる。 Further, in the scroll compressor 100 of Embodiment 3, injection refrigerant is supplied to the compression chambers 9, so the flow rate of refrigerant discharged from the scroll compressor 100 increases. As the flow rate of refrigerant discharged from the scroll compressor 100 increases, the amount of refrigerant flowing into the evaporator 103 increases. Therefore, in the scroll compressor 100 of the third embodiment, even when the injection is switched from the intermediate chamber injection to the suction chamber injection of the third embodiment, it is possible to prevent the refrigerating capacity from decreasing. Further, in the suction chamber injection of Embodiment 3, the refrigerant in the compression process can be directly cooled. Therefore, the suction chamber injection of the third embodiment lowers the discharge temperature to the specified temperature with a smaller injection flow rate than the suction chamber injection of the first and second embodiments, in which injection is performed only into the suction chamber 3c. be able to.
 ところで、中間室インジェクションポート16-1-1および16-1-2は、圧縮工程の中盤であって内部が中間圧の状態の圧縮室9に開口する。これに対して、吸入室インジェクションポート16-2-1aおよび16-2-2aは、圧縮工程の前半の圧縮室9に開口する。このため、吸入室インジェクションポート16-2-1aおよび16-2-2a内の圧力は、中間室インジェクションポート16-1-1および16-1-2内の圧力よりも低く、圧力上昇が抑えられる。 By the way, the intermediate chamber injection ports 16-1-1 and 16-1-2 open to the compression chamber 9 which is in the middle of the compression process and has an intermediate pressure inside. On the other hand, the suction chamber injection ports 16-2-1a and 16-2-2a open to the compression chamber 9 in the first half of the compression stroke. Therefore, the pressure in the suction chamber injection ports 16-2-1a and 16-2-2a is lower than the pressure in the intermediate chamber injection ports 16-1-1 and 16-1-2, suppressing the pressure rise. .
 なお、実施の形態3では、吸入室インジェクションポートが2つある構成の例を示したが、吸入室インジェクションポートが1つの構成でもよい。つまり、吸入室インジェクションポートが1つの構成において、吸入室インジェクションポートの位置を、吸入室3cだけでなく、圧縮工程開始からの一部期間において圧縮室9にも開口する位置に設けた構成としてもよい。 In addition, in the third embodiment, an example of a configuration with two suction chamber injection ports was shown, but a configuration with one suction chamber injection port may also be used. In other words, in a structure having one suction chamber injection port, the position of the suction chamber injection port may be provided at a position that opens not only to the suction chamber 3c but also to the compression chamber 9 for a part of the period from the start of the compression stroke. good.
 1 固定スクロール、1E1 中間室インジェクション配管入口孔、1E2 吸入室インジェクション配管入口孔、1a 吐出ポート、1b 固定渦巻体、1c 固定台板、2 揺動スクロール、2b 揺動渦巻体、2c 揺動台板、2d 凹状軸受、3 フレーム、3b 軸受部、3c 吸入室、4 クランクシャフト、4a 偏心ピン部、5 吸入管、6 ロータ、7 ステータ、8 シェル、8a アッパーシェル、8b ミドルシェル、8c ロアーシェル、9 圧縮室、10 弁押さえ、11 弁、12 油溜り、13 吐出管、14 高圧空間、15-1 中間室インジェクション配管、15-2 吸入室インジェクション配管、16-1-1 中間室インジェクションポート、16-1-2 中間室インジェクションポート、16-2 吸入室インジェクションポート、16-2-1 吸入室インジェクションポート、16-2-2 吸入室インジェクションポート、16-2-1a 吸入室インジェクションポート、16-2-2a 吸入室インジェクションポート、17a チップシール部材、17b チップシール部材、19 サブフレーム、19a 副軸受、20 オルダムリング、21 オイルポンプ、22 油回路、35 圧縮機構部、36 駆動機構部、40 中間室インジェクション流路、41 連通孔、42 連通孔、50 吸入室インジェクション流路、50A 吸入室インジェクション流路、51 連通孔、52 連通孔、80 溶接部、100 スクロール圧縮機、100a アキュームレータ、101 放熱器、102 減圧装置、103 蒸発器、104 過冷却熱交換器、104a 高圧側配管、104b 低圧側配管、105 インジェクション膨張弁、106 中間室インジェクション開閉弁、107 吸入室インジェクション開閉弁、110 インジェクション回路、111 中間室インジェクション回路、112 吸入室インジェクション回路、113 主回路、120 吐出温度センサ、121 圧力センサ、123 制御装置、200 冷凍サイクル装置。 1 Fixed scroll 1E1 Intermediate chamber injection pipe inlet hole 1E2 Suction chamber injection pipe inlet hole 1a Discharge port 1b Fixed spiral body 1c Fixed base plate 2 Oscillating scroll 2b Oscillating spiral body 2c Oscillating bedplate , 2d concave bearing, 3 frame, 3b bearing part, 3c suction chamber, 4 crankshaft, 4a eccentric pin part, 5 suction pipe, 6 rotor, 7 stator, 8 shell, 8a upper shell, 8b middle shell, 8c lower shell, 9 Compression chamber, 10 Valve retainer, 11 Valve, 12 Oil reservoir, 13 Discharge pipe, 14 High pressure space, 15-1 Intermediate chamber injection pipe, 15-2 Suction chamber injection pipe, 16-1-1 Intermediate chamber injection port, 16- 1-2 intermediate chamber injection port, 16-2 suction chamber injection port, 16-2-1 suction chamber injection port, 16-2-2 suction chamber injection port, 16-2-1a suction chamber injection port, 16-2- 2a suction chamber injection port, 17a tip seal member, 17b tip seal member, 19 subframe, 19a auxiliary bearing, 20 Oldham ring, 21 oil pump, 22 oil circuit, 35 compression mechanism, 36 drive mechanism, 40 intermediate chamber injection Flow path, 41 communication hole, 42 communication hole, 50 suction chamber injection flow path, 50A suction chamber injection flow path, 51 communication hole, 52 communication hole, 80 welding part, 100 scroll compressor, 100a accumulator, 101 radiator, 102 Pressure reducing device, 103 evaporator, 104 supercooling heat exchanger, 104a high pressure side pipe, 104b low pressure side pipe, 105 injection expansion valve, 106 intermediate chamber injection on/off valve, 107 suction chamber injection on/off valve, 110 injection circuit, 111 intermediate chamber Injection circuit, 112 suction chamber injection circuit, 113 main circuit, 120 discharge temperature sensor, 121 pressure sensor, 123 control device, 200 refrigeration cycle device.

Claims (8)

  1.  固定台板に固定渦巻体が形成された固定スクロールと、揺動台板に揺動渦巻体が形成された揺動スクロールとを備え、前記固定渦巻体と前記揺動渦巻体とが組み合わされた圧縮機構部の複数の圧縮室で冷媒を圧縮するスクロール圧縮機であって、
     前記固定台板には、
     前記複数の圧縮室のうち、吸入圧と吐出圧との間の中間圧の圧縮室に開口し、二相冷媒または臨界圧力以上の圧力状態にある超臨界冷媒を前記中間圧の圧縮室に供給する中間室インジェクションポートと、
     前記圧縮機構部において前記複数の圧縮室の外周側に設けられている吸入室に開口し、二相冷媒または液冷媒を前記吸入室に供給する吸入室インジェクションポートと、
    が設けられているスクロール圧縮機。
    A fixed scroll having a fixed spiral body formed on a fixed bed plate and an oscillating scroll having an oscillating spiral body formed on an oscillating bed plate are provided, and the fixed spiral body and the oscillating spiral body are combined. A scroll compressor that compresses refrigerant in a plurality of compression chambers of a compression mechanism,
    The fixed base plate includes:
    Among the plurality of compression chambers, an intermediate pressure compression chamber between a suction pressure and a discharge pressure is opened, and a two-phase refrigerant or a supercritical refrigerant in a pressure state equal to or higher than a critical pressure is supplied to the intermediate pressure compression chamber. an intermediate chamber injection port to
    a suction chamber injection port that opens to a suction chamber provided on the outer peripheral side of the plurality of compression chambers in the compression mechanism and supplies two-phase refrigerant or liquid refrigerant to the suction chamber;
    scroll compressor.
  2.  前記吸入室インジェクションポートは、前記固定渦巻体の中心を挟んで対称に一対以上前記固定台板に設けられている請求項1に記載のスクロール圧縮機。 The scroll compressor according to claim 1, wherein one or more pairs of said suction chamber injection ports are provided on said fixed base plate symmetrically with respect to the center of said fixed spiral body.
  3.  前記吸入室インジェクションポートは、前記揺動スクロールの一回転中において吸入工程の一部期間で前記吸入室に開口すると共に、前記吸入工程を完了し圧縮工程を開始してからの一部期間において前記圧縮室に開口する位置に設けられている請求項1または請求項2に記載のスクロール圧縮機。 The suction chamber injection port opens into the suction chamber during a partial period of the suction process during one rotation of the orbiting scroll, and during a partial period after the completion of the suction process and the start of the compression process. 3. The scroll compressor according to claim 1, wherein the scroll compressor is provided at a position opening to the compression chamber.
  4.  前記複数の圧縮室は、前記固定渦巻体の中心を挟んで対称な一対の圧縮室を有しており、前記中間室インジェクションポートは、前記一対の圧縮室のそれぞれに開口するように1個以上且つ同数、前記固定台板に設けられている請求項1~請求項3のいずれか一項に記載のスクロール圧縮機。 The plurality of compression chambers have a pair of compression chambers symmetrical about the center of the stationary spiral body, and the intermediate chamber injection port is at least one so as to open to each of the pair of compression chambers. 4. The scroll compressor according to any one of claims 1 to 3, wherein the same number of the scroll compressors are provided on the fixed base plate.
  5.  前記冷媒は、二酸化炭素単体または二酸化炭素を含む混合冷媒である請求項1~請求項4のいずれか一項に記載のスクロール圧縮機。 The scroll compressor according to any one of claims 1 to 4, wherein the refrigerant is carbon dioxide alone or a mixed refrigerant containing carbon dioxide.
  6.  前記固定スクロールおよび前記揺動スクロールを収納するシェルであって、アッパーシェルと、前記アッパーシェルに接合され、前記固定スクロールが固定されたミドルシェルとを有するシェルと、
     前記アッパーシェルを貫通する中間室インジェクション配管と、
     前記アッパーシェルを貫通する吸入室インジェクション配管と、を備え、
     前記中間室インジェクション配管の前記アッパーシェルの内側の端部は、前記中間室インジェクションポートに連通して前記固定台板に形成された中間室インジェクション配管入口孔に接続され、
     前記吸入室インジェクション配管の前記アッパーシェルの内側の端部は、前記吸入室インジェクションポートに連通して前記固定台板に形成された吸入室インジェクション配管入口孔に接続され、
     前記アッパーシェルと前記ミドルシェルとは、互いの接合部分の隙間に形成された溶接部により接合されている請求項1~請求項5のいずれか一項に記載のスクロール圧縮機。
    a shell that accommodates the fixed scroll and the orbiting scroll, the shell having an upper shell; and a middle shell that is joined to the upper shell and to which the fixed scroll is fixed;
    an intermediate chamber injection pipe passing through the upper shell;
    a suction chamber injection pipe that penetrates the upper shell,
    an end portion of the intermediate chamber injection pipe inside the upper shell is connected to an intermediate chamber injection pipe inlet hole formed in the fixed base plate in communication with the intermediate chamber injection port;
    an end portion of the suction chamber injection pipe inside the upper shell is connected to an inlet hole of the suction chamber injection pipe formed in the fixed base plate in communication with the suction chamber injection port;
    The scroll compressor according to any one of claims 1 to 5, wherein the upper shell and the middle shell are joined by a welded portion formed in a gap between joint portions.
  7.  請求項1~請求項6のいずれか一項に記載のスクロール圧縮機と、放熱器と、過冷却熱交換器の高圧側配管と、減圧装置と、蒸発器とを備え、これらが接続されて前記冷媒が循環するように構成された主回路と、
     前記放熱器と前記減圧装置との間から分岐し、インジェクション膨張弁および前記過冷却熱交換器の低圧側配管を介して前記スクロール圧縮機に接続されたインジェクション回路と、を備え、
     前記インジェクション回路は、前記過冷却熱交換器の前記低圧側配管の下流にて、前記中間室インジェクションポートに連通する中間室インジェクション回路と、前記吸入室インジェクションポートに連通する吸入室インジェクション回路とに分岐している冷凍サイクル装置。
    A scroll compressor according to any one of claims 1 to 6, a radiator, a high-pressure side pipe of a supercooling heat exchanger, a pressure reducing device, and an evaporator, which are connected a main circuit configured to circulate the refrigerant;
    an injection circuit branched from between the radiator and the decompression device and connected to the scroll compressor via an injection expansion valve and a low-pressure side pipe of the subcooling heat exchanger;
    The injection circuit branches into an intermediate chamber injection circuit communicating with the intermediate chamber injection port and a suction chamber injection circuit communicating with the suction chamber injection port downstream of the low-pressure side pipe of the subcooling heat exchanger. refrigeration cycle equipment.
  8.  前記インジェクション回路において前記インジェクション膨張弁と前記過冷却熱交換器の前記低圧側配管との間のインジェクション回路圧力を計測する圧力センサと、
     前記圧力センサにより計測された前記インジェクション回路圧力に基づいて、前記インジェクション回路の下流側の回路を前記中間室インジェクション回路または前記吸入室インジェクション回路に切り替える制御装置と、を備え、
     前記制御装置は、前記インジェクション回路圧力が予め規定された規定圧力以下の場合、前記インジェクション回路の下流側の回路を前記中間室インジェクション回路に切り替え、前記インジェクション回路圧力が前記規定圧力超の場合、前記インジェクション回路の下流側の回路を前記吸入室インジェクション回路に切り替える請求項7に記載の冷凍サイクル装置。
    a pressure sensor for measuring the injection circuit pressure between the injection expansion valve and the low-pressure side pipe of the subcooling heat exchanger in the injection circuit;
    a control device that switches a circuit downstream of the injection circuit to the intermediate chamber injection circuit or the suction chamber injection circuit based on the injection circuit pressure measured by the pressure sensor;
    The control device switches the circuit downstream of the injection circuit to the intermediate chamber injection circuit when the injection circuit pressure is less than or equal to a predetermined pressure, and when the injection circuit pressure exceeds the specified pressure, the 8. The refrigeration cycle apparatus according to claim 7, wherein a circuit on the downstream side of the injection circuit is switched to the suction chamber injection circuit.
PCT/JP2021/002413 2021-01-25 2021-01-25 Scroll compressor and refrigeration cycle device with scroll compressor WO2022157967A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2021/002413 WO2022157967A1 (en) 2021-01-25 2021-01-25 Scroll compressor and refrigeration cycle device with scroll compressor
DE112021006906.3T DE112021006906T5 (en) 2021-01-25 2021-01-25 SCROLL COMPRESSOR AND COOLING CIRCUIT DEVICE PROVIDED WITH A SCROLL COMPRESSOR
JP2022576932A JPWO2022157967A1 (en) 2021-01-25 2021-01-25

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/002413 WO2022157967A1 (en) 2021-01-25 2021-01-25 Scroll compressor and refrigeration cycle device with scroll compressor

Publications (1)

Publication Number Publication Date
WO2022157967A1 true WO2022157967A1 (en) 2022-07-28

Family

ID=82548644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002413 WO2022157967A1 (en) 2021-01-25 2021-01-25 Scroll compressor and refrigeration cycle device with scroll compressor

Country Status (3)

Country Link
JP (1) JPWO2022157967A1 (en)
DE (1) DE112021006906T5 (en)
WO (1) WO2022157967A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1037868A (en) * 1996-07-19 1998-02-13 Matsushita Electric Ind Co Ltd Scroll compressor
JP2010112655A (en) * 2008-11-07 2010-05-20 Daikin Ind Ltd Refrigerating device
JP2012137207A (en) * 2010-12-24 2012-07-19 Mitsubishi Electric Corp Refrigerating cycle apparatus
WO2019087227A1 (en) * 2017-10-30 2019-05-09 三菱電機株式会社 Scroll compressor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5709503B2 (en) 2010-12-14 2015-04-30 三菱電機株式会社 Scroll compressor and refrigeration cycle apparatus equipped with the scroll compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1037868A (en) * 1996-07-19 1998-02-13 Matsushita Electric Ind Co Ltd Scroll compressor
JP2010112655A (en) * 2008-11-07 2010-05-20 Daikin Ind Ltd Refrigerating device
JP2012137207A (en) * 2010-12-24 2012-07-19 Mitsubishi Electric Corp Refrigerating cycle apparatus
WO2019087227A1 (en) * 2017-10-30 2019-05-09 三菱電機株式会社 Scroll compressor

Also Published As

Publication number Publication date
DE112021006906T5 (en) 2023-11-16
JPWO2022157967A1 (en) 2022-07-28

Similar Documents

Publication Publication Date Title
US7914267B2 (en) Multistage compressor for a CO2 cycle that includes a rotary compressing mechanism and a scroll compressing mechanism
CN107614878B (en) Scroll compressor and refrigeration cycle device
US8435014B2 (en) Hermetically sealed scroll compressor
JP2009127902A (en) Refrigerating device and compressor
JP2008101559A (en) Scroll compressor and refrigeration cycle using the same
JP6395846B2 (en) Scroll compressor
JP6444540B2 (en) Scroll compressor and refrigeration cycle apparatus
US7581936B2 (en) Hermetically sealed compressor having oil supply mechanism based on refrigerant pressure
JP2012172581A (en) Scroll compressor and heat pump device
WO2022157967A1 (en) Scroll compressor and refrigeration cycle device with scroll compressor
JP5656691B2 (en) Refrigeration equipment
WO2019234823A1 (en) Scroll compressor
WO2021140566A1 (en) Refrigeration cycle device
JP5752019B2 (en) Scroll compressor and refrigeration cycle apparatus
JP7170887B2 (en) scroll compressor
WO2023079667A1 (en) Scroll compressor and refrigeration cycle device provided with scroll compressor
WO2023144953A1 (en) Compressor and refrigeration cycle device
WO2022185956A1 (en) Compressor and refrigeration cycle device
WO2022149225A1 (en) Compressor
WO2020255243A1 (en) Compressor
KR20220039298A (en) Oil separator, compressor and refrigeration cycle device including the same
JP2004360611A (en) Displacement-type machine and freezer in which the machine is used
JP2011058387A (en) Rotary compressor
JP2010156497A (en) Refrigerating device
JP2006097624A (en) Rotary expansion machine and fluid machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21921075

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022576932

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112021006906

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21921075

Country of ref document: EP

Kind code of ref document: A1