WO2019234823A1 - Scroll compressor - Google Patents

Scroll compressor Download PDF

Info

Publication number
WO2019234823A1
WO2019234823A1 PCT/JP2018/021536 JP2018021536W WO2019234823A1 WO 2019234823 A1 WO2019234823 A1 WO 2019234823A1 JP 2018021536 W JP2018021536 W JP 2018021536W WO 2019234823 A1 WO2019234823 A1 WO 2019234823A1
Authority
WO
WIPO (PCT)
Prior art keywords
scroll
guide
fixed
injection
injection port
Prior art date
Application number
PCT/JP2018/021536
Other languages
French (fr)
Japanese (ja)
Inventor
哲仁 ▲高▼井
友寿 松井
祐司 ▲高▼村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020523882A priority Critical patent/JP6921321B2/en
Priority to PCT/JP2018/021536 priority patent/WO2019234823A1/en
Publication of WO2019234823A1 publication Critical patent/WO2019234823A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation

Definitions

  • the present invention relates to a scroll compressor used for an air conditioner, a refrigerator, and the like.
  • the scroll compressor has a configuration including a compression unit that compresses the refrigerant in a compression chamber formed by combining a fixed scroll and an orbiting scroll, and a container that houses the compression unit.
  • Each of the fixed scroll and the swing scroll has a configuration in which a spiral body is formed on a base plate, and a compression chamber is formed in a spiral structure configured by meshing the spiral bodies.
  • the temperature of the spiral structure is reduced by flowing a liquid refrigerant or a two-phase refrigerant having a lower temperature and a lower pressure than the refrigerant being compressed in the compression chamber into the compression chamber of the intermediate pressure.
  • a scroll compressor see, for example, Patent Document 1.
  • the present invention has been made in view of these points, and an object of the present invention is to provide a scroll compressor capable of improving performance by eliminating mixing loss in the compression chamber.
  • a scroll compressor according to the present invention has a compression section that includes a fixed scroll having a fixed spiral body standing on a fixed base plate, and a swing scroll having a swing spiral body standing on a swing base plate.
  • a scroll compressor that compresses fluid in a compression chamber in a spiral structure formed by combining a fixed spiral body and an oscillating spiral body, the outside of the spiral structure body is sucked in from outside.
  • a pressure space is formed, and the fixed base plate has an injection port for injecting an injection fluid into the suction pressure space outside the spiral structure.
  • the injection fluid is injected from the injection port into the suction pressure space outside the spiral structure, fluids having different pressures are not mixed in the compression chamber. Therefore, the performance of the scroll compressor can be improved.
  • FIG. 1 It is a longitudinal cross-sectional schematic diagram of the scroll compressor which concerns on Embodiment 1 of this invention. It is a schematic longitudinal cross-sectional view of the fixed scroll of the scroll compressor which concerns on Embodiment 1 of this invention. It is sectional drawing which cut
  • FIG. 1 what is denoted by the same reference numeral in the following drawings including FIG. 1 is the same or equivalent, and is common to the whole text of the embodiments described below.
  • the form of the component represented by the whole specification is an illustration to the last, Comprising: It does not limit to the form described in the specification.
  • FIG. 1 is a schematic longitudinal sectional view of a scroll compressor according to Embodiment 1 of the present invention.
  • the scroll compressor 100 sucks the fluid circulating in the refrigeration cycle, compresses it, and discharges it as a high-temperature and high-pressure state.
  • the scroll compressor 100 accommodates a compression unit 10 that compresses fluid, an electric motor unit 30 that drives the compression unit 10 via a main shaft 33, and other components in an airtight container 40 that forms an outer shell. It has the structure.
  • a refrigerant such as R32 or carbon dioxide is used. Below, it demonstrates as what uses a refrigerant
  • the sealed container 40 has a configuration in which an upper container 41 and a lower container 43 are provided on the upper and lower parts of the intermediate container 42.
  • the lower container 43 is an oil sump for storing lubricating oil.
  • a suction pipe 44 for sucking refrigerant gas is connected to the intermediate container 42.
  • a discharge pipe 45 for discharging refrigerant gas is connected to the upper container 41.
  • An injection pipe 49 is connected above the upper container 41. An end of the upper container 41 inside the injection pipe 49 is inserted into an injection pipe insertion port 28 (see FIG. 2 described later) formed in the fixed scroll 21.
  • the injection pipe 49 is for injecting a refrigerant introduced from the outside into a second space 71 described later.
  • the injection refrigerant injected into the second space 71 is a low-temperature and low-pressure liquid refrigerant or a two-phase refrigerant including a low-temperature and low-pressure liquid refrigerant.
  • a frame 46 and a sub-frame 47 are further arranged in the axial direction of the main shaft 33 so as to face each other with the electric motor unit 30 interposed therebetween.
  • the frame 46 is located between the electric motor unit 30 and the compression unit 10.
  • the sub frame 47 is located below the electric motor unit 30.
  • the frame 46 and the sub frame 47 are fixed to the inner peripheral surface of the sealed container 40 by shrink fitting or welding.
  • the space in the sealed container 40 is defined as follows.
  • a space in the sealed container 40 that is closer to the motor unit 30 than the frame 46 and into which the refrigerant sucked from the suction pipe 44 flows is referred to as a first space 70.
  • An annular space outside the spiral structure 10 a described later and inside the inner wall of the frame 46 is defined as a second space 71.
  • the second space 71 communicates with the first space 70 via a suction port 36 a and a suction port 36 b formed in the frame 46, and becomes a suction pressure space together with the first space 70.
  • a space closer to the discharge pipe 45 than the compression unit 10 is a third space 72.
  • the third space 72 is a discharge pressure space because the refrigerant compressed in the compression chamber 11 is discharged.
  • the compression unit 10 includes a fixed scroll 21 and a swing scroll 22.
  • the fixed scroll 21 is fixed to the frame 46 by bolts or the like not shown.
  • the orbiting scroll 22 is accommodated in a cylindrical space inside the frame 46 below the fixed scroll 21 and is supported by an eccentric shaft portion 33a of the main shaft 33, which will be described later.
  • the fixed scroll 21 has a fixed base plate 23 and a fixed spiral body 24 that is a spiral projection standing on one surface of the fixed base plate 23.
  • the orbiting scroll 22 includes an orbiting base plate 25 and an orbiting spiral body 26 that is a spiral projection standing on one surface of the orbiting base plate 25.
  • the fixed scroll 21 and the swing scroll 22 are accommodated in the sealed container 40 in a state where the fixed spiral body 24 and the swing scroll body 26 are combined with each other.
  • a plurality of compression chambers 11 whose volumes change relatively are formed between the fixed spiral body 24 and the swing spiral body 26.
  • the plurality of compression chambers 11 are formed in pairs symmetrically across a central axis O of the main shaft 33 (see FIG. 3 described later).
  • the outermost pair of compression chambers 11 is the suction chamber 12 (see FIG. 3 described later), and the innermost is the discharge chamber 13 (see FIG. 3 described later).
  • the compression unit 10 constituted by the orbiting scroll 22 and the fixed scroll 21 the symmetrical spiral structure portion that combines the fixed spiral body 24 and the orbiting spiral body 26 is referred to as a spiral structure body 10 a.
  • a discharge port 3 is formed at the center of the fixed base plate 23 of the fixed scroll 21 to discharge the compressed refrigerant gas.
  • a discharge valve 5 that opens and closes the discharge port 3 and a valve presser 6 that restricts the movable range of the discharge valve 5 are fixed.
  • the discharge muffler 7 is being fixed to the fixed base plate 23 with the fixing member 7a so that the discharge port 3 may be covered.
  • the oscillating scroll 22 performs an oscillating motion without rotating with respect to the fixed scroll 21 by an Oldham ring (not shown) for preventing the rotating motion.
  • a hollow cylindrical boss portion 27 is formed at a substantially central portion of the surface of the swing base plate 25 opposite to the surface on which the swing spiral body 26 is formed, and a swing bearing 27a is formed inside the boss portion 27. Is arranged.
  • An eccentric shaft portion 33 a formed on the upper portion of the main shaft 33 is inserted into the swing bearing 27 a. And the inner peripheral part of the rocking
  • the electric motor unit 30 is fixed to the inner peripheral surface of the sealed container 40 by shrink fitting, a rotor 32 that is rotatably accommodated on the inner peripheral side of the stator 31, and fixed to the rotor 32 by shrink fitting.
  • the main shaft 33 is provided.
  • the rotor 32 is rotationally driven when a voltage is applied to the stator 31, and transmits a driving force to the orbiting scroll 22 via the main shaft 33.
  • the main shaft 33 has an eccentric shaft portion 33a, a main shaft portion 33b, and a sub shaft portion 33c in order from the top.
  • the eccentric shaft portion 33a is provided eccentrically with respect to the shaft center of the main shaft 33, and is rotatably engaged with the swing bearing 27a.
  • the main shaft portion 33 b is supported by a main bearing (not shown) provided on the frame 46.
  • a sleeve 34 is provided between the main bearing (not shown) and the main shaft portion 33b in order to smoothly rotate the main shaft portion 33b.
  • the auxiliary shaft portion 33 c is rotatably supported by a ball bearing 48.
  • the ball bearing 48 is press-fitted and fixed to the central portion of the sub-frame 47 provided at the lower part of the sealed container 40.
  • FIG. 2 is a schematic longitudinal sectional view of the fixed scroll of the scroll compressor according to Embodiment 1 of the present invention.
  • the fixed base plate 23 of the fixed scroll 21 is formed with an injection pipe insertion port 28 that opens to a surface opposite to the surface on which the fixed spiral body 24 is formed. Connected. Further, the fixed base plate 23 is formed with an injection port 29a and an injection port 29b that open to the surface on which the fixed spiral body 24 is formed.
  • the formation positions of the injection port 29a and the injection port 29b on the fixed base plate 23 are the features of the first embodiment, and will be described in detail later.
  • the guide 35a and guide 35b in FIG. 2 will also be described later.
  • the fixed base plate 23 is further formed with an injection path 29 that branches the injection refrigerant flowing in from the injection tube insertion port 28 into two and leads to the injection port 29a and the injection port 29b.
  • the injection path 29 is composed of a lateral hole that penetrates the fixed base plate 23 in the surface direction.
  • the injection path 29 is formed by making a hole from the outside of the fixed base plate 23 with a drill or the like. If this hole is left open, the injection path 29 is connected to the high-pressure space outside the fixed base plate 23 of the fixed scroll 21. Therefore, for the purpose of preventing the high-temperature and high-pressure refrigerant in the high-pressure space from flowing into the injection path 29, leakage preventing members 51 such as bolts are inserted at both ends of the injection path 29, for example. Thereby, the injection path 29 and the high-pressure space outside the fixed base plate 23 of the fixed scroll 21 are blocked.
  • the refrigerant sucked into the suction chamber gradually moves toward the center of the rocking scroll 22 by the rocking motion of the rocking scroll 22, and is compressed by reducing the volume.
  • the compressed refrigerant is discharged from the discharge chamber that is the innermost chamber among the plurality of compression chambers 11, passes through the discharge port 3 of the fixed scroll 21, and is discharged from the discharge valve 5.
  • the refrigerant discharged from the discharge valve 5 passes through the space in the discharge muffler 7, flows into the third space 72 above the compression unit 10, and is discharged outside the sealed container 40 through the discharge pipe 45.
  • FIG. 3 is a cross-sectional view of the scroll compressor according to Embodiment 1 of the present invention cut at the spiral structure portion.
  • FIG. 4 is a plan view of the fixed scroll of the scroll compressor according to Embodiment 1 of the present invention.
  • the injection port 29 a and the injection port 29 b are provided outside the spiral structure 10 a in the fixed base plate 23. By providing the injection port 29 a and the injection port 29 b at this position, the injection refrigerant is injected not into the compression chamber 11 but into the second space 71.
  • the injection port 29a and the injection port 29b are provided outside the spiral structure 10a, so that the second space 71 before being sucked into the compression chamber 11 (suction chamber 12) is provided. Injection refrigerant can be injected. For this reason, refrigerants having different pressures are not mixed in the compression chamber 11 and no mixing loss occurs.
  • the injection port communicates with the compression chamber, so that it becomes a dead volume under the operation condition where it is not necessary to perform the injection. That is, the compressed refrigerant gas is leaked to the low pressure side, causing loss due to re-expansion, and the performance of the compressor is lowered.
  • the injection port 29a, the injection port 29b, and the injection path 29 communicate with the second space 71, that is, the suction pressure space, inconvenience due to the conventional method can be solved.
  • the fixed base plate 23 of the fixed scroll 21 is provided with a guide 35a and a guide 35b for guiding the refrigerant injected into the second space 71 from the injection port 29a and the injection port 29b into the spiral structure 10a.
  • the set of the injection port 29a, the guide 35a and the suction port 36a and the set of the injection port 29b, the guide 35b and the suction port 36b are arranged at positions that are symmetric with respect to the central axis O. ing. Therefore, in the following description, a set of the injection port 29a, the guide 35a, and the suction port 36a is taken as an example, but the set of the injection port 29b, the guide 35b, and the suction port 36b is the same.
  • the guide 35a is a protrusion erected on the fixed base plate 23, and is disposed between the injection port 29a and the suction port 36a in the circumferential direction.
  • the height of the guide 35 a is preferably the same as the height of the fixed spiral body 24 of the fixed scroll 21.
  • the guide 35a is formed in a convex arc shape on the side opposite to the injection port 29a when seen in a plan view. Therefore, in the guide 37a, the end surface 35aa on the injection port 29a side is a circular arc surface that is convex on the opposite side to the injection port 29a. Thereby, the injection refrigerant that has flowed into the second space 71 from the injection port 29a can be efficiently guided into the spiral structure 10a.
  • the end surfaces 35aa and 35ba of the guide 35a and the guide 35b are not limited to arcuate surfaces, and may be flat surfaces. Further, either one of the injection port 29a and the injection port 29b may be used. In that case, one guide may be sufficient.
  • the injection refrigerant that has flowed from the injection pipe 49 flows into the second space 71 from the injection port 29a and the injection port 29b via the injection path 29.
  • the injection refrigerant flowing into the second space 71 is mixed with the low-pressure refrigerant in the second space 71, and the temperature of the refrigerant in the second space 71 is lowered.
  • inhaled in the spiral structure 10a the temperature in the spiral structure 10a can be reduced.
  • the injection refrigerant that has flowed into the second space 71 is guided into the spiral structure 10a by the guide 35a and the guide 35b.
  • Two suction chambers are formed on the outermost periphery of the spiral structure 10a, and the injection refrigerant flows into each of the two suction chambers. Since the guide 35a and the guide 35b are provided in this way, the ratio of the injection refrigerant sucked into the spiral structure 10a increases, and the effect of lowering the temperature in the spiral structure 10a can be enhanced.
  • the injection port 29a and the injection port 29b are provided on the fixed base plate 23 outside the spiral structure 10a.
  • the injection refrigerant can flow into the spiral structure 10 a after flowing into the second space 71 before being sucked into the compression chamber 11 instead of into the compression chamber 11. Therefore, the temperature in the spiral structure 10a can be reduced without causing a mixing loss due to mixing of refrigerants having different pressures as in the conventional case where the injection refrigerant is injected into the compression chamber in the spiral structure. Therefore, the performance of the scroll compressor 100 can be improved.
  • a guide 35 a and a guide 35 b are provided on the fixed base plate 23 of the fixed scroll 21.
  • the injection refrigerant flowing into the second space 71 is guided into the spiral structure 10a by the guide 35a and the guide 35b.
  • inhaled in the spiral structure 10a increases, and the effect of reducing the temperature in the spiral structure 10a increases.
  • the temperature in the spiral structure 10a can be lowered in this way, the following effects can be obtained. That is, the clearance between the respective distal end portions of the fixed spiral body 24 and the swing spiral body 26 and the swing base plate 25 and fixed base plate 23 of the opposing scroll is reduced and contacted by thermal expansion. However, it is difficult for the compressor to be damaged. This effect is particularly effective when a refrigerant such as R32 that tends to increase the discharge temperature is used. When a refrigerant whose discharge temperature is likely to rise is used, the inside of the spiral structure 10a becomes high temperature under a high compression ratio condition where the discharge temperature tends to be high, the degree of reduction of the tooth tip gap is large, and the possibility of breakage of the compressor is high. Because.
  • the following effects can be obtained by increasing the ratio of the injection refrigerant sucked into the spiral structure 10a by the guide 35a and the guide 35b.
  • the injection refrigerant that has flowed into the second space 71 can be prevented from flowing into the first space 70 through the suction port 36a and the suction port 36b of the frame 46. Therefore, the refrigerant flowing into the first space 70 from the second space 71 is not mixed with the oil accumulated in the lower container 43 of the compressor and the oil concentration is not lowered.
  • the injection refrigerant passes through the injection port 29a, the injection port 29b and the injection path 29 formed on the fixed base plate 23 of the fixed scroll 21, and does not pass through the frame 46.
  • the frame 46 is not cooled by the injection refrigerant. Therefore, the axial dimension of the frame 46 is reduced, so that the fixed spiral body 24 and the swinging spiral body 26 are respectively connected to the respective leading ends of the opposed scroll body 25 and the stationary base plate 23 of the opposing scroll. It is possible to prevent the inconvenience that the gap is reduced and contacts and the compressor is damaged.
  • Embodiment 2 FIG. In the first embodiment, the guide is provided only on the fixed scroll 21, but in the second embodiment, the guide is provided on both the fixed scroll 21 and the swing scroll 22.
  • the following description will focus on the differences of the second embodiment from the first embodiment. Configurations not described in the second embodiment are the same as those in the first embodiment.
  • FIG. 5 is a cross-sectional view of the scroll compressor according to Embodiment 2 of the present invention cut at the spiral structure portion.
  • FIG. 5 is a cross-sectional view of the spiral structure portion as viewed from the swing scroll 22 side toward the fixed scroll 21 side.
  • each of the fixed scroll 21 and the swing scroll 22 is configured such that a guide 37 a and a guide 37 b are provided on the swing spiral body 26 and the fixed spiral body 24.
  • the set of the injection port 29a, the guide 37a and the suction port 36a and the set of the injection port 29b, the guide 37b and the suction port 36b are arranged at positions that are point-symmetric about the central axis O. ing.
  • a set of the injection port 29a, the guide 37a, and the suction port 36a is taken as an example, but the set of the injection port 29b, the guide 37b, and the suction port 36b is the same.
  • the guide 37a is a protrusion that protrudes from the outer peripheral surface of the oscillating spiral body 26 toward the second space 71, and is disposed between the injection port 29a and the suction port 36a in the circumferential direction.
  • the end surface 37aa on the injection port 29a side is a convex arc surface on the opposite side to the injection port 29a, and has the same function as the arc surface of the first embodiment. That is, the circular arc surface has a function of efficiently guiding the injection refrigerant flowing into the second space 71 from the injection port 29a into the spiral structure 10a.
  • the end surface 37ba on the guide 37b side has a similar function.
  • FIG. 5 the example of the shape of FIG. 5 is shown as the configuration in which the guide is provided in both the fixed scroll 21 and the swing scroll 22, but in the configuration in which the guide is provided only in the fixed scroll 21, FIG. A shape may be applied.
  • end surfaces 37aa and 37ba of the guide 37a and the guide 37b are not limited to the arc surfaces as in the first embodiment, and may be flat surfaces. Further, either one of the injection port 29a and the injection port 29b may be used. In that case, one guide may be sufficient.
  • the number of suction ports of the frame 46 is two, but the number is not limited to two. Also, the number of injection ports is not limited to two.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

This scroll compressor has a compression section provided with: a stationary scroll having a stationary spiral body raised from a stationary base plate; and an orbiting scroll having an orbiting spiral body raised from an orbiting base plate, and fluid is compressed in a compression chamber within a spiral structure formed by combining the stationary spiral body and the orbiting spiral body. In the scroll compressor, a suction pressure space into which fluid is sucked from the outside is formed outside the spiral structure, and the scroll compressor has an injection port for injecting injection fluid into the suction pressure space, the injection port being formed in the stationary base plate outside the spiral structure.

Description

スクロール圧縮機Scroll compressor
 この発明は、空調機および冷凍機等に利用されるスクロール圧縮機に関するものである。 The present invention relates to a scroll compressor used for an air conditioner, a refrigerator, and the like.
 スクロール圧縮機は、固定スクロールと揺動スクロールとを組み合わせて形成した圧縮室にて冷媒を圧縮する圧縮部と、圧縮部を収容する容器とを備えた構成を有する。固定スクロールおよび揺動スクロールはそれぞれ、台板上に渦巻体が形成された構成を有し、渦巻体同士を噛み合わされて構成された渦巻構造体内に圧縮室を形成している。 The scroll compressor has a configuration including a compression unit that compresses the refrigerant in a compression chamber formed by combining a fixed scroll and an orbiting scroll, and a container that houses the compression unit. Each of the fixed scroll and the swing scroll has a configuration in which a spiral body is formed on a base plate, and a compression chamber is formed in a spiral structure configured by meshing the spiral bodies.
 この種のスクロール圧縮機では、吐出温度が高くなりやすい高圧縮比条件で、渦巻構造体内が高温となる。このため、固定スクロールおよび揺動スクロールのそれぞれが熱膨張し、固定スクロールおよび揺動スクロールのそれぞれの渦巻体の先端部と、対向する相手側のスクロールの台板との間の隙間が縮小して接触し、圧縮機が破損してしまう課題がある。 In this type of scroll compressor, the inside of the spiral structure becomes hot under a high compression ratio condition in which the discharge temperature tends to be high. For this reason, each of the fixed scroll and the orbiting scroll is thermally expanded, and the gap between the spiral end of each of the fixed scroll and the orbiting scroll and the opposite scroll base plate is reduced. There is a problem that the compressor is damaged due to contact.
 従来、この課題を解決するため、中間圧の圧縮室に、圧縮室内で圧縮途中の冷媒よりも低温且つ低圧の液冷媒または2相冷媒を流入させることで、渦巻構造体の温度を低減するようにしたスクロール圧縮機がある(例えば、特許文献1参照)。 Conventionally, in order to solve this problem, the temperature of the spiral structure is reduced by flowing a liquid refrigerant or a two-phase refrigerant having a lower temperature and a lower pressure than the refrigerant being compressed in the compression chamber into the compression chamber of the intermediate pressure. There is a scroll compressor (see, for example, Patent Document 1).
国際公開第2016/019921号International Publication No. 2016/019921
 特許文献1の構成では、圧縮室内の中間圧力部分に冷媒がインジェクションされる。このため、圧力の異なる冷媒が圧縮室内で混合することで混合損失が生じ、圧縮機の性能が低下してしまうという課題があった。 In the configuration of Patent Document 1, refrigerant is injected into an intermediate pressure portion in the compression chamber. For this reason, the refrigerant | coolant from which pressure differs mixes in a compression chamber, the mixing loss arises, and the subject that the performance of a compressor fell occurred.
 この発明は、このような点を鑑みなされたもので、圧縮室内での混合損失を無くして性能を向上することが可能なスクロール圧縮機を提供することを目的とする。 The present invention has been made in view of these points, and an object of the present invention is to provide a scroll compressor capable of improving performance by eliminating mixing loss in the compression chamber.
 この発明に係るスクロール圧縮機は、固定台板に固定渦巻体が立設された固定スクロールと、揺動台板に揺動渦巻体が立設された揺動スクロールとを備えた圧縮部を有し、固定渦巻体と揺動渦巻体とが組み合うことで形成される渦巻構造体内の圧縮室で流体を圧縮するスクロール圧縮機において、渦巻構造体の外側には、外部から流体が吸入される吸入圧空間が形成されており、固定台板において渦巻構造体の外側に、吸入圧空間にインジェクション流体をインジェクションするインジェクションポートを有するものである。 A scroll compressor according to the present invention has a compression section that includes a fixed scroll having a fixed spiral body standing on a fixed base plate, and a swing scroll having a swing spiral body standing on a swing base plate. In a scroll compressor that compresses fluid in a compression chamber in a spiral structure formed by combining a fixed spiral body and an oscillating spiral body, the outside of the spiral structure body is sucked in from outside. A pressure space is formed, and the fixed base plate has an injection port for injecting an injection fluid into the suction pressure space outside the spiral structure.
 この発明によれば、渦巻構造体の外側の吸入圧空間にインジェクションポートからインジェクション流体をインジェクションするようにしたので、圧力の異なる流体が圧縮室内で混合することが無い。したがって、スクロール圧縮機の性能を向上することができる。 According to this invention, since the injection fluid is injected from the injection port into the suction pressure space outside the spiral structure, fluids having different pressures are not mixed in the compression chamber. Therefore, the performance of the scroll compressor can be improved.
この発明の実施の形態1に係るスクロール圧縮機の縦断面模式図である。It is a longitudinal cross-sectional schematic diagram of the scroll compressor which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るスクロール圧縮機の固定スクロールの概略縦断面図である。It is a schematic longitudinal cross-sectional view of the fixed scroll of the scroll compressor which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るスクロール圧縮機を渦巻構造体部分で切断した断面図である。It is sectional drawing which cut | disconnected the scroll compressor which concerns on Embodiment 1 of this invention in the spiral structure part. この発明の実施の形態1に係るスクロール圧縮機の固定スクロールの平面図である。It is a top view of the fixed scroll of the scroll compressor which concerns on Embodiment 1 of this invention. この発明の実施の形態2に係るスクロール圧縮機を渦巻構造体部分で切断した断面図である。It is sectional drawing which cut | disconnected the scroll compressor which concerns on Embodiment 2 of this invention in the spiral structure part.
 以下、この発明の実施の形態に係るスクロール圧縮機について図面などを参照しながら説明する。ここで、図1を含め、以下の図面において同一の符号を付したものは、同一またはこれに相当するものであり、以下に記載する実施の形態の全文において共通することとする。そして、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、明細書に記載された形態に限定するものではない。 Hereinafter, a scroll compressor according to an embodiment of the present invention will be described with reference to the drawings. Here, what is denoted by the same reference numeral in the following drawings including FIG. 1 is the same or equivalent, and is common to the whole text of the embodiments described below. And the form of the component represented by the whole specification is an illustration to the last, Comprising: It does not limit to the form described in the specification.
実施の形態1.
 図1は、この発明の実施の形態1に係るスクロール圧縮機の縦断面模式図である。
 スクロール圧縮機100は、冷凍サイクルを循環する流体を吸入し、圧縮して高温高圧の状態として吐出させるものである。このスクロール圧縮機100は、流体を圧縮する圧縮部10と、主軸33を介して圧縮部10を駆動する電動機部30と、その他の構成部品とを、外郭を構成する密閉容器40の内部に収容した構成を有している。冷凍サイクルを循環する流体には、例えばR32等の冷媒または二酸化炭素等が用いられる。以下では、流体として冷媒を用いるものとして説明する。
Embodiment 1 FIG.
1 is a schematic longitudinal sectional view of a scroll compressor according to Embodiment 1 of the present invention.
The scroll compressor 100 sucks the fluid circulating in the refrigeration cycle, compresses it, and discharges it as a high-temperature and high-pressure state. The scroll compressor 100 accommodates a compression unit 10 that compresses fluid, an electric motor unit 30 that drives the compression unit 10 via a main shaft 33, and other components in an airtight container 40 that forms an outer shell. It has the structure. As the fluid circulating in the refrigeration cycle, for example, a refrigerant such as R32 or carbon dioxide is used. Below, it demonstrates as what uses a refrigerant | coolant as a fluid.
 密閉容器40は、中間部容器42の上部および下部に上部容器41および下部容器43が設けられた構成を有する。下部容器43は、潤滑油を貯留する油溜めとなっている。中間部容器42には、冷媒ガスを吸入するための吸入管44が接続されている。上部容器41には、冷媒ガスを吐出するための吐出管45が接続されている。また、上部容器41の上方にはインジェクション管49が接続されている。インジェクション管49において上部容器41の内部側の端部は、固定スクロール21に形成されたインジェクション管挿入口28(後述の図2参照)に挿入されている。インジェクション管49は、外部から導入される冷媒を後述の第2空間71にインジェクションするものである。第2空間71にインジェクションされるインジェクション冷媒は、この例では低温且つ低圧の液冷媒、または低温且つ低圧の液冷媒を含む2相冷媒である。 The sealed container 40 has a configuration in which an upper container 41 and a lower container 43 are provided on the upper and lower parts of the intermediate container 42. The lower container 43 is an oil sump for storing lubricating oil. A suction pipe 44 for sucking refrigerant gas is connected to the intermediate container 42. A discharge pipe 45 for discharging refrigerant gas is connected to the upper container 41. An injection pipe 49 is connected above the upper container 41. An end of the upper container 41 inside the injection pipe 49 is inserted into an injection pipe insertion port 28 (see FIG. 2 described later) formed in the fixed scroll 21. The injection pipe 49 is for injecting a refrigerant introduced from the outside into a second space 71 described later. In this example, the injection refrigerant injected into the second space 71 is a low-temperature and low-pressure liquid refrigerant or a two-phase refrigerant including a low-temperature and low-pressure liquid refrigerant.
 密閉容器40の内部には更に、主軸33の軸方向に電動機部30を挟んで対向するようにフレーム46とサブフレーム47とが配置されている。フレーム46は、電動機部30と圧縮部10との間に位置している。サブフレーム47は、電動機部30の下側に位置している。フレーム46およびサブフレーム47は、焼嵌めまたは溶接などによって密閉容器40の内周面に固着されている。 In the sealed container 40, a frame 46 and a sub-frame 47 are further arranged in the axial direction of the main shaft 33 so as to face each other with the electric motor unit 30 interposed therebetween. The frame 46 is located between the electric motor unit 30 and the compression unit 10. The sub frame 47 is located below the electric motor unit 30. The frame 46 and the sub frame 47 are fixed to the inner peripheral surface of the sealed container 40 by shrink fitting or welding.
 また、実施の形態1では、密閉容器40内の空間を以下のように定義する。密閉容器40内においてフレーム46より電動機部30側の空間であって、吸入管44から吸入された冷媒が流入する空間を第1空間70とする。また、後述の渦巻構造体10aの外側であって、フレーム46の内壁よりも内側の環状の空間を第2空間71とする。第2空間71は、フレーム46に形成された吸入ポート36aおよび吸入ポート36bを介して第1空間70に連通しており、第1空間70とともに吸入圧空間となっている。また、圧縮部10より吐出管45側の空間を第3空間72とする。第3空間72には、圧縮室11で圧縮された冷媒が吐出されるため、吐出圧空間となっている。 In the first embodiment, the space in the sealed container 40 is defined as follows. A space in the sealed container 40 that is closer to the motor unit 30 than the frame 46 and into which the refrigerant sucked from the suction pipe 44 flows is referred to as a first space 70. An annular space outside the spiral structure 10 a described later and inside the inner wall of the frame 46 is defined as a second space 71. The second space 71 communicates with the first space 70 via a suction port 36 a and a suction port 36 b formed in the frame 46, and becomes a suction pressure space together with the first space 70. A space closer to the discharge pipe 45 than the compression unit 10 is a third space 72. The third space 72 is a discharge pressure space because the refrigerant compressed in the compression chamber 11 is discharged.
 圧縮部10は、固定スクロール21および揺動スクロール22を有している。 The compression unit 10 includes a fixed scroll 21 and a swing scroll 22.
 固定スクロール21は、フレーム46に図示省略のボルト等によって固定されている。揺動スクロール22は、固定スクロール21の下側であってフレーム46内の筒状空間に収容され、主軸33の後述の偏心軸部33aに揺動自在に支持されている。 The fixed scroll 21 is fixed to the frame 46 by bolts or the like not shown. The orbiting scroll 22 is accommodated in a cylindrical space inside the frame 46 below the fixed scroll 21 and is supported by an eccentric shaft portion 33a of the main shaft 33, which will be described later.
 固定スクロール21は、固定台板23と、固定台板23の一方の面に立設された渦巻状突起である固定渦巻体24と、を有している。揺動スクロール22は、揺動台板25と、揺動台板25の一方の面に立設された渦巻状突起である揺動渦巻体26と、を有している。固定スクロール21および揺動スクロール22は、固定渦巻体24および揺動渦巻体26とを互いに組み合わせた状態で密閉容器40内に収容されている。 The fixed scroll 21 has a fixed base plate 23 and a fixed spiral body 24 that is a spiral projection standing on one surface of the fixed base plate 23. The orbiting scroll 22 includes an orbiting base plate 25 and an orbiting spiral body 26 that is a spiral projection standing on one surface of the orbiting base plate 25. The fixed scroll 21 and the swing scroll 22 are accommodated in the sealed container 40 in a state where the fixed spiral body 24 and the swing scroll body 26 are combined with each other.
 固定渦巻体24および揺動渦巻体26とを互いに組み合わせた状態では、固定渦巻体24および揺動渦巻体26の巻方向が互いに逆となる。そして、固定渦巻体24および揺動渦巻体26との間には、相対的に容積が変化する複数の圧縮室11が形成される。複数の圧縮室11は、主軸33の中心軸O(後述の図3参照)を挟んで対称に対となって形成される。このように複数対、形成される圧縮室11のうち、最も外側の一対の圧縮室11が吸入室12(後述の図3参照)、最も内側が吐出室13(後述の図3参照)となる。以下、揺動スクロール22と固定スクロール21とで構成された圧縮部10のうち、固定渦巻体24および揺動渦巻体26とを組み合わせた対称渦巻形状の構造体部分を渦巻構造体10aという。 In a state where the fixed spiral body 24 and the swing spiral body 26 are combined with each other, the winding directions of the fixed spiral body 24 and the swing spiral body 26 are opposite to each other. A plurality of compression chambers 11 whose volumes change relatively are formed between the fixed spiral body 24 and the swing spiral body 26. The plurality of compression chambers 11 are formed in pairs symmetrically across a central axis O of the main shaft 33 (see FIG. 3 described later). Of the plurality of pairs of compression chambers 11 thus formed, the outermost pair of compression chambers 11 is the suction chamber 12 (see FIG. 3 described later), and the innermost is the discharge chamber 13 (see FIG. 3 described later). . Hereinafter, in the compression unit 10 constituted by the orbiting scroll 22 and the fixed scroll 21, the symmetrical spiral structure portion that combines the fixed spiral body 24 and the orbiting spiral body 26 is referred to as a spiral structure body 10 a.
 固定スクロール21の固定台板23の中央部には、圧縮されて高圧となった冷媒ガスを吐出する吐出ポート3が形成されている。吐出ポート3の周囲には、吐出ポート3を開閉する吐出弁5と、吐出弁5の可動範囲を規制する弁押さえ6とが固定されている。そして、吐出ポート3を覆うように吐出マフラ7が固定台板23に固定部材7aで固定されている。 A discharge port 3 is formed at the center of the fixed base plate 23 of the fixed scroll 21 to discharge the compressed refrigerant gas. Around the discharge port 3, a discharge valve 5 that opens and closes the discharge port 3 and a valve presser 6 that restricts the movable range of the discharge valve 5 are fixed. And the discharge muffler 7 is being fixed to the fixed base plate 23 with the fixing member 7a so that the discharge port 3 may be covered.
 揺動スクロール22は、自転運動を阻止するためのオルダムリング(図示せず)により、固定スクロール21に対して自転運動することなく揺動運動を行うようになっている。揺動台板25において揺動渦巻体26の形成面とは反対側の面の略中心部には、中空円筒形状のボス部27が形成されており、ボス部27の内側に揺動軸受27aが配置されている。揺動軸受27aには、主軸33の上部に形成された偏心軸部33aが挿入されている。そして、揺動軸受27aの内周部と偏心軸部33aの外周部とが潤滑油を介して密着し、揺動軸受部を構成する。 The oscillating scroll 22 performs an oscillating motion without rotating with respect to the fixed scroll 21 by an Oldham ring (not shown) for preventing the rotating motion. A hollow cylindrical boss portion 27 is formed at a substantially central portion of the surface of the swing base plate 25 opposite to the surface on which the swing spiral body 26 is formed, and a swing bearing 27a is formed inside the boss portion 27. Is arranged. An eccentric shaft portion 33 a formed on the upper portion of the main shaft 33 is inserted into the swing bearing 27 a. And the inner peripheral part of the rocking | swiveling bearing 27a and the outer peripheral part of the eccentric shaft part 33a closely_contact | adhere via lubricating oil, and comprise a rocking | fluctuating bearing part.
 電動機部30は、密閉容器40の内周面に焼嵌等により固定されたステータ31と、ステータ31の内周側に回転自在に収容されるロータ32と、ロータ32に焼嵌等により固定された主軸33とを備えている。ロータ32は、ステータ31に電圧が印加されることによって回転駆動し、主軸33を介して揺動スクロール22に駆動力を伝達するようになっている。 The electric motor unit 30 is fixed to the inner peripheral surface of the sealed container 40 by shrink fitting, a rotor 32 that is rotatably accommodated on the inner peripheral side of the stator 31, and fixed to the rotor 32 by shrink fitting. The main shaft 33 is provided. The rotor 32 is rotationally driven when a voltage is applied to the stator 31, and transmits a driving force to the orbiting scroll 22 via the main shaft 33.
 主軸33は、上から順に偏心軸部33aと、主軸部33bと、副軸部33cとを有している。偏心軸部33aは、主軸33の軸心に対して偏心して設けられており、揺動軸受27aと回転自在に係合する。主軸部33bはフレーム46に設けられた主軸受(図示せず)によって支持されている。この主軸受(図示せず)と主軸部33bとの間には、主軸部33bを円滑に回転運動させるため、スリーブ34が設けられている。副軸部33cは、ボールベアリング48によって回転自在に支持されている。このボールベアリング48は、密閉容器40の下部に設けられたサブフレーム47の中央部に圧入固定されている。 The main shaft 33 has an eccentric shaft portion 33a, a main shaft portion 33b, and a sub shaft portion 33c in order from the top. The eccentric shaft portion 33a is provided eccentrically with respect to the shaft center of the main shaft 33, and is rotatably engaged with the swing bearing 27a. The main shaft portion 33 b is supported by a main bearing (not shown) provided on the frame 46. A sleeve 34 is provided between the main bearing (not shown) and the main shaft portion 33b in order to smoothly rotate the main shaft portion 33b. The auxiliary shaft portion 33 c is rotatably supported by a ball bearing 48. The ball bearing 48 is press-fitted and fixed to the central portion of the sub-frame 47 provided at the lower part of the sealed container 40.
 図2は、この発明の実施の形態1に係るスクロール圧縮機の固定スクロールの概略縦断面図である。
 固定スクロール21の固定台板23には、固定渦巻体24が形成された面と反対側の面に開口するインジェクション管挿入口28が形成されており、このインジェクション管挿入口28にインジェクション管49が接続される。また、固定台板23には、固定渦巻体24が形成された面に開口するインジェクションポート29aおよびインジェクションポート29bが形成されている。インジェクションポート29aおよびインジェクションポート29bの固定台板23における形成位置は、この実施の形態1の特徴とするところであり、以下で改めて詳述する。また、図2のガイド35aおよびガイド35bについても後述する。
FIG. 2 is a schematic longitudinal sectional view of the fixed scroll of the scroll compressor according to Embodiment 1 of the present invention.
The fixed base plate 23 of the fixed scroll 21 is formed with an injection pipe insertion port 28 that opens to a surface opposite to the surface on which the fixed spiral body 24 is formed. Connected. Further, the fixed base plate 23 is formed with an injection port 29a and an injection port 29b that open to the surface on which the fixed spiral body 24 is formed. The formation positions of the injection port 29a and the injection port 29b on the fixed base plate 23 are the features of the first embodiment, and will be described in detail later. The guide 35a and guide 35b in FIG. 2 will also be described later.
 固定台板23には更に、インジェクション管挿入口28から流入したインジェクション冷媒を2つに分岐してインジェクションポート29aおよびインジェクションポート29bに導くインジェクション経路29が形成されている。インジェクション経路29は、固定台板23を面方向に貫通する横穴で構成されている。 The fixed base plate 23 is further formed with an injection path 29 that branches the injection refrigerant flowing in from the injection tube insertion port 28 into two and leads to the injection port 29a and the injection port 29b. The injection path 29 is composed of a lateral hole that penetrates the fixed base plate 23 in the surface direction.
 インジェクション経路29は、固定台板23の外側からドリル等で孔をあけることで形成されている。この孔が開放されたままだと、インジェクション経路29が固定スクロール21の固定台板23の外側の高圧空間と繋がってしまう。よって、高圧空間の高温且つ高圧の冷媒がインジェクション経路29に流入する事を防ぐ目的で、インジェクション経路29の両端には例えばボルト等の漏れ防止部材51が挿入されている。これにより、インジェクション経路29と固定スクロール21の固定台板23の外側の高圧空間とを遮断している。 The injection path 29 is formed by making a hole from the outside of the fixed base plate 23 with a drill or the like. If this hole is left open, the injection path 29 is connected to the high-pressure space outside the fixed base plate 23 of the fixed scroll 21. Therefore, for the purpose of preventing the high-temperature and high-pressure refrigerant in the high-pressure space from flowing into the injection path 29, leakage preventing members 51 such as bolts are inserted at both ends of the injection path 29, for example. Thereby, the injection path 29 and the high-pressure space outside the fixed base plate 23 of the fixed scroll 21 are blocked.
 続いて、スクロール圧縮機100の動作について説明する。電動機部30のステータ31に電圧が印加されると、ステータ31の電線部に電流が流れ、磁界が発生する。この磁界はロータ32を回転させるように働き、ロータ32とともに主軸33が回転駆動する。主軸33が回転駆動すると、偏心軸部33aも揺動軸受27a内で回転する。そして、オルダムリング(図示せず)により自転を抑制された揺動スクロール22が揺動運動を行う。これにより、外部の冷凍サイクルから吸入管44を介して密閉容器40内に冷媒が吸入される。 Subsequently, the operation of the scroll compressor 100 will be described. When a voltage is applied to the stator 31 of the electric motor unit 30, a current flows through the electric wire part of the stator 31 and a magnetic field is generated. This magnetic field works to rotate the rotor 32, and the main shaft 33 is rotationally driven together with the rotor 32. When the main shaft 33 is driven to rotate, the eccentric shaft portion 33a also rotates within the rocking bearing 27a. Then, the orbiting scroll 22 whose rotation is suppressed by an Oldham ring (not shown) performs an orbiting motion. As a result, the refrigerant is sucked into the sealed container 40 from the external refrigeration cycle via the suction pipe 44.
 吸入された冷媒ガスの一部はフレーム46の吸入ポート36aおよび吸入ポート36bを介してフレーム46内側の第2空間71へ流れる。そして、第2空間71から複数の圧縮室11のうち最外室である吸入室内に冷媒ガスが吸入されて吸入過程が開始される。一方、吸入室に吸入されなかった冷媒ガスの残りの一部は、ステータ31の鋼板に形成された切り欠き(図示せず)を通って、電動機部30と潤滑油とを冷却する。 A part of the sucked refrigerant gas flows into the second space 71 inside the frame 46 through the suction port 36a and the suction port 36b of the frame 46. Then, the refrigerant gas is sucked from the second space 71 into the suction chamber which is the outermost chamber among the plurality of compression chambers 11, and the suction process is started. On the other hand, the remaining part of the refrigerant gas that has not been sucked into the suction chamber passes through a notch (not shown) formed in the steel plate of the stator 31 to cool the motor unit 30 and the lubricating oil.
 吸入室内に吸入された冷媒は、揺動スクロール22の揺動運動により揺動スクロール22の中心に向かって徐々に移動し、体積が縮小されることで圧縮される。そして、圧縮された冷媒は、複数の圧縮室11のうち最内室である吐出室から吐出され、固定スクロール21の吐出ポート3を通り、吐出弁5から吐出される。吐出弁5から吐出された冷媒は、吐出マフラ7内の空間を経て、圧縮部10よりも上方の第3空間72に流入し、吐出管45を介して密閉容器40外へ吐出される。 The refrigerant sucked into the suction chamber gradually moves toward the center of the rocking scroll 22 by the rocking motion of the rocking scroll 22, and is compressed by reducing the volume. The compressed refrigerant is discharged from the discharge chamber that is the innermost chamber among the plurality of compression chambers 11, passes through the discharge port 3 of the fixed scroll 21, and is discharged from the discharge valve 5. The refrigerant discharged from the discharge valve 5 passes through the space in the discharge muffler 7, flows into the third space 72 above the compression unit 10, and is discharged outside the sealed container 40 through the discharge pipe 45.
 次に、図3および図4を参照して、この実施の形態1の特徴部分であるインジェクションポート29aおよびインジェクションポート29bの固定台板23上の位置等について説明する。 Next, with reference to FIG. 3 and FIG. 4, the positions of the injection port 29a and the injection port 29b on the fixed base plate 23, which are features of the first embodiment, will be described.
 図3は、この発明の実施の形態1に係るスクロール圧縮機を渦巻構造体部分で切断した断面図である。図4は、この発明の実施の形態1に係るスクロール圧縮機の固定スクロールの平面図である。
 図3に示すように、インジェクションポート29aおよびインジェクションポート29bは、固定台板23において渦巻構造体10aの外側に設けられている。この位置にインジェクションポート29aおよびインジェクションポート29bを設けることで、インジェクション冷媒は、圧縮室11内ではなく第2空間71にインジェクションされる。
FIG. 3 is a cross-sectional view of the scroll compressor according to Embodiment 1 of the present invention cut at the spiral structure portion. FIG. 4 is a plan view of the fixed scroll of the scroll compressor according to Embodiment 1 of the present invention.
As shown in FIG. 3, the injection port 29 a and the injection port 29 b are provided outside the spiral structure 10 a in the fixed base plate 23. By providing the injection port 29 a and the injection port 29 b at this position, the injection refrigerant is injected not into the compression chamber 11 but into the second space 71.
 中間圧の圧縮室内にインジェクション冷媒をインジェクションする従来手法では、圧縮室に圧力の異なる冷媒が流入するため、圧力の異なる冷媒同士が圧縮室内で混合することで混合損失が生じ、圧縮機の性能が低下する。これに対し、この実施の形態1では、インジェクションポート29aおよびインジェクションポート29bを渦巻構造体10aの外側に設けたことで、圧縮室11(吸入室12)に吸入される前の第2空間71にインジェクション冷媒をインジェクションできる。このため、圧力の異なる冷媒同士が圧縮室11内で混合することがなく、混合損失を生じることがない。 In the conventional method in which the injection refrigerant is injected into the compression chamber of the intermediate pressure, since refrigerants having different pressures flow into the compression chamber, mixing of refrigerants having different pressures in the compression chamber causes mixing loss, and the performance of the compressor is reduced. descend. On the other hand, in the first embodiment, the injection port 29a and the injection port 29b are provided outside the spiral structure 10a, so that the second space 71 before being sucked into the compression chamber 11 (suction chamber 12) is provided. Injection refrigerant can be injected. For this reason, refrigerants having different pressures are not mixed in the compression chamber 11 and no mixing loss occurs.
 また、中間圧の圧縮室内にインジェクション冷媒をインジェクションする従来手法では、インジェクションポートは圧縮室に連通しているため、インジェクションを行う必要の無い運転条件では死容積となる。つまり、圧縮した冷媒ガスを低圧側へ漏らし、再膨張による損失を生じ、圧縮機の性能が低下する。しかし、この実施の形態1では、インジェクションポート29a、インジェクションポート29bおよびインジェクション経路29は第2空間71、つまり吸入圧空間に連通するため、従来手法による不都合を解消できる。 Further, in the conventional method in which the injection refrigerant is injected into the compression chamber of the intermediate pressure, the injection port communicates with the compression chamber, so that it becomes a dead volume under the operation condition where it is not necessary to perform the injection. That is, the compressed refrigerant gas is leaked to the low pressure side, causing loss due to re-expansion, and the performance of the compressor is lowered. However, in the first embodiment, since the injection port 29a, the injection port 29b, and the injection path 29 communicate with the second space 71, that is, the suction pressure space, inconvenience due to the conventional method can be solved.
 また、固定スクロール21の固定台板23には、インジェクションポート29aおよびインジェクションポート29bから第2空間71にインジェクションされた冷媒を渦巻構造体10a内に誘導するガイド35aおよびガイド35bが設けられている。 Further, the fixed base plate 23 of the fixed scroll 21 is provided with a guide 35a and a guide 35b for guiding the refrigerant injected into the second space 71 from the injection port 29a and the injection port 29b into the spiral structure 10a.
 次に、[インジェクションポート29aおよびインジェクションポート29bと、ガイド35aおよびガイド35bと、吸入ポート36aおよび吸入ポート36bとの位置関係]と、[ガイド35aおよびガイド35bの形状]とについて説明する。この例の構成では、インジェクションポート29a、ガイド35aおよび吸入ポート36aとの組と、インジェクションポート29b、ガイド35bおよび吸入ポート36bの組とは、中心軸Oを中心として点対称となる位置に配置されている。このため、以下の説明では、インジェクションポート29a、ガイド35aおよび吸入ポート36aの組を例に挙げるが、インジェクションポート29b、ガイド35bおよび吸入ポート36bとの組も同様である。 Next, [the positional relationship between the injection port 29a and the injection port 29b, the guide 35a and the guide 35b, and the suction port 36a and the suction port 36b] and [the shape of the guide 35a and the guide 35b] will be described. In the configuration of this example, the set of the injection port 29a, the guide 35a and the suction port 36a and the set of the injection port 29b, the guide 35b and the suction port 36b are arranged at positions that are symmetric with respect to the central axis O. ing. Therefore, in the following description, a set of the injection port 29a, the guide 35a, and the suction port 36a is taken as an example, but the set of the injection port 29b, the guide 35b, and the suction port 36b is the same.
 ガイド35aは、固定台板23に立設された突起であり、周方向においてインジェクションポート29aと吸入ポート36aとの間に配置されている。ガイド35aの高さは、固定スクロール21の固定渦巻体24の高さと同じ高さであることが好ましい。また、ガイド35aは、平面的に見てインジェクションポート29aと反対側に凸の円弧状に形成されている。よって、ガイド37aにおいてインジェクションポート29a側の端面35aaは、インジェクションポート29aと反対側に凸の円弧面となっている。これにより、インジェクションポート29aから第2空間71に流入したインジェクション冷媒を効率的に渦巻構造体10a内に導くことができる。 The guide 35a is a protrusion erected on the fixed base plate 23, and is disposed between the injection port 29a and the suction port 36a in the circumferential direction. The height of the guide 35 a is preferably the same as the height of the fixed spiral body 24 of the fixed scroll 21. The guide 35a is formed in a convex arc shape on the side opposite to the injection port 29a when seen in a plan view. Therefore, in the guide 37a, the end surface 35aa on the injection port 29a side is a circular arc surface that is convex on the opposite side to the injection port 29a. Thereby, the injection refrigerant that has flowed into the second space 71 from the injection port 29a can be efficiently guided into the spiral structure 10a.
 なお、ガイド35aおよびガイド35bのそれぞれの端面35aaおよび35baは円弧面に限るものではなく、平坦な平面でも構わない。また、インジェクションポート29aおよびインジェクションポート29bは、どちらか1つでも構わない。その場合は、ガイドも1つでもよい。 The end surfaces 35aa and 35ba of the guide 35a and the guide 35b are not limited to arcuate surfaces, and may be flat surfaces. Further, either one of the injection port 29a and the injection port 29b may be used. In that case, one guide may be sufficient.
 次に、スクロール圧縮機100に流入したインジェクション冷媒の流れについて説明する。インジェクション管49から流入したインジェクション冷媒は、インジェクション経路29を介してインジェクションポート29aおよびインジェクションポート29bから第2空間71に流入する。第2空間71に流入したインジェクション冷媒は、第2空間71内の低圧の冷媒と混合し、第2空間71内の冷媒の温度が低下する。そして温度が低下した冷媒が渦巻構造体10a内に吸入されるため、渦巻構造体10a内の温度を低下させることができる。 Next, the flow of the injection refrigerant flowing into the scroll compressor 100 will be described. The injection refrigerant that has flowed from the injection pipe 49 flows into the second space 71 from the injection port 29a and the injection port 29b via the injection path 29. The injection refrigerant flowing into the second space 71 is mixed with the low-pressure refrigerant in the second space 71, and the temperature of the refrigerant in the second space 71 is lowered. And since the refrigerant | coolant with which temperature fell is suck | inhaled in the spiral structure 10a, the temperature in the spiral structure 10a can be reduced.
 また、第2空間71に流入したインジェクション冷媒は、ガイド35aおよびガイド35bによって渦巻構造体10a内に誘導される。渦巻構造体10aの最外周には2つの吸入室が形成されており、これら2つの吸入室のそれぞれにインジェクション冷媒が流入する。このようにガイド35aおよびガイド35bが設けられていることで、インジェクション冷媒が渦巻構造体10a内に吸入される割合が増え、渦巻構造体10a内の温度を下げる効果を高めることができる。 Further, the injection refrigerant that has flowed into the second space 71 is guided into the spiral structure 10a by the guide 35a and the guide 35b. Two suction chambers are formed on the outermost periphery of the spiral structure 10a, and the injection refrigerant flows into each of the two suction chambers. Since the guide 35a and the guide 35b are provided in this way, the ratio of the injection refrigerant sucked into the spiral structure 10a increases, and the effect of lowering the temperature in the spiral structure 10a can be enhanced.
 以上説明したように、この実施の形態1によれば、インジェクションポート29aおよびインジェクションポート29bを、固定台板23において渦巻構造体10aの外側に設けた。これにより、インジェクション冷媒を、圧縮室11内ではなく、圧縮室11に吸入される前の第2空間71に流入させた後、渦巻構造体10a内に流入させることができる。したがって、インジェクション冷媒を渦巻構造体内の圧縮室にインジェクションする従来のように、圧力の異なる冷媒が混合することによる混合損失を生じることなく、渦巻構造体10a内の温度を低下させることができる。よって、スクロール圧縮機100の性能を向上できる。 As described above, according to the first embodiment, the injection port 29a and the injection port 29b are provided on the fixed base plate 23 outside the spiral structure 10a. As a result, the injection refrigerant can flow into the spiral structure 10 a after flowing into the second space 71 before being sucked into the compression chamber 11 instead of into the compression chamber 11. Therefore, the temperature in the spiral structure 10a can be reduced without causing a mixing loss due to mixing of refrigerants having different pressures as in the conventional case where the injection refrigerant is injected into the compression chamber in the spiral structure. Therefore, the performance of the scroll compressor 100 can be improved.
 また、固定スクロール21の固定台板23にガイド35aおよびガイド35bを設けた。これにより、第2空間71に流入したインジェクション冷媒は、ガイド35aおよびガイド35bによって渦巻構造体10a内に誘導される。このため、渦巻構造体10a内に吸入されるインジェクション冷媒の割合が増え、渦巻構造体10a内の温度を低下させる効果が高まる。 Further, a guide 35 a and a guide 35 b are provided on the fixed base plate 23 of the fixed scroll 21. As a result, the injection refrigerant flowing into the second space 71 is guided into the spiral structure 10a by the guide 35a and the guide 35b. For this reason, the ratio of the injection refrigerant | coolant suck | inhaled in the spiral structure 10a increases, and the effect of reducing the temperature in the spiral structure 10a increases.
 このように渦巻構造体10a内の温度を低下させることができるため、以下の効果が得られる。すなわち、固定渦巻体24および揺動渦巻体26のそれぞれの先端部と、対向する相手側のスクロールの揺動台板25および固定台板23との間の隙間が、熱膨張により縮小して接触し、圧縮機が破損してしまうという事が起こりにくい。この効果は、冷媒として例えばR32などの吐出温度の上昇しやすい冷媒を用いた場合に特に効果的である。吐出温度の上昇しやすい冷媒を用いた場合、吐出温度が高くなりやすい高圧縮比条件で渦巻構造体10a内部が高温となり、歯先隙間の縮小度合いも大きく、圧縮機の破損の可能性が高いためである。 Since the temperature in the spiral structure 10a can be lowered in this way, the following effects can be obtained. That is, the clearance between the respective distal end portions of the fixed spiral body 24 and the swing spiral body 26 and the swing base plate 25 and fixed base plate 23 of the opposing scroll is reduced and contacted by thermal expansion. However, it is difficult for the compressor to be damaged. This effect is particularly effective when a refrigerant such as R32 that tends to increase the discharge temperature is used. When a refrigerant whose discharge temperature is likely to rise is used, the inside of the spiral structure 10a becomes high temperature under a high compression ratio condition where the discharge temperature tends to be high, the degree of reduction of the tooth tip gap is large, and the possibility of breakage of the compressor is high. Because.
 また、ガイド35aおよびガイド35bによって、渦巻構造体10a内に吸入されるインジェクション冷媒の割合が増えることで、以下の効果が得られる。すなわち、第2空間71に流入したインジェクション冷媒が、フレーム46の吸入ポート36aおよび吸入ポート36bを通って第1空間70に流出することを抑制できる。したがって、第2空間71から第1空間70に流入した冷媒が、圧縮機の下部容器43に溜まった油と混合して油濃度を低下させる事が無くなる。 Further, the following effects can be obtained by increasing the ratio of the injection refrigerant sucked into the spiral structure 10a by the guide 35a and the guide 35b. In other words, the injection refrigerant that has flowed into the second space 71 can be prevented from flowing into the first space 70 through the suction port 36a and the suction port 36b of the frame 46. Therefore, the refrigerant flowing into the first space 70 from the second space 71 is not mixed with the oil accumulated in the lower container 43 of the compressor and the oil concentration is not lowered.
 また、インジェクション冷媒は、固定スクロール21の固定台板23に形成されたインジェクションポート29a、インジェクションポート29bおよびインジェクション経路29を通るようになっており、フレーム46は通らない。このため、インジェクション冷媒によってフレーム46が冷やされることがない。故に、フレーム46の軸方向の寸法が縮まって固定渦巻体24および揺動渦巻体26のそれぞれの先端部と、対向する相手側のスクロールの揺動台板25および固定台板23との間の隙間が縮小して接触し、圧縮機が破損するという不都合を防止できる。 In addition, the injection refrigerant passes through the injection port 29a, the injection port 29b and the injection path 29 formed on the fixed base plate 23 of the fixed scroll 21, and does not pass through the frame 46. For this reason, the frame 46 is not cooled by the injection refrigerant. Therefore, the axial dimension of the frame 46 is reduced, so that the fixed spiral body 24 and the swinging spiral body 26 are respectively connected to the respective leading ends of the opposed scroll body 25 and the stationary base plate 23 of the opposing scroll. It is possible to prevent the inconvenience that the gap is reduced and contacts and the compressor is damaged.
実施の形態2.
 上記実施の形態1では、固定スクロール21のみにガイドを設けたが、実施の形態2では固定スクロール21と揺動スクロール22の両方にガイドを設けたものである。以下、実施の形態2が実施の形態1と異なる点を中心に説明する。実施の形態2で説明されていない構成は実施の形態1と同様である。
Embodiment 2. FIG.
In the first embodiment, the guide is provided only on the fixed scroll 21, but in the second embodiment, the guide is provided on both the fixed scroll 21 and the swing scroll 22. The following description will focus on the differences of the second embodiment from the first embodiment. Configurations not described in the second embodiment are the same as those in the first embodiment.
 図5は、この発明の実施の形態2に係るスクロール圧縮機を渦巻構造体部分で切断した断面図である。なお、図5は、渦巻構造体部分の断面を、揺動スクロール22側から固定スクロール21側に向かって見た図である。
 実施の形態2は、固定スクロール21と揺動スクロール22のそれぞれにおいて、揺動渦巻体26および固定渦巻体24にガイド37aおよびガイド37bを設けた構成である。
FIG. 5 is a cross-sectional view of the scroll compressor according to Embodiment 2 of the present invention cut at the spiral structure portion. FIG. 5 is a cross-sectional view of the spiral structure portion as viewed from the swing scroll 22 side toward the fixed scroll 21 side.
In the second embodiment, each of the fixed scroll 21 and the swing scroll 22 is configured such that a guide 37 a and a guide 37 b are provided on the swing spiral body 26 and the fixed spiral body 24.
 次に、[インジェクションポート29aおよびインジェクションポート29b、ガイド37aおよびガイド37bと、吸入ポート36aおよび吸入ポート36bとの位置関係]と、[ガイド37aおよびガイド37bの形状]とについて説明する。この例の構成では、インジェクションポート29a、ガイド37aおよび吸入ポート36aとの組と、インジェクションポート29b、ガイド37bおよび吸入ポート36bの組とは、中心軸Oを中心として点対称となる位置に配置されている。このため、以下の説明では、インジェクションポート29a、ガイド37aおよび吸入ポート36aの組を例に挙げるが、インジェクションポート29b、ガイド37bおよび吸入ポート36bとの組も同様である。 Next, [the positional relationship between the injection port 29a and the injection port 29b, the guide 37a and the guide 37b, and the suction port 36a and the suction port 36b] and [the shape of the guide 37a and the guide 37b] will be described. In the configuration of this example, the set of the injection port 29a, the guide 37a and the suction port 36a and the set of the injection port 29b, the guide 37b and the suction port 36b are arranged at positions that are point-symmetric about the central axis O. ing. For this reason, in the following description, a set of the injection port 29a, the guide 37a, and the suction port 36a is taken as an example, but the set of the injection port 29b, the guide 37b, and the suction port 36b is the same.
 ガイド37aは、揺動渦巻体26の外周面から第2空間71に向けて突出する突起であって、周方向においてインジェクションポート29aと吸入ポート36aとの間に配置されている。そして、ガイド37aにおいてインジェクションポート29a側の端面37aaがインジェクションポート29aと反対側に凸の円弧面となっており、上記実施の形態1の円弧面と同様の機能を有する。つまり、円弧面は、インジェクションポート29aから第2空間71に流入したインジェクション冷媒を渦巻構造体10a内に効率的に導く機能を有する。ガイド37b側の端面37baも同様の機能を有する。 The guide 37a is a protrusion that protrudes from the outer peripheral surface of the oscillating spiral body 26 toward the second space 71, and is disposed between the injection port 29a and the suction port 36a in the circumferential direction. In the guide 37a, the end surface 37aa on the injection port 29a side is a convex arc surface on the opposite side to the injection port 29a, and has the same function as the arc surface of the first embodiment. That is, the circular arc surface has a function of efficiently guiding the injection refrigerant flowing into the second space 71 from the injection port 29a into the spiral structure 10a. The end surface 37ba on the guide 37b side has a similar function.
 実施の形態2によれば、実施の形態1と同様の効果が得られる。この実施の形態2では、固定スクロール21と揺動スクロール22との両方にガイドを設ける構成として、図5の形状の例を示したが、固定スクロール21のみにガイドを設ける構成において、図5の形状を適用してもよい。 According to the second embodiment, the same effect as in the first embodiment can be obtained. In the second embodiment, the example of the shape of FIG. 5 is shown as the configuration in which the guide is provided in both the fixed scroll 21 and the swing scroll 22, but in the configuration in which the guide is provided only in the fixed scroll 21, FIG. A shape may be applied.
 また、ガイド37aおよびガイド37bのそれぞれの端面37aaおよび37baは、実施の形態1と同様、円弧面に限るものではなく平坦な平面でも構わない。また、インジェクションポート29aおよびインジェクションポート29bは、どちらか1つでも構わない。その場合は、ガイドも1つでもよい。 Further, the end surfaces 37aa and 37ba of the guide 37a and the guide 37b are not limited to the arc surfaces as in the first embodiment, and may be flat surfaces. Further, either one of the injection port 29a and the injection port 29b may be used. In that case, one guide may be sufficient.
 なお、上記各実施の形態では、フレーム46の吸入ポートの数は2個であったが、2個に限るものではない。また、インジェクションポートの数も、2個に限るものではない。 In each of the above embodiments, the number of suction ports of the frame 46 is two, but the number is not limited to two. Also, the number of injection ports is not limited to two.
 3 吐出ポート、5 吐出弁、6 弁押さえ、7 吐出マフラ、7a 固定部材、10 圧縮部、10a 渦巻構造体、11 圧縮室、12 吸入室、13 吐出室、21 固定スクロール、21a 内向面、22 揺動スクロール、23 固定台板、24 固定渦巻体、25 揺動台板、26 揺動渦巻体、27 ボス部、27a 揺動軸受、28 インジェクション管挿入口、29 インジェクション経路、29a インジェクションポート、29b インジェクションポート、30 電動機部、31 ステータ、32 ロータ、33 主軸、33a 偏心軸部、33b 主軸部、33c 副軸部、34 スリーブ、35a ガイド、35aa 端面、35b ガイド、35ba 端面、36a 吸入ポート、36b 吸入ポート、37a ガイド、37aa 端面、37b ガイド、37ba 端面、40 密閉容器、41 上部容器、42 中間部容器、43 下部容器、44 吸入管、45 吐出管、46 フレーム、47 サブフレーム、48 ボールベアリング、49 インジェクション管、51 防止部材、70 第1空間、71 第2空間、72 第3空間、100 スクロール圧縮機、O 中心軸。 3 discharge port, 5 discharge valve, 6 valve presser, 7 discharge muffler, 7a fixing member, 10 compression part, 10a spiral structure, 11 compression chamber, 12 suction chamber, 13 discharge chamber, 21 fixed scroll, 21a inward surface, 22 Oscillating scroll, 23 fixed base plate, 24 fixed spiral body, 25 rocking base plate, 26 rocking spiral body, 27 boss, 27a rocking bearing, 28 injection tube insertion port, 29 injection path, 29a injection port, 29b Injection port, 30 motor section, 31 stator, 32 rotor, 33 main shaft, 33a eccentric shaft section, 33b main shaft section, 33c sub shaft section, 34 sleeve, 35a guide, 35aa end face, 35b guide, 35ba end face, 36a suction port, 36b Inhalation port, 3 a guide, 37aa end face, 37b guide, 37ba end face, 40 sealed container, 41 upper container, 42 middle container, 43 lower container, 44 suction pipe, 45 discharge pipe, 46 frame, 47 subframe, 48 ball bearing, 49 injection Pipe, 51 prevention member, 70 1st space, 71 2nd space, 72 3rd space, 100 scroll compressor, O central axis.

Claims (6)

  1.  固定台板に固定渦巻体が立設された固定スクロールと、揺動台板に揺動渦巻体が立設された揺動スクロールとを備えた圧縮部を有し、前記固定渦巻体と前記揺動渦巻体とが組み合うことで形成される渦巻構造体内の圧縮室で流体を圧縮するスクロール圧縮機において、
     前記渦巻構造体の外側には、外部から流体が吸入される吸入圧空間が形成されており、
     前記固定台板において前記渦巻構造体の外側に、前記吸入圧空間にインジェクション流体をインジェクションするインジェクションポートを有するスクロール圧縮機。
    A compression unit including a fixed scroll having a fixed spiral plate standing on a fixed base plate and a swing scroll having a swing spiral member standing on a swing base plate; In a scroll compressor that compresses fluid in a compression chamber in a spiral structure formed by combining with a dynamic spiral body,
    A suction pressure space into which fluid is sucked from the outside is formed outside the spiral structure,
    A scroll compressor having an injection port for injecting an injection fluid into the suction pressure space outside the spiral structure in the fixed base plate.
  2.  前記圧縮部を支持するフレームを備え、
     前記固定スクロールは、周方向において前記インジェクションポートと前記フレームに形成された吸入ポートとの間に、前記インジェクションポートから前記吸入圧空間に流入したインジェクション流体を前記渦巻構造体内に導くガイドを備えた請求項1記載のスクロール圧縮機。
    A frame for supporting the compression section;
    The fixed scroll includes a guide that guides an injection fluid that flows into the suction pressure space from the injection port into the spiral structure between the injection port and a suction port formed in the frame in a circumferential direction. Item 2. The scroll compressor according to Item 1.
  3.  前記ガイドは、前記固定台板に立設された突起である請求項2記載のスクロール圧縮機。 The scroll compressor according to claim 2, wherein the guide is a protrusion standing on the fixed base plate.
  4.  前記ガイドは、前記固定渦巻体の外周面から前記吸入圧空間に向けて突出して設けられた突起である請求項2記載のスクロール圧縮機。 The scroll compressor according to claim 2, wherein the guide is a protrusion provided to protrude from an outer peripheral surface of the fixed spiral body toward the suction pressure space.
  5.  前記ガイドは、前記固定渦巻体および前記揺動渦巻体のそれぞれに設けられ、それぞれの外周面から前記吸入圧空間に向けて突出して設けられた突起である請求項2記載のスクロール圧縮機。 3. The scroll compressor according to claim 2, wherein the guide is a protrusion provided on each of the fixed spiral body and the oscillating spiral body and projecting from each outer peripheral surface toward the suction pressure space.
  6.  前記ガイドにおいて前記インジェクションポート側の端面が、前記インジェクションポートと反対側に凸の円弧面となっている請求項2~請求項5のいずれか一項に記載のスクロール圧縮機。 The scroll compressor according to any one of claims 2 to 5, wherein an end surface on the injection port side of the guide is a circular arc surface convex on the opposite side to the injection port.
PCT/JP2018/021536 2018-06-05 2018-06-05 Scroll compressor WO2019234823A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020523882A JP6921321B2 (en) 2018-06-05 2018-06-05 Scroll compressor
PCT/JP2018/021536 WO2019234823A1 (en) 2018-06-05 2018-06-05 Scroll compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/021536 WO2019234823A1 (en) 2018-06-05 2018-06-05 Scroll compressor

Publications (1)

Publication Number Publication Date
WO2019234823A1 true WO2019234823A1 (en) 2019-12-12

Family

ID=68770944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021536 WO2019234823A1 (en) 2018-06-05 2018-06-05 Scroll compressor

Country Status (2)

Country Link
JP (1) JP6921321B2 (en)
WO (1) WO2019234823A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11236745B2 (en) * 2018-01-30 2022-02-01 Mitsubishi Electric Corporation Scroll compressor having injection passage including first and second outlet passage sections

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03294686A (en) * 1990-04-11 1991-12-25 Daikin Ind Ltd Scroll compressor
JP2000054972A (en) * 1998-08-07 2000-02-22 Daikin Ind Ltd Scroll type compressor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03294686A (en) * 1990-04-11 1991-12-25 Daikin Ind Ltd Scroll compressor
JP2000054972A (en) * 1998-08-07 2000-02-22 Daikin Ind Ltd Scroll type compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11236745B2 (en) * 2018-01-30 2022-02-01 Mitsubishi Electric Corporation Scroll compressor having injection passage including first and second outlet passage sections

Also Published As

Publication number Publication date
JP6921321B2 (en) 2021-08-18
JPWO2019234823A1 (en) 2021-04-22

Similar Documents

Publication Publication Date Title
KR101529415B1 (en) Scroll-type compressor
KR20070009716A (en) Rotating fluid machine
JP2006009792A (en) Rotary compressor
JP2008101559A (en) Scroll compressor and refrigeration cycle using the same
WO2016042673A1 (en) Scroll compressor
CN110691911B (en) Scroll compressor and refrigeration cycle device
JP5455763B2 (en) Scroll compressor, refrigeration cycle equipment
WO2019234823A1 (en) Scroll compressor
KR20190028182A (en) Hermetic compressor
JP6735662B2 (en) Rotary compressor and refrigeration cycle device
KR101521933B1 (en) Scoroll compressor and refrigsrator having the same
JP5328536B2 (en) Scroll compressor
JP2006177183A (en) Scroll compressor
WO2022157967A1 (en) Scroll compressor and refrigeration cycle device with scroll compressor
JP2005320928A (en) Rotary fluid machine
JP7170887B2 (en) scroll compressor
JP7511683B2 (en) Refrigeration Cycle Equipment
JPWO2019043741A1 (en) Compressor
CN117642555B (en) Scroll compressor and refrigeration cycle device
JP7139718B2 (en) compressor
WO2022185956A1 (en) Compressor and refrigeration cycle device
JP2005320979A (en) Compressor
KR20220039298A (en) Oil separator, compressor and refrigeration cycle device including the same
JP2019105165A (en) Scroll compressor
JP2008163831A (en) Fluid machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18921936

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020523882

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18921936

Country of ref document: EP

Kind code of ref document: A1