WO2023078399A1 - 微通道换热器 - Google Patents

微通道换热器 Download PDF

Info

Publication number
WO2023078399A1
WO2023078399A1 PCT/CN2022/129911 CN2022129911W WO2023078399A1 WO 2023078399 A1 WO2023078399 A1 WO 2023078399A1 CN 2022129911 W CN2022129911 W CN 2022129911W WO 2023078399 A1 WO2023078399 A1 WO 2023078399A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
heat exchanger
flat
wall
exchanger according
Prior art date
Application number
PCT/CN2022/129911
Other languages
English (en)
French (fr)
Inventor
魏文建
王冠军
丁二刚
朱丽星
吴振鑫
Original Assignee
浙江盾安人工环境股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202122706128.8U external-priority patent/CN216205497U/zh
Priority claimed from CN202220403404.5U external-priority patent/CN217383880U/zh
Priority claimed from CN202220961160.2U external-priority patent/CN217383869U/zh
Priority claimed from CN202221483863.5U external-priority patent/CN218002296U/zh
Priority claimed from CN202210662495.9A external-priority patent/CN117268161A/zh
Application filed by 浙江盾安人工环境股份有限公司 filed Critical 浙江盾安人工环境股份有限公司
Publication of WO2023078399A1 publication Critical patent/WO2023078399A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators

Definitions

  • the present application relates to the technical field of refrigeration, in particular to a microchannel heat exchanger.
  • Microchannel heat exchanger is a kind of compact, lightweight and efficient heat exchanger designed to meet the needs of industrial development.
  • the headers In the microchannel heat exchanger in the related art, two headers are arranged at both ends of the flat tubes, and the inlet and outlet of the flat tubes are connected with the headers.
  • the headers need to have multiple flat tube grooves, resulting in The flow tube is difficult to process.
  • a microchannel heat exchanger is provided.
  • the application provides a microchannel heat exchanger, which includes a plurality of fins and a plurality of flat tubes, the plurality of fins are arranged side by side to form multiple rows, the fins are provided with connection slots, and the plurality of flat tubes are arranged in parallel Forming multiple layers, the flat tubes are passed through the sockets;
  • the microchannel heat exchanger also includes a distributor and a transfer tube, the distributor is provided with a plurality of capillaries, and one end of the transfer tube is connected to the The capillary is connected, and the other end is connected with the flat tube.
  • Figure 1 is a perspective view from one perspective of a microchannel heat exchanger according to one or more embodiments.
  • Figure 2 is a perspective view of another perspective of a microchannel heat exchanger according to one or more embodiments.
  • Fig. 3 is a schematic structural diagram of a transfer pipe according to one or more embodiments.
  • Fig. 4 is a schematic diagram of a fin structure according to one or more embodiments.
  • Fig. 5 is a schematic diagram of a fin structure according to one or more embodiments.
  • Fig. 6 is a schematic diagram of a fin structure according to one or more embodiments.
  • Fig. 7 is a schematic diagram of a fin structure according to one or more embodiments.
  • Fig. 8 is a schematic diagram of a fin structure provided with a second protrusion according to one or more embodiments.
  • Fig. 9 is a schematic structural view of two rows of fins abutting according to one or more embodiments.
  • Fig. 10 is a schematic structural diagram of a transition tube according to one or more embodiments.
  • Fig. 11 is a structural schematic diagram of an embodiment of connecting an adapter pipe and a flat pipe according to one or more embodiments.
  • Fig. 13 is a structural schematic diagram of another embodiment of the connection between the transition tube and the flat tube according to one or more embodiments.
  • FIG. 14 is a partially enlarged view at B in FIG. 13 .
  • Fig. 15 is a schematic diagram of the structure of a microchannel heat exchanger according to one or more embodiments.
  • Fig. 16 is a schematic diagram of the structure of a microchannel heat exchanger according to one or more embodiments.
  • Fig. 17 is a partial schematic diagram of a microchannel heat exchanger according to one or more embodiments.
  • Fig. 18 is a schematic diagram of a connection cross-sectional structure of a flat tube and an adapter tube according to one or more embodiments.
  • FIG. 19 is a schematic diagram of a partially enlarged structure at point A in FIG. 18 .
  • FIG. 20 shows a schematic structural view of a heat exchanger according to one or more embodiments.
  • Figure 21 shows a schematic view of the structure of an elbow according to one or more embodiments.
  • Fig. 22 shows a schematic structural view of an elbow with ⁇ being 90° according to one or more embodiments.
  • Fig. 23 shows a schematic structural view of an elbow with ⁇ being an acute angle according to one or more embodiments.
  • Figure 24 shows a cross-sectional view in one direction of the connection of an elbow and a flat tube according to one or more embodiments.
  • Fig. 25 shows a cross-sectional view from another direction of the connection of the bent tube and the flat tube according to one or more embodiments.
  • Fig. 26 shows a schematic view of the structure at the mouth of an elbow with a square connection port according to one or more embodiments.
  • Fig. 27 shows a schematic view of the structure at the mouth of an elbow in which the first side and the second side are circular arcs, and the top and bottom surfaces are both tangent to the first side according to one or more embodiments.
  • Fig. 28 shows a schematic view of the structure at the mouth of an elbow in which the first side and the second side are both circular arcs, and the top and bottom surfaces are not tangent to the first side according to one or more embodiments.
  • Fig. 29 shows a schematic view of the structure at the nozzle of an elbow with an elliptical connection according to one or more embodiments.
  • Fig. 30 shows a schematic view of the structure at the nozzle of an elbow whose first side and second side are both elliptical arc surfaces according to one or more embodiments.
  • Fig. 31 shows a schematic view of the structure at the nozzle of an elbow (that is, a triangular head structure) in which the first side and the second side are both bent surfaces according to one or more embodiments.
  • Figure 32 shows a front view of mating fins and flat tubes according to one or more embodiments.
  • FIG. 33 shows a schematic structural view of a partial structure of a fin according to one or more embodiments.
  • Fig. 34 shows a schematic structural view of a flange structure according to one or more embodiments.
  • Figure 35 shows a side view of a partial structure of a fin according to one or more embodiments.
  • Figure 36 shows a schematic diagram of the dimensions of the width and height of a socket according to one or more embodiments.
  • Microchannel heat exchanger 10. Fin; 11. Connecting slot; 12. First side; 13. Second side; 14. First protrusion; 15. Slit; 16. Second protrusion; 17. Body part; 18. Flange structure; 181. First flange; 182. Second flange; 183. Third flange; 20. Flat tube; 21. First row of flat tubes; 22.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • a first feature is “on” or “under” a second feature, which means that the first feature is directly in contact with the second feature, or that the first feature and the second feature are indirectly contact through an intermediary.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or it just means that the level of the first feature is higher than that of the second feature.
  • “Below”, “beneath” and “under” the first feature may mean that the first feature is directly below or obliquely below the second feature, or it just means that the level of the first feature is smaller than that of the second feature.
  • a microchannel heat exchanger 100 provided by the present application is installed in a refrigeration system, a medium flows in the microchannel heat exchanger 100, and the microchannel heat exchanger 100 assists the medium to exchange heat with the outside world. exchange.
  • the microchannel heat exchanger 100 includes a plurality of fins 10 and a plurality of flat tubes 20, the plurality of fins 10 are arranged side by side and spaced apart to form multiple rows of fins 10, and the plurality of flat tubes 20 are arranged in parallel to form a multilayer
  • the flat tubes 20 and the fins 10 are provided with connection slots 11 , and the flat tubes 20 pass through the connection slots 11 .
  • the multiple rows of fins 10 in this application refer to the fact that the fins 10 are arranged in multiple rows along the length direction of the flat tube 20, and the multilayer flat tube 20 refers to the In the height direction of the microchannel heat exchanger 100, a plurality of flat tubes 20 are arranged in parallel in multiple layers.
  • the following multi-rows refer to that along the width direction of the microchannel heat exchanger 100, the flat tubes 20 and fins 10 are arranged in multiple rows before and after.
  • the microchannel heat exchanger 100 also includes a distributor 30 and a transfer pipe 40 .
  • the distributor 30 is provided with a plurality of capillary tubes 31 .
  • One end of the transfer pipe 40 communicates with the capillary tubes 31 , and the other end communicates with the flat tube 20 .
  • the medium is evenly distributed in the distributor 30 and then enters the flat tube 20.
  • Using the distributor 30 instead of the traditional header can simplify the process. If the process needs to be changed, it is only necessary to select a suitable distributor 30 and delete the capillary.
  • the quantity of 31 is enough, if utilize collecting pipe to distribute, then need to set up a plurality of flat tube grooves on collecting pipe 60, the process is complicated.
  • the nozzle of the adapter tube 40 facing the flat tube 20 is adapted to the nozzle of the flat tube 20 , and one end of the flat tube 20 extends into the adapter tube 40 to enhance the welding strength.
  • the width W 1 of the mouth of the adapter tube 40 towards the flat tube 20 is greater than the width of the mouth W 2 of the flat tube 20, and the height H 1 of the mouth of the adapter tube 40 towards the flat tube 20 is greater than that of the flat tube 20.
  • the height H 2 of the nozzle of the tube 20 It can be understood that since the flat tube 20 and the transfer tube 40 are made of aluminum, it is not suitable for flaring. Take over 40 inside. It should be noted that the width and height of the mouth of the adapter tube 40 towards the flat tube 20 refer to the internal dimensions of the mouth of the adapter tube 40 towards the flat tube 20, excluding the thickness of the adapter tube 40. Similarly, the flat tube 20 The size of the orifice does not include the thickness of the flat tube 20 either.
  • the application also provides an adapter tube 40 installed in the microchannel heat exchanger 100 , the adapter tube 40 is used to connect adjacent flat tubes 20 , or the adapter tube 40 is used to connect the flat tubes 20 and capillary tubes 31 .
  • connection between the flat tube and the transfer tube is usually not provided with a limit structure, which not only makes it difficult to weld between the flat tube and the transfer tube, but also makes the flat tube and the transfer tube difficult to weld during the welding process.
  • the phenomenon of displacement occurs in the middle, which causes inconvenience to welding.
  • the present application provides a transition tube 40 installed in the micro-channel heat exchanger 100 , and the transition tube 40 is used to connect the flat tube 20 .
  • There are multiple transfer tubes 40 one end of some transfer tubes 40 is connected to the capillary 31 , the other end is connected to the flat tube 20 , and both ends of some transfer tubes 40 are connected to the flat tube 20 .
  • the adapter tube 40 connected to the capillary 31 adopts a structure in which the nozzle at one end is circular, and the nozzle at the other end is a long hole-shaped structure, and the adapter tube 40 connected to the flat tube 20 at both ends adopts an elbow structure.
  • the adapter tube 40 has a first nozzle 401 compatible with the flat tube 20 , the first nozzle 401 is used for inserting the flat tube 20 , and the inner wall of the adapter tube 40 is provided with a stopper 402 , and the stopper 402 abuts against the flat tube 20 One end and/or abut against the side wall of the flat tube 20 for limiting the position of the flat tube 20 .
  • each flat tube 20 needs to be inserted into each adapter tube 40 in a one-to-one correspondence, and then integrated Welding, therefore, in order to avoid displacement between the flat tube 20 and the transfer tube 40 during the welding process, the present application provides a limiting part 402 for limiting the flat tube 20 on the inner wall of the transfer tube 40 .
  • the limiting part 402 In order to ensure the connection fixity between the flat tube 20 and the adapter tube 40 before welding, along the axial direction of the flat tube 20, the limiting part 402 needs to limit the depth of the flat tube 20 inserted into the adapter tube 40; In the axial direction of the tube 20 , the limiting part 402 also needs to limit the shaking of the flat tube 20 in the transfer tube 40 .
  • the limiting portion 402 includes a first convex portion 402A, and the first convex portion 402A is disposed on the inner wall of the transfer tube 40 and faces away from the inner wall of the transfer tube 40 .
  • the first convex portion 402A is used to abut against one end of the flat tube 20, so that the end surface of the flat tube 20 extending into the adapter tube 40 can abut against the first convex portion 402A, so that the flat tube 20 can rotate
  • the insertion depth of the connecting pipe 40 is limited, and at the same time, the arrangement of the first convex portion 402A produces a disturbing effect on the refrigerant, so that the uniformity of the refrigerant is improved, and the heat exchange efficiency of the heat exchanger is improved.
  • the protrusion height of the first protrusion 402A relative to the inner wall of the adapter pipe 40 should not be too large or too small, and should be set within an appropriate range.
  • the height of the first protrusion 402A protruding relative to the inner wall of the transfer pipe 40 is H3
  • the height of the flat pipe 20 is H1
  • the transfer pipe 40 has a first inner wall 403 and a second inner wall 404 that are oppositely arranged.
  • the convex part 402A is provided on the first inner wall 403 and/or the second inner wall 404, the distance between the first inner wall 403 and the second inner wall 404 is H2 , and the height of the flat tube 20 is H1 ; wherein, the first convex part The height H 3 of 402A protruding relative to the inner wall of the adapter tube 40, the height H 1 of the flat tube 20, and the distance H 2 between the first inner wall 403 and the second inner wall 404 satisfy the relationship 0.2mm ⁇ [H 3 -(H 2 -H 1 )] ⁇ 3mm.
  • the value of [H 3 -(H 2 -H 1 )] can be 0.2 mm, 1 mm, 2 mm, 3 mm or any value falling within this range.
  • the height H 1 of the flat tube 20 is the outer height of the flat tube 20 , not the height of the inner channel of the flat tube 20 .
  • the protruding height H3 of the first convex portion 402A relative to the inner wall of the transfer pipe 40 is too large, the first convex portion 402A will hinder the flow of the medium in the transfer pipe 40 to a certain extent, and even cause throttling. flow; if the height H3 of the first protrusion 402A protruding relative to the inner wall of the adapter pipe 40 is too small, the position-limiting function may not be realized; therefore, the first protrusion 402A protrudes relative to the inner wall of the adapter pipe 40
  • the height H3 is within an appropriate range, so that it can not only ensure the limit of the end surface of the flat tube 20, but also avoid excessive medium flow resistance caused by too high H3 .
  • the number of the first protrusions 402A can be one, two, three or more, and the number of the first protrusions 402A is not limited here.
  • the shape of the first protrusion 402A may be semicircular, square or trapezoidal, which is not limited herein.
  • the position where the first protrusion 402A is disposed on the inner wall of the adapter tube 40 is substantially equivalent to the maximum position where the flat tube 20 is inserted into the adapter tube 40 , and the depth of the flat tube 20 inserted into the adapter tube 40 , also needs to exist within a suitable range.
  • the distance between the first protrusion 402A and the end surface of the first nozzle 401 that is, the depth at which the flat tube 20 is inserted into the adapter tube 40 as L 1
  • L 1 satisfies the relationship 2mm ⁇ L 1 ⁇ 10mm . That is, the distance L 1 between the first protrusion 402A and the end surface of the first nozzle 401 can be 2mm, 4mm, 6mm, 8mm, 10mm or any value falling within the range, which is not limited here.
  • the depth L1 of the flat tube 20 inserted into the adapter tube 40 is too large, the flow of the internal medium will be hindered to a certain extent; if the depth L1 of the flat tube 20 inserted into the adapter tube 40 is too small, it will The contact area between the flat tube 20 and the transition tube 40 is reduced, thereby reducing the welding strength between the two. Therefore, by making the distance L1 between the first protrusion 402A and the end surface of the first nozzle 401 satisfy the relational expression 2mm ⁇ L1 ⁇ 10mm , the insertion depth of the flat tube 20 into the adapter tube 40 is in an appropriate range. In this way, it can not only prevent the flat tube 20 from being inserted too deep to cause flow resistance, but also prevent the flat tube 20 from being inserted too shallowly and reduce the welding strength.
  • the limiting portion 402 includes a second convex portion 402B, and the second convex portion 402B is disposed on the inner wall of the transfer tube 40 and extends away from the inner wall of the transfer tube 40 , the second convex portion 402B is arranged away from the first nozzle 401 relative to the first convex portion 402A, and the height of the second convex portion 402B protruding from the inner wall of the transfer pipe 40 is smaller than that of the first convex portion 402A protruding from the inner wall of the transfer pipe 40
  • the height of the second protrusion 402B is used to abut against the outer wall of the flat tube 20 , mainly to prevent the flat tube 20 from shaking relative to the inner wall of the transfer tube 40 .
  • the limiting portion 402 includes a first convex portion 402A and a second convex portion 402B, the first convex portion 402A is used to abut against one end of the flat tube 20, and the second convex portion 402B is used to abut against On the outer wall of the flat tube 20, the insertion depth of the flat tube 20 into the adapter tube and the shaking of the flat tube 20 in the adapter tube 40 are limited, further ensuring the connection and fixation between the flat tube 20 and the adapter tube 40 Sex, easy to weld.
  • the second protrusion 402B protruding relative to the inner wall of the adapter tube 40 is H4
  • the second protrusion 402B is arranged on the first inner wall 403 and/or the second inner wall 404, the height H1 of the flat tube 20, the second protrusion
  • the height H 4 of 402B protruding relative to the inner wall of the transfer pipe 40, and the distance H 2 between the first inner wall 403 and the second inner wall 404 satisfy the relationship 0mm ⁇ [H 4 -(H 2 -H 1 )] ⁇ 0.2mm . That is, [H 4 -(H 2 -H 1 )] may be 0 mm, 0.1 mm, 0.2 mm or any value falling within this range.
  • the number of the second protrusions 402B can be one, two, three or more, and the number of the second protrusions 402B is not limited here.
  • the shape of the second protrusion 402B may be semicircular, square or trapezoidal, which is not limited herein.
  • first protrusion 402A or the second protrusion 402B can be provided on the inner wall of the transfer tube 40 , of course, the first protrusion 402A and the second protrusion 402B can also be provided at the same time.
  • the first protrusion 402A and the second protrusion 402B can be formed by applying pressure on the outer wall of the transfer tube 40 .
  • the size of the gap needs to be in an appropriate range. within the value.
  • the height H 1 of the flat tube 20 and the distance H 2 between the first inner wall 403 and the second inner wall 404 satisfy the relationship 0.02mm ⁇ (H 2 -H 1 ) ⁇ 0.4mm, that is, (H 2 -H 1 )
  • the value can be 0.02mm, 0.1mm, 0.2mm, 0.3mm, 0.4mm or any value falling within the range of values.
  • the gap between the inner wall of the transfer tube 40 and the outer wall of the flat tube 20 cannot be too small, otherwise the solder cannot flow; Too large, too large a meeting can cause welding between the transfer pipe 40 and the flat pipe 20.
  • the height H 1 of the flat tube 20 and the distance H 2 between the first inner wall 403 and the second inner wall 404 satisfy the relationship 0.02mm ⁇ (H 2 ⁇ H 1 ) ⁇ 0.4mm, so that the outer wall of the flat tube 20 and the rotation
  • the clearance fit between the inner walls of the connecting pipe 40 is beneficial to the flow of solder.
  • the adapter tube 40 has a second nozzle 405, the second nozzle 405 is located at the end of the adapter tube 40 away from the first nozzle 401, the second nozzle 405 is circular, and the second nozzle 405 is round.
  • the nozzle 405 is used to connect with the capillary 31 .
  • the capillary 31 is particularly thin and has a circular cross-section, while the flat tube 20 has a strip-shaped hole in cross-section, the two cannot be directly butt-connected, and the connection between the two needs to be achieved through the transfer of the adapter tube 40 , wherein, one end of the adapter tube 40 close to the capillary 31 is set in a circular shape suitable for the capillary 31 , and one end of the adapter tube 40 close to the flat tube 20 is set in a strip shape suitable for the flat tube 20 .
  • the transfer pipe 40 is an elbow, and both ends of the transfer pipe 40 have first nozzles 401, and the two ends of the transfer pipe 40 are used to connect Adjacent rows of flat tubes 20 .
  • the flat tubes are usually bent to realize multiple rows of flat tubes, the bending of the flat tubes will cause damage to the flat tubes, and the larger bending radius will increase the In addition, during the bending process, the deformation of the fins will affect the heat exchange efficiency. Therefore, the present application uses the adapter tube 40 to connect the adjacent flat tubes 20, so as to avoid the deformation of the fins 10 during bending.
  • a first protrusion 402A and a second protrusion 402B are provided at both ends of the transfer pipe 40 .
  • the adapter tube 40 provided in this application is used to limit the position of the flat tube 20 by making the stopper 402 abut against one end of the flat tube 20 and/or abut against the side wall of the flat tube 20, thereby ensuring that the flat tube 20 and the
  • the connection fixity between the transfer tubes 40 prevents the flat tube 20 and the transfer tube 40 from being displaced during the welding process, which enhances the welding performance of the flat tube 20 and the transfer tube 40 .
  • the flat tube and the transfer tube are usually welded by manual welding.
  • This method has poor control and effect on welding, and cannot control the solder and weld seam well, and The cost of manual welding is relatively high, which is not conducive to mass use.
  • the microchannel heat exchanger 100 provided by the present application also includes a shrinking tube 70 and a flared tube 80, the flared The tube 80 is connected to the adapter tube 40 , and the shrink tube 70 is connected to the flat tube 20 .
  • the narrowing tube 70 is formed by shrinking the flat tube 20
  • the flared tube 80 is formed by expanding the adapter tube 40 .
  • the shrinking tube 70 is connected to the adapter tube 40 , and the flared tube 80 is connected to the flat tube 20 ; the flared tube 80 is formed by expanding the flat tube 20 , and the shrinking tube 70 is formed by shrinking the adapter tube 40 .
  • the necking tube 70 is covered with a welding ring 90 , and the necking tube 70 extends into the flared tube 80 and is welded to the flared tube 80 .
  • the necking tube 70 is covered with a welding ring 90, and the necking tube 70 extends into the flared tube 80, and then they are brazed together in a furnace, and the welding ring 90 melts and infiltrates between the outer wall of the shrinking tube 70 and the inner wall of the flared tube 80, so that the shrinking tube 70 and the flared tube 80 are fixedly connected; compared with manual welding, the method of integral brazing in the furnace is adopted
  • the welding consistency of the welded flat tube 20 and the transfer tube 40 is higher, and the flat tube 20 and the transfer tube 40 can be welded together with other parts of the microchannel heat exchanger 100, which reduces the cost and improves the welding efficiency, and also improves the welding efficiency of the flat tube 20 and the transfer tube 40.
  • the welding consistency of the adapter pipe 40 is higher, and the flat tube 20 and the transfer tube 40 can be welded together with other parts of the microchannel heat exchanger 100, which reduces the cost and improves the welding efficiency, and also improves the welding efficiency of the flat tube
  • the flat tube 20 is connected to the shrinking tube 70
  • the adapter tube 40 is connected to the flared tube 80
  • the shrinking tube 70 extends into the flared tube 80 to be welded with the flared tube 80 .
  • the transfer tube 40 is connected to the shrink tube 70
  • the flat tube 20 is connected to the flare tube 80 .
  • connection of the flat tube 20 to the necking tube 70 can be provided separately from the flat tube 20 and the necking tube 70, or it can be set directly on the flat tube 20, and the connecting tube 40 can be connected to the flared tube 80.
  • the transfer tube 40 and the flared tube 80 are arranged separately, or the transfer tube 40 can be flared directly; or, the transfer tube 40 can be connected to the shrink tube 70, and the transfer tube 40 and the shrink tube 70 can be arranged separately. It can also be set directly to the adapter tube 40, and the flat tube 20 can be connected to the flared tube 80.
  • the flat tube 20 and the flared tube 80 can be arranged separately, or the flat tube 20 can be flared directly.
  • the shrink tube 70 includes a first section 71 and a second section 72 connected to each other.
  • the outer diameter of the first section 71 decreases gradually along the direction close to the second section 72, the welding ring 90 is sleeved outside the first section 71, and along the axial direction of the necking tube 70, the length of the first section 71 is L 1.
  • the diameter of the cross section of the welding ring 90 is D 1
  • the length L 1 of the first section 71 satisfies the relational formula: D 1 ⁇ L 1 ⁇ 1.2D 1 . That is, the length L 1 of the first section 71 can be D 1 , 1.1D 1 , 1.2D 1 or any value falling within this range.
  • the first section 71 In order to make the first section 71 have enough installation space for the welding ring 90 to be installed, to ensure that the welding ring 90 is better sleeved outside the first section 71, and to prevent the welding ring 90 from slipping to other places to affect welding, then the first The length L 1 of the section 71 along the axial direction of the necking tube 70 is at least equal to the diameter D 1 of the welding ring 90, and may also be greater than the diameter D 1 of the welding ring 90 to a certain extent, but the first section 71 is along the axial direction of the necking tube 70
  • the length L 1 of the first section 71 cannot be too large, otherwise it will lead to unnecessary waste of materials, so it is most appropriate to limit the length L 1 of the first section 71 within the range of D 1 ⁇ L 1 ⁇ 1.2D 1 in this application.
  • the length of the second section 72 is L 2 , and the length L 2 of the second section 72 satisfies the relationship: 3mm ⁇ L 2 ⁇ 5mm. That is, the length L 2 of the second segment 72 may be 3 mm, 4 mm, 5 mm or any value falling within the range, which is not limited herein.
  • the second section 72 needs to have a certain length, but the length cannot be too long, otherwise the shrinking tube 70 and the flared tube will be damaged.
  • the medium inside the tube 80 creates a flow resistance.
  • the cross-section of the welding ring 90 is circular, and the welding ring 90 is in the shape of an ellipse as a whole, and is sleeved on the outer wall of the first section 71, so that the shape of the welding ring 90 is compatible with the shape of the flat tube 20, so that the solder can be evenly distributed.
  • the circumferential direction of the outer wall of the necking tube 70 is completely covered, thereby ensuring the welding quality.
  • the width of the flat tube 20 is W 1
  • the width of the second section 72 is W 2
  • the major axis of the inner ring of the welding ring 90 is D
  • the major axis D of the inner ring of the welding ring 90 satisfies the relation: W 2 ⁇ D ⁇ W 1 , wherein, W 2 ⁇ W 1 , so that the welding ring 90 can be smoothly inserted outside the first segment 71 . That is, the major axis D of the inner ring of the welding ring 90 may be W 2 , W 1 or any value within W 2 -W 1 .
  • the width W 1 of the flat tube 20 refers to the width outside the flat tube 20
  • the width W 2 of the second segment 72 refers to the width outside the second segment 72 .
  • the inner circle of the welding ring 90 is elliptical, and the ellipse has a major axis and a minor axis.
  • the major axis of the inner circle of the welding ring 90 is the width of the inner circle of the welding ring 90, that is, the maximum diameter.
  • the width inside the necking tube 70 is W 3
  • the width inside the transfer tube 40 is W 4 , 0.8W 4 ⁇ W 3 ⁇ 1.2W 4 . That is, the width W 3 inside the constriction tube 70 can be 0.8W 4 , 0.9W 4 , W 4 , 1.1W 4 or any value within 0.8W 4 -1.2W 4 .
  • the width W 3 inside the necking tube 70 refers to the width of the inner passage of the necking pipe 70
  • the width W 4 inside the adapter pipe 40 refers to the width of the inner passage of the adapter pipe 40 .
  • the gap between the outer wall of the shrinking tube 70 and the inner wall of the flared tube 80 is H, and H satisfies the relational formula: 0.1mm ⁇ H ⁇ 0.35mm. That is, the gap H between the outer wall of the shrinking tube 70 and the inner wall of the flared tube 80 may be 0.1 mm, 0.2 mm, 0.35 mm or any value within the range, which is not limited here.
  • the gap H between the outer wall of the necking tube 70 and the inner wall of the flared tube 80 satisfy the relational expression 0.1mm ⁇ H ⁇ 0.35mm, the gap H is within an appropriate range. If the gap H is too small , the solder cannot flow; if the gap H is too large, the welding strength between the flat tube 20 and the transition tube 40 will be reduced.
  • the nozzle of the flat tube 20 is flat, and the capillary 31 and the flat tube 20 need to be connected through an adapter.
  • one end of the adapter tube 40 has a round mouth and is welded to the capillary 31 , and the other end is welded to the flat tube 20 through the shrinking tube 70 and the flared tube 80 .
  • the transfer tube 40 is U-shaped, and both ends are welded to the flat tube 20 through the shrink tube 70 and the flare tube 80 .
  • the microchannel heat exchanger 100 provided by the present application is provided with a welding ring 90 on the outside of the shrinking tube 70, and the shrinking tube 70 extends into the flared tube 80 and is welded with the flared tube 80, so that it can be used in a furnace.
  • Welding the flat tube 20 and the transfer tube 40 by brazing can not only improve the welding efficiency, but also improve the welding consistency of the flat tube 20 and the transfer tube 40 .
  • the flat tubes 20 can be in multiple rows, that is, the flat tubes 20 at least include a first row of flat tubes 21 and a second row of flat tubes 22, and the microchannel heat exchanger 100 also includes a plurality of bent tubes 50, correspondingly
  • the flat tubes 20 in the adjacent row are communicated through the elbow 50; or, the flat tubes 20 in the same row are communicated through the elbow 50; or, the flat tubes 20 in the adjacent row are connected through the elbow 50, and the flat tubes 20 in the same row They are connected through the elbow 50 to realize the diversion of different flows of the medium.
  • the bent pipe 50 and the flat pipe 20 are arranged separately and fixedly connected by welding, thereby reducing the bending process of the flat pipe 20 . It can be understood that during the bending process, the fin 10 will be deformed. In this application, no bending is required, and the problem of the fin 10 being deformed due to bending can be alleviated.
  • the multiple flat tubes 20 there are multiple flat tubes 20 , and the multiple flat tubes 20 are arranged at intervals.
  • There are a plurality of connection slots 11 and the plurality of connection slots 11 are arranged at intervals along the extending direction of the fin 10 .
  • the socket slot 11 is adapted to the shape of the flat tube 20 , so that the fin 10 is inserted into the flat tube 20 through the socket slot 11 .
  • the elbow 50 includes a connecting section 51 and a bending section 52.
  • the two connecting sections 51 and the bending section 52 are connected to form a U Shaped tube structure, two connecting sections 51 are respectively connected with two flat tubes 20; wherein, the connecting section 51 is sleeved on the flat tube 20 to a depth P, 2mm ⁇ P ⁇ 20mm.
  • a plurality of flat tubes 20 are arranged at intervals along the vertical direction or at a small angle with the vertical direction (the small angle here can be less than 15°), and the fins are arranged at intervals during installation.
  • 10 is directly plugged on a plurality of flat tubes 20, and the flat tubes 20 are connected through an elbow 50.
  • There may be multiple fins 10 and multiple fins 10 are inserted on the flat tube 20 at intervals along the extending direction of the flat tube 20 .
  • the fins 10 are vertical plug-in structures. In this way, during the working process of the heat exchanger, the water can be easily drained through the fins 10, which improves the unimpeded drainage.
  • the two flat tubes 20 are connected through an elbow 50, which increases the design flexibility of the circuit.
  • the connection strength between the connecting section 51 and the flat tube 20 can be easily ensured, welding can be facilitated, and the functional reliability of the overall structure can be improved.
  • bent section 52 in this embodiment may be a U-shaped elbow structure.
  • a transition section 53 is provided between the connecting section 51 and the bent section 52 , and along the extending direction from the bent section 52 to the connecting section 51 , the flow area of the transition section 53 gradually decreases.
  • the bending section 52 is a circular tube structure, the outer diameter of the bending section 52 is D, and the width of the flat tube 20 is W.
  • the inner wall surface of the connecting section 51 is surrounded by a top surface, a first side surface, a bottom surface and a second side surface which are sequentially connected, and the top surface and the bottom surface are both planes.
  • Both the first side and the second side are arc surfaces, the arc surfaces may be tangent to the top surface or the bottom surface or not, and the arc surfaces may be arc surfaces or elliptical arc surfaces.
  • both the first side and the second side may be planes, the joints between the top and bottom and the first side are arc transitions, and the joints between the top and bottom and the second side are arc transitions.
  • both the first side and the second side may be elliptical.
  • both the first side and the second side are bent surfaces, and the bent surfaces may be two connected planes to form the triangular flat tube 20 .
  • the section of the inner wall surface of the connecting section 51 is an ellipse.
  • the two connecting sections 51 of the elbow 50 are axisymmetric structures, and the symmetrical centers of the two connecting sections 51 are connected to form a connecting axis, and there is an included angle between the length extension direction of the nozzle of the elbow 50 and the connecting axis. ⁇ , 0 ⁇ 90°.
  • the two connecting sections 51 of the elbow 50 can be arranged flush or misaligned, so that the elbows 50 with different angles ⁇ can connect flat pipes 20 of different heights and positions. In some embodiments, 20° ⁇ 90°.
  • the width of the socket 11 is Gw
  • the height of the socket 11 is Gt
  • the fins 10 and the flat tubes 20 are arranged vertically, so that the fins 10 can be arranged vertically during installation, which facilitates water drainage and prevents frost on the fins 10 from affecting the heat exchange effect.
  • the fin 10 has a first side 12 and a second side 13, the first side 12 is close to the windward side, one end of the socket 11 passes through the second side 13, and the flat tube 20 is inserted from the first side 12 during installation,
  • the fins 10 can be protected, and since the fins 10 are relatively thin, the flat tube 20 can be installed from the first side 12 to prevent the fins 10 from being deformed.
  • the inner wall of the socket 11 near the second side 13 and the side surface of the second side 13 are chamfered or rounded so that the flat tube 20 can be inserted into the socket 11 more smoothly.
  • the fins 10 are provided with a plurality of first protrusions 14 , and the first protrusions 14 can strengthen the strength of the fins 10 and prevent the fins 10 from being deformed.
  • first protrusions 14 there are multiple first protrusions 14 , and the plurality of first protrusions 14 are arranged in sequence to form a corrugated shape.
  • the first protrusion 14 is circular.
  • the first protrusion 14 is crescent-shaped.
  • the first protrusion 14 is square.
  • the first protrusion 14 is corrugated, which not only plays a reinforcing role, but also plays a drainage role.
  • the first protrusion 14 can also be S-shaped, triangular and other shapes.
  • the corrugated first protrusion 14 extends from one end of the fin 10 to the other end, and is cut off at the joint slot 11 to strengthen the drainage effect and prevent the condensed water from being discharged in time to cause frost, thus affecting the replacement. heat effect.
  • a slit 15 is opened on the first protrusion 14, and the slit 15 runs through both sides of the fin 10 to form a wind passage, so that the wind can blow from the current fin 10 to the adjacent fin 10 through the slit 15.
  • the fins 10 strengthen the turbulent flow, thereby enhancing the heat exchange effect.
  • the slits 15 are provided on both sides of the first protrusion 14 , and the wind can blow in or out from the slits 15 on the side of the first protrusion 14 .
  • the fin 10 is installed vertically, the side of the fin 10 close to the first side 12 has a plurality of second protrusions 16, and the plurality of second protrusions 16 are along the width direction of the fin 10
  • the corrugated structures are distributed sequentially, and the two ends of the second protrusions 16 respectively extend toward both sides in the length direction of the fin 10 and penetrate through the two ends of the fin 10 .
  • the microchannel heat exchanger 100 of the present application is used as an evaporator, and the first side 12 is close to the windward side, so it is easier to form condensed water on the fins 10 close to the first side 12, and the second protrusion 16 is arranged close to the windward side , so as to alleviate the problem of frosting and avoid frosting on the fins 10 to affect the heat exchange effect.
  • the corrugated structure of the second protrusions 16 in this application refers to that the second protrusions 16 are elongated, and along the width direction of the fin 10, undulations are formed among the plurality of second protrusions 16
  • the corrugated shape, the drainage groove is formed between the adjacent second protrusions 16 .
  • the cross-section of the second protrusion 16 may be triangular, polygonal or the like.
  • the length of the socket slot 11 is smaller than the width of the fin 10 , so that the fin 10 can have a space for setting the second protrusion 16 , and the second protrusion 16 will not be blocked by the flat tube 20 to affect drainage.
  • the minimum distance between the fin 10 and the connection section 51 (that is, the distance between the fin 10 and the connection section 51 at the end close to the connection section 51) is C, 0 ⁇ C ⁇ 80mm . Adopting such a structural arrangement can facilitate effective heat exchange and improve the heat exchange effect.
  • the fin 10 includes a body portion 17 and a flange structure 18, the flange structure 18 is connected to the body portion 17, the socket 11, the first protrusion 14 and the second protrusion 16 are all disposed on the body portion 17 on.
  • the flange structure 18 is disposed at the socket 11 , and the flange structure 18 protrudes relative to the body part 17 , and the flange structure 18 is used to cooperate with the flat tube 20 .
  • the flange structure 18 is at least partly in contact with the side of the flat tube 20 , which can strengthen the welding area between the fin 10 and the flat tube 20 and strengthen the welding strength, so as to ensure better connection stability. With such a structural arrangement, it is convenient to further improve the stability of plugging.
  • the flanging structure 18 includes a first flanging 181, the first flanging 181 is located at the socket 11 and is arranged around the periphery of the socket 11, the first flanging 181 extends toward the length direction of the flat tube 20, the first flanging The edge 181 abuts against the side of the flat tube 20 , so that the first flange 181 surrounds a shape suitable for the flat tube 20 .
  • the first flange 181 can strengthen the welding area between the fin 10 and the flat tube 20 and strengthen the welding strength. With such a structural arrangement, the contact area with the flat tube 20 can be easily increased, and the insertion and positioning stability of the flat tube 20 can be improved.
  • the height of the first flange 181 is H 1 , where 0 ⁇ H 1 ⁇ 1mm. With such a structural arrangement, the stability of plugging can be better improved. Specifically, the height of the first flange 181 refers to the height of the first flange 181 protruding from the main body.
  • the flange structure 18 further includes a second flange 182 connected to the first flange 181 , and the second flange 182 extends toward the length direction of the flat tube 20 .
  • the second flange 182 is located on the same plane as the first flange 181, and the second flange 182 can be one or multiple, and a plurality of second flanges 182 are arranged around the socket 11 at intervals, which can further strengthen the flat surface.
  • a plurality of second flanges 182 can be arranged on the first flange 181 at intervals along the peripheral direction of the socket 11, and the plane where the second flanges 182 are located coincides with the plane where the first flanges 181 are located. With such a structural arrangement, it is convenient to further improve the stability of plugging. Since the plurality of second flanges 182 are arranged at intervals, it is also convenient to disassemble the fin 10 through the gap between two adjacent second flange
  • the height of the second flange 182 is H 2
  • the height of the socket 11 is Gt
  • 0.25 ⁇ H 2 /Gt ⁇ 1. Adopting such a structural arrangement can not only ensure the stability of plugging, but also facilitate disassembly.
  • the height of the second flange 182 refers to the height of the second flange 182 protruding from the first flange 181 .
  • the width of the second flange 182 in this embodiment ranges from 1 mm to 6 mm.
  • the flanging structure 18 also includes a third flanging 183, the third flanging 183 is connected to the second flanging 182, the third flanging 183 is perpendicular to the second flanging 182, the plurality of third flanging 183 and the plurality of first flanging
  • the two flanges 182 are provided in one-to-one correspondence, and each third flange 183 is disposed on a side of the second flange 182 away from the first flange 181 to avoid the socket 11 .
  • the third flange 183 abuts against the adjacent flat tube 20 to play a position-limiting role.
  • each row of fins 10 includes multiple rows of fins 10 arranged at intervals.
  • the fins 10 of different rows and the fins 10 of the same row are arranged separately to facilitate the plugging of the flat tubes 20.
  • the fins 10 of different rows and the fins 10 of the same row have the same orientation, so that the second protrusions 16 are all close to the windward side for drainage.
  • the slots 11 on the fins 10 of different rows and the same row are arranged alternately, so that the rear of the slots 11 on the fins 10 of the previous row corresponds to the fins 10 and the flat tubes 20
  • the medium inside can not only use the fins 10 on both sides of the socket 11 to exchange heat, but also use the fins 10 behind the flat tube 20 to exchange heat, making full use of the fins 10 to enhance the heat exchange effect.
  • the connecting lines connecting the center points of the slots 11 on the fins 10 in different rows and the same row form an equilateral triangle.
  • one of the slots 11 in the first row of the first column The fins 10 are just located in the middle of the two adjacent socket slots 11 in the first row of the second row along the length direction.
  • the bent tube 50 is located at the end of the flat tubes 20 away from the distributor 30 , and the microchannel heat exchanger 100 is U-shaped.
  • the flat tubes 20 can also be three rows, four rows or more than four rows, elbows 50 are arranged at both ends of the flat tubes 20, and the microchannel heat exchanger 100 can also be formed into an L shape, a V shape, etc. .
  • the fins 10 have multiple rows, and each row of fins 10 includes multiple rows of socket slots 11 arranged at intervals.
  • the connectors on the same row of fins 10 Slots 11 are arranged in a staggered manner.
  • the microchannel heat exchanger 100 further includes a header 60 connected to the outlet of the flat tube 20 for collecting the medium.
  • One end of the capillary tube 31 is connected to the distributor 30, and the other end is connected to the flat tube 20.
  • the outlet of the flat tube 20 is connected to the header 60, and the refrigerant is distributed through the distributor 30 instead of the inlet header 60, which can simplify the process.
  • the flat tubes 20 are in multiple rows, and the flat tubes 20 in the last row are connected to the header 60 .
  • the second row of flat tubes 22 is connected to the header 60 , the medium enters from the first row of flat tubes 21 , enters the second row of flat tubes 22 through the elbow 50 , and then flows into the header 60 .
  • the header 60 communicates with the flat tubes in the third row. In this way, the multi-flow of the medium is realized through the elbow 50, and the collecting pipe 60 only needs to collect the medium at the end without taking into account the turning of the medium, so the collecting pipe 60 does not need to be provided with a partition, which simplifies the process of the collecting pipe 60 .
  • the flat tubes 20 are in one row, and the fins 10 are also in one row.
  • One end of the flat tubes 20 is connected to the distributor 30 through the transfer pipe 40 , and the other end is connected to the header 60 .
  • the medium enters from the distributor 30 is evenly distributed to each flat tube 20 through the capillary 31 , conducts heat exchange with the outside through the fin 10 , and flows out from the header 60 after the heat exchange.
  • one end of the flat tubes 20 is connected to the distributor 30 through the transfer pipe 40 and the capillary 31, and the other end is connected to the header 60; when the microchannel heat exchanger 100 When there are multiple rows of flat tubes 20, one end of the first row of flat tubes 20 is connected to the distributor 30 through the transfer tube 40 and the capillary tube 31, the other end is connected to the transfer tube 40, and the outlet of the last row of flat tubes 20 is connected to the header 60.
  • one end of the flat tube 20 is connected to the distributor 30 through the capillary 31 and the transfer tube 40 instead of the header 60, which can simplify the process.
  • both the distributor 30 and the header 60 are installed at the end of the flat tube 20 away from the elbow 50, so as to improve the compactness of the structure and layout of the heat exchanger.
  • the distributor 30 includes a distribution head 32 and a plurality of capillaries 31 connected to the distribution head 32.
  • the distribution head 32 has a plurality of liquid separation holes, and the plurality of liquid separation holes are set in one-to-one correspondence with the plurality of capillary tubes 31, so that through each distribution The fluid in the distribution port of the hole enters the corresponding flat tube 20 through the corresponding capillary 31 for heat exchange.

Abstract

一种微通道换热器(100)。该微通道换热器(100)包括多片翅片(10)和多根扁管(20),多片翅片(10)并列设置形成多排,所述翅片(10)上开设有接插槽(11),多根所述扁管(20)平行设置形成多层,所述扁管(20)穿设于接插槽(11)内;所述微通道换热器(100)还包括分配器(30)及转接管(40),所述分配器(30)上设有多根毛细管(31),所述转接管(40)的一端与所述毛细管(31)连通,另一端与所述扁管(20)连通。

Description

微通道换热器
相关申请
本申请要求2022年2月25日申请的,申请号为202220403404.5,发明名称为“微通道换热器”,2021年11月4日申请的,申请号为202111302595.2,发明名称为“换热器”,2022年4月21日申请的,申请号为202220961160.2,发明名称为“微通道换热器”,2022年6月13日申请的,申请号为202210662495.9,发明名称为“转接管及其微通道换热器”,2022年6月13日申请的,申请号为202221483863.5,发明名称为“转接管及其微通道换热器”,2021年11月4日申请的,申请号为202122706128.8,发明名称为“换热器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及制冷技术领域,特别是涉及一种微通道换热器。
背景技术
微通道换热器是为了满足工业发展的需要而设计的一类结构紧凑、轻巧、高效的换热器。
相关技术中的微通道换热器,其扁管的两端设有两个集流管,扁管的进口和出口均与集流管连通,集流管需要开设多个扁管槽,造成集流管加工困难。
发明内容
根据本申请的各种实施例,提供一种微通道换热器。
本申请提供一种微通道换热器,包括多片翅片和多根扁管,多片翅片并列设置形成多排,所述翅片上开设有接插槽,多根所述扁管平行设置形成多层,所述扁管穿设于接插槽内;所述微通道换热器还包括分配器及转接管,所述分配器上设有多根毛细管,所述转接管的一端与所述毛细管连通,另一端与所述扁管连通。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1为根据一个或多个实施例的微通道换热器一视角的立体图。
图2为根据一个或多个实施例微通道换热器另一视角的立体图。
图3为根据一个或多个实施例转接管的结构示意图。
图4为根据一个或多个实施例中的翅片结构示意图。
图5为根据一个或多个实施例中的翅片结构示意图。
图6为根据一个或多个实施例中的翅片结构示意图。
图7为根据一个或多个实施例中的翅片结构示意图。
图8为根据一个或多个实施例中设置有第二凸起的翅片结构示意图。
图9为根据一个或多个实施例中两列翅片抵接时的结构示意图。
图10为根据一个或多个实施例的转接管的结构示意图。
图11为根据一个或多个实施例的转接管与扁管连接一实施例的结构示意图。
图12图11中A处的局部放大图。
图13为根据一个或多个实施例的转接管与扁管连接另一实施例的结构示意图。
图14为图13中B处的局部放大图。
图15为根据一个或多个实施例的微通道换热器的结构示意图。
图16为根据一个或多个实施例的微通道换热器的结构示意图。
图17为根据一个或多个实施例的微通道换热器的部分结构示意图。
图18为根据一个或多个实施例的扁管和转接管的连接剖面结构示意图。
图19为图18中A处的局部放大结构示意图。
图20示出了根据一个或多个实施例的换热器的结构示意图。
图21示出了根据一个或多个实施例的弯管的结构示意图。
图22示出了根据一个或多个实施例的α为90°的弯管的结构示意图。
图23示出了根据一个或多个实施例的α为锐角的弯管的结构示意图。
图24示出了根据一个或多个实施例的弯管与扁管进行连接的一个方向的剖视图。
图25示出了根据一个或多个实施例的弯管与扁管进行连接的另一方向的剖视图。
图26示出了根据一个或多个实施例的具有方形连接口的弯管的管口处的结构示意图。
图27示出了根据一个或多个实施例的第一侧面和第二侧面均为圆弧、且顶面和底面均与第一侧面相切的弯管的管口处的结构示意图。
图28示出了根据一个或多个实施例的第一侧面和第二侧面均为圆弧、且顶面和底面均与第一侧面不相切的弯管的管口处的结构示意图。
图29示出了根据一个或多个实施例的具有椭圆连接口的弯管的管口处的结构示意图。
图30示出了根据一个或多个实施例的第一侧面和第二侧面均为椭圆弧面的弯管的管口处的结构示意图。
图31示出了根据一个或多个实施例的第一侧面和第二侧面均为弯折面的弯管(也即为三角头结构)的管口处的结构示意图。
图32示出了根据一个或多个实施例的翅片和扁管进行配合的主视图。
图33示出了根据一个或多个实施例的翅片局部结构的结构示意图。
图34示出了根据一个或多个实施例的翻边结构的结构示意图。
图35示出了根据一个或多个实施例的翅片局部结构的侧视图。
图36示出了根据一个或多个实施例的接插槽的宽度和高度的尺寸示意图。
图中各符号表示含义如下:
100、微通道换热器;10、翅片;11、接插槽;12、第一侧;13、第二侧;14、第一凸起;15、条缝;16、第二凸起;17、本体部;18、翻边结构;181、第一翻边;182、第二翻边;183、第三翻边;20、扁管;21、第一列扁管;22、第二列扁管;30、分配器;31、毛细管;32、分配头;40、转接管;401、第一管口;402、限位部;402BA、第一凸部;402B、第二凸部;403、第一内壁;404、第二内壁;405、第二管口;50、弯管;51、连接段;52、折弯段;53、过渡段;60、集流管;70、缩口管;71、第一段;72、第二段;80、扩口管;90、焊环。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本申请。但是本申请能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似改进,因此本申请不受下面公开的具体实施例的限制。
需要说明的是,当组件被称为“固定于”或“设置于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。本申请的说明书所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”、“下”可以是第一特征直接和第二特征接触,或第一特征和第二特征间接地通过中间媒介接触。而且,第一特征在第二特征“之上”、 “上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅表示第一特征水平高度小于第二特征。
除非另有定义,本申请的说明书所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请。本申请的说明书所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
请参见图1及图2,本申请提供的一种微通道换热器100,安装于制冷系统中,微通道换热器100中流动有介质,微通道换热器100协助介质与外界进行热交换。
具体地,微通道换热器100包括多片翅片10和多根扁管20,多片翅片10并列且间隔设置以形成多排翅片10,多根扁管20平行设置以形成多层扁管20,翅片10上开设有接插槽11,扁管20穿设于接插槽11内。需要解释的是,本申请的多排翅片10指的是,沿着扁管20的长度方向,翅片10排成多排,多层扁管20指的是沿着微通道换热器100的高度方向,多根扁管20平行设置为多层,下文的多列指的是,沿着微通道换热器100的宽度方向,扁管20和翅片10分别排成前后多列。
微通道换热器100还包括分配器30及转接管40,分配器30上设有多根毛细管31,转接管40的一端与毛细管31连通,另一端与扁管20连通。可以理解,介质在分配器30中均匀分配后进入扁管20中,利用分配器30代替传统的集流管,能够简化工艺,若需要改变流程,只需要选择合适的分配器30及删减毛细管31的数量即可,若利用集流管分配,则需要在在集流管60上开设多个扁管槽,工艺复杂。
转接管40朝向扁管20的管口与扁管20的管口相适配,扁管20的一端伸入转接管40内,加强焊接强度。
请参见图3及图7,转接管40朝向扁管20的管口的宽度W 1大于扁管20的管口W 2宽度,且转接管40朝向扁管20的管口的高度H 1大于扁管20的管口的高度H 2。可以理解,由于扁管20及转接管40为铝材制作,不宜扩口,将转接管40的管口尺寸设计得比扁管20的管口大,方便扁管20的一端能够顺利地插入转接管40内。需要说明的是,转接管40朝向扁管20的管口的宽度及高度都指的是转接管40朝向扁管20的管口的内部尺寸,不包括转接管40的厚度,同样,扁管20的管口的尺寸同样也不包括扁管20的厚度。
本申请还提供的一种转接管40,安装于微通道换热器100中,转接管40用于连接相邻扁管20,或者,转接管40用于扁管20和毛细管31的连接。
相关技术中的微通道换热器中,扁管与转接管的连接通常未设置限位结构,如此不仅使得扁管与转接管之间不便于焊接,而且也使得扁管与转接在焊接过程中产生移位的现象,给焊接造成不便。
为解决相关技术中的微通道换热器中所存在的问题,本申请提供了一种安装于微通道换热器100中的转接管40,该转接管40用于连接扁管20。转接管40为多个,部分转接管40的一端连接于毛细管31,另一端连接于扁管20,部分转接管40的两端均连接于扁管20。也就是说,连接于毛细管31的转接管40采用上述一端的管口为圆形,另一端的管口为长条孔状的结构,两端均连接于扁管20的转接管40采用弯管结构。
转接管40具有与扁管20相适配的第一管口401,第一管口401供扁管20插入,转接管40的内壁设有限位部402,限位部402抵接于扁管20的一端及/或抵接于扁管20的侧壁,用于对扁管20限位。
需要说明的是,当需要连接相邻扁管20,或者,当需要连接扁管20和毛细管31时,需先把每根扁管20一一对应的插入每根转接管40中,然后一体进行焊接,因此,为了避免在焊接过程中扁管20和转接管40之间发生移位,本申请在转接管40内壁上设置用于对所述扁管20进行限位的限位部402。
为了保证扁管20和转接管40之间在焊接前的连接固定性,沿扁管20轴线方向,限位部402需对扁管20插入转接管40内的深度进行限位;沿垂直于扁管20轴线方向,限位部402还需对扁管20在转接管40内晃动进行限位。
如图10及图11所示,在本申请一实施例中,限位部402包括第一凸部402A,第一凸部402A设置于转接管40的内壁上,且朝向远离转接管40内壁的方向延伸,第一凸部402A用于抵接扁管20的一端,使得伸入转接管40内的扁管20的端面能够抵接于第一凸部402A上,以此对扁管20在转接管 40内的插入深度进行限位,同时,第一凸部402A的设置对制冷剂产生扰流作用,使得制冷剂的均匀性得到提高,提高换热器的换热效率。
具体地,请参见图11及图12,第一凸部402A的相对转接管40内壁的凸出高度不能太大,也不能太小,需要设置在一个合适的范围内。定义第一凸部402A相对于转接管40的内壁凸出的高度为H 3,扁管20的高度为H 1,转接管40内具有相对设置的第一内壁403及第二内壁404,第一凸部402A设于第一内壁403及/或第二内壁404上,第一内壁403与第二内壁404之间的距离为H 2,扁管20的高度为H 1;其中,第一凸部402A相对于转接管40的内壁凸出的高度H 3、扁管20的高度H 1、第一内壁403与第二内壁404之间的距离H 2满足关系式0.2mm≤[H 3-(H 2-H 1)]≤3mm。即,[H 3-(H 2-H 1)]的值可以为0.2mm、1mm、2mm、3mm或者落入该范围值内的任一数值。扁管20的高度H 1为扁管20的外部高度,不是扁管20内部通道的高度。
需要说明的是,如若第一凸部402A相对于转接管40的内壁凸出的高度H 3过大,会导致第一凸部402A在转接管40内一定程度上阻碍了介质流动,甚至造成节流;如若第一凸部402A相对于转接管40的内壁凸出的高度H 3过小,则可能无法实现限位功能;因此,使得第一凸部402A相对于转接管40的内壁凸出的高度H 3处于一个合适的范围内,使其既能够保证对扁管20端面的限位,又能够避免H 3过高造成介质流动阻力过大。
沿转接管40内壁的周向方向,第一凸部402A的数量可以设置为一个、两个、三个或多个,在此对第一凸部402A的数量不作限定。
可选地,在本实施例中,第一凸部402A的形状可以为半圆形、方形或梯形,在此不作限定。
另外,在该实施例中,第一凸部402A设置于转接管40内壁上的位置其实质就相当于扁管20插入转接管40内的最大位置,对于扁管20插入转接管40内的深度,也需要存在一个合适的范围内。定义第一凸部402A与第一管口401的端面之间的间距即扁管20插入转接管40内的深度为L 1,L 1满足关系式2mm≤L 1≤10mm。即,第一凸部402A与第一管口401的端面之间的间距L 1可以为2mm、4mm、6mm、8mm、10mm或者落入该范围值内的任一数值,在此不作限定。
需要说明的是,如若扁管20插入转接管40内的深度L 1过大,则会一定程度上阻碍内部介质的流动;如若扁管20插入转接管40内的深度L 1过小,则会减少扁管20与转接管40之间的接触面积,从而降低两者之间的焊接强度。因此,通过使得第一凸部402A与第一管口401的端面之间的间距L 1满足关系式2mm≤L 1≤10mm,从而使得扁管20插入转接管40内的深度处于一个合适的范围值,如此既能够避免扁管20插入过深引起阻流,又能够避免扁管20插入过浅而降低焊接强度。
如图10及图13所示,在一实施例中,限位部402包括第二凸部402B,第二凸部402B设置于转接管40的内壁上,且朝向远离转接管40内壁的方向延伸,第二凸部402B相对于第一凸部402A远离第一管口401设置,第二凸部402B凸出于转接管40的内壁的高度小于第一凸部402A凸出于转接管40的内壁的高度,第二凸部402B用于抵接于扁管20的外侧壁,主要是为了避免扁管20相对于转接管40的内壁之间产生晃动。
可以理解的是,本申请通过使得限位部402包括第一凸部402A及第二凸部402B,第一凸部402A用于抵接扁管20的一端,第二凸部402B用于抵接于扁管20的外侧壁,从而对扁管20插入转接管的深度,以及扁管20在转接管40内产生晃动均进行限位,进一步保证了扁管20和转接管40之间的连接固定性,方便焊接。
具体地,请参见图13及图14,为了保证第二凸部402B对扁管20的限位效果,则需要使得第二凸部402B与扁管20外侧壁之间过盈配合;定义第二凸部402B相对于转接管40的内壁凸出的高度为H 4,第二凸部402B设于第一内壁403及/或第二内壁404上,扁管20的高度H 1、第二凸部402B相对于转接管40的内壁凸出的高度H 4、第一内壁403与第二内壁404之间的距离H 2满足关系式0mm≤[H 4-(H 2-H 1)]≤0.2mm。即,[H 4-(H 2-H 1)]可以为0mm、0.1mm、0.2mm或者落入该范围值内的任一数值。
需要说明的是,通过使得扁管20的高度H 1、第二凸部402B相对于转接管40的内壁凸出的高度H 4、第一内壁403与第二内壁404之间的距离H 2满足关系式0mm≤[H 4-(H 2-H 1)]≤0.2mm,从而保证第二凸部402B和扁管20之间过盈配合,进而使得第二凸部402B将扁管20固定于转接管40内,解决了扁 管20在与转接管40焊接过程中产生移位的问题。
沿转接管40内壁的周向或轴向,第二凸部402B的数量可以设置为一个、两个、三个或多个,在此对第二凸部402B的数量不作限定。
可选地,在本实施例中,第二凸部402B的形状可以为半圆形、方形或梯形,在此不作限定。
值得注意的是,在本实施例中,可以仅在转接管40内壁设置第一凸部402A或第二凸部402B,当然,也可以同时设置第一凸部402A以及第二凸部402B。第一凸部402A及第二凸部402B可通过在转接管40外壁通过施压加工形成。
为了保证扁管20和转接管40之间的焊接强度,转接管40的内壁和扁管20的外壁之间需要留有供焊料融化后渗透的间隙,且该间隙的大小需要位于一个合适的范围值内。扁管20的高度H 1和第一内壁403与第二内壁404之间的距离H 2满足关系式0.02mm≤(H 2-H 1)≤0.4mm,即,(H 2-H 1)的值可以为0.02mm、0.1mm、0.2mm、0.3mm、0.4mm或者落入该范围值内的任一数值。
需要说明的是,转接管40的内壁和扁管20的外壁之间的间隙不能过小,过小会导致焊料无法流动;转接管40的内壁和扁管20的外壁之间的间隙也不能过大,过大会导致转接管40和扁管20之间无法焊接。通过使得扁管20的高度H 1和第一内壁403与第二内壁404之间的距离H 2满足关系式0.02mm≤(H 2-H 1)≤0.4mm,从而使得扁管20外壁和转接管40内壁之间间隙配合,如此有利于焊料的流动。
进一步地,在本申请一实施例中,转接管40具有第二管口405,第二管口405位于转接管40远离第一管口401的一端,第二管口405呈圆形,第二管口405用于与毛细管31连接。由于毛细管31特别细,且横截面为圆形,而扁管20的横截面呈条形孔状,因此两者之间无法直接对接连接,需要通过转接管40的转接来实现两者的连通,其中,转接管40靠近毛细管31一端设置为与毛细管31相适配的圆形,转接管40靠近扁管20的一端设置为与扁管20相适配的长条形。
在本申请另一实施例中,在多排微通道换热器100中,转接管40为弯管,转接管40的两端均具有第一管口401,转接管40的两端用于连接相邻排的扁管20。由于相关技术中的微通道换热器中通常将扁管进行折弯来实现多排扁管,扁管折弯会造成扁管损伤,而且,折弯半径较大,会增加微通道换热器的整体体积,并且,在折弯过程中,会导致翅片发生变形影响换热效率,因此本申请采用转接管40来连接相邻扁管20,从而避免翅片10折弯发生变形。当转接管40的两端均连接扁管20时,则在转接管40的两端均设置第一凸部402A和第二凸部402B。
本申请提供的转接管40,通过使得限位部402抵接于扁管20的一端及/或抵接于扁管20的侧壁,用于对扁管20限位,从而保证扁管20和转接管40之间的连接固定性,进而使得扁管20与转接管40在焊接过程中不会产生移位的现象,增强了扁管20和转接管40的焊接性能。
相关技术中的微通道换热器中,通常采取手工焊接的形式对扁管和转接管进行焊接,该方法对于焊接的控制及效果不佳,无法很好的对焊料及焊缝进行控制,且手工焊人工制造的成本较高,不利于大量投入使用。
请参见图16及图17,为解决相关技术中的微通道换热器中所存在的上述问题,本申请提供的微通道换热器100还包括缩口管70及扩口管80,扩口管80连接于转接管40,缩口管70连接于扁管20。缩口管70通过扁管20缩口形成,扩口管80通过转接管40扩口形成。或,缩口管70连接于转接管40,扩口管80连接于扁管20;扩口管80通过扁管20扩口形成,缩口管70通过转接管40缩口形成。缩口管70外套设有焊环90,缩口管70伸入扩口管80内并与扩口管80焊接连接。
需要说明的是,本申请提供的微通道换热器100通过使得缩口管70外套设有焊环90,缩口管70伸入扩口管80内,然后一起进行炉中钎焊,焊环90融化后渗透于缩口管70外壁和扩口管80内壁之间,以此将缩口管70与扩口管80固连;相比于手工焊接来说,采用炉中一体钎焊的方式焊接扁管20和转接管40焊接一致性更高,扁管20和转接管40能够和微通道换热器100的其他部件一起焊接,降低了成本,提高焊接效率,也提高了扁管20和转接管40的焊接一致性。
如图18所示,在本实施例中,扁管20连接于缩口管70,转接管40连接于扩口管80,缩口管70伸入扩口管80内与扩口管80进行焊接。当然,在其他实施例中,也可以是转接管40连接于缩口管70,扁管20连接于扩口管80。
值得注意的是,扁管20连接于缩口管70可以是扁管20和缩口管70分体设置,也可以是直接对扁 管20缩口设置,转接管40连接于扩口管80可以是转接管40和扩口管80分体设置,也可以是直接对转接管40扩口设置;或者,转接管40连接于缩口管70可以是转接管40和缩口管70分体设置,也可以是直接对转接管40缩口设置,扁管20连接于扩口管80可以是扁管20和扩口管80分体设置,也可以是直接对扁管20扩口设置。
进一步地,缩口管70包括相互连接的第一段71及第二段72。第一段71的外径沿着靠近第二段72的方向逐渐减小,焊环90套设于第一段71外,沿着缩口管70的轴向,第一段71的长度为L 1,焊环90的横截面的直径为D 1,第一段71的长度L 1满足关系式:D 1≤L 1≤1.2D 1。即,第一段71的长度L 1可以为D 1、1.1D 1、1.2D 1或者落入该范围值内的任一数值。
为了使第一段71有足够的安装空间给焊环90安装,保证焊环90更好的套设于第一段71外,且使得焊环90不会滑至其他地方影响焊接,那么第一段71沿缩口管70轴线方向的长度L 1至少与焊环90的直径D 1相等,也可以一定程度上大于焊环90的直径D 1,但是第一段71沿缩口管70轴线方向的长度L 1不能过大,过大则会导致材料产生不必要的浪费,因此本申请将第一段71的长度L 1限定在D 1≤L 1≤1.2D 1范围内最为合适。
进一步地,第二段72的长度为L 2,且第二段72的长度L 2满足关系式:3mm≤L 2≤5mm。即,第二段72的长度L 2可以为3mm、4mm、5mm或者落入该范围值内的任一数值,在此不作限定。
需要说明的是,为了保证缩口管70和扩口管80之间的焊接强度,第二段72需要具有一定长度,但是该长度又不能过长,过长会对缩口管70和扩口管80内的介质产生阻流。
焊环90的横截面呈圆形,焊环90整体呈椭圆环形,并套接在第一段71外壁上,使得焊环90的形状与扁管20的相状相适配,使得焊料能够均匀地覆盖缩口管70的外壁的周向,从而保证焊接质量。扁管20的宽度为W 1,第二段72的宽度为W 2,焊环90的内圈长轴为D,焊环90的内圈长轴D满足关系式:W 2≤D≤W 1,其中,W 2<W 1,使得焊环90能够顺利地套至第一段71外。即,焊环90的内圈长轴D可以为W 2、W 1或W 2~W 1内的任一数值。扁管20的宽度为W 1指的是扁管20外部的宽度,第二段72的宽度为W 2指的是第二段72外部的宽度。需要解释的是,焊环90的内圈为椭圆形,椭圆形具有长轴和短轴,焊环90内圈的长轴为焊环90内圈的宽度,即,焊环90内圈的最大直径。
由于不同的微通道换热器100中的扁管20会根据不同情况设计为不同大小的尺寸,当扁管20的宽度较大时,其外周长较长,因此需要更多的焊料填充,因此需要使得焊环90的横截面的直径D 1能够随着扁管20宽度W 1的增大而呈一定比例的增大,以此来保证扁管20和转接管40之间的焊接强度。在本申请中,将焊环90的横截面的直径D 1满足关系式D 1=0.06W 1,即,焊环90的横截面的直径D 1可以为0.06倍的扁管20宽度W 1
进一步地,缩口管70内的宽度为W 3,转接管40内的宽度为W 4,0.8W 4≤W 3≤1.2W 4。即,缩口管70内的宽度W 3可以为0.8W 4、0.9W 4、W 4、1.1W 4或0.8W 4~1.2W 4内的任一数值。缩口管70内的宽度为W 3指的是缩口管70内部通道的宽度,转接管40内的宽度为W 4指的是转接管40内部通道的宽度。
需要说明的是,介质在从扁管20到转接管40之间流动的过程中,如若管径突然增大或者突然减少都会增大介质的流动阻力,从而导致流量损失,为了解决该问题,需要尽量使得介质在流动过程中的管内径保持一致,因此本申请将缩口管70内的宽度W 3限定在0.8W 4~1.2W 4范围内,减少了介质流动阻力。
如图18及图19所示,当焊环90套设于第一段71外壁上时,缩口管70伸入扩口管80内,扩口管80靠近缩口管70一端的端面抵接于焊环90上,为了便于焊环90熔化后渗透于缩口管70外壁和扩口管80内壁之间,需要使得缩口管70的外壁与扩口管80的内壁之间间隙配合,从而使得焊环90熔化后的焊料能够在该间隙内充分流动。
具体地,缩口管70的外壁与扩口管80的内壁间隙为H,H满足关系式:0.1mm≤H≤0.35mm。即,缩口管70的外壁与扩口管80的内壁间隙H可以为0.1mm、0.2mm、0.35mm或者落入该范围内的任一数值,在此不作限定。
需要说明的是,通过使得缩口管70的外壁与扩口管80的内壁间隙H满足关系式0.1mm≤H≤0.35mm,从而使得间隙H处在一个合适的范围内,若间隙H太小,则导致焊料无法流动;若间隙H太大,则降低了扁管20和转接管40之间的焊接强度。
扁管20可多列,相邻列的扁管20通过转接管连接,如此设置,扁管20可不必折弯,减少了扁管20的损伤,也同时避免折弯影响翅片10,折弯半径大大减小,从而减小了产品尺寸。
扁管20的管口为扁平形,毛细管31和扁管20之间需要转接连接。
在一实施例中,转接管40一端的管口呈圆形,并与毛细管31焊接连接,另一端通过缩口管70及扩口管80与扁管20焊接连接。在另一实施例中,转接管40呈U型,两端均通过缩口管70和扩口管80与扁管20焊接连接。
本申请提供的微通道换热器100,通过使得缩口管70外套设有焊环90,缩口管70伸入扩口管80内并与扩口管80焊接连接,如此便能采用炉中钎焊的方式焊接扁管20和转接管40,不仅能够提高焊接效率,也提高了扁管20和转接管40的焊接一致性。
在一些实施例中,扁管20可以为多列,即,扁管20至少包括第一列扁管21和第二列扁管22,微通道换热器100还包括多个弯管50,相邻列的扁管20通过弯管50连通;或,同一列的扁管20之间通过弯管50连通;或,相邻列的扁管20通过弯管50连通,且同一列的扁管20之间通过弯管50连通,以实现介质的不同流程的转向。弯管50与扁管20之间分体设置,并通过焊接固定连接,从而减少扁管20的折弯工艺。可以理解,在折弯的过程中,会发生翅片10变形的问题,本申请无需折弯,能够缓解翅片10因折弯而变形的问题。
如图20至图36所示,在一些实施例中,扁管20为多个,多个扁管20间隔设置。接插槽11为多个,多个接插槽11沿翅片10的延伸方向间隔设置。接插槽11与扁管20的形状相适配,以使翅片10通过接插槽11插接在扁管20上。弯管50包括连接段51和折弯段52,连接段51为两个,两个连接段51分别设置在折弯段52的两端,两个连接段51和折弯段52连接以形成U形管结构,两个连接段51分别与两个扁管20连接;其中,连接段51套设在扁管20上深度为P,2mm≤P≤20mm。
采用本实施例提供的换热器,将多个扁管20沿竖直方向或者与竖直方向呈小角度(此处的小角度可以为小于15°)间隔排布,在安装时将翅片10直接插接在多个扁管20上,并通过弯管50将扁管20进行连接。翅片10可以为多个,将多个翅片10沿扁管20的延伸方向间隔插设在扁管20上。翅片10为竖直的插片式结构。这样,换热器在工作过程中,能够便于通过该翅片10进行排水,提高了排水的通畅性。在本实施例中,通过弯管50将两个扁管20进行连接,增加了回路的设计灵活度。通过将连接段51套设在扁管20上的深度设置在上述范围内,能够便于保证连接段51和扁管20的连接强度,也便于进行焊接,提高整体结构的作用可靠性。
具体地,本实施中的折弯段52可以为U形弯管结构。
具体地,在连接段51和折弯段52之间还设置有过渡段53,沿折弯段52至连接段51的延伸方向,过渡段53的流通面积逐渐减小。折弯段52为圆管结构,折弯段52的外径为D,扁管20宽度为W。5mm≤D<6mm时,0<W≤8mm,2mm≤P≤5mm。6mm≤D<7mm时,0<W≤10mm,3mm≤P≤10mm。7mm≤D<8mm时,0<W≤12mm,3mm≤P≤15mm。8mm≤D<10mm时,0<W≤15mm,3mm≤P≤20mm。10mm≤D<12mm时,0<W≤18mm,4mm≤P≤20mm。12mm≤D<15mm时,0<W≤21mm,4mm≤P≤25mm。15mm≤D<18mm时,0<W≤27mm,5mm≤P≤25mm。18mm≤D<25mm时,0<W≤38mm,5mm≤P≤25mm。
在本实施例中,连接段51的内壁面由依次连接的顶面、第一侧面、底面和第二侧面围成,顶面和底面均为平面。第一侧面和第二侧面均为弧面,弧面可以与顶面或底面相切或不相切,弧面可以为圆弧面或椭圆弧面。或者,可以将第一侧面和第二侧面均为平面,顶面和底面与第一侧面的连接处均为圆弧过渡,顶面和底面与第二侧面的连接处均为圆弧过渡。或者,可以将第一侧面和第二侧面均为椭圆面。或者,第一侧面和第二侧面均为折弯面,该折弯面可以为两个相连的平面以形成三角头扁管20。或者,连接段51的内壁面的截面为椭圆面。
具体地,弯管50的两个连接段51均为轴对称结构,两个连接段51的对称中心连接以形成连接轴线,弯管50的管口的长度延伸方向与连接轴线之间具有夹角α,0≤α≤90°。采用这样的结构设置,可以使得弯管50的两个连接段51平齐设置或错位设置,以实现具有不同夹角α的弯管50对不同高度和位置的扁管20进行连接。在一些实施例中,20°≤α≤90°。
在本实施例中,接插槽11的宽度为Gw,接插槽11的高度为Gt,1.5≤Gw/Gt≤10。采用这样的结构设置,能够便于提高插接的稳定性,以使翅片10和扁管20的连接稳定。
在一些实施例中,翅片10与扁管20垂直设置,使得在安装时,能够将翅片10竖直设置,利于排水,防止翅片10上结霜而影响换热效果。
翅片10具有第一侧12和第二侧13,第一侧12靠近迎风侧,接插槽11的一端贯穿第二侧13,在安装时,从第一侧12将扁管20装入,能够保护翅片10,由于翅片10较薄,将扁管20从第一侧12装入,能够防止翅片10变形。
接插槽11靠近第二侧13的槽口的内壁与第二侧13的侧面之间倒角或倒圆角设置,以使扁管20能够更顺畅地插入接插槽11内。
翅片10上设有多个第一凸起14,第一凸起14能够加强翅片10的强度,防止翅片10变形。
请参见图4,在一实施例中,第一凸起14为多个,多个第一凸起14依次排列形成呈波纹形。
请参见图5,在另一个实施例中,第一凸起14为圆形。
请参见图6,在又一个实施例中,第一凸起14为月牙形。
请参见图7,在再一个实施例中,第一凸起14为方形。
在一些实施例中,第一凸起14为波纹形,不仅起到加强作用,还起到排水作用。
在其他实施例中,第一凸起14还可为S形、三角形等形状。
可选地,波纹状的第一凸起14从翅片10的一端延伸到另一端,在接插槽11处截断,加强排水作用,能够防止冷凝水不能及时排出而造成结霜,从而影响换热效果。
请参见图7,第一凸起14上开设有条缝15,条缝15贯穿翅片10的两侧面以形成过风通道,使得风能够从当前的翅片10通过条缝15吹至相邻的翅片10,加强紊流,从而加强换热效果。
在一些实施例中,条缝15开设于第一凸起14的两侧,风能够顺势地从第一凸起14侧面的条缝15吹入或吹出。
请参见图8及图9,翅片10竖直安装,翅片10靠近所述第一侧12的侧面具有多个第二凸起16,多个第二凸起16沿翅片10的宽度方向依次分布形成波纹结构,第二凸起16的两端分别朝翅片10长度方向的两侧延伸并贯穿翅片10的两端。本申请的微通道换热器100作为蒸发器使用,第一侧12靠近迎风侧,则靠近第一侧12的翅片10上更容易形成冷凝水,将第二凸起16设置在靠近迎风侧,从而缓解结霜问题,避免翅片10上结霜而影响换热效果。需要解释的是,本申请中第二凸起16的波纹结构指的是,第二凸起16为长条形,沿着翅片10的宽度方向,多个第二凸起16之间形成起伏的波纹形状,相邻的第二凸起16之间形成排水槽。第二凸起16的横截面可为三角形、多边形等。
接插槽11的长度小于翅片10的宽度,从而使得翅片10上能够具有空间设置第二凸起16,第二凸起16不会被扁管20阻隔而影响排水。
在一些实施例中,翅片10与连接段51之间的最小间距(也即为端部靠近连接段51处的翅片10与连接段51之间的间距)为C,0≤C≤80mm。采用这样的结构设置,能够便于有效进行换热,提高换热效果。
在一些实施例中,翅片10包括本体部17及翻边结构18,翻边结构18连接于本体部17,接插槽11、第一凸起14及第二凸起16均设于本体部17上。翻边结构18设置在接插槽11处,翻边结构18相对于本体部17凸出设置,翻边结构18用于与扁管20配合。翻边结构18至少部分与扁管20的侧面抵接,能够加强翅片10与扁管20的焊接面积,加强焊接强度,以便于更好地保证连接稳定性。采用这样的结构设置,能够便于进一步提高插接的稳定性。
翻边结构18包括第一翻边181,第一翻边181设于接插槽11处并环绕接插槽11的周缘设置,第一翻边181朝向扁管20的长度方向延伸,第一翻边181与扁管20的侧面抵接,以使第一翻边181围成与扁管20相适配的形状。第一翻边181能够加强翅片10与扁管20的焊接面积,加强焊接强度。采用这样的结构设置,能够便于增加与扁管20的接触面积,提高对扁管20的插接定位稳定性。
具体地,第一翻边181的高度为H 1,0<H 1≤1mm。采用这样的结构设置,能够便于更好地提高插接的稳定性。具体地,第一翻边181的高度是指第一翻边181凸出于本体部的高度。
翻边结构18还包括第二翻边182,第二翻边182连接于第一翻边181,第二翻边182朝向扁管20的长度方向延伸。第二翻边182与第一翻边181位于同一平面,第二翻边182可为一个,也可为多个,多个第二翻边182间隔地环绕接插槽11设置,能够进一步加强扁管20和翅片10的焊接强度。多个第 二翻边182可以沿接插槽11的周缘方向间隔设置在第一翻边181上,第二翻边182所在的平面与第一翻边181所在的平面重合。采用这样的结构设置,能够便于进一步提高插接的稳定性。由于多个第二翻边182间隔设置,通过相邻两个第二翻边182之间的间隙也便于将翅片10进行拆卸。
具体地,第二翻边182的高度为H 2,接插槽11的高度为Gt,0.25<H 2/Gt<1。采用这样的结构设置,既能够保证插接的稳定性,也能够便于进行拆卸。具体地,第二翻边182的高度是指第二翻边182凸出于第一翻边181的高度。
具体地,本实施例中的第二翻边182的宽度的取值范围为1mm至6mm。
翻边结构18还包括第三翻边183,第三翻边183连接于第二翻边182,第三翻边183与第二翻边182垂直设置,多个第三翻边183与多个第二翻边182一一对应地设置,各个第三翻边183设置在第二翻边182远离第一翻边181的一侧,以避让接插槽11。第三翻边183与相邻的扁管20抵接,起到限位作用。在一些实施例中,第三翻边183可以为多个,第三翻边183与第二翻边182呈预设角度设置,以使第三翻边183避让接插槽11设置。
在一些实施例中,翅片10也为多列,靠近迎风侧一列的翅片10一一对应地抵接于后一列翅片10,形成多排翅片10。每列所述翅片10包括多排间隔设置的所述翅片10。不同列的翅片10、同一排的翅片10分体设置,方便扁管20的接插,不同列的翅片10且同一排的翅片10朝向相同,使得第二凸起16都靠近迎风侧,利于排水。
请参见图7及图9,不同列且同一排的翅片10上的接插槽11交错设置,使得前一列翅片10上的接插槽11的后方对应的是翅片10,扁管20内的介质不仅能够利用接插槽11两侧的翅片10换热,还能够利用扁管20后方的翅片10换热,充分利用翅片10加强换热效果。
在一些实施例中,不同列且同一排的翅片10上的接插槽11的中心点连线形成等边三角形,举个例子,第一列的第一排的其中一个接插槽11,在翅片10的长度方向上刚好位于第二列的第一排的相邻两个接插槽11的正中间。如此设置,能够保证前一列扁管20的后方的两侧都能够利用翅片10加强换热,进一步加强换热效果。
在本实施例中,扁管20为两列,翅片10也为两列,弯管50位于扁管20远离分配器30的一端,微通道换热器100形成U型。在其他实施例中,扁管20还可为三列、四列或四列以上,在扁管20的两端都设置弯管50,微通道换热器100也可形成L型、V型等。
在另一些实施例中,翅片10为多列,每排翅片10包括多列间隔设置的接插槽11,沿着微通道换热器100的高度方向,同一列翅片10上的接插槽11交错设置。
需要说明的是,通过使得翅片10上的接插槽11交错设置,从而使得插设于接插槽11内的扁管20交错设置,进而提高扁管20的换热面积,以提升微通道换热器100的换热量。
在一些实施例中,参见图16,微通道换热器100还包括集流管60,集流管60连接于扁管20的出口,用于对介质进行集流。毛细管31的一端连接于分配器30,另一端连接于扁管20,扁管20的出口连接于集流管60,通过分配器30分配制冷剂,代替进口集流管60,能够简化工艺。
在一些实施例中,扁管20为多列,最后一列的扁管20连接集流管60。在本实施例中,第二列扁管22连接集流管60,介质从第一列扁管21进入,经弯管50转弯进入第二列扁管22,再流入集流管60中。在其他实施例中,若扁管20为三列,则集流管60连通第三列扁管。如此设置,通过弯管50实现介质的多流程,集流管60只需要对介质做最后的汇集,而无需兼顾介质的转向,则集流管60无需设置隔板,简化集流管60的工艺。
在另一些实施例中,扁管20为一列,翅片10也为一列,扁管20的一端连接通过转接管40连接分配器30,另一端连接集流管60。在工作过程中,介质从分配器30进入,经毛细管31均匀分配至各根扁管20中,经翅片10与外界进行热交换,换热后从集流管60集中流出。
当微通道换热器100的扁管20为单列时,扁管20的一端通过转接管40及毛细管31连接于分配器30,另一端连接于集流管60;当微通道换热器100的扁管20为多列时,第一列扁管20的一端通过转接管40及毛细管31连接于分配器30,另一端连接于转接管40,最后一列的扁管20的出口连接于集流管60。
本申请的微通道换热器100,其扁管20的一端通过毛细管31及转接管40连接分配器30代替集流 管60,能够简化工艺。
在一些实施例中,分配器30和集流管60均安装在扁管20远离弯管50的一端,以提高换热器的结构布局紧凑性。分配器30包括分配头32以及与分配头32连接的多个毛细管31,分配头32具有多个分液孔,多个分液孔与多个毛细管31一一对应地设置,以使经各个分配孔分配口的流体经相应的毛细管31进入对应的扁管20内进行换热。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请的专利保护范围应以所附权利要求为准。

Claims (37)

  1. 一种微通道换热器,包括多片翅片和多根扁管,多片翅片并列设置形成多排,所述翅片上开设有接插槽,多根所述扁管平行设置形成多层,所述扁管穿设于接插槽内;
    其特征在于,所述微通道换热器还包括分配器及转接管,所述分配器上设有多根毛细管,所述转接管的一端与所述毛细管连通,另一端与所述扁管连通。
  2. 根据权利要求1所述的微通道换热器,其中,所述转接管为多个,部分所述转接管的一端连接于所述毛细管,另一端连接于所述扁管,部分所述转接管的两端均连接于所述扁管。
  3. 根据权利要求2所述的微通道换热器,其中,所述转接管具有与所述扁管相适配的第一管口,所述第一管口供所述扁管插入,所述转接管的内壁设有限位部,所述限位部抵接于所述扁管的一端及/或抵接于所述扁管的侧壁,用于对所述扁管限位。
  4. 根据权利要求3所述的微通道换热器,其中,所述限位部包括第一凸部及第二凸部,所述第一凸部及所述第二凸部沿着所述转接管的长度方向间隔布置,所述第一凸部相对于所述第二凸部远离所述第一管口设置,所述第一凸部凸出于所述转接管的内壁的高度大于所述第二凸部凸出于所述转接管的内壁的高度,所述第一凸部用于抵接所述扁管的一端,所述第二凸部用于抵接于所述扁管的外侧壁。
  5. 根据权利要求4所述的微通道换热器,其中,所述第二凸部相对于所述转接管的内壁凸出的高度为H 4,所述扁管的高度为H 1,所述转接管内具有相对设置的第一内壁及第二内壁,所述第二凸部设于所述第一内壁及/或所述第二内壁上,所述第一内壁与所述第二内壁之间的距离为H 2,0mm≤[H 4-(H 2-H 1)]≤0.2mm。
  6. 根据权利要求4所述的微通道换热器,其中,所述第一凸部为半圆形、方形或梯形,及/或,所述第二凸部为半圆形、方形或梯形。
  7. 根据权利要求4所述的微通道换热器,其中,所述第一凸部相对于所述转接管的内壁凸出的高度为H 3,所述扁管的高度为H 1,所述转接管内具有相对设置的第一内壁及第二内壁,所述第一凸部设于所述第一内壁及/或所述第二内壁上,所述第一内壁与所述第二内壁之间的距离为H 2,所述扁管的高度为H 1,0.2mm≤[H 3-(H 2-H 1)]≤3mm。
  8. 根据权利要求4所述的微通道换热器,其中,所述第一凸部与所述第一管口的端面之间的间距为L 1,2mm≤L 1≤10mm。
  9. 根据权利要求3所述的微通道换热器,其中,所述扁管的高度为H 1,所述转接管内具有相对设置的第一内壁及第二内壁,所述第一内壁与所述第二内壁之间的距离为H 2,0.02mm≤(H 2-H 1)≤0.4mm。
  10. 根据权利要求3所述的微通道换热器,其中,所述转接管具有第二管口,所述第二管口位于所述转接管远离所述第一管口的一端,所述第二管口呈圆形;或,所述转接管为弯管,所述转接管的两端均具有所述第一管口。
  11. 根据权利要求1所述的微通道换热器,其中,所述微通道换热器还包括缩口管及扩口管,所述扩口管连接于所述转接管,所述缩口管连接于所述扁管,或,所述缩口管连接于所述转接管,所述扩口管连接于所述扁管;所述缩口管外套设有焊环,所述缩口管伸入所述扩口管内并与所述扩口管焊接连接。
  12. 根据权利要求11所述的微通道换热器,其中,所述缩口管包括相互连接的第一段及第二段,所述第一段的外径沿着靠近所述第二段的方向逐渐减小,所述焊环套设于所述第一段外,沿着所述缩口管的轴向,所述第一段的长度为L 1,所述焊环的横截面的直径为D 1,D 1≤L 1≤1.2D 1
  13. 根据权利要求12所述的微通道换热器,其中,所述第二段的长度为L 2,3mm≤L 2≤5mm。
  14. 根据权利要求12所述的微通道换热器,其中,所述第一段连接于所述扁管,所述扁管的宽度为W 1,所述第二段的宽度为W 2,所述焊环为椭圆环形,所述焊环的内圈长轴为D,W 2≤D≤W 1
  15. 根据权利要求12所述的微通道换热器,其中,所述第一段连接于所述扁管,所述扁管的宽度为W 1,D 1=0.06W 1
  16. 根据权利要求12所述的微通道换热器,其中,所述第一段连接于所述扁管,所述缩口管内的宽度为W 3,所述转接管内的宽度为W 4,0.8W 4≤W 3≤1.2W 4
  17. 根据权利要求11所述的微通道换热器,其中,所述缩口管的外壁与所述扩口管的内壁间隙配合, 所述缩口管的外壁与所述扩口管的内壁间隙为H,0.1mm≤H≤0.35mm。
  18. 根据权利要求11所述的微通道换热器,其中,所述缩口管连接于所述扁管,所述扩口管连接于所述转接管,所述缩口管通过所述扁管缩口形成,所述扩口管通过所述转接管扩口形成;或者,所述扩口管连接于所述扁管,所述缩口管连接于所述转接管,所述扩口管通过所述扁管扩口形成,所述缩口管通过所述转接管缩口形成。
  19. 根据权利要求11所述的微通道换热器,其中,所述扁管为多列,相邻列的所述扁管通过所述转接管、所述缩口管及所述扩口管连接。
  20. 根据权利要求1所述的微通道换热器,其中,所述扁管至少为两列,所述微通道换热器还包括多个弯管,相邻列所述扁管通过所述弯管连通,所述弯管与所述扁管分体设置;及/或,同一列的所述扁管之间通过所述弯管连通,所述弯管与所述扁管分体设置。
  21. 根据权利要求1所述的换热器,其中,多根所述扁管间隔设置;所述接插槽为多个,多个所述接插槽沿所述翅片的延伸方向间隔设置;所述接插槽与所述扁管的形状相适配,以使所述翅片通过所述接插槽插接在所述扁管上;
    所述微通道换热器还包括弯管,所述弯管包括连接段和折弯段,所述连接段为两个,两个所述连接段分别设置在所述折弯段的两端,两个所述连接段和所述折弯段连接以形成U形管结构,两个所述连接段分别与两个所述扁管连接;
    其中,所述连接段套设在所述扁管上深度为P,2mm≤P≤20mm。
  22. 根据权利要求21所述的换热器,其中,所述连接段的内壁面由依次连接的顶面、第一侧面、底面和第二侧面围成,所述顶面和所述底面均为平面;
    所述第一侧面和所述第二侧面均为弧面;
    或者,所述第一侧面和所述第二侧面均为平面,所述顶面和所述底面与所述第一侧面的连接处均为圆弧过渡,所述顶面和所述底面与所述第二侧面的连接处均为圆弧过渡;
    或者,所述第一侧面和所述第二侧面均为椭圆面;
    或者,所述第一侧面和所述第二侧面均为折弯面。
  23. 根据权利要求21所述的换热器,其中,所述弯管的两个所述连接段均为轴对称结构,两个所述连接段的对称中心连接以形成连接轴线,所述弯管的管口的长度延伸方向与所述连接轴线之间具有夹角α,0≤α≤90°。
  24. 根据权利要求21所述的换热器,其中,所述接插槽的宽度为Gw,所述接插槽的高度为Gt,1.5≤Gw/Gt≤10。
  25. 根据权利要求1所述的微通道换热器,其中,所述翅片上设有多个第一凸起,所述第一凸起为圆形、月牙形、三角形、方形、S形或波纹形。
  26. 根据权利要求25所述的微通道换热器,其中,所述第一凸起上开设有条缝,所述条缝贯穿所述翅片的表面,以形成过风通道。
  27. 根据权利要求1所述的微通道换热器,其中,所述翅片具有第一侧及第二侧,所述翅片靠近所述第一侧的侧面具有多个第二凸起,多个所述第二凸起沿所述翅片的宽度方向依次分布形成波纹结构,所述波纹结构的两端分别朝所述翅片长度方向的两侧延伸并贯穿所述翅片的两端。
  28. 根据权利要求1所述的微通道换热器,其中,所述翅片包括相互连接的本体部及翻边结构,所述接插槽设于所述本体部上,所述翻边结构设置在所述接插槽处,所述翻边结构凸出于所述本体部设置,至少部分所述翻边结构与所述扁管的侧面抵接。
  29. 根据权利要求21所述的微通道换热器,其中,所述翅片包括相互连接的本体部及翻边结构,所述接插槽设于所述本体部上,所述翻边结构设置在所述接插槽处,所述翻边结构凸出于所述本体部设置,所述翻边结构用于与所述扁管配合。
  30. 根据权利要求29所述的换热器,其中,所述翻边结构包括第一翻边,所述第一翻边围绕所述接 插槽的周缘设置,以使所述第一翻边围成与所述扁管相适配的形状。
  31. 根据权利要求30所述的换热器,其中,所述第一翻边的高度为H 1,0<H 1≤1mm。
  32. 根据权利要求30所述的换热器,其中,所述翻边结构还包括:
    第二翻边,所述第二翻边为多个,多个所述第二翻边沿所述接插槽的周缘方向间隔设置在所述第一翻边上,所述第二翻边所在的平面与所述第一翻边所在的平面重合。
  33. 根据权利要求32所述的换热器,其中,所述第二翻边的高度为H 2,所述接插槽的高度为G t,0.25<H 2/G t<1。
  34. 根据权利要求32所述的换热器,其中,所述翻边结构还包括:
    第三翻边,所述第三翻边为多个,多个所述第三翻边与多个所述第二翻边一一对应地设置,各个所述第三翻边设置在所述第二翻边远离所述第一翻边的一侧,所述第三翻边与所述第二翻边呈预设角度设置,以使所述第三翻边避让所述接插槽设置。
  35. 根据权利要求21所述的换热器,其中,所述翅片与所述连接段之间的最小间距为C,0≤C≤80mm。
  36. 根据权利要求1所述的微通道换热器,其中,所述翅片至少包括两列,每列所述翅片包括多排间隔设置的所述翅片,两列所述翅片的同一排所述翅片分体设置,且同一排所述翅片上的所述接插槽交错设置;和/或同一列所述翅片上的所述接插槽交错设置。
  37. 根据权利要求1所述的微通道换热器,其中,所述微通道换热器包括集流管,所述扁管至少包括第一列扁管和第二列扁管,所述第一列扁管和所述第二列扁管并列设置,所述第一列扁管连接于所述转接管,所述第二列扁管连接于所述集流管;
    或,所述扁管为一列,所述扁管的一端连接于所述转接管,另一端连接于所述集流管。
PCT/CN2022/129911 2021-11-04 2022-11-04 微通道换热器 WO2023078399A1 (zh)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CN202111302595 2021-11-04
CN202122706128.8 2021-11-04
CN202122706128.8U CN216205497U (zh) 2021-11-04 2021-11-04 换热器
CN202111302595.2 2021-11-04
CN202220403404.5 2022-02-25
CN202220403404.5U CN217383880U (zh) 2021-11-04 2022-02-25 微通道换热器
CN202220961160.2U CN217383869U (zh) 2022-04-21 2022-04-21 微通道换热器
CN202220961160.2 2022-04-21
CN202221483863.5U CN218002296U (zh) 2022-06-13 2022-06-13 转接管及其微通道换热器
CN202210662495.9 2022-06-13
CN202221483863.5 2022-06-13
CN202210662495.9A CN117268161A (zh) 2022-06-13 2022-06-13 转接管及其微通道换热器

Publications (1)

Publication Number Publication Date
WO2023078399A1 true WO2023078399A1 (zh) 2023-05-11

Family

ID=86240673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129911 WO2023078399A1 (zh) 2021-11-04 2022-11-04 微通道换热器

Country Status (1)

Country Link
WO (1) WO2023078399A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2285953A1 (fr) * 1974-09-30 1976-04-23 Creusot Loire Procede et dispositif de centrage de tubes
CN201954845U (zh) * 2011-01-26 2011-08-31 广东美的电器股份有限公司 平行流换热器
JP2012032089A (ja) * 2010-07-30 2012-02-16 Mitsubishi Electric Corp フィンチューブ型熱交換器及びそれを用いた空気調和機
CN207365784U (zh) * 2017-09-30 2018-05-15 博格思众(常州)热交换器有限公司 一种翅片及蒸发器
CN208579665U (zh) * 2015-12-25 2019-03-05 三菱电机株式会社 热交换器以及具备该热交换器的空调机
CN212931129U (zh) * 2020-08-20 2021-04-09 浙江三可热交换系统有限公司 一种微通道换热器加厚结构
CN216205497U (zh) * 2021-11-04 2022-04-05 浙江盾安热工科技有限公司 换热器
CN217383869U (zh) * 2022-04-21 2022-09-06 浙江盾安热工科技有限公司 微通道换热器
CN217383880U (zh) * 2021-11-04 2022-09-06 浙江盾安热工科技有限公司 微通道换热器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2285953A1 (fr) * 1974-09-30 1976-04-23 Creusot Loire Procede et dispositif de centrage de tubes
JP2012032089A (ja) * 2010-07-30 2012-02-16 Mitsubishi Electric Corp フィンチューブ型熱交換器及びそれを用いた空気調和機
CN201954845U (zh) * 2011-01-26 2011-08-31 广东美的电器股份有限公司 平行流换热器
CN208579665U (zh) * 2015-12-25 2019-03-05 三菱电机株式会社 热交换器以及具备该热交换器的空调机
CN207365784U (zh) * 2017-09-30 2018-05-15 博格思众(常州)热交换器有限公司 一种翅片及蒸发器
CN212931129U (zh) * 2020-08-20 2021-04-09 浙江三可热交换系统有限公司 一种微通道换热器加厚结构
CN216205497U (zh) * 2021-11-04 2022-04-05 浙江盾安热工科技有限公司 换热器
CN217383880U (zh) * 2021-11-04 2022-09-06 浙江盾安热工科技有限公司 微通道换热器
CN217383869U (zh) * 2022-04-21 2022-09-06 浙江盾安热工科技有限公司 微通道换热器

Similar Documents

Publication Publication Date Title
US6289981B1 (en) Multi-bored flat tube for use in a heat exchanger and heat exchanger including said tubes
US5069277A (en) Vehicle-loaded heat exchanger of parallel flow type
US11614286B2 (en) Un-finned heat exchanger
JP3445905B2 (ja) 熱交換器およびそれに用いられるヘッダパイプの製造方法
JP2000161870A (ja) 熱伝達促進効果を持つ高効率モジュ―ル形olf熱交換機
WO2012034437A1 (zh) 制冷剂导管和具有该制冷剂导管的换热器
WO2023078399A1 (zh) 微通道换热器
CN217383869U (zh) 微通道换热器
JP2010243076A (ja) 冷媒熱交換器
WO2008099434A1 (en) Tubeless heat exchanger and method for the manufacture thereof
CN215063003U (zh) 集气管组件
JP4273483B2 (ja) 熱交換器用チューブおよび熱交換器
CN206847454U (zh) 一种螺旋高效换热管
CN217979972U (zh) 新型换热器
CN220541804U (zh) 换热器、热管理系统和车辆
CN218511545U (zh) 一种换热器
JP3317672B2 (ja) 熱交換器
CN220062224U (zh) 一种微通道冷凝器
CN215637599U (zh) 一种飞翼式换热器连接组件及其形成的换热器结构
WO2023125525A1 (zh) 用于换热器的换热组件和换热器
CN217685511U (zh) 一种管路连接结构及空调器
CN219934761U (zh) 一种双层结构高频焊圆型散热管
CN210664096U (zh) 便于连接的异形翅片管
JP2963222B2 (ja) 熱交換器における熱交換媒体出入口用管のろう付け接合構造
CN113739453B (zh) 蒸发器及具有其的冰箱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889420

Country of ref document: EP

Kind code of ref document: A1