WO2023077872A1 - 负载型双金属单原子催化剂及其制备方法与应用 - Google Patents

负载型双金属单原子催化剂及其制备方法与应用 Download PDF

Info

Publication number
WO2023077872A1
WO2023077872A1 PCT/CN2022/107033 CN2022107033W WO2023077872A1 WO 2023077872 A1 WO2023077872 A1 WO 2023077872A1 CN 2022107033 W CN2022107033 W CN 2022107033W WO 2023077872 A1 WO2023077872 A1 WO 2023077872A1
Authority
WO
WIPO (PCT)
Prior art keywords
atom catalyst
solution
supported
metal
preparation
Prior art date
Application number
PCT/CN2022/107033
Other languages
English (en)
French (fr)
Inventor
娄阳
于白阳
朱永法
郭耘
曹宵鸣
戴升
张颖
潘成思
Original Assignee
江南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江南大学 filed Critical 江南大学
Publication of WO2023077872A1 publication Critical patent/WO2023077872A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/0308Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
    • B01J29/0316Mesoporous materials not having base exchange properties, e.g. Si-MCM-41 containing iron group metals, noble metals or copper
    • B01J29/0333Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • B01J29/20Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing iron group metals, noble metals or copper
    • B01J29/24Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/7684TON-type, e.g. Theta-1, ISI-1, KZ-2, NU-10 or ZSM-22
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/48Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxidation reactions with formation of hydroxy groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/183After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself in framework positions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention relates to the technical field of catalysts, in particular to a supported bimetallic single-atom catalyst and its preparation method and application.
  • Catalytic oxidation of methane to high-value chemicals is of great commercial and environmental significance, not only to mitigate the greenhouse effect caused by methane, but also to provide a method to convert methane into C1 basic raw materials.
  • methanol as one of the basic organic raw materials, can be used to produce various organic products such as methyl chloride, methylamine and dimethyl sulfate, and is one of the most ideal products for methane oxidation.
  • the present invention provides a supported bimetallic single-atom catalyst and its preparation method and application.
  • First object of the present invention is to provide a kind of preparation method of supported bimetallic single-atom catalyst, comprising the following steps:
  • step S3 Add the metal precursor solution described in step S1 to the carrier solution described in step S2, so that metal atoms are uniformly dispersed on the surface of the molecular sieve carrier, and then dried and calcined to obtain the supported bimetallic single-atom catalyst.
  • the noble metal is palladium, platinum, rhodium, iridium, gold or silver.
  • the noble metal salt and the non-noble metal salt are the same type of salt, wherein the same type of salt refers to a salt with the same acid radical; the acid solution is an acid solution corresponding to the metal precursor, The corresponding acid solution refers to the acid solution with the same acid group as in the salt.
  • the noble metal salt and the non-noble metal salt are both nitrates, and the acid solution is nitric acid; the noble metal salt and the non-noble metal salt are both chlorides, and the acid solution is hydrochloric acid.
  • step S1 the concentration of the metal precursor is 0.05-0.5 mmol/L.
  • the molecular sieve is composed of silica and alumina.
  • the solvent is water, methanol, ethanol or ethylene glycol.
  • step S3 the drying is at 60-80°C for 8-16 hours; the roasting is at 400-550°C for 3-5 hours.
  • the second object of the present invention is to provide a supported bimetallic single-atom catalyst prepared by the method.
  • the third object of the present invention is to provide the application of the supported bimetallic single-atom catalyst in the selective oxidation of methane to produce methanol.
  • the temperature of the reaction is 50-80° C.; the pressure of the reaction is 1-4 MPa.
  • the concentration of hydrogen peroxide in the reaction is 0.289-0.589M.
  • reaction temperature in the application is 50-80° C.; the reaction pressure is 1-4 MPa.
  • hydrogen peroxide is used as the oxidizing agent, and the concentration of the hydrogen peroxide is 0.289-0.589M.
  • the principle of the present invention is: the active site of the supported bimetallic single-atom catalyst described in the present invention has a unique single/dual-nuclear dynamic conversion structure, so that one methane molecule can be activated on the double site, thereby highly selective Producing the methanol product (CH 3 OH).
  • the first CH-bond activation of CH4 is activated by the non-bridging hydroxyl oxygen adsorbed on the noble metal ion through a free-radical-like mechanism to generate methyl radicals.
  • the generated methyl radicals can be easily captured by the energy of bridging hydroxyl groups on Z[Cu( ⁇ -OH)M] 2+ (M represents noble metal), generating CH 3 ⁇ and H 2 O, and water molecules are very Easily desorbs from noble metal ions. Then the free CH 3 ⁇ on Z[Cu( ⁇ -OH)M] 2+ and the bridging hydroxyl group generate methanol through an exothermic process of 1.01eV. Finally, methanol desorbs to form binuclear Z[CuM] 2+ . Z[CuM] 2+ can easily activate the OO bonds of H 2 O 2 to regenerate Z[Cu(OH)] + [M(OH)] + double mononuclear active sites.
  • H2O2 Since only 0.75 eV energy is used to activate the O - O bond of H2O2 , H2O2 is easily decomposed into two hydroxyl groups adsorbed on copper and noble metal ions, and the reactivation of the active sites is finally completed.
  • the water molecule participates in the reaction environment, the water molecule adsorbs on the noble metal ion and undergoes hydrogen transfer, making it easier to complete the reactivation of the active site by H 2 O 2 at the reaction site. At this time, it only needs to climb through the 0.28eV free Just enough energy. Therefore, we can find that the selective oxidation of methane to methanol catalyzed by supported bimetallic single-atom catalysts is accomplished through complex dynamic switching of single/dual-nuclear active sites.
  • the supported bimetallic single-atom catalyst of the present invention can realize the catalytic oxidation of methane to methanol within 30 minutes under the conditions of temperature of 50-80°C, reaction pressure of 1-4MPa and hydrogen peroxide of 0.289-0.589M. Activity (20115 ⁇ mol g cat -1 ) and high selectivity (>80%).
  • Fig. 1 is an atomic-scale ratio diagram of the Ag-Cu bimetallic single-atom catalyst supported by ZSM-5 in Example 1 of the present invention.
  • Fig. 2 is a structural diagram of the silver-copper bimetallic single atom in ZSM-5 according to Example 1 of the present invention.
  • Fig. 3 is a reaction performance diagram of methane catalyzed by ZSM-5, ZSM-5-supported Ag-Cu bimetallic nanoparticle catalyst, and ZSM-5-supported Ag-Cu bimetallic single-atom catalyst of the present invention.
  • Fig. 4 is the reaction performance figure of the Ag single-atom catalyst of ZSM-5 load of the present invention, the Cu single-atom catalyst of ZSM-5 load, the Ag-Cu double metal single atom catalyst of ZSM-5 load catalysis methane.
  • silver nitrate (74.84 ⁇ mol) and copper nitrate trihydrate (135.78 ⁇ mol) were prepared into a 0.15 mmol/L metal precursor solution.
  • the metal precursor solution is added to the mixed solution of the above-mentioned carrier molecular sieve ZSM-5, so that it is uniformly dispersed on the surface of the molecular sieve carrier.
  • the obtained solid was dried in the air at 60°C for 12h, and the catalyst was calcined in the air at 550°C for 3h to finally form a ZSM-5-supported Ag-Cu bimetallic single-atom catalyst.
  • Fig. 1 The atomic-level magnification of the ZSM-5 supported Ag-Cu bimetallic single-atom catalyst taken by HAADF-STEM is shown in Fig. 1, and the black circles represent the supported metal single atoms.
  • Example 2 Basically the same as in Example 1, except that silver nitrate was replaced by palladium nitrate to obtain a Pd-Cu bimetallic single-atom catalyst supported by ZSM-5.
  • Example 2 Basically the same as in Example 1, except that silver nitrate was replaced by platinum chloride to obtain a Pt-Cu bimetallic single-atom catalyst supported by ZSM-5.
  • Example 2 Basically the same as in Example 1, except that silver nitrate was replaced by rhodium nitrate to obtain a ZSM-5 loaded Rh-Cu bimetallic single-atom catalyst.
  • Example 2 Basically the same as in Example 1, except that silver nitrate was replaced by iridium nitrate to obtain a ZSM-5 supported Ir-Cu bimetallic single-atom catalyst.
  • Example 2 Basically the same as in Example 1, except that silver nitrate was replaced by chloroauric acid tetrahydrate to obtain a ZSM-5 supported Au-Cu bimetallic single-atom catalyst.
  • Example 2 Basically the same as in Example 1, the molecular sieve ZSM-5 was replaced by the mordenite molecular sieve MOR to obtain a MOR-supported Ag-Cu bimetallic single-atom catalyst.
  • Example 2 Basically the same as in Example 1, the molecular sieve ZSM-5 was replaced with a molecular sieve ZSM-22 to obtain a ZSM-22-supported Ag-Cu bimetallic single-atom catalyst.
  • Example 2 Basically the same as in Example 1, the molecular sieve ZSM-5 was replaced with molecular sieve SBA-15 to obtain an Ag-Cu bimetal single-atom catalyst supported by SBA-15.
  • Example 2 Basically the same as in Example 1, the molecular sieve ZSM-5 was replaced with molecular sieve SBA-25 to obtain an Ag-Cu bimetallic single-atom catalyst supported by SBA-25.
  • the active site of the Ag-Cu/ZSM-5 single-atom catalyst synthesized in this example has a unique silver-copper single/dual-nuclear dynamic conversion structure, so that one methane molecule can be activated on the silver-copper double site, Thus, methanol product (CH 3 OH) is generated with high selectivity.
  • CH4 methanol product
  • the first CH bond activation of CH4 is activated by the non-bridging hydroxyl oxygen adsorbed on the silver ion through a free-radical-like mechanism to generate methyl radicals.
  • the generated methyl radicals can be easily captured by the bridging hydroxyl groups on Z[Cu( ⁇ -OH)Ag] 2+ to generate CH 3 ⁇ and H 2 O, and water molecules can be easily released from the silver ions Desorption. Then the free CH 3 ⁇ on Z[Cu( ⁇ -OH)Ag] 2+ and the bridging hydroxyl group generate methanol through a 1.01eV exothermic process. Finally, methanol desorbs to form binuclear Z[CuAg] 2+ .
  • Z[CuAg] 2+ can easily activate the OO bond of H2O2 , regenerate Z[Cu(OH)] + [Ag(OH)] + double mononuclear active sites, and only 0.75eV energy can activate H 2 O 2 O-O bond, so H 2 O 2 decomposes into two hydroxyl groups adsorbed on copper and silver ions.
  • water molecules participate in the reaction environment, water molecules adsorb on silver ions to undergo hydrogen transfer, making it easier to complete the reactivation of active sites by H 2 O 2 at the reaction site, and only need to climb through the free energy of 0.28eV Just build it. Therefore, we can find that the selective oxidation of methane to methanol catalyzed by supported bimetallic single-atom catalysts is accomplished through complex dynamic switching of single/dual-nuclear active sites.
  • Catalyst preparation Disperse ZSM-5 in 50mL ultrapure water (18.2M ⁇ ), add silver nitrate (74.84 ⁇ mol) and copper nitrate trihydrate (135.78 ⁇ mol) dropwise to the above solution under stirring conditions, and dissolve the above The pH of the solution was adjusted to 7.0, and vigorously stirred at 80 °C until the water evaporated. The obtained solid was dried in air at 60° C. for 12 h, and then calcined in air at 550° C. for 3 h to obtain a ZSM-5 supported Ag-Cu bimetallic nanoparticle catalyst.
  • Catalyst preparation basically the same as in Example 1, only using silver nitrate as the metal precursor solution to obtain the Ag single-atom catalyst supported by ZSM-5.
  • Catalyst preparation basically the same as in Example 1, the metal precursor solution only uses copper nitrate trihydrate to obtain a Cu single-atom catalyst supported by ZSM-5.
  • Figure 4 shows the reaction performance of a typical Ag-Cu bimetallic single-atom catalyst versus a single metal (Ag or Cu) single-atom catalyst for the oxidation of methane to methanol.
  • Methanol presents a significant advantage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及一种负载型双金属单原子催化剂及其制备方法与应用,涉及催化剂技术领域。其制备方法包括,将贵金属盐和非贵金属盐溶于溶剂,得到金属前驱体溶液,控制所述金属前驱体溶液的温度为20-80℃,通过加入与金属前驱体相同类型的酸液调节溶液的pH值为3-5,所述贵金属为钯、铂、铑、铱、金或银,所述非贵金属为铜;将分子筛载体分散于溶剂,得到载体溶液,通过超声振动的方式使所述分子筛载体均匀分散;将所述金属前驱体溶液加到所述载体溶液中,使金属原子均匀分散于分子筛载体的表面,经干燥、焙烧,得到所述负载型双金属单原子催化剂。本发明所述的负载型双金属单原子催化剂对于催化甲烷选择性制甲醇具有高选择性和高活性。

Description

负载型双金属单原子催化剂及其制备方法与应用 技术领域
本发明涉及催化剂技术领域,尤其涉及一种负载型双金属单原子催化剂及其制备方法与应用。
背景技术
将甲烷催化氧化生成高价值化学品具有重要的商业和环境保护意义,这不仅有利于缓解由甲烷引起的温室效应,而且还提供了将甲烷转化为C1基础原料的方法。特别是与过度氧化产物CO 2相比,甲醇作为基本的有机原料之一,可用于制造氯甲烷、甲胺和硫酸二甲酯等多种有机产品,是甲烷氧化最理想的产物之一。然而,实现高活性甲烷选择性氧化制甲醇是一项具有挑战性的任务,因为甲烷是热力学稳定且化学惰性的分子,这使其转化效率极低,并且相应地需要高温才能触发催化反应(>400℃)。此外,生成甲醇的反应过程受到热力学的限制,在1-30bar的反应压力条件下甲烷氧化优先产生HCOOH或CO 2,这导致对甲醇的选择性极低。因此,研发高效催化甲烷制备甲醇的催化剂,具有十分重要的意义。
发明内容
为解决上述技术问题,本发明提供了一种负载型双金属单原子催化剂及其制备方法与应用。
本发明的第一个目的是提供一种负载型双金属单原子催化剂的制备方法,包括以下步骤:
S1、将贵金属盐和非贵金属盐溶于溶剂,得到金属前驱体溶液,控制所述金属前驱体溶液的温度为20-80℃,通过加入酸液调节溶液的pH值为3-5,所述非贵金属为铜;
S2、将分子筛载体分散于溶剂,得到载体溶液,通过超声振动的方式使所 述分子筛载体均匀分散于所述载体溶液;
S3、将S1步骤所述金属前驱体溶液加入到S2步骤所述载体溶液中,使金属原子均匀分散于分子筛载体的表面,经干燥、焙烧,得到所述负载型双金属单原子催化剂。
进一步地,在S1步骤中,所述贵金属为钯、铂、铑、铱、金或银。
进一步地,在S1步骤中,所述贵金属盐和所述非贵金属盐为同类型的盐,其中同类型的盐指酸根相同的盐;所述酸液为与金属前驱体相对应的酸液,其中相对应的酸液指与盐中相同酸根的酸液。
优选地,贵金属盐和非贵金属盐同为硝酸盐,所述酸液为硝酸;贵金属盐和非贵金属盐同为氯化物,所述酸液为盐酸。
进一步地,在S1步骤中,所述金属前驱体浓度为0.05-0.5mmol/L。
进一步地,在S2步骤中,所述分子筛由二氧化硅和氧化铝构成。
进一步地,在S1和S3步骤中,所述溶剂为水、甲醇、乙醇或乙二醇。
进一步地,在S3步骤中,所述干燥是60-80℃干燥8-16h;所述焙烧是400-550℃焙烧3-5h。
本发明的第二个目的是提供一种所述方法制备的负载型双金属单原子催化剂。
本发明的第三个目的是提供所述的负载型双金属单原子催化剂在催化甲烷选择性氧化制甲醇中的应用。
进一步地,所述反应的温度为50-80℃;所述反应的压力1-4MPa。
进一步地,所述反应中过氧化氢的浓度为0.289-0.589M。
进一步地,所述应用中反应温度为50-80℃;反应压力为1-4MPa。
进一步地,所述应用中以过氧化氢为氧化剂,所述过氧化氢的浓度为0.289-0.589M。
本发明的原理是:本发明所述的负载型双金属单原子催化剂的活性位点,具有独特的单/双核动态转换结构,使得1个甲烷分子能够在双位点上进行活化, 从而高选择性生成甲醇产物(CH 3OH)。CH 4的第一个C-H键活化由吸附在贵金属离子上的非桥羟基氧通过类似自由基的机制激活,以生成甲基自由基。然后,生成的甲基自由基可以很容易地被Z[Cu(μ-OH)M] 2+(M表示贵金属)上的桥羟基能量捕获,产生CH 3·和H 2O,并且水分子很容易从贵金属离子上解吸。然后Z[Cu(μ-OH)M] 2+上的游离CH 3·和桥联羟基通过1.01eV的放热过程生成甲醇。最后,甲醇脱附形成生成双核Z[CuM] 2+。Z[CuM] 2+能很容易地激活H 2O 2的O-O键,再生Z[Cu(OH)] +[M(OH)] +双单核活性位点。由于只有0.75eV的能量被用于激活H 2O 2的O-O键,因此H 2O 2很容易分解成两个羟基吸附在铜和贵金属离子上,最终完成活性位点的再活化。当水分子参与反应环境时,水分子吸附在贵金属离子上发生氢转移,使其更容易地在反应部位完成H 2O 2对活性位点的再活化,此时只需爬过0.28eV的自由能能垒即可。因此,我们可以发现负载型双金属单原子催化剂催化的甲烷选择性氧化制甲醇过程是通过复杂的单/双核活性位点动态切换完成的。
本发明的技术方案相比现有技术具有以下优点:
本发明所述的负载型双金属单原子催化剂在50-80℃温度,1-4MPa的反应压力和0.289-0.589M的过氧化氢的条件下,30min内可以实现了甲烷催化氧化为甲醇的高活性(20115μmol g cat -1)和高选择性(>80%)。
附图说明
为了使本发明的内容更容易被清楚地理解,下面根据本发明的具体实施例并结合附图,对本发明作进一步详细的说明,其中:
图1为本发明实施例1的ZSM-5负载的Ag-Cu双金属单原子催化剂原子级倍率图。
图2为本发明实施例1的银铜双金属单原子在ZSM-5中的结构图。
图3为本发明ZSM-5、ZSM-5负载的Ag-Cu双金属纳米颗粒催化剂、ZSM-5负载的Ag-Cu双金属单原子催化剂催化甲烷的反应性能图。
图4为本发明ZSM-5负载的Ag单原子催化剂、ZSM-5负载的Cu单原子催 化剂、ZSM-5负载的Ag-Cu双金属单原子催化剂催化甲烷的反应性能图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
实施例1
一种负载型双金属单原子催化剂及其制备方法,其包括如下步骤:
在25℃下,将硝酸银(74.84μmol)和三水合硝酸铜(135.78μmol)制备成0.15mmol/L的金属前驱体溶液。将500mg分子筛ZSM-5分散在50mL超纯水(18.2MΩ)中,通过稀硝酸调控溶液的pH值为5,通过超声振动,提升ZSM-5载体在溶液中的分散度,通过蠕动泵微量进样的方法,将金属前驱体溶液加入到上述载体分子筛ZSM-5的混合溶液中,使之均匀分散在分子筛载体的表面上。将获得的固体物在60℃下在空气中干燥12h,在空气中550℃下焙烧催化剂3h,最终形成ZSM-5负载的Ag-Cu双金属单原子催化剂。
HAADF-STEM拍摄的ZSM-5负载的Ag-Cu双金属单原子催化剂的原子级倍率如图1所示,黑色圆圈代表负载的金属单原子。
根据密度泛函理论计算优化的Ag-Cu双金属单原子在ZSM-5中的结构如图2所示。
实施例2
基本同实施例1,将硝酸银更换成硝酸钯,得到ZSM-5负载的Pd-Cu双金属单原子催化剂。
实施例3
基本同实施例1,将硝酸银更换成氯化铂,得到ZSM-5负载的Pt-Cu双金属单原子催化剂。
实施例4
基本同实施例1,将硝酸银更换成硝酸铑,得到ZSM-5负载的Rh-Cu双金属单原子催化剂。
实施例5
基本同实施例1,将硝酸银更换成硝酸铱,得到ZSM-5负载的Ir-Cu双金属单原子催化剂。
实施例6
基本同实施例1,将硝酸银更换成四水合氯金酸,得到ZSM-5负载的Au-Cu双金属单原子催化剂。
实施例7
基本同实施例1,将分子筛ZSM-5更换成丝光沸石分子筛MOR,得到MOR负载的Ag-Cu双金属单原子催化剂。
实施例8
基本同实施例1,将分子筛ZSM-5更换成分子筛ZSM-22,得到ZSM-22负载的Ag-Cu双金属单原子催化剂。
实施例9
基本同实施例1,将分子筛ZSM-5更换成分子筛SBA-15,得到SBA-15负载的Ag-Cu双金属单原子催化剂。
实施例10
基本同实施例1,将分子筛ZSM-5更换成分子筛SBA-25,得到SBA-25负载的Ag-Cu双金属单原子催化剂。
应用例1
所有催化测试都是在微型高压釜式反应器中进行。将0.022g实施例1制备的催化剂样品ZSM-5负载的Ag-Cu催化剂分散在21.05mL,0.489M的过氧化氢溶液中,然后密封反应器。不进行预还原处理,用甲烷气吹扫反应釜5min后,将反应釜加压。之后,将反应温度逐渐升高至设定的反应温度(70℃)以开始反应。
通过带有甲烷转化炉的气相色谱仪(Agilent GC-2060)分析气相产物(CH 4,CO 2),使用核磁共振仪(BRUKER 400MHz)分析液相产物(CH 3OH,CH 3OOH, CH 2(OH) 2,HCOOH)。ZSM-5负载的银铜双金属单原子催化剂在80.5%的甲醇选择性条件下,30min显示出20115μmol g cat -1的甲醇产率。
本实施例所合成的Ag-Cu/ZSM-5单原子催化剂的活性位点,具有独特的银铜单/双核动态转换结构,使得1个甲烷分子能够在银-铜双位点上进行活化,从而高选择性生成甲醇产物(CH 3OH)。CH 4的第一个C-H键活化由吸附在银离子上的非桥羟基氧通过类似自由基的机制激活,以生成甲基自由基。然后,生成的甲基自由基可以很容易地被Z[Cu(μ-OH)Ag] 2+上的桥羟基能量捕获,产生CH 3·和H 2O,并且水分子很容易从银离子上解吸。然后Z[Cu(μ-OH)Ag] 2+上的游离CH 3·和桥联羟基通过1.01eV的放热过程生成甲醇。最后,甲醇脱附形成生成双核Z[CuAg] 2+。Z[CuAg] 2+可以很容易地激活H 2O 2的O-O键,再生Z[Cu(OH)] +[Ag(OH)] +双单核活性位点,只有0.75eV的能量能激活H 2O 2的O-O键,因此H 2O 2分解成两个羟基吸附在铜和银离子上。当水分子参与反应环境时,水分子吸附在银离子上发生氢转移,使其更容易地在反应部位完成H 2O 2对活性位点的再活化,只需爬过0.28eV的自由能能垒即可。因此,我们可以发现负载型双金属单原子催化剂催化的甲烷选择性氧化制甲醇过程是通过复杂的单/双核活性位点动态切换完成的。
应用例2
基本同应用例1,将实施例2制备的ZSM-5负载的Pd-Cu双金属单原子催化剂,在甲烷反应压力为3MPa和0.489M的过氧化氢溶液条件下,30min内甲醇的产率为10959.82μmol g cat -1,甲醇选择性为60.7%。
应用例3
基本同应用例1,将实施例3制备的ZSM-5负载的Pt-Cu双金属单原子催化剂,在甲烷反应压力为3MPa和0.489M的过氧化氢溶液条件下,30min内甲醇的产率为14813.37μmol g cat -1,甲醇选择性为70.42%。
应用例4
基本同应用例1,将实施例4制备的ZSM-5负载的Rh-Cu双金属单原子催 化剂,在甲烷反应压力为3MPa和0.489M的过氧化氢溶液条件下,30min内甲醇的产率为17111.67μmol g cat -1,甲醇选择性为79.73%。
应用例5
基本同应用例1,将实施例5制备的ZSM-5负载的Ir-Cu双金属单原子催化剂,在甲烷反应压力为3MPa和0.489M的过氧化氢溶液条件下,30min内甲醇的产率为11894.57μmol g cat -1,甲醇选择性为62.78%。
应用例6
基本同应用例1,将实施例6制备的ZSM-5负载的Au-Cu双金属单原子催化剂,在甲烷反应压力为3MPa和0.489M的过氧化氢溶液条件下,30min内甲醇的产率为18850.13μmol g cat -1,甲醇选择性为77.57%。
应用例7
基本同应用例1,将实施例7制备的MOR负载的Ag-Cu双金属单原子催化剂,在甲烷反应压力为1MPa和0.489M的过氧化氢溶液条件下,30min内甲醇的产率为7219.97μmol g cat -1,甲醇选择性为53.61%。
应用例8
基本同应用例1,将实施例7制备的MOR负载的Ag-Cu双金属单原子催化剂,在甲烷反应压力为4MPa和0.489M的过氧化氢溶液条件下,30min内甲醇的产率为23817.70μmol g cat -1,甲醇选择性为87.45%。
应用例9
基本同应用例1,将实施例7制备的MOR负载的Ag-Cu双金属单原子催化剂,在甲烷反应压力为3MPa和0.289M的过氧化氢溶液条件下,30min内甲醇的产率为16706.09μmol g cat -1,甲醇选择性为88.33%。
应用例10
基本同应用例1,将实施例7制备的MOR负载的Ag-Cu双金属单原子催化剂,在甲烷反应压力为3MPa和0.589M的过氧化氢溶液条件下,30min内甲醇的产率为18565.87μmol g cat -1,甲醇选择性为68.11%。
应用例11
基本同应用例1,将实施例8制备的ZSM-22负载的Ag-Cu双金属单原子催化剂,在甲烷反应压力为3MPa和0.489M的过氧化氢溶液条件下,30min内甲醇的产率为16063.05μmol g cat -1,甲醇选择性为76.69%。
应用例12
基本同应用例1,将实施例9制备的SBA-15负载的Ag-Cu双金属单原子催化剂,在甲烷反应压力为3MPa和0.489M的过氧化氢溶液条件下,30min内甲醇的产率为12204.82μmol g cat -1,甲醇选择性为75.71%。
应用例13
基本同应用例1,将实施例10制备的SBA-25负载的Ag-Cu双金属单原子催化剂,在甲烷反应压力为3MPa和0.489M的过氧化氢溶液条件下,30min内甲醇的产率为14745.78μmol g cat -1,甲醇选择性为79.01%。
对比例1
催化剂的制备:将ZSM-5分散在50mL超纯水(18.2MΩ)中,在搅拌条件下将硝酸银(74.84μmol)及三水合硝酸铜(135.78μmol)滴加入上述溶液,用NaOH溶液将上述溶液pH调节到7.0,在80℃条件下剧烈搅拌直至水分蒸发。将获得的固体物在60℃下在空气中干燥12h,然后在550℃下在空气中煅烧3h,得到ZSM-5负载的Ag-Cu双金属纳米颗粒催化剂。
催化剂的应用:基本同应用例1,将制备的ZSM-5负载的银铜纳米颗粒催化剂,在甲烷压力为3.0MPa和0.489M的过氧化氢溶液条件下,30min内甲醇的产率为1481.16μmol g cat -1,甲醇选择性为55.68%。
如图3所示,在甲烷压力为3.0MPa和0.489M的过氧化氢溶液条件下,分子筛载体ZSM-5、ZSM-5负载的Ag-Cu双金属纳米颗粒催化剂几乎未显示出催化甲烷制甲醇的活性,而ZSM-5负载的Ag-Cu双金属单原子催化剂在保持大于80%的甲醇选择性条件下,30min显示出20115μmol g cat -1的甲醇产率。
对比例2
催化剂的制备:基本同实施例1,金属前驱体溶液只选用硝酸银,得到ZSM-5负载的Ag单原子催化剂。
催化剂的应用:基本同应用例1,将制备ZSM-5负载的Ag单原子催化剂,在甲烷压力为3.0MPa和0.489M的过氧化氢溶液条件下,30min内甲醇的产率为1829.54μmol g cat -1,甲醇选择性为14.44%。
对比例3
催化剂的制备:基本同实施例1,金属前驱体溶液只选用三水合硝酸铜,得到ZSM-5负载的Cu单原子催化剂。
催化剂的应用:基本同应用例1,将制备的ZSM-5负载的Cu单原子催化剂,在甲烷压力为3.0MPa和0.489M的过氧化氢溶液条件下,30min内甲醇的产率为10440.36μmol g cat -1,甲醇选择性为71.05%。
图4所示为典型Ag-Cu双金属单原子催化剂对比单金属(Ag或者Cu)单原子催化剂催化甲烷氧化制甲醇的反应性能,可以看出典型银铜双金属单原子催化剂对催化甲烷氧化制甲醇,呈现出显著优势。
显然,上述实施例仅仅是为清楚地说明所作的举例,并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

  1. 一种负载型双金属单原子催化剂的制备方法,其特征在于,包括以下步骤:
    S1、将贵金属盐和非贵金属盐溶于溶剂,得到金属前驱体溶液,控制所述金属前驱体溶液的温度为20-80℃,通过加入酸液调节溶液的pH值为3-5,所述非贵金属为铜;
    S2、将分子筛载体分散于溶剂,得到载体溶液,通过超声振动的方式使所述分子筛载体均匀分散于所述载体溶液;
    S3、将S1步骤所述金属前驱体溶液加入到S2步骤所述载体溶液中,使金属原子均匀分散于分子筛载体的表面,经干燥、焙烧,得到所述负载型双金属单原子催化剂。
  2. 根据权利要求1所述的负载型双金属单原子催化剂的制备方法,其特征在于,在S1步骤中,所述贵金属为钯、铂、铑、铱、金或银。
  3. 根据权利要求1所述的负载型双金属单原子催化剂的制备方法,其特征在于,在S1步骤中,所述贵金属盐和所述非贵金属盐为同类型的盐;所述酸液为与金属前驱体相对应的酸液。
  4. 根据权利要求1所述的负载型双金属单原子催化剂的制备方法,其特征在于,在S1步骤中,所述金属前驱体浓度为0.05-0.5mmol/L。
  5. 根据权利要求1所述的负载型双金属单原子催化剂的制备方法,其特征在于,在S2步骤中,所述分子筛由二氧化硅和氧化铝构成。
  6. 根据权利要求1所述的负载型双金属单原子催化剂的制备方法,其特征在于,在S3步骤中,所述干燥是60-80℃干燥8-16h;所述焙烧是400-550℃焙烧3-5h。
  7. 一种权利要求1-6任一项所述方法制备的负载型双金属单原子催化剂。
  8. 一种权利要求7所述的负载型双金属单原子催化剂在催化甲烷选择性氧 化制甲醇中的应用。
  9. 根据权利要求8所述的在催化甲烷反应中的应用,其特征在于,所述应用中反应温度为50-80℃;反应压力为1-4MPa。
  10. 根据权利要求8所述的在催化甲烷反应中的应用,其特征在于,所述应用中以过氧化氢为氧化剂,所述过氧化氢的浓度为0.289-0.589M。
PCT/CN2022/107033 2021-11-02 2022-07-21 负载型双金属单原子催化剂及其制备方法与应用 WO2023077872A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111289884.3 2021-11-02
CN202111289884.3A CN113856750B (zh) 2021-11-02 2021-11-02 负载型双金属单原子催化剂及其制备方法与应用

Publications (1)

Publication Number Publication Date
WO2023077872A1 true WO2023077872A1 (zh) 2023-05-11

Family

ID=78986638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/107033 WO2023077872A1 (zh) 2021-11-02 2022-07-21 负载型双金属单原子催化剂及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN113856750B (zh)
WO (1) WO2023077872A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116832855A (zh) * 2023-06-01 2023-10-03 中国科学院过程工程研究所 一种分子筛限域的单原子催化剂及其制备方法和应用
CN118179531A (zh) * 2024-03-13 2024-06-14 安徽师范大学 一种银-铜双单原子催化剂及其制备方法和应用

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113856750B (zh) * 2021-11-02 2022-08-16 江南大学 负载型双金属单原子催化剂及其制备方法与应用
CN114768801B (zh) * 2022-04-26 2023-12-01 海南大学 一种负载型钯金合金纳米片催化剂的制备方法及应用
CN115722258B (zh) * 2022-11-24 2024-08-02 江南大学 一种碳包覆的负载型单原子催化剂及其制备方法与应用
CN115945191B (zh) * 2023-02-10 2023-10-27 江南大学 一种氧化铟负载的单原子催化剂及其制备方法与应用
CN116440924A (zh) * 2023-03-13 2023-07-18 华南理工大学 一种单原子铜基催化剂的制备方法及其在光催化甲烷氧化中的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012030178A (ja) * 2010-07-30 2012-02-16 Jgc Catalysts & Chemicals Ltd 金属粒子担持触媒の製造方法、金属粒子担持触媒及び反応方法。
CN107096536A (zh) * 2017-04-26 2017-08-29 山东师范大学 一种非贵金属单原子催化剂的可控制备方法
CN109806885A (zh) * 2019-01-07 2019-05-28 北京理工大学 一种用于C4选择加氢的Pdx/Cu单原子催化剂及其制备方法
CN112774709A (zh) * 2019-11-11 2021-05-11 中国科学院大连化学物理研究所 负载型催化剂及其制法和应用
CN113856750A (zh) * 2021-11-02 2021-12-31 江南大学 负载型双金属单原子催化剂及其制备方法与应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5295602A (en) * 1976-02-05 1977-08-11 Teijin Ltd Preparation of glycols
CN101875016A (zh) * 2009-11-19 2010-11-03 中国海洋石油总公司 一种用于甲烷低温氧化制备甲醇的催化剂及其制备方法与应用
CN111215127B (zh) * 2018-11-25 2022-09-06 中国科学院大连化学物理研究所 铁单原子催化剂及其制备和应用
CN111250692B (zh) * 2018-11-30 2021-11-09 中国科学院大连化学物理研究所 一种溶液中稳定的异核双金属原子材料
CN110694616B (zh) * 2019-10-28 2020-08-11 湖南大学 一种普适性制备负载型金属单原子/金属纳米颗粒的方法
CN111841533B (zh) * 2020-08-18 2021-04-13 江南大学 一种负载型金属双原子催化剂及其制备方法与应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012030178A (ja) * 2010-07-30 2012-02-16 Jgc Catalysts & Chemicals Ltd 金属粒子担持触媒の製造方法、金属粒子担持触媒及び反応方法。
CN107096536A (zh) * 2017-04-26 2017-08-29 山东师范大学 一种非贵金属单原子催化剂的可控制备方法
CN109806885A (zh) * 2019-01-07 2019-05-28 北京理工大学 一种用于C4选择加氢的Pdx/Cu单原子催化剂及其制备方法
CN112774709A (zh) * 2019-11-11 2021-05-11 中国科学院大连化学物理研究所 负载型催化剂及其制法和应用
CN113856750A (zh) * 2021-11-02 2021-12-31 江南大学 负载型双金属单原子催化剂及其制备方法与应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116832855A (zh) * 2023-06-01 2023-10-03 中国科学院过程工程研究所 一种分子筛限域的单原子催化剂及其制备方法和应用
CN116832855B (zh) * 2023-06-01 2024-03-12 中国科学院过程工程研究所 一种分子筛限域的单原子催化剂及其制备方法和应用
CN118179531A (zh) * 2024-03-13 2024-06-14 安徽师范大学 一种银-铜双单原子催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN113856750A (zh) 2021-12-31
CN113856750B (zh) 2022-08-16

Similar Documents

Publication Publication Date Title
WO2023077872A1 (zh) 负载型双金属单原子催化剂及其制备方法与应用
CN113019414B (zh) 一种加氢催化剂及其制备方法和应用
CN111135840B (zh) 负载型单原子分散贵金属催化剂的制备方法
CN102421525B (zh) 聚合物电解质多层薄膜催化剂及其制备方法
CN109225253B (zh) 一种原子级分散钯铜催化剂及其制备方法与催化应用
JP2005515888A (ja) 制御された(111)結晶面の露出を有する触媒
US20080193368A1 (en) Supported Nanocatalyst Particles Manufactured By Heating Complexed Catalyst Atoms
CN110227553B (zh) 一种具有CUS的MIL-101(Cr)组装双金属催化剂、制备及应用
Zhang et al. Palladium nanoparticles supported on UiO-66-NH2 as heterogeneous catalyst for epoxidation of styrene
WO2024078051A1 (zh) 生物质骨架炭-金属复合微纳结构催化材料及制备方法和应用
CN114849694B (zh) 一种基于金属负载氧化钨氢化硝基芳烃的催化剂及其制备方法和应用
WO2021105537A1 (es) Catalizador para la hidrogenación de co2 a metano a bajas temperaturas
Wang et al. Theoretical investigations on the effect of the functional group of Pd@ UIO-66 for formic acid dehydrogenation
Amirsardari et al. Controlled attachment of ultrafine iridium nanoparticles on mesoporous aluminosilicate granules with carbon nanotubes and acetyl acetone
CN108579761B (zh) 一种Pt-Ir/FeOx多金属单原子催化剂的制备方法
Zhang et al. ZIF-8 decorated Au/Al2O3 hybrid material for highly selective hydrogenation of cinnamaldehyde
CN100415367C (zh) 纳米金属钯/载体催化剂的制备方法
TWI261533B (en) Nano-gold catalyst and preparation of nano-gold catalyst
CN115722265A (zh) 一种过渡金属单原子催化剂的制备方法及应用
JP3086881B1 (ja) メタノールの合成・分解用触媒並びにその製造方法並びに該触媒によるメタノールの合成・分解方法
CN112441922B (zh) Co氧化偶联制备草酸酯的方法及其催化剂和制备方法
US20120020872A1 (en) High temperature reduction of hydrogen peroxide catalyst for improved selectivity
CN111393271B (zh) 一种用于催化烃类化合物与氧气反应的协同催化氧化方法
CN115501895B (zh) 一种乙炔氢氯化反应催化剂及其制备方法
CN109796427A (zh) 一种四氢糠醇的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22888907

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE