WO2023077260A1 - 显示面板及其制备方法、显示装置 - Google Patents

显示面板及其制备方法、显示装置 Download PDF

Info

Publication number
WO2023077260A1
WO2023077260A1 PCT/CN2021/128137 CN2021128137W WO2023077260A1 WO 2023077260 A1 WO2023077260 A1 WO 2023077260A1 CN 2021128137 W CN2021128137 W CN 2021128137W WO 2023077260 A1 WO2023077260 A1 WO 2023077260A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
scattering
unit
display panel
units
Prior art date
Application number
PCT/CN2021/128137
Other languages
English (en)
French (fr)
Inventor
李悦康
陈龙
于天成
廖兵
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202180003226.5A priority Critical patent/CN116569671A/zh
Priority to PCT/CN2021/128137 priority patent/WO2023077260A1/zh
Publication of WO2023077260A1 publication Critical patent/WO2023077260A1/zh

Links

Images

Definitions

  • the present application relates to the field of display technology, in particular to a display panel, a manufacturing method thereof, and a display device.
  • the QLED (Quantum Dot Light Emitting Diodes) display with electroluminescent properties not only has the advantage of wide color gamut, but also has high brightness, fast response and better HDR (High-Dynamic Range , high dynamic range image) effects and many other advantages, it has a very wide application prospect.
  • the light extraction efficiency of this type of display is low, and further optimization is required.
  • a display panel comprising:
  • a plurality of scattering structures arranged in an array is arranged on the light-emitting side of the light-emitting unit and includes at least one scattering unit, and the scattering unit includes a matrix and a plurality of scattering particles arranged on one side of the matrix,
  • the particle size of the scattering particles satisfies a positive correlation with the distance between the normal projection and the center projection of the scattering particles on the substrate, and the center projection is the normal distance of the center of the light-emitting unit on the substrate. projection.
  • the particle size of the scattering particles is D
  • the distance between the orthographic projection of the scattering particles on the substrate and the central projection is x
  • D and x satisfy:
  • f(x, D) is the particle distribution density function.
  • the orthographic projections of the plurality of scattering particles on the substrate are distributed in concentric circles centered on the central projection.
  • the distance between adjacent concentric circles decreases sequentially along a direction from projection close to the center to projection away from the center.
  • the plurality of scattering particles whose orthographic projections on the substrate are located in the same circle are distributed at equal intervals.
  • one side of the matrix includes a plurality of openings with different depths and different sizes, and the scattering particles are arranged in corresponding openings.
  • the multiple scattering particles have the same refractive index.
  • the scattering structure includes a plurality of scattering units arranged in layers;
  • the refractive index of the scattering particles of the plurality of scattering units increases sequentially.
  • the scattering structure includes a plurality of scattering units arranged in layers;
  • the refractive index of the matrix of the plurality of scattering units increases successively.
  • the display panel further includes a plurality of reflecting parts and a plurality of limiting parts, the limiting parts are arranged between adjacent light emitting units; the reflecting parts are arranged between the limiting parts and the light emitting units at least one side in contact.
  • the light emitting unit includes a quantum dot light emitting layer.
  • multiple light emitting units are configured to emit light in the same initial wavelength band
  • the display panel further includes a plurality of quantum dot color conversion units, the quantum dot color conversion units are disposed on the light emitting side of the light emitting unit and configured to convert the incident light in the original wavelength band into light in the target wavelength band.
  • the display panel further includes a plurality of transmission units, the transmission units are arranged on the light-emitting side of the light-emitting unit and are configured not to change the wavelength band of the incident light in the initial wavelength band;
  • the quantum dot color conversion unit and the transmission unit are respectively arranged corresponding to different light emitting units.
  • the quantum dot color conversion unit and the transmission unit are respectively arranged between the corresponding light emitting unit and the scattering structure.
  • the scattering structure includes a plurality of scattering units arranged in layers;
  • the refractive index of the matrix of the plurality of scattering units increases successively.
  • the quantum dot color conversion unit and the transmission unit are respectively configured to also serve as the matrix of the corresponding scattering structure; the quantum dot color conversion unit and the transmission unit are far away from the
  • the scattering particles are respectively arranged on one side of the light emitting unit.
  • any one of some of the light-emitting units corresponds to a plurality of quantum dot color conversion units, and any one of the remaining light-emitting units corresponds to a plurality of transmission units.
  • Each of the quantum dot color conversion units and each of the transmission units is provided with the scattering particles on the side away from the light-emitting unit;
  • the refractive index of the plurality of quantum dot color conversion units corresponding to the same light-emitting unit is the same, and the refractive index of the plurality of transmission units corresponding to the same light-emitting unit is same.
  • a display device including the above-mentioned display panel.
  • a method for preparing the above display panel comprising:
  • a plurality of scattering structures are formed; wherein, the scattering structure is arranged on the light-emitting side of the light-emitting unit and includes at least one scattering unit, and the scattering unit includes a matrix and a plurality of scattering particles arranged on one side of the matrix, so The particle size of the scattering particles satisfies a positive correlation with the distance between the orthographic projection of the scattering particles on the substrate and the center projection, and the center projection is the orthographic projection of the center of the light-emitting unit on the substrate .
  • one side of the matrix includes a plurality of openings with different depths, and the scattering particles are arranged in corresponding openings;
  • Said forming a plurality of scattering structures includes:
  • the scattering particles are sputtered into the opening.
  • Figure 1 schematically shows the light emission diagram of the electroluminescent layer
  • Fig. 2 schematically shows a light path diagram after light passes through a scattering unit
  • Fig. 7 schematically shows a schematic diagram of the structure of a scattering particle
  • Fig. 8 is a sectional view along AA direction in Fig. 7;
  • Fig. 9 schematically shows a structure diagram of a matrix of a scattering unit
  • Fig. 10 schematically shows a schematic structural diagram of a scattering structure
  • Fig. 11 is another cross-sectional view along AA direction in Fig. 7;
  • Fig. 12 schematically shows a schematic structural diagram of another scattering structure
  • FIG. 13 and FIG. 14 schematically show the structural diagrams of other two display panels
  • Fig. 15 schematically shows a graph of test results.
  • An embodiment of the present application provides a display panel, as shown in Fig. 3-6, including:
  • the substrate 11 the material of the substrate is not limited.
  • the material of the substrate may be rigid, such as glass; or flexible, such as polyimide (PI).
  • a plurality of light emitting units 1 arranged in an array are arranged on a substrate 11 .
  • a plurality of scattering structures arranged in an array (not marked in FIGS. 3-6 ); the scattering structure is arranged on the light-emitting side of the light-emitting unit 1 and includes at least one scattering unit 21, and the scattering unit 21 includes a matrix 22 and a A plurality of scattering particles 23, as shown in FIG. 7 , the particle diameter D of the scattering particles and the distance L1 between the orthographic projection of the scattering particles on the substrate 11 and the central projection O2 satisfy a positive correlation, and the central projection O2 is the center of the light emitting unit 1 Orthographic projection of O1 on substrate 11.
  • the above-mentioned display panel may also include a plurality of limiting parts 3, and an opening area is provided between adjacent limiting parts 3, and the above-mentioned light-emitting unit 1 is arranged in the opening area;
  • the specific structure of the light-emitting unit is not limited
  • the light emitting unit may include a first electrode, a light emitting layer and a second electrode.
  • the center of the light emitting unit can be selected according to the structure.
  • the center of the light emitting unit may be the center of the light emitting layer, or, as shown in FIGS. 3-6 , the center of the light emitting unit may also be the center O1 of the opening area.
  • the shape and size of the opening area directly affect the shape and size of the light emitting unit, and further affect the shape and size of the sub-pixel.
  • the shape of the cross-section of the opening region along the direction parallel to the substrate for example, it may be a rectangle, a rhombus, or an ellipse.
  • the shape of the cross-section of the opening region along the direction perpendicular to the substrate for example, it may be a rectangle or a trapezoid.
  • the distance between the orthographic projection and the central projection of the scattering particles on the substrate is called the first distance;
  • the particle size of the above-mentioned scattering particles and the first distance satisfying the positive correlation means that as shown in Fig. 7, the scattering particles
  • the particle size D of the particle increases with the increase of the first distance L1, or the particle size of the scattering particles decreases with the decrease of the first distance; then the particle size gradient of the particle from the edge position to the center position decreases,
  • the particle size of the scattering particles corresponding to the central area of the light-emitting unit (the scattering particles marked as S1 in the figure) is smaller than the particle size of the scattering particles corresponding to the edge area of the light-emitting unit (the scattering particles marked as S4 in the figure), that is, the edge particles
  • the diameter is large, and the particle size of the central particle is small.
  • the size of the above-mentioned scattering particles is at the nanoscale, so they can also be called nano-scattering particles.
  • the particle size range may be 30nm-180nm.
  • the scattering of light by nano-scattering particles belongs to Rayleigh scattering. According to the Rayleigh scattering model, at the nanometer scale, the larger the particle radius, the stronger the Rayleigh scattering effect.
  • the particle size of the scattering particles corresponding to the central region of the light-emitting unit is small (for example: the particle size is 30nm), and the scattering effect is weak, thereby facilitating The light passes through directly; the scattering particles corresponding to the edge area of the light-emitting unit have a large particle size (for example: particle size is 180nm), and the scattering effect is strong, which is conducive to the collection of light to the center, thereby improving the light output rate and emitting light at a positive viewing angle.
  • the material of the scattering particles can be an inorganic material, for example: any one or a combination of silicon dioxide, titanium dioxide, zirconium dioxide, vanadium dioxide, tin dioxide, aluminum oxide, barium titanate; or, It can also be an organic material, for example: any one or multiple combinations of silicone, polystyrene, polycarbonate. There is no limitation here, and it can be selected according to actual requirements.
  • the shape of the above-mentioned scattering particles is not limited.
  • the shape of the scattering particles can be spherical, ellipsoid, or cube. In order to facilitate the analysis of scattering paths and reduce the difficulty of design and manufacture, spherical scattering particles can be used.
  • the drawings of the embodiments of the present application are all drawn with spherical scattering particles as an example.
  • the particle diameter of the scattering particle refers to the diameter; if the shape of the scattering particle is other shapes, the particle diameter of the scattering particle may refer to the size of the scattering particle.
  • the aforementioned scattering particles are hollow particles.
  • the above-mentioned hollow particles may be in a spherical shape and have a core-shell structure, specifically, including a core portion and a shell portion. As the diameter of the hollow particles increases, the amount of the gas layer filled in the core increases, and the refractive index of the scattering unit filled with the hollow particles decreases.
  • the above-mentioned substrate can be made of a transmissive material, for example, an vapor-depositable amorphous material can be used; of course, other transmissive materials can also be used, which is not limited here.
  • the thickness of the matrix along the direction perpendicular to the substrate is not limited, and generally adopts a micron-scale thickness.
  • the light-emitting unit may include a light-emitting layer, and the material of the light-emitting layer is not limited here, which may be an organic light-emitting material or a quantum dot material.
  • the light-emitting unit can also include an electron transport layer and a hole transport layer located on both sides of the light-emitting layer; in order to further improve the injection efficiency of electron holes, the light-emitting unit can also include a The electron injection layer on the side of the hole transport layer, the hole injection layer on the side away from the light emitting layer.
  • the light emitting unit may emit blue light, or may also emit UV ultraviolet light, etc., which are not limited here.
  • Quantum dots are nanocrystalline particles with a radius smaller than or close to the exciton Bohr radius, typically with a size particle size between 1 nm and 20 nm. Quantum dots are quantum confinement and fluoresce when excited. Quantum dots have unique luminescence characteristics, such as: wide excitation peak width, narrow emission peak and adjustable luminescence spectrum. By adjusting the size of quantum dots, high-purity spectra of different colors can be obtained. In addition, quantum dots are inorganic substances, with more stable working conditions, longer lifespan, and lower cost. However, referring to FIG.
  • the light emission angle dispersion of the electroluminescent layer (EL), the photon extraction rate and the luminous intensity at the front viewing angle need to be further optimized.
  • the photon extraction rate and the luminous intensity at the normal viewing angle can be greatly improved.
  • the display panel can also be applied to the QD-OLED display panel shown in FIG. 5 and FIG.
  • the OLED display panel combines blue OLED (Organic Light-Emtting Diode, organic light-emitting diode) and QD (Quantum Dot, quantum dot). light to achieve color display.
  • the manufacturing process of the above display panel is not limited.
  • the display panel can be formed by a cell-to-cell process (such as the display panel shown in FIG. 4 and FIG. 6 ), and the display panel can also include a substrate, and the substrate and the substrate are arranged opposite to each other. .
  • film layers such as the light-emitting unit 1 can be fabricated on the substrate 11 to form the first substrate, and the black matrix 14 and the color filter layer (including the color filter unit 15 ) can be sequentially fabricated on the base 12 .
  • a plurality of scattering structures (including the scattering unit 21) and other film layers form the second substrate, and then the first substrate and the second substrate are boxed to form a display panel; or, the display panel can also be formed using an On-EL process (for example, as shown in FIG. 3 and the display panel shown in FIG. 5), specifically, as shown in FIG. 3 and FIG. Film layers such as the color filter layer (including the color filter unit 15 ) are then used to form a cover plate with the base 12 to form a display panel.
  • the above-mentioned display panel may also include structures such as a black matrix 14 and a color filter layer (including a color filter unit 15 ) as shown in FIGS. Let's go into more detail.
  • the particle size gradient of the particles from the edge position to the center position decreases gradually, and the particle size of the scattering particles corresponding to the central area of the light-emitting unit is smaller than that of the edge area of the corresponding light-emitting unit.
  • the particle size of the scattering particles in this way, the particle size of the scattering particles corresponding to the central area of the light-emitting unit is small, and the scattering effect is weak, so that light can pass through directly; the particle size of the scattering particles corresponding to the edge area of the light-emitting unit is large, and the scattering effect is strong.
  • the scattering unit includes a substrate and a plurality of scattering particles arranged on one side of the substrate, so that the surface of the scattering unit on which the scattering particles are arranged is uneven, thereby destroying the flatness of the film layer and reducing the probability of specular reflection, thereby further Increased light output.
  • the particle size of the scattering particles is D
  • the distance between the orthographic projection of the scattering particles on the substrate and the central projection is x
  • D and x satisfy:
  • f(x, D) is the particle distribution density function.
  • the distribution density of the above-mentioned scattering particles satisfies f(x, D), then the distribution density of the scattering particles corresponding to the edge region of the light-emitting unit is greater than the distribution density of the scattering particles corresponding to the central region of the light-emitting unit; then, referring to FIG. 7, the corresponding light-emitting unit
  • the distribution density of the scattering particles in the central area is low, and the particle size is small, so it has no obvious influence on the front view angle; while the distribution density of the scattering particles in the edge area corresponding to the light-emitting unit is high, and the particle size is large, which affects the side view angle.
  • the light has a very strong scattering effect, so more than 30% of the light at the side view angle will enter the light-emitting channel at the front view angle, thereby further improving the luminous brightness at the front view angle.
  • a green monochromatic QLED device is used as a simulation sample.
  • the device structure is shown in Figure 3.
  • the material of the scattering particles is titanium dioxide, and the particle size distribution density satisfies f(x, D).
  • the test chart shown in Figure 15 can be obtained.
  • the abscissa represents the light angle (View Angle), and the unit is degree (deg); the ordinate represents the normalized light intensity;
  • the structure corresponding to the experimental example is provided with a scattering structure, and the structure corresponding to the control example is not provided with scattering structure.
  • the light output angle of the experimental example is greater than that of the control example, indicating that the light output efficiency of the device is effectively improved.
  • the distribution density of the scattering particles can be further optimized, so as to obtain a distribution density function different from f(x, D).
  • the orthographic projections of the plurality of scattering particles on the substrate 11 are distributed in concentric circles with the central projection O2 as the center.
  • the particle sizes of multiple scattering particles located in the same ring are the same.
  • the closer to the center the smaller the particle size of the scattering particles and the lower the distribution density; the farther away from the center, the larger the particle size of the scattering particles , the higher the distribution density.
  • 4 concentric circles are taken as an example, and the same letter is used to mark the same ring, and the scattering particles on the 4 rings are marked with S1, S2, S3, and S4 respectively.
  • the density of scattering particles near the center is smaller than the density of scattering particles far away from the center, as shown in FIG. 7 and FIG. 8 , in the orthographic projection of a plurality of scattering particles on the substrate, the The distance between adjacent concentric circles decreases successively along the direction from the projection near the center to the projection away from the center.
  • D3 is smaller than D2
  • D2 is smaller than D1
  • d4 is larger than d3
  • d3 is larger than d2
  • d2 is larger than d1.
  • the orthographic projections on the substrate are distributed with a plurality of scattering particles located in the same ring at equal intervals, as shown in FIG. 7 It shows that on the same ring, the L2 of the adjacent scattering particles are the same.
  • one side of the matrix 22 includes a plurality of openings 220 with different depths (H1) and different sizes (L1), and the scattering particles 23 are arranged in the corresponding openings 220. .
  • the scattering particles are embedded in the surface openings of the matrix, so that the distribution of the openings can be controlled to further control the distribution of the scattering particles, which has higher controllability and is easy to realize.
  • the specific structure of the matrix and the scattering particles in the scattering unit is not limited thereto.
  • the scattering particles 23 can also be directly arranged on one side of the matrix 22, and the matrix does not need to be provided with openings; under this structure, in order to better fix the scattering particles, the scattering unit also needs to be provided with a fixing unit ;
  • the fixed unit can fix the scattering particles based on magnetic adsorption or electrical adsorption, and the specific structure can be obtained by combining related technologies.
  • multiple scattering particles have the same refractive index; in this way, the same material can be used to make multiple scattering particles, thereby simplifying the manufacturing process and reducing the manufacturing cost; meanwhile, it is beneficial to the optical path design.
  • the scattering structure 2 includes a plurality of scattering units 21 arranged in layers; along the light emitting direction of the light emitting unit, the refractive index of the scattering particles 23 of the plurality of scattering units 21 increases sequentially.
  • the refractive index of multiple scattering particles is the same; for multiple scattering units arranged in layers, the refractive index of the scattering particles of the scattering unit closer to the light-emitting unit is smaller, and the scattering particles of the scattering unit farther away from the light-emitting unit are smaller.
  • the scattering structure 2 includes a plurality of scattering units 21 arranged in layers; along the light emitting direction of the light emitting unit, the refractive index of the matrix 22 of the plurality of scattering units 21 Incremented sequentially.
  • the display panel further includes a plurality of reflecting parts 4 and a plurality of limiting parts 3 , the limiting parts 3 are arranged between adjacent light-emitting units 1 ; the reflecting parts 4 are arranged At least one side of the limiting portion 3 is in contact with the light emitting unit 1 .
  • the above-mentioned limiting portion can prevent adjacent light-emitting units from interfering with each other, thereby reducing the risk of cross-color and improving display contrast.
  • the shape of the cross-section of the limiting portion along the direction perpendicular to the substrate may be a regular trapezoid, an inverted trapezoid, or a rectangle, etc., and the drawings of the embodiments of the present application are all drawn with a regular trapezoid as an example.
  • the reflecting part is arranged on at least one side where the limiting part is in contact with the light-emitting unit, including: the reflecting part is arranged on the side where the limiting part is in contact with the light-emitting unit; or, as shown in FIGS. At least two sides where the unit is in contact; or, all sides where the limiting part is in contact with the light-emitting unit are provided with reflective parts; this is not limited here, and can be selected according to actual conditions.
  • the material of the reflection part is not limited, and its reflectivity can be set above 80% (for example: 80%-95%).
  • 80% for example: 80%-95%.
  • the light emitting unit 1 includes a quantum dot light emitting layer (not shown), and the display panel can be applied to a QLED display panel.
  • the structure of the QLED display panel can be shown in Figure 3 and Figure 4.
  • the panel can also include structures such as a black matrix and a color filter layer.
  • a plurality of light-emitting units are configured to emit light in the same initial wavelength band; the display panel also includes a plurality of quantum dot color conversion units 5, and the quantum dot color conversion unit 5 It is arranged on the light emitting side of the light emitting unit 1 and is configured to convert the incident light of the initial wavelength band into light of the target wavelength band.
  • Specific wavelength bands of the aforementioned initial wavelength band light and target wavelength band light are not limited.
  • the waveband of the initial waveband light can be 450-480nm, and the light in this waveband is blue light; the waveband of the light in the target waveband can be 622-760nm, and the light in this waveband is red light; It can be 500-560nm, and the light in this band is green light.
  • the above-mentioned multiple quantum dot color conversion units can convert the initial waveband light into the same target waveband light; or, the multiple quantum dot color conversion units can also convert the initial waveband light into different target waveband light.
  • the quantum dot color conversion unit is divided into two groups, one group converts the initial waveband light into a target waveband light (for example: red light), and the other group converts the initial waveband light into another target waveband light (for example: green light) .
  • the red light band and the green light band are generally selected as the target band light
  • the blue light band is used as the initial band light.
  • Multiple quantum dot color conversion units are divided into red conversion units and green conversion units.
  • the red conversion unit is configured as The blue light band is converted into the red light band (that is, the blue light is converted into red light)
  • the green conversion unit is configured to convert the blue light band into the green light band (that is, the blue light is converted into green light).
  • the quantum dot color conversion unit on the left is a red conversion unit
  • the quantum dot color conversion unit on the right is a green conversion unit for example.
  • the relative positional relationship between the quantum dot color conversion unit and the scattering structure is not limited.
  • the scattering structure can only be set on the side of the quantum dot color conversion unit away from the light-emitting unit; or, the scattering structure can only be set on the side of the quantum dot color conversion unit.
  • the side of the conversion unit close to the light-emitting unit; or, the scattering structure can be respectively arranged on the side of the quantum dot color conversion unit away from the light-emitting unit and the side of the quantum dot color conversion unit close to the light-emitting unit.
  • the display panel can be applied to a panel combining OLED and QD, and combines the two advantages of OLED and QD; the application can improve the light extraction rate of this type of display panel by setting a scattering structure.
  • the display panel further includes a plurality of transmission units 6, the transmission units 6 are arranged on the light-emitting side of the light-emitting unit 1, and are configured not to change the wavelength band of the incident initial wavelength band light; Wherein, the quantum dot color conversion unit 5 and the transmission unit 6 are respectively arranged corresponding to different light emitting units.
  • the above-mentioned transmission unit can transmit the incident light without band conversion.
  • the initial wavelength band light is blue light
  • the blue light can pass through the transmission unit without being converted into red light and other light of other wavelength bands, and can be directly used for blue display.
  • the transmission unit may be a light diffusion unit, so that the incident light is scattered without changing the wavelength, which is beneficial to uniform display.
  • the light diffusing unit can be made of light diffusing resin or transmissive resin with light diffusing ability, so that the incident light can be more uniform after passing through it.
  • transmission refers to allowing light to transmit while changing angles without band conversion.
  • the transmission unit can also modulate the color of the incident light. For example, if the incident light is dark blue, it will be transformed into light blue after being modulated by the transmission unit.
  • the wavelength bands of the incident light and the converted light are equal It belongs to the blu-ray band.
  • a specific structure of the quantum dot color conversion unit, the transmission unit and the scattering structure is provided below.
  • the quantum dot color conversion unit 5 and the transmission unit 6 are respectively arranged between the corresponding light emitting unit 1 and the scattering structure (including the scattering unit 21 ).
  • the light in the initial wavelength band emitted by the light-emitting unit is converted by the quantum dot color conversion unit or the transmission unit, and then directed to the scattering structure.
  • the light output angle is relatively dispersed, and the light extraction rate is low; by setting the scattering structure, the light emitted from the quantum dot color conversion unit or the transmission unit is modulated, so that the light is as far as possible to the The center gathers, thereby improving the light output rate and emitting light at a frontal viewing angle.
  • the scattering structure 2 includes a plurality of scattering units 21 arranged in layers; along the light emitting direction of the light emitting unit, the refractive index of the matrix 22 of the plurality of scattering units 21 increases sequentially.
  • the matrix of the multiple scattering units can also modulate the incident light, which can further make more light converge toward the center, thereby further improving the light output rate and the luminescence at the front viewing angle.
  • the quantum dot color conversion unit 5 and the transmission unit 6 are respectively configured to also serve as the matrix of the corresponding scattering structure; the one of the quantum dot color conversion unit 5 and the transmission unit 6 which is far away from the light emitting unit 1 Scattering particles 23 are respectively arranged on the sides.
  • the quantum dot color conversion unit is integrated with the corresponding scattering particles, and the transmission unit is integrated with the corresponding scattering particles, so that no additional matrix is required, which is beneficial to saving materials and costs; at the same time, the scattering particles can convert the quantum dot color
  • the light emitted by the conversion unit or the transmission unit is modulated so that the light converges toward the center as much as possible, so as to improve the light extraction rate and emit light at a positive viewing angle.
  • any one of some light emitting units 1 corresponds to a plurality of quantum dot color conversion units 5, and any one of the remaining light emitting units 1
  • a plurality of transmission units 6 are provided.
  • each quantum dot color conversion unit 5 and each transmission unit 6 away from the light emitting unit 1 are provided with scattering particles 23 .
  • the refractive index of the multiple quantum dot color conversion units corresponding to the same light emitting unit is the same, and the refractive index of the multiple transmission units corresponding to the same light emitting unit is the same.
  • the above-mentioned initial waveband light emitted from the light-emitting unit is converted by the quantum dot color conversion unit or the transmission unit, and shoots to the scattering particles; after the light is modulated by the scattering particles once, it enters the quantum dot color conversion unit or the transmission unit again; then, again Shoot to the scattering particles for secondary modulation; so repeated, so that the light is modulated multiple times, and finally the light output efficiency is greatly improved.
  • the scattering particles are arranged on the side of the quantum dot color conversion unit and the transmission unit away from the light-emitting unit. Therefore, this structure is more suitable for applications using In the display panel formed by On-EL process.
  • the display panel also includes a color filter layer (including a color filter unit 15), the color filter layer is located between the scattering structure and the substrate, the color filter layer includes a plurality of color filter units 15, and the color filter unit 15 is It is configured to transmit the light of the target wavelength band emitted by the scattering unit and absorb the light of the non-target wavelength band.
  • a color filter layer including a color filter unit 15
  • the color filter layer is located between the scattering structure and the substrate
  • the color filter layer includes a plurality of color filter units 15
  • the color filter unit 15 is It is configured to transmit the light of the target wavelength band emitted by the scattering unit and absorb the light of the non-target wavelength band.
  • the above-mentioned color filter unit can be a red color filter unit, which can transmit red light and absorb light in other bands; or, the above-mentioned color filter unit can also be a green color filter unit, which can transmit green light and absorb other bands of light. or, the above-mentioned color filter unit can also be a blue color filter unit, and the blue color filter unit can transmit blue light and absorb light of other wavelength bands.
  • the plurality of color filter units may include three color filter units of red, green and blue.
  • the display panel also includes a plurality of quantum dot color conversion units and a plurality of transmission units. If the plurality of quantum dot color conversion units are divided into red conversion units and The green conversion unit, the multiple transmission units are blue conversion units, the red conversion unit corresponds to the red color film unit, the green conversion unit corresponds to the green color film unit, and the blue conversion unit corresponds to the blue color film unit.
  • the preparation process of the display panel may include: manufacturing a light-emitting unit 1 on a substrate 11 to form a first substrate, and sequentially manufacturing a black matrix on a substrate 12. 14. Film layers such as the color filter layer (including the color filter unit 15), the scattering structure (including the scattering unit 21), the quantum dot color conversion unit 5 and the transmission unit 6 form the second substrate, and then the first substrate and the second substrate are aligned The cells form a display panel as shown in FIG. 6 . Of course, as shown in FIG.
  • the display panel includes a substrate 11, and reflective electrodes 10, thin film transistors 9, light emitting units 1, limiting portions 3, reflective portions 4 and encapsulation layers 17 disposed on the substrate 11.
  • the display panel also includes a base 12, and a black matrix 14, a color filter layer (including a color filter unit 15), a flat film 13, a spacer 20, a limiting unit 7, and a reflection unit 8 arranged on the base 12; the display panel also includes The first filling layer 19 , the second filling layer 30 and the dike 31 .
  • the planar film can also play a role of encapsulation, and the planar film can prepare low-stress, dense inorganic films, such as SiO x , SiN x , Al 2 O 3 films, etc., by ultra-low temperature technology ( ⁇ 100°C).
  • the thickness of the flat film is less than 1 ⁇ m, for example, less than 0.5 ⁇ m, and the refractive index ranges from 1.7 to 2.0, for example, from 1.75 to 1.85.
  • the preparation process of the display panel may include: sequentially fabricating a light-emitting unit 1, a quantum dot color conversion unit 5, and a scattering structure ( It includes film layers such as scattering unit 21), black matrix 14, color filter layer (including color filter unit 15) and substrate 12 (used as a cover), thereby forming a display panel as shown in FIG. 5 .
  • a light-emitting unit 1 a quantum dot color conversion unit 5
  • a scattering structure It includes film layers such as scattering unit 21), black matrix 14, color filter layer (including color filter unit 15) and substrate 12 (used as a cover), thereby forming a display panel as shown in FIG. 5 .
  • FIG. 5 the preparation process of the display panel may include: sequentially fabricating a light-emitting unit 1, a quantum dot color conversion unit 5, and a scattering structure ( It includes film layers such as scattering unit 21), black matrix 14, color filter layer (including color filter unit 15) and substrate 12 (used as a cover), thereby forming a display panel as shown
  • the display panel also includes a limiting portion 3 and a reflecting portion 4, and the light-emitting unit 1 is arranged in the opening formed by the adjacent limiting portion 3;
  • the display panel also includes an encapsulation layer 17, a reflective polarizer 16 , a reflective electrode 10, a thin film transistor 9, a flat film 13, etc.;
  • the flat film can also play a packaging role, and the flat film can be prepared by an ultra-low temperature process ( ⁇ 100°C) to prepare a low-stress, dense inorganic film, such as SiO x , SiN x , Al 2 O 3 film, etc.
  • the thickness of the flat film 102 is less than 1 ⁇ m, for example, less than 0.5 ⁇ m, and the refractive index ranges from 1.7 to 2.0, such as 1.75 to 1.85.
  • Embodiments of the present application further provide a display device, including the above-mentioned display panel.
  • the display device may be a rigid display device or a flexible display device (ie, bendable or foldable), which is not limited here.
  • the type can be a QLED display panel, or a QD-OLED display panel, and any product or component with a display function such as a TV, a digital camera, a mobile phone, a tablet computer, etc. including these display panels.
  • the display device has high light extraction rate, strong light emission at a front viewing angle, and good display effect.
  • the embodiment of the present application also provides a method for preparing the above-mentioned display panel, the method includes:
  • the scattering structure is arranged on the light-emitting side of the light emitting unit and includes at least one scattering unit, the scattering unit includes a matrix and a plurality of scattering particles arranged on one side of the matrix, and the particle size of the scattering particles is related to the scattering
  • the distance between the orthographic projection of the particles on the substrate and the central projection satisfies a positive correlation relationship, and the central projection is the orthographic projection of the center of the light-emitting unit on the substrate.
  • step S01 and step S02 are not limited, and may be determined according to the specific structures of the light emitting unit and the scattering structure.
  • one side of the matrix includes a plurality of openings with different depths, and the scattering particles are arranged in the corresponding openings.
  • S02, forming multiple scattering structures includes:
  • the material of the matrix film may be a transmissive film material that can be evaporated.
  • the matrix material may be evaporated to a preset position by using FMM (Fine Metal Mask, fine metal mask).
  • the patterned substrate is prepared by laser interference ablation method.
  • the high-energy laser can be used to form an interference laser through the interference system, and the laser interference system is built according to the expected pattern and period, and the interference light source interacts with the surface of the substrate to ablate the periodicity.
  • a cross-scale micro/nano structure pattern the nano structure is a plurality of recessed structures in an array (that is, a plurality of openings are formed); each recessed structure corresponds to a nano-scattering particle deposited subsequently.
  • the diameter and depth of the recessed structure can be adjusted by adjusting the energy and action time of the laser, thereby forming a plurality of openings with different depths and sizes.
  • the characteristic size of the interference pattern is controllable in the range of 1-10 ⁇ m
  • the characteristic size of the nano-scattering particles is controllable in the range of 20-200 nm.
  • a patterned scattering particle layer is prepared by magnetron sputtering. Specifically, step S022 is used to change the diameter and depth of these concave structures (ie, openings) to realize the selection of scattering particles of different sizes.
  • the concave structures of different sizes will correspond to The size of the scattering particles is selected; if the sizes of the two match, the scattering particles can be embedded in the openings of the matrix and fixed on the surface of the matrix, thereby forming a patterned layer of scattering particles.

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本申请提供了一种显示面板及其制备方法、显示装置,涉及显示技术领域,显示面板能提高出光率和正视角发光。显示面板包括:相对设置的衬底和基底;阵列排布的多个发光单元,发光单元设置在衬底和基底之间;阵列排布的多个散射结构;散射结构设置在发光单元的出光侧、且包括至少一个散射单元,散射单元包括基质和设置在基质一侧的多个散射粒子,散射粒子的粒径与散射粒子在衬底上的正投影与中心投影的距离满足正相关关系,中心投影为发光单元的中心在衬底上的正投影。

Description

显示面板及其制备方法、显示装置 技术领域
本申请涉及显示技术领域,尤其涉及一种显示面板及其制备方法、显示装置。
背景技术
随着电视产业的不断发展,高色域显示屏已成为电视产业发展的主流趋势。以具有电致发光特性的QLED(Quantum Dot Light Emitting Diodes,量子点发光二极管)显示屏,除了具有色域广的优点以外,还具有亮度高、响应速度快以及更好的HDR(High-Dynamic Range,高动态范围图像)效果等诸多优点,具有十分广泛的应用前景。但是这类显示屏的出光效率较低,需要进一步优化。
发明内容
本申请的实施例采用如下技术方案:
一方面,提供了一种显示面板,包括:
衬底;
设置在所述衬底上阵列排布的多个发光单元,所述发光单元设置在所述衬底和所述基底之间;
阵列排布的多个散射结构;所述散射结构设置在所述发光单元的出光侧、且包括至少一个散射单元,所述散射单元包括基质和设置在所述基质一侧的多个散射粒子,所述散射粒子的粒径与所述散射粒子在所述衬底上的正投影与中心投影的距离满足正相关关系,所述中心投影为所述发光单元的中心在所述衬底上的正投影。
可选的,所述散射粒子的粒径为D,所述散射粒子在所述衬底上的正投影与所述中心投影的距离为x,D与x满足:
Figure PCTCN2021128137-appb-000001
其中,f(x,D)为粒子分布密度函数。
可选的,所述散射单元中,多个所述散射粒子在所述衬底上的正投影以所述中心投影为中心呈同心圆分布。
可选的,多个所述散射粒子在所述衬底上的正投影中,相邻所述同心圆之间的距离沿着从靠近所述中心投影到远离所述中心投影的方向依次递减。
可选的,所述散射单元中,在所述衬底上的正投影位于同一圆环的多个所述散射粒子等间距分布。
可选的,所述基质的一侧包括多个深度不同且尺寸不同的开口,所述散射粒子设置在对应所述开口内。
可选的,所述散射单元中,多个所述散射粒子的折射率相同。
可选的,所述散射结构包括叠层设置的多个所述散射单元;
沿所述发光单元的出光方向,多个所述散射单元的所述散射粒子的折射率依次递增。
可选的,所述散射结构包括叠层设置的多个所述散射单元;
沿所述发光单元的出光方向,多个所述散射单元的所述基质的折射率依次递增。
可选的,所述显示面板还包括多个反射部和多个限定部,所述限定部设置在相邻所述发光单元之间;所述反射部设置在所述限定部与所述发光单元相接触的至少一侧。
可选的,所述发光单元包括量子点发光层。
可选的,多个所述发光单元被配置为发出同一初始波段光;
所述显示面板还包括多个量子点色转换单元,所述量子点色转换单元设置在所述发光单元的出光侧、且被配置为将入射的所述初始波段光转换成目标波段光。
可选的,所述显示面板还包括多个透射单元,所述透射单元设置在所述发光单元的出光侧、且被配置为不改变入射的所述初始波段光的波段;
其中,所述量子点色转换单元和所述透射单元分别与不同的所述发光单元对应设置。
可选的,所述量子点色转换单元和所述透射单元分别设置在对应的所述发光单元和所述散射结构之间。
可选的,所述散射结构包括叠层设置的多个所述散射单元;
沿所述发光单元的出光方向,多个所述散射单元的所述基质的折射率依次递增。
可选的,所述量子点色转换单元和所述透射单元分别被配置为还用作对应的所述散射结构的所述基质;所述量子点色转换单元和所述透射单元中远离所述发光单元的一侧分别设置所述散射粒子。
可选的,多个所述发光单元中,部分所述发光单元中的任一个对应设置 多个所述量子点色转换单元,其余所述发光单元中的任一个对应设置多个所述透射单元;
各所述量子点色转换单元和各所述透射单元远离所述发光单元的一侧均设置所述散射粒子;
沿所述发光单元的出光方向,与同一所述发光单元对应设置的多个所述量子点色转换单元的折射率相同,与同一所述发光单元对应设置的多个所述透射单元的折射率相同。
另一方面,提供了一种显示装置,包括上述的显示面板。
再一方面,提供了一种上述显示面板的制备方法,所述方法包括:
形成多个发光单元;
形成多个散射结构;其中,所述散射结构设置在所述发光单元的出光侧、且包括至少一个散射单元,所述散射单元包括基质和设置在所述基质一侧的多个散射粒子,所述散射粒子的粒径与所述散射粒子在所述衬底上的正投影与中心投影的距离满足正相关关系,所述中心投影为所述发光单元的中心在所述衬底上的正投影。
可选的,所述基质的一侧包括多个深度不同的开口,所述散射粒子设置在对应所述开口内;
所述形成多个散射结构包括:
形成基质膜;
采用激光干涉对所述基质膜的一侧表面进行烧蚀,形成具有多个深度不同且尺寸不同的开口的所述基质;
将所述散射粒子溅射至所述开口内。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示意性地示出了电致发光层的光线出射图;
图2示意性地示出了一种光线经过散射单元后的光路图;
图3-6示意性地示出了四种显示面板的结构示意图;
图7示意性地示出了一种散射粒子的结构示意图;
图8为图7中沿AA向的截面图;
图9示意性地示出了一种散射单元的基质的结构图;
图10示意性地示出了一种散射结构的结构示意图;
图11为图7中沿AA向的另一种截面图;
图12示意性地示出了另一种散射结构的结构示意图;
图13和图14示意性地示出了另两种显示面板的结构示意图;
图15示意性地示出了一种测试结果图。
具体实施例
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的实施例中,采用“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分,仅为了清楚描述本申请实施例的技术方案,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。另外,“多个”的含义是两个或两个以上,“至少一个”的含义是一个或一个以上,除非另有明确具体的限定。
本申请的实施例提供了一种显示面板,参考图3-6所示,包括:
衬底11;该衬底的材料不做限定,示例的,该衬底的材料可以是刚性的,例如:玻璃;或者还可以是柔性的,例如:聚酰亚胺(PI)等。
设置在衬底11上阵列排布的多个发光单元1。
阵列排布的多个散射结构(图3-6未标记);散射结构设置在发光单元1的出光侧、且包括至少一个散射单元21,散射单元21包括基质22和设置在基质22一侧的多个散射粒子23,结合图7所示,散射粒子的粒径D与散射粒子在衬底11上的正投影与中心投影O2的距离L1满足正相关关系,中心投影O2为发光单元1的中心O1在衬底11上的正投影。
为了限定多个发光单元,上述显示面板还可以包括多个限定部3,相邻限定部3之间设置有开口区,上述发光单元1设置在该开口区;该发光单元的具体结构不做限定,示例的,该发光单元可以包括第一电极、发光层和第 二电极。该发光单元的中心可以根据结构选择。示例的,该发光单元的中心可以是发光层的中心,或者,参考图3-6所示,该发光单元的中心还可以是开口区的中心O1。开口区的形状和大小直接影响发光单元的形状和大小,进而影响子像素的形状和大小。这里对于开口区沿平行于衬底方向的截面的形状不做限定,示例的,可以是矩形、菱形、或者椭圆形等。另外,这里对于开口区沿垂直于衬底方向的截面的形状不做限定,示例的,可以是矩形或者梯形等。
为了便于说明,将散射粒子在衬底上的正投影与中心投影的距离称为第一距离;上述散射粒子的粒径与第一距离满足正相关关系是指:参考图7所示,散射粒子的粒径D随着第一距离L1的增大而增大,或者,散射粒子的粒径随着第一距离的减小而减小;则从边缘位置到中心位置粒子的粒径梯度递减,对应发光单元中心区域的散射粒子(如图中标记为S1的散射粒子)的粒径小于对应发光单元边缘区域的散射粒子(如图中标记为S4的散射粒子)的粒径,即边缘粒子粒径大,中心粒子粒径小。
上述散射粒子的尺寸在纳米级,因此还可以称为纳米散射粒子。该粒径范围可以为30nm-180nm。纳米散射粒子对光线的散射属于瑞利散射,根据瑞利散射模型可知,在纳米尺度下,粒子半径越大,则瑞利散射效应越强。本申请提供的显示面板中,散射粒子的粒径与第一距离满足正相关关系,则对应发光单元中心区域的散射粒子的粒径小(例如:粒径为30nm),散射效应弱,从而便于光线直接透过;对应发光单元边缘区域的散射粒子的粒径大(例如:粒径为180nm),散射效应强,有利于光线向中心汇集,从而提高了出光率和正视角发光。
该散射粒子的材料可以是无机材料,例如:二氧化硅、二氧化钛、二氧化锆、二氧化钒、二氧化锡、三氧化二铝、钛酸钡中的任一种或者多种组合;或者,还可以是有机材料,例如:有机硅、聚苯乙烯、聚碳酸酯中的任一种或者多种组合。这里不做限定,可以根据实际要求选择。
上述散射粒子的形状不做限定,示例的,该散射粒子的形状可以是球形、椭球或者立方体等形状,为了便于分析散射路径,降低设计和制作难度,可以采用球形散射粒子。本申请实施例的附图均以球形散射粒子为例进行绘示。在散射粒子的形状为球形时,该散射粒子的粒径指直径;若散射粒子的形状为其它形状,该散射粒子的粒径可以指该散射粒子的尺寸。
在一些实施方式中,上述散射粒子为中空粒子。上述中空粒子可以是球 形状,具有核壳结构,具体地,包括核部和壳部。中空粒子的直径越大,填充在核部中的气体层的量越增加,填充有该中空粒子散射单元折射率就降低。
上述基质可以采用透射材料制作,示例的,可以采用可蒸镀的非晶材料;当然还可以是其它透射材料,这里不做限定。该基质沿垂直于衬底方向的厚度不做限定,一般采用微米级厚度。
该发光单元的结构不做限定,示例的,该发光单元可以包括发光层,这里对于发光层材料不做限定,其可以是有机发光材料或者量子点材料。为了提高发光效率,该发光单元还可以包括位于发光层两侧的电子传输层和空穴传输层;为了进一步提高电子空穴的注入效率,该发光单元还可以包括位于电子传输层远离发光层一侧的电子注入层、位于空穴传输层远离发光层一侧的空穴注入层。该发光单元可以发出蓝光,或者,还可以发出UV紫外光等等,这里不做限定。
上述显示面板可以应用于图3和图4所示的QLED显示面板,此时,上述发光单元可以包括量子点发光层。量子点(QD)是纳米晶体粒子,其半径小于或接近激子玻尔半径,通常具有1nm到20nm之间的大小粒度。量子点具有量子限制作用,并在激发时发出荧光。量子点具有独特的发光特性,例如:宽的激发峰宽度,窄的发射峰和可调的发光光谱,通过调节量子点的尺寸便可以获得不同颜色的高纯度光谱。另外,量子点为无机物,工作状态更稳定,寿命更长,成本也更低。但是,参考图1所示,电致发光层(EL)的出光角度分散,光子取出率和正视角发光强度需要进一步优化。本申请通过设置散射结构,参考图2所示,能够大幅提升光子取出率和正视角发光强度。
或者,该显示面板还可以应用于图5和图6所示的QD-OLED显示面板,此时,上述发光单元可以包括蓝光有机发光层,上述显示面板还可以包括量子点色转换层,QD-OLED显示面板将蓝光OLED(Organic Light-Emtting Diode,有机发光二极管)和QD(Quantum Dot,量子点)相结合,蓝光有机发光层发出的蓝光经过量子点色转换层后,能够得到红光或者绿光,进而实现彩色显示。
上述显示面板的制作工艺不做限定,示例的,该显示面板可以采用对盒工艺形成(例如图4和图6所示的显示面板),该显示面板还可以包括基底,衬底和基底相对设置。具体的,参考图4和图6所示,可以在衬底11上制作发光单元1等膜层形成第一基板,在基底12上依次制作黑矩阵14、彩膜 层(包括彩膜单元15)、多个散射结构(包括散射单元21)等膜层形成第二基板,然后将第一基板和第二基板对盒形成显示面板;或者,该显示面板还可以采用On-EL工艺形成(例如图3和图5所示的显示面板),具体的,参考图3和图5所示,可以在衬底11上依次制作发光单元1、多个散射结构(包括散射单元21)、黑矩阵14、彩膜层(包括彩膜单元15)等膜层,然后采用基底12形成盖板,形成显示面板。
需要说明的是,上述显示面板还可以包括如图3-6所示的黑矩阵14以及彩膜层(包括彩膜单元15)等等结构,这里仅介绍与发明点相关的结构,其它结构不再详细说明。
本申请提供的显示面板中,通过调节散射粒子的粒径分布,使得从边缘位置到中心位置的粒子的粒径梯度递减,对应发光单元中心区域的散射粒子的粒径小于对应发光单元边缘区域的散射粒子的粒径;这样,对应发光单元中心区域的散射粒子的粒径小,散射效应弱,从而便于光线直接透过;对应发光单元边缘区域的散射粒子的粒径大,散射效应强,参考图2所示,有利于光线向中心汇集,从而提高了出光率和正视角发光。另外,散射单元包括基质和设置在基质一侧的多个散射粒子,从而使得散射单元设置散射粒子的一侧表面凹凸不平,从而破坏了膜层的平整性,降低了镜面反射的概率,从而进一步提高了出光率。
可选的,散射粒子的粒径为D,散射粒子在衬底上的正投影与中心投影的距离为x,D与x满足:
Figure PCTCN2021128137-appb-000002
其中,f(x,D)为粒子分布密度函数。
上述散射粒子的分布密度满足f(x,D),则对应发光单元边缘区域的散射粒子的分布密度大于对应发光单元中心区域的散射粒子的分布密度;那么,参考图7所示,对应发光单元中心区域的散射粒子的分布密度较低,且粒径较小,因此对于正视角发光没有明显影响;而对应发光单元边缘区域的散射粒子的分布密度较高,且粒径较大,对于侧视角的光线具有极强的散射效果,因此侧视角的光线会有30%以上进入正视角发光通路中,从而进一步提高了正视角发光亮度。
以绿光单色QLED器件作为模拟样本,器件结构参考图3所示,散射粒子的材料为二氧化钛,粒径分布密度满足f(x,D)。经过模拟测试可以得到 如图15所示的测试图。图15中,横坐标表示出光角度(View Angle),单位为度(deg);纵坐标表示归一化光强;另外,实验例对应的结构设置有散射结构,对照例对应的结构未设置散射结构。经过对比可以发现,实验例的出光角度大于对照例的出光角度,表明器件的出光效率得到有效改善。
需要说明的是,根据不同子像素的情况,可以对散射粒子的分布密度做进一步优化,从而得到不同于f(x,D)的分布密度函数。
可选的,为了进一步提高出光率,参考图7所示,散射单元中,多个散射粒子在衬底11上的正投影以中心投影O2为中心呈同心圆分布。
参考图7所示,位于同一圆环的多个散射粒子的粒径相同,另外,越靠近中心,散射粒子的粒径越小,分布密度越低;越远离中心,散射粒子的粒径越大,分布密度越高。图7中以4个同心圆为例进行绘示,属于同一圆环用同一字母标记,4个圆环上的散射粒子分别用S1、S2、S3、S4标注。
在一个或者多个实施例中,为了保证靠近中心的散射粒子的密度小于远离中心的散射粒子的密度,参考图7和图8所示,多个散射粒子在衬底上的正投影中,相邻同心圆之间的距离沿着从靠近中心投影到远离中心投影的方向依次递减,图8中,D3小于D2,D2小于D1;d4大于d3,d3大于d2,d2大于d1。
在一个或者多个实施例中,为了提高出光的均匀性,以进一步提高出光效率,散射单元中,在衬底上的正投影位于同一圆环的多个散射粒子等间距分布,参考图7所示,同一圆环上,相邻之间的散射粒子的L2均相同。
在一个或者多个实施例中,结合图8和图9所示,基质22的一侧包括多个深度(H1)不同且尺寸(L1)不同的开口220,散射粒子23设置在对应开口220内。
该散射单元中,散射粒子嵌设在基质的表面开口内,从而可以通过控制开口的分布,进而控制散射粒子的分布,可控性更高,且易于实现。
当然,该散射单元中基质和散射粒子的具体结构不限于此。示例的,参考图11所示,散射粒子23还可以直接设置在基质22的一侧,基质无需设置开口;在该种结构下,为了更好地固定散射粒子,该散射单元还需要设置固定单元;这里对于固定单元不做限定,该固定单元可以基于磁性吸附或者电性吸附固定散射粒子,具体结构可以结合相关技术获得。
在一个或者多个实施例中,散射单元中,多个散射粒子的折射率相同;这样可以采用同一材料制作多个散射粒子,从而简化制作工艺,降低制作成 本;同时,有利于光路设计。
可选的,参考图10和图12所示,散射结构2包括叠层设置的多个散射单元21;沿发光单元的出光方向,多个散射单元21的散射粒子23的折射率依次递增。
即同一散射单元内,多个散射粒子的折射率相同;叠层设置的多个散射单元,越靠近发光单元的散射单元的散射粒子的折射率越小,越远离发光单元的散射单元的散射粒子的折射率越大;从而进一步有利于将光线向中心汇集,进一提高出光效率。
在一个或者多个实施例中,参考图10和图12所示,散射结构2包括叠层设置的多个散射单元21;沿发光单元的出光方向,多个散射单元21的基质22的折射率依次递增。
即叠层设置的多个散射单元,越靠近发光单元的散射单元的基质的折射率越小,越远离发光单元的散射单元的基质的折射率越大;从而进一步有利于将光线向中心汇集,进一提高出光效率。
在一个或者多个实施例中,参考图3-6所示,显示面板还包括多个反射部4和多个限定部3,限定部3设置在相邻发光单元1之间;反射部4设置在限定部3与发光单元1相接触的至少一侧。
上述限定部能够避免相邻发光单元互相影响,从而减小串色风险,提升显示对比度。该限定部沿垂直于衬底方向的截面的形状可以是正梯形、倒梯形或者矩形等,本申请实施例附图均以正梯形为例进行绘示。
上述反射部的设置面积越大,反射效果越好。反射部设置在限定部与发光单元相接触的至少一侧包括:反射部设置在限定部与发光单元相接触的一侧;或者,参考图3-6所示,反射部设置在限定部与发光单元相接触的至少两侧;或者,限定部与发光单元相接触的所有侧面均设置有反射部;这里不做限定,可以根据实际情况选择。
上述反射部的材料不做限定,其反射率可以设置在80%以上(例如:80%-95%)。当发光单元的光射向反射部时,会被反射回发光单元中,这样可以改变射向反射部的光线的路径,延长该部分光线的光程,从而提高该部分光线的利用率。
在一个或者多个实施例中,参考图3和图4所示,发光单元1包括量子点发光层(未示出),该显示面板可以应用于QLED显示面板。该QLED显示面板的结构可以参考图3和图4所示,当然,该面板中,还可以包括黑矩 阵和彩膜层等结构。
在一个或者多个实施例中,参考图5和图6所示,多个发光单元被配置为发出同一初始波段光;显示面板还包括多个量子点色转换单元5,量子点色转换单元5设置在发光单元1的出光侧、且被配置为将入射的初始波段光转换成目标波段光。
上述初始波段光和目标波段光的具体波段不做限定。示例的,初始波段光的波段可以是450-480nm,该波段内的光为蓝光;目标波段光的波段可以是622-760nm,该波段内的光为红光;或者,目标波段光的波段还可以是500-560nm,该波段内的光为绿光。上述多个量子点色转换单元可以是将初始波段光转换成同一目标波段光;或者,多个量子点色转换单元还可以是将初始波段光转换成不同的目标波段光,示例的,多个量子点色转换单元分为两组,一组将初始波段光转换成一种目标波段光(例如:红光),另一组将初始波段光转换成另一种目标波段光(例如:绿光)。QD-OLED显示面板中一般选择红光波段和绿光波段作为目标波段光,蓝光波段作为初始波段光,多个量子点色转换单元分为红色转换单元和绿色转换单元,红色转换单元被配置为将蓝光波段转换成红光波段(即将蓝光转换成红光),绿色转换单元被配置为将蓝光波段转换成绿光波段(即将蓝光转换成绿光)。图5和图6中,左边的量子点色转换单元为红色转换单元、右边的量子点色转换单元为绿色转换单元为例进行绘示。
这里对于量子点色转换单元和散射结构的相对位置关系不做限定,示例的,散射结构可以仅设置在量子点色转换单元远离发光单元的一侧;或者,散射结构可以仅设置在量子点色转换单元靠近发光单元的一侧;或者,散射结构可以分别设置在量子点色转换单元远离发光单元的一侧和量子点色转换单元靠近发光单元的一侧。
该显示面板可以应用于OLED与QD相结合的面板中,将OLED与QD两种优势结合在一起;本申请通过设置散射结构,可以提高该类显示面板的出光率。
进一步可选的,参考图5和图6所示,显示面板还包括多个透射单元6,透射单元6设置在发光单元1的出光侧、且被配置为不改变入射的初始波段光的波段;其中,量子点色转换单元5和透射单元6分别与不同的发光单元对应设置。
上述透射单元对入射光可以是透射的,不发生波段转换。示例的,若初 始波段光为蓝光,则蓝光可以穿过该透射单元,不会转换成红光等其它波段的光,可以直接用于蓝色显示。该透射单元可以是光扩散单元,使得入射光在波长不发生改变的情况下发生散射,利于均匀显示。光扩散单元可以由具有光扩散能力的光扩散树脂或者透射树脂制备,从而使入射光线穿过它之后更加均匀。本申请中,透射是指允许光在改变角度但不发生波段转换的情况下透射。当然,该透射单元还可以对入射光颜色的深浅进行调制,示例的,若入射光为深蓝色,则经过透射单元的调制后,转变为浅蓝色,入射光与转变后的光的波段均属于蓝光波段。
下面提供一种量子点色转换单元、透射单元和散射结构的具体结构。
参考图5和图6所示,量子点色转换单元5和透射单元6分别设置在对应的发光单元1和散射结构(包括散射单元21)之间。
这样,发光单元发出的初始波段光,经量子点色转换单元或者透射单元转换后,射向散射结构。光线经过量子点色转换单元或者透射单元后,出光角度比较分散,光取出率较低;通过设置散射结构,对从量子点色转换单元或者透射单元射出的光线进行调制,使得光线尽可能地向中心汇集,从而提高出光率和正视角发光。
进一步可选的,参考图10所示,散射结构2包括叠层设置的多个散射单元21;沿发光单元的出光方向,多个散射单元21的基质22的折射率依次递增。
这样,多个散射单元的基质对于入射光线也能进行调制,可以进一步使得更多光线向中心汇集,从而进一步提高出光率和正视角发光。
下面提供另一种量子点色转换单元、透射单元和散射结构的具体结构。
参考图13和图14所示,量子点色转换单元5和透射单元6分别被配置为还用作对应的散射结构的基质;量子点色转换单元5和透射单元6中远离发光单元1的一侧分别设置散射粒子23。
那么,量子点色转换单元和对应的散射粒子集成在一起,透射单元和对应的散射粒子集成在一起,从而不用额外设置基质,有利于节省材料和成本;同时,散射粒子能够对从量子点色转换单元或者透射单元射出的光线进行调制,使得光线尽可能地向中心汇集,从而提高出光率和正视角发光。
进一步可选的,参考图14所示,为了进一步提高出光率,多个发光单元中,部分发光单元1中的任一个对应设置多个量子点色转换单元5,其余发光单元1中的任一个对应设置多个透射单元6。
参考图14所示,各量子点色转换单元5和各透射单元6远离发光单元1的一侧均设置散射粒子23。沿发光单元的出光方向,与同一发光单元对应设置的多个量子点色转换单元的折射率相同,与同一发光单元对应设置的多个透射单元的折射率相同。
上述从发光单元发出的初始波段光,经量子点色转换单元或者透射单元转换后,射向散射粒子;光线经过散射粒子的一次调制后,再次进入量子点色转换单元或者透射单元;然后,再次射向散射粒子,进行二次调制;如此反复,从而使得光线经过多次调制,最终大幅提升出光效率。需要说明的是,为了对量子点色转换单元和透射单元发出的光进行调制,散射粒子均设置在量子点色转换单元和透射单元远离发光单元的一侧,因此,该结构更适合应用于采用On-EL工艺形成的显示面板中。
参考图3-6所示,显示面板还包括彩膜层(包括彩膜单元15),彩膜层位于散射结构和基底之间,彩膜层包括多个彩膜单元15,彩膜单元15被配置为透射散射单元发出的目标波段光、且吸收非目标波段光。
上述彩膜单元可以是红色彩膜单元,红色彩膜单元能够透射红光,吸收其它波段光;或者,上述彩膜单元还可以是绿色彩膜单元,绿色彩膜单元能够透射绿光,吸收其它波段光;或者,上述彩膜单元还可以是蓝色彩膜单元,蓝色彩膜单元能够透射蓝光,吸收其它波段光。为了实现彩色显示,上述多个彩膜单元可以包括红绿蓝三种彩膜单元。
需要说明的是,若该显示面板应用于QD-OLED显示面板中,该显示面板还包括多个量子点色转换单元和多个透射单元,若多个量子点色转换单元分为红色转换单元和绿色转换单元,多个透射单元为蓝色转换单元,则红色转换单元与红色彩膜单元对应,绿色转换单元与绿色彩膜单元对应,蓝色转换单元与蓝色彩膜单元对应。
下面提供一种采用对盒工艺形成的显示面板,参考图6所示,该显示面板的制备工艺可以包括:在衬底11上制作发光单元1形成第一基板,在基底12上依次制作黑矩阵14、彩膜层(包括彩膜单元15)、散射结构(包括散射单元21)、量子点色转换单元5和透射单元6等膜层形成第二基板,然后将第一基板和第二基板对盒形成如图6所示显示面板。当然,参考图6所示,该显示面板包括衬底11,以及设置在衬底11上的反射电极10、薄膜晶体管9、发光单元1、限定部3、反射部4和封装层17,该显示面板还包括基底12,以及设置在基底12上的黑矩阵14、彩膜层(包括彩膜单元15)、 平坦膜13、隔垫物20、限定单元7、反射单元8;该显示面板还包括第一填充层19、第二填充层30和围堤31。其中,平坦膜还可以起到封装作用,该平坦膜可以通过超低温工艺(≤100℃)制备低应力、致密的无机薄膜,例如SiO x、SiN x、Al 2O 3薄膜等。该平坦膜的膜层厚度小于1μm,例如:小于0.5μm,且折射率范围1.7至2.0之间,例如:1.75至1.85之间。
下面提供一种采用On-EL工艺形成的显示面板,参考图5所示,该显示面板的制备工艺可以包括:在衬底11上依次制作发光单元1、量子点色转换单元5、散射结构(包括散射单元21)、黑矩阵14、彩膜层(包括彩膜单元15)和基底12(用作盖板)等膜层,从而形成如图5所示的显示面板。当然,参考图5所示,该显示面板还包括限定部3和反射部4,发光单元1设置在相邻限定部3形成的开口内;该显示面板还包括封装层17、反射式偏光片16、反射电极10、薄膜晶体管9、平坦膜13等;平坦膜还可以起到封装作用,该平坦膜可以通过超低温工艺(≤100℃)制备低应力、致密的无机薄膜,例如SiO x、SiN x、Al 2O 3薄膜等。该平坦膜102的膜层厚度小于1μm,例如:小于0.5μm,且折射率范围1.7至2.0之间,例如:1.75至1.85之间。
本申请的实施例又提供了一种显示装置,包括上述的显示面板。该显示装置可以是刚性的显示装置,也可以是柔性的显示装置(即可弯曲、可折叠),这里不做限定。同时,其类型可以是QLED显示面板,或者还可以是QD-OLED显示面板,以及包括这些显示面板的电视、数码相机、手机、平板电脑等任何具有显示功能的产品或者部件。该显示装置的出光率高、正视角发光强、显示效果好。
本申请的实施例还提供了一种如上述显示面板的制备方法,方法包括:
S01、形成多个发光单元。
S02、形成多个散射结构;其中,散射结构设置在发光单元的出光侧、且包括至少一个散射单元,散射单元包括基质和设置在基质一侧的多个散射粒子,散射粒子的粒径与散射粒子在衬底上的正投影与中心投影的距离满足正相关关系,中心投影为发光单元的中心在衬底上的正投影。
上述步骤S01和步骤S02的形成方法不做限定,具体可以根据发光单元和散射结构的具体结构确定。
下面说明散射粒子嵌设在基质上的散射单元的制备方法。
可选的,基质的一侧包括多个深度不同的开口,散射粒子设置在对应开口内。
S02、形成多个散射结构包括:
S021、形成基质膜。
该基质膜的材料可以是可蒸镀的透射薄膜材料,示例的,可以利用FMM(Fine Metal Mask,精细金属掩模板)将基质材料蒸镀到预设位置。
S022、采用激光干涉对基质膜的一侧表面进行烧蚀,形成具有多个深度不同且尺寸不同的开口的基质。
利用激光干涉烧蚀方法制备图案化的基质,具体的,可以利用高能量激光经过干涉系统形成干涉激光,根据预期图案和周期搭建激光干涉系统,干涉光源与基质表面作用,从而烧蚀出周期性跨尺度的微/纳米结构图案,该纳米结构为阵列化的多个凹陷结构(即形成多个开口);每一个凹陷结构对应后续沉积的一个纳米散射粒子。可以通过调节激光的能量和作用时间调节凹陷结构的直径和深度,从而形成多个深度不同且尺寸不同的开口。其中,干涉图案的特征尺寸在1-10μm可控,纳米散射粒子的特征尺寸在20-200nm可控。
S023、将散射粒子溅射至开口内。
利用磁控溅射制备图案化散射粒子层,具体的,利用步骤S022通过改变这些凹陷结构(即开口)的直径和深度来实现对不同尺寸的散射粒子的选择,不同尺寸的凹陷结构会对对应尺寸的散射粒子进行选择;二者若尺寸匹配,则散射粒子可以嵌入基质的开口中并固定在基质表面,从而形成图案化的散射粒子层。
通过多次重复S021-S023,可以形成叠层设置的多个散射单元。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本申请的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本申请的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技 术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (20)

  1. 一种显示面板,其中,包括:
    衬底;
    设置在所述衬底上阵列排布的多个发光单元;
    阵列排布的多个散射结构;所述散射结构设置在所述发光单元的出光侧、且包括至少一个散射单元,所述散射单元包括基质和设置在所述基质一侧的多个散射粒子,所述散射粒子的粒径与所述散射粒子在所述衬底上的正投影与中心投影的距离满足正相关关系,所述中心投影为所述发光单元的中心在所述衬底上的正投影。
  2. 根据权利要求1所述的显示面板,其中,所述散射粒子的粒径为D,所述散射粒子在所述衬底上的正投影与所述中心投影的距离为x,D与x满足:
    Figure PCTCN2021128137-appb-100001
    其中,f(x,D)为粒子分布密度函数。
  3. 根据权利要求1所述的显示面板,其中,所述散射单元中,多个所述散射粒子在所述衬底上的正投影以所述中心投影为中心呈同心圆分布。
  4. 根据权利要求3所述的显示面板,多个所述散射粒子在所述衬底上的正投影中,相邻所述同心圆之间的距离沿着从靠近所述中心投影到远离所述中心投影的方向依次递减。
  5. 根据权利要求3所述的显示面板,所述散射单元中,在所述衬底上的正投影位于同一圆环的多个所述散射粒子等间距分布。
  6. 根据权利要求1所述的显示面板,其中,所述基质的一侧包括多个深度不同且尺寸不同的开口,所述散射粒子设置在对应所述开口内。
  7. 根据权利要求1所述的显示面板,其中,所述散射单元中,多个所述散射粒子的折射率相同。
  8. 根据权利要求7所述的显示面板,其中,所述散射结构包括叠层设置的多个所述散射单元;
    沿所述发光单元的出光方向,多个所述散射单元的所述散射粒子的折射率依次递增。
  9. 根据权利要求1所述的显示面板,其中,所述散射结构包括叠层设置的多个所述散射单元;
    沿所述发光单元的出光方向,多个所述散射单元的所述基质的折射率依次递增。
  10. 根据权利要求1所述的显示面板,其中,所述显示面板还包括多个反射部和多个限定部,所述限定部设置在相邻所述发光单元之间;所述反射部设置在所述限定部与所述发光单元相接触的至少一侧。
  11. 根据权利要求1所述的显示面板,其中,所述发光单元包括量子点发光层。
  12. 根据权利要求1所述的显示面板,其中,多个所述发光单元被配置为发出同一初始波段光;
    所述显示面板还包括多个量子点色转换单元,所述量子点色转换单元设置在所述发光单元的出光侧、且被配置为将入射的所述初始波段光转换成目标波段光。
  13. 根据权利要求12所述的显示面板,其中,所述显示面板还包括多个透射单元,所述透射单元设置在所述发光单元的出光侧、且被配置为不改变入射的所述初始波段光的波段;
    其中,所述量子点色转换单元和所述透射单元分别与不同的所述发光单元对应设置。
  14. 根据权利要求13所述的显示面板,其中,所述量子点色转换单元和所述透射单元分别设置在对应的所述发光单元和所述散射结构之间。
  15. 根据权利要求14所述的显示面板,其中,所述散射结构包括叠层设置的多个所述散射单元;
    沿所述发光单元的出光方向,多个所述散射单元的所述基质的折射率依次递增。
  16. 根据权利要求13所述的显示面板,其中,所述量子点色转换单元和所述透射单元分别被配置为还用作对应的所述散射结构的所述基质;所述量子点色转换单元和所述透射单元中远离所述发光单元的一侧分别设置所述散射粒子。
  17. 根据权利要求16所述的显示面板,其中,多个所述发光单元中,部分所述发光单元中的任一个对应设置多个所述量子点色转换单元,其余所述发光单元中的任一个对应设置多个所述透射单元;
    各所述量子点色转换单元和各所述透射单元远离所述发光单元的一侧均设置所述散射粒子;
    沿所述发光单元的出光方向,与同一所述发光单元对应设置的多个所述量子点色转换单元的折射率相同,与同一所述发光单元对应设置的多个所述透射单元的折射率相同。
  18. 一种显示装置,其中,包括权利要求1-17任一项所述的显示面板。
  19. 一种如权利要求1-17任一项所述的显示面板的制备方法,其中,所述方法包括:
    形成多个发光单元;
    形成多个散射结构;其中,所述散射结构设置在所述发光单元的出光侧、且包括至少一个散射单元,所述散射单元包括基质和设置在所述基质一侧的多个散射粒子,所述散射粒子的粒径与所述散射粒子在所述衬底上的正投影与中心投影的距离满足正相关关系,所述中心投影为所述发光单元的中心在所述衬底上的正投影。
  20. 根据权利要求19所述的方法,其中,所述基质的一侧包括多个深度不同的开口,所述散射粒子设置在对应所述开口内;
    所述形成多个散射结构包括:
    形成基质膜;
    采用激光干涉对所述基质膜的一侧表面进行烧蚀,形成具有多个深度不同且尺寸不同的开口的所述基质;
    将所述散射粒子溅射至所述开口内。
PCT/CN2021/128137 2021-11-02 2021-11-02 显示面板及其制备方法、显示装置 WO2023077260A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180003226.5A CN116569671A (zh) 2021-11-02 2021-11-02 显示面板及其制备方法、显示装置
PCT/CN2021/128137 WO2023077260A1 (zh) 2021-11-02 2021-11-02 显示面板及其制备方法、显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/128137 WO2023077260A1 (zh) 2021-11-02 2021-11-02 显示面板及其制备方法、显示装置

Publications (1)

Publication Number Publication Date
WO2023077260A1 true WO2023077260A1 (zh) 2023-05-11

Family

ID=86240429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128137 WO2023077260A1 (zh) 2021-11-02 2021-11-02 显示面板及其制备方法、显示装置

Country Status (2)

Country Link
CN (1) CN116569671A (zh)
WO (1) WO2023077260A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114361359B (zh) * 2021-12-29 2023-10-27 武汉天马微电子有限公司 显示面板及显示装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140183462A1 (en) * 2013-01-02 2014-07-03 Samsung Display Co., Ltd. Organic light emitting display device and manufacturing method thereof
US20150077966A1 (en) * 2012-04-13 2015-03-19 Sharp Kabushiki Kaisha Light-scattering body, light-scattering body film, light-scattering body substrate, light-scattering body device, light-emitting device, display device, and illumination device
CN105700051A (zh) * 2016-01-30 2016-06-22 贵阳海信电子有限公司 应用于大屏lcm的反射片、背光模组及大屏lcm
JP2016162578A (ja) * 2015-03-02 2016-09-05 コニカミノルタ株式会社 発光装置
CN109192758A (zh) * 2018-08-27 2019-01-11 上海天马微电子有限公司 显示面板和显示装置
CN110429161A (zh) * 2018-08-07 2019-11-08 广东聚华印刷显示技术有限公司 光学增透结构及底发射型电致发光器件和制备方法
CN111029480A (zh) * 2019-12-11 2020-04-17 京东方科技集团股份有限公司 一种底发射显示基板、制作方法和显示装置
CN112289906A (zh) * 2020-10-22 2021-01-29 深圳市华星光电半导体显示技术有限公司 显示面板及其制作方法、显示装置
CN113241364A (zh) * 2021-06-16 2021-08-10 京东方科技集团股份有限公司 一种光学结构及显示组件

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150077966A1 (en) * 2012-04-13 2015-03-19 Sharp Kabushiki Kaisha Light-scattering body, light-scattering body film, light-scattering body substrate, light-scattering body device, light-emitting device, display device, and illumination device
US20140183462A1 (en) * 2013-01-02 2014-07-03 Samsung Display Co., Ltd. Organic light emitting display device and manufacturing method thereof
JP2016162578A (ja) * 2015-03-02 2016-09-05 コニカミノルタ株式会社 発光装置
CN105700051A (zh) * 2016-01-30 2016-06-22 贵阳海信电子有限公司 应用于大屏lcm的反射片、背光模组及大屏lcm
CN110429161A (zh) * 2018-08-07 2019-11-08 广东聚华印刷显示技术有限公司 光学增透结构及底发射型电致发光器件和制备方法
CN109192758A (zh) * 2018-08-27 2019-01-11 上海天马微电子有限公司 显示面板和显示装置
CN111029480A (zh) * 2019-12-11 2020-04-17 京东方科技集团股份有限公司 一种底发射显示基板、制作方法和显示装置
CN112289906A (zh) * 2020-10-22 2021-01-29 深圳市华星光电半导体显示技术有限公司 显示面板及其制作方法、显示装置
CN113241364A (zh) * 2021-06-16 2021-08-10 京东方科技集团股份有限公司 一种光学结构及显示组件

Also Published As

Publication number Publication date
CN116569671A (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
US11069753B2 (en) Display apparatus and method of manufacturing the same
US7535171B2 (en) System and method for total light extraction from flat-panel light-emitting devices
KR101289844B1 (ko) 유기 발광 소자
US10756304B2 (en) Organic light-emitting display panel and display device thereof
US20150132876A1 (en) Method for fabricating organic electroluminescent devices
KR20130084848A (ko) 유기 발광 소자 및 유기 발광 소자 제조 방법
US11980052B2 (en) Metasurface, light-emitting device including the metasurface, display device including the light-emitting device, and method of fabricating the metasurface
US10763452B2 (en) Organic light-emitting diode display device, manufacturing method therefor, and display apparatus
CN204271086U (zh) 一种含光取出结构的显示屏体
WO2021082099A1 (zh) 量子点彩膜基板、制作方法及显示面板
WO2023077260A1 (zh) 显示面板及其制备方法、显示装置
CN112310177A (zh) 显示面板及其制备方法
CN110707146B (zh) 盖板、有机发光显示面板、显示装置
WO2020258755A1 (zh) 色彩转化组件、显示面板及色彩转化组件的制造方法
WO2021000517A1 (zh) 色彩转换组件及显示装置
US20240047626A1 (en) Color film substrate, method for preparing color film substrate, and display panel
KR101268543B1 (ko) 유기 발광 소자
WO2022094973A1 (zh) 显示面板及显示装置
KR101268534B1 (ko) 유기 발광 소자 및 유기 발광 소자 제조 방법
US20240224736A1 (en) Display panel and producing method thereof, and display device
WO2022151628A1 (zh) Oled显示面板
WO2022236841A1 (zh) 滤色器结构及其制备方法、显示面板
WO2023159659A1 (zh) 显示面板及其制备方法
CN117156922A (zh) 一种显示模组和显示面板
Bae et al. The optical characteristics of organic light-emitting diodes with various microlens arrays

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202180003226.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 17921524

Country of ref document: US