WO2023074686A1 - 冷媒圧縮式冷凍サイクル装置用作動媒体および該作動媒体を用いた冷凍サイクル装置 - Google Patents

冷媒圧縮式冷凍サイクル装置用作動媒体および該作動媒体を用いた冷凍サイクル装置 Download PDF

Info

Publication number
WO2023074686A1
WO2023074686A1 PCT/JP2022/039731 JP2022039731W WO2023074686A1 WO 2023074686 A1 WO2023074686 A1 WO 2023074686A1 JP 2022039731 W JP2022039731 W JP 2022039731W WO 2023074686 A1 WO2023074686 A1 WO 2023074686A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
refrigerating machine
machine oil
less
oil
Prior art date
Application number
PCT/JP2022/039731
Other languages
English (en)
French (fr)
Inventor
清重 横井
親哉 河村
Original Assignee
友光商事株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友光商事株式会社 filed Critical 友光商事株式会社
Priority to JP2023556461A priority Critical patent/JPWO2023074686A1/ja
Priority to KR1020247015289A priority patent/KR20240076830A/ko
Publication of WO2023074686A1 publication Critical patent/WO2023074686A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M101/00Lubricating compositions characterised by the base-material being a mineral or fatty oil
    • C10M101/02Petroleum fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/20Lubricating compositions characterised by the base-material being a macromolecular compound containing oxygen
    • C10M107/22Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M107/24Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an alcohol, aldehyde, ketonic, ether, ketal or acetal radical
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/20Lubricating compositions characterised by the base-material being a macromolecular compound containing oxygen
    • C10M107/30Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M107/32Condensation polymers of aldehydes or ketones; Polyesters; Polyethers
    • C10M107/34Polyoxyalkylenes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M111/00Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential
    • C10M111/04Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential at least one of them being a macromolecular organic compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/68Esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/86Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of 30 or more atoms
    • C10M129/95Esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/32Esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M135/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
    • C10M135/20Thiols; Sulfides; Polysulfides
    • C10M135/28Thiols; Sulfides; Polysulfides containing sulfur atoms bound to a carbon atom of a six-membered aromatic ring
    • C10M135/30Thiols; Sulfides; Polysulfides containing sulfur atoms bound to a carbon atom of a six-membered aromatic ring containing hydroxy groups; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/09Characteristics associated with water
    • C10N2020/097Refrigerants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/30Refrigerators lubricants or compressors lubricants

Definitions

  • the present invention relates to a working medium for a refrigerant compression refrigeration cycle device and a refrigeration cycle device using the working medium. Specifically, the present invention relates to a working medium containing a refrigerant and refrigerating machine oil, and a refrigeration cycle apparatus using the same, which is used in a refrigerant compression refrigeration cycle apparatus.
  • Hydrofluorocarbons which are hydrocarbons containing fluorine atoms, are used as refrigerants in refrigeration cycle devices that use compressed refrigerants, such as air conditioners, electric refrigerators, industrial refrigerators, refrigerators, and freezer warehouses. .
  • compressed refrigerants such as air conditioners, electric refrigerators, industrial refrigerators, refrigerators, and freezer warehouses.
  • HFCs have a long life in the atmosphere and have a large greenhouse effect, they are not satisfactory refrigerants for preventing global warming, and their use is being restricted.
  • hydrocarbon refrigerants hydrocarbons containing no halogen atoms
  • HFCs hydrocarbon refrigerants
  • isobutane (R600a) which is a hydrocarbon containing no halogen atoms
  • propane (R290) is being put into practical use for air conditioners.
  • Mineral oils, alkylbenzenes, polyol esters, polyethers, and the like are known as refrigerating machine oils used as working medium components together with hydrocarbon refrigerants when these hydrocarbon refrigerants are used. (For example, Patent Documents 1 to 5).
  • the mineral oil, alkylbenzene or polyol ester-containing refrigerating machine oil proposed in Patent Documents 1 to 3 above has good compatibility with hydrocarbon refrigerants such as propane and isobutane, and the amount of refrigerant dissolved in the refrigerating machine oil increases. Therefore, in order for the refrigerating cycle device to exhibit sufficient performance, it is necessary to fill the refrigerating cycle device with a large amount of hydrocarbon refrigerant. However, since hydrocarbons such as propane and isobutane are highly flammable, it is desired from a safety point of view that the amount of hydrocarbon refrigerant is as small as possible within the range in which the operating efficiency is sufficiently exhibited.
  • a refrigerating machine oil with a lower viscosity can be selected, so that the efficiency of the refrigerating cycle device can be improved, leading to energy saving.
  • the refrigerating machine oil containing the polyol ester and polyalkylene glycol proposed in Patent Document 4 has high hygroscopicity because both the polyol ester and the polyalkylene glycol have high polarity. In this case, there is concern that the water content in the refrigerating machine oil will increase, the hydrolysis of the polyol ester will proceed, and the refrigerating machine oil will deteriorate. Refrigerating machine oil is used for a long period of time in a refrigerating cycle device in coexistence with a refrigerant, and is exposed to low and high temperatures, so high stability is required.
  • Patent Document 5 discloses a refrigerating machine oil containing a polyether compound and mineral oil.
  • the polyether compound is polyalkylene glycol or polyvinyl ether
  • the mineral oil has a specific sulfur content in order to improve lubricity.
  • the refrigerating machine oil disclosed in Patent Document 5 includes a very wide range of refrigerating machine oils.
  • the refrigerator oil disclosed in Patent Document 5 uses an ammonia refrigerant as a refrigerant.
  • the refrigerating machine oil disclosed in Patent Document 5 is a large open-type refrigerating machine that uses an ammonia refrigerant, that is, a non-circulating type in which the refrigerant and refrigerating machine oil are not mixed and circulated in the refrigerating cycle. Refrigerating machine oil suitable for the system.
  • a compact closed-type circulating system in which a motor is built into the compressor and a mixture of hydrocarbon refrigerant and refrigerating machine oil is mixed and circulated through the refrigeration cycle.
  • the refrigerating machine oil is required to have high electrical insulation. Since the ammonia refrigerant used in Patent Document 5 has a large polarity and current leaks, it cannot be used in a circulation system.
  • the medium is required to be a uniform liquid even at a low temperature because the medium is cooled to a low temperature (eg, ⁇ 25° C.).
  • a hydrocarbon refrigerant that is liquid even at low temperatures is preferably used as the refrigerant.
  • the refrigerating machine oil is required to uniformly dissolve with the hydrocarbon refrigerant even at low temperatures.
  • polyether compounds especially polyalkylene glycol
  • mineral oil is non-polar.
  • the polyether compound is difficult to dissolve in mineral oil and hydrocarbon refrigerants at low temperatures (eg, -25° C.) and separates or precipitates at low temperatures.
  • the ammonia refrigerant and refrigerating machine oil disclosed in Patent Document 5 are not suitable for circulation systems.
  • An object of the present invention is to provide a working medium for a refrigerant compression refrigeration cycle device containing a hydrocarbon refrigerant and refrigerating machine oil, wherein the refrigerating machine oil has high stability, appropriate solubility with the refrigerant, high lubricity, and high electrical insulation. It is an object of the present invention to provide a working medium for a refrigerant compression refrigeration cycle device that achieves at least one of the following properties.
  • a refrigerant containing a hydrocarbon containing no halogen atoms having 2 to 4 carbon atoms and a refrigerating machine oil containing a polyalkylene glycol and a mineral oil are included, and the polyalkylene glycol is the following general Formula (1):
  • R 1 is a linear or branched alkyl group having 1 to 25 carbon atoms
  • OR 2 is the same or different and represents an oxyalkylene group having 2 to 4 carbon atoms
  • n is It represents the number of added moles of the oxyalkylene group represented by OR2 .
  • the kinematic viscosity at 40° C. is 2 mm 2 /s or more and 60 mm 2 /s or less
  • the mineral oil has an aniline point of 55° C. or more and 105° C. or less, a pour point of ⁇ 15° C. or less
  • the polyalkylene glycol is contained in an amount of 10% by mass or more and 60% by mass or less with respect to the total mass of the refrigerator oil
  • the mineral oil is A working medium for a refrigerant compression refrigeration cycle device, which is contained in an amount of 40% by mass or more and 90% by mass or less with respect to the total mass of the refrigerating machine oil.
  • the poly Alkylene glycol has the following general formula (1):
  • R 1 is a linear or branched alkyl group having 1 to 25 carbon atoms
  • OR 2 is the same or different and represents an oxyalkylene group having 2 to 4 carbon atoms
  • n is It represents the number of added moles of the oxyalkylene group represented by OR2 .
  • the kinematic viscosity at 40° C. is 2 mm 2 /s or more and 60 mm 2 /s or less
  • the mineral oil has an aniline point of 55° C. or more and 105° C. or less, a pour point of ⁇ 15° C. or less
  • the polyalkylene glycol is contained in an amount of 10% by mass or more and 60% by mass or less with respect to the total mass of the refrigerator oil
  • the mineral oil is A working medium for a refrigerant compression refrigeration cycle device, which is contained in an amount of 40% by mass or more and 90% by mass or less with respect to the total mass of the refrigerating machine oil.
  • the refrigerating machine oil has high stability, appropriate solubility with the refrigerant, high lubricity, and high
  • a working medium for a refrigerant compression refrigeration cycle device is provided that achieves at least one of electrical insulation.
  • a working medium for a refrigerant compression refrigeration cycle device comprises a refrigerant containing a hydrocarbon containing no halogen atoms having 2 to 4 carbon atoms, a specific polyalkylene glycol and Refrigerant oil, including certain mineral oils.
  • the working medium according to the present invention preferably has a kinematic viscosity at 40° C. of 1 mm 2 /s or more and 32 mm 2 /s or less, more preferably 3 mm 2 /s or more and 30 mm 2 /s or less. 2 /s or more and 25 mm 2 /s or less is more preferable. In this specification, kinematic viscosity is measured by the method described in Examples.
  • the refrigerant contained in the working medium of the present invention contains hydrocarbons containing no halogen atoms and having 2 to 4 carbon atoms (hereinafter also simply referred to as “hydrocarbons”).
  • hydrocarbons containing no halogen atoms having 2 to 4 carbon atoms include saturated hydrocarbons such as ethane (R170), propane (R290), normal butane (R600) and isobutane (R600a), and unsaturated hydrocarbons such as ethylene and propene. can be mentioned.
  • At least one selected from saturated hydrocarbons that is, at least one selected from the group consisting of ethane, propane, normal butane and isobutane.
  • a combination of propane, ethane, or a mixed refrigerant thereof and a refrigerating machine oil containing a specific polyalkylene glycol and a specific mineral oil is more preferable because the effect of the present invention is high.
  • a combination of a refrigerant containing propane and a refrigerating machine oil containing a specific polyalkylene glycol and a specific mineral oil as the working medium is more effective and more preferable.
  • the hydrocarbon one type of hydrocarbon may be used alone, or two or more types of hydrocarbon may be used in combination.
  • the hydrocarbon comprises propane (R290).
  • the refrigerant is, in addition to propane, saturated hydrocarbons such as ethane, n-butane (normal butane) (R600) and isobutane (R600a); unsaturated hydrocarbons such as ethylene and propene; may further contain hydrocarbons.
  • the propane-containing hydrocarbon further contains other hydrocarbons than propane
  • the main component of the hydrocarbon is preferably propane.
  • a "main component” means a component exceeding 50 mass % (upper limit 100 mass %) with respect to the total mass of hydrocarbons.
  • the content of the hydrocarbons other than propane is preferably 1% by mass or more and less than 50% by mass with respect to the total mass of the hydrocarbons. It is preferably 2% by mass or more and 40% by mass or less, more preferably 3% by mass or more and 35% by mass or less, particularly preferably 5% by mass or more and 25% by mass or less, and most preferably 10% by mass or more and 20% by mass. % or less.
  • the hydrocarbon consists of propane (R290) (100 wt% propane).
  • the working medium of the present invention may further contain other refrigerants (hereinafter referred to as "other refrigerants”) such as saturated hydrofluorocarbons, unsaturated hydrofluorocarbons, dimethyl ether, and carbon dioxide.
  • other refrigerants such as saturated hydrofluorocarbons, unsaturated hydrofluorocarbons, dimethyl ether, and carbon dioxide.
  • the other refrigerant is preferably 1 to 100 parts by mass, more preferably 5 to 50 parts by mass, and even more preferably 10 to 30 parts by mass with respect to 100 parts by mass of the hydrocarbon. .
  • the refrigerant preferably contains propane in an amount of more than 50% by mass, more preferably 60% by mass or more, still more preferably 75% by mass or more, and particularly preferably 80% by mass, based on the total mass of the refrigerant. It contains at least 90% by mass, most preferably at least 90% by mass.
  • the refrigerant may consist of propane only, so the upper limit of the content of propane in the refrigerant is 100% by mass.
  • the refrigerant consists of propane (R290) (100 wt% propane). That is, the refrigerant is propane (R290).
  • the refrigerator oil of the present invention contains a specific polyalkylene glycol and a specific mineral oil.
  • the refrigerating machine oil is based on a mixed oil containing a specific polyalkylene glycol and a specific mineral oil.
  • the base oil of the refrigerating machine oil refers to a component containing more than 50% by mass (upper limit 100% by mass) relative to the total mass of the refrigerating machine oil, preferably a component containing 80% by mass or more, more preferably 90% by mass. It is a component contained in mass % or more.
  • Polyalkylene glycol can be used alone as a refrigerating machine oil, but it is highly hygroscopic due to its polarity.
  • polyalkylene glycol when polyalkylene glycol is used alone as a refrigerating machine oil, the water content in the refrigerating machine oil increases, and the water may cause troubles in the refrigerating cycle apparatus.
  • polyalkylene glycol since polyalkylene glycol has low electrical insulation, that is, low volume resistivity, current leakage is likely to occur in air conditioners, electric refrigerators, industrial refrigerators, etc. that use hermetic compressors.
  • polyalkylene glycol has the advantage of being less soluble in refrigerants containing hydrocarbons due to its polarity.
  • Mineral oil has low hygroscopicity and high electrical insulation, but since it is a component composed of the same hydrocarbons as the hydrocarbons contained in the refrigerant, it dissolves in a large amount in refrigerants containing hydrocarbons. Therefore, when mineral oil is used alone as a refrigerating machine oil, there is a disadvantage that the viscosity of the refrigerating machine oil decreases in the refrigerating cycle device, resulting in a decrease in lubricity, ie wear resistance.
  • the specific polyalkylene glycol of the present invention is represented by the following general formula (1).
  • R 1 is a linear or branched alkyl group having 1 to 25 carbon atoms
  • OR 2 represents one or more oxyalkylene groups having 2 to 4 carbon atoms
  • n is OR 2 ; It represents the number of added moles of the represented oxyalkylene group.
  • R 1 represents a linear or branched alkyl group having 1 to 25 carbon atoms.
  • the linear or branched alkyl group is preferably a linear or branched alkyl group having 1 to 20 carbon atoms, more preferably a linear or branched alkyl group having 1 to 10 carbon atoms, and 1 to 10 carbon atoms.
  • a straight or branched alkyl group of 8 is more preferred, a straight or branched alkyl group of 1 to 5 carbon atoms is particularly preferred, and a straight or branched alkyl group of 3 to 5 carbon atoms is most preferred. Used.
  • Linear or branched alkyl groups having 1 to 25 carbon atoms include, for example, methyl group, ethyl group, linear or branched propyl group (n-propyl group, isopropyl group), linear or branched Butyl group (n-butyl group, isobutyl group, sec-butyl group, tert-butyl group), linear or branched pentyl group (n-pentyl group, isopentyl group, sec-pentyl group, 3-pentyl group , tert-pentyl group, neopentyl group) and the like.
  • R 1 is preferably an isopropyl group, an n-butyl group, or a tert-butyl group in terms of the balance between the solubility in a refrigerant containing a hydrocarbon and the properties as a refrigerating machine oil, and a linear or branched chain having 4 carbon atoms.
  • a butyl group (n-butyl group, tert-butyl group) is more preferred.
  • R 1 in the polyalkylene glycol is a short-chain alkyl group, the low-temperature fluidity is excellent.
  • OR 2 are the same or different and represent an oxyalkylene group having 2 to 4 carbon atoms. That is, R 2 represents an alkylene group having 2 to 4 carbon atoms.
  • OR 2 may be one type of oxyalkylene group, or may be composed of two or more types of oxyalkylene groups. Specific examples of such oxyalkylene groups include an oxyethylene group (-OCH 2 CH 2 -), an oxypropylene group (-OCH(CH 3 )CH 2 -), an oxytrimethylene group (-OCH 2 CH 2 CH 2 —), an oxybutylene group (—OCH 2 CH 2 CH 2 CH 2 —), and the like.
  • the oxyalkylene groups (OR 2 ) in the repeating unit represented by (OR 2 ) n may be the same oxyalkylene group or different oxyalkylene groups.
  • the upper limit of the ratio of oxypropylene groups to the entire OR 2 in the polyalkylene glycol is not particularly limited, but it is most preferable that all OR 2 in the polyalkylene glycol is composed of oxypropylene, so the upper limit is 100 mol%. be.
  • OR 2 when OR 2 is composed of oxyethylene groups and oxypropylene groups, the proportion of oxypropylene groups is 70 mol% with respect to the entirety of OR 2 (that is, the total number of added moles of oxyethylene groups and oxypropylene groups). It is preferably 80 mol % or more, more preferably 80 mol % or more. In this case, the ratio of oxyethylene groups (R 2 has 2 carbon atoms) to the entire OR 2 is 30 mol % or less in terms of the characteristics as a refrigerating machine oil, that is, in order to reduce the hygroscopicity of the refrigerating machine oil. is preferred, and 20 mol % or less is more preferred.
  • R 1 in general formula (1) is a C4 alkyl group and OR 2 is an oxypropylene group.
  • n represents the number of added moles (degree of polymerization) of the oxyalkylene group represented by OR 2 .
  • the number average molecular weight of the polyalkylene glycol represented by the general formula (1) is preferably 100 to 1500, more preferably 200 to 1200, even more preferably 300 to 1000, and 350 to 850. is particularly preferred, and 350-700 is most preferred.
  • n is preferably a number such that the number average molecular weight of the polyalkylene glycol satisfies the above conditions.
  • the number average molecular weight of the polyalkylene glycol is within the above range, the compatibility with mineral oil is also good, and the lubricity of the refrigerating machine oil can be sufficiently exhibited in the coexistence with the hydrocarbon-containing refrigerant.
  • the number average molecular weight is measured by GPC (gel permeation chromatography) using polystyrene as a standard substance.
  • the added mole number n in formula (1) can be calculated based on the number average molecular weight obtained by measurement.
  • the polyalkylene glycol has a kinematic viscosity of 2 mm 2 /s or more and 60 mm 2 /s or less at 40°C.
  • the kinematic viscosity of polyalkylene glycol at 40° C. is less than 2 mm 2 /s, the oil film formed by polyalkylene glycol becomes thin. In other words, metal-to-metal contact is likely to occur in the sliding material (sliding portion) of the compressor, which is the heart of the refrigerating cycle device, and the lubricity of the refrigerating machine oil becomes insufficient when coexisting with the refrigerant. If the kinematic viscosity of the polyalkylene glycol at 40° C.
  • the kinematic viscosity of the polyalkylene glycol at 40° C. is preferably 5 mm 2 /s or more and 55 mm 2 /s or less, more preferably 8 mm 2 /s or more and 50 mm 2 /s or less, still more preferably 9 mm 2 /s or more. It is 45 mm 2 /s or less, particularly preferably 10 mm 2 /s or more and 40 mm 2 /s or less, and most preferably 10 mm 2 /s or more and 35 mm 2 /s or less.
  • the kinematic viscosity at 40°C of the polyalkylene glycol is within the above range, it is possible to exhibit good lubricity as a refrigerating machine oil.
  • the kinematic viscosity of the polyalkylene glycol at 100° C. is preferably 0.1 mm 2 /s or more, more preferably 0.25 mm 2 /s or more, and more preferably 0.3 mm 2 /s. It is particularly preferably 0.4 mm 2 /s or more, particularly preferably 0.4 mm 2 /s or more, and most preferably 0.5 mm 2 /s or more.
  • the kinematic viscosity of the polyalkylene glycol at 100° C. is preferably 15 mm 2 /s or less, more preferably 10 mm 2 /s or less, particularly preferably 5 mm 2 /s or less, and 3 mm 2 /s.
  • the kinematic viscosity of the polyalkylene glycol at 100° C. is preferably 0.1 mm 2 /s or more and 15 mm 2 /s or less, more preferably 0.25 mm 2 /s or more and 10 mm 2 /s or less, It is particularly preferably 0.3 mm 2 /s or more and 5 mm 2 /s or less, particularly more preferably 0.4 mm 2 /s or more and less than 3 mm 2 /s, and 0.5 mm 2 /s or more and 2.9 mm 2 /s or less is most preferred.
  • the kinematic viscosity of the polyalkylene glycol at 100° C. is 0.1 mm 2 /s or more and 10 mm 2 /s or less, 0.1 mm 2 /s or more and 8 mm 2 /s or less, 0.1 mm 2 /s or more7 0.5 mm 2 /s or less, 0.1 mm 2 /s or more and 7 mm 2 /s or less, or 0.1 mm 2 /s or more and 6 mm 2 /s or less.
  • the kinematic viscosity of the polyalkylene glycol at 100° C. is 0.1 mm 2 /s or more, the oil film formed by the polyalkylene glycol is formed with a sufficient thickness, and the lubricating properties of the refrigerating machine oil can be sufficiently exhibited.
  • the kinematic viscosity of the polyalkylene glycol at 100° C. is 15 mm 2 /s or less, the viscosity of the refrigerating machine oil is low, so the efficiency of the refrigerating cycle device can be further improved.
  • the polyalkylene glycol has a kinematic viscosity of 2 mm 2 /s or more and 60 mm 2 /s or less at 40° C. and a kinematic viscosity of 0.1 mm 2 /s or more and 15 mm 2 /s or less at 100° C. is preferred.
  • the polyalkylene glycol more preferably has a kinematic viscosity of 2 mm 2 /s or more and 60 mm 2 /s or less at 40° C.
  • the kinematic viscosity at 40°C is 2 mm 2 /s or more and 60 mm 2 /s or less
  • the kinematic viscosity at 100°C is 0.5 mm 2 /s or more and 2.9 mm 2 /s or less.
  • the polyalkylene glycol has a kinematic viscosity of 5 mm 2 /s or more and 55 mm 2 /s or less at 40° C. and a kinematic viscosity of 0.1 mm 2 /s or more and 10 mm 2 /s at 100° C. The following are preferred.
  • the polyalkylene glycol more preferably has a kinematic viscosity at 40°C of 8 mm 2 /s or more and 50 mm 2 /s or less, and a kinematic viscosity at 100°C of 0.4 mm 2 /s or more and 8 mm 2 /s or less, and further Preferably, the kinematic viscosity at 40°C is 9 mm 2 /s or more and 45 mm 2 /s or less, and the kinematic viscosity at 100°C is 0.5 mm 2 /s or more and 7.5 mm 2 /s or less.
  • the polyalkylene glycol preferably has a pour point of -25°C or lower, more preferably -30°C or lower, and even more preferably -40°C or lower.
  • the pour point of the polyalkylene glycol is ⁇ 25° C. or lower, the fluidity of the refrigerating machine oil containing the polyalkylene glycol and the mineral oil is high, and it can be suitably used as the refrigerating machine oil.
  • the polyalkylene glycol according to the present invention can be synthesized using a conventionally known method (“Alkylene Oxide Polymer”, Manta Shibata et al., Kaibundo Publishing, November 20, 1990). For example, it can be obtained by addition polymerization of one or more predetermined alkylene oxides to an alcohol (R 1 OH; R 1 has the same definition as R 1 in the general formula (1)).
  • R 1 OH an alcohol
  • R 1 has the same definition as R 1 in the general formula (1)
  • the resulting polyalkylene glycol may be either a random copolymer or a block copolymer.
  • Polyalkylene glycols represented by the general formula (1) include, for example, polypropylene glycol monomethyl ether, polypropylene glycol monoethyl ether, polypropylene glycol monopropyl ether (polypropylene glycol mono-n-propyl ether, polypropylene glycol monoisopropyl ether), polypropylene Glycol monobutyl ether (polypropylene glycol mono-n-butyl ether), polypropylene glycol mono-tert-butyl ether, polypropylene glycol monohexyl ether (polypropylene glycol mono-n-hexyl ether), polypropylene glycol mono-octyl ether (polypropylene glycol mono-n-octyl ether); polyethylene Monomethyl ether of glycol-polypropylene glycol copolymer (polyethylene glycol polypropylene glycol monomethyl ether), monoethyl ether of polyethylene glycol-
  • polypropylene glycols such as polypropylene glycol monomethyl ether, polypropylene glycol monoethyl ether, polypropylene glycol monopropyl ether, polypropylene glycol monobutyl ether, polypropylene glycol monohexyl ether, and polypropylene glycol monooctyl ether, which have high electrical insulation.
  • Monoalkyl ethers are preferred, and they have higher electrical insulation and lower hygroscopicity.
  • Polypropylene glycol mono-n-propyl ether, polypropylene glycol mono-n-butyl ether, polypropylene glycol mono-tert-butyl ether, polypropylene glycol monohexyl ether, polypropylene glycol mono-octyl ether. etc. are more preferable.
  • one end of the polyalkylene glycol of the present invention is a hydroxyl group with high polarity, it has a low affinity with non-polar hydrocarbons contained in the refrigerant, and it is thought that the amount dissolved in the refrigerant can be reduced. . Therefore, the filling amount of refrigerant in the working medium can be reduced.
  • the hydroxyl group has a large adsorption force to metal materials, polyalkylene glycol easily forms an oil film on the sliding material of the compressor, which is the heart of the refrigeration cycle device, and has good lubricity (wear resistance). show.
  • the mineral oil used in the present invention has an aniline point of 55°C or higher and 105°C or lower, a pour point of -15°C or lower, and a kinematic viscosity at 40°C of 2 mm 2 /s or higher and 100 mm 2 /s or lower.
  • mineral oil is soluble with polyalkylene glycol
  • the aniline point of mineral oil is a measure of solubility with polyalkylene glycol.
  • the aniline point of the mineral oil is less than 55°C, the viscosity characteristics such as the viscosity index as a refrigerating machine oil become insufficient, and good performance as a refrigerating machine oil (for example, formation of a sufficiently thick oil film at high temperatures) cannot be exhibited.
  • the aniline point of the mineral oil exceeds 105°C, the mineral oil and the polyalkylene glycol become difficult to dissolve, tend to separate into two layers, and cannot maintain stability as a refrigerating machine oil.
  • the aniline point of the mineral oil is preferably 65°C or higher and 100°C or lower, more preferably 75°C or higher and 95°C or lower. When the aniline point of the mineral oil is within the above range, the compatibility between the mineral oil and the polyalkylene glycol is good, and the advantages of each component as a refrigerating machine oil can be further exhibited.
  • the mineral oil used in the present invention has a pour point of -15°C or lower.
  • the pour point of the mineral oil exceeds ⁇ 15° C., the fluidity of the refrigerating machine oil containing polyalkylene glycol and mineral oil is low, resulting in good performance as a refrigerating machine oil (for example, formation of a sufficiently thick oil film at high temperatures). I can't do it.
  • the pour point of the mineral oil is preferably ⁇ 25° C. or lower, more preferably ⁇ 30° C. or lower, and particularly preferably ⁇ 35° C. or lower.
  • the kinematic viscosity of mineral oil at 40° C. is 2 mm 2 /s or more and 100 mm 2 /s or less. If the kinematic viscosity of mineral oil at 40° C. is less than 2 mm 2 /s, the oil film formed on the sliding material of the compressor becomes thin, and the properties associated with the viscosity become insufficient, resulting in good lubrication and sealing properties as a refrigerating machine oil. I can't do it. If the kinematic viscosity of the mineral oil at 40° C. exceeds 100 mm 2 /s, the mineral oil will not dissolve in the polyalkylene glycol and will separate into two layers, failing to maintain stability as a refrigerating machine oil.
  • the kinematic viscosity of mineral oil at 40° C. is preferably 3 mm 2 /s or more and 95 mm 2 /s or less, more preferably 3 mm 2 /s or more and 90 mm 2 /s or less, still more preferably 5 mm 2 /s or more and 80 mm 2 /s or less.
  • the kinematic viscosity of the mineral oil at 40° C. is preferably 3 mm 2 /s or more and 65 mm 2 /s or less, more preferably 3 mm 2 /s or more and 50 mm 2 /s or less, still more preferably 5 mm 2 /s or more and 45 mm 2 /s or less.
  • the mineral oil has a kinematic viscosity at 40° C. greater than 8 mm 2 /s and less than or equal to 70 mm 2 /s.
  • the refrigerator oil must be a uniform liquid at -25°C.
  • the refrigerating machine oil of the present invention is a uniform liquid at -25°C by containing a specific polyalkylene glycol and a specific mineral oil in a specific mass ratio.
  • the kinematic viscosity of the mineral oil at 100° C. is preferably 0.1 mm 2 /s or more, more preferably 0.25 mm 2 /s or more, and 0.3 mm 2 /s or more. is particularly preferred, and 0.5 mm 2 /s or more is most preferred.
  • the kinematic viscosity of the mineral oil at 100° C. is preferably 30 mm 2 /s or less, more preferably 15 mm 2 /s or less, particularly preferably 10 mm 2 /s or less, and 8 mm 2 /s or less. Most preferably.
  • the mineral oil has a kinematic viscosity of 0.1 mm 2 /s or more at 100° C., it is possible to impart sufficient properties associated with the viscosity and exhibit good lubricity as a refrigerating machine oil.
  • the kinematic viscosity of mineral oil at 100° C. is 30 mm 2 /s or less, the viscosity of the refrigerating machine oil is low, so the efficiency of the refrigerating cycle device can be further improved.
  • the mineral oil has a kinematic viscosity at 100° C.
  • Mineral oils are obtained, for example, by atmospheric distillation of paraffin-based crude oil (paraffin-based mineral oil), intermediate-based crude oil or naphthenic-based crude oil (naphthenic mineral oil), or by vacuum distillation of residual oil from atmospheric distillation.
  • Refined oils obtained by refining distillates according to conventional methods such as solvent-refined oils, hydrogenated refined oils, dewaxed oils, clay-treated oils, and the like, can be mentioned.
  • the mineral oil paraffinic mineral oil or naphthenic mineral oil having a low aniline point and a pour point of ⁇ 25° C. or less is used from the viewpoint of low-temperature stability (liquid uniformity) when mixed with polyalkylene glycol.
  • Naphthenic mineral oil having an aniline point of 55° C. or higher and 95° C. or lower and a pour point of -30° C. or lower is more preferred; Naphthenic mineral oils are more preferred; naphthenic mineral oils having an aniline point of 55° C. or higher and 85° C. or lower and a pour point of ⁇ 35° C. or lower are particularly preferred.
  • the mineral oil is naphthenic, the kinematic viscosity of the mineral oil at 40° C.
  • the kinematic viscosity of the mineral oil at 40° C. is preferably 3 mm 2 /s or more and 65 mm 2 /s or less, more preferably 3 mm 2 /s or more and 50 mm 2 /s or less, and still more preferably They are 5 mm ⁇ 2> /s or more and 45 mm ⁇ 2> /s or less.
  • the refrigerator oil of the present invention contains 10 to 60% by mass of polyalkylene glycol and 40 to 90% by mass of mineral oil.
  • the refrigerating machine oil of the present invention contains the specific polyalkylene glycol and the specific mineral oil in the above mass ratio, so that the polyalkylene glycol and the mineral oil can be well dissolved.
  • the refrigerating machine oil contains a specific polyalkylene glycol and a specific mineral oil in a specific mass ratio, the refrigerating machine oil of the present invention has high electrical insulation.
  • the volume resistivity of the refrigerating machine oil at 25° C. is 1 ⁇ 10 11 ⁇ cm or more.
  • the mass ratio of polyalkylene glycol exceeds 60% by mass (that is, the mass ratio of mineral oil is less than 40% by mass)
  • the hygroscopicity of the refrigerating machine oil becomes too high, and electrical insulation deteriorates.
  • the mass ratio of mineral oil exceeds 90% by mass (that is, the mass ratio of polyalkylene glycol is less than 10% by mass)
  • the amount dissolved in hydrocarbons contained in the refrigerant increases, and the viscosity of the refrigerating machine oil decreases. put away. That is, the deterioration of the lubricating properties of the refrigerating machine oil makes the refrigerating cycle device susceptible to wear.
  • the refrigerating machine oil preferably contains 10 to 40% by mass of polyalkylene glycol and 60 to 90% by mass of mineral oil. If the mass ratio of the polyalkylene glycol and the mineral oil is within the above range, the two are well blended and good lubricity can be exhibited.
  • the polyalkylene glycol and the mineral oil are preferably included in a mass ratio of 1:9 to 6:4, more preferably 2:8 to 6:4, More preferably 2:8 to 5:5, particularly preferably 2:8 to 4.6:5.4.
  • the refrigerating machine oil can reduce the amount of water contained in the refrigerating machine oil by containing a specific polyalkylene glycol and a specific mineral oil in a specific mass ratio.
  • the refrigerating machine oil of the present invention has a saturated water content of 1% by mass or less at 25° C. and a humidity of 50%.
  • the polyalkylene glycol and mineral oil contained in the refrigerating machine oil are less likely to undergo chemical changes such as hydrolysis, and the stability of the refrigerating machine oil is enhanced.
  • Refrigerant oil is required to have various properties as described above, but the most important properties are lubricity, that is, wear resistance and seizure resistance. This is because if a machine such as the compressor of a refrigerator becomes inoperable due to wear or seizure, the operation of a factory or the like becomes impossible.
  • Refrigerant oil is a lubricant for the compressor in the refrigeration cycle, so unlike general lubricants, it is used in an atmosphere with almost no air or oxygen. Since general lubricating oil is used in the air, the surface of the metal material of the sliding portion is an oxide film, and an effective anti-wear additive is applied to the oxide film. On the other hand, in the case of refrigerating machine oil, the amount of oxygen in the refrigeration cycle is small after the initial oxide film on the surface of the sliding material is scraped off. However, the effect of anti-wear additives used in general lubricating oils is small, and improvement of lubricity has been an issue.
  • another object of the present invention is to provide a working medium for a refrigerant compression refrigeration cycle device containing a hydrocarbon refrigerant and refrigerating machine oil, wherein the refrigerating machine oil has high stability, appropriate solubility with the refrigerant, high lubricity, and high electrical insulation, and high abrasion resistance, to provide a working medium for a refrigerant compression refrigeration cycle device.
  • the present inventors diligently studied additives in order to improve the lubricity of refrigerating machine oil.
  • a thiobisphenol compound generally known as a stabilizer (antioxidant)
  • phosphorus conventionally used in refrigerating machine oils can be improved. It was found that the lubricating properties were significantly improved compared to acid esters and the like.
  • the present inventors presume the mechanism by which such effects are obtained by the present invention as follows. However, the mechanism described below is merely speculation, and does not limit the scope of the present invention.
  • a thiobisphenol compound is an electron-donating compound, and after the initial oxide film on the surface of the sliding material is scraped off, the new surface of the metal base material becomes an electron-deficient Lewis acid, which reacts with the surface. Since it forms a film to prevent contact between metals, it becomes a lubricating state, and as a result, it was found that the inclusion of the thiobisphenol compound in the refrigerating machine oil of the present invention can impart wear resistance to the refrigerating machine oil.
  • one embodiment of the present invention includes propane as a refrigerant, a refrigerating machine oil containing polyalkylene glycol and mineral oil, and a thiobisphenol compound, the polyalkylene glycol having the following general formula (1):
  • R 1 is a linear or branched alkyl group having 1 to 25 carbon atoms
  • OR 2 is the same or different and represents an oxyalkylene group having 2 to 4 carbon atoms
  • n is It represents the number of added moles of the oxyalkylene group represented by OR2 .
  • the kinematic viscosity at 40° C. is 2 mm 2 /s or more and 60 mm 2 /s or less
  • the mineral oil has an aniline point of 55° C. or more and 105° C. or less, a pour point of ⁇ 15° C. or less
  • the polyalkylene glycol is contained in an amount of 10% by mass or more and 60% by mass or less with respect to the total mass of the refrigerator oil
  • the mineral oil is A working medium for a refrigerant compression refrigeration cycle device, which is contained in an amount of 40% by mass or more and 90% by mass or less with respect to the total mass of the refrigerating machine oil.
  • the thiobisphenol compound contained in the refrigerator oil imparts wear resistance. That is, according to one embodiment of the present invention, there is provided a working medium for a refrigerant compression refrigeration cycle device in which a thiobisphenol compound is used as an antiwear material.
  • the refrigerating machine oil containing the thiobisphenol compound imparts wear resistance to the working medium containing the refrigerating machine oil.
  • a refrigerant comprising a hydrocarbon containing no halogen atoms having 2 to 4 carbon atoms, a refrigerating machine oil comprising a polyalkylene glycol and a mineral oil, and a thiobisphenol compound
  • the polyalkylene glycol has the following general formula (1):
  • R 1 is a linear or branched alkyl group having 1 to 25 carbon atoms
  • OR 2 is the same or different and represents an oxyalkylene group having 2 to 4 carbon atoms
  • n is It represents the number of added moles of the oxyalkylene group represented by OR2 .
  • the mineral oil has an aniline point of 55° C. or higher and 105° C. or lower, a pour point of ⁇ 15° C. or lower, and a kinematic viscosity at 40° C.
  • a working medium for a wear resistant refrigerant compression refrigeration cycle device is provided.
  • Thiobisphenol compounds include 4,4′-thiobis(2,6-di-tert-butylphenol), 4,4′-thiobis(2-methyl-6-tert-butylphenol), 4,4′-thiobis(3 -methyl-6-tert-butylphenol) and the like are preferred.
  • the content of the thiobisphenol compound is 0.05 to 3.0% by mass, preferably 0.05 to 1.0% by mass, more preferably 0.1 to 0.5% by mass, based on the total mass of the refrigerating machine oil. preferable.
  • the working medium according to the present invention does not substantially contain a polyphosphate ester compound.
  • the working medium contains a polyphosphate ester compound, its deterioration produces highly active phosphoric acid, which may cause corrosive wear and reduce the stability of the oil.
  • "substantially does not contain” is preferably 1% by mass or less, more preferably 0.5% by mass or less, and 0.1% by mass or less in the working medium. is more preferred.
  • the working medium according to the invention does not contain polyphosphate compounds.
  • the polyphosphate ester compound a compound represented by the following formula (2):
  • m represents an integer of 1 to 10
  • R a to R h each independently represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms
  • R i represents 2 or more carbon atoms. represents a divalent hydrocarbon group of 20 or less.
  • polyalkylene glycol and mineral oil become a uniform liquid at -25°C without separating into two layers largely depends on their molecular weights, that is, their kinematic viscosities.
  • the required viscosity differs depending on the model. For example, in the case of refrigerating machine oil with high viscosity, stability is improved by blending 0.1% by mass or more and 20% by mass or less of an ester compound with respect to the total mass of refrigerating machine oil, and even higher stability is achieved over the long term. I can do it.
  • Ester compounds include polyol esters, monoesters, diesters, phosphate esters (excluding polyphosphate ester compounds), and the like.
  • the refrigerator oil is a mixed oil containing a specific polyalkylene glycol, a specific mineral oil, and a specific ester compound as base oils. Since the ester compound may be hydrolyzed, the mixing ratio is preferably small from the viewpoint of stability, preferably 0.1% by mass or more and 15% by mass or less, more preferably 0.1% by mass or more and 12% by mass. % by mass or less, more preferably 0.5% by mass or more and 10% by mass or less.
  • the refrigerating machine oil of the present invention comprises 10% by mass or more and 40% by mass or less of polyalkylene glycol and 60% by mass or more and 90% by mass or less of mineral oil with respect to the total mass of the refrigerating machine oil. , and 0.1% by mass or more and 15% by mass or less of an ester compound.
  • the total mass of the refrigerating machine oil is the total mass (100% by mass) of the components contained in the refrigerating machine oil.
  • Polyol esters include esters of alcohols such as neopentyl glycol, trimethylolpropane and pentaerythritol and carboxylic acids such as octylic acid, nonanoic acid and oleic acid.
  • monoesters include alkyl esters of various carboxylic acids such as octyl oleate, butyl octanoate, and hexyl 2-ethylhexanoate.
  • the diesters include esters of dibasic acids and alcohols such as dioctyl sebacate, dioctyl adipate and dioleate adipate.
  • Phosphate esters include trialkyl phosphate, triphenyl phosphate, tricresyl phosphate, and the like. Among them, from the viewpoint of hydrolytic stability, polyol esters are preferable, and esters of neopentyl glycol and carboxylic acid (eg, 2-ethylhexanoic acid) are more preferable because of their small molecular weight and low viscosity.
  • components other than the above components can be further contained within a range that satisfies the function as a refrigerating machine oil.
  • Components other than the above components may be contained as a base oil or may be contained as an additive.
  • Other components that may be contained in the refrigerating machine oil according to the present embodiment include ethers such as polyalkylene glycol etherified at both ends, polyalkylene glycol esterified at both ends or at one end, and polyvinyl ether, hydrocarbon-based Alkyl benzenes and polyolefins are mentioned.
  • the refrigerating machine oil according to the present embodiment can further contain a stability improver as an additive in order to further improve the stability of the working medium of the refrigerant and the refrigerating machine oil in actual use.
  • a stability improver include one or more selected from the group consisting of thiobisphenol compounds, aromatic amine compounds, phenol compounds and benzotriazole compounds.
  • thiobisphenol compounds when adding a thiobisphenol compound, it is more preferable to use together with an aromatic amine compound.
  • the refrigerating machine oil according to the present embodiment can further contain an oily agent as an additive.
  • Preferred oily agents include partial esters of polyhydric alcohols such as glycerol monooleate (glycerin monooleate) and sorbitan monooleate (excluding ester compounds contained as base oils of refrigerator oils).
  • the total content of the stability improver and oiliness agent is preferably 0.1% by mass or more and 3.0% by mass or less based on the total mass of the refrigerating machine oil.
  • the refrigerating machine oil preferably contains one or more additives selected from the group consisting of aromatic amine compounds, phenolic compounds and benzotriazole compounds in an amount of 0.1% by mass with respect to the total mass of the refrigerating machine oil. Above 3.0% by mass or less is contained.
  • the refrigerating machine oil of the present invention comprises 10% by mass or more and 40% by mass or less of polyalkylene glycol; 60% by mass or more and 90% by mass or less of mineral oil; and one or more additives selected from the group consisting of 1% by mass or more and 3.0% by mass or less of thiobisphenol compounds, aromatic amine compounds, phenol compounds and benzotriazole compounds;
  • the total mass of the refrigerating machine oil is the total mass (100% by mass) of the components contained in the refrigerating machine oil.
  • the refrigerating machine oil of the present invention comprises 10% by mass or more and 40% by mass or less of polyalkylene glycol; and 60% by mass or more and 90% by mass or less of mineral oil. 0.1% by mass or more and 15% by mass or less of an ester compound; 0.1% by mass or more and 3.0% by mass or less of a thiobisphenol compound, an aromatic amine compound, a phenol compound, and a benzotriazole compound. and one or more additives;
  • the total mass of the refrigerating machine oil is the total mass (100% by mass) of the components contained in the refrigerating machine oil.
  • thiobisphenol compound As the thiobisphenol compound, the same ones as those described above can be used.
  • thiobisphenol compounds include 4,4′-thiobis(2,6-di-tert-butylphenol) and 4,4′-thiobis(2-methyl-6-tert-butylphenol). , 4,4′-thiobis(3-methyl-6-tert-butylphenol) and the like are suitable.
  • the content of the thiobisphenol compound is preferably 0.05 to 1.0% by mass, more preferably 0.1 to 0.5% by mass, based on the total mass of the refrigerator oil.
  • aromatic amine compounds examples include ⁇ -naphthylamine, N-phenyl-1-naphthylamine, and di(alkylphenyl)amines having alkyl groups of 4 to 12 carbon atoms (for example, p,p'-di-octyl -diphenylamine), alkylated phenyl- ⁇ -naphthylamine, and alkylated phenyl- ⁇ -naphthylamine.
  • the content of the aromatic amine compound is preferably 0.05 to 1.0% by mass, more preferably 0.1 to 0.5% by mass, based on the total mass of the refrigerator oil.
  • Suitable phenol compounds include 2,6-di-tert-butyl-4-methylphenol and 2,6-di-tert-butyl-4-ethylphenol.
  • the content of the phenol compound is preferably 0.05 to 1.0% by mass, more preferably 0.1 to 0.5% by mass, based on the total mass of the refrigerating machine oil.
  • benzotriazole compounds include benzotriazole and 1-[bis(alkyl)aminomethyl]-alkyl-1H-benzotriazole of various alkyl groups, such as 1-[bis(2-ethylhexyl)aminomethyl]-4-methyl- 1H-benzotriazole is included.
  • the content of the benzotriazole compound is preferably 0.05 to 1.0% by mass, more preferably 0.1 to 0.5% by mass, based on the total mass of the refrigerating machine oil.
  • the refrigerating machine oil according to the present embodiment contains antioxidants such as hindered phenol, antiwear agents such as phosphate esters and organic sulfur compounds, oily agents such as monohydric alcohols and higher fatty acids, and benzotriazole derivatives.
  • antioxidants such as hindered phenol, antiwear agents such as phosphate esters and organic sulfur compounds, oily agents such as monohydric alcohols and higher fatty acids, and benzotriazole derivatives.
  • Additives such as metal deactivators and antifoaming agents such as silicone oil can be added as appropriate.
  • a pour point depressant such as polymethacrylate can be added to lower the pour point of the refrigerating machine oil, and the amount added is 0.05 to 1.0% by mass, preferably based on the total mass of the refrigerating machine oil. It is 0.1 to 0.5% by mass.
  • the refrigerating machine oil of the present invention comprises 10% by mass or more and 40% by mass or less of polyalkylene glycol; 60% by mass or more and 90% by mass or less of mineral oil; 0.05% by mass or more and 3.0% by mass or less of a thiobisphenol compound; and the above additives;
  • the total of polyalkylene glycol, mineral oil, thiobisphenol compound and additives is 100% by mass.
  • the refrigerating machine oil of the present invention comprises 10% by mass or more and 40% by mass or less of polyalkylene glycol; 60% by mass or more and 90% by mass or less of mineral oil; .1 mass% or more and 15 mass% or less of an ester compound; 0.1 mass% or more and 3.0 mass% or less of an aromatic amine compound, a phenol compound and a benzotriazole compound. including an agent;
  • the total of polyalkylene glycol, mineral oil, ester compound and additives is 100% by mass.
  • the refrigerating machine oil of the present invention comprises 10% by mass or more and 40% by mass or less of polyalkylene glycol; and 60% by mass or more and 90% by mass or less of mineral oil. 0.05% by mass or more and 3.0% by mass or less of a thiobisphenol compound; 0.1% by mass or more and 15% by mass or less of an ester compound; 0.1% by mass or more and 3.0% by mass or less of an aromatic amine one or more additives selected from the group consisting of compounds, phenolic compounds and benzotriazole compounds;
  • the total of polyalkylene glycol, mineral oil, thiobisphenol compound, ester compound and additives is 100% by mass.
  • the kinematic viscosity at 40° C. of the refrigerating machine oil of the present invention is preferably 0.1 mm 2 /s or more and 65 mm 2 /s or less, more preferably 0.5 mm 2 /s or more and 60 mm. 2 /s or less, more preferably 1 mm 2 /s or more and 50 mm 2 /s or less, particularly preferably 1 mm 2 /s or more and 45 mm 2 /s or less, most preferably 5 mm 2 /s or more and 40 mm 2 / s s or less.
  • the lower limit of the kinematic viscosity of the refrigerating machine oil at 40° C. is more preferably 0.1 mm 2 /s or more, still more preferably 0.2 mm 2 /s or more, still more preferably 0.2 mm 2 /s or more. 5 mm 2 /s or more, particularly preferably 1 mm 2 /s or more, most preferably 1.5 mm 2 /s or more.
  • the refrigerating machine oil has a kinematic viscosity of 0.1 mm 2 /s or more and 30 mm 2 /s or less at 40°C.
  • the refrigerating machine oil of the present invention usually exists in the form of a working medium mixed with a refrigerant containing hydrocarbons as described above in a refrigerating cycle device.
  • the blending ratio of the refrigerating machine oil and the hydrocarbon-containing refrigerant in the working medium is not particularly limited, but the refrigerating machine oil is preferably 1 to 500 parts by mass, more preferably 2 to 400 parts by mass with respect to 100 parts by mass of the hydrocarbon-containing refrigerant. part by mass.
  • the two-layer separation temperature between the refrigerant and the refrigerating machine oil is preferably ⁇ 30° C. or less, more preferably ⁇ 35° C. or less, still more preferably ⁇ 40° C. or less, and even more preferably ⁇ 45°C or less.
  • the lower limit of the two-layer separation temperature is determined by the balance between the return of the refrigerating machine oil from the evaporator to the compressor in the refrigerating cycle and the lubricity of the refrigerating machine oil, and depends on the design of the refrigerating system.
  • the two-layer separation temperature is measured by the method described in Examples below.
  • Polyalkylene glycols are also more polar than mineral oils and polyol esters and do not dissolve excessively in hydrocarbon-containing refrigerants. Therefore, the refrigerating machine oil according to the present invention does not dissolve excessively in the refrigerant by containing the polyalkylene glycol in addition to the mineral oil.
  • the working medium containing the refrigerating machine oil according to the present invention is a highly flammable hydrocarbon Good performance can be exhibited even if the amount of refrigerant containing is small.
  • the high stability of the refrigerating machine oil means that the acid value of the refrigerating machine oil is 0.01 to 0.05 mgKOH / g before and after the thermal / chemical stability test (detailed method is described in the examples below). and the hue of the refrigerator oil is L0.5 to L1.0.
  • the stability is high (excellent thermal stability).
  • the hue of the refrigerating machine oil is within the above range before and after the thermal/chemical stability test, it can be said that the stability is high (excellent thermal stability).
  • the lubricity of refrigerating machine oil is evaluated by seizure load.
  • the seizure load is preferably less than 3000N, more preferably less than 2950N.
  • the seizure load is measured by the method described in Examples below.
  • the refrigerating machine oil preferably has low hygroscopicity.
  • the saturated water content of the refrigerating machine oil is preferably less than 1%, more preferably 0.9% or less, and 0.7 mass. % or less, and particularly preferably 0.6 mass % or less. Saturated water content is measured by the method described in Examples below.
  • the electrical insulation properties of refrigerating machine oil are evaluated by volume resistivity.
  • the volume resistivity is preferably 1.0 ⁇ 10 11 ⁇ cm or more, more preferably 5.0 ⁇ 10 11 ⁇ cm or more, and 1.0 ⁇ 10 12 ⁇ cm or more. ⁇ cm or more is more preferable.
  • the volume resistivity is measured by the method described in Examples below.
  • the working medium of the present invention can be suitably used in refrigeration cycle devices, and is preferably used in, for example, air conditioners, electric refrigerators, and industrial freezers having reciprocating or rotary hermetic compressors. Moreover, the working medium of the present invention is preferably used in cooling devices such as dehumidifiers, water heaters, freezers, refrigerated warehouses, showcases, vending machines, and chemical plants. Furthermore, it is preferably used for those having a centrifugal compressor.
  • the working fluid of the present invention can be suitably used in a closed refrigeration cycle apparatus. Therefore, according to the present invention, a sealed refrigeration cycle apparatus using a working medium is also provided.
  • the present invention includes the following aspects and forms.
  • R 1 is a linear or branched alkyl group having 1 to 25 carbon atoms
  • OR 2 is the same or different and represents an oxyalkylene group having 2 to 4 carbon atoms
  • n is It represents the number of added moles of the oxyalkylene group represented by OR2 .
  • the kinematic viscosity at 40° C. is 2 mm 2 /s or more and 60 mm 2 /s or less
  • the mineral oil has an aniline point of 55° C. or more and 105° C. or less, a pour point of ⁇ 15° C. or less
  • the polyalkylene glycol is contained in an amount of 10% by mass or more and 60% by mass or less with respect to the total mass of the refrigerator oil
  • the mineral oil is A working medium for a refrigerant compression refrigeration cycle device, which is contained in an amount of 40% by mass or more and 90% by mass or less with respect to the total mass of the refrigerating machine oil.
  • R 1 is a linear or branched alkyl group having 1 to 25 carbon atoms
  • OR 2 is the same or different and represents an oxyalkylene group having 2 to 4 carbon atoms
  • n is It represents the number of added moles of the oxyalkylene group represented by OR2 .
  • the kinematic viscosity at 40° C. is 2 mm 2 /s or more and 60 mm 2 /s or less
  • the mineral oil has an aniline point of 55° C. or more and 105° C. or less, a pour point of ⁇ 15° C. or less
  • the polyalkylene glycol is contained in an amount of 10% by mass or more and 60% by mass or less with respect to the total mass of the refrigerator oil
  • the mineral oil is A working medium for a refrigerant compression refrigeration cycle device, which is contained in an amount of 40% by mass or more and 90% by mass or less with respect to the total mass of the refrigerating machine oil.
  • the refrigerating machine oil contains one or more additives selected from the group consisting of amine compounds, phenol compounds and benzotriazole compounds in an amount of 0.1% by mass or more and 3.0% by mass based on the total mass of the refrigerating machine oil.
  • the working fluid for a refrigerant compression refrigeration cycle device according to any one of [1] to [9] above, containing at a mass % or less.
  • the refrigerating machine oil contains 10% by mass or more and 40% by mass or less of the polyalkylene glycol, 60% by mass or more and 90% by mass or less of the mineral oil, and 0.1% by mass of the total mass of the refrigerating machine oil. % or more and 15% by mass or less of the ester compound.
  • R 1 is a linear or branched alkyl group having 1 to 25 carbon atoms
  • OR 2 is the same or different and represents an oxyalkylene group having 2 to 4 carbon atoms
  • n is It represents the number of added moles of the oxyalkylene group represented by OR2 .
  • the kinematic viscosity at 40° C. is 2 mm 2 /s or more and 60 mm 2 /s or less
  • the mineral oil has an aniline point of 55° C. or more and 105° C. or less, a pour point of ⁇ 15° C. or less
  • the polyalkylene glycol is contained in an amount of 10% by mass or more and 60% by mass or less with respect to the total mass of the refrigerator oil
  • the mineral oil is A working medium for a wear-resistant refrigerant compression type refrigeration cycle device, which is contained in an amount of 40% by mass or more and 90% by mass or less with respect to the total mass of the refrigerating machine oil.
  • the present invention will be described in more detail below based on examples and comparative examples, but the present invention is not limited to the following examples.
  • the operations and physical properties are measured under the conditions of room temperature (20 to 25° C.)/relative humidity of 40 to 50% RH.
  • pentane may be used as a refrigerant instead of propane.
  • Pentane is considered to exhibit similar compatibility with refrigerating machine oil as propane as a refrigerant from the viewpoint of polarity or dielectric constant. Further, it has been confirmed that the two-layer separation temperature, which will be described later, is the same value obtained when pentane is used as the refrigerant and when propane is used as the refrigerant. Therefore, the examples using pentane as a refrigerant in the following examples are considered to satisfy the constituent requirements of the present invention.
  • Refrigerating machine oils of Examples 1 to 8 and Comparative Examples 1 to 8 were obtained by mixing each component shown below and stirring at 40°C for 10 minutes.
  • Example 1 Polypropylene having R 1 (terminal) n-butyl group, OR 2 oxypropylene group, kinematic viscosity of 10.5 mm 2 /s at 40°C and 2.8 mm 2 /s at 100°C, and pour point of -50°C Glycol (40.0% by mass relative to the total mass of refrigerating machine oil); kinematic viscosity of 7.1 mm 2 /s at 40° C., 2.2 mm 2 /s at 100° C., pour point of ⁇ 35° C., aniline point paraffinic mineral oil (60.0% by mass with respect to the total mass of the refrigerating machine oil) having a temperature of 90° C.; and (without additives).
  • Example 2 The polypropylene glycol of Example 1 (40.0% by mass with respect to the total mass of the refrigerating machine oil); kinematic viscosity of 10.5 mm 2 /s at 40° C., 2.5 mm 2 /s at 100° C., pour point of ⁇ 45 ° C., naphthenic mineral oil having an aniline point of 65° C. (60.0% by mass relative to the total mass of the refrigerating machine oil);
  • Example 3 The polypropylene glycol of Example 1 (40.0% by mass with respect to the total mass of the refrigerating machine oil); kinematic viscosity of 45.4 mm 2 /s at 40° C., 5.5 mm 2 /s at 100° C., pour point of ⁇ 40 ° C., naphthenic mineral oil (60.0% by mass based on the total mass of the refrigerating machine oil) having an aniline point of 77° C.;
  • Example 1 The polypropylene glycol of Example 1 (40.0% by mass relative to the total mass of the refrigerating machine oil); kinematic viscosity of 45.0 mm 2 /s at 40° C., 6.7 mm 2 /s at 100° C., pour point of ⁇ 15 Refrigerating machine oil (without additives) containing paraffinic mineral oil (60.0% by mass based on the total mass of refrigerating machine oil) having an aniline point of 106 °C.
  • Example 2 The polypropylene glycol of Example 1 (40.0% by mass relative to the total mass of the refrigerating machine oil); kinematic viscosity of 97.0 mm 2 /s at 40° C., 10.9 mm 2 /s at 100° C., pour point of ⁇ 15 Refrigerating machine oil (without additives) containing paraffinic mineral oil (60.0% by mass based on the total mass of refrigerating machine oil) having an aniline point of 115 °C.
  • R 1 (end) is n-butyl group
  • OR 2 is oxypropylene group
  • kinematic viscosity is 10.5 mm 2 /s at 40°C, 2.7 mm 2 /s at 100°C
  • pour point is -50°C.
  • Polypropylene glycol (30.0% by mass relative to the total mass of refrigerating machine oil); kinematic viscosity of 46.5 mm 2 /s at 40° C. and 5.4 mm 2 /s at 100° C., pour point of ⁇ 35° C.
  • Example 5 Polypropylene glycol with R 1 (terminal) being an ethyl group, OR 2 being an oxypropylene group, a kinematic viscosity of 22.1 mm 2 /s at 40° C. and 5.1 mm 2 /s at 100° C., and a pour point of ⁇ 50° C. (29.9% by mass based on the total mass of refrigerating machine oil); Kinematic viscosity is 22.2 mm 2 /s at 40 ° C., 3.7 mm 2 /s at 100 ° C., pour point is -45 ° C., aniline point is 72 ° C. Naphthenic mineral oil (69.9% by mass relative to the total mass of the refrigerating machine oil); and as an additive, 4,4'-thiobis (2-methyl-6-tert-butylphenol) 0.2% by mass) and;
  • R 1 (terminal) is a tert-butyl group
  • OR 2 is an oxyethylene group and an oxypropylene group
  • the kinematic viscosity is 32.7 mm 2 /s at 40° C. and 7.3 mm 2 /s at 100° C.
  • the pour point is -40 ° C.
  • polyethylene polypropylene glycol ratio of oxyethylene group to oxypropylene group is 1:9 in molar ratio, 19.8% by mass based on the total mass of refrigerating machine oil
  • kinematic viscosity is 10.6 mm at 40 ° C.
  • R 1 (end) is n-butyl group
  • OR 2 is oxypropylene group
  • kinematic viscosity is 32.5 mm 2 /s at 40°C
  • pour point is -50°C.
  • Polypropylene glycol (40% by mass based on the total mass of refrigerating machine oil); kinematic viscosity of 7.1 mm 2 /s at 40° C.
  • Example 8 The polypropylene glycol of Example 1 (30.0% by mass relative to the total mass of the refrigerating machine oil); kinematic viscosity of 95.8 mm 2 /s at 40° C., 8.4 mm 2 /s at 100° C., pour point of ⁇ 30 °C, the aniline point is 82 °C naphthenic mineral oil (70.0 mass% relative to the total mass of the refrigerating machine oil);
  • R 1 (terminal) is n-butyl group
  • OR 2 is oxypropylene group
  • kinematic viscosity is 32.5 mm 2 /s at 40°C, 7.1 mm 2 /s at 100°C
  • pour point is -50°C.
  • Polypropylene glycol (40% by mass relative to the total mass of refrigerating machine oil); kinematic viscosity of 136 mm 2 /s at 40° C. and 13.7 mm 2 /s at 100° C., pour point of ⁇ 15° C. and aniline point of 118 °C paraffinic mineral oil (60% by mass relative to the total mass of the refrigerating machine oil);
  • R 1 (end) is n-butyl group
  • OR 2 is oxypropylene group
  • kinematic viscosity is 32.5 mm 2 /s at 40°C, 7.1 mm 2 /s at 100°C
  • pour point is -50°C.
  • Polypropylene glycol (40% by mass relative to the total mass of refrigerating machine oil); kinematic viscosity of 9.8 mm 2 /s at 40° C., 2.6 mm 2 /s at 100° C., pour point of ⁇ 5° C., aniline point paraffinic mineral oil (60% by mass with respect to the total mass of the refrigerating machine oil) having a temperature of 85° C.; and (without additives).
  • R 1 (terminal) is n-butyl group
  • OR 2 is oxypropylene group
  • kinematic viscosity is 32.5 mm 2 /s at 40°C
  • pour point is -50°C.
  • kinematic viscosity, aniline point and pour point of the polyalkylene glycols and mineral oils used in Examples and Comparative Examples were evaluated according to the following methods.
  • a separation test with ammonia refrigerant, viscosity (measurement of kinematic viscosity), low temperature properties (measurement of pour point), electrical insulation (measurement of volume resistivity) , hygroscopicity (measurement of saturated moisture), lubricity (measurement of seizure load), compatibility (measurement of two-layer separation temperature when mixed with a hydrocarbon refrigerant), and thermal and chemical stability (measurement of hue and acid value) was carried out.
  • the two-layer separation temperature was measured according to the JIS method (refrigerating machine oil: K2211 (2009)).
  • the compatibility test was performed using 7.5 g of refrigerating machine oil for 42.5 g of refrigerant using pentane instead of propane as the refrigerant.
  • the measurement was performed in a temperature range from room temperature (25°C) to -50°C. Therefore, in a sample containing refrigerating machine oil and refrigerant, if separation does not occur even at -50 ° C., the two-layer separation temperature is "-50 ° C. or less" (described as " ⁇ -50 ° C.” in the table). evaluated.
  • the refrigerating machine oils of Examples 1 to 8 are refrigerating machine oils with well-balanced characteristics. That is, the refrigerating machine oils of Examples 1 to 8 have sufficiently low pour points, are uniform liquids even at low temperatures, and have excellent electrical insulation (volume resistivity), lubricity (seizure load), and thermal and chemical stability. is good, the two-layer separation temperature with the hydrocarbon refrigerant and the hygroscopicity (water content) are also good.
  • Comparative Example 5 is a refrigerating machine oil in which a mineral oil having a kinematic viscosity exceeding 60 mm 2 /s and an aniline point exceeding 105° C.
  • Comparative Example 6 is a refrigerating machine oil in which a mineral oil having a viscosity pour point of ⁇ 15° C. or more and a specific polyalkylene glycol are combined, but the pour point of the refrigerating machine oil is high and the lubricity is insufficient. found to be unsuitable for use as
  • the refrigerating machine oil of Comparative Example 7 is a refrigerating machine oil containing a specific polyalkylene glycol alone. high water content).
  • the refrigerating machine oils of Examples 5 and 6 have a level of lubricity comparable to that of the refrigerating machine oil of Comparative Example 7 due to the addition of the additive, and are considerably higher than that of Comparative Example 8, which is a refrigerating machine oil containing mineral oil alone. It can be seen that it has high lubricity.
  • the refrigerating machine oil of Comparative Example 8 was inferior in lubricity, and in terms of thermal and chemical stability, the oil was colored, indicating that it was inferior in terms of stability.
  • mineral oil is a hydrocarbon, there is a problem that it mixes too much with refrigerants of the same hydrocarbon.
  • each component shown below was mixed and stirred at 40° C. for 10 minutes to obtain each refrigerating machine oil of Examples 9 to 13.
  • a lubricity test was performed according to the method shown below using each of the obtained refrigerating machine oils.
  • Example 9 A refrigerating machine oil containing 0.3% by mass of 4,4′-thiobis(2,6-di-tert-butylphenol) in the refrigerating machine oil (base oil) of Example 1.
  • Example 10 Refrigerant oil containing 0.2 mass of 4,4′-thiobis(2-methyl-6-tert-butylphenol) in the base oil of Example 1.
  • Example 11 Refrigerating machine oil containing 0.1% by mass of 4,4′-thiobis(3-methyl-6-tert-butylphenol) in the base oil of Example 1
  • Example 12 Refrigerating machine oil of Example 1 (base oil only).
  • Example 13 A refrigerating machine oil containing 0.5% by mass of tricresyl phosphate (TCP), which is a typical antiwear agent for refrigerating machine oils, in the base oil of Example 1.
  • TCP tricresyl phosphate
  • ⁇ Lubricity test> The effect of thiobisphenol compounds was evaluated in a lubricity test.
  • each lubrication region fluid lubrication region, mixed lubrication region, boundary lubrication region
  • Stribeck curve An MTM (Mini Traction Machine) tester manufactured by PCS Instrument in England, which is said to have a correlation with an actual machine, was used.
  • test was performed under two atmospheres, normal air and nitrogen gas blowing conditions (100 ml / min) in an oxygen-free atmosphere that is more correlated with refrigerating machine oil, and steel balls (3/4 inch in diameter) ) and a steel disc (46 mm diameter) in a friction test (rolling/sliding contact).
  • the test conditions were oil temperature: 40° C., load: 10 N, slip rate: 30%, peripheral speed: 10 to 2500 mm/s.
  • a to C The coefficient of friction obtained from the test is evaluated by A to C based on the following evaluation criteria.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lubricants (AREA)

Abstract

【課題】炭化水素を含む冷媒と冷凍機油とを含む冷媒圧縮式冷凍サイクル装置用作動媒体において、冷凍機油が、高い安定性、冷媒との適切な相溶性、高い潤滑性、および高い電気絶縁性のうち少なくともひとつを達成する、冷媒圧縮式冷凍サイクル装置用作動媒体を提供する。 【解決手段】 炭素数2~4のハロゲン原子を含まない炭化水素を含む冷媒と、ポリアルキレングリコールおよび鉱油を含む冷凍機油と、を含み、前記ポリアルキレングリコールは、一般式(1)で表され、40℃における動粘度が2mm2/s以上60mm2/s以下であり、前記鉱油は、アニリン点が55℃以上105℃以下であり、流動点が-15℃以下であり、40℃における動粘度が2mm2/s以上100mm2/s以下であり、前記ポリアルキレングリコールは、前記冷凍機油の全質量に対して、10質量%以上60質量%以下で含有され、前記鉱油は、前記冷凍機油の全質量に対して、40質量%以上90質量%以下で含有される、冷媒圧縮式冷凍サイクル装置用作動媒体。

Description

冷媒圧縮式冷凍サイクル装置用作動媒体および該作動媒体を用いた冷凍サイクル装置
 本発明は、冷媒圧縮式冷凍サイクル装置用作動媒体および該作動媒体を用いた冷凍サイクル装置に関する。詳しくは、本発明は、冷媒圧縮式冷凍サイクル装置に用いられる、冷媒と冷凍機油とを含む作動媒体およびこれを用いた冷凍サイクル装置に関するものである。
 空調機、電気冷蔵庫、産業用冷凍機、冷蔵または冷凍倉庫等の冷媒を圧縮して用いる冷凍サイクル装置においては、フッ素原子を含有する炭化水素であるハイドロフルオロカーボン(HFC)が冷媒として用いられている。しかし、このHFCは大気中での寿命が長いため温室効果が大きく、地球温暖化を防止する上では満足な冷媒ではなく、その使用が制限される動きにある。
 上記HFCの代わりに、強燃性ではあるがオゾン破壊係数がゼロでありかつ地球温暖化係数も、HFCに比べれば格段に小さい、ハロゲン原子を含まない炭化水素(以下、単に「炭化水素冷媒」とも称する)を冷凍サイクル装置の冷媒として用いることが進められている。例えば、ハロゲン原子を含まない炭化水素であるイソブタン(R600a)を冷媒として用いた電気冷蔵庫が実用化されている。さらに、ハロゲン原子を含まない炭化水素を冷媒として用いた大型の機器開発が検討され、空調機にはプロパン(R290)が実用化されつつある。これらの炭化水素冷媒を用いる場合、炭化水素冷媒と共に作動媒体成分として用いられる冷凍機油としては鉱油、アルキルベンゼン、ポリオールエステル、ポリエーテル等が知られている。(例えば、特許文献1~5)。
国際公開第2000-60031号明細書 特開2003-041278号公報 特許第3664511号公報 特許第5086782号公報 特許第4603117号公報
 上記特許文献1~3で提案された鉱油、アルキルベンゼンまたはポリオールエステルを含む冷凍機油は、プロパン、イソブタンなどの炭化水素冷媒との相溶性が良く、冷凍機油に溶解する冷媒量が多くなる。このため、冷凍サイクル装置において十分な能力を発揮させるには、冷凍サイクル装置内に大量の炭化水素冷媒を充填する必要がある。しかし、プロパン、イソブタンなどの炭化水素は強燃性であるので、炭化水素冷媒量は運転効率を充分発揮する範囲内で極力少量であることが安全面から望まれる。また、冷凍機油中に溶解する炭化水素冷媒量が少ないほど、運転時の条件変動によって生じる炭化水素冷媒の冷凍機油に対する溶解と蒸発との変動が少なくなり、作動媒体の粘度変化が少なくなり好ましい。また、冷凍機油中に溶解する炭化水素冷媒量が少ない場合、より低粘度の冷凍機油を選定することができるため、冷凍サイクル装置の高効率化が図れ、省エネルギーにつながる。
 上記特許文献4で提案されたポリオールエステルとポリアルキレングリコールとを含む冷凍機油は、ポリオールエステルとポリアルキレングリコールとの両方が高い極性を有するため、冷凍機油の吸湿性が高くなる。この場合、冷凍機油中の水分含有量が高くなり、ポリオールエステルの加水分解が進行してしまい、冷凍機油が劣化することが懸念される。冷凍機油は、冷媒との共存下で冷凍サイクル装置において長期間使用され、低温と高温とにさらされるため、高い安定性が要求される。このような吸湿性の高い冷凍機油を冷凍サイクル装置において使用すると、冷凍サイクル装置内における水分含量の増加や冷凍機油の劣化等により、トラブルが生じるおそれがある。また、ポリオールエステルとポリアルキレングリコールとを含む冷凍機油は、体積抵抗率で示される電気絶縁性が低いため、冷凍サイクル装置においてリーク電流を起こしやすいという問題点がある。
 特許文献5には、ポリエーテル化合物および鉱油を含む冷凍機油が開示されている。特許文献5においては、ポリエーテル化合物としては、ポリアルキレングリコールまたはポリビニルエーテルであること、および、鉱油としては、潤滑性を向上させるために特定の硫黄分を有することが定められているのみである。そのため、特許文献5に開示された冷凍機油は、非常に広範囲の冷凍機油を含むものである。ここで、特許文献5に開示された冷凍機油は、冷媒としてアンモニア冷媒を用いるものである。すなわち、特許文献5に開示された冷凍機油は、大型開放型の冷凍機であるアンモニア冷媒使用の冷凍機、つまり冷媒と冷凍機油とが混合されて冷凍サイクルを循環することのない非循環式のシステムに適した冷凍機油である。
 非循環式のシステムに対して、コンプレッサの中にモーターが内蔵され、炭化水素冷媒と冷凍機油とが混合された媒体として冷凍サイクルを循環する小型密閉型の循環式のシステムが知られている。この循環式のシステムでは、モーターが内蔵されているために冷凍機油に高い電気絶縁性が求められる。特許文献5において用いられたアンモニア冷媒は極性が大きく電流がリークするため、循環式のシステムには使用できない。また、循環式のシステムでは、低温(例えば、-25℃)まで冷却されるため、低温においても媒体が均一な液体であることが求められる。そのため、冷媒として、低温においても液体である炭化水素冷媒が好ましく用いられる。冷凍機油としては、低温においても炭化水素冷媒と均一に溶け合うことが求められる。例えば、特許文献5に開示された冷凍機油では、ポリエーテル化合物(特にポリアルキレングリコール)は極性を有し、鉱油は無極性である。この場合、ポリエーテル化合物は、極性の違いにより、鉱油および炭化水素冷媒と低温(例えば、-25℃)では溶け合いにくく、低温において分離または析出してしまう。以上のように、特許文献5に開示されたアンモニア冷媒および冷凍機油は、循環式のシステムには適していない。
 以上のように、冷凍機油としての特性、すなわち、安定性、炭化水素冷媒との適切な相溶性、電気絶縁性などについて、いまだ改善の余地があった。
 本発明の目的は、炭化水素冷媒と冷凍機油とを含む冷媒圧縮式冷凍サイクル装置用作動媒体において、冷凍機油が、高い安定性、冷媒との適切な溶解性、高い潤滑性、および高い電気絶縁性のうち少なくともひとつを達成する、冷媒圧縮式冷凍サイクル装置用作動媒体を提供することである。
 本発明の一実施形態によれば、炭素数2~4のハロゲン原子を含まない炭化水素を含む冷媒と、ポリアルキレングリコールおよび鉱油を含む冷凍機油と、を含み、前記ポリアルキレングリコールは、下記一般式(1):
Figure JPOXMLDOC01-appb-C000004
〔式(1)中、Rは炭素数1~25の直鎖もしくは分岐鎖のアルキル基であり、ORは、同一または異なって、炭素数2~4のオキシアルキレン基を表し、nはORで表されるオキシアルキレン基の付加モル数を表す。〕
で表され、40℃における動粘度が2mm/s以上60mm/s以下であり、前記鉱油は、アニリン点が55℃以上105℃以下であり、流動点が-15℃以下であり、40℃における動粘度が2mm/s以上100mm/s以下であり、前記ポリアルキレングリコールは、前記冷凍機油の全質量に対して、10質量%以上60質量%以下で含有され、前記鉱油は、前記冷凍機油の全質量に対して、40質量%以上90質量%以下で含有される、冷媒圧縮式冷凍サイクル装置用作動媒体が提供される。
 本発明の他の実施形態によれば、炭素数2~4のハロゲン原子を含まない炭化水素を含む冷媒と、ポリアルキレングリコールおよび鉱油を含む冷凍機油と、チオビスフェノール化合物と、を含み、前記ポリアルキレングリコールは、下記一般式(1):
Figure JPOXMLDOC01-appb-C000005
[式(1)中、Rは炭素数1~25の直鎖もしくは分岐鎖のアルキル基であり、ORは、同一または異なって、炭素数2~4のオキシアルキレン基を表し、nはORで表されるオキシアルキレン基の付加モル数を表す。]
で表され、40℃における動粘度が2mm/s以上60mm/s以下であり、前記鉱油は、アニリン点が55℃以上105℃以下であり、流動点が-15℃以下であり、40℃における動粘度が2mm/s以上100mm/s以下であり、前記ポリアルキレングリコールは、前記冷凍機油の全質量に対して、10質量%以上60質量%以下で含有され、前記鉱油は、前記冷凍機油の全質量に対して、40質量%以上90質量%以下で含有される、冷媒圧縮式冷凍サイクル装置用作動媒体が提供される。
 本発明によれば、炭化水素を含む冷媒と冷凍機油とを含む冷媒圧縮式冷凍サイクル装置用作動媒体において、冷凍機油が、高い安定性、冷媒との適切な溶解性、高い潤滑性、および高い電気絶縁性のうち少なくともひとつを達成する、冷媒圧縮式冷凍サイクル装置用作動媒体が提供される。
 以下、本発明の冷凍機油および作動媒体について詳細に説明する。なお、本明細書において、特記しない限り、操作及び物性等の測定は室温(20~25℃)/相対湿度40~50%RHの条件で行う。また、本明細書において、「X~Y」は、その前後に記載される数値(XおよびY)を下限値および上限値として含む意味で使用し、「X以上Y以下」を意味する。
 本発明に係る冷媒圧縮式冷凍サイクル装置用作動媒体(以下、単に「作動媒体」と称する)は、炭素数2~4のハロゲン原子を含まない炭化水素を含む冷媒と、特定のポリアルキレングリコールおよび特定の鉱油を含む冷凍機油と、を含む。また、本発明に係る作動媒体は、40℃における動粘度が1mm/s以上32mm/s以下であるのが好ましく、3mm/s以上30mm/s以下であるのがより好ましく、5mm/s以上25mm/s以下であるのがさらに好ましい。なお、本明細書中、動粘度は、実施例に記載の方法で測定されたものである。
 まず、本発明の作動媒体に含まれる冷媒について説明する。冷媒は、炭素数2~4のハロゲン原子を含まない炭化水素(以下、単に「炭化水素」とも称する)を含む。炭素数2~4のハロゲン原子を含まない炭化水素としては、エタン(R170)、プロパン(R290)、ノルマルブタン(R600)、イソブタン(R600a)といった飽和炭化水素やエチレン、プロペンなどの不飽和炭化水素を挙げることができる。炭化水素としては、これらのうち、飽和炭化水素から選択される少なくとも1種、すなわち、エタン、プロパン、ノルマルブタンおよびイソブタンからなる群より選択される少なくとも1種を含有することが好ましい。作動媒体としては、特にはプロパン、エタンあるいはそれらの混合冷媒と、特定のポリアルキレングリコールおよび特定の鉱油を含む冷凍機油との組み合わせが本発明の効果が高く、より好ましい。作動媒体として、プロパンを含む冷媒と、特定のポリアルキレングリコールおよび特定の鉱油を含む冷凍機油との組み合わせであると、本発明の効果がより一層高く、さらに好ましい。炭化水素としては、炭化水素の1種を単独で用いてもよく、2種以上の炭化水素を組み合わせて用いてもよい。
 好ましい実施形態において、炭化水素は、プロパン(R290)を含む。この場合、冷媒は、プロパンに加えて、エタン、n-ブタン(ノルマルブタン)(R600)、イソブタン(R600a)などの飽和炭化水素;エチレン、プロペンなどの不飽和炭化水素;などのプロパン以外の他の炭化水素をさらに含有してもよい。プロパンを含む炭化水素がプロパン以外の他の炭化水素をさらに含む場合、炭化水素の主成分は、プロパンであるのが好ましい。なお、本発明において、「主成分」とは、炭化水素全質量に対して、50質量%を超える(上限100質量%)成分を意味する。よって、炭化水素がプロパンと、プロパン以外の炭化水素とを含む場合、プロパン以外の炭化水素の含有量は、炭化水素全質量に対して、好ましくは1質量%以上50質量%未満であり、より好ましくは2質量%以上40質量%以下であり、さらに好ましくは3質量%以上35質量%以下であり、特に好ましくは5質量%以上25質量%以下であり、最も好ましくは10質量%以上20質量%以下である。一実施形態において、炭化水素は、プロパン(R290)からなる(プロパン100質量%)。
 また、本発明の作動媒体は、冷媒として、飽和ハイドロフルオロカーボン、不飽和ハイドロフルオロカーボン、ジメチルエーテル、二酸化炭素などの他の冷媒(以下、「他の冷媒」と称する)をさらに含有してもよい。この場合、他の冷媒は、炭化水素100質量部に対して1~100質量部であるのが好ましく、5~50質量部であるのがより好ましく、10~30質量部であるのがさらに好ましい。
 好ましい実施形態において、冷媒は、プロパンを、冷媒全質量に対して、好ましくは50質量%を超えて含み、より好ましくは60質量%以上含み、さらに好ましくは75質量%以上含み、特に好ましくは80質量%以上含み、最も好ましくは90質量%以上含む。また、冷媒は、プロパンのみから構成されていてもよく、よって、冷媒中のプロパンの含有量の上限は100質量%である。よって、一実施形態において、冷媒は、プロパン(R290)からなる(プロパン100質量%)。すなわち、冷媒は、プロパン(R290)である。
 本発明の冷凍機油は、特定のポリアルキレングリコールと特定の鉱油とを含む。一実施形態において、冷凍機油は、特定のポリアルキレングリコールと特定の鉱油とを含む混合油を基油とする。冷凍機油の基油とは、冷凍機油全質量に対して、50質量%を超えて(上限100質量%)含有される成分を指し、好ましくは80質量%以上含有される成分、より好ましくは90質量%以上含有される成分である。ポリアルキレングリコールは、単独でも冷凍機油として使用できるが、極性を有するため吸湿性が高い。そのため、ポリアルキレングリコールを冷凍機油として単独で用いた場合、冷凍機油中の水分含有量が増加し、当該水分により、冷凍サイクル装置においてトラブルが起こるおそれがある。また、ポリアルキレングリコールは、電気絶縁性が低い、すなわち体積抵抗率が低いため、密閉型コンプレッサを使用する空調機、電気冷蔵庫、産業用冷凍機などでは電流リークを起こしやすい。しかし、その一方で、ポリアルキレングリコールは、極性を有しているため炭化水素を含む冷媒への溶解量が少ないという長所がある。
 鉱油は、吸湿性が低く、電気絶縁性が高いものの、冷媒に含まれる炭化水素と同じ炭化水素からなる成分であるため、炭化水素を含む冷媒への溶解量が多い。そのため、鉱油を冷凍機油として単独で用いた場合、冷凍サイクル装置において冷凍機油の粘度が低下することにより潤滑性、すなわち耐摩耗性が低下するという短所がある。
 そこで、ポリアルキレングリコールと鉱油との両者の混合により、短所を補うことができ、特性バランスの良い冷凍機油となる可能性がある。しかし、極性を有するポリアルキレングリコールと無極性の鉱油とでは溶け合いにくく、二層に分離することが考えられる。これらポリアルキレングリコールと鉱油とが二層に分離すると冷凍機油として用いることはできない。そこで、鋭意検討した結果、冷凍機油として、特定のポリアルキレングリコールと特定の鉱油とを特定の質量比で含有することにより、冷凍機油は均一な液体となり、冷凍機油として好適な特性を発揮できることを見出し、本発明を完成するに至った。
 本発明の特定のポリアルキレングリコールは、下記一般式(1)で表される。
Figure JPOXMLDOC01-appb-C000006
〔ただし、Rは炭素数1~25の直鎖もしくは分岐鎖のアルキル基であり、ORは炭素数2~4のオキシアルキレン基の1種または2種以上を表し、nはORで表されるオキシアルキレン基の付加モル数を表す。〕
 上記式(1)中、Rは、炭素数1~25の直鎖もしくは分岐鎖のアルキル基を表す。直鎖もしくは分岐鎖のアルキル基としては、炭素数1~20の直鎖もしくは分岐鎖のアルキル基が好ましく、炭素数1~10の直鎖もしくは分岐鎖のアルキル基がより好ましく、炭素数1~8の直鎖もしくは分岐鎖のアルキル基がさらに好ましく、炭素数1~5の直鎖もしくは分岐鎖のアルキル基が特に好ましく、炭素数3~5の直鎖状もしくは分岐状のアルキル基が最も好ましく用いられる。炭素数1~25の直鎖もしくは分岐鎖のアルキル基としては、例えば、メチル基、エチル基、直鎖状または分岐状のプロピル基(n-プロピル基、イソプロピル基)、直鎖状または分岐状のブチル基(n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基)、直鎖状または分岐状のペンチル基(n-ペンチル基、イソペンチル基、sec-ペンチル基、3-ペンチル基、tert-ペンチル基、ネオペンチル基)などが挙げられる。Rは、炭化水素を含む冷媒への溶解度と、冷凍機油としての特性とのバランスから、イソプロピル基、n-ブチル基、tert-ブチル基が好ましく、炭素数4の直鎖状または分岐状のブチル基(n-ブチル基、tert-ブチル基)がより好ましい。ポリアルキレングリコールにおいてRが短鎖アルキル基の場合、低温流動性に優れる。
 上記一般式(1)中、ORは、同一または異なって、炭素数2~4のオキシアルキレン基を表す。すなわち、Rは、炭素数2~4のアルキレン基を表す。ここで、ORは、1種のオキシアルキレン基であってもよく、2種以上のオキシアルキレン基で構成されていてもよい。このようなオキシアルキレン基としては、具体的には、オキシエチレン基(-OCHCH-)、オキシプロピレン基(-OCH(CH)CH-)、オキシトリメチレン基(-OCHCHCH-)、オキシブチレン基(-OCHCHCHCH-)などが挙げられる。これらのオキシアルキレン基の中でも、オキシエチレン基、オキシプロピレン基が好ましく、オキシプロピレン基がより好ましい。この際、(ORで表される繰り返し単位中におけるオキシアルキレン基(OR)は、それぞれ同一のオキシアルキレン基であっても、異なるオキシアルキレン基であってもよい。ポリアルキレングリコールにおけるOR全体に占めるオキシプロピレン基の割合の上限は、特に制限されないが、ポリアルキレングリコールにおいてORはすべてオキシプロピレンで構成されることが最も好ましく、よって、上限は100モル%である。例えば、ORがオキシエチレン基およびオキシプロピレン基で構成される場合、オキシプロピレン基の割合は、OR全体(すなわちオキシエチレン基およびオキシプロピレン基の総付加モル数)に対して、70モル%以上であるのが好ましく、80モル%以上であるのがより好ましい。この場合、OR全体に占めるオキシエチレン基(Rが炭素数2)の割合は、冷凍機油としての特性の面、すなわち冷凍機油の吸湿性を低くするために、30モル%以下であるのが好ましく、20モル%以下とすることがより好ましい。
 一実施形態において、ポリアルキレングリコールは、一般式(1)のRが炭素数4のアルキル基であり、ORがオキシプロピレン基である。これにより、冷凍機油の低温流動性と吸湿性とがより一層優れたものとすることができる。
 上記一般式(1)中、nは、ORで表されるオキシアルキレン基の付加モル数(重合度)を表す。一般式(1)で表されるポリアルキレングリコールの数平均分子量は、100~1500であるのが好ましく、200~1200であるのがより好ましく、300~1000であるのがさらに好ましく、350~850であるのが特に好ましく、350~700であるのが最も好ましい。nは、当該ポリアルキレングリコールの数平均分子量が上記の条件を満たすような数であることが好ましい。ポリアルキレングリコールの数平均分子量が上記範囲内である場合、鉱油との相溶性も良好であり、炭化水素を含む冷媒との共存下において冷凍機油の潤滑性を十分に発揮することができる。本明細書中、数平均分子量は、標準物質としてポリスチレンを用いたGPC(ゲルパーミュエーションクロマトグラフィー)により測定されている。式(1)における付加モル数nは、測定により得られた数平均分子量に基づき算出できる。
 本発明において、ポリアルキレングリコールは、40℃における動粘度が2mm/s以上60mm/s以下である。ポリアルキレングリコールの40℃における動粘度が2mm/s未満の場合、ポリアルキレングリコールが形成する油膜が薄くなる。つまり、冷凍サイクル装置の心臓部であるコンプレッサの摺動材料(摺動部)において金属同士の接触が起きやすくなり、冷媒との共存下における冷凍機油の潤滑性が不十分となる。ポリアルキレングリコールの40℃における動粘度が60mm/sを超える場合、冷凍機油の粘性抵抗が高くなりすぎ、冷凍サイクル装置の効率が低下する。ポリアルキレングリコールの40℃における動粘度は、好ましくは5mm/s以上55mm/s以下であり、より好ましくは8mm/s以上50mm/s以下であり、さらに好ましくは9mm/s以上45mm/s以下であり、特に好ましくは10mm/s以上40mm/s以下であり、最も好ましくは10mm/s以上35mm/s以下である。ポリアルキレングリコールの40℃における動粘度が上記範囲であることにより、冷凍機油として良好な潤滑性を発揮することができる。
 また、本発明において、ポリアルキレングリコールの100℃における動粘度は、0.1mm/s以上であるのが好ましく、0.25mm/s以上であるのがより好ましく、0.3mm/s以上であるのが特に好ましく、0.4mm/s以上であるのが特により好ましく、0.5mm/s以上であるのが最も好ましい。ポリアルキレングリコールの100℃における動粘度は、15mm/s以下であるのが好ましく、10mm/s以下であるのがより好ましく、5mm/s以下であるのが特に好ましく、3mm/s未満であるのが特により好ましく、2.9mm/s以下であるのが最も好ましい。すなわち、ポリアルキレングリコールの100℃における動粘度は、0.1mm/s以上15mm/s以下であるのが好ましく、0.25mm/s以上10mm/s以下であるのがより好ましく、0.3mm/s以上5mm/s以下であるのが特に好ましく、0.4mm/s以上3mm/s未満であるのが特により好ましく、0.5mm/s以上2.9mm/s以下であるのが最も好ましい。一実施形態において、ポリアルキレングリコールの100℃における動粘度は、0.1mm/s以上10mm/s以下、0.1mm/s以上8mm/s以下、0.1mm/s以上7.5mm/s以下、0.1mm/s以上7mm/s以下、0.1mm/s以上6mm/s以下である。また、一実施形態において、ポリアルキレングリコールの100℃における動粘度は、0.1mm/s以上3mm/s未満s、0.1mm/s以上2.9mm/s以下である。ポリアルキレングリコールの100℃における動粘度が0.1mm/s以上であれば、ポリアルキレングリコールの形成する油膜が十分な厚みで形成され、冷凍機油の潤滑性を十分に発揮できる。ポリアルキレングリコールの100℃における動粘度が15mm/s以下である場合、冷凍機油の粘度が低いため、冷凍サイクル装置の高効率化がさらに発揮できる。
 本発明において、ポリアルキレングリコールは、40℃における動粘度が2mm/s以上60mm/s以下であり、かつ100℃における動粘度が0.1mm/s以上15mm/s以下であるのが好ましい。ポリアルキレングリコールは、より好ましくは40℃における動粘度が2mm/s以上60mm/s以下であり、かつ100℃における動粘度が0.4mm/s以上3mm/s未満であり、さらに好ましくは40℃における動粘度が2mm/s以上60mm/s以下であり、かつ100℃における動粘度が0.5mm/s以上2.9mm/s以下である。
 本発明の一実施形態において、ポリアルキレングリコールは、40℃における動粘度が5mm/s以上55mm/s以下であり、かつ100℃における動粘度が0.1mm/s以上10mm/s以下であるのが好ましい。ポリアルキレングリコールは、より好ましくは40℃における動粘度が8mm/s以上50mm/s以下であり、かつ100℃における動粘度が0.4mm/s以上8mm/s以下であり、さらに好ましくは40℃における動粘度が9mm/s以上45mm/s以下であり、かつ100℃における動粘度が0.5mm/s以上7.5mm/s以下である。
 ポリアルキレングリコールは、流動点が-25℃以下のものが好ましく、-30℃以下であるのがより好ましく、-40℃以下であるのがさらに好ましい。ポリアルキレングリコールの流動点が-25℃以下の場合、ポリアルキレングリコールと鉱油とを含む冷凍機油の流動性が高くなり、冷凍機油として好適に用いることができる。
 本発明に係るポリアルキレングリコールは、従来公知の方法を用いて合成することができる(「アルキレンオキシド重合体」、柴田満太他、海文堂出版、1990年11月20日発行)。例えば、アルコール(ROH;Rは上記一般式(1)の中のRと同一の定義内容を表す)に所定のアルキレンオキサイドの1種以上を付加重合させることにより得られる。なお、上記の製造工程において異なる2種以上のアルキレンオキサイドを使用する場合、得られるポリアルキレングリコールはランダム共重合体、ブロック共重合体のいずれであってもよい。
 一般式(1)で表されるポリアルキレングリコールとしては、例えば、ポリプロピレングリコールモノメチルエーテル、ポリプロピレングリコールモノエチルエーテル、ポリプロピレングリコールモノプロピルエーテル(ポリプロピレングリコールモノn-プロピルエーテル、ポリプロピレングリコールモノイソプロピルエーテル)、ポリプロピレングリコールモノブチルエーテル(ポリプロピレングリコールモノn-ブチルエーテル)、ポリプロピレングリコールモノtert-ブチルエーテル、ポリプロピレングリコールモノヘキシルエーテル(ポリプロピレングリコールモノn-ヘキシルエーテル)、ポリプロピレングリコールモノオクチルエーテル(ポリプロピレングリコールモノn-オクチルエーテル);ポリエチレングリコール・ポリプロピレングリコール共重合体のモノメチルエーテル(ポリエチレングリコールポリプロピレングリコールモノメチルエーテル)、ポリエチレングリコール・ポリプロピレングリコール共重合体のモノエチルエーテル(ポリエチレングリコールポリプロピレングリコールモノエチルエーテル)、ポリエチレングリコール・ポリプロピレングリコール共重合体のモノn-プロピルエーテル(ポリエチレングリコールポリプロピレングリコールモノn-プロピルエーテル)、ポリエチレングリコール・ポリプロピレングリコール共重合体のモノイソプロピルエーテル(ポリエチレングリコールポリプロピレングリコールモノイソプロピルエーテル)、ポリエチレングリコール・ポリプロピレングリコール共重合体のモノn-ブチルエーテル(ポリエチレングリコールポリプロピレングリコールモノn-ブチルエーテル)、ポリエチレングリコール・ポリプロピレングリコール共重合体のモノtert-ブチルエーテル(ポリエチレングリコールポリプロピレングリコールモノtert-ブチルエーテル)、ポリエチレングリコール・ポリプロピレングリコール共重合体のモノヘキシルエーテル(ポリエチレングリコールポリプロピレングリコールモノn-ヘキシルエーテル)、ポリエチレングリコール・ポリプロピレングリコール共重合体のモノオクチルエーテル(ポリエチレングリコールポリプロピレングリコールモノn-オクチルエーテル);等が挙げられる。
 これらのポリアルキレングリコールのうち、電気絶縁性の高いポリプロピレングリコールモノメチルエーテル、ポリプロピレングリコールモノエチルエーテル、ポリプロピレングリコールモノプロピルエーテル、ポリプロピレングリコールモノブチルエーテル、ポリプロピレングリコールモノヘキシルエーテル、ポリプロピレングリコールモノオクチルエーテルなどのポリプロピレングリコールモノアルキルエーテルが好ましく、より電気絶縁性の高く、吸湿性の低いポリプロピレングリコールモノn-プロピルエーテル、ポリプロピレングリコールモノn-ブチルエーテル、ポリプロピレングリコールモノtert-ブチルエーテル、ポリプロピレングリコールモノヘキシルエーテル、ポリプロピレングリコールモノオクチルエーテルなどがより好ましい。
 本発明のポリアルキレングリコールは、片末端が極性の大きな水酸基であることから、冷媒に含まれる無極性な炭化水素とは親和力が小さく、冷媒への溶解量を少なくすることができるものと考えられる。よって、作動媒体における冷媒の充填量を低減することができる。また、水酸基は金属材料への吸着力が大きいことから、ポリアルキレングリコールは、冷凍サイクル装置の心臓部であるコンプレッサの摺動材料への油膜形成しやすく、良好な潤滑性(耐摩耗性)を示す。このことから、本発明において、特定のポリアルキレングリコールを用いることにより、冷凍機油の低粘度化が図れ、冷凍サイクル装置の高効率化につながるものと推測される。しかし、吸湿性が高く、電気絶縁性が低いのが短所である。なお、本発明は、上記推論によって何ら制限されるものではない。
 本発明で使用される鉱油は、アニリン点が55℃以上105℃以下であり、流動点が-15℃以下であり、40℃における動粘度が2mm/s以上100mm/s以下である。本発明において、鉱油はポリアルキレングリコールと溶け合うものであり、鉱油のアニリン点は、ポリアルキレングリコールとの溶解性の目安である。鉱油のアニリン点が55℃未満の場合、粘度指数などの冷凍機油としての粘度特性が不充分となり、冷凍機油として良好な性能(例えば、高温での充分な厚さの油膜形成)を発揮できない。鉱油のアニリン点が105℃を超える場合、鉱油とポリアルキレングリコールとが溶け合いにくくなり、二層に分離しやすく、冷凍機油としての安定性が維持できない。鉱油のアニリン点は、好ましくは65℃以上100℃以下であり、より好ましくは75℃以上95℃以下である。鉱油のアニリン点が上記範囲内である場合、鉱油とポリアルキレングリコールとの相溶性が良好であり、冷凍機油としてのそれぞれの成分の長所がより一層発揮できる。
 本発明で使用される鉱油は、流動点が-15℃以下である。鉱油の流動点が-15℃を超えると、ポリアルキレングリコールと鉱油とを含む冷凍機油の流動性が低くなり、冷凍機油として良好な性能(例えば、高温での充分な厚さの油膜形成)を発揮できない。鉱油の流動点は、-25℃以下であるのが好ましく、-30℃以下であるのがより好ましく、-35℃以下であるのが特に好ましい。
 本発明において、鉱油の40℃における動粘度は、2mm/s以上100mm/s以下である。鉱油の40℃における動粘度が2mm/s未満の場合、コンプレッサの摺動材料へ形成される油膜が薄くなり、粘性にともなう特性が不充分となり、冷凍機油として良好な潤滑性、シール性を発揮できない。鉱油の40℃における動粘度が100mm/sを超える場合、鉱油がポリアルキレングリコールと溶け合わなくなり、二層に分離してしまい、冷凍機油としての安定性が維持できない。鉱油の40℃における動粘度は、好ましくは3mm/s以上95mm/s以下であり、より好ましくは3mm/s以上90mm/s以下であり、さらに好ましくは5mm/s以上80mm/s以下である。一実施形態において、鉱油の40℃における動粘度は、好ましくは3mm/s以上65mm/s以下であり、より好ましくは3mm/s以上50mm/s以下であり、さらに好ましくは5mm/s以上45mm/s以下である。本発明の一実施形態によれば、鉱油は、40℃における動粘度が8mm/sを超え70mm/s以下である。
 冷凍機油としては、-25℃で均一な液体である必要がある。本発明の冷凍機油は、特定のポリアルキレングリコールと特定の鉱油とを特定の質量比で含有することにより、-25℃で均一な液体である。
 また、本発明において、鉱油の100℃における動粘度は、0.1mm/s以上であるのが好ましく、0.25mm/s以上であるのがより好ましく、0.3mm/s以上であるのが特に好ましく、0.5mm/s以上であるのが最も好ましい。鉱油の100℃における動粘度は、30mm/s以下であるのが好ましく、15mm/s以下であるのがより好ましく、10mm/s以下であるのが特に好ましく、8mm/s以下であるのが最も好ましい。鉱油の100℃における動粘度が0.1mm/s以上であれば、粘性にともなう特性を十分に付与でき、冷凍機油として良好な潤滑性を発揮できる。鉱油の100℃における動粘度が30mm/s以下である場合、冷凍機油の粘度が低いため、冷凍サイクル装置の高効率化がさらに発揮できる。一実施形態において、鉱油の100℃における動粘度は、0.5mm/s以上15mm/s以下、1mm/s以上12mm/s以下、または1.5mm/s以上10mm/s以下である。
 鉱油としては、例えば、パラフィン基系原油(パラフィン系鉱油)、中間基系原油またはナフテン基系原油(ナフテン系鉱油)を常圧蒸留するかまたは常圧蒸留の残渣油を減圧蒸留して得られる留出油を常法に従って精製することによって得られる精製油、例えば溶剤精製油、水添精製油、脱ロウ処理油,白土処理油等を挙げることができる。なかでも、鉱油としては、ポリアルキレングリコールと混合した場合の低温での安定性(液体の均一性)の観点から、アニリン点の低い、流動点が-25℃以下のパラフィン系鉱油またはナフテン系鉱油が好ましく;アニリン点が55℃以上95℃以下であり、流動点が-30℃以下のナフテン系鉱油がより好ましく;アニリン点が55℃以上90℃以下であり、流動点が-35℃以下のナフテン系鉱油がさらに好ましく;アニリン点が55℃以上85℃以下であり、流動点が-35℃以下のナフテン系鉱油が特に好ましい。ここで、鉱油がナフテン系の場合、鉱油の40℃における動粘度は、好ましくは3mm/s以上100mm/s以下であり、より好ましくは3mm/s以上95mm/s以下であり、さらに好ましくは5mm/s以上90mm/s以下である。鉱油がパラフィン系の場合、鉱油の40℃における動粘度は、好ましくは3mm/s以上65mm/s以下であり、より好ましくは3mm/s以上50mm/s以下であり、さらに好ましくは5mm/s以上45mm/s以下である。
 本発明の冷凍機油は、ポリアルキレングリコールが10~60質量%で含有され、かつ、鉱油が40~90質量%で含有される。本発明の冷凍機油において、特定のポリアルキレングリコールと特定の鉱油とが上記質量比で含有されることにより、ポリアルキレングリコールと鉱油とが良好に溶け合うことができる。また、冷凍機油が特定のポリアルキレングリコールと特定の鉱油とを特定の質量比で含有することにより、本発明の冷凍機油は高い電気絶縁性を有する。一実施形態において、冷凍機油の25℃における体積抵抗率は、1×1011Ω・cm以上である。ポリアルキレングリコールの質量比が60質量%を超える(すなわち、鉱油の質量比が40質量%未満である)と、冷凍機油の吸湿性が高くなりすぎ、電気絶縁性が低下する。鉱油の質量比が90質量%を超える(すなわち、ポリアルキレングリコールの質量比が10質量%未満である)と、冷媒に含まれる炭化水素への溶解量が多くなり、冷凍機油の粘度が下がってしまう。すなわち、冷凍機油の潤滑性の低下により、冷凍サイクル装置において摩耗が生じやすくなる。冷凍機油において、好ましくは、ポリアルキレングリコールは10~40質量%で含有され、かつ、鉱油は60~90質量%で含有される。ポリアルキレングリコールおよび鉱油の質量比が上記範囲内であれば、両者が良好に溶け合い、良好な潤滑性を発揮できる。
 本発明の冷凍機油において、ポリアルキレングリコールと鉱油とは、質量比で、1:9~6:4で包含されるのが好ましく、2:8~6:4で包含されるのがより好ましく、2:8~5:5で包含されるのがさらに好ましく、2:8~4.6:5.4で包含されるのが特に好ましい。
 冷凍機油は、特定のポリアルキレングリコールと特定の鉱油とが特定の質量比で含有されることにより、冷凍機油中に含まれる水分量を低くすることができる。一実施形態において、本発明の冷凍機油は、湿度50%で25℃における飽和水分が1質量%以下である。これにより、冷凍機油に含まれるポリアルキレングリコールおよび鉱油が加水分解等の化学的変化を生じにくく、冷凍機油としての安定性が高くなる。
 冷凍機油は、上述のようにいろいろな特性が要求されるが、最も重要な特性は潤滑性、つまり耐摩耗性、耐焼き付き性である。冷凍機のコンプレッサのような機械は摩耗や焼き付きにより運転できなくなると、工場などの稼働ができなくなるからである。
 冷凍機油は冷凍サイクル内のコンプレッサの潤滑油であるため、一般の潤滑油とは異なり、空気つまり酸素のほとんど無い雰囲気で使用される。一般の潤滑油は空気中で使用されるため、摺動部の金属材料の表面は酸化膜になっており、その酸化膜に有効な摩耗防止添加剤が適用される。一方、冷凍機油の場合は摺動材料表面の初期の酸化膜が削り取られた後は冷凍サイクル内の酸素量が少ないため、酸化膜の修復が難しく、金属母材の新生面での潤滑となるため、一般の潤滑油で使用されている摩耗防止添加剤の効果が小さく、潤滑性向上が課題であった。
 冷凍機油の潤滑性を向上させると摩耗、焼き付きを防ぐとともに、コンプレッサに粘度の低い油を適用できることから、稼働時の抵抗が小さくなりコンプレッサの高効率化、しいては冷凍システムの省電力化が図れることになる。よって、本発明の他の目的は、炭化水素冷媒と冷凍機油とを含む冷媒圧縮式冷凍サイクル装置用作動媒体において、冷凍機油が、高い安定性、冷媒との適切な溶解性、高い潤滑性、および高い電気絶縁性のうち少なくともひとつと、高い耐摩耗性と、を達成する、冷媒圧縮式冷凍サイクル装置用作動媒体を提供することである。
 そこで、本発明者らは、冷凍機油の潤滑性を向上させるため、添加剤について鋭意検討を行った。その結果、発明者らは、本発明の基油の組み合わせに、一般には安定剤(酸化防止剤)として知られているチオビスフェノール化合物を配合することにより、従来から冷凍機油に使用されているリン酸エステルなどよりも大幅に潤滑性を向上させることを見出した。本発明者らは、本発明によってこのような効果が得られるメカニズムを以下のように推定している。ただし、下記メカニズムはあくまで推測であり、これによって本発明の範囲が限定されることがない。
 チオビスフェノール化合物は、電子供与性の化合物であり、摺動材料表面の初期の酸化膜が削り取られた後の金属母材の新生面は電子が欠乏した状態のルイス酸となるが、その表面と反応膜を形成して金属と金属の接触を防ぐ潤滑状態となるため、結果として、本発明の冷凍機油がチオビスフェノール化合物を包含することにより、冷凍機油に耐摩耗性を付与できることを見出した。
 よって、本発明の一実施形態は、冷媒としてのプロパンと、ポリアルキレングリコールおよび鉱油を含む冷凍機油と、チオビスフェノール化合物と、を含み、前記ポリアルキレングリコールは、下記一般式(1):
Figure JPOXMLDOC01-appb-C000007
[式(1)中、Rは炭素数1~25の直鎖もしくは分岐鎖のアルキル基であり、ORは、同一または異なって、炭素数2~4のオキシアルキレン基を表し、nはORで表されるオキシアルキレン基の付加モル数を表す。]
で表され、40℃における動粘度が2mm/s以上60mm/s以下であり、前記鉱油は、アニリン点が55℃以上105℃以下であり、流動点が-15℃以下であり、40℃における動粘度が2mm/s以上100mm/s以下であり、前記ポリアルキレングリコールは、前記冷凍機油の全質量に対して、10質量%以上60質量%以下で含有され、前記鉱油は、前記冷凍機油の全質量に対して、40質量%以上90質量%以下で含有される、冷媒圧縮式冷凍サイクル装置用作動媒体が提供される。
 ここで、本発明の一実施形態によれば、冷凍機油に含まれるチオビスフェノール化合物は、耐摩耗性を付与するものである。すなわち、本発明の一実施形態によれば、チオビスフェノール化合物が、耐摩耗材として用いられる、冷媒圧縮式冷凍サイクル装置用作動媒体が提供される。また、チオビスフェノール化合物を含む冷凍機油により、当該冷凍機油を含む作動媒体においても耐摩耗性が付与される。よって、本発明の一実施形態によれば、 炭素数2~4のハロゲン原子を含まない炭化水素を含む冷媒と、ポリアルキレングリコールおよび鉱油を含む冷凍機油と、チオビスフェノール化合物と、を含み、
 前記ポリアルキレングリコールは、下記一般式(1):
Figure JPOXMLDOC01-appb-C000008
[式(1)中、Rは炭素数1~25の直鎖もしくは分岐鎖のアルキル基であり、ORは、同一または異なって、炭素数2~4のオキシアルキレン基を表し、nはORで表されるオキシアルキレン基の付加モル数を表す。]
で表され、40℃における動粘度が2mm/s以上60mm/s以下であり、
 前記鉱油は、アニリン点が55℃以上105℃以下であり、流動点が-15℃以下であり、40℃における動粘度が2mm/s以上100mm/s以下であり、前記ポリアルキレングリコールは、前記冷凍機油の全質量に対して、10質量%以上60質量%以下で含有され、前記鉱油は、前記冷凍機油の全質量に対して、40質量%以上90質量%以下で含有される、耐摩耗用冷媒圧縮式冷凍サイクル装置用作動媒体が提供される。
 チオビスフェノール化合物としては、4,4’-チオビス(2,6-ジ-tert-ブチルフェノール)、4,4’-チオビス(2-メチル-6-tert-ブチルフェノール)、4,4’-チオビス(3-メチル-6-tert-ブチルフェノール)などが好適である。チオビスフェノール化合物の含有量は、冷凍機油全質量を基準として0.05~3.0質量%であり、0.05~1.0質量%が好ましく、0.1~0.5質量%がより好ましい。
 本発明に係る作動媒体は、一実施形態において、多リン酸エステル化合物を実質的に含有しない。作動媒体が多リン酸エステル化合物を含有した場合、その劣化により活性の高いリン酸が生成し、腐食摩耗の原因となり、油の安定性が低下することがある。なお、本明細書中、「実質的に含有しない」とは、作動媒体において1質量以下であることが好ましく、0.5質量%以下であることがより好ましく、0.1質量%以下であることがさらに好ましい。特に好ましくは、本発明に係る作動媒体は、多リン酸エステル化合物を含有しない。ここで、多リン酸エステル化合物としては、下記式(2)で表される化合物:
Figure JPOXMLDOC01-appb-C000009
[式(2)中、mは1~10の整数を表し、R~Rは、それぞれ独立に、水素原子又は炭素数1以上20以下のアルキル基を表し、Rは炭素数2以上20以下の2価の炭化水素基を表す。]
が挙げられる。
 ポリアルキレングリコールと鉱油とが-25℃で二層分離せずに均一な液体になるかどうかは両者の分子量、つまり動粘度によるところが大きく、両者の分子量が小さいほど均一液体になりやすい。冷凍機油の場合、機種により要求される粘度が異なる。例えば、粘度が高い冷凍機油の場合、冷凍機油全質量に対して、0.1質量%以上20質量%以下のエステル化合物を配合することにより安定性が向上し、長期的により一層高い安定性が発揮できる。エステル化合物としては、ポリオールエステル、モノエステル、ジエステル、リン酸エステル(多リン酸エステル化合物を除く)などが挙げられる。よって、一実施形態において、冷凍機油は、基油として、特定のポリアルキレングリコールと、特定の鉱油と、特定のエステル化合物と、を含む混合油である。エステル化合物は加水分解する可能性があることから、その配合割合は、安定性の観点から少ないほうが好ましく、0.1質量%以上15質量%以下が好ましく、より好ましくは0.1質量%以上12質量%以下であり、さらに好ましくは0.5質量%以上10質量%以下である。
 よって、一実施形態によれば、本発明の冷凍機油は、冷凍機油の全質量に対して、10質量%以上40質量%以下のポリアルキレングリコールと、60質量%以上90質量%以下の鉱油と、0.1質量%以上15質量%以下のエステル化合物と、を含む。ここで、冷凍機油の全質量とは、冷凍機油の含有成分の合計質量(100質量%)とする。
 ポリオールエステルとしては、ネオペンチルグリコール、トリメチロールプロパン、ペンタエリスリトール等のアルコールとオクチル酸、ノナン酸またはオレイン酸等のカルボン酸とのエステルが挙げられる。モノエステルとしては、オレイン酸オクチル、オクタン酸ブチル、2-エチルヘキサン酸ヘキシルのような各種カルボン酸のアルキルエステル等が挙げられる。ジエステルとしては、セバシン酸ジオクチル、アジピン酸ジオクチル、アジピン酸ジオレエート等の二塩基酸とアルコールとのエステルが挙げられる。リン酸エステルとしては、トリアルキルフォスフェートやトリフェニルフォスフェート、トリクレジルフォスフェート等が挙げられる。なかでも、加水分解安定性の観点から、ポリオールエステルが好ましく、ネオペンチルグリコールとカルボン酸(例えば、2-エチルヘキサン酸)とのエステルなどが、分子量が小さく低粘度であることから、より好ましい。
 また、冷凍機油としての機能を満足する範囲において、上記成分(ポリアルキレングリコール、鉱油およびエステル化合物)以外の成分をさらに含有することができる。上記成分以外の成分としては、基油として含有されていてもよいし、添加剤として含有されていてもよい。本実施形態に係る冷凍機油が含有し得るその他の成分としては、両末端をエーテル化したポリアルキレングリコール、両末端あるいは片末端をエステル化したポリアルキレングリコールやポリビニルエーテルなどのエーテル類、炭化水素系であるアルキルベンゼン、ポリオレフィンが挙げられる。
 また、本実施形態に係る冷凍機油は、実使用における冷媒と冷凍機油との作動媒体の安定性を一層高めるため、添加剤として安定性向上剤をさらに含有することができる。好ましい安定性向上剤としては、チオビスフェノール化合物、芳香族アミン化合物、フェノール化合物およびベンゾトリアゾール化合物からなる群より選択される1種以上が挙げられる。ここで、チオビスフェノール化合物を添加する場合、芳香族アミン化合物と併用することがより好ましい。また、本実施形態に係る冷凍機油は、添加剤として油性剤をさらに含有することができる。好ましい油性剤としては、グリセロールモノオレエート(グリセリンモノオレート)、ソルビタンモノオレエート等の多価アルコールの部分エステル(ただし、冷凍機油の基油として含有されるエステル化合物を除く)が挙げられる。安定性向上剤および油性剤の含有量は合計で、冷凍機油全質量を基準として、0.1質量%以上3.0質量%以下とすることが好ましい。一実施形態では、冷凍機油は、好ましくは、芳香族アミン化合物、フェノール化合物およびベンゾトリアゾール化合物からなる群より選択される1種以上の添加剤を、冷凍機油全質量に対して0.1質量%以上3.0質量%以下含有する。
 一実施形態によれば、本発明の冷凍機油は、冷凍機油の全質量に対して、10質量%以上40質量%以下のポリアルキレングリコールと;60質量%以上90質量%以下の鉱油と;0.1質量%以上3.0質量%以下のチオビスフェノール化合物、芳香族アミン化合物、フェノール化合物およびベンゾトリアゾール化合物からなる群より選択される1種以上の添加剤と;を含む。冷凍機油の全質量とは、冷凍機油の含有成分の合計質量(100質量%)とする。
 また、一実施形態によれば、本発明の冷凍機油は、冷凍機油の全質量に対して、10質量%以上40質量%以下のポリアルキレングリコールと;60質量%以上90質量%以下の鉱油と;0.1質量%以上15質量%以下のエステル化合物と;0.1質量%以上3.0質量%以下のチオビスフェノール化合物、芳香族アミン化合物、フェノール化合物およびベンゾトリアゾール化合物からなる群より選択される1種以上の添加剤と;を含む。ここで、冷凍機油の全質量とは、冷凍機油の含有成分の合計質量(100質量%)とする。
 チオビスフェノール化合物としては、上述したものと同様のものが使用できる。例えば、安定性向上剤のうち、チオビスフェノール化合物としては、4,4’-チオビス(2,6-ジ-tert-ブチルフェノール)、4,4’-チオビス(2-メチル-6-tert-ブチルフェノール)、4,4’-チオビス(3-メチル-6-tert-ブチルフェノール)などが好適である。チオビスフェノール化合物の含有量は、冷凍機油全質量を基準として、0.05~1.0質量%が好ましく、0.1~0.5質量%がより好ましい。
 芳香族アミン化合物としては、α-ナフチルアミン、N-フェニル-1-ナフチルアミンなどが挙げられ、炭素数4~12のアルキル基を有するジ(アルキルフェニル)アミン(例えば、p,p’-ジ-オクチル-ジフェニルアミン)やアルキル化フェニル-α-ナフチルアミン、アルキル化フェニル-β-ナフチルアミンが好ましい。芳香族アミン化合物の含有量は、冷凍機油全質量を基準として、好ましくは0.05~1.0質量%、より好ましくは0.1~0.5質量%である。
 フェノール化合物としては、2,6-ジ-tert-ブチル-4-メチルフェノール、2,6-ジ-tert-ブチル-4-エチルフェノールなどが好適である。フェノール化合物の含有量は、冷凍機油全質量を基準として、0.05~1.0質量%が好ましく、0.1~0.5質量%がより好ましい。
 ベンゾトリアゾール化合物としては、ベンゾトリアゾール、各種アルキル基の1-〔ビス(アルキル)アミノメチル〕-アルキル-1H-ベンゾトリアゾールで、例えば1-〔ビス(2-エチルヘキシル)アミノメチル〕-4-メチル-1H-ベンゾトリアゾールが挙げられる。ベンゾトリアゾール化合物の含有量は、冷凍機油全質量を基準として、好ましくは0.05~1.0質量%、より好ましくは0.1~0.5質量%である。
 また、本実施形態に係る冷凍機油は、ヒンダードフェノールなどの酸化防止剤、リン酸エステル、有機硫黄化合物などの摩耗防止剤、一価アルコール、高級脂肪酸類などの油性剤、ベンゾトリアゾール誘導体などの金属不活性化剤、シリコーンオイルなどの消泡剤等の添加剤を適宜添加することができる。さらには、冷凍機油の流動点を下げるためにポリメタクリレートなどの流動点降下剤を添加することができ、その添加量は冷凍機油全質量を基準として0.05~1.0質量%、好ましくは0.1~0.5質量%である。
 一実施形態によれば、本発明の冷凍機油は、冷凍機油の全質量に対して、10質量%以上40質量%以下のポリアルキレングリコールと;60質量%以上90質量%以下の鉱油と;0.05質量%以上3.0質量%以下のチオビスフェノール化合物と;0.1質量%以上3.0質量%以下の芳香族アミン化合物、フェノール化合物およびベンゾトリアゾール化合物からなる群より選択される1種以上の添加剤と;を含む。ここで、ポリアルキレングリコール、鉱油、チオビスフェノール化合物および添加剤の合計は100質量%とする。
 一実施形態によれば、本発明の冷凍機油は、冷凍機油の全質量に対して、10質量%以上40質量%以下のポリアルキレングリコールと;60質量%以上90質量%以下の鉱油と;0.1質量%以上15質量%以下のエステル化合物と;0.1質量%以上3.0質量%以下の芳香族アミン化合物、フェノール化合物およびベンゾトリアゾール化合物からなる群より選択される1種以上の添加剤と;を含む。ここで、ポリアルキレングリコール、鉱油、エステル化合物および添加剤の合計は100質量%とする。
 また、一実施形態によれば、本発明の冷凍機油は、冷凍機油の全質量に対して、10質量%以上40質量%以下のポリアルキレングリコールと;60質量%以上90質量%以下の鉱油と;0.05質量%以上3.0質量%以下のチオビスフェノール化合物と;0.1質量%以上15質量%以下のエステル化合物と;0.1質量%以上3.0質量%以下の芳香族アミン化合物、フェノール化合物およびベンゾトリアゾール化合物からなる群より選択される1種以上の添加剤と;を含む。ここで、ポリアルキレングリコール、鉱油、チオビスフェノール化合物、エステル化合物および添加剤の合計は100質量%とする。
 冷凍サイクル装置の効率の面から、本発明の冷凍機油の40℃における動粘度は、好ましくは0.1mm/s以上65mm/s以下であり、より好ましくは0.5mm/s以上60mm/s以下であり、さらに好ましくは1mm/s以上50mm/s以下であり、特に好ましくは1mm/s以上45mm/s以下であり、最も好ましくは5mm/s以上40mm/s以下である。一実施形態において、冷凍機油の40℃における動粘度の上限は、40mm/s以下であることが好ましく、39mm/s以下であることがより好ましく、35mm/s以下であることがさらに好ましく、30mm/s以下であることがさらにより好ましく、28mm/s以下であることが特に好ましい。また、一実施形態において、冷凍機油の40℃における動粘度の下限は、0.1mm/s以上であることがより好ましく、さらに好ましくは0.2mm/s以上、さらにより好ましくは0.5mm/s以上、特に好ましくは1mm/s以上であり、最も好ましくは1.5mm/s以上である。冷凍機油の動粘度が上記範囲である場合、本発明の効果がより発揮される。一実施形態において、冷凍機油は、40℃における動粘度が0.1mm/s以上30mm/s以下である。
 本発明の冷凍機油は、通常、冷凍サイクル装置において、上述したような炭化水素を含む冷媒と混合された作動媒体の形で存在している。この作動媒体における冷凍機油と炭化水素を含む冷媒との配合割合は特に制限されないが、炭化水素を含む冷媒100質量部に対して冷凍機油が好ましくは1~500質量部、より好ましくは2~400質量部である。
 なお、本発明において、「冷媒との相溶性に優れる(冷媒との適切な相溶性を有する)」とは、二層分離温度が低く、かつ冷媒と溶けすぎないことを意味する。本発明では、冷媒と冷凍機油との二層分離温度が、好ましくは-30℃以下であり、より好ましくは-35℃以下であり、さらに好ましくは-40℃以下であり、さらにより好ましくは-45℃以下である。二層分離温度の下限は、冷凍サイクルにおける蒸発器からコンプレッサへの冷凍機油の戻りと冷凍機油の潤滑性のバランスで決定され、冷凍システムの設計に依存する。二層分離温度は、後述の実施例に記載の方法により測定される。また、ポリアルキレングリコールは、鉱油およびポリオールエステルに比べると極性が高く、炭化水素を含む冷媒と溶けすぎることがない。よって、本発明に係る冷凍機油は、鉱油に加えてポリアルキレングリコールを含むことにより、冷媒と溶けすぎることがない。以上のように、本発明に係る冷凍機油は冷媒との相溶性に優れる(冷媒との適切な相溶性を有する)ため、本発明に係る冷凍機油を含む作動媒体は、強燃性の炭化水素を含む冷媒の充填量が少なくても良好な性能を発揮できるものである。
 本発明において冷凍機油が有する高い安定性とは、熱・化学安定性試験(後述の実施例に詳細な方法を記載)の前後において、冷凍機油の酸価が0.01~0.05mgKOH/gである;冷凍機油の色相がL0.5~L1.0である;の少なくともひとつを達成するものである。酸価が熱・化学安定性試験前後において上記範囲内である場合、安定性が高い(熱安定性に優れる)といえる。また、冷凍機油の色相が熱・化学安定性試験前後において上記範囲内である場合、安定性が高い(熱安定性に優れる)といえる。
 本発明において、冷凍機油が有する潤滑性は、焼付荷重により評価される。具体的には、焼付荷重が、3000N未満であることが好ましく、2950N未満であることがより好ましい。焼付荷重は、後述の実施例に記載の方法により測定される。
 本発明において、冷凍機油は、吸湿性が低い方が好ましく、例えば、冷凍機油の飽和水分は、1%未満であることが好ましく、0.9%以下であることがより好ましく、0.7質量%以下であることがさらに好ましく、0.6質量%以下であることが特に好ましい。飽和水分は、後述の実施例に記載の方法により測定される。
 本発明において、冷凍機油が有する電気絶縁性は、体積抵抗率により評価される。具体的には、体積抵抗率が、1.0×1011Ω・cm以上であることが好ましく、5.0×1011Ω・cm以上であることがより好ましく、1.0×1012Ω・cm以上であることがさらに好ましい。体積抵抗率は、後述の実施例に記載の方法により測定される。
 本発明の作動媒体は、冷凍サイクル装置に好適に用いることができ、例えば、往復動式や回転式の密閉型圧縮機を有する空調機、電気冷蔵庫、産業用冷凍機に好ましく用いられる。また、本発明の作動媒体は、除湿機、給湯器、冷凍庫、冷凍冷蔵倉庫、ショーケース、自動販売機、化学プラント等の冷却装置に好ましく用いられる。さらには、遠心式の圧縮機を有するものにも好ましく用いられる。本発明の作動媒体は、密閉型の冷凍サイクル装置に好適に用いることができる。よって、本発明によれば、作動媒体を用いた密封型冷凍サイクル装置も提供される。
 本発明の実施形態を詳細に説明したが、これは説明的かつ例示的なものであって限定的ではなく、本発明の範囲は添付の特許請求の範囲によって解釈されるべきであることは明らかである。
 本発明は、下記態様および形態を包含する。
 [1]炭素数2~4のハロゲン原子を含まない炭化水素を含む冷媒と、ポリアルキレングリコールおよび鉱油を含む冷凍機油と、を含み、前記ポリアルキレングリコールは、下記一般式(1):
Figure JPOXMLDOC01-appb-C000010
[式(1)中、Rは炭素数1~25の直鎖もしくは分岐鎖のアルキル基であり、ORは、同一または異なって、炭素数2~4のオキシアルキレン基を表し、nはORで表されるオキシアルキレン基の付加モル数を表す。]
で表され、40℃における動粘度が2mm/s以上60mm/s以下であり、前記鉱油は、アニリン点が55℃以上105℃以下であり、流動点が-15℃以下であり、40℃における動粘度が2mm/s以上100mm/s以下であり、前記ポリアルキレングリコールは、前記冷凍機油の全質量に対して、10質量%以上60質量%以下で含有され、前記鉱油は、前記冷凍機油の全質量に対して、40質量%以上90質量%以下で含有される、冷媒圧縮式冷凍サイクル装置用作動媒体。
 [2]炭素数2~4のハロゲン原子を含まない炭化水素を含む冷媒と、ポリアルキレングリコールおよび鉱油を含む冷凍機油と、チオビスフェノール化合物と、を含み、前記ポリアルキレングリコールは、下記一般式(1):
Figure JPOXMLDOC01-appb-C000011
[式(1)中、Rは炭素数1~25の直鎖もしくは分岐鎖のアルキル基であり、ORは、同一または異なって、炭素数2~4のオキシアルキレン基を表し、nはORで表されるオキシアルキレン基の付加モル数を表す。]
で表され、40℃における動粘度が2mm/s以上60mm/s以下であり、前記鉱油は、アニリン点が55℃以上105℃以下であり、流動点が-15℃以下であり、40℃における動粘度が2mm/s以上100mm/s以下であり、前記ポリアルキレングリコールは、前記冷凍機油の全質量に対して、10質量%以上60質量%以下で含有され、前記鉱油は、前記冷凍機油の全質量に対して、40質量%以上90質量%以下で含有される、冷媒圧縮式冷凍サイクル装置用作動媒体。
 [3]前記チオビスフェノール化合物が、前記冷凍機油全質量に対して、0.05質量%以上3.0質量%以下で含有される、上記[2]に記載の冷媒圧縮式冷凍サイクル装置用作動媒体。
 [4]前記冷凍機油は、0.1質量%以上20質量%以下のエステル化合物をさらに含有する、請求項上記[1]~[3]のいずれかに記載の冷媒圧縮式冷凍サイクル装置用作動媒体。
 [5]前記鉱油は、アニリン点が55℃以上95℃以下であり、流動点が-30℃以下のナフテン系鉱油である、上記[1]~[4]のいずれかに記載の冷媒圧縮式冷凍サイクル装置用作動媒体。
 [6]前記冷凍機油は、25℃における体積抵抗率が1×1011Ω・cm以上である、上記[1]~[5]のいずれかに記載の冷媒圧縮式冷凍サイクル装置用作動媒体。
 [7]前記冷凍機油は、湿度50%で25℃における飽和水分が1質量%以下であり、-10℃において均一な液体である、上記[1]~[6]のいずれかに記載の冷媒圧縮式冷凍サイクル装置用作動媒体。
 [8]前記冷媒は、プロパンである、上記[1]~[7]のいずれかに記載の冷媒圧縮式冷凍サイクル装置用作動媒体。
 [9] 前記冷媒は、プロパンである、上記[1]~[8]のいずれかに記載の冷媒圧縮式冷凍サイクル装置用作動媒体。
 [10]前記ポリアルキレングリコールは、前記一般式(1)のRが炭素数4のアルキル基であり、ORがオキシプロピレン基である、上記[1]~[8]のいずれかに記載の冷媒圧縮式冷凍サイクル装置用作動媒体。
 [11]前記冷凍機油は、アミン化合物、フェノール化合物およびベンゾトリアゾール化合物からなる群より選択される1種以上の添加剤を、前記冷凍機油全質量に対して、0.1質量%以上3.0質量%以下で含有する、上記[1]~[9]のいずれかに記載の冷媒圧縮式冷凍サイクル装置用作動媒体。
 [12]前記冷凍機油は、前記冷凍機油の全質量に対して、10質量%以上40質量%以下の前記ポリアルキレングリコールと、60質量%以上90質量%以下の前記鉱油と、0.1質量%以上15質量%以下の前記エステル化合物と、を含む、上記[4]に記載の冷媒圧縮式冷凍サイクル装置用作動媒体。
 [13]炭素数2~4のハロゲン原子を含まない炭化水素を含む冷媒と、ポリアルキレングリコールおよび鉱油を含む冷凍機油と、チオビスフェノール化合物と、を含み、前記ポリアルキレングリコールは、下記一般式(1):
Figure JPOXMLDOC01-appb-C000012
[式(1)中、Rは炭素数1~25の直鎖もしくは分岐鎖のアルキル基であり、ORは、同一または異なって、炭素数2~4のオキシアルキレン基を表し、nはORで表されるオキシアルキレン基の付加モル数を表す。]
で表され、40℃における動粘度が2mm/s以上60mm/s以下であり、前記鉱油は、アニリン点が55℃以上105℃以下であり、流動点が-15℃以下であり、40℃における動粘度が2mm/s以上100mm/s以下であり、前記ポリアルキレングリコールは、前記冷凍機油の全質量に対して、10質量%以上60質量%以下で含有され、前記鉱油は、前記冷凍機油の全質量に対して、40質量%以上90質量%以下で含有される、耐摩耗用冷媒圧縮式冷凍サイクル装置用作動媒体。
 [14]上記[1]~[13]のいずれかに記載の作動媒体を用いた密封型冷凍サイクル装置。
 以下、実施例および比較例に基づき本発明をさらに具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。また、実施例において、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度40~50%RHの条件で行う。
 以下の実施例では、冷媒として、プロパンの代わりにペンタンを用いる場合がある。ペンタンは、極性または比誘電率の観点から、冷媒としてプロパンと同様の相溶性を冷凍機油に対して示すものと考えられる。また、後述の二層分離温度は、冷媒としてペンタンを用いた場合でも、冷媒としてプロパンを用いた場合と同様の数値が得られることが確認されている。よって、以下の実施例において冷媒としてペンタンを用いた実施例は、本願発明の構成要件を満たしているものとみなす。
 下記で示す各成分を混合し、40℃で10分間撹拌することにより、実施例1~8および比較例1~8の各冷凍機油を得た。
 (実施例1)
 R(末端)がn-ブチル基、ORがオキシプロピレン基で、動粘度が40℃で10.5mm/s、100℃で2.8mm/s、流動点が-50℃のポリプロピレングリコール(冷凍機油全質量に対して40.0質量%)と;動粘度が40℃で7.1mm/s、100℃で2.2mm/s、流動点が-35℃で、アニリン点が90℃のパラフィン系鉱油(冷凍機油全質量に対して60.0質量%)と;を含む冷凍機油(添加剤の配合なし)。
 (実施例2)
 実施例1のポリプロピレングリコール(冷凍機油全質量に対して40.0質量%)と;動粘度が40℃で10.5mm/s、100℃で2.5mm/s、流動点が-45℃で、アニリン点が65℃のナフテン系鉱油(冷凍機油全質量に対して60.0質量%)と;を含む冷凍機油(添加剤の配合なし)。
 (実施例3)
 実施例1のポリプロピレングリコール(冷凍機油全質量に対して40.0質量%)と;動粘度が40℃で45.4mm/s、100℃で5.5mm/s、流動点が-40℃で、アニリン点が77℃のナフテン系鉱油(冷凍機油全質量に対して60.0質量%)と;を含む冷凍機油(添加剤の配合なし)。
 (比較例1)
 実施例1のポリプロピレングリコール(冷凍機油全質量に対して40.0質量%)と;動粘度が40℃で45.0mm/s、100℃で6.7mm/s、流動点が-15℃で、アニリン点が106℃のパラフィン系鉱油(冷凍機油全質量に対して60.0質量%)と;を含む冷凍機油(添加剤の配合なし)。
 (比較例2)
 実施例1のポリプロピレングリコール(冷凍機油全質量に対して40.0質量%)と;動粘度が40℃で97.0mm/s、100℃で10.9mm/s、流動点が-15℃で、アニリン点が115℃のパラフィン系鉱油(冷凍機油全質量に対して60.0質量%)と;を含む冷凍機油(添加剤の配合なし)。
 (比較例3)
 R(末端)がn-ブチル基、ORがオキシプロピレン基で、動粘度が40℃で108mm/s、100℃で19.3mm/s、流動点が-45℃のポリプロピレングリコール(冷凍機油全質量に対して40.0質量%)と;動粘度が40℃で10.5mm/s、100℃で2.5mm/s、流動点が-45℃で、アニリン点が65℃のナフテン系鉱油(冷凍機油全質量に対して60.0質量%)と;を含む冷凍機油(添加剤なし)。
 (比較例4)
 R(末端)がn-ブチル基、ORがオキシプロピレン基で、動粘度が40℃で108mm/s、100℃で19.3mm/s、流動点が-45℃のポリプロピレングリコール(冷凍機油全質量に対して40.0質量%)と;動粘度が40℃で45.4mm/s、100℃で5.5mm/s、流動点が-40℃で、アニリン点が77℃のナフテン系鉱油(冷凍機油全質量に対して60.0質量%)と;を含む冷凍機油(添加剤なし)。
 (実施例4)
 R(末端)がn-ブチル基、ORがオキシプロピレン基で、動粘度が40℃で10.5mm/s、100℃で2.7mm/sで、流動点が-50℃のポリプロピレングリコール(冷凍機油全質量に対して30.0質量%)と;動粘度が40℃で46.5mm/s、100℃で5.4mm/sで、流動点が-35℃で、アニリン点が78℃でのナフテン系鉱油(冷凍機油全質量に対して70.0質量%)と;を含む冷凍機油(添加剤の配合なし)。
 (実施例5)
 R(末端)がエチル基、ORがオキシプロピレン基で、動粘度が40℃で22.1mm/s、100℃で5.1mm/sで、流動点が-50℃のポリプロピレングリコール(冷凍機油全質量に対して29.9質量%)と;動粘度が40℃で22.2mm/s、100℃で3.7mm/sで、流動点が-45℃で、アニリン点が72℃のナフテン系鉱油(冷凍機油全質量に対して69.9質量%)と;添加剤として、4,4’-チオビス(2-メチル-6-tert-ブチルフェノール)(冷凍機油全質量に対して0.2質量%)と;を含む冷凍機油。
 (実施例6)
 R(末端)がtert-ブチル基、ORがオキシエチレン基およびオキシプロピレン基で、動粘度が40℃で32.7mm/s、100℃で7.3mm/sで、流動点が-40℃のポリエチレンポリプロピレングリコール(オキシエチレン基とオキシプロピレン基との割合はモル比で1対9、冷凍機油全質量に対して19.8質量%)と;動粘度が40℃で10.6mm/s、100℃で2.5mm/sで、流動点が-45℃で、アニリン点が65℃のナフテン系鉱油(冷凍機油全質量に対して79.3質量%)と;添加剤として、4,4’-チオビス(2-メチル-6-tert-ブチルフェノール)(冷凍機油全質量に対して0.2質量%)およびp,p’-ジ-オクチル-ジフェニルアミン(冷凍機油全質量に対して0.5質量%)と;油性剤として、グリセロールモノオレエート(冷凍機油全質量に対して0.2質量%)と;を含む冷凍機油。
 (実施例7)
 R(末端)がn-ブチル基、ORがオキシプロピレン基で、動粘度が40℃で32.5mm/s、100℃で7.1mm/sで、流動点が-50℃のポリプロピレングリコール(冷凍機油全質量に対して40質量%)と;動粘度が40℃で7.1mm/s、100℃で2.2mm/sで、流動点が-35℃で、アニリン点が90℃のパラフィン系鉱油(冷凍機油全質量に対して50質量%)と;エステル化合物として、ジオクチルセバケート(冷凍機油全質量に対して10質量%)と;を含む冷凍機油(添加剤の配合なし)。
 (実施例8)
 実施例1のポリプロピレングリコール(冷凍機油全質量に対して30.0質量%)と;動粘度が40℃で95.8mm/s、100℃で8.4mm/s、流動点が-30℃で、アニリン点が82℃のナフテン系鉱油(冷凍機油全質量に対して70.0質量%)と;を含む冷凍機油(添加剤の配合なし)。
 (比較例5)
 R(末端)がn-ブチル基、ORがオキシプロピレン基で、動粘度が40℃で32.5mm/s、100℃で7.1mm/sで、流動点が-50℃のポリプロピレングリコール(冷凍機油全質量に対して40質量%)と;動粘度が40℃で136mm/s、100℃で13.7mm/sで、流動点が-15℃で、アニリン点が118℃のパラフィン系鉱油(冷凍機油全質量に対して60質量%)と;を含む冷凍機油(添加剤の配合なし)。
 (比較例6)
 R(末端)がn-ブチル基、ORがオキシプロピレン基で、動粘度が40℃で32.5mm/s、100℃で7.1mm/sで、流動点が-50℃のポリプロピレングリコール(冷凍機油全質量に対して40質量%)と;動粘度が40℃で9.8mm/s、100℃で2.6mm/sで、流動点が-5℃で、アニリン点が85℃のパラフィン系鉱油(冷凍機油全質量に対して60質量%)と;を含む冷凍機油(添加剤の配合なし)。
 (比較例7)
 R(末端)がn-ブチル基、ORがオキシプロピレン基で、動粘度が40℃で32.5mm/s、100℃で7.1mm/sで、流動点が-50℃のポリプロピレングリコール(冷凍機油全質量に対して100質量%)の冷凍機油(添加剤の配合なし)。
 (比較例8)
 動粘度が40℃で22.2mm/s、100℃で3.7mm/sで、流動点が-45℃で、アニリン点が72℃のパラフィン系鉱油(冷凍機油全質量に対して100質量%)の冷凍機油(添加剤の配合なし)。
 [評価]
 実施例および比較例で用いたポリアルキレングリコールおよび鉱油について、動粘度、アニリン点、流動点は以下の方法に従って評価した。また、実施例および比較例で得られた各冷凍機油について、アンモニア冷媒との分離試験、粘度(動粘度の測定)、低温特性(流動点の測定)、電気絶縁性(体積抵抗率の測定)、吸湿性(飽和水分の測定)、潤滑性(焼付荷重の測定)、相溶性(炭化水素冷媒と混合時の二層分離温度の測定)および熱・化学安定性(色相、酸価の測定)の評価試験を実施した。
 〈動粘度、アニリン点、流動点〉
 動粘度は、JIS K2283(2000);アニリン点は、JIS K2256(2013年);流動点は、JIS K2269(1987)に準拠して測定した。
 〈体積抵抗率〉
 体積抵抗率は、JIS C2101(2010)に準拠して測定した。
 〈-25℃における安定性試験〉
 目視で、-25℃における冷凍機油の状態を観察した。実施例および比較例の各冷凍機油0.1Lをガラス容器(0.3L)に入れた後、密閉し、所定の温度(-10℃および-25℃)において5時間静置し、液体の状態を観察した。炭化水素冷媒に用いる冷凍機油は、-25℃で均一液体であることが必須である。よって、-25℃での安定性試験において、均一な液体である(分離しない)ことが必要である。
 〈アンモニア冷媒との分離試験〉
 冷凍機油10質量%とアンモニア90質量%とをガラスチューブに封入し、室温(25℃)で30分静置後の状態を観察した。アンモニア冷媒と冷凍機油とが分離する場合、その冷凍機油が密封型の冷凍サイクルでの使用できないことを意味する。
 〈飽和水分〉
 温度30℃、湿度80%で48時間後(冷凍機油50gを100mlのビーカーで静置)の水分量を測定した。水分測定はJIS K2275-2(2015年版)に準拠した。
 〈熱・化学安定性の評価〉
 各冷凍機油30gと、イソブタン(R600a)30gと、触媒(鉄、銅、アルミの各線)とをオートクレーブに封入した後、175℃に加熱して7日間保持して試験した。試験後は冷凍機油の色相および酸価を評価した。色相は、ASTM D156に準拠して測定した。酸価は、JIS K2501(2003)に準拠して測定した。また、熱・化学安定性の評価では、冷媒としてイソブタンを用いて行っているが、プロパンで行った場合も熱・化学安定性は同様の結果が得られることが確認された。
 〈焼付荷重〉
 ASTMD-3233-19法に準拠 回転数:290rpm、温度:室温。
 〈炭化水素冷媒との二層分離温度〉
 冷凍機油と炭化水素冷媒との相溶性試験として、JIS法(冷凍機油:K2211(2009))に準拠し、二層分離温度の測定を行った。なお、相溶性試験は、冷媒としてプロパンの代わりにペンタンを用いて、冷媒42.5gに対して、冷凍機油7.5gで行った。なお、本実施例では、室温(25℃)から-50℃までの温度範囲で測定を行った。そのため、冷凍機油と冷媒とを含む試料において、-50℃においても分離を生じなかった場合、その二層分離温度は「-50℃以下」(表中、「<-50℃」と記載)と評価した。
 得られた結果を表1および表2に示した。なお、表1および表2において、「PAG」はポリアルキレングリコールを示し、「-」は該当する成分を用いなかったことを示す。また、冷凍機油を25℃において30分間静置して二層に分離したサンプルは、各種評価が測定できなかった(表中、「二層に分離」または「NA」と記載)。
 なお、二層分離温度の評価では、冷媒としてペンタンを用いて行っているが、プロパンで行った場合でも同様の結果が得られることは上述のとおりである。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 表1および表2から、特定のポリアルキレングリコールと特定の鉱油の組み合わせでのみ-25℃の低温でも均一な液体であり、冷凍機油として使用できることがわかる。なお、実施例および比較例のいずれの冷凍機油もアンモニアとの混合では白濁分離することから、実施例1~8の冷凍機油は、密閉系の、冷媒と冷凍機油とが混合されて循環する冷凍サイクルの冷凍機油としては使用できないことがわかる。
 表1および表2から、実施例1~8の冷凍機油は特性のバランスの良い冷凍機油であることがわかる。つまり、実施例1~8の冷凍機油は、流動点が充分に低く、低温でも均一な液体であり、電気絶縁性(体積抵抗率)、潤滑性(焼付荷重)、および熱・化学的安定性が良好で、炭化水素冷媒との二層分離温度および吸湿性(水分含量)も良好である。比較例5は、動粘度が60mm/sを超え、アニリン点が105℃を超える鉱油と特定のポリアルキレングリコールとを組み合わせた冷凍機油であるが、二層に分離して均一な液体とならないため、冷凍機油としての使用に適していないことわかった。比較例6は、粘度流動点が-15℃以上の鉱油と特定のポリアルキレングリコールとを組み合わせた冷凍機油であるが、冷凍機油の流動点が高くなり、潤滑性が不充分であり、冷凍機油としての使用に適していないことがわかる。
 比較例7の冷凍機油は、特定のポリアルキレングリコールを単独で含む冷凍機油であるが、潤滑性(焼付荷重)は良好だが、電気絶縁性(体積抵抗率)が低く、吸湿性が高い(飽和水分が多い)。実施例5、6の冷凍機油は、添加剤の配合により、潤滑性の点において、比較例7の冷凍機油と遜色ないレベルになり、鉱油を単独で含む冷凍機油である比較例8よりもかなり高い潤滑性を有することがわかる。比較例8の冷凍機油は、潤滑性に劣り、熱・化学安定性において油の着色が見られ、安定性の面で劣ることがわかる。なお、鉱油は炭化水素であることから、同じ炭化水素の冷媒とは溶け合いすぎるという問題がある。
 次に、チオビスフェノール化合物を含む冷凍機油を調製し、チオビスフェノール化合物の効果を評価した。まず、下記に示す各成分を混合し、40℃で10分間撹拌することにより、実施例9~13の各冷凍機油を得た。得られた各冷凍機油を用いて、下記に示す方法に従って潤滑性試験を行った。
 (実施例9)
 実施例1の冷凍機油(基油)に4,4’-チオビス(2,6-ジ-tert-ブチルフェノール)を0.3質量%含む冷凍機油。
 (実施例10)
 実施例1の基油に4,4’-チオビス(2-メチル-6-tert-ブチルフェノール)を0.2質量含む冷凍機油。
 (実施例11)
 実施例1の基油に4,4’-チオビス(3-メチル-6-tert-ブチルフェノール)を0.1質量%含む冷凍機油
 (実施例12)
 実施例1の冷凍機油(基油のみ)。
 (実施例13)
 実施例1の基油に、代表的な冷凍機油用摩耗防止剤であるトリクレジルフォスフェート(TCP)を0.5質量%含む冷凍機油。
 <潤滑性試験>
 チオビスフェノール化合物の効果を潤滑性試験で評価した。評価試験にはストライベック曲線により各潤滑領域(流体潤滑領域、混合潤滑領域、境界潤滑領域)の評価ができ、
実際の機械と相関があると言われている、英国のPCS Instrument社製のMTM(Mini Traction Machine)試験機を用いた。
 なお、試験は、通常の空気中と、冷凍機油とより相関のある酸素の無い雰囲気にした窒素ガス吹き込み条件(100ml/min)との2つの雰囲気下で行い、スチールボール(直径3/4インチ)とスチールディスク(直径46mm)との摩擦試験(転がり/すべり接触)における摩擦特性を測定した。試験条件は、油温:40℃、荷重:10N、滑り率:30%、周速:10~2500mm/sで行った。
 この試験では周速が遅いほど厳しい条件となる。試験により得られた摩擦係数については、以下の評価基準に基づき、A~Cで評価される。
(評価基準)
A:摩擦係数0.03未満:流体潤滑領域。金属同士の接触が無いため摩耗が無い。
B:摩擦係数0.03~0.05:混合潤滑領域。わずかに摩耗がある。
C:摩擦係数0.05超え:境界潤滑領域。高いほど摩耗が多い。
 なお、表3の評価結果は、周速500mm/sと周速50mm/sとにおける摩擦係数を上記評価に基づき、A~Cで示し、摩擦係数の数値をカッコ内に示した。
Figure JPOXMLDOC01-appb-T000015
 表3の結果から、本発明に係る冷凍機油においてチオビスフェノールを含む場合、酸素の無い窒素雰囲気でも摩擦係数が低く、潤滑性に優れることがわかる。また、一般に冷凍機油の摩耗防止添加剤として使用されているリン酸エステルであるTCPは空気中ではその効果があるものの、酸素の無い窒素雰囲気では効果が小さくなる(実施例13)。
 以上のように、本発明によれば、冷凍サイクル装置へのエタン、プロパン、ノルマルブタン、イソブタンなどの炭化水素を含む冷媒使用時に、良好な性能を発揮できる作動媒体を提供できる。
 本出願は、2021年10月27日に出願された国際特許出願PCT/JP2021/039624号に基づいており、その開示内容は、その全体が参照により本明細書に組みこまれる。

Claims (14)

  1.  炭素数2~4のハロゲン原子を含まない炭化水素を含む冷媒と、ポリアルキレングリコールおよび鉱油を含む冷凍機油と、を含み、
     前記ポリアルキレングリコールは、下記一般式(1):
    Figure JPOXMLDOC01-appb-C000001

    [式(1)中、Rは炭素数1~25の直鎖もしくは分岐鎖のアルキル基であり、ORは、同一または異なって、炭素数2~4のオキシアルキレン基を表し、nはORで表されるオキシアルキレン基の付加モル数を表す。]
    で表され、40℃における動粘度が2mm/s以上60mm/s以下であり、
     前記鉱油は、アニリン点が55℃以上105℃以下であり、流動点が-15℃以下であり、40℃における動粘度が2mm/s以上100mm/s以下であり、
     前記ポリアルキレングリコールは、前記冷凍機油の全質量に対して、10質量%以上60質量%以下で含有され、前記鉱油は、前記冷凍機油の全質量に対して、40質量%以上90質量%以下で含有される、冷媒圧縮式冷凍サイクル装置用作動媒体。
  2.  炭素数2~4のハロゲン原子を含まない炭化水素を含む冷媒と、ポリアルキレングリコールおよび鉱油を含む冷凍機油と、チオビスフェノール化合物と、を含み、
     前記ポリアルキレングリコールは、下記一般式(1):
    Figure JPOXMLDOC01-appb-C000002

    [式(1)中、Rは炭素数1~25の直鎖もしくは分岐鎖のアルキル基であり、ORは、同一または異なって、炭素数2~4のオキシアルキレン基を表し、nはORで表されるオキシアルキレン基の付加モル数を表す。]
    で表され、40℃における動粘度が2mm/s以上60mm/s以下であり、
     前記鉱油は、アニリン点が55℃以上105℃以下であり、流動点が-15℃以下であり、40℃における動粘度が2mm/s以上100mm/s以下であり、
     前記ポリアルキレングリコールは、前記冷凍機油の全質量に対して、10質量%以上60質量%以下で含有され、前記鉱油は、前記冷凍機油の全質量に対して、40質量%以上90質量%以下で含有される、冷媒圧縮式冷凍サイクル装置用作動媒体。
  3.  前記チオビスフェノール化合物が、前記冷凍機油全質量に対して、0.05質量%以上3.0質量%以下で含有される、請求項2に記載の冷媒圧縮式冷凍サイクル装置用作動媒体。
  4.  前記冷凍機油は、0.1質量%以上20質量%以下のエステル化合物をさらに含有する、請求項1または2に記載の冷媒圧縮式冷凍サイクル装置用作動媒体。
  5.  前記鉱油は、アニリン点が55℃以上95℃以下であり、流動点が-30℃以下のナフテン系鉱油である、請求項1または2に記載の冷媒圧縮式冷凍サイクル装置用作動媒体。
  6.  前記冷凍機油は、25℃における体積抵抗率が1×1011Ω・cm以上である、請求項1または2に記載の冷媒圧縮式冷凍サイクル装置用作動媒体。
  7.  前記冷凍機油は、湿度50%で25℃における飽和水分が1質量%以下であり、-10℃において均一な液体である、請求項1または2に記載の冷媒圧縮式冷凍サイクル装置用作動媒体。
  8.  前記冷媒は、プロパンである、請求項1に記載の冷媒圧縮式冷凍サイクル装置用作動媒体。
  9.  前記冷媒は、プロパンである、請求項2または3に記載の冷媒圧縮式冷凍サイクル装置用作動媒体。
  10.  前記ポリアルキレングリコールは、前記一般式(1)のRが炭素数4のアルキル基であり、ORがオキシプロピレン基である、請求項1または2に記載の冷媒圧縮式冷凍サイクル装置用作動媒体。
  11.  前記冷凍機油は、アミン化合物、フェノール化合物およびベンゾトリアゾール化合物からなる群より選択される1種以上の添加剤を、前記冷凍機油全質量に対して、0.1質量%以上3.0質量%以下で含有する、請求項1または2に記載の冷媒圧縮式冷凍サイクル装置用作動媒体。
  12.  前記冷凍機油は、前記冷凍機油の全質量に対して、10質量%以上40質量%以下の前記ポリアルキレングリコールと、60質量%以上90質量%以下の前記鉱油と、0.1質量%以上15質量%以下の前記エステル化合物と、を含む、請求項4に記載の冷媒圧縮式冷凍サイクル装置用作動媒体。
  13.  炭素数2~4のハロゲン原子を含まない炭化水素を含む冷媒と、ポリアルキレングリコールおよび鉱油を含む冷凍機油と、チオビスフェノール化合物と、を含み、
     前記ポリアルキレングリコールは、下記一般式(1):
    Figure JPOXMLDOC01-appb-C000003

    [式(1)中、Rは炭素数1~25の直鎖もしくは分岐鎖のアルキル基であり、ORは、同一または異なって、炭素数2~4のオキシアルキレン基を表し、nはORで表されるオキシアルキレン基の付加モル数を表す。]
    で表され、40℃における動粘度が2mm/s以上60mm/s以下であり、
     前記鉱油は、アニリン点が55℃以上105℃以下であり、流動点が-15℃以下であり、40℃における動粘度が2mm/s以上100mm/s以下であり、
     前記ポリアルキレングリコールは、前記冷凍機油の全質量に対して、10質量%以上60質量%以下で含有され、前記鉱油は、前記冷凍機油の全質量に対して、40質量%以上90質量%以下で含有される、耐摩耗用冷媒圧縮式冷凍サイクル装置用作動媒体。
  14.  請求項1または2に記載の作動媒体を用いた密封型冷凍サイクル装置。
PCT/JP2022/039731 2021-10-27 2022-10-25 冷媒圧縮式冷凍サイクル装置用作動媒体および該作動媒体を用いた冷凍サイクル装置 WO2023074686A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023556461A JPWO2023074686A1 (ja) 2021-10-27 2022-10-25
KR1020247015289A KR20240076830A (ko) 2021-10-27 2022-10-25 냉매 압축식 냉동 사이클 장치용 작동 매체 및 해당 작동 매체를 이용한 냉동 사이클 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2021/039624 2021-10-27
PCT/JP2021/039624 WO2023073826A1 (ja) 2021-10-27 2021-10-27 冷媒圧縮式冷凍サイクル装置用作動媒体および該作動媒体を用いた冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2023074686A1 true WO2023074686A1 (ja) 2023-05-04

Family

ID=86157936

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2021/039624 WO2023073826A1 (ja) 2021-10-27 2021-10-27 冷媒圧縮式冷凍サイクル装置用作動媒体および該作動媒体を用いた冷凍サイクル装置
PCT/JP2022/039731 WO2023074686A1 (ja) 2021-10-27 2022-10-25 冷媒圧縮式冷凍サイクル装置用作動媒体および該作動媒体を用いた冷凍サイクル装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039624 WO2023073826A1 (ja) 2021-10-27 2021-10-27 冷媒圧縮式冷凍サイクル装置用作動媒体および該作動媒体を用いた冷凍サイクル装置

Country Status (3)

Country Link
JP (1) JPWO2023074686A1 (ja)
KR (1) KR20240076830A (ja)
WO (2) WO2023073826A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181661A (ja) * 1999-12-28 2001-07-03 Idemitsu Kosan Co Ltd 自然系冷媒用冷凍機油組成物
JP2005325151A (ja) * 2004-05-12 2005-11-24 Japan Energy Corp 冷凍機用潤滑油組成物
JP2006275013A (ja) * 2005-03-30 2006-10-12 Nippon Oil Corp 冷媒圧縮機用試運転油、及び冷媒圧縮機の試運転方法
JP2014114354A (ja) * 2012-12-07 2014-06-26 Jx Nippon Oil & Energy Corp 冷凍機油組成物および冷凍機用作動流体組成物
WO2014112417A1 (ja) * 2013-01-17 2014-07-24 Jx日鉱日石エネルギー株式会社 冷凍機油および冷凍機用作動流体組成物
WO2014132676A1 (ja) * 2013-02-26 2014-09-04 Jx日鉱日石エネルギー株式会社 冷凍機油及び冷凍機用作動流体組成物
JP2018053199A (ja) * 2016-09-30 2018-04-05 出光興産株式会社 冷凍機油、及び冷凍機用組成物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5086782U (ja) 1973-12-12 1975-07-23
JPH0366451A (ja) 1989-08-03 1991-03-22 Nippon Steel Corp 薄板連続鋳造機用の振動ブラシ装置
JPH0460317A (ja) 1990-06-28 1992-02-26 Kubota Corp 湯水混合装置
WO2000060031A1 (fr) 1999-04-02 2000-10-12 Japan Energy Corporation Refrigerateur a compression de vapeur dans lequel une substance de refroidissement hydrocarbonee est utilisee
JP3909744B2 (ja) 2001-07-31 2007-04-25 株式会社ジャパンエナジー 炭化水素冷媒用冷凍機油

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181661A (ja) * 1999-12-28 2001-07-03 Idemitsu Kosan Co Ltd 自然系冷媒用冷凍機油組成物
JP2005325151A (ja) * 2004-05-12 2005-11-24 Japan Energy Corp 冷凍機用潤滑油組成物
JP2006275013A (ja) * 2005-03-30 2006-10-12 Nippon Oil Corp 冷媒圧縮機用試運転油、及び冷媒圧縮機の試運転方法
JP2014114354A (ja) * 2012-12-07 2014-06-26 Jx Nippon Oil & Energy Corp 冷凍機油組成物および冷凍機用作動流体組成物
WO2014112417A1 (ja) * 2013-01-17 2014-07-24 Jx日鉱日石エネルギー株式会社 冷凍機油および冷凍機用作動流体組成物
WO2014132676A1 (ja) * 2013-02-26 2014-09-04 Jx日鉱日石エネルギー株式会社 冷凍機油及び冷凍機用作動流体組成物
JP2018053199A (ja) * 2016-09-30 2018-04-05 出光興産株式会社 冷凍機油、及び冷凍機用組成物

Also Published As

Publication number Publication date
JPWO2023074686A1 (ja) 2023-05-04
WO2023073826A1 (ja) 2023-05-04
KR20240076830A (ko) 2024-05-30

Similar Documents

Publication Publication Date Title
JP6178839B2 (ja) 冷凍機油及び冷凍機用作動流体組成物
DK1366139T3 (en) Cooling-lubricant compositions
KR101987631B1 (ko) 냉동기유 및 냉동기용 작동 유체 조성물
JP6232371B2 (ja) 冷凍機用作動流体組成物、冷凍機油及びその製造方法
JP5231060B2 (ja) 冷媒用冷凍機油
CN105238360B (zh) 冷冻机用工作流体组合物以及冷冻机油
US10386099B2 (en) Desicating synthetic refrigeration oil composition for fluoro-olefin refrigeration systems
KR100983741B1 (ko) 폴리올 에스테르와 알킬벤젠의 배합물을 함유하는 윤활성 조성물
JP5248960B2 (ja) 冷凍機油および冷凍機用作動流体ならびに冷蔵庫
KR101580319B1 (ko) 냉매용 냉동기유
KR20040075914A (ko) 이산화탄소 냉각 시스템 및 공기 조절 시스템용 작동 매체
JP5248959B2 (ja) 冷凍機油および冷凍機用作動流体ならびに冷蔵庫
JP2774307B2 (ja) フッ化アルカン冷媒用冷凍機油
WO2023074686A1 (ja) 冷媒圧縮式冷凍サイクル装置用作動媒体および該作動媒体を用いた冷凍サイクル装置
CN105255567A (zh) 一种冷冻机油组合物及其应用
JP6059320B2 (ja) 冷凍機用作動流体組成物及び冷凍機油
JP2013173940A (ja) 冷凍機油および冷凍機用作動流体ならびに冷蔵庫
WO2000063326A1 (fr) Lubrifiant pour machine frigorifique utilisant un refrigerant a base d'ammoniac
CN114174483B (zh) 制冷剂压缩式制冷循环装置用工作介质及制冷循环装置
CN112266814B (zh) 冷冻机油、压缩机用工作流体组合物及压缩机
JPH10140170A (ja) 冷凍機作動流体用組成物
JPH0428792A (ja) 冷凍機油組成物
JP5572243B2 (ja) 冷凍機油および冷凍機用作動流体ならびに冷蔵庫

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22887012

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023556461

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20247015289

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE