WO2023074391A1 - Polymer composition, liquid crystal aligning agent, resin film, liquid crystal alignment film, method for producing liquid crystal display element, and liquid crystal display element - Google Patents

Polymer composition, liquid crystal aligning agent, resin film, liquid crystal alignment film, method for producing liquid crystal display element, and liquid crystal display element Download PDF

Info

Publication number
WO2023074391A1
WO2023074391A1 PCT/JP2022/038192 JP2022038192W WO2023074391A1 WO 2023074391 A1 WO2023074391 A1 WO 2023074391A1 JP 2022038192 W JP2022038192 W JP 2022038192W WO 2023074391 A1 WO2023074391 A1 WO 2023074391A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
organic group
formula
polymer composition
Prior art date
Application number
PCT/JP2022/038192
Other languages
French (fr)
Japanese (ja)
Inventor
崇 仲井
佳道 森本
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Publication of WO2023074391A1 publication Critical patent/WO2023074391A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to a polymer composition, a liquid crystal alignment agent, a resin film, a liquid crystal alignment film, a method for manufacturing a liquid crystal display element, and a liquid crystal display element.
  • Liquid crystal display elements used in liquid crystal televisions, navigators, smartphones, etc. are usually provided with a liquid crystal alignment film for controlling the alignment state of liquid crystals.
  • a liquid crystal alignment film has a function of controlling the alignment of liquid crystal molecules in a certain direction in a liquid crystal display element.
  • a liquid crystal display element has a structure in which liquid crystal molecules forming a liquid crystal layer are sandwiched between liquid crystal alignment films formed on respective surfaces of a pair of substrates. There, the liquid crystal molecules are aligned in a certain direction by the liquid crystal alignment film and respond by applying a voltage to the electrodes provided between the substrate and the liquid crystal alignment film. As a result, the liquid crystal display element displays a desired image by utilizing the alignment change due to the response of the liquid crystal molecules.
  • liquid crystal alignment films have mainly been polyimide-based liquid crystal alignment films, which are obtained by applying a liquid crystal alignment agent whose main component is a polyimide precursor such as polyamic acid (polyamic acid) or a solution of soluble polyimide to a glass substrate or the like and baking it. used.
  • a liquid crystal alignment agent whose main component is a polyimide precursor such as polyamic acid (polyamic acid) or a solution of soluble polyimide
  • a liquid crystal display device is used, and lateral electric field methods such as an IPS (In Plane Switching) method and an FFS (Fringe Field Switching) method are being studied because of the demand for viewing angle characteristics (Patent Document 1).
  • IPS In Plane Switching
  • FFS Frringe Field Switching
  • Liquid crystal alignment films used in liquid crystal display elements of the IPS driving method and the FFS driving method require an alignment regulating force for suppressing afterimages (hereinafter also referred to as AC afterimages) generated by long-term AC driving.
  • AC afterimages an alignment regulating force for suppressing afterimages
  • high display quality is regarded as important, and specifications for display defects such as "afterimages" are becoming more and more severe.
  • pretilt angles that are lower than before are becoming more popular. has become required.
  • the present invention provides a polymer composition suitable for a liquid crystal alignment agent that provides a liquid crystal alignment film having excellent resistance to AC afterimage and a low pretilt angle, the liquid crystal alignment agent, the liquid crystal alignment film, and
  • An object of the present invention is to provide a liquid crystal display device having the liquid crystal alignment film.
  • a polymer composition characterized by containing the following components (A) and (B).
  • Component (A) At least one polymer (A) selected from the group consisting of a polyimide precursor having a repeating unit represented by the following formula (a) and a polyimide which is an imidized product of the polyimide precursor.
  • X represents a tetravalent organic group.
  • Y represents a divalent organic group derived from a diamine.
  • Two R each independently represent a hydrogen atom or a monovalent organic group.
  • Two Z each independently represents a hydrogen atom or a monovalent organic group.
  • (X ar represents a tetravalent organic group derived from an aromatic tetracarboxylic dianhydride or a derivative thereof.
  • Each of the two R independently represents a hydrogen atom or a monovalent organic group.
  • E is A divalent organic group obtained by removing hydrogen atoms contained in two hydroxy groups from an organic diol, wherein the organic diol contains a divalent organic group represented by the following formula (EG).)
  • EG divalent organic group represented by the following formula (EG).
  • n is an integer of 5 or more.
  • R represents a hydrogen atom or a methyl group.
  • the polymer composition suitable for the liquid-crystal aligning agent which can obtain the liquid-crystal aligning film which has excellent resistance to AC afterimage and has a low pretilt angle, this liquid-crystal aligning agent, this liquid-crystal aligning film, and this liquid crystal A liquid crystal display element having an alignment film can be obtained. Further, the liquid crystal display element has high display quality with few display defects.
  • halogen atoms include fluorine, chlorine, bromine and iodine atoms.
  • Boc represents a tert-butoxycarbonyl group.
  • the polymer composition of the present invention is a polyimide precursor having a repeating unit represented by the above formula (a) (hereinafter also referred to as a polyimide precursor (A)) and a polyimide that is an imidized product of the polyimide precursor It contains at least one polymer (A) selected from the group consisting of:
  • the polymer (A) may be of one type or two or more types.
  • Y represents a divalent organic group derived from diamine.
  • the divalent organic group derived from diamine includes, for example, a divalent organic group obtained by removing two amino groups from diamine. Examples of the diamine include the following diamines. The diamines may be used singly or in combination of two or more.
  • Ar represents a divalent benzene ring, biphenyl structure, or naphthalene ring.
  • the two Ars may be the same or different, and any hydrogen atom in the benzene ring, biphenyl structure, or naphthalene ring is a monovalent group.
  • p is an integer of 0 or 1.
  • the two or more m may be the same or different.
  • One or more hydrogen atoms on the benzene ring may be substituted with a monovalent group.
  • m and n are each independently an integer of 0 to 3 (provided that 1 ⁇ m + n ⁇ 4.), j is an integer of 0 or 1, and X 1 is -(CH 2 ) a - (a is an integer of 1 to 15), -CONH-, -NHCO-, -CO-N(CH 3 )-, -NH-, -O-, - represents CH 2 O—, —CH 2 —OCO—, —COO—, or —OCO—, R 1 is a fluorine atom, a fluorine atom-containing alkyl group having 1 to 10 carbon atoms, or a fluorine atom having 1 to 10 carbon atoms; represents an alkoxy group containing, an alkyl group having 3 to 10 carbon atoms, an alkoxy group having 3 to 10 carbon atoms, or an alkoxyalkyl group having 3 to 10 carbon atoms, when there are two m, n,
  • R is a hydrogen atom or -(CH 2 ) k -Boc (k is an integer of 0 to 3. In addition, k is 0, (CH 2 ) k represents a single bond.)
  • the monovalent group includes a halogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and an alkoxy group having 1 to 10 carbon atoms.
  • diamine represented by the above formula (d o ) diamines represented by the following formulas (d o -1) to (d o -6), 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether and 4,4'-diaminodiphenyl ether are preferred.
  • any hydrogen atom in the benzene ring, biphenyl structure, or naphthalene ring may be replaced with a monovalent group.
  • the monovalent group include a halogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a fluoroalkyl group having 1 to 10 carbon atoms, Examples include a fluoroalkenyl group having 2 to 10 carbon atoms, a fluoroalkoxy group having 1 to 10 carbon atoms, an alkyloxycarbonyl group having 1 to 10 carbon atoms, a cyano group, a nitro group and the like.
  • the diamine represented by the above formula (O) the following formulas (o-1) to (o-8), p-phenylenediamine, 2,3,5,6-tetramethyl- p-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, m-phenylenediamine, 2,4-dimethyl-m-phenylenediamine, 1,4-diamino-2,5-dimethoxybenzene, 2,5-diamino toluene, 2,6-diaminotoluene, 4-aminobenzylamine, 2-(6-amino-2-naphthyl)ethylamine, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethyl- 4,4'-diaminobiphenyl, 3,3'-dimethoxy-4,4'-diaminobiphenyl, 3-trifluoromethyl-4,4'-diamin
  • Y is a diamine represented by the formula (O), a diamine having an amide bond or a urea bond, 3,3′-diaminodiphenylmethane, 3,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylmethane, 4, 4′-diaminobenzophenone, 1,4-bis(4-aminophenyl)benzene, 1,3-bis(4-aminophenyl)benzene, 1,4-bis(4-aminobenzyl)benzene, the formula (d o ), 4-(2-(methylamino)ethyl)aniline, 4-(2-aminoethyl)aniline, and the group “-N(D)-” (D is eliminated by heating to form a hydrogen atom represents a protecting group to be substituted, preferably a tert-butoxycarbonyl group), and is preferably a divalent organic group derived from a di
  • X represents a tetravalent organic group.
  • X preferably represents a tetravalent organic group derived from a tetracarboxylic dianhydride or a derivative thereof.
  • the tetravalent organic group derived from a tetracarboxylic dianhydride or a derivative thereof includes, for example, a tetravalent organic group obtained by removing four carboxy groups from the corresponding tetracarboxylic acid.
  • a tetravalent organic group derived from an acyclic aliphatic tetracarboxylic dianhydride or a derivative thereof a tetravalent organic group derived from an alicyclic tetracarboxylic dianhydride or a derivative thereof
  • a tetravalent organic group derived from an organic group or an aromatic tetracarboxylic dianhydride or a derivative thereof can be mentioned.
  • the acyclic aliphatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups bonded to a chain hydrocarbon structure.
  • An alicyclic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups including at least one carboxy group bonded to an alicyclic structure. However, none of these four carboxy groups are bonded to the aromatic ring. Moreover, it is not necessary to consist only of an alicyclic structure, and a part thereof may have a chain hydrocarbon structure or an aromatic ring structure.
  • An aromatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups including at least one carboxy group bonded to an aromatic ring. However, it is not necessary to consist only of an aromatic ring structure, and a part thereof may have a chain hydrocarbon structure or an alicyclic structure.
  • Examples of the tetracarboxylic dianhydride derivatives include tetracarboxylic acid dihalides, tetracarboxylic acid dialkyl esters, and tetracarboxylic acid dialkyl ester dihalides.
  • the tetracarboxylic dianhydride or derivative thereof may be used singly or in combination of two or more.
  • acyclic aliphatic or alicyclic tetracarboxylic dianhydrides are selected from the group consisting of a cyclobutane ring structure, a cyclopentane ring structure and a cyclohexane ring structure from the viewpoint of enhancing the liquid crystal orientation. It is preferably a tetracarboxylic dianhydride having at least one partial structure or a derivative thereof.
  • the above X is preferably a tetravalent organic group derived from a tetracarboxylic dianhydride represented by the following formula (t) or a derivative thereof.
  • X 1 is a structure selected from the following formulas (X1-1) to (X1-25). * represents a bond.
  • the tetracarboxylic dianhydride represented by the formula (t) in which X 1 is a formula (X1-1) to (X1-23) is an acyclic aliphatic or alicyclic tetracarboxylic dianhydride is an example of Further, tetracarboxylic dianhydrides represented by formula (t) in which X 1 is one of formulas (X1-24) to (X1-25) are examples of aromatic tetracarboxylic dianhydrides.
  • R 1 to R 21 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, It represents an alkynyl group having 2 to 6 carbon atoms, a monovalent organic group having 1 to 6 carbon atoms containing a fluorine atom, or a phenyl group. * represents a bond.
  • R 1 to R 21 are preferably a hydrogen atom, a halogen atom, a methyl group, or an ethyl group, more preferably a hydrogen atom or a methyl group, from the viewpoint of enhancing liquid crystal orientation.
  • j and k are integers of 0 or 1
  • a 1 and A 2 are each independently a single bond, -O-, -CO-, -COO-, represents a phenylene group, a sulfonyl group, or an amide group.
  • a plurality of A 2 may be the same or different.
  • formula (X1-1) include the following formulas (1-1) to (1-6).
  • Formulas (1-1) and (1-2) are particularly preferred from the viewpoint of enhancing liquid crystal orientation. * has the same meaning as above.
  • the above X 1 is represented by the above formulas (X1-1) to (X1-10), (X1-18) to (X1-23), (X1-24) to (X1-25) , or (X1-26) to (X1-30) are preferred, the above formulas (X1-1), (X1-5), (X1-7) to (X1-10), (X1-21), (X1 -23), (X1-24) to (X1-25), or (X1-26) to (X1-30) are more preferable, and the above formulas (1-1), (1-2), (X1-5 ), (X1-7), (X1-9), or (X1-26) to (X1-30) are more preferred.
  • a monovalent hydrocarbon group having 1 to 20 carbon atoms As the monovalent organic group for R and Z in the above formula (a), a monovalent hydrocarbon group having 1 to 20 carbon atoms, and the methylene group of the hydrocarbon group is -O-, -S-, -CO- , —COO—, —COS—, —NR 3 — (provided that R 3 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms), —CO—NR 3 — (provided that R 3 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms.), -Si(R 3 ) 2 - (where R 3 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms).
  • a hydrocarbon group is a hydrocarbon group.
  • a monovalent group A substituted with —SO 2 —, etc., a monovalent hydrocarbon group, or at least one hydrogen atom bonded to a carbon atom of the monovalent group A is a halogen atom , hydroxy group, alkoxy group, nitro group, amino group, mercapto group, nitroso group, alkylsilyl group, alkoxysilyl group, silanol group, sulphino group, phosphino group, carboxy group, cyano group, sulfo group, acyl group, etc. a monovalent group having a heterocyclic ring.
  • Examples of monovalent organic groups for R and Z in the above formula (a) include, among others, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkynyl group having 2 to 10 carbon atoms, a tert-butoxy A carbonyl group or a 9-fluorenylmethoxycarbonyl group is preferred, an alkyl group having 1 to 3 carbon atoms is more preferred, and a methyl group is even more preferred.
  • R and Z are each independently preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, more preferably a hydrogen atom or a methyl group.
  • each of X, Y, R, and Z may be of one type or two or more types.
  • the content of the polymer (A) is preferably 70 to 99 parts by mass, more preferably 80 to 98 parts by mass, based on 100 parts by mass of the polymer composition.
  • the polymer (A) in the present invention is at least one polymer selected from the group consisting of a polyimide precursor having a repeating unit represented by the above formula (a) and a polyimide which is an imidized product of the polyimide precursor. be.
  • the polymer (A) may have a repeating unit represented by formula (a) and a terminal group.
  • terminal group refers to a group bonded to the terminals of the repeating units constituting the polymer (A).
  • Examples of terminal groups include amino groups, carboxy groups, acid anhydride groups, isocyanate groups, or derivatives thereof.
  • An amino group, a carboxyl group, an acid anhydride group, and an isocyanate group can be obtained by a normal condensation reaction, and the above derivatives can be obtained, for example, by blocking terminal groups with a terminal blocking agent, as described later. can be done.
  • the total of the repeating unit represented by formula (a) and its imidized structure is preferably 10 mol% or more, more preferably 20 mol% or more, of the total repeating units constituting the polymer (A).
  • the polymer (A) in the invention may further have a repeating unit represented by the following formula (U).
  • U 1 is a divalent organic group
  • U 1' is a divalent organic group derived from a diamine
  • C 1 and C 1' are each independently a hydrogen atom or a monovalent organic group. .
  • U1 is a divalent organic group.
  • Examples of U 1 include divalent organic groups derived from diisocyanates. The diisocyanate may be used alone or in combination of two or more.
  • examples of diisocyanates include aromatic diisocyanates and aliphatic diisocyanates.
  • aromatic diisocyanate means a diisocyanate having at least one aromatic group.
  • aliphatic diisocyanate means a diisocyanate having an aliphatic group and not having an aromatic group.
  • a divalent organic group derived from an aliphatic diisocyanate, which is an organic group having a number of 4 to 30, can be mentioned.
  • an aliphatic group includes both an acyclic aliphatic group and an alicyclic group.
  • U1 examples include o-phenylene diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, toluene diisocyanates (eg, tolylene 2,4-diisocyanate, tolylene 2,6-diisocyanate), 1,4- Diisocyanate-2-methoxybenzene, 2,5-diisocyanate xylenes, 3,3′-dimethyl-4,4′-diisocyanatobiphenyl, 4,4′-diisocyanatodiphenyl ether, 2,2′-bis(4-diisocyanate acid phenyl)propane, 4,4'-diphenylmethane diisocyanate (4,4'-diphenylmethane diisocyanate), 4,4'-diphenyl diisocyanate ether, 4,4'-diphenyl sulfone diisocyanate, 3,3'-dipheny
  • U 1' is a divalent organic group derived from diamine.
  • diamine examples include the diamines exemplified for the repeating unit (a) above, and preferred embodiments are the same as above.
  • Examples of the monovalent organic groups of C 1 and C 1′ in the formula (U) include the structures exemplified for R and Z in the repeating unit (a). From the viewpoint of obtaining the effects of the present invention, C 1 and C 1′ are each independently preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, more preferably a hydrogen atom or a methyl group.
  • each of U 1 , U 1′ , C 1 , and C 1′ may be of one kind, or two or more kinds thereof.
  • the content of the repeating unit represented by the formula (U) is, from the viewpoint of obtaining the effect of the present invention, the above With respect to the total 100 mol% of the repeating unit (a), the imidized structure of the repeating unit (a) and the repeating unit represented by the above formula (U), 1 to 30 mol% is preferable, and 2 to 25 mol% is more preferred.
  • polyester (B) having a repeating unit represented by the above formula (b1) and having no repeating unit represented by the above formula (a) and its imidized structure. do. Polyester (B) may be used alone or in combination of two or more.
  • X ar in the above formula (b1) represents a tetravalent organic group derived from an aromatic tetracarboxylic dianhydride or a derivative thereof.
  • the aromatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups including at least one carboxy group bonded to an aromatic ring. However, it is not necessary to consist only of an aromatic ring structure, and a part thereof may have a chain hydrocarbon structure or an alicyclic structure.
  • X ar in the above formula (b1) is preferably a tetravalent organic group derived from a tetracarboxylic dianhydride represented by the following formula (t) or a derivative thereof.
  • X 1 is a structure selected from the following formulas (X1-24) and (X1-25). * represents a bond.
  • j and k are integers of 0 or 1
  • a 1 and A 2 are each independently a single bond, -O-, -CO-, -COO-, phenylene, sulfonyl group, or amido group; A plurality of A 2 may be the same or different.
  • E is a divalent organic group obtained by removing hydrogen atoms contained in two hydroxy groups from an organic diol
  • the organic diol is a divalent group represented by the above formula (EG).
  • the organic diol containing a divalent organic group represented by the above formula (EG) is not particularly limited as long as it contains the above formula (EG) in the molecule, but a diol having hydrogen atoms bonded to both ends of the above formula (EG) is more preferred.
  • the upper limit of n is preferably set so that the upper limit of the weight average molecular weight of the diol is 5,000 or less.
  • the upper limit of the molecular weight is set to 4,000 or less, and more preferably, the upper limit of the weight average molecular weight of the diol is set to 3,000 or less.
  • the upper limit of n is preferably 40, more preferably 30, and particularly preferably 20.
  • the lower limit of n is preferably 5, more preferably 6, from the viewpoint of enhancing liquid crystal orientation.
  • the diol containing a divalent organic group represented by the above formula (EG) includes pentaethylene glycol, hexaethylene glycol, trade names PEG-300, PEG-400, PEG- 600, PEG-1000, PEG-1500, PEG-2000, PEG-4000N, PEG-4000S, PEG-6000E, PEG-6000P, PEG-10000, PEG-13000, PEG-20000; product name PEG300 manufactured by Merck; PEG1000, PEG2000, PEG4000, PEG6000, PEG8000, PEG10000, PEG12000, PEG20000, PEG35000; product numbers P2139, P3265, P3515, 81210, 81240, 81260, 81285, 81310, 18 from SIGMA-ALDRICH 1986, 181994, 182001, 182028, 189456, 202304, 202312, 202320, 202339, 202398, 202421, 202436, 202444, 202452
  • PEG600, SINOPOL PEG1500, SINOPOL PEG4000 brand names PEG#300, PEG#400, PEG#600, PEG#1000, PEG#1500, PEG#1540, PEG#4000, PEG#6000M manufactured by Lion Specialty Chemicals
  • Commercially available products such as Polyethylene Glycol 400 and Polyethylene Glycol 600 manufactured by Tokyo Kasei Kogyo Co., Ltd. can be mentioned.
  • Preferred specific examples of the diol having hydrogen atoms bonded to both ends of the above formula (EG) include pentaethylene glycol, hexaethylene glycol, Sanyo Chemical Industries Co., Ltd.
  • the above-mentioned polyethylene glycol and polypropylene glycol may be those obtained by subjecting ethylene oxide and propylene oxide to an anionic ring-opening polymerization reaction.
  • the polymerization reaction can be carried out using water, ethylene glycol, propylene glycol, etc.
  • the average molecular weight of the glycol exemplified in the diol containing a divalent organic group represented by (EG) above is the weight average molecular weight obtained based on polystyrene by gel permeation chromatography (GPC).
  • the content of the repeating unit represented by the above formula (b1) is preferably 10 mol% or more, more preferably 20 mol% or more, of the total repeating units constituting the polyester (B).
  • the upper limit is more preferably 90 mol % or less, and even more preferably 80 mol % or less.
  • Polyester (B) may further have a repeating unit represented by the following formula (b2). Polyester (B) may not have a repeating unit represented by the following formula (b2).
  • A1 is a divalent organic group derived from diisocyanate.
  • A2 is a divalent organic group obtained by removing hydrogen atoms contained in two hydroxy groups from an organic diol.
  • A1 is a divalent organic group derived from diisocyanate.
  • the diisocyanate may be used alone or in combination of two or more.
  • Examples of the diisocyanate include diisocyanate (DI EG ) having a divalent organic group represented by the above formula ( EG ), aromatic diisocyanate other than diisocyanate (DI EG ), and aliphatic diisocyanate.
  • DI EG diisocyanate having a divalent organic group represented by the above formula ( EG )
  • aromatic diisocyanate other than diisocyanate (DI EG ) aromatic diisocyanate other than diisocyanate
  • aliphatic diisocyanate means a diisocyanate having an aliphatic group and not having an aromatic group
  • Aliphatic diisocyanates can be mentioned.
  • an aliphatic group includes both an acyclic aliphatic group and an alicyclic group.
  • aromatic diisocyanates and aliphatic diisocyanates other than diisocyanate include o-phenylene diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, toluene diisocyanates (e.g., 2,4-diisocyanate tolylene, 2 ,6-diisocyanate tolylene), 1,4-diisocyanate-2-methoxybenzene, 2,5-diisocyanate xylenes, 3,3′-dimethyl-4,4′-diisocyanatobiphenyl, 4,4′-diisocyanate Diphenyl ether, 2,2′-bis(4-phenyl diisocyanate)propane, 4,4′-diphenylmethane diisocyanate (4,
  • A2 is a divalent organic group obtained by removing hydrogen atoms contained in two hydroxy groups from an organic diol.
  • the organic diols may be used singly or in combination of two or more.
  • Examples of the organic diol include a diol containing a divalent organic group represented by the above formula (EG); and a diol containing no divalent organic group represented by the above formula (EG).
  • Specific examples of diols not containing a divalent organic group represented by formula (EG) include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, propylene glycol, dipropylene glycol, and 1,3-butanediol.
  • the polyester (B) in the present invention is a polyester that has a repeating unit represented by the above formula (b1) and does not have a repeating unit represented by the above formula (a) and its imidized structure.
  • the polyester (B) in the present invention may have the repeating units and terminal groups described above. The end groups are as described above.
  • the content of the repeating unit represented by the formula (b2) is 10 mol% of the total repeating units constituting the polyester (B).
  • the above is preferable, and 20 mol % or more is more preferable. Moreover, it is more preferably 90 mol % or less, and even more preferably 80 mol % or less.
  • the content of repeating units represented by the formula (b2) is the polyester (B) is preferably 10 mol % or more, more preferably 20 mol % or more, and even more preferably 50 mol % or more of the entire repeating units constituting Moreover, the upper limit is more preferably 90 mol % or less, and even more preferably 80 mol % or less.
  • a 1 and A 2 may each be one type, or two or more types.
  • the content of the polyester (B) in the present invention is preferably 1 to 30 parts by mass, more preferably 2 to 20 parts by mass, based on 100 parts by mass of the polymer composition.
  • polyimide precursor which is the polymer (A)
  • examples of the polyimide precursor, which is the polymer (A) include polyamic acids and polyamic acid esters.
  • a polyamic acid (a polyimide precursor having a repeating unit represented by the formula (a) in which R in the formula (a) is a hydrogen atom) can be produced by the following method. Specifically, the tetracarboxylic acid component containing the tetracarboxylic dianhydride or derivative thereof and the diamine component containing the diamine are mixed in the presence of an organic solvent at a temperature of preferably ⁇ 20 to 150° C., more preferably 0 to 50° C. °C, preferably 30 minutes to 24 hours, more preferably 1 to 12 hours (polycondensation).
  • U 1 is the same as U 1 in formula (U).
  • the organic solvent used in the above reaction include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, ⁇ -butyrolactone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, 1,3-dimethyl-2-imidazolidinone can be mentioned.
  • D 1 represents an alkyl group having 1 to 3 carbon atoms
  • D 2 represents an alkyl group having 1 to 3 carbon atoms
  • D 3 represents an alkyl group having 1 to 4 carbon atoms.
  • the reaction can be carried out at any concentration, preferably 1 to 50% by mass, more preferably 5 to 30% by mass.
  • the initial stage of the reaction can be carried out at a high concentration, and then the solvent can be added.
  • the ratio of the total number of moles of the diamine component to the total number of moles of the tetracarboxylic acid component is preferably 0.8 to 1.2. Similar to a normal polycondensation reaction, the closer this molar ratio is to 1.0, the greater the molecular weight of the polyamic acid produced.
  • the polyamic acid obtained in the above reaction can be recovered by precipitating the polyamic acid by injecting the reaction solution into a poor solvent while stirring well. Further, a purified polyamic acid powder can be obtained by performing precipitation several times, washing with a poor solvent, and drying at room temperature or by heating. Poor solvents include, but are not limited to, water, methanol, ethanol, hexane, butyl cellosolve, acetone, and toluene.
  • the polyimide precursor is a polyamic acid ester (a polyimide precursor having a repeating unit represented by the formula (a) in which at least one of R in the formula (a) is a monovalent organic group), ( 1) a method of esterifying a polyamic acid obtained from a tetracarboxylic dianhydride and a diamine, (2) a method of reacting a tetracarboxylic acid diester dichloride and a diamine, and (3) a polycondensation of a tetracarboxylic acid diester and a diamine. It can be manufactured by a known method such as a method of causing
  • tetracarboxylic acid component containing a tetracarboxylic dianhydride or a derivative thereof, a diamine component, and optionally a diisocyanate compound are end-blocked using an appropriate end-blocking agent.
  • a stop-type polymer may be synthesized.
  • Terminal blockers include, for example, acetic anhydride, maleic anhydride, nadic anhydride, phthalic anhydride, itaconic anhydride, cyclohexanedicarboxylic anhydride, 3-hydroxyphthalic anhydride, trimellitic anhydride, 3- (3-trimethoxysilyl)propyl)-3,4-dihydrofuran-2,5-dione, 4,5,6,7-tetrafluoroisobenzofuran-1,3-dione, 4-ethynylphthalic anhydride, etc.
  • di-tert-butyl dicarbonate dicarbonic acid diester compounds such as diallyl dicarbonate
  • acryloyl chloride methacryloyl chloride, chlorocarbonyl compounds such as nicotinic acid chloride
  • aniline 2-aminophenol, 3-aminophenol
  • 4-aminosalicylic acid 5-aminosalicylic acid, 6-aminosalicylic acid, 2-aminobenzoic acid, 3-aminobenzoic acid, 4-aminobenzoic acid, cyclohexylamine, n-butylamine, n-pentylamine, n-hexylamine , n-heptylamine, n-octylamine and other monoamine compounds
  • ethyl isocyanate phenyl isocyanate, naphthyl isocyanate, 2-acryloyloxyethyl isocyanate, 2-methacryloyloxyethyl isocyanate and other unsaturated
  • the proportion of the end blocking agent used is preferably 20 mol parts or less, and preferably 10 mol parts or less, with respect to a total of 100 mol parts of the diamine component used and the organic diol component used as necessary. is more preferred.
  • the proportion of the terminal blocker used is preferably 0.01 mol part or more, more preferably 0.1 mol part or more, with respect to a total of 100 mol parts of the diamine component used.
  • Polyimide can also be obtained by ring-closing (imidizing) the polyimide precursor (A) of the polymer (A).
  • the imidization ratio as used herein means the ratio of imide groups to the total amount of imide groups derived from tetracarboxylic dianhydride or derivatives thereof and carboxy groups (or derivatives thereof).
  • the imidization rate does not necessarily have to be 100%, and can be arbitrarily adjusted according to the application and purpose.
  • Examples of methods for imidizing the polyimide precursor include thermal imidization in which the solution of the polyimide precursor is heated as it is, and catalytic imidization in which a catalyst is added to the solution of the polyimide precursor.
  • the temperature when the polyimide precursor is thermally imidized in the solution is preferably 100 to 400° C., more preferably 120 to 250° C., and it is preferable to remove water generated by the imidization reaction from the system. .
  • Catalytic imidization of the polyimide precursor is carried out by adding a basic catalyst and an acid anhydride to the solution of the polyimide precursor, preferably -20 to 250°C, more preferably stirring at 0 to 180°C. can be done.
  • the amount of the basic catalyst is preferably 0.5 to 30 times the molar amount of the amic acid group, more preferably 2 to 20 times the molar amount, and the amount of the acid anhydride is preferably 1 to 50 times the molar amount of the amic acid group. It is preferably 3 to 30 molar times.
  • the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine, etc.
  • pyridine is preferable because it has appropriate basicity for advancing the reaction.
  • the acid anhydride include acetic anhydride, trimellitic anhydride, and pyromellitic anhydride.
  • acetic anhydride is preferable because it facilitates purification after the reaction is completed.
  • the imidization rate by catalytic imidization can be controlled by adjusting the catalyst amount, reaction temperature, and reaction time.
  • the reaction solution may be put into a solvent to precipitate.
  • Solvents used for precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, and water.
  • the polymer precipitated by putting it into a solvent can be filtered and recovered, and then dried at room temperature or under heat under normal pressure or reduced pressure.
  • the impurities in the polymer can be reduced by redissolving the precipitated and recovered polymer in an organic solvent and repeating the operation of reprecipitating and recovering, for example, 2 to 10 times.
  • Solvents in this case include, for example, alcohols, ketones, hydrocarbons, and the like, and it is preferable to use three or more kinds of solvents selected from these, because the purification efficiency is further improved.
  • the molecular weight of the polymer (A) used in the present invention is the weight measured by the GPC (Gel Permeation Chromatography) method when considering the strength of the liquid crystal alignment film obtained therefrom, the workability during film formation, and the coating property.
  • the average molecular weight is preferably from 5,000 to 1,000,000, more preferably from 10,000 to 150,000.
  • the polyester (B) is, for example, a component (o) containing an organic diol having two hydroxy groups in the molecule, and a tetracarboxylic dianhydride having a tetravalent organic group represented by Xar in the molecule. or obtained by reacting with component (c) containing a derivative thereof.
  • the component (o) includes an organic diol (o) having a partial structure represented by the following formula (EG) in its molecule. (n is an integer of 5 or more. R represents a hydrogen atom or a methyl group.)
  • polyester (B) contains a repeating unit represented by the formula (b2)
  • a component (i) containing a compound containing two isocyanate groups in the molecule obtained by reacting
  • the (o) component, the (c) component, and the optionally used (i) component may each be of one type or two or more types.
  • organic diol (o) examples include organic diols exemplified by the repeating unit represented by the above formula (b1), and "H-EH” (E is synonymous with E in formula (b1). There is a diol compound represented by.
  • the monomer component for obtaining the polyester (B) contains the diol (o').
  • the reaction of the (o) component, the (c) component and the optionally used (i) component is usually carried out in an organic solvent.
  • the organic solvent used at that time is not particularly limited as long as it dissolves the produced polyester (B). Specific examples include N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, N-methyl- ⁇ -caprolactam, dimethylsulfoxide, Tetramethylurea, pyridine, dimethylsulfone, hexamethylphosphoric acid triamide, ⁇ -butyrolactone, isopropyl alcohol, methoxymethylpentanol, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve , ethyl cellosolv
  • polyester (B) may be used alone or in combination. Furthermore, even a solvent that does not dissolve the polyester (B) may be used by mixing with the above solvent. Moreover, since moisture in the organic solvent inhibits the polymerization reaction, it is preferable to use the organic solvent after dehydration and drying.
  • the blending amount of the (o) component and the (c) component is determined by the number of hydroxy groups and tetracarboxylic
  • the ratio (group (am)/hydroxy group) of the sum of the groups of the amic acid group or derivative thereof possessed by the acid dianhydride (hereinafter also referred to as group (am)) is preferably 0.8 or more and 1.2 or less. , more preferably 0.9 or more and 1.2 or less, more preferably 0.9 or more and 1.1 or less, in an organic solvent.
  • a method for synthesizing the polyester (B) obtained by reacting the (o) component, the (c) component and the (i) component is the ratio of the number of hydroxy groups to the total number of isocyanate groups and groups (am) ((isocyanate groups + groups (am))/hydroxy groups ) is preferably 0.8 or more and 1.2 or less, more preferably 0.9 or more and 1.2 or less, still more preferably 0.9 or more and 1.1 or less, obtained by reacting in an organic solvent. be done.
  • reaction with a diisocyanate compound or tetracarboxylic dianhydride or a derivative thereof may be performed after mixing two or more organic diols.
  • a diisocyanate compound or a tetracarboxylic dianhydride or a derivative thereof may be reacted separately.
  • the resulting terminal isocyanate compound or amic acid terminal or derivative thereof is further reacted with another organic diol compound, and This may be reacted with a diisocyanate compound or a tetracarboxylic dianhydride or derivative thereof.
  • a diisocyanate compound or a tetracarboxylic dianhydride or derivative thereof is further reacted with another organic diol compound, and This may be reacted with a diisocyanate compound or a tetracarboxylic dianhydride or derivative thereof.
  • the desired polyester (B) can be produced.
  • the reaction temperature of component (o) with component (c) and component (i) used as necessary is preferably 0 to 160°C, more preferably 10 to 150°C.
  • the reaction time can be appropriately selected depending on the reaction scale and reaction conditions employed.
  • the reaction may be carried out in the presence of a catalyst such as tertiary amines, alkali metals, alkaline earth metals, tin, zinc, titanium, cobalt or other metals or metalloid compounds.
  • the total concentration of components (o) and (i) in the reaction solution is preferably 1 to 50 mass %, more preferably 5 to 30 mass %.
  • the initial stage of the reaction may be carried out at a high concentration, and then the organic solvent may be added.
  • the molecular weight of the polyester (B) used in the present invention is the weight average measured by the GPC (Gel Permeation Chromatography) method when considering the strength of the liquid crystal alignment film obtained therefrom, workability during film formation and coating film properties.
  • the molecular weight is preferably 4,000 to 80,000, more preferably 6,000 to 60,000.
  • the polyester used in the present invention preferably has a viscosity at 25° C. of 10 to 5,000 mPa ⁇ s, more preferably 100 to 3,000 mPa ⁇ s.
  • the above viscosity is a preferable value when the solid content concentration in the polyester solution is in the range of 10 to 50% by mass.
  • the viscosity is within the above range from the viewpoint of suitably obtaining the effects of the present invention.
  • the above viscosity is a value measured using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.) with a sample amount of 1.1 mL and a cone rotor TE-1 (1°34', R24) at a temperature of 25 ° C. is.
  • the polymer composition of the present invention may contain polymers other than the polymer (A) and other than the polyester (B).
  • polymers include polyesters other than polyester (B), polysiloxanes, polyamides, polyureas, polyorganosiloxanes, cellulose derivatives, polyacetals, polystyrene derivatives, and poly(styrene-maleic anhydride) copolymers.
  • poly(isobutylene-maleic anhydride) copolymer, poly(vinyl ether-maleic anhydride) copolymer, poly(styrene-phenylmaleimide) derivative, polymer selected from the group consisting of poly(meth)acrylate, etc. are mentioned.
  • poly(styrene-maleic anhydride) copolymers include SMA1000, 2000, 3000 (manufactured by Cray Valley), GSM301 (manufactured by Gifu Shellac Co., Ltd.), etc.
  • Poly(isobutylene-maleic anhydride) ) copolymers include Isoban-600 (manufactured by Kuraray Co., Ltd.)
  • specific examples of poly(vinyl ether-maleic anhydride) copolymers include GANTREZ AN-139 (methyl vinyl ether maleic anhydride resin , manufactured by ISP Japan).
  • Other polymers may be used singly or in combination of two or more.
  • the content of other polymers is preferably 90 parts by mass or less, more preferably 10 to 90 parts by mass, and more preferably 20 to 80 parts by mass with respect to the total 100 parts by mass of the polymer contained in the polymer composition. More preferred.
  • the polymer composition according to the present invention is preferably a liquid composition in which the polymer (A) and polyester (B) are dissolved or dispersed in an organic solvent.
  • the organic solvent contained in the polymer composition is not particularly limited as long as it uniformly dissolves the polymer components, but N,N-dimethylformamide, N,N-dimethylacetamide, N , N-dimethyllactamide, N,N-dimethylpropionamide, tetramethylurea, N,N-diethylformamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethylsulfoxide, ⁇ -butyrolactone, ⁇ -valerolactone, 1,3-dimethyl-2-imidazolidinone, methyl ethyl ketone, cyclohexanone, cyclopentanone, 3-methoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropan
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 3-methoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide and ⁇ -butyrolactone are preferred.
  • the content of the good solvent is preferably 20 to 99% by mass, more preferably 20 to 90% by mass, particularly preferably 30 to 80% by mass, of the total solvent contained in the polymer composition.
  • the total content of the polymer (A) and the polyester (B) used in the present invention is preferably 1 to 100 parts by mass with respect to the total 100 parts by mass of the polymer contained in the liquid crystal aligning agent, and 10 to 100 parts by mass.
  • the total content of the polymer (A) and the polyester (B) may be 90 parts by mass or less, or 80 parts by mass or less with respect to the total 100 parts by mass of the polymer contained in the liquid crystal aligning agent. good.
  • the organic solvent contained in the polymer composition is a solvent (also referred to as a poor solvent) that improves the coatability and surface smoothness of the coating film when the polymer composition is applied. It is preferred to use a mixed solvent. Specific examples of the poor solvent used in combination are shown below, but are not limited thereto.
  • the content of the poor solvent is preferably 1 to 80% by mass, more preferably 10 to 80% by mass, particularly preferably 20 to 70% by mass, of the total solvent contained in the polymer composition.
  • the type and content of the poor solvent are appropriately selected according to the coating apparatus, coating conditions, coating environment, and the like of the polymer composition.
  • Examples of poor solvents include diisopropyl ether, diisobutyl ether, diisobutylcarbinol (2,6-dimethyl-4-heptanol), ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, -hydroxy-4-methyl-2-pentanone, diethylene glycol methyl ethyl ether, diethylene glycol dibutyl ether, 3-ethoxybutyl acetate, 1-methylpentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, ethylene glycol mono Acetate, ethylene glycol diacetate, propylene carbonate, ethylene carbonate, ethylene glycol monobutyl ether, ethylene glycol monoisoamyl ether, ethylene glycol monohexyl ether, propylene glycol monomethyl
  • diisobutyl carbinol propylene glycol monobutyl ether, propylene glycol diacetate, diethylene glycol diethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol dimethyl ether, 4-hydroxy-4-methyl-2-pentanone, ethylene glycol monobutyl ether, ethylene Glycol monobutyl ether acetate or diisobutyl ketone are preferred.
  • Preferred solvent combinations of a good solvent and a poor solvent include N-methyl-2-pyrrolidone and ethylene glycol monobutyl ether, N-methyl-2-pyrrolidone, ⁇ -butyrolactone and ethylene glycol monobutyl ether, N-methyl-2- Pyrrolidone and ⁇ -butyrolactone and propylene glycol monobutyl ether, N-ethyl-2-pyrrolidone and propylene glycol monobutyl ether, N-ethyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone, N-ethyl-2- pyrrolidone and propylene glycol diacetate, N,N-dimethyllactamide and diisobutyl ketone, N-methyl-2-pyrrolidone and ethyl 3-ethoxypropionate, N-ethyl-2-pyrrolidone and ethyl 3-ethoxypropionate, N- Methy
  • the polymer composition of the present invention may additionally contain components other than the polymer component and the organic solvent (hereinafter also referred to as additive components).
  • additive components include, for example, crosslinkable compounds, functional silane compounds, metal chelate compounds, curing accelerators, surfactants, antioxidants, sensitizers, preservatives, dielectric constant and electrical resistance of resin films.
  • a compound for adjustment and the like can be mentioned.
  • the crosslinkable compound include a crosslinkable compound (c-1) having at least one substituent selected from an epoxy group, an isocyanate group, an oxetanyl group, a cyclocarbonate group, a blocked isocyanate group, a hydroxy group and an alkoxy group.
  • crosslinkable compound (c-2) having a polymerizable unsaturated group By containing the crosslinkable compound, it is possible to obtain a liquid crystal display element in which the occurrence of so-called flicker or the like, which occurs when the liquid crystal display element is irradiated with backlight immediately after the liquid crystal is driven, is reduced. You can also get the effect of being able to do it.
  • Preferred specific examples of the crosslinkable compounds (c-1) and (c-2) include the following compounds.
  • Examples of the epoxy group-containing compound (c-1) include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol, Epicoat 828 (manufactured by Mitsubishi Chemical Corporation), etc.
  • bisphenol A type epoxy resin bisphenol F type epoxy resin such as Epicoat 807 (manufactured by Mitsubishi Chemical Corporation), hydrogenated bisphenol A type epoxy resin such as YX-8000 (manufactured by Mitsubishi Chemical Corporation), YX6954BH30 (manufactured by Mitsubishi Chemical Corporation), etc. biphenyl skeleton-containing epoxy resins, EPPN-201 (manufactured by Nippon Kayaku Co., Ltd.) and other phenol novolac-type epoxy resins, and EOCN-102S (manufactured by Nippon Kayaku Co., Ltd.) and other (o, m, p-) cresol novolac-type epoxy resins.
  • isocyanurate compounds such as triglycidyl isocyanurate such as TEPIC (manufactured by Nissan Chemical Industries, Ltd.), compounds described in paragraph [0037] of JP-A-10-338880, compounds described in WO2017/170483, etc.
  • the compound having an isocyanate group the diisocyanate compound described above;
  • the compound (c-1) having an oxetanyl group 1,4-bis ⁇ [(3-ethyl-3-oxetanyl)methoxy]methyl ⁇ benzene (arone oxetane OXT-121 (XDO)), di[2-(3 -oxetanyl)butyl] ether (aron oxetane OXT-221 (DOX)), 1,4-bis[(3-ethyloxetane-3-yl)methoxy]benzene (HQOX), 1,3-bis[(3-ethyl Oxetan-3-yl)methoxy]benzene (RSOX), 1,2-bis[(3-ethyloxetan-3-yl)methoxy]benzene (CTOX), paragraphs [0170] to [0175] of WO2011/132751 compounds having two or more oxet
  • the compound (c-1) having a hydroxy group and/or an alkoxy group N,N,N',N'-tetrakis(2-hydroxyethyl)adipamide, 2,2-bis(4-hydroxy-3,5- dihydroxymethylphenyl)propane, 2,2-bis(4-hydroxy-3,5-dimethoxyphenyl)propane, 2,2-bis(4-hydroxy-3,5-dihydroxymethylphenyl)-1,1,1, 3,3,3-hexafluoropropane, WO 2015/072554, the compound described in paragraph [0058] of JP 2016-118753, the compound described in JP 2016-200798, WO2010 / 074269 compounds and the like;
  • the crosslinkable compound (c-2) having a polymerizable unsaturated group glycerin mono
  • the crosslinkable compounds (c-1) and (c-2) are, among others, N,N,N',N'-tetraglycidyl-m-xylylenediamine, 1,3-bis(N,N-diglycidyl aminomethyl)cyclohexane, N,N,N',N'-tetraglycidyl-4,4'-diaminodiphenylmethane, Takenate B-830, B-815N, B-820NSU, B-842N, B-846N, B-870N , B-874N, B-882N, 1,3,5-tris(2-hydroxyethyl)isocyanurate, triglycidyl isocyanurate, N,N,N′,N′-tetrakis(2-hydroxyethyl)adipamide, 2,2-bis(4-hydroxy-3,5-dihydroxymethylphenyl)propane, 2,2-bis(4-hydroxy-3,5-dimethoxymethylphenyl)prop
  • crosslinkable compounds examples include crosslinkable compounds, and are not limited to these.
  • the crosslinkable compound used in the polymer composition of the present invention may be of one type or a combination of two or more types.
  • the content of the crosslinkable compound in the polymer composition of the present invention is 0.1 to 150 parts by mass, or 0.1 to 100 parts by mass, or 1 to 50 parts by mass with respect to 100 parts by mass of all polymer components. part by mass.
  • Examples of compounds for adjusting the dielectric constant and electrical resistance of the resin film include monoamines having a nitrogen atom-containing aromatic heterocycle such as 3-picolylamine.
  • a monoamine having a nitrogen-containing aromatic heterocycle is used, it is preferably 0.1 to 30 parts by mass, more preferably 0.1 part by mass with respect to 100 parts by mass of the polymer component contained in the polymer composition. ⁇ 20 parts by mass.
  • Preferred specific examples of functional silane compounds include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldiethoxymethylsilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane.
  • Silane N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxy silane, vinyltrimethoxysilane, vinyltriethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxysilane sidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane,
  • the solid content concentration in the polymer composition (ratio of the total mass of components other than the solvent of the polymer composition to the total mass of the polymer composition) is appropriately selected in consideration of viscosity, volatility, etc. , preferably in the range of 1 to 10 mass %. That is, the polymer composition is applied to the surface of the substrate as described later, and preferably heated to form a resin film.
  • a particularly preferred solid content concentration range varies depending on the method used to apply the polymer composition to the substrate.
  • the solid content concentration is particularly preferably in the range of 1.5 to 4.5% by mass.
  • the printing method it is particularly preferable to set the solid content concentration in the range of 3 to 9% by mass, thereby setting the solution viscosity in the range of 12 to 50 mPa ⁇ s.
  • the ink jet method it is particularly preferable to set the solid content concentration in the range of 1 to 5% by mass, thereby setting the solution viscosity in the range of 3 to 15 mPa ⁇ s.
  • the temperature in preparing the polymer composition is preferably 10-50°C, more preferably 20-30°C.
  • the polymer composition described above can be applied, for example, onto a substrate and preferably subjected to heat treatment to volatilize the solvent component, thereby forming a resin film.
  • the polymer composition and resin film according to the present invention can be effectively applied to various technical applications, such as liquid crystal aligning agents, electronic circuit materials, semiconductor materials, electrical insulation materials, wire coating materials, lighting applications, and molding. It can be applied to various uses such as materials. Specifically, it can be applied to various resin films including display elements, semiconductor elements, actuators such as motors, various sensors such as piezoelectric sensors and pyroelectric sensors, and liquid crystal alignment films (liquid crystal alignment films for retardation films).
  • liquid crystal alignment films for scanning antennas and liquid crystal array antennas, or liquid crystal alignment films for transmission scattering type liquid crystal light control elements protective films (e.g. protective films for color filters), spacer films, interlayer insulating films, antireflection films, wiring coating films, antistatic films, electric motor insulating films (gate insulating films of flexible displays), and the like.
  • the polymer composition according to the present invention can be preferably applied as a liquid crystal aligning agent.
  • the liquid crystal aligning agent according to the present invention comprises the polymer composition according to the present invention. That is, the liquid crystal aligning agent which concerns on this invention contains the said polymer (A) and polyester (B) similarly to a polymer composition. Moreover, it is preferable to contain at least one of other polymers, organic solvents and additive components. For specific examples of the polymer (A), polyester (B), other polymers, organic solvents, and additive components, the blending ratio, solid content concentration, etc., the description of the polymer composition is applied. be able to.
  • a liquid crystal alignment film can be manufactured as a resin film by using the said polymer composition or the said liquid crystal aligning agent.
  • the liquid crystal display element which concerns on this invention comprises the liquid crystal aligning film formed using the said polymer composition or said liquid crystal aligning agent.
  • the operation mode of the liquid crystal display device according to the present invention is not particularly limited. It can be applied to various operation modes such as type (IPS type), FFS type, and optical compensation bend type (OCB type).
  • the liquid crystal display element of the present invention can be produced, for example, by a method including the following steps (1) to (4), a method including steps (1) to (2) and (4), steps (1) to (3), and (4). -2) and (4-4), or by a method including steps (1) to (3), (4-3) and (4-4).
  • a process (1) is a process of apply
  • a specific example of step (1) is as follows.
  • the liquid crystal aligning agent of the present invention is applied to one surface of the substrate provided with the patterned transparent conductive film by an appropriate coating method such as a roll coater method, a spin coat method, a printing method, an inkjet method, or the like.
  • the substrate is not particularly limited as long as it is highly transparent, and in addition to a glass substrate and a silicon nitride substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate can also be used.
  • the reflective liquid crystal display element if only one substrate is used, an opaque material such as a silicon wafer can be used, and in this case, a light-reflecting material such as aluminum can be used for the electrodes.
  • a substrate provided with electrodes made of a transparent conductive film or a metal film patterned in a comb shape and a counter substrate provided with no electrodes are used.
  • Screen printing, offset printing, flexographic printing, inkjet method, spray method, etc. can be used as methods for applying the liquid crystal aligning agent to the substrate and forming a film.
  • the coating method and the film-forming method by the inkjet method can be preferably used.
  • a process (2) is a process of baking the liquid crystal aligning agent apply
  • a specific example of step (2) is as follows. After the liquid crystal aligning agent is applied onto the substrate in step (1), a heating means such as a hot plate, thermal circulation oven or IR (infrared) oven is used to evaporate the solvent or heat the polyamic acid or polyamic acid ester. Thermal imidization can be performed.
  • the drying and baking steps after applying the liquid crystal aligning agent of the present invention can be performed at any desired temperature and time, and may be performed multiple times.
  • the temperature for reducing the solvent of the liquid crystal aligning agent can be, for example, 40 to 180°C. From the viewpoint of shortening the process, it may be carried out at 40 to 150°C.
  • the firing time is not particularly limited, but may be 1 to 10 minutes or 1 to 5 minutes.
  • a step of baking at a temperature range of 150 to 300° C. or 150 to 250° C. may be added after the above step.
  • the firing time is not particularly limited, but may be 5 to 40 minutes or 5 to 30 minutes.
  • the thickness of the film-like material after baking is preferably 5 to 300 nm, more preferably 10 to 200 nm, because if it is too thin, the reliability of the liquid crystal display element may be lowered.
  • Step (3) is a step of subjecting the film obtained in step (2) to orientation treatment. That is, in a horizontally aligned liquid crystal display element such as an IPS system or an FFS system, the coating film is subjected to an alignment ability imparting treatment. On the other hand, in a vertical alignment type liquid crystal display element such as VA mode or PSA mode, the formed coating film can be used as a liquid crystal alignment film as it is, but the coating film may be subjected to an alignment ability imparting treatment. Examples of the alignment treatment method for the liquid crystal alignment film include a rubbing treatment method and a photo-alignment treatment method.
  • the surface of the film-like material is irradiated with radiation polarized in a certain direction, and in some cases, heat treatment is performed to impart liquid crystal alignment (also referred to as liquid crystal alignment ability).
  • liquid crystal alignment also referred to as liquid crystal alignment ability
  • radiation ultraviolet light or visible light having a wavelength of 100 to 800 nm can be used. Among them, ultraviolet rays having a wavelength of 100 to 400 nm, more preferably 200 to 400 nm are preferred.
  • the radiation dose is preferably 1 to 10,000 mJ/cm 2 , more preferably 100 to 5,000 mJ/cm 2 .
  • the substrate having the film-like material may be irradiated while being heated at 50 to 250° C. in order to improve liquid crystal orientation.
  • the liquid crystal alignment film thus produced can stably orient liquid crystal molecules in a fixed direction.
  • the liquid crystal alignment film irradiated with polarized radiation can be subjected to contact treatment using water or a solvent, or the liquid crystal alignment film irradiated with radiation can be heat-treated.
  • the solvent used in the contact treatment is not particularly limited as long as it dissolves the decomposed product produced from the film-like material by irradiation with radiation.
  • Specific examples include water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, 1-methoxy-2-propanol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, methyl lactate, diacetone alcohol, 3- methyl methoxypropionate, ethyl 3-ethoxypropionate, propyl acetate, butyl acetate, cyclohexyl acetate and the like.
  • solvents may be used singly or in combination of two or more.
  • the temperature of the heat treatment for the above radiation-irradiated coating film is more preferably 50 to 300°C, more preferably 120 to 250°C.
  • the heat treatment time is preferably 1 to 30 minutes.
  • Step (4) Step of producing a liquid crystal cell> Two substrates on which liquid crystal alignment films are formed as described above are prepared, and liquid crystal is arranged between the two substrates facing each other. Specifically, the following two methods are mentioned. In the first method, first, two substrates are arranged to face each other with a gap (cell gap) interposed therebetween so that the respective liquid crystal alignment films face each other. Next, the peripheries of the two substrates are bonded together using a sealing agent, and a liquid crystal composition is injected and filled into the cell gap defined by the substrate surface and the sealing agent to contact the film surface, and then the injection hole is sealed. stop.
  • the liquid crystal composition is not particularly limited, and various liquid crystal compositions containing at least one liquid crystal compound (liquid crystal molecule) and having positive or negative dielectric anisotropy can be used.
  • a liquid crystal composition with a positive dielectric anisotropy is also referred to as a positive liquid crystal
  • a liquid crystal composition with a negative dielectric anisotropy is also referred to as a negative liquid crystal.
  • the above liquid crystal composition contains a fluorine atom, a hydroxy group, an amino group, a fluorine atom-containing group (e.g., trifluoromethyl group), a cyano group, an alkyl group, an alkoxy group, an alkenyl group, an isothiocyanate group, a heterocyclic ring, a cycloalkane,
  • a liquid crystal compound having a cycloalkene, a steroid skeleton, a benzene ring, or a naphthalene ring may be included, and a compound having two or more rigid sites (mesogenic skeleton) exhibiting liquid crystallinity in the molecule (for example, two rigid biphenyl structure, or a bimesogenic compound in which a terphenyl structure is linked by an alkyl group).
  • the liquid crystal composition may be a liquid crystal composition exhibiting a nematic phase, a liquid crystal composition exhibiting a smectic phase, or a liquid crystal composition exhibiting a cholesteric phase.
  • the liquid crystal composition may further contain an additive from the viewpoint of improving liquid crystal orientation.
  • Such additives include photopolymerizable monomers such as compounds having a polymerizable group (meth(a)acryloyl group, etc.); optically active compounds (eg, S-811 manufactured by Merck Co., Ltd.); Antioxidants; ultraviolet absorbers; dyes; antifoaming agents; polymerization initiators; Positive liquid crystals include ZLI-2293, ZLI-4792, MLC-2003, MLC-2041, MLC-3019 and MLC-7081 manufactured by Merck.
  • MLC-3023 manufactured by Merck Co., Ltd. can be used as a liquid crystal containing a compound having a polymerizable group.
  • the second method is a method called ODF (One Drop Fill) method.
  • ODF One Drop Fill
  • a predetermined place on one of the two substrates on which the liquid crystal alignment film is formed is coated with, for example, an ultraviolet light-curing sealant, and a liquid crystal composition is applied to several predetermined places on the surface of the liquid crystal alignment film. drip.
  • the other substrate is attached so that the liquid crystal alignment films face each other, and the liquid crystal composition is spread over the entire surface of the substrate and brought into contact with the film surface.
  • the entire surface of the substrate is irradiated with ultraviolet light to cure the sealant.
  • it is desirable to remove the flow orientation at the time of liquid crystal filling by heating to a temperature at which the liquid crystal composition used takes an isotropic phase and then slowly cooling to room temperature.
  • the two substrates are arranged opposite to each other so that the rubbing directions of the respective coating films are at a predetermined angle, for example, orthogonal or antiparallel.
  • the sealant for example, an epoxy resin or the like containing aluminum oxide spheres as a curing agent and a spacer can be used.
  • Liquid crystals include nematic liquid crystals and smectic liquid crystals, among which nematic liquid crystals are preferred.
  • the liquid crystal aligning agent of the present invention has a liquid crystal layer between a pair of substrates provided with electrodes, and a liquid crystal composition containing a polymerizable compound polymerized by at least one of active energy rays and heat between the pair of substrates.
  • a liquid crystal display element (PSA type liquid crystal display element) manufactured through a process of polymerizing a polymerizable compound by at least one of irradiating an active energy ray and heating while placing an object and applying a voltage between electrodes. It is preferably used.
  • the liquid crystal aligning agent of the present invention has a liquid crystal layer between a pair of substrates provided with electrodes, and a polymerizable group polymerized by at least one of active energy rays and heat is placed between the pair of substrates. It is also preferably used in a liquid crystal display element (SC-PVA mode type liquid crystal display element) manufactured through a process of arranging a liquid crystal alignment film containing a liquid crystal and applying a voltage between electrodes.
  • SC-PVA mode type liquid crystal display element manufactured through a process of arranging a liquid crystal alignment film containing a liquid crystal and applying a voltage between electrodes.
  • the polymerizable compound include polymerizable compounds having one or more polymerizable unsaturated groups such as acrylate groups and methacrylate groups in the molecule.
  • a method of manufacturing a liquid crystal display element may be employed in which a step of irradiating ultraviolet rays, which will be described later, is performed after performing the same as in (4) above. According to this method, a liquid crystal display device excellent in response speed can be obtained with a small amount of light irradiation, as in the case of manufacturing the PSA type liquid crystal display device.
  • the compound having a polymerizable group may be a compound having one or more polymerizable unsaturated groups in the molecule, and its content is 0.1 to 30 per 100 parts by mass of all polymer components. It is preferably parts by mass, more preferably 1 to 20 parts by mass.
  • the polymerizable group may be possessed by the polymer used for the liquid crystal aligning agent, and such a polymer includes, for example, a diamine component containing a diamine having the photopolymerizable group at its end, and used for the reaction.
  • a polymer includes, for example, a diamine component containing a diamine having the photopolymerizable group at its end, and used for the reaction. The polymer obtained is mentioned.
  • Step (4-4) Step of irradiating with ultraviolet rays>
  • the liquid crystal cell is irradiated with light while a voltage is applied between the conductive films of the pair of substrates obtained in (4-2) or (4-3) above.
  • the voltage applied here can be, for example, 5 to 50 V direct current or alternating current.
  • As the light to be irradiated for example, ultraviolet rays and visible rays containing light having a wavelength of 150 to 800 nm can be used, but ultraviolet rays containing light having a wavelength of 300 to 400 nm are preferable.
  • a light source for irradiation light for example, a low-pressure mercury lamp, a high-pressure mercury lamp, a deuterium lamp, a metal halide lamp, an argon resonance lamp, a xenon lamp, an excimer laser, or the like can be used.
  • the irradiation amount of light is preferably 1,000 to 200,000 J/m 2 , more preferably 1,000 to 100,000 J/m 2 .
  • a liquid crystal display element can be obtained by bonding a polarizing plate to the outer surface of the liquid crystal cell as necessary.
  • a polarizing plate to be attached to the outer surface of the liquid crystal cell, a polarizing film called "H film” in which polyvinyl alcohol is stretched and oriented while absorbing iodine is sandwiched between cellulose acetate protective films, or the H film itself.
  • a polarizing plate consisting of
  • the liquid crystal display device of the present invention can be effectively applied to various devices such as watches, portable games, word processors, notebook computers, car navigation systems, camcorders, PDAs, digital cameras, mobile phones, smart phones, It can be used for various display devices such as various monitors, liquid crystal televisions, and information displays.
  • the viscosity of the polymer solution was measured using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.), a sample amount of 1.1 mL, a cone rotor TE-1 (1 ° 34', R24), and a temperature of 25. Measured in °C.
  • Example 1 A 50 mL Erlenmeyer flask containing a stirrer was charged with the polyamic acid solution (PAA-1) (6.00 g) obtained in Synthesis Example 1 and the diluted solution of the polymer obtained in Synthesis Example 3 (Polymer-1) (0 .48 g), NMP (1.31 g), GBL (3.91 g), BCS (4.00 g), and NMP solution (additive solution) (0.30 g) containing 10% by mass of AD-1
  • the liquid crystal aligning agent (1) was obtained by adding and stirring at room temperature for 2 hours.
  • Liquid crystal aligning agents (2) to (12) were obtained in the same manner as in Example 1, except that the types and amounts of the polymer solution and solvent used were changed as shown in Table 2 below.
  • a liquid crystal cell having a configuration of a fringe field switching (FFS) mode liquid crystal display element was produced.
  • a substrate with electrodes was prepared.
  • a glass substrate having a size of 30 mm ⁇ 35 mm and a thickness of 0.7 mm was used as the substrate.
  • An ITO electrode having a solid pattern is formed on the substrate as a first layer to form a counter electrode, and a CVD (chemical vapor deposition) electrode is formed as a second layer on the first layer counter electrode.
  • a SiN (silicon nitride) film formed by the method was formed.
  • the SiN film of the second layer has a film thickness of 300 nm and functions as an interlayer insulating film.
  • a comb-shaped pixel electrode formed by patterning an ITO film is arranged as a third layer, and two pixels of a first pixel and a second pixel are formed.
  • the size of each pixel was 10 mm long and about 5 mm wide.
  • the counter electrode of the first layer and the pixel electrode of the third layer were electrically insulated by the action of the SiN film of the second layer.
  • the pixel electrode of the third layer has a comb shape in which a plurality of electrode elements each having a width of 3 ⁇ m and having a central portion bent at an internal angle of 160° are arranged in parallel with an interval of 6 ⁇ m.
  • Each pixel had a first region and a second region bounded by a line connecting bent portions of a plurality of electrode elements. Comparing the first region and the second region of each pixel, the forming directions of the electrode elements of the pixel electrodes constituting them were different. That is, when the direction connecting the bent portions of the plurality of electrode elements is taken as a reference, the electrode elements of the pixel electrode are formed so as to form an angle of 80° clockwise in the first region of the pixel, and the electrode elements of the pixel electrode are formed in the second region of the pixel. The electrode elements of the pixel electrode are formed so as to form an angle of 80° counterclockwise.
  • the directions of the rotational movement (in-plane switching) of the liquid crystal induced by the voltage application between the pixel electrode and the counter electrode in the plane of the substrate are mutually different. It was configured in the opposite direction.
  • an ITO film is formed on the surface and the back surface of the substrate with electrodes (first glass substrate) prepared above. It was applied to the surface of a glass substrate (second glass substrate) having columnar spacers with a height of 4 ⁇ m, by a spin coating method. Then, after drying on a hot plate at 80° C.
  • a negative type liquid crystal MLC-7026-100 (manufactured by Merck & Co.) was injected into this empty cell by a vacuum injection method, and the injection port was sealed to obtain an FFS liquid crystal cell. After that, the obtained liquid crystal cell was heated at 120° C. for 1 hour and allowed to stand at 23° C. overnight before being used for evaluation.
  • This evaluation evaluates afterimages (also referred to as AC afterimages) caused by deterioration of the alignment performance of the liquid crystal alignment film during long-term AC driving.
  • an AC voltage of ⁇ 12 V was applied at a frequency of 60 Hz for 120 hours on a high-brightness backlight (luminous intensity: 20000 cd/m 2 ) having a surface temperature of 50°C.
  • the pixel electrode and the counter electrode of the liquid crystal cell were short-circuited and left at room temperature for one day.
  • the liquid crystal cell is placed between two polarizing plates arranged so that the polarizing axes are orthogonal to each other, the backlight is turned on with no voltage applied, and the transmitted light of the first region of the first pixel is obtained.
  • the angle of rotation required when the arrangement angle of the liquid crystal cell is adjusted so that the intensity is minimized and then the liquid crystal cell is rotated so that the transmitted light intensity of the second region of the first pixel is minimized is defined as the angle ⁇ .
  • the first region and the second region were compared to calculate a similar angle ⁇ .
  • the average value of the angle ⁇ between the first pixel and the second pixel was calculated as the rotation angle ⁇ of the liquid crystal cell. It can be said that the smaller the rotation angle ⁇ , the better the stability of the liquid crystal alignment.
  • each of the liquid crystal aligning agents obtained above was filtered through a filter having a pore size of 1.0 ⁇ m, and then applied to the electrode-attached substrate prepared above by a spin coating method. Then, after drying on a hot plate at 80° C. for 2 minutes, baking was performed in an infrared heating furnace at 230° C. for 20 minutes to form a coating film having a thickness of 100 nm to obtain a substrate with a liquid crystal alignment film.
  • a pretilt angle of 1.5 degrees or less was obtained by using the liquid crystal aligning agent of the example of the present invention. Moreover, normally, when a negative liquid crystal is used as a liquid crystal material, it is difficult to obtain good liquid crystal orientation, but by using the liquid crystal aligning agent of the example of the present invention, when a negative liquid crystal is used as a liquid crystal material, However, a liquid crystal display element having good liquid crystal orientation (that is, having excellent AC afterimage properties) was obtained.

Abstract

The present invention provides a polymer composition that is suitable for a liquid crystal aligning agent which enables the achievement of a liquid crystal alignment film that has excellent resistance to an AC afterimage and a low pretilt angle. This polymer composition is characterized by containing the following (A) component and (B) component. (A) component: at least one polymer (A) which is selected from the group consisting of a polyimide precursor having a repeating unit represented by formula (a) and a polyimide that is an imidized product of the polyimide precursor. (B) component: a polyester (B) which has a repeating unit represented by formula (b1) but does not have the repeating unit represented by formula (a) and an imidized structure thereof. Formula (a) (The definition of each symbol is as described in the description.) Formula (b1) (The definition of each symbol is as described in the description.)

Description

重合体組成物、液晶配向剤、樹脂膜、液晶配向膜、液晶表示素子の製造方法及び液晶表示素子Polymer composition, liquid crystal alignment agent, resin film, liquid crystal alignment film, method for manufacturing liquid crystal display element, and liquid crystal display element
 本発明は、重合体組成物、液晶配向剤、樹脂膜、液晶配向膜、液晶表示素子の製造方法及び液晶表示素子に関する。 The present invention relates to a polymer composition, a liquid crystal alignment agent, a resin film, a liquid crystal alignment film, a method for manufacturing a liquid crystal display element, and a liquid crystal display element.
 液晶テレビ、ナビゲーター、スマートフォンなどに用いられる液晶表示素子は、通常、液晶の配列状態を制御するための液晶配向膜が素子内に設けられている。液晶配向膜は、液晶表示素子において、液晶分子の配向を一定方向に制御する機能を有する。例えば、液晶表示素子は、液晶層をなす液晶分子が、一対の基板のそれぞれの表面に形成された液晶配向膜で挟まれた構造を有する。そこでは、液晶分子が、液晶配向膜によって一定方向に配向し、基板と液晶配向膜との間に設けられた電極への電圧印加により応答をする。その結果、液晶表示素子は、液晶分子の応答による配向変化を利用して所望とする画像の表示を行う。液晶配向膜としては、これまで、ポリアミック酸(ポリアミド酸)などのポリイミド前駆体や可溶性ポリイミドの溶液を主成分とする液晶配向剤をガラス基板等に塗布し焼成したポリイミド系の液晶配向膜が主として用いられている。
 近年、液晶表示素子の高性能化に伴い、大画面で高精細の液晶テレビなどの用途に加えて、車載用、例えば、カーナビゲーションシステムやメーターパネル、監視用カメラや医療用カメラのモニターなどに液晶表示素子が用いられており、視野角特性の需要から、IPS(In Plane Switching)方式、FFS(フリンジフィールドスイッチング)方式等の横電界方式が検討されている(特許文献1)。
Liquid crystal display elements used in liquid crystal televisions, navigators, smartphones, etc. are usually provided with a liquid crystal alignment film for controlling the alignment state of liquid crystals. A liquid crystal alignment film has a function of controlling the alignment of liquid crystal molecules in a certain direction in a liquid crystal display element. For example, a liquid crystal display element has a structure in which liquid crystal molecules forming a liquid crystal layer are sandwiched between liquid crystal alignment films formed on respective surfaces of a pair of substrates. There, the liquid crystal molecules are aligned in a certain direction by the liquid crystal alignment film and respond by applying a voltage to the electrodes provided between the substrate and the liquid crystal alignment film. As a result, the liquid crystal display element displays a desired image by utilizing the alignment change due to the response of the liquid crystal molecules. Until now, liquid crystal alignment films have mainly been polyimide-based liquid crystal alignment films, which are obtained by applying a liquid crystal alignment agent whose main component is a polyimide precursor such as polyamic acid (polyamic acid) or a solution of soluble polyimide to a glass substrate or the like and baking it. used.
In recent years, as the performance of liquid crystal display elements has improved, in addition to applications such as large-screen, high-definition liquid crystal televisions, it is also used in automotive applications such as car navigation systems, meter panels, surveillance cameras, and medical camera monitors. A liquid crystal display device is used, and lateral electric field methods such as an IPS (In Plane Switching) method and an FFS (Fringe Field Switching) method are being studied because of the demand for viewing angle characteristics (Patent Document 1).
国際公開2019-082975号公報International Publication No. 2019-082975
 IPS駆動方式やFFS駆動方式の液晶表示素子に用いられる液晶配向膜には、長期交流駆動によって発生する残像(以下、AC残像ともいう)を抑制するための配向規制力が必要とされる。上記急速に高精細化している液晶表示素子では、高い表示品位が重要視されており、「残像」と称されるような表示不良に対するスペックも益々厳しいものとなっている。
 また、車載用、例えば、カーナビゲーションシステムやメーターパネル、監視用カメラや医療用カメラのモニターなどに液晶表示素子が適用されるにつれて、視野角特性をより高める観点から、従来よりも低いプレチルト角が要求されるようになっている。
Liquid crystal alignment films used in liquid crystal display elements of the IPS driving method and the FFS driving method require an alignment regulating force for suppressing afterimages (hereinafter also referred to as AC afterimages) generated by long-term AC driving. In the liquid crystal display devices, which are rapidly becoming higher in definition, high display quality is regarded as important, and specifications for display defects such as "afterimages" are becoming more and more severe.
In addition, as liquid crystal display elements are applied to automotive applications such as car navigation systems, meter panels, surveillance cameras, and medical camera monitors, from the viewpoint of further improving viewing angle characteristics, pretilt angles that are lower than before are becoming more popular. has become required.
 本発明は、上記に鑑み、AC残像に対する耐性に優れ、且つ、低いプレチルト角を有する液晶配向膜が得られる液晶配向剤に好適な重合体組成物、該液晶配向剤、該液晶配向膜、及び該液晶配向膜を有する液晶表示素子を提供することを目的とする。 In view of the above, the present invention provides a polymer composition suitable for a liquid crystal alignment agent that provides a liquid crystal alignment film having excellent resistance to AC afterimage and a low pretilt angle, the liquid crystal alignment agent, the liquid crystal alignment film, and An object of the present invention is to provide a liquid crystal display device having the liquid crystal alignment film.
 本発明者は、上記課題を達成するために鋭意研究を行った結果、特定の成分を含有する重合体組成物を用いて樹脂膜を形成することにより、上記の目的を達成するために有効であることを見出し、本発明を完成するに至った。 As a result of intensive research to achieve the above object, the present inventors have found that forming a resin film using a polymer composition containing specific components is effective for achieving the above object. We found a certain thing and came to complete the present invention.
 本発明は、かかる知見に基づくものであり、下記を要旨とするものである。
 下記の(A)成分および(B)成分を含有することを特徴とする重合体組成物。
(A)成分:下記式(a)で表される繰り返し単位を有するポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体(A)。
(B)成分:下記式(b1)で表される繰り返し単位を有し、下記式(a)で表される繰り返し単位及びそのイミド化構造を有しない、ポリエステル(B)。
Figure JPOXMLDOC01-appb-C000018
(Xは4価の有機基を表す。Yはジアミンに由来する2価の有機基を表す。2個のRは、それぞれ独立に、水素原子又は1価の有機基を表す。2個のZは、それぞれ独立に、水素原子又は1価の有機基を表す。)
Figure JPOXMLDOC01-appb-C000019
(Xarは芳香族テトラカルボン酸二無水物又はその誘導体に由来する4価の有機基を表す。2個のRは、それぞれ独立に、水素原子又は1価の有機基を表す。Eは、有機ジオールから2つのヒドロキシ基中に含まれる水素原子を除いた2価の有機基であって、前記有機ジオールは下記式(EG)で表される2価の有機基を含む。)
Figure JPOXMLDOC01-appb-C000020
(nは5以上の整数である。Rは、水素原子又はメチル基を表す。)
The present invention is based on such findings, and has the following gist.
A polymer composition characterized by containing the following components (A) and (B).
Component (A): At least one polymer (A) selected from the group consisting of a polyimide precursor having a repeating unit represented by the following formula (a) and a polyimide which is an imidized product of the polyimide precursor.
Component (B): Polyester (B) which has a repeating unit represented by the following formula (b1) and does not have a repeating unit represented by the following formula (a) and its imidized structure.
Figure JPOXMLDOC01-appb-C000018
(X represents a tetravalent organic group.Y represents a divalent organic group derived from a diamine.Two R each independently represent a hydrogen atom or a monovalent organic group.Two Z each independently represents a hydrogen atom or a monovalent organic group.)
Figure JPOXMLDOC01-appb-C000019
(X ar represents a tetravalent organic group derived from an aromatic tetracarboxylic dianhydride or a derivative thereof. Each of the two R independently represents a hydrogen atom or a monovalent organic group. E is A divalent organic group obtained by removing hydrogen atoms contained in two hydroxy groups from an organic diol, wherein the organic diol contains a divalent organic group represented by the following formula (EG).)
Figure JPOXMLDOC01-appb-C000020
(n is an integer of 5 or more. R represents a hydrogen atom or a methyl group.)
 本発明によれば、AC残像に対する耐性に優れ、且つ、低いプレチルト角を有する液晶配向膜が得られる液晶配向剤に好適な重合体組成物、該液晶配向剤、該液晶配向膜、及び該液晶配向膜を有する液晶表示素子を得ることができる。また、該液晶表示素子は、表示不良の少ない高い表示品位を有する。
 本発明の上記効果が得られるメカニズムは必ずしも明らかではないが、ほぼ次のように推定される。即ち、特定ポリエステル中に特定のアルキレングリコール鎖が導入されることで、膜の延伸性が向上し、かつ膜表面の平坦性が向上したため、上記の効果が得られたと考えられる。
ADVANTAGE OF THE INVENTION According to this invention, the polymer composition suitable for the liquid-crystal aligning agent which can obtain the liquid-crystal aligning film which has excellent resistance to AC afterimage and has a low pretilt angle, this liquid-crystal aligning agent, this liquid-crystal aligning film, and this liquid crystal A liquid crystal display element having an alignment film can be obtained. Further, the liquid crystal display element has high display quality with few display defects.
Although the mechanism by which the above effects of the present invention are obtained is not necessarily clear, it is estimated as follows. That is, it is considered that the introduction of the specific alkylene glycol chain into the specific polyester improved the stretchability of the film and improved the flatness of the film surface, and thus the above effects were obtained.
 以下に、本開示の重合体組成物に含まれる各成分、及び必要に応じて任意に配合されるその他の成分について説明する。
 本明細書において、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。Bocは、tert-ブトキシカルボニル基を表す。
Each component contained in the polymer composition of the present disclosure and other components optionally blended as necessary will be described below.
As used herein, halogen atoms include fluorine, chlorine, bromine and iodine atoms. Boc represents a tert-butoxycarbonyl group.
<重合体(A)>
 本発明の重合体組成物は、上記式(a)で表される繰り返し単位を有するポリイミド前駆体(以下、ポリイミド前駆体(A)ともいう。)及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体(A)を含有する。重合体(A)は一種あるいは二種以上であってもよい。
<Polymer (A)>
The polymer composition of the present invention is a polyimide precursor having a repeating unit represented by the above formula (a) (hereinafter also referred to as a polyimide precursor (A)) and a polyimide that is an imidized product of the polyimide precursor It contains at least one polymer (A) selected from the group consisting of: The polymer (A) may be of one type or two or more types.
(式(a)で表される繰り返し単位)
 上記式(a)において、Yは、ジアミンに由来する2価の有機基を表す。なお、ジアミンに由来する2価の有機基とは、例えば、ジアミンから2つのアミノ基を除いた2価の有機基が挙げられる。該ジアミンとしては、以下のジアミンが挙げられる。該ジアミンは、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
(Repeating unit represented by formula (a))
In the above formula (a), Y represents a divalent organic group derived from diamine. The divalent organic group derived from diamine includes, for example, a divalent organic group obtained by removing two amino groups from diamine. Examples of the diamine include the following diamines. The diamines may be used singly or in combination of two or more.
 下記式(O)で表されるジアミン;4,4’-ジアミノアゾベンゼン又はジアミノトランなどの光配向性基を有するジアミン;下記式(h-1)~(h-6)で表されるジアミンなどのアミド結合又はウレア結合を有するジアミン;3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノベンゾフェノン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(4-アミノベンジル)ベンゼン、下記式(d)で表されるジアミン;2,6-ジアミノピリジン、3,4-ジアミノピリジン、2,4-ジアミノピリミジン、3,6-ジアミノカルバゾール、N-メチル-3,6-ジアミノカルバゾール、1,4-ビス-(4-アミノフェニル)-ピペラジン、3,6-ジアミノアクリジン、N-エチル-3,6-ジアミノカルバゾール、N-フェニル-3,6-ジアミノカルバゾール、N-[3-(1H-イミダゾール-1-イル)プロピル] 3,5-ジアミノベンズアミド、4-[4-[(4-アミノフェノキシ)メチル]-4,5-ジヒドロ-4-メチル-2-オキサゾリル]-ベンゼンアミン、4-[4-[(4-アミノフェノキシ)メチル]-4,5-ジヒドロ-2-オキサゾリル]-ベンゼンアミン、1,4-ビス(p-アミノベンジル)ピペラジン、4,4’-プロパン-[1,3-ジイルビス(ピペリジン-1,4-ジイル)]ジアニリン、4-(4-アミノフェノキシカルボニル)-1-(4-アミノフェニル)ピペリジン、2,5-ビス(4-アミノフェニル)ピロール、4,4’-(1-メチル-1H-ピロール-2,5-ジイル)ビス[ベンゼンアミン]、1,4-ビス-(4-アミノフェニル)-ピペラジン、2-N-(4-アミノフェニル)ピリジン-2,5-ジアミン、2-N-(5-アミノピリジン-2-イル)ピリジン-2,5-ジアミン、2-(4-アミノフェニル)-5-アミノベンズイミダゾール、2-(4-アミノフェニル)-6-アミノベンズイミダゾール、5-(1H-ベンズイミダゾール-2-イル)ベンゼン-1,3-ジアミン、若しくは下記式(z-1)~式(z-5)で表されるジアミンなどの複素環含有ジアミン、又は、4,4’-ジアミノジフェニルアミン、4,4’-ジアミノジフェニル-N-メチルアミン、N,N’-ビス(4-アミノフェニル)-ベンジジン、N,N’-ビス(4-アミノフェニル)-N,N’-ジメチルベンジジン、若しくは、N,N’-ビス(4-アミノフェニル)-N,N’-ジメチル-1,4-ベンゼンジアミンなどのジフェニルアミン構造を有するジアミンに代表される、窒素原子を含む複素環、第二級又は第三級のアミノ基よりなる群から選ばれる少なくとも一種の窒素原子含有構造(但し、-N(D)-(Dは加熱によって脱離し水素原子に置き換わる保護基を表す。)に由来するアミノ基を除く。以下、特定の窒素原子含有構造ともいう。)を有するジアミン;2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、4,6-ジアミノレゾルシノール;4,4’-ジアミノ-3,3’-ジヒドロキシビフェニル;2,4-ジアミノ安息香酸、2,5-ジアミノ安息香酸、3,5-ジアミノ安息香酸、4,4’-ジアミノビフェニル-3-カルボン酸、4,4’-ジアミノジフェニルメタン-3-カルボン酸、1,2-ビス(4-アミノフェニル)エタン-3-カルボン酸、4,4’-ジアミノビフェニル-3,3’-ジカルボン酸、4,4’-ジアミノビフェニル-2,2’-ジカルボン酸、3,3’-ジアミノビフェニル-4,4’-ジカルボン酸、3,3’-ジアミノビフェニル-2,4’-ジカルボン酸、4,4’-ジアミノジフェニルメタン-3,3’-ジカルボン酸、1,2-ビス(4-アミノフェニル)エタン-3,3’-ジカルボン酸、4,4’-ジアミノジフェニルエーテル-3,3’-ジカルボン酸などのカルボキシ基を有するジアミン;4-(2-(メチルアミノ)エチル)アニリン、4-(2-アミノエチル)アニリン、1-(4-アミノフェニル)-1,3,3-トリメチル-1H-インダン-5-アミン、1-(4-アミノフェニル)-2,3-ジヒドロ-1,3,3-トリメチル-1H-インデン-6-アミン;メタクリル酸2-(2,4-ジアミノフェノキシ)エチル及び2,4-ジアミノ-N,N-ジアリルアニリン等の光重合性基を末端に有するジアミン;コレスタニルオキシ-3,5-ジアミノベンゼン、コレステニルオキシ-3,5-ジアミノベンゼン、コレスタニルオキシ-2,4-ジアミノベンゼン、3,5-ジアミノ安息香酸コレスタニル、3,5-ジアミノ安息香酸コレステニル、3,5-ジアミノ安息香酸ラノスタニル及び3,6-ビス(4-アミノベンゾイルオキシ)コレスタン等のステロイド骨格を有するジアミン;下記式(V-1)~(V-2)で表されるジアミン;基「-N(D)-」(Dは加熱によって脱離し水素原子に置き換わる保護基を表し、好ましくはtert-ブトキシカルボニル基である。)を有するジアミン、好ましくは、下記式(d-1)~(d-7)で表されるジアミン;1,3-ビス(3-アミノプロピル)-テトラメチルジシロキサン、下記式(Ds-1)で表されるジアミン等のシロキサン結合を有するジアミン;メタキシリレンジアミン、1,3-プロパンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ジアミノシクロヘキサン、4,4’-メチレンビス(シクロヘキシルアミン)、国際公開第2018/117239号に記載の式(Y-1)~(Y-167)のいずれかで表される基に2つのアミノ基が結合したジアミン等。 diamines represented by the following formula (O); diamines having a photoalignable group such as 4,4'-diaminoazobenzene or diaminotran; diamines represented by the following formulas (h-1) to (h-6), etc. 3,3′-diaminodiphenylmethane, 3,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylmethane, 4,4′-diaminobenzophenone, 1,4-bis(4- aminophenyl)benzene, 1,3-bis(4-aminophenyl)benzene, 1,4-bis(4-aminobenzyl)benzene, a diamine represented by the following formula (d o ); 2,6-diaminopyridine, 3,4-diaminopyridine, 2,4-diaminopyrimidine, 3,6-diaminocarbazole, N-methyl-3,6-diaminocarbazole, 1,4-bis-(4-aminophenyl)-piperazine, 3,6 -diaminoacridine, N-ethyl-3,6-diaminocarbazole, N-phenyl-3,6-diaminocarbazole, N-[3-(1H-imidazol-1-yl)propyl] 3,5-diaminobenzamide, 4 -[4-[(4-aminophenoxy)methyl]-4,5-dihydro-4-methyl-2-oxazolyl]-benzenamine, 4-[4-[(4-aminophenoxy)methyl]-4,5 -dihydro-2-oxazolyl]-benzenamine, 1,4-bis(p-aminobenzyl)piperazine, 4,4'-propane-[1,3-diylbis(piperidine-1,4-diyl)]dianiline, 4 -(4-aminophenoxycarbonyl)-1-(4-aminophenyl)piperidine, 2,5-bis(4-aminophenyl)pyrrole, 4,4'-(1-methyl-1H-pyrrole-2,5- diyl)bis[benzenamine], 1,4-bis-(4-aminophenyl)-piperazine, 2-N-(4-aminophenyl)pyridine-2,5-diamine, 2-N-(5-aminopyridine -2-yl)pyridine-2,5-diamine, 2-(4-aminophenyl)-5-aminobenzimidazole, 2-(4-aminophenyl)-6-aminobenzimidazole, 5-(1H-benzimidazole -2-yl)benzene-1,3-diamine, heterocycle-containing diamines such as diamines represented by the following formulas (z-1) to (z-5), or 4,4′-diaminodiphenylamine, 4,4'-diaminodiphenyl-N-methylamine, N,N'-bis(4-aminophenyl)-benzidine, N,N'-bis(4-aminophenyl)-N,N'-dimethylbenzidine, or , N,N'-Bis(4-aminophenyl)-N,N'-dimethyl-1,4-benzenediamine containing a nitrogen atom, represented by diamines having a diphenylamine structure, secondary or at least one nitrogen atom-containing structure selected from the group consisting of tertiary amino groups (wherein -N(D)-(D represents a protecting group that is eliminated by heating and replaced with a hydrogen atom); ) except amino groups derived from Hereinafter, it is also referred to as a specific nitrogen atom-containing structure. ); 2,4-diaminophenol, 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol, 4,6-diaminoresorcinol; 4,4′-diamino-3 ,3'-dihydroxybiphenyl; 2,4-diaminobenzoic acid, 2,5-diaminobenzoic acid, 3,5-diaminobenzoic acid, 4,4'-diaminobiphenyl-3-carboxylic acid, 4,4'-diamino Diphenylmethane-3-carboxylic acid, 1,2-bis(4-aminophenyl)ethane-3-carboxylic acid, 4,4'-diaminobiphenyl-3,3'-dicarboxylic acid, 4,4'-diaminobiphenyl-2 ,2′-dicarboxylic acid, 3,3′-diaminobiphenyl-4,4′-dicarboxylic acid, 3,3′-diaminobiphenyl-2,4′-dicarboxylic acid, 4,4′-diaminodiphenylmethane-3,3 diamines having a carboxy group such as '-dicarboxylic acid, 1,2-bis(4-aminophenyl)ethane-3,3'-dicarboxylic acid, 4,4'-diaminodiphenyl ether-3,3'-dicarboxylic acid;4 -(2-(methylamino)ethyl)aniline, 4-(2-aminoethyl)aniline, 1-(4-aminophenyl)-1,3,3-trimethyl-1H-indan-5-amine, 1-( 4-aminophenyl)-2,3-dihydro-1,3,3-trimethyl-1H-inden-6-amine; 2-(2,4-diaminophenoxy)ethyl methacrylate and 2,4-diamino-N, Diamines having a photopolymerizable group at the end, such as N-diallylaniline; diamines having a steroid skeleton such as cholestanyl, 5-diaminobenzoate, cholestenyl 3,5-diaminobenzoate, lanostanyl 3,5-diaminobenzoate and 3,6-bis(4-aminobenzoyloxy)cholestane; Diamine represented by V-1) to (V-2); group "-N(D)-" (D represents a protective group that is eliminated by heating and replaced with a hydrogen atom, preferably a tert-butoxycarbonyl group ), preferably diamines represented by the following formulas (d-1) to (d-7): 1,3-bis(3-aminopropyl)-tetramethyldisiloxane, the following formula (Ds- 1) diamines having a siloxane bond, such as diamines represented by; 1,4-diaminocyclohexane, 4,4'-methylenebis(cyclohexylamine), a group represented by any of the formulas (Y-1) to (Y-167) described in International Publication No. 2018/117239 2 A diamine having two amino groups bonded thereto, and the like.
Figure JPOXMLDOC01-appb-C000021
(Arは、2価のベンゼン環、ビフェニル構造、又はナフタレン環を表す。2つのArは同一でも異なってもよく、上記ベンゼン環、ビフェニル構造、又はナフタレン環の任意の水素原子は1価の基で置き換えられてもよい。pは0又は1の整数である。Qは-(CH-(nは2~18の整数である。)、又は該-(CH-の-CH-の少なくとも一部を-O-、-C(=O)-又は-O-C(=O)-のいずれかで置き換えた基を表す。)
Figure JPOXMLDOC01-appb-C000021
(Ar represents a divalent benzene ring, biphenyl structure, or naphthalene ring. The two Ars may be the same or different, and any hydrogen atom in the benzene ring, biphenyl structure, or naphthalene ring is a monovalent group. p is an integer of 0 or 1. Q 2 is —(CH 2 ) n — (n is an integer of 2 to 18), or the —(CH 2 ) n — represents a group in which at least part of -CH 2 - is replaced with -O-, -C(=O)- or -O-C(=O)-.)
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
(式(z-2)において、2つのmはそれぞれ同一でも異なってもよい。)
Figure JPOXMLDOC01-appb-C000023
(In formula (z-2), two m may be the same or different.)
Figure JPOXMLDOC01-appb-C000024
(mが2つ以上ある場合、2つ以上のmはそれぞれ同一でも異なってもよい。ベンゼン環上の1つ以上の水素原子は1価の基で置換されてもよい。)
Figure JPOXMLDOC01-appb-C000024
(When there are two or more m, the two or more m may be the same or different. One or more hydrogen atoms on the benzene ring may be substituted with a monovalent group.)
Figure JPOXMLDOC01-appb-C000025
(式(V-1)中、m、nは、それぞれ独立して、0~3の整数(但し、1≦m+n≦4を満たす。)であり、jは0又は1の整数であり、Xは、-(CH-(aは1~15の整数である。)、-CONH-、-NHCO-、-CO-N(CH)-、-NH-、-O-、-CHO-、-CH-OCO-、-COO-、又は-OCO-を表す。Rは、フッ素原子、炭素数1~10のフッ素原子含有アルキル基、炭素数1~10のフッ素原子含有アルコキシ基、炭素数3~10のアルキル基、炭素数3~10のアルコキシ基、又は炭素数3~10のアルコキシアルキル基を表す。m、n、X、Rが2つ存在する場合、それぞれ独立して、上記定義を有する。式(V-2)中、Xは-O-、-CHO-、-CH-OCO-、-COO-、又は-OCO-を表す。)
Figure JPOXMLDOC01-appb-C000026
(式(d-2)、(d-6)および(d-7)において、Rは、水素原子、又は-(CH-Boc(kは0~3の整数である。また、kが0の場合、(CHは単結合を表す。)
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000025
(In formula (V-1), m and n are each independently an integer of 0 to 3 (provided that 1 ≤ m + n ≤ 4.), j is an integer of 0 or 1, and X 1 is -(CH 2 ) a - (a is an integer of 1 to 15), -CONH-, -NHCO-, -CO-N(CH 3 )-, -NH-, -O-, - represents CH 2 O—, —CH 2 —OCO—, —COO—, or —OCO—, R 1 is a fluorine atom, a fluorine atom-containing alkyl group having 1 to 10 carbon atoms, or a fluorine atom having 1 to 10 carbon atoms; represents an alkoxy group containing, an alkyl group having 3 to 10 carbon atoms, an alkoxy group having 3 to 10 carbon atoms, or an alkoxyalkyl group having 3 to 10 carbon atoms, when there are two m, n, X 1 and R 1 , each independently having the above definition In formula (V-2), X 2 represents -O-, -CH 2 O-, -CH 2 -OCO-, -COO-, or -OCO-. )
Figure JPOXMLDOC01-appb-C000026
(In formulas (d-2), (d-6) and (d-7), R is a hydrogen atom or -(CH 2 ) k -Boc (k is an integer of 0 to 3. In addition, k is 0, (CH 2 ) k represents a single bond.)
Figure JPOXMLDOC01-appb-C000027
 上記式(d)において、1価の基としては、ハロゲン原子、炭素数1~10のアルキル基、炭素数2~10のアルケニル基、炭素数1~10のアルコキシ基、炭素数1~10のフルオロアルキル基、炭素数2~10のフルオロアルケニル基、炭素数1~10のフルオロアルコキシ基、カルボキシ基、ヒドロキシ基、炭素数1~10のアルキルオキシカルボニル基、シアノ基、ニトロ基等が挙げられる。
 上記式(d)で表されるジアミンとして、液晶配向性を高める観点から、下記式(d-1)~(d-6)で表されるジアミン、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル及び4,4’-ジアミノジフェニルエーテルが好ましい。
Figure JPOXMLDOC01-appb-C000028
In the above formula (d o ), the monovalent group includes a halogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and an alkoxy group having 1 to 10 carbon atoms. fluoroalkyl group, fluoroalkenyl group having 2 to 10 carbon atoms, fluoroalkoxy group having 1 to 10 carbon atoms, carboxy group, hydroxy group, alkyloxycarbonyl group having 1 to 10 carbon atoms, cyano group, nitro group and the like. be done.
As the diamine represented by the above formula (d o ), diamines represented by the following formulas (d o -1) to (d o -6), 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether and 4,4'-diaminodiphenyl ether are preferred.
Figure JPOXMLDOC01-appb-C000028
 上記式(O)で表されるジアミンにおいて、ベンゼン環、ビフェニル構造、又はナフタレン環の任意の水素原子は1価の基で置き換えられてもよい。上記1価の基としては、例えば、ハロゲン原子、炭素数1~10のアルキル基、炭素数2~10のアルケニル基、炭素数1~10のアルコキシ基、炭素数1~10のフルオロアルキル基、炭素数2~10のフルオロアルケニル基、炭素数1~10のフルオロアルコキシ基、炭素数1~10のアルキルオキシカルボニル基、シアノ基、ニトロ基等が挙げられる。 In the diamine represented by formula (O) above, any hydrogen atom in the benzene ring, biphenyl structure, or naphthalene ring may be replaced with a monovalent group. Examples of the monovalent group include a halogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a fluoroalkyl group having 1 to 10 carbon atoms, Examples include a fluoroalkenyl group having 2 to 10 carbon atoms, a fluoroalkoxy group having 1 to 10 carbon atoms, an alkyloxycarbonyl group having 1 to 10 carbon atoms, a cyano group, a nitro group and the like.
 上記式(O)で表されるジアミンとして、液晶配向性を高める観点から、下記式(o-1)~(o-8)、p-フェニレンジアミン、2,3,5,6-テトラメチル-p-フェニレンジアミン、2,5-ジメチル-p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジメチル-m-フェニレンジアミン、1,4-ジアミノ-2,5-ジメトキシベンゼン、2,5-ジアミノトルエン、2,6-ジアミノトルエン、4-アミノベンジルアミン、2-(6-アミノ-2-ナフチル)エチルアミン、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3-トリフルオロメチル-4,4’-ジアミノビフェニル、2-トリフルオロメチル-4,4’-ジアミノビフェニル、3-フルオロ-4,4’-ジアミノビフェニル、2-フルオロ-4,4’-ジアミノビフェニル、2,2’-ジフルオロ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、3,3’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、4,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、2,2’-ジアミノビフェニル、2,3’-ジアミノビフェニル、1,5-ジアミノナフタレン、1,6-ジアミノナフタレン、1,7-ジアミノナフタレン、2,5-ジアミノナフタレン、2,6-ジアミノナフタレン、又は2,7-ジアミノナフタレンで表されるジアミンが好ましい。 As the diamine represented by the above formula (O), the following formulas (o-1) to (o-8), p-phenylenediamine, 2,3,5,6-tetramethyl- p-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, m-phenylenediamine, 2,4-dimethyl-m-phenylenediamine, 1,4-diamino-2,5-dimethoxybenzene, 2,5-diamino toluene, 2,6-diaminotoluene, 4-aminobenzylamine, 2-(6-amino-2-naphthyl)ethylamine, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethyl- 4,4'-diaminobiphenyl, 3,3'-dimethoxy-4,4'-diaminobiphenyl, 3-trifluoromethyl-4,4'-diaminobiphenyl, 2-trifluoromethyl-4,4'-diaminobiphenyl , 3-fluoro-4,4′-diaminobiphenyl, 2-fluoro-4,4′-diaminobiphenyl, 2,2′-difluoro-4,4′-diaminobiphenyl, 3,3′-difluoro-4,4 '-diaminobiphenyl, 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl, 3,3'-bis(trifluoromethyl)-4,4'-diaminobiphenyl, 3,4'- diaminobiphenyl, 4,4'-diaminobiphenyl, 3,3'-diaminobiphenyl, 2,2'-diaminobiphenyl, 2,3'-diaminobiphenyl, 1,5-diaminonaphthalene, 1,6-diaminonaphthalene, 1 ,7-diaminonaphthalene, 2,5-diaminonaphthalene, 2,6-diaminonaphthalene or 2,7-diaminonaphthalene are preferred.
Figure JPOXMLDOC01-appb-C000029
(式(o-8)において、2つのmは同一でも異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000029
(In formula (o-8), two m may be the same or different.)
 上記Yは、上記式(O)で表されるジアミン、アミド結合又はウレア結合を有するジアミン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノベンゾフェノン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(4-アミノベンジル)ベンゼン、上記式(d)で表されるジアミン、4-(2-(メチルアミノ)エチル)アニリン、4-(2-アミノエチル)アニリン、及び基「-N(D)-」(Dは加熱によって脱離し水素原子に置き換わる保護基を表し、好ましくはtert-ブトキシカルボニル基である。)を有するジアミンからなる群から選ばれるジアミンに由来する2価の有機基が好ましい。上記Yが該構成を満たすことで、長期交流駆動で発生する残像が低減されるという効果が得られ好適である。 Y is a diamine represented by the formula (O), a diamine having an amide bond or a urea bond, 3,3′-diaminodiphenylmethane, 3,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylmethane, 4, 4′-diaminobenzophenone, 1,4-bis(4-aminophenyl)benzene, 1,3-bis(4-aminophenyl)benzene, 1,4-bis(4-aminobenzyl)benzene, the formula (d o ), 4-(2-(methylamino)ethyl)aniline, 4-(2-aminoethyl)aniline, and the group “-N(D)-” (D is eliminated by heating to form a hydrogen atom represents a protecting group to be substituted, preferably a tert-butoxycarbonyl group), and is preferably a divalent organic group derived from a diamine selected from the group consisting of diamines. When Y satisfies this configuration, it is possible to obtain the effect of reducing afterimages that occur during long-term AC driving, which is preferable.
 上記式(a)において、Xは、4価の有機基を表す。Xは、好ましくは、テトラカルボン酸二無水物又はその誘導体に由来する4価の有機基を表す。なお、テトラカルボン酸二無水物又はその誘導体に由来する4価の有機基とは、例えば、対応するテトラカルボン酸から4つのカルボキシ基を除いた4価の有機基が挙げられる。該4価の有機基としては、非環式脂肪族テトラカルボン酸二無水物又はその誘導体に由来する4価の有機基、脂環式テトラカルボン酸二無水物又はその誘導体に由来する4価の有機基又は芳香族テトラカルボン酸二無水物又はその誘導体に由来する4価の有機基が挙げられる。
 ここで、非環式脂肪族テトラカルボン酸二無水物は、鎖状炭化水素構造に結合する4つのカルボキシ基が分子内脱水することにより得られる酸二無水物である。但し、鎖状炭化水素構造のみで構成されている必要はなく、その一部に脂環式構造や芳香環構造を有していてもよい。
 脂環式テトラカルボン酸二無水物は、脂環式構造に結合する少なくとも1つのカルボキシ基を含めて4つのカルボキシ基が分子内脱水することにより得られる酸二無水物である。但し、これら4つのカルボキシ基はいずれも芳香環には結合していない。また、脂環式構造のみで構成されている必要はなく、その一部に鎖状炭化水素構造や芳香環構造を有していてもよい。
 芳香族テトラカルボン酸二無水物は、芳香環に結合する少なくとも1つのカルボキシ基を含めて4つのカルボキシ基が分子内脱水することにより得られる酸二無水物である。但し、芳香環構造のみで構成されている必要はなく、その一部に鎖状炭化水素構造や脂環式構造を有していてもよい。
 上記テトラカルボン酸二無水物の誘導体としては、テトラカルボン酸ジハライド、テトラカルボン酸ジアルキルエステル、又はテトラカルボン酸ジアルキルエステルジハライドが挙げられる。
 該テトラカルボン酸二無水物又はその誘導体は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
In the above formula (a), X represents a tetravalent organic group. X preferably represents a tetravalent organic group derived from a tetracarboxylic dianhydride or a derivative thereof. The tetravalent organic group derived from a tetracarboxylic dianhydride or a derivative thereof includes, for example, a tetravalent organic group obtained by removing four carboxy groups from the corresponding tetracarboxylic acid. As the tetravalent organic group, a tetravalent organic group derived from an acyclic aliphatic tetracarboxylic dianhydride or a derivative thereof, a tetravalent organic group derived from an alicyclic tetracarboxylic dianhydride or a derivative thereof, A tetravalent organic group derived from an organic group or an aromatic tetracarboxylic dianhydride or a derivative thereof can be mentioned.
Here, the acyclic aliphatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups bonded to a chain hydrocarbon structure. However, it does not need to be composed only of a chain hydrocarbon structure, and may have an alicyclic structure or an aromatic ring structure in part thereof.
An alicyclic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups including at least one carboxy group bonded to an alicyclic structure. However, none of these four carboxy groups are bonded to the aromatic ring. Moreover, it is not necessary to consist only of an alicyclic structure, and a part thereof may have a chain hydrocarbon structure or an aromatic ring structure.
An aromatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups including at least one carboxy group bonded to an aromatic ring. However, it is not necessary to consist only of an aromatic ring structure, and a part thereof may have a chain hydrocarbon structure or an alicyclic structure.
Examples of the tetracarboxylic dianhydride derivatives include tetracarboxylic acid dihalides, tetracarboxylic acid dialkyl esters, and tetracarboxylic acid dialkyl ester dihalides.
The tetracarboxylic dianhydride or derivative thereof may be used singly or in combination of two or more.
 上記非環式脂肪族若しくは脂環式テトラカルボン酸二無水物、又はこれらの誘導体は、中でも液晶配向性を高める高い観点から、シクロブタン環構造、シクロペンタン環構造及びシクロヘキサン環構造よりなる群から選ばれる少なくとも一種の部分構造を有するテトラカルボン酸二無水物又はこれらの誘導体であることが好ましい。 The above-mentioned acyclic aliphatic or alicyclic tetracarboxylic dianhydrides, or derivatives thereof, are selected from the group consisting of a cyclobutane ring structure, a cyclopentane ring structure and a cyclohexane ring structure from the viewpoint of enhancing the liquid crystal orientation. It is preferably a tetracarboxylic dianhydride having at least one partial structure or a derivative thereof.
 上記Xは、好ましくは、下記式(t)で表されるテトラカルボン酸二無水物又はその誘導体に由来する4価の有機基である。 The above X is preferably a tetravalent organic group derived from a tetracarboxylic dianhydride represented by the following formula (t) or a derivative thereof.
Figure JPOXMLDOC01-appb-C000030
 式中Xは、下記式(X1-1)~(X1-25)から選ばれる構造である。*は結合手を表す。なお、Xが式(X1-1)~(X1-23)である式(t)で表されるテトラカルボン酸二無水物は、非環式脂肪族若しくは脂環式テトラカルボン酸二無水物の例である。また、Xが式(X1-24)~(X1-25)である式(t)で表されるテトラカルボン酸二無水物は、芳香族テトラカルボン酸二無水物の例である。
Figure JPOXMLDOC01-appb-C000030
In the formula, X 1 is a structure selected from the following formulas (X1-1) to (X1-25). * represents a bond. Incidentally, the tetracarboxylic dianhydride represented by the formula (t) in which X 1 is a formula (X1-1) to (X1-23) is an acyclic aliphatic or alicyclic tetracarboxylic dianhydride is an example of Further, tetracarboxylic dianhydrides represented by formula (t) in which X 1 is one of formulas (X1-24) to (X1-25) are examples of aromatic tetracarboxylic dianhydrides.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 式(X1-1)~(X1-4)において、R~R21は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、又はフェニル基を表す。*は結合手を表す。液晶配向性を高める点から、R~R21は、水素原子、ハロゲン原子、メチル基、又はエチル基が好ましく、水素原子、又はメチル基がより好ましい。
 式(X1-24)~(X1-25)において、j及びkは、0又は1の整数であり、A及びAは、それぞれ独立して、単結合、-O-、-CO-、-COO-、フェニレン基、スルホニル基、又はアミド基を表す。複数のAは、それぞれ同一でも異なってもよい。
In formulas (X1-1) to (X1-4), R 1 to R 21 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, It represents an alkynyl group having 2 to 6 carbon atoms, a monovalent organic group having 1 to 6 carbon atoms containing a fluorine atom, or a phenyl group. * represents a bond. R 1 to R 21 are preferably a hydrogen atom, a halogen atom, a methyl group, or an ethyl group, more preferably a hydrogen atom or a methyl group, from the viewpoint of enhancing liquid crystal orientation.
In formulas (X1-24) to (X1-25), j and k are integers of 0 or 1, A 1 and A 2 are each independently a single bond, -O-, -CO-, -COO-, represents a phenylene group, a sulfonyl group, or an amide group. A plurality of A 2 may be the same or different.
 式(X1-1)の具体例としては、下記式(1-1)~(1-6)が挙げられる。液晶配向性を高める観点から、式(1-1)、(1-2)が特に好ましい。*は上記と同義である。 Specific examples of formula (X1-1) include the following formulas (1-1) to (1-6). Formulas (1-1) and (1-2) are particularly preferred from the viewpoint of enhancing liquid crystal orientation. * has the same meaning as above.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 上記式(X1-24)、(X1-25)の好ましい具体例としては、下記式(X1-26)~(X1-41)が挙げられる。*は上記と同義である。
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Preferred specific examples of the above formulas (X1-24) and (X1-25) include the following formulas (X1-26) to (X1-41). * has the same meaning as above.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
 液晶配向性を高める観点から、上記Xは、上記式(X1-1)~(X1-10)、(X1-18)~(X1-23)、(X1-24)~(X1-25)、又は(X1-26)~(X1-30)が好ましく、上記式(X1-1)、(X1-5)、(X1-7)~(X1-10)、(X1-21)、(X1-23)、(X1-24)~(X1-25)、又は(X1-26)~(X1-30)がより好ましく、上記式(1-1)、(1-2)、(X1-5)、(X1-7)、(X1-9)、又は(X1-26)~(X1-30)が更に好ましい。 From the viewpoint of enhancing the liquid crystal orientation, the above X 1 is represented by the above formulas (X1-1) to (X1-10), (X1-18) to (X1-23), (X1-24) to (X1-25) , or (X1-26) to (X1-30) are preferred, the above formulas (X1-1), (X1-5), (X1-7) to (X1-10), (X1-21), (X1 -23), (X1-24) to (X1-25), or (X1-26) to (X1-30) are more preferable, and the above formulas (1-1), (1-2), (X1-5 ), (X1-7), (X1-9), or (X1-26) to (X1-30) are more preferred.
 上記式(a)におけるR、Zにおける1価の有機基としては、炭素数1~20の1価の炭化水素基、当該炭化水素基のメチレン基を-O-、-S-、-CO-、-COO-、-COS-、-NR-(ただし、Rは、水素原子又は炭素数1~10の1価の炭化水素基である。)、-CO-NR-(ただし、Rは、水素原子又は炭素数1~10の1価の炭化水素基である。)、-Si(R-(ただし、Rは、水素原子又は炭素数1~10の1価の炭化水素基である。)、-SO-等で置き換えてなる1価の基A、1価の炭化水素基又は1価の基Aの炭素原子に結合する水素原子の少なくとも1個をハロゲン原子、ヒドロキシ基、アルコキシ基、ニトロ基、アミノ基、メルカプト基、ニトロソ基、アルキルシリル基、アルコキシシリル基、シラノール基、スルフィノ基、ホスフィノ基、カルボキシ基、シアノ基、スルホ基、アシル基等で置換してなる1価の基、複素環を有する1価の基が挙げられる。上記式(a)におけるR、Zにおける1価の有機基としては、中でも、炭素数1~10のアルキル基、炭素数2~10のアルケニル基、炭素数2~10のアルキニル基、tert-ブトキシカルボニル基、又は9-フルオレニルメトキシカルボニル基が好ましく、炭素数1~3のアルキル基が更に好ましく、メチル基がより一層好ましい。
 R及びZは、本発明の効果を得る観点から、それぞれ独立に、水素原子又は炭素数1~3のアルキル基が好ましく、水素原子またはメチル基がより好ましい。
As the monovalent organic group for R and Z in the above formula (a), a monovalent hydrocarbon group having 1 to 20 carbon atoms, and the methylene group of the hydrocarbon group is -O-, -S-, -CO- , —COO—, —COS—, —NR 3 — (provided that R 3 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms), —CO—NR 3 — (provided that R 3 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms.), -Si(R 3 ) 2 - (where R 3 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms). is a hydrocarbon group.), a monovalent group A substituted with —SO 2 —, etc., a monovalent hydrocarbon group, or at least one hydrogen atom bonded to a carbon atom of the monovalent group A is a halogen atom , hydroxy group, alkoxy group, nitro group, amino group, mercapto group, nitroso group, alkylsilyl group, alkoxysilyl group, silanol group, sulphino group, phosphino group, carboxy group, cyano group, sulfo group, acyl group, etc. a monovalent group having a heterocyclic ring. Examples of monovalent organic groups for R and Z in the above formula (a) include, among others, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkynyl group having 2 to 10 carbon atoms, a tert-butoxy A carbonyl group or a 9-fluorenylmethoxycarbonyl group is preferred, an alkyl group having 1 to 3 carbon atoms is more preferred, and a methyl group is even more preferred.
From the viewpoint of obtaining the effects of the present invention, R and Z are each independently preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, more preferably a hydrogen atom or a methyl group.
 上記式(a)において、X、Y、R、Zは、それぞれ1種類であってもよく、2種類以上であってもよい。
 重合体(A)の含有割合は、重合体組成物100質量部中、70~99質量部が好ましく、80~98質量部がより好ましい。
In the above formula (a), each of X, Y, R, and Z may be of one type or two or more types.
The content of the polymer (A) is preferably 70 to 99 parts by mass, more preferably 80 to 98 parts by mass, based on 100 parts by mass of the polymer composition.
(重合体(A)を構成する繰り返し単位)
 本発明における重合体(A)は、上記式(a)で表される繰り返し単位を有するポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体である。重合体(A)は、上記式(a)で表される繰り返し単位と末端基を有していてもよい。
(Repeating Unit Constituting Polymer (A))
The polymer (A) in the present invention is at least one polymer selected from the group consisting of a polyimide precursor having a repeating unit represented by the above formula (a) and a polyimide which is an imidized product of the polyimide precursor. be. The polymer (A) may have a repeating unit represented by formula (a) and a terminal group.
 ここで、末端基とは、上記重合体(A)を構成する繰り返し単位の末端に結合している基を言う。末端基の例としては、アミノ基、カルボキシ基、酸無水物基、イソシアネート基又はこれらの誘導体が挙げられる。アミノ基、カルボキシ基、酸無水物基、イソシアネート基は通常の縮合反応により得られ、上記誘導体は、後述するように、例えば、末端封止剤を用いて、末端基を封止するにより得ることができる。 Here, the term "terminal group" refers to a group bonded to the terminals of the repeating units constituting the polymer (A). Examples of terminal groups include amino groups, carboxy groups, acid anhydride groups, isocyanate groups, or derivatives thereof. An amino group, a carboxyl group, an acid anhydride group, and an isocyanate group can be obtained by a normal condensation reaction, and the above derivatives can be obtained, for example, by blocking terminal groups with a terminal blocking agent, as described later. can be done.
 式(a)で表される繰り返し単位およびそのイミド化構造との合計は、重合体(A)を構成する繰り返し単位全体の10モル%以上が好ましく、20モル%以上がより好ましい。 The total of the repeating unit represented by formula (a) and its imidized structure is preferably 10 mol% or more, more preferably 20 mol% or more, of the total repeating units constituting the polymer (A).
(式(U)で表される繰り返し単位)
 本発明における重合体(A)は、下記式(U)で表される繰り返し単位をさらに有していてもよい。
Figure JPOXMLDOC01-appb-C000038
(Uは2価の有機基であり、U1’はジアミンに由来する2価の有機基であり、C及びC1’は、それぞれ独立に、水素原子又は1価の有機基である。)
(Repeating unit represented by formula (U))
The polymer (A) in the invention may further have a repeating unit represented by the following formula (U).
Figure JPOXMLDOC01-appb-C000038
(U 1 is a divalent organic group, U 1' is a divalent organic group derived from a diamine, and C 1 and C 1' are each independently a hydrogen atom or a monovalent organic group. .)
 上記式(U)において、Uは2価の有機基である。Uの例としては、ジイソシアネートに由来する2価の有機基が挙げられる。該ジイソシアネートは、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 ここで、ジイソシアネートとしては、例えば、芳香族ジイソシアネート、脂肪族ジイソシアネートが挙げられる。
 ここで、「芳香族ジイソシアネート」とは、少なくとも一つの芳香族基を有するジイソシアネートを意味する。また、「脂肪族ジイソシアネート」とは、脂肪族基を有し、かつ芳香族基を有しないジイソシアネートを意味する。
 Uとしては、例えば、(i)ジイソシアネート構造(O=C=N-R-N=C=O)において、Rがベンゼン環を少なくとも一つ有する炭素数6~30の有機基である芳香族ジイソシアネートに由来する2価の有機基、または(ii)ジイソシアネート構造(O=C=N-R-N=C=O)において、Rが脂肪族基を有し、かつ芳香族基を有しない炭素数4~30の有機基である脂肪族ジイソシアネートに由来する2価の有機基が挙げられる。
 なお、脂肪族基は、非環式脂肪族基および脂環式基のいずれも包含する。
 Uの具体例としては、o-フェニレンジイソシアネート、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、トルエンジイソシアネート類(例えば、2,4-ジイソシアン酸トリレン、2,6-ジイソシアン酸トリレン)、1,4-ジイソシアン酸-2-メトキシベンゼン、2,5-ジイソシアン酸キシレン類、3,3’-ジメチル-4,4’-ジイソシアネートビフェニル、4,4’-ジイソシアネートジフェニルエーテル、2,2’-ビス(4-ジイソシアン酸フェニル)プロパン、4,4’-ジイソシアン酸ジフェニルメタン(4,4’-ジフェニルメタンジイソシアネート)、4,4’-ジイソシアン酸ジフェニルエーテル、4,4’-ジイソシアン酸ジフェニルスルホン、3,3’-ジイソシアン酸ジフェニルスルホン及び2,2’-ジイソシアン酸ベンゾフェノンなどの芳香族ジイソシアネートに由来する2価の有機基、イソホロンジイソシアネート、ノルボルネンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、及びテトラメチレンジイソシアネートなどの脂肪族ジイソシアネートに由来する2価の有機基が挙げられる。
In formula (U) above, U1 is a divalent organic group. Examples of U 1 include divalent organic groups derived from diisocyanates. The diisocyanate may be used alone or in combination of two or more.
Here, examples of diisocyanates include aromatic diisocyanates and aliphatic diisocyanates.
Here, "aromatic diisocyanate" means a diisocyanate having at least one aromatic group. Moreover, "aliphatic diisocyanate" means a diisocyanate having an aliphatic group and not having an aromatic group.
U 1 is, for example, (i) a diisocyanate structure (O=C=N-R-N=C=O) in which R is an organic group having 6 to 30 carbon atoms and having at least one benzene ring. A divalent organic group derived from a diisocyanate, or (ii) in the diisocyanate structure (O=C=N-R-N=C=O), R has an aliphatic group and does not have an aromatic group. A divalent organic group derived from an aliphatic diisocyanate, which is an organic group having a number of 4 to 30, can be mentioned.
In addition, an aliphatic group includes both an acyclic aliphatic group and an alicyclic group.
Specific examples of U1 include o-phenylene diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, toluene diisocyanates (eg, tolylene 2,4-diisocyanate, tolylene 2,6-diisocyanate), 1,4- Diisocyanate-2-methoxybenzene, 2,5-diisocyanate xylenes, 3,3′-dimethyl-4,4′-diisocyanatobiphenyl, 4,4′-diisocyanatodiphenyl ether, 2,2′-bis(4-diisocyanate acid phenyl)propane, 4,4'-diphenylmethane diisocyanate (4,4'-diphenylmethane diisocyanate), 4,4'-diphenyl diisocyanate ether, 4,4'-diphenyl sulfone diisocyanate, 3,3'-diphenyl diisocyanate Divalent organic groups derived from aromatic diisocyanates such as sulfone and benzophenone 2,2′-diisocyanate, aliphatic diisocyanates such as isophorone diisocyanate, norbornene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, and tetramethylene diisocyanate and divalent organic groups.
 上記式(U)において、U1‘はジアミンに由来する2価の有機基である。ジアミンとしては、上記繰り返し単位(a)で例示したジアミンが挙げられ、好ましい態様は上記と同様である。 In the above formula (U), U 1' is a divalent organic group derived from diamine. Examples of the diamine include the diamines exemplified for the repeating unit (a) above, and preferred embodiments are the same as above.
 上記式(U)におけるC、C1’の1価の有機基としては、上記繰り返し単位(a)のR、Zで例示した構造が挙げられる。C及びC1’は、本発明の効果を得る観点から、それぞれ独立に、水素原子又は炭素数1~3のアルキル基が好ましく、水素原子またはメチル基がより好ましい。 Examples of the monovalent organic groups of C 1 and C 1′ in the formula (U) include the structures exemplified for R and Z in the repeating unit (a). From the viewpoint of obtaining the effects of the present invention, C 1 and C 1′ are each independently preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, more preferably a hydrogen atom or a methyl group.
 上記式(U)において、U、U1’、C、C1’は、それぞれ1種類であってもよく、2種類以上であってもよい。 In the above formula (U), each of U 1 , U 1′ , C 1 , and C 1′ may be of one kind, or two or more kinds thereof.
 本発明における重合体(A)は、上記式(U)で表される繰り返し単位を有する場合、式(U)で表される繰り返し単位の含有割合は、本願発明の効果を得る観点から、上記繰り返し単位(a)、繰り返し単位(a)のイミド化構造及び上記式(U)で表される繰り返し単位の合計100モル%に対して、1~30モル%が好ましく、2~25モル%がより好ましい。 When the polymer (A) in the present invention has a repeating unit represented by the above formula (U), the content of the repeating unit represented by the formula (U) is, from the viewpoint of obtaining the effect of the present invention, the above With respect to the total 100 mol% of the repeating unit (a), the imidized structure of the repeating unit (a) and the repeating unit represented by the above formula (U), 1 to 30 mol% is preferable, and 2 to 25 mol% is more preferred.
<ポリエステル(B)>
 本発明の重合体組成物は、上記式(b1)で表される繰り返し単位を有し、上記式(a)で表される繰り返し単位及びそのイミド化構造を有しない、ポリエステル(B)を含有する。ポリエステル(B)は、一種を単独で使用してもよく、また二種以上を組み合わせて使用してもよい。
<Polyester (B)>
The polymer composition of the present invention contains a polyester (B) having a repeating unit represented by the above formula (b1) and having no repeating unit represented by the above formula (a) and its imidized structure. do. Polyester (B) may be used alone or in combination of two or more.
 上記式(b1)におけるXarは、芳香族テトラカルボン酸二無水物又はその誘導体に由来する4価の有機基を表す。
 なお、芳香族テトラカルボン酸二無水物は、芳香環に結合する少なくとも1つのカルボキシ基を含めて4つのカルボキシ基が分子内脱水することにより得られる酸二無水物である。但し、芳香環構造のみで構成されている必要はなく、その一部に鎖状炭化水素構造や脂環式構造を有していてもよい。
 上記式(b1)におけるXarは、好ましくは、下記式(t)で表されるテトラカルボン酸二無水物又はその誘導体に由来する4価の有機基である。
Figure JPOXMLDOC01-appb-C000039
(式中Xは、下記式(X1-24)および(X1-25)から選ばれる構造である。*は結合手を表す。)
Figure JPOXMLDOC01-appb-C000040
 式(X1-24)~(X1-25)において、j及びkは、0又は1の整数であり、A及びAは、それぞれ独立して、単結合、-O-、-CO-、-COO-、フェニレン、スルホニル基、又はアミド基を表す。複数のAは、それぞれ同一でも異なってもよい。)
X ar in the above formula (b1) represents a tetravalent organic group derived from an aromatic tetracarboxylic dianhydride or a derivative thereof.
The aromatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups including at least one carboxy group bonded to an aromatic ring. However, it is not necessary to consist only of an aromatic ring structure, and a part thereof may have a chain hydrocarbon structure or an alicyclic structure.
X ar in the above formula (b1) is preferably a tetravalent organic group derived from a tetracarboxylic dianhydride represented by the following formula (t) or a derivative thereof.
Figure JPOXMLDOC01-appb-C000039
(In the formula, X 1 is a structure selected from the following formulas (X1-24) and (X1-25). * represents a bond.)
Figure JPOXMLDOC01-appb-C000040
In formulas (X1-24) to (X1-25), j and k are integers of 0 or 1, A 1 and A 2 are each independently a single bond, -O-, -CO-, -COO-, phenylene, sulfonyl group, or amido group; A plurality of A 2 may be the same or different. )
 上記式(X1-24)、(X1-25)の好ましい具体例としては、下記式(X1-26)~(X1-41)が挙げられる。*は上記と同義である。
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Preferred specific examples of the above formulas (X1-24) and (X1-25) include the following formulas (X1-26) to (X1-41). * has the same meaning as above.
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
 上記式(b1)において、Eは、有機ジオールから2つのヒドロキシ基中に含まれる水素原子を除いた2価の有機基であって、上記有機ジオールは上記式(EG)で表される2価の有機基を含む。上記式(EG)で表される2価の有機基を含む有機ジオールは、上記式(EG)を分子内に含む限り特に限定されないが、上記式(EG)の両端に水素原子が結合したジオールがより好ましい。上記式(EG)の両端に水素原子が結合したジオールにおいて、nの上限値は、そのジオールの重量平均分子量の上限が5,000以下となるように設定されることが好ましく、ジオールの重量平均分子量の上限が4,000以下となるように設定されることがより好ましく、ジオールの重量平均分子量の上限が3,000以下となるように設定されることが更に好ましい。液晶配向性を高める観点から、nの上限値は、40が好ましく、30がより好ましく、20が特に好ましい。nの下限値は、液晶配向性を高める観点から、5が好ましく、6がより好ましい。上記式(EG)で表される2価の有機基を含むジオールはより具体的には、ペンタエチレングリコール、ヘキサエチレングリコール、三洋化成工業社製の商品名PEG-300、PEG-400、PEG-600、PEG-1000、PEG-1500、PEG-2000、PEG-4000N、PEG-4000S、PEG-6000E、PEG-6000P、PEG-10000、PEG-13000、PEG-20000;Merck社製の製品名PEG300、PEG1000、PEG2000、PEG4000、PEG6000、PEG8000、PEG10000、PEG12000、PEG20000、PEG35000;SIGMA-ALDRICH社製の製品番号P2139、P3265、P3515、81210、81240、81260、81285、81310、181986、181994、182001、182028、189456、202304、202312、202320、202339、202398、202421、202436、202444、202452、295906、309028、372773、372781、373001、412325、435406、435422、435457、637726;中日合成化学社製の商品名SINOPOL PEG600、SINOPOL PEG1500、SINOPOL PEG4000;ライオン・スペシャリティ・ケミカルズ社製の商品名PEG#300、PEG#400、PEG#600、PEG#1000、PEG#1500、PEG#1540、PEG#4000、PEG#6000M、東京化成工業社の製品名Polyethylene Glycol 400、Polyethylene Glycol 600として市販されているものが挙げられる。上記式(EG)の両端に水素原子が結合したジオールの好ましい具体例として、ペンタエチレングリコール、ヘキサエチレングリコール、三洋化成工業社製の商品名PEG-300、PEG-400、PEG-600、PEG-1000、Merck社製の製品名PEG300、PEG1000、Merck社製の製品名PEG300、中日合成化学社製の商品名SINOPOL PEG600、SINOPOL PEG1000、ライオン・スペシャリティ・ケミカルズ社製の商品名PEG#300、PEG#400、PEG#600、PEG#1000、東京化成工業社の製品名Polyethylene Glycol 400、Polyethylene Glycol 600もの、に代表されるポリエチレングリコール、又は、ペンタプロピレングリコール、ヘキサプロピレングリコール、ポリプロピレングリコール(より好ましい平均分子量は、平均分子量が400~5,000のポリプロピレングリコールである。)、平均分子量500~5,000のエチレンオキシド及びプロピレンオキシドからなるコポリマー、等が挙げられる。上記ポリエチレングリコールやポリプロピレングリコールは、エチレンオキシドやプロピレンオキシドをアニオン開環重合反応して得られたものを用いてもよい。該重合反応は、水、エチレングリコール、プロピレングリコールなどと触媒量の塩基(例:水酸化カリウム)を用いて行うことができる。
 なお、上記(EG)で表される2価の有機基を含むジオールにおいて例示されるグリコールの平均分子量とは、ゲル浸透クロマトグラフィー(GPC)によるポリスチレンを基準として得られる重量平均分子量である。
In the above formula (b1), E is a divalent organic group obtained by removing hydrogen atoms contained in two hydroxy groups from an organic diol, and the organic diol is a divalent group represented by the above formula (EG). contains an organic group of The organic diol containing a divalent organic group represented by the above formula (EG) is not particularly limited as long as it contains the above formula (EG) in the molecule, but a diol having hydrogen atoms bonded to both ends of the above formula (EG) is more preferred. In the diol having hydrogen atoms bonded to both ends of the above formula (EG), the upper limit of n is preferably set so that the upper limit of the weight average molecular weight of the diol is 5,000 or less. More preferably, the upper limit of the molecular weight is set to 4,000 or less, and more preferably, the upper limit of the weight average molecular weight of the diol is set to 3,000 or less. From the viewpoint of enhancing liquid crystal orientation, the upper limit of n is preferably 40, more preferably 30, and particularly preferably 20. The lower limit of n is preferably 5, more preferably 6, from the viewpoint of enhancing liquid crystal orientation. More specifically, the diol containing a divalent organic group represented by the above formula (EG) includes pentaethylene glycol, hexaethylene glycol, trade names PEG-300, PEG-400, PEG- 600, PEG-1000, PEG-1500, PEG-2000, PEG-4000N, PEG-4000S, PEG-6000E, PEG-6000P, PEG-10000, PEG-13000, PEG-20000; product name PEG300 manufactured by Merck; PEG1000, PEG2000, PEG4000, PEG6000, PEG8000, PEG10000, PEG12000, PEG20000, PEG35000; product numbers P2139, P3265, P3515, 81210, 81240, 81260, 81285, 81310, 18 from SIGMA-ALDRICH 1986, 181994, 182001, 182028, 189456, 202304, 202312, 202320, 202339, 202398, 202421, 202436, 202444, 202452, 295906, 309028, 372773, 372781, 373001, 412325, 435406, 43 5422, 435457, 637726; trade name SINOPOL manufactured by Chunichi Synthetic Chemical Co., Ltd. PEG600, SINOPOL PEG1500, SINOPOL PEG4000; brand names PEG#300, PEG#400, PEG#600, PEG#1000, PEG#1500, PEG#1540, PEG#4000, PEG#6000M manufactured by Lion Specialty Chemicals, Commercially available products such as Polyethylene Glycol 400 and Polyethylene Glycol 600 manufactured by Tokyo Kasei Kogyo Co., Ltd. can be mentioned. Preferred specific examples of the diol having hydrogen atoms bonded to both ends of the above formula (EG) include pentaethylene glycol, hexaethylene glycol, Sanyo Chemical Industries Co., Ltd. trade names PEG-300, PEG-400, PEG-600, PEG- 1000, product names PEG300 and PEG1000 manufactured by Merck, product names PEG300 manufactured by Merck, trade names SINOPOL PEG600 and SINOPOL PEG1000 manufactured by Chunichi Synthetic Chemicals, trade names PEG#300 and PEG manufactured by Lion Specialty Chemicals # 400, PEG # 600, PEG # 1000, the product name of Tokyo Chemical Industry Co., Ltd. Polyethylene Glycol 400, Polyethylene Glycol 600, polyethylene glycol represented by, or pentapropylene glycol, hexapropylene glycol, polypropylene glycol (more preferable average Polypropylene glycol with an average molecular weight of 400 to 5,000), copolymers of ethylene oxide and propylene oxide with an average molecular weight of 500 to 5,000, and the like. The above-mentioned polyethylene glycol and polypropylene glycol may be those obtained by subjecting ethylene oxide and propylene oxide to an anionic ring-opening polymerization reaction. The polymerization reaction can be carried out using water, ethylene glycol, propylene glycol, etc. and a catalytic amount of a base (eg, potassium hydroxide).
The average molecular weight of the glycol exemplified in the diol containing a divalent organic group represented by (EG) above is the weight average molecular weight obtained based on polystyrene by gel permeation chromatography (GPC).
 上記式(b1)で表される繰り返し単位の含有割合は、ポリエステル(B)を構成する繰り返し単位全体の10モル%以上が好ましく、20モル%以上がより好ましい。その他の繰り返し単位を含む場合は、その上限は、90モル%以下がより好ましく、80モル%以下がさらに好ましい。 The content of the repeating unit represented by the above formula (b1) is preferably 10 mol% or more, more preferably 20 mol% or more, of the total repeating units constituting the polyester (B). When other repeating units are included, the upper limit is more preferably 90 mol % or less, and even more preferably 80 mol % or less.
(式(b2)で表される繰り返し単位)
 ポリエステル(B)は、下記式(b2)で表される繰り返し単位をさらに有しても良い。ポリエステル(B)は、下記式(b2)で表される繰り返し単位を有さなくてもよい。
Figure JPOXMLDOC01-appb-C000043
(Aはジイソシアネートに由来する2価の有機基である。Aは有機ジオールから2つのヒドロキシ基中に含まれる水素原子を除いた2価の有機基である。)
(Repeating unit represented by formula (b2))
Polyester (B) may further have a repeating unit represented by the following formula (b2). Polyester (B) may not have a repeating unit represented by the following formula (b2).
Figure JPOXMLDOC01-appb-C000043
( A1 is a divalent organic group derived from diisocyanate. A2 is a divalent organic group obtained by removing hydrogen atoms contained in two hydroxy groups from an organic diol.)
 上記式(b2)において、Aはジイソシアネートに由来する2価の有機基である。なお、ジイソシアネートに由来する2価の有機基とは、例えば、ジイソシアネートから2つのイソシアネート基(-N=C=O)を除いた2価の有機基が挙げられる。該ジイソシアネートは、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 ここで、ジイソシアネートとしては、例えば、上記式(EG)で表される2価の有機基を有するジイソシアネート(DIEG)、ジイソシアネート(DIEG)以外の芳香族ジイソシアネートおよび脂肪族ジイソシアネートが挙げられる。
 ここで、「芳香族ジイソシアネート」とは、少なくとも一つの芳香族基を有するジイソシアネートを意味する。また、「脂肪族ジイソシアネート」とは、脂肪族基を有し、かつ芳香族基を有しないジイソシアネートを意味する。
 上記ジイソシアネート(DIEG)としては、例えば下記で表される、ジイソシアネートが挙げられる。
Figure JPOXMLDOC01-appb-C000044
In the above formula (b2), A1 is a divalent organic group derived from diisocyanate. The divalent organic group derived from diisocyanate includes, for example, a divalent organic group obtained by removing two isocyanate groups (-N=C=O) from diisocyanate. The diisocyanate may be used alone or in combination of two or more.
Examples of the diisocyanate include diisocyanate (DI EG ) having a divalent organic group represented by the above formula ( EG ), aromatic diisocyanate other than diisocyanate (DI EG ), and aliphatic diisocyanate.
Here, "aromatic diisocyanate" means a diisocyanate having at least one aromatic group. Moreover, "aliphatic diisocyanate" means a diisocyanate having an aliphatic group and not having an aromatic group.
Examples of the diisocyanate (DI EG ) include diisocyanates represented below.
Figure JPOXMLDOC01-appb-C000044
 ジイソシアネート(DIEG)以外の芳香族ジイソシアネートおよび脂肪族ジイソシアネートとしては、例えば、(i)ジイソシアネート構造(O=C=N-R-N=C=O)において、Rが、上記式(EG)で表される2価の有機基を有さず、且つ、ベンゼン環を少なくとも一つ有する炭素数6~30の有機基である芳香族ジイソシアネート、または(ii)ジイソシアネート構造(O=C=N-R-N=C=O)において、Rが脂肪族基を有し、かつ上記式(EG)で表される2価の有機基及び芳香族基を有しない炭素数4~30の有機基である脂肪族ジイソシアネートが挙げられる。
 なお、脂肪族基は、非環式脂肪族基および脂環式基のいずれも包含する。
 ジイソシアネート(DIEG)以外の芳香族ジイソシアネートおよび脂肪族ジイソシアネートの具体例としては、o-フェニレンジイソシアネート、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、トルエンジイソシアネート類(例えば、2,4-ジイソシアン酸トリレン、2,6-ジイソシアン酸トリレン)、1,4-ジイソシアン酸-2-メトキシベンゼン、2,5-ジイソシアン酸キシレン類、3,3’-ジメチル-4,4’-ジイソシアネートビフェニル、4,4’-ジイソシアネートジフェニルエーテル、2,2’-ビス(4-ジイソシアン酸フェニル)プロパン、4,4’-ジイソシアン酸ジフェニルメタン(4,4’-ジフェニルメタンジイソシアネート)、4,4’-ジイソシアン酸ジフェニルスルホン、3,3’-ジイソシアン酸ジフェニルスルホン及び2,2’-ジイソシアン酸ベンゾフェノンなどの芳香族ジイソシアネート、イソホロンジイソシアネート、ノルボルネンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、及びテトラメチレンジイソシアネートなどの脂肪族ジイソシアネートが挙げられる。
Examples of aromatic diisocyanates and aliphatic diisocyanates other than diisocyanate (DI EG ) include (i) a diisocyanate structure (O=C=N—R—N=C=O) in which R is the above formula (EG) An aromatic diisocyanate which is an organic group having 6 to 30 carbon atoms and has at least one benzene ring, or (ii) a diisocyanate structure (O=C=N-R —N=C=O), R is an organic group having 4 to 30 carbon atoms and having an aliphatic group and having no divalent organic group or aromatic group represented by the above formula (EG). Aliphatic diisocyanates can be mentioned.
In addition, an aliphatic group includes both an acyclic aliphatic group and an alicyclic group.
Specific examples of aromatic diisocyanates and aliphatic diisocyanates other than diisocyanate (DI EG ) include o-phenylene diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, toluene diisocyanates (e.g., 2,4-diisocyanate tolylene, 2 ,6-diisocyanate tolylene), 1,4-diisocyanate-2-methoxybenzene, 2,5-diisocyanate xylenes, 3,3′-dimethyl-4,4′-diisocyanatobiphenyl, 4,4′-diisocyanate Diphenyl ether, 2,2′-bis(4-phenyl diisocyanate)propane, 4,4′-diphenylmethane diisocyanate (4,4′-diphenylmethane diisocyanate), 4,4′-diphenyl sulfone diisocyanate, 3,3′- Aromatic diisocyanates such as diphenylsulfone diisocyanate and benzophenone 2,2′-diisocyanate, aliphatic diisocyanates such as isophorone diisocyanate, norbornene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, and tetramethylene diisocyanate.
 上記式(b2)において、Aは有機ジオールから2つのヒドロキシ基中に含まれる水素原子を除いた2価の有機基である。該有機ジオールは、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。該有機ジオールとして、上記式(EG)で表される2価の有機基を含むジオール;上記式(EG)で表される2価の有機基を含まないジオールを挙げられる。
 上記式(EG)で表される2価の有機基を含まないジオールの具体例としては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、2-メチル-1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール等のアルキレンジオール;ジメチロールプロピオン酸(2,2-ビス(ヒドロキシメチル)プロピオン酸)、ジメチロールブタン酸(2,2-ビス(ヒドロキシメチル)ブタン酸)、2,3-ジヒドロキシ安息香酸、2,4-ジヒドロキシ安息香酸、2,5-ジヒドロキシ安息香酸、2,6-ジヒドロキシ安息香酸、3,4-ジヒドロキシ安息香酸、3,5-ジヒドロキシ安息香酸等のカルボキシ基含有ジオール;ポリプロピレングリコール;ポリプロピレングリコールとネオペンチルグリコールとのランダム共重合体;多価アルコールと多塩基酸とを反応させて得られるポリエステルジオール;カーボネート骨格を有するポリカーボネートジオール;γ-ブチルラクトン、ε-カプロラクトン、δ-バレロラクトン等のラクトン類を開環付加反応させて得られるポリカプロラクトンジオール;ビスフェノールA;ビスフェノールAのプロピレンオキサイド付加物;水添ビスフェノールA;水添ビスフェノールAのプロピレンオキサイド付加物等が挙げられる。
 上記式(EG)で表される2価の有機基を含むジオールの具体例としては、上記繰り返し単位(b1)において例示したジオールを好ましい態様を含めて挙げることができる。
In the above formula (b2), A2 is a divalent organic group obtained by removing hydrogen atoms contained in two hydroxy groups from an organic diol. The organic diols may be used singly or in combination of two or more. Examples of the organic diol include a diol containing a divalent organic group represented by the above formula (EG); and a diol containing no divalent organic group represented by the above formula (EG).
Specific examples of diols not containing a divalent organic group represented by formula (EG) include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, propylene glycol, dipropylene glycol, and 1,3-butanediol. , 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 2-methyl-1, Alkylene diols such as 8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol; dimethylolpropionic acid (2,2-bis(hydroxy methyl)propionic acid), dimethylolbutanoic acid (2,2-bis(hydroxymethyl)butanoic acid), 2,3-dihydroxybenzoic acid, 2,4-dihydroxybenzoic acid, 2,5-dihydroxybenzoic acid, 2, Carboxy group-containing diols such as 6-dihydroxybenzoic acid, 3,4-dihydroxybenzoic acid and 3,5-dihydroxybenzoic acid; polypropylene glycol; random copolymer of polypropylene glycol and neopentyl glycol; polyhydric alcohol and polybasic polyester diol obtained by reacting with an acid; polycarbonate diol having a carbonate skeleton; polycaprolactone diol obtained by ring-opening addition reaction of lactones such as γ-butyl lactone, ε-caprolactone and δ-valerolactone; propylene oxide adduct of bisphenol A; hydrogenated bisphenol A; propylene oxide adduct of hydrogenated bisphenol A;
Specific examples of the diol containing a divalent organic group represented by the above formula (EG) include the diols exemplified for the repeating unit (b1) above, including preferred embodiments.
(ポリエステル(B)を構成する繰り返し単位)
 本発明におけるポリエステル(B)は、上記式(b1)で表される繰り返し単位を有し、上記式(a)で表される繰り返し単位及びそのイミド化構造を有しないポリエステルである。本発明におけるポリエステル(B)は、上記した繰り返し単位と末端基を有していてもよい。末端基については上記で述べた通りである。
(Repeating unit constituting polyester (B))
The polyester (B) in the present invention is a polyester that has a repeating unit represented by the above formula (b1) and does not have a repeating unit represented by the above formula (a) and its imidized structure. The polyester (B) in the present invention may have the repeating units and terminal groups described above. The end groups are as described above.
 ポリエステル(B)が上記式(b2)で表される繰り返し単位を含む場合、上記式(b2)で表される繰り返し単位の含有割合は、ポリエステル(B)を構成する繰り返し単位全体の10モル%以上が好ましく、20モル%以上がより好ましい。また、90モル%以下がより好ましく、80モル%以下がさらに好ましい。
 また、Aが上記式(EG)の両端に水素原子が結合したジオールに由来する2価の有機基である場合、式(b2)で表される繰り返し単位の含有割合は、ポリエステル(B)を構成する繰り返し単位全体の10モル%以上が好ましく、20モル%以上がより好ましく、50モル%以上がさらに好ましい。また、その上限は、90モル%以下がより好ましく、80モル%以下がさらに好ましい。
When the polyester (B) contains the repeating unit represented by the formula (b2), the content of the repeating unit represented by the formula (b2) is 10 mol% of the total repeating units constituting the polyester (B). The above is preferable, and 20 mol % or more is more preferable. Moreover, it is more preferably 90 mol % or less, and even more preferably 80 mol % or less.
Further, when A2 is a divalent organic group derived from a diol having hydrogen atoms bonded to both ends of the above formula (EG), the content of repeating units represented by the formula (b2) is the polyester (B) is preferably 10 mol % or more, more preferably 20 mol % or more, and even more preferably 50 mol % or more of the entire repeating units constituting Moreover, the upper limit is more preferably 90 mol % or less, and even more preferably 80 mol % or less.
 上記式(b2)において、A、Aは、それぞれ1種類であってもよく、2種類以上であってもよい。
 本発明におけるポリエステル(B)の含有割合は、重合体組成物100質量部中、1~30質量部が好ましく、2~20質量部がより好ましい。
In the above formula (b2), A 1 and A 2 may each be one type, or two or more types.
The content of the polyester (B) in the present invention is preferably 1 to 30 parts by mass, more preferably 2 to 20 parts by mass, based on 100 parts by mass of the polymer composition.
<重合体(A)の製造>
 上記重合体(A)であるポリイミド前駆体としては、例えば、ポリアミック酸、ポリアミック酸エステル等が挙げられる。
 ポリアミック酸(上記式(a)におけるRが水素原子である、式(a)で表される繰り返し単位を有するポリイミド前駆体)は、以下の方法により製造できる。具体的には、上記テトラカルボン酸二無水物またはその誘導体を含むテトラカルボン酸成分と上記ジアミンを含むジアミン成分とを有機溶媒の存在下で好ましくは-20~150℃、より好ましくは0~50℃において、好ましくは30分~24時間、より好ましくは1~12時間(重縮合)反応させることによって合成できる。上記ポリアミック酸が、上記繰り返し単位(U)を有する場合は、O=C=N-U-N=C=O(Uは、式(U)におけるUと同じである。)で示されるジイソシアネート化合物を上記テトラカルボン酸成分及び上記ジアミン成分と共に反応させることにより、合成することができる。
 上記の反応に用いる有機溶媒の具体例としては、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、1,3-ジメチル-2-イミダゾリジノンが挙げられる。また、重合体の溶媒溶解性が高い場合は、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン、又は下記の式[D-1]~式[D-3]で示される溶媒を用いることができる。これらは2種以上を混合して用いてもよい。
<Production of polymer (A)>
Examples of the polyimide precursor, which is the polymer (A), include polyamic acids and polyamic acid esters.
A polyamic acid (a polyimide precursor having a repeating unit represented by the formula (a) in which R in the formula (a) is a hydrogen atom) can be produced by the following method. Specifically, the tetracarboxylic acid component containing the tetracarboxylic dianhydride or derivative thereof and the diamine component containing the diamine are mixed in the presence of an organic solvent at a temperature of preferably −20 to 150° C., more preferably 0 to 50° C. °C, preferably 30 minutes to 24 hours, more preferably 1 to 12 hours (polycondensation). When the polyamic acid has the repeating unit (U), it is represented by O=C=NU 1 -N=C=O (U 1 is the same as U 1 in formula (U).) can be synthesized by reacting the diisocyanate compound obtained with the above tetracarboxylic acid component and the above diamine component.
Specific examples of the organic solvent used in the above reaction include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, γ-butyrolactone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, 1,3-dimethyl-2-imidazolidinone can be mentioned. Further, when the polymer has high solvent solubility, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, or the following formulas [D-1] to [D-3] Any of the indicated solvents can be used. These may be used in combination of two or more.
Figure JPOXMLDOC01-appb-C000045
(式[D-1]中、Dは炭素数1~3のアルキル基を表し、式[D-2]中、Dは炭素数1~3のアルキル基を表し、式[D-3]中、Dは炭素数1~4のアルキル基を表す。)。
 反応は任意の濃度で行うことができるが、好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、溶媒を追加することもできる。反応においては、ジアミン成分の合計モル数とテトラカルボン酸成分の合計モル数の比は0.8~1.2であることが好ましい。通常の重縮合反応同様、このモル比が1.0に近いほど生成するポリアミック酸の分子量は大きくなる。
Figure JPOXMLDOC01-appb-C000045
(In formula [D-1], D 1 represents an alkyl group having 1 to 3 carbon atoms; in formula [D-2], D 2 represents an alkyl group having 1 to 3 carbon atoms; ], D 3 represents an alkyl group having 1 to 4 carbon atoms.).
The reaction can be carried out at any concentration, preferably 1 to 50% by mass, more preferably 5 to 30% by mass. The initial stage of the reaction can be carried out at a high concentration, and then the solvent can be added. In the reaction, the ratio of the total number of moles of the diamine component to the total number of moles of the tetracarboxylic acid component is preferably 0.8 to 1.2. Similar to a normal polycondensation reaction, the closer this molar ratio is to 1.0, the greater the molecular weight of the polyamic acid produced.
 上記反応で得られたポリアミック酸は、反応溶液をよく撹拌させながら貧溶媒に注入することで、ポリアミック酸を析出させて回収することができる。また、析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥することで精製されたポリアミック酸の粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。 The polyamic acid obtained in the above reaction can be recovered by precipitating the polyamic acid by injecting the reaction solution into a poor solvent while stirring well. Further, a purified polyamic acid powder can be obtained by performing precipitation several times, washing with a poor solvent, and drying at room temperature or by heating. Poor solvents include, but are not limited to, water, methanol, ethanol, hexane, butyl cellosolve, acetone, and toluene.
 ポリイミド前駆体がポリアミック酸エステル(上記式(a)におけるRの少なくとも1つが、1価の有機基である、式(a)で表される繰り返し単位を有するポリイミド前駆体)である場合は、(1)テトラカルボン酸二無水物とジアミンから得られるポリアミック酸をエステル化する方法、(2)テトラカルボン酸ジエステルジクロリドとジアミンとの反応による方法、(3)テトラカルボン酸ジエステルとジアミンとを重縮合させる方法、等の既知の方法により製造できる。 When the polyimide precursor is a polyamic acid ester (a polyimide precursor having a repeating unit represented by the formula (a) in which at least one of R in the formula (a) is a monovalent organic group), ( 1) a method of esterifying a polyamic acid obtained from a tetracarboxylic dianhydride and a diamine, (2) a method of reacting a tetracarboxylic acid diester dichloride and a diamine, and (3) a polycondensation of a tetracarboxylic acid diester and a diamine. It can be manufactured by a known method such as a method of causing
[末端封止剤]
 本発明における重合体(A)を合成するに際して、テトラカルボン酸二無水物またはその誘導体を含むテトラカルボン酸成分、ジアミン成分、場合によってはジイソシアネート化合物と共に、適当な末端封止剤を用いて末端封止型の重合体を合成することとしてもよい。
[Terminal blocking agent]
When synthesizing the polymer (A) in the present invention, a tetracarboxylic acid component containing a tetracarboxylic dianhydride or a derivative thereof, a diamine component, and optionally a diisocyanate compound are end-blocked using an appropriate end-blocking agent. A stop-type polymer may be synthesized.
 末端封止剤としては、例えば、無水酢酸、無水マレイン酸、無水ナジック酸、無水フタル酸、無水イタコン酸、シクロヘキサンジカルボン酸無水物、3-ヒドロキシフタル酸無水物、トリメリット酸無水物、3-(3-トリメトキシシリル)プロピル)-3,4-ジヒドロフラン-2,5-ジオン、4,5,6,7-テトラフルオロイソベンゾフラン-1,3-ジオン、4-エチニルフタル酸無水物などの酸一無水物;二炭酸ジ-tert-ブチル、二炭酸ジアリルなどの二炭酸ジエステル化合物;アクリロイルクロリド、メタクリロイルクロリド、ニコチン酸クロリドなどのクロロカルボニル化合物;アニリン、2-アミノフェノール、3-アミノフェノール、4-アミノサリチル酸、5-アミノサリチル酸、6-アミノサリチル酸、2-アミノ安息香酸、3-アミノ安息香酸、4-アミノ安息香酸、シクロヘキシルアミン、n-ブチルアミン、n-ペンチルアミン、n-ヘキシルアミン、n-ヘプチルアミン、n-オクチルアミンなどのモノアミン化合物;エチルイソシアネート、フェニルイソシアネート、ナフチルイソシアネート、2-アクリロイルオキシエチルイソシアネ-ト、2-メタクリロイルオキシエチルイソシアネ-トなどの不飽和結合を有するイソシアネートなどのモノイソシアネート化合物;エチルイソチオシアネート、アリルイソチオシアネートなどのイソチオシアネート化合物などを挙げることができる。 Terminal blockers include, for example, acetic anhydride, maleic anhydride, nadic anhydride, phthalic anhydride, itaconic anhydride, cyclohexanedicarboxylic anhydride, 3-hydroxyphthalic anhydride, trimellitic anhydride, 3- (3-trimethoxysilyl)propyl)-3,4-dihydrofuran-2,5-dione, 4,5,6,7-tetrafluoroisobenzofuran-1,3-dione, 4-ethynylphthalic anhydride, etc. di-tert-butyl dicarbonate, dicarbonic acid diester compounds such as diallyl dicarbonate; acryloyl chloride, methacryloyl chloride, chlorocarbonyl compounds such as nicotinic acid chloride; aniline, 2-aminophenol, 3-aminophenol , 4-aminosalicylic acid, 5-aminosalicylic acid, 6-aminosalicylic acid, 2-aminobenzoic acid, 3-aminobenzoic acid, 4-aminobenzoic acid, cyclohexylamine, n-butylamine, n-pentylamine, n-hexylamine , n-heptylamine, n-octylamine and other monoamine compounds; ethyl isocyanate, phenyl isocyanate, naphthyl isocyanate, 2-acryloyloxyethyl isocyanate, 2-methacryloyloxyethyl isocyanate and other unsaturated bonds monoisocyanate compounds such as isocyanate; and isothiocyanate compounds such as ethyl isothiocyanate and allyl isothiocyanate.
 末端封止剤の使用割合は、使用するジアミン成分、及び必要に応じて用いる有機ジオール成分との合計100モル部に対して、20モル部以下とすることが好ましく、10モル部以下とすることがより好ましい。末端封止剤の使用割合は、使用するジアミン成分の計100モル部に対して、0.01モル部以上とすることが好ましく、0.1モル部以上とすることがより好ましい。 The proportion of the end blocking agent used is preferably 20 mol parts or less, and preferably 10 mol parts or less, with respect to a total of 100 mol parts of the diamine component used and the organic diol component used as necessary. is more preferred. The proportion of the terminal blocker used is preferably 0.01 mol part or more, more preferably 0.1 mol part or more, with respect to a total of 100 mol parts of the diamine component used.
 また、重合体(A)のポリイミド前駆体(A)を閉環(イミド化)させることによりポリイミドを得ることができる。なお、本明細書でいうイミド化率とは、テトラカルボン酸二無水物またはその誘導体由来のイミド基とカルボキシ基(またはその誘導体)との合計量に占めるイミド基の割合のことである。イミド化率は必ずしも100%である必要はなく、用途や目的に応じて任意に調整できる。 Polyimide can also be obtained by ring-closing (imidizing) the polyimide precursor (A) of the polymer (A). The imidization ratio as used herein means the ratio of imide groups to the total amount of imide groups derived from tetracarboxylic dianhydride or derivatives thereof and carboxy groups (or derivatives thereof). The imidization rate does not necessarily have to be 100%, and can be arbitrarily adjusted according to the application and purpose.
 ポリイミド前駆体をイミド化させる方法としては、ポリイミド前駆体の溶液をそのまま加熱する熱イミド化又はポリイミド前駆体の溶液に触媒を添加する触媒イミド化が挙げられる。 Examples of methods for imidizing the polyimide precursor include thermal imidization in which the solution of the polyimide precursor is heated as it is, and catalytic imidization in which a catalyst is added to the solution of the polyimide precursor.
 ポリイミド前駆体を溶液中で熱イミド化させる場合の温度は、好ましくは100~400℃、より好ましくは120~250℃であり、イミド化反応により生成する水を系外に除きながら行う方が好ましい。 The temperature when the polyimide precursor is thermally imidized in the solution is preferably 100 to 400° C., more preferably 120 to 250° C., and it is preferable to remove water generated by the imidization reaction from the system. .
 ポリイミド前駆体の触媒イミド化は、ポリイミド前駆体の溶液に、塩基性触媒と酸無水物とを添加し、好ましくは-20~250℃、より好ましくは0~180℃で撹拌することにより行うことができる。塩基性触媒の量はアミック酸基の好ましくは0.5~30モル倍、より好ましくは2~20モル倍であり、酸無水物の量はアミック酸基の好ましくは1~50モル倍、より好ましくは3~30モル倍である。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミンなどを挙げることができ、中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。酸無水物としては、無水酢酸、無水トリメリット酸、無水ピロメリット酸などを挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより制御することができる。 Catalytic imidization of the polyimide precursor is carried out by adding a basic catalyst and an acid anhydride to the solution of the polyimide precursor, preferably -20 to 250°C, more preferably stirring at 0 to 180°C. can be done. The amount of the basic catalyst is preferably 0.5 to 30 times the molar amount of the amic acid group, more preferably 2 to 20 times the molar amount, and the amount of the acid anhydride is preferably 1 to 50 times the molar amount of the amic acid group. It is preferably 3 to 30 molar times. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine, etc. Among them, pyridine is preferable because it has appropriate basicity for advancing the reaction. Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, and pyromellitic anhydride. Among them, acetic anhydride is preferable because it facilitates purification after the reaction is completed. The imidization rate by catalytic imidization can be controlled by adjusting the catalyst amount, reaction temperature, and reaction time.
 ポリイミド前駆体又はポリイミドの反応溶液から、生成したポリイミド前駆体又はポリイミドを回収する場合には、反応溶液を溶媒に投入して沈殿させればよい。沈殿に用いる溶媒としてはメタノール、エタノール、イソプロピルアルコール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、トルエン、ベンゼン、水などを挙げることができる。溶媒に投入して沈殿させた重合体は濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収した重合体を、有機溶媒に再溶解させ、再沈殿回収する操作を例えば2~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の溶媒として、例えば、アルコール類、ケトン類又は炭化水素などが挙げられ、これらの内から選ばれる3種類以上の溶媒を用いると、より一層精製の効率が上がるので好ましい。 When recovering the generated polyimide precursor or polyimide from the polyimide precursor or polyimide reaction solution, the reaction solution may be put into a solvent to precipitate. Solvents used for precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, and water. The polymer precipitated by putting it into a solvent can be filtered and recovered, and then dried at room temperature or under heat under normal pressure or reduced pressure. In addition, the impurities in the polymer can be reduced by redissolving the precipitated and recovered polymer in an organic solvent and repeating the operation of reprecipitating and recovering, for example, 2 to 10 times. Solvents in this case include, for example, alcohols, ketones, hydrocarbons, and the like, and it is preferable to use three or more kinds of solvents selected from these, because the purification efficiency is further improved.
 本発明で使用する重合体(A)の分子量は、そこから得られる液晶配向膜の強度、膜形成時の作業性及び塗膜性を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量で5,000~1,000,000とするのが好ましく、より好ましくは、10,000~150,000である。 The molecular weight of the polymer (A) used in the present invention is the weight measured by the GPC (Gel Permeation Chromatography) method when considering the strength of the liquid crystal alignment film obtained therefrom, the workability during film formation, and the coating property. The average molecular weight is preferably from 5,000 to 1,000,000, more preferably from 10,000 to 150,000.
<ポリエステル(B)の製造>
 上記ポリエステル(B)は、例えば、分子内にヒドロキシ基を2つ有する有機ジオールを含む(o)成分と、分子内にXarで表される4価の有機基を有するテトラカルボン酸二無水物またはその誘導体を含む(c)成分とを反応させることにより得られる。ここで、上記(o)成分は、下記式(EG)で表される部分構造を分子内に有する有機ジオール(o)を含む。
Figure JPOXMLDOC01-appb-C000046
(nは5以上の整数である。Rは、水素原子又はメチル基を表す。)
<Production of polyester (B)>
The polyester (B) is, for example, a component (o) containing an organic diol having two hydroxy groups in the molecule, and a tetracarboxylic dianhydride having a tetravalent organic group represented by Xar in the molecule. or obtained by reacting with component (c) containing a derivative thereof. Here, the component (o) includes an organic diol (o) having a partial structure represented by the following formula (EG) in its molecule.
Figure JPOXMLDOC01-appb-C000046
(n is an integer of 5 or more. R represents a hydrogen atom or a methyl group.)
 また、上記ポリエステル(B)が、上記式(b2)で表される繰り返し単位を含む場合、さらに、上記モノマー成分に加えて、分子内にイソシアネート基を2個含有する化合物を含む(i)成分を反応させることにより得られる。 Further, when the polyester (B) contains a repeating unit represented by the formula (b2), in addition to the monomer component, a component (i) containing a compound containing two isocyanate groups in the molecule obtained by reacting
 (o)成分、(c)成分及び必要に応じて用いる(i)成分は、それぞれ1種類であってもよく、2種類以上であってもよい。 The (o) component, the (c) component, and the optionally used (i) component may each be of one type or two or more types.
 有機ジオール(o)としては、例えば、上記式(b1)で表される繰り返し単位で例示した有機ジオールが挙げられ、「H-E-H」(Eは、式(b1)におけるEと同義である。)で表されるジオール化合物が挙げられる。 Examples of the organic diol (o) include organic diols exemplified by the repeating unit represented by the above formula (b1), and "H-EH" (E is synonymous with E in formula (b1). There is a diol compound represented by.
 また、上記式(EG)で表される部分構造を含まないジオール(o’)を用いる場合は、上記ポリエステル(B)を得るためのモノマー成分は、上記ジオール(o’)を含む。 When using the diol (o') that does not contain the partial structure represented by the formula (EG), the monomer component for obtaining the polyester (B) contains the diol (o').
 (i)成分としては、例えば、O=C=N-A-N=C=O(Aは、式(b2)におけるAと同じである。)で示されるジイソシアネート化合物が挙げられる。 Component (i) includes, for example, diisocyanate compounds represented by O=C=NA 1 -N=C=O (A 1 is the same as A 1 in formula (b2)).
 (o)成分、(c)成分及び必要に応じて用いる(i)成分の反応は、通常有機溶媒中で行う。その際に用いる有機溶媒としては、生成したポリエステル(B)が溶解するものであれば特に限定されない。具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、N-メチル-ε-カプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルリン酸トリアミド、γ-ブチロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセルソルブ、エチルセルソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、1,4-ジオキサン、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライム又は4-ヒドロキシ-4-メチル-2-ペンタノンなどが挙げられる。これらは単独で使用しても、混合して使用してもよい。さらに、ポリエステル(B)を溶解させない溶媒であっても、上記溶媒に混合して使用してもよい。また、有機溶媒中の水分は重合反応を阻害させる原因となるので、有機溶媒は脱水乾燥させたものを用いることが好ましい。 The reaction of the (o) component, the (c) component and the optionally used (i) component is usually carried out in an organic solvent. The organic solvent used at that time is not particularly limited as long as it dissolves the produced polyester (B). Specific examples include N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, N-methyl-ε-caprolactam, dimethylsulfoxide, Tetramethylurea, pyridine, dimethylsulfone, hexamethylphosphoric acid triamide, γ-butyrolactone, isopropyl alcohol, methoxymethylpentanol, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve , ethyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol Monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol mono Acetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl ether, 1,4-dioxane, n-hexane, n-pentane, n-octane, diethyl ether, Cyclohexanone, ethylene carbonate, propylene carbonate, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether acetate, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, 3-ethoxy methyl propionate, ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, diglyme or 4-hydroxy- 4-methyl-2-pentanone and the like. These may be used alone or in combination. Furthermore, even a solvent that does not dissolve the polyester (B) may be used by mixing with the above solvent. Moreover, since moisture in the organic solvent inhibits the polymerization reaction, it is preferable to use the organic solvent after dehydration and drying.
 本発明で用いられる(o)成分と(c)成分とを反応させて得られるポリエステル(B)の合成方法は、(o)成分と(c)成分との配合量を、ヒドロキシ基数とテトラカルボン酸二無水物が有するアミック酸基又はその誘導体の基の合計(以下、基(am)ともいう。)の比率(基(am)/ヒドロキシ基)が、好ましくは0.8以上1.2以下、より好ましくは0.9以上1.2以下、さらに好ましくは0.9以上1.1以下になるように有機溶媒中で反応させることで得られる。 In the method for synthesizing the polyester (B) obtained by reacting the (o) component and the (c) component used in the present invention, the blending amount of the (o) component and the (c) component is determined by the number of hydroxy groups and tetracarboxylic The ratio (group (am)/hydroxy group) of the sum of the groups of the amic acid group or derivative thereof possessed by the acid dianhydride (hereinafter also referred to as group (am)) is preferably 0.8 or more and 1.2 or less. , more preferably 0.9 or more and 1.2 or less, more preferably 0.9 or more and 1.1 or less, in an organic solvent.
 また、上記ポリエステル(B)のモノマー成分として、上記(i)成分を含む場合は、(o)成分と(c)成分と(i)成分とを反応させて得られるポリエステル(B)の合成方法は、(o)成分、(i)成分及び(c)成分の配合量を、ヒドロキシ基数と、イソシアネート基数及び基(am)の合計との比率((イソシアネート基+基(am))/ヒドロキシ基)が、好ましくは0.8以上1.2以下、より好ましくは0.9以上1.2以下、さらに好ましくは0.9以上1.1以下になるように有機溶媒中で反応させることで得られる。 Further, when the above-mentioned (i) component is included as a monomer component of the polyester (B), a method for synthesizing the polyester (B) obtained by reacting the (o) component, the (c) component and the (i) component is the ratio of the number of hydroxy groups to the total number of isocyanate groups and groups (am) ((isocyanate groups + groups (am))/hydroxy groups ) is preferably 0.8 or more and 1.2 or less, more preferably 0.9 or more and 1.2 or less, still more preferably 0.9 or more and 1.1 or less, obtained by reacting in an organic solvent. be done.
 また、2種類以上の有機ジオールを用いる場合、ジイソシアネート化合物又はテトラカルボン酸二無水物またはその誘導体との反応は、2種類以上の有機ジオールを混合した後に行ってもよいし、それぞれの有機ジオールとジイソシアネート化合物又はテトラカルボン酸二無水物またはその誘導体とを別個に反応させてもよい。また、有機ジオールとジイソシアネート化合物、又はテトラカルボン酸二無水物またはその誘導体とを反応させた後に、得られた末端イソシアネート化合物又はアミック酸末端若しくはその誘導体をさらに他の有機ジオール化合物と反応させ、さらにこれをジイソシアネート化合物又はテトラカルボン酸二無水物またはその誘導体と反応させてもよい。また、2種類以上のジイソシアネート化合物又はテトラカルボン酸二無水物またはその誘導体を用いる場合も同様である。このようにして、所望のポリエステル(B)を製造することができる。 Further, when two or more organic diols are used, the reaction with a diisocyanate compound or tetracarboxylic dianhydride or a derivative thereof may be performed after mixing two or more organic diols. A diisocyanate compound or a tetracarboxylic dianhydride or a derivative thereof may be reacted separately. Further, after reacting an organic diol with a diisocyanate compound, or a tetracarboxylic dianhydride or a derivative thereof, the resulting terminal isocyanate compound or amic acid terminal or derivative thereof is further reacted with another organic diol compound, and This may be reacted with a diisocyanate compound or a tetracarboxylic dianhydride or derivative thereof. The same applies to the case of using two or more kinds of diisocyanate compounds or tetracarboxylic dianhydrides or derivatives thereof. Thus, the desired polyester (B) can be produced.
 (o)成分と(c)成分及び必要に応じて用いる(i)成分との反応温度は、0~160℃とすることが好ましく、10~150℃とすることがより好ましい。反応時間は、反応スケール、採用される反応条件により適宜選択することができる。また、必要に応じて、第三級アミン類、アルカリ金属、アルカリ土類金属、錫、亜鉛、チタニウム、コバルト等の金属又は半金属化合物等の触媒存在下に反応を行っても良い。(o)成分及び(i)成分の総量の濃度は、反応液中で好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、有機溶媒を追加することもできる。 The reaction temperature of component (o) with component (c) and component (i) used as necessary is preferably 0 to 160°C, more preferably 10 to 150°C. The reaction time can be appropriately selected depending on the reaction scale and reaction conditions employed. In addition, if necessary, the reaction may be carried out in the presence of a catalyst such as tertiary amines, alkali metals, alkaline earth metals, tin, zinc, titanium, cobalt or other metals or metalloid compounds. The total concentration of components (o) and (i) in the reaction solution is preferably 1 to 50 mass %, more preferably 5 to 30 mass %. The initial stage of the reaction may be carried out at a high concentration, and then the organic solvent may be added.
 本発明で使用するポリエステル(B)の分子量は、そこから得られる液晶配向膜の強度、膜形成時の作業性及び塗膜性を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量で4,000~80,000とするのが好ましく、より好ましくは、6,000~60,000である。
 本発明で使用するポリエステルは、25℃における粘度が、10~5,000mPa・sがより好ましく、100~3,000mPa・sがより好ましい。なお、上記粘度は、ポリエステルの溶液中での固形分濃度が10~50質量%の範囲における好ましい値である。
 粘度が上記範囲内であると、本発明の効果を好適に得る観点で好ましい。上記粘度は、E型粘度計TVE-22H(東機産業社製)を用い、サンプル量を1.1mLとして、コーンロータTE-1(1°34’、R24)、温度25℃で測定した値である。
The molecular weight of the polyester (B) used in the present invention is the weight average measured by the GPC (Gel Permeation Chromatography) method when considering the strength of the liquid crystal alignment film obtained therefrom, workability during film formation and coating film properties. The molecular weight is preferably 4,000 to 80,000, more preferably 6,000 to 60,000.
The polyester used in the present invention preferably has a viscosity at 25° C. of 10 to 5,000 mPa·s, more preferably 100 to 3,000 mPa·s. The above viscosity is a preferable value when the solid content concentration in the polyester solution is in the range of 10 to 50% by mass.
It is preferable that the viscosity is within the above range from the viewpoint of suitably obtaining the effects of the present invention. The above viscosity is a value measured using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.) with a sample amount of 1.1 mL and a cone rotor TE-1 (1°34', R24) at a temperature of 25 ° C. is.
 本発明の重合体組成物は、重合体(A)以外およびポリエステル(B)以外のその他の重合体を含有してもよい。その他の重合体の具体例を挙げると、ポリエステル(B)以外のポリエステル、ポリシロキサン、ポリアミド、ポリウレア、ポリオルガノシロキサン、セルロース誘導体、ポリアセタール、ポリスチレン誘導体、ポリ(スチレン-マレイン酸無水物)共重合体、ポリ(イソブチレン-マレイン酸無水物)共重合体、ポリ(ビニルエーテル-マレイン酸無水物)共重合体、ポリ(スチレン-フェニルマレイミド)誘導体、ポリ(メタ)アクリレートからなる群から選ばれる重合体などが挙げられる。ポリ(スチレン-マレイン酸無水物)共重合体の具体例としては、SMA1000、2000、3000(Cray Valley社製)、GSM301(岐阜セラック社製)などが挙げられ、ポリ(イソブチレン-マレイン酸無水物)共重合体の具体例としては、イソバン-600(クラレ製)が挙げられ、ポリ(ビニルエーテル-マレイン酸無水物)共重合体の具体例としては、GANTREZ AN-139(メチルビニルエーテル無水マレイン酸樹脂、ISPジャパン社製)が挙げられる。
 その他の重合体は、一種を単独で使用してもよく、また二種以上を組み合わせて使用してもよい。その他の重合体の含有割合は、重合体組成物中に含まれる重合体の合計100質量部に対して、90質量部以下が好ましく、10~90質量部がより好ましく、20~80質量部が更に好ましい。
The polymer composition of the present invention may contain polymers other than the polymer (A) and other than the polyester (B). Specific examples of other polymers include polyesters other than polyester (B), polysiloxanes, polyamides, polyureas, polyorganosiloxanes, cellulose derivatives, polyacetals, polystyrene derivatives, and poly(styrene-maleic anhydride) copolymers. , poly(isobutylene-maleic anhydride) copolymer, poly(vinyl ether-maleic anhydride) copolymer, poly(styrene-phenylmaleimide) derivative, polymer selected from the group consisting of poly(meth)acrylate, etc. are mentioned. Specific examples of poly(styrene-maleic anhydride) copolymers include SMA1000, 2000, 3000 (manufactured by Cray Valley), GSM301 (manufactured by Gifu Shellac Co., Ltd.), etc. Poly(isobutylene-maleic anhydride) ) copolymers include Isoban-600 (manufactured by Kuraray Co., Ltd.), and specific examples of poly(vinyl ether-maleic anhydride) copolymers include GANTREZ AN-139 (methyl vinyl ether maleic anhydride resin , manufactured by ISP Japan).
Other polymers may be used singly or in combination of two or more. The content of other polymers is preferably 90 parts by mass or less, more preferably 10 to 90 parts by mass, and more preferably 20 to 80 parts by mass with respect to the total 100 parts by mass of the polymer contained in the polymer composition. More preferred.
 本発明に係る重合体組成物は、上記重合体(A)およびポリエステル(B)が有機溶媒中に溶解又は分散された液状の組成物であることが好ましい。具体的には、上記重合体組成物に含有される有機溶媒は、重合体成分が均一に溶解するものであれば特に限定されないが、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルラクトアミド、N,N-ジメチルプロピオンアミド、テトラメチル尿素、N,N-ジエチルホルムアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン、γ-バレロラクトン、1,3-ジメチル-2-イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、N-(n-プロピル)-2-ピロリドン、N-イソプロピル-2-ピロリドン、N-(n-ブチル)-2-ピロリドン、N-(tert-ブチル)-2-ピロリドン、N-(n-ペンチル)-2-ピロリドン、N-3-メトキシプロピル-2-ピロリドン、N-(2-エトキシエチル)-2-ピロリドン、N-(4-メトキシブチル)-2-ピロリドン、N-シクロヘキシル-2-ピロリドン(これらを総称して「良溶媒」ともいう)が挙げられる。なかでも、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド又はγ-ブチロラクトンが好ましい。良溶媒の含有量は、重合体組成物に含まれる溶媒全体の20~99質量%であることが好ましく、20~90質量%がより好ましく、特に好ましいのは、30~80質量%である。
 本発明に用いられる重合体(A)およびポリエステル(B)の含有量の合計は、液晶配向剤中に含まれる重合体の合計100質量部に対して、1~100質量部が好ましく、10~100質量部がより好ましく、20~100質量部が特に好ましい。
 また、上記重合体(A)およびポリエステル(B)の含有量の合計は、液晶配向剤中に含まれる重合体の合計100質量部に対して、90質量部以下でもよく、80質量部以下でもよい。
The polymer composition according to the present invention is preferably a liquid composition in which the polymer (A) and polyester (B) are dissolved or dispersed in an organic solvent. Specifically, the organic solvent contained in the polymer composition is not particularly limited as long as it uniformly dissolves the polymer components, but N,N-dimethylformamide, N,N-dimethylacetamide, N , N-dimethyllactamide, N,N-dimethylpropionamide, tetramethylurea, N,N-diethylformamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethylsulfoxide, γ-butyrolactone, γ -valerolactone, 1,3-dimethyl-2-imidazolidinone, methyl ethyl ketone, cyclohexanone, cyclopentanone, 3-methoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide, N- (n-propyl)-2-pyrrolidone, N-isopropyl-2-pyrrolidone, N-(n-butyl)-2-pyrrolidone, N-(tert-butyl)-2-pyrrolidone, N-(n-pentyl)- 2-pyrrolidone, N-3-methoxypropyl-2-pyrrolidone, N-(2-ethoxyethyl)-2-pyrrolidone, N-(4-methoxybutyl)-2-pyrrolidone, N-cyclohexyl-2-pyrrolidone (these may be collectively referred to as a “good solvent”). Among them, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 3-methoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide and γ-butyrolactone are preferred. The content of the good solvent is preferably 20 to 99% by mass, more preferably 20 to 90% by mass, particularly preferably 30 to 80% by mass, of the total solvent contained in the polymer composition.
The total content of the polymer (A) and the polyester (B) used in the present invention is preferably 1 to 100 parts by mass with respect to the total 100 parts by mass of the polymer contained in the liquid crystal aligning agent, and 10 to 100 parts by mass. 100 parts by mass is more preferable, and 20 to 100 parts by mass is particularly preferable.
Further, the total content of the polymer (A) and the polyester (B) may be 90 parts by mass or less, or 80 parts by mass or less with respect to the total 100 parts by mass of the polymer contained in the liquid crystal aligning agent. good.
 また、重合体組成物に含有される有機溶媒は、上記溶媒に加えて重合体組成物を塗布する際の塗布性や塗膜の表面平滑性を向上させる溶媒(貧溶媒ともいう。)を併用した混合溶媒の使用が好ましい。併用する貧溶媒の具体例を下記するが、これらに限定されない。貧溶媒の含有量は、重合体組成物に含まれる溶媒全体の1~80質量%が好ましく、10~80質量%がより好ましく、20~70質量%が特に好ましい。貧溶媒の種類及び含有量は、重合体組成物の塗布装置、塗布条件、塗布環境などに応じて適宜選択される。 In addition to the above solvents, the organic solvent contained in the polymer composition is a solvent (also referred to as a poor solvent) that improves the coatability and surface smoothness of the coating film when the polymer composition is applied. It is preferred to use a mixed solvent. Specific examples of the poor solvent used in combination are shown below, but are not limited thereto. The content of the poor solvent is preferably 1 to 80% by mass, more preferably 10 to 80% by mass, particularly preferably 20 to 70% by mass, of the total solvent contained in the polymer composition. The type and content of the poor solvent are appropriately selected according to the coating apparatus, coating conditions, coating environment, and the like of the polymer composition.
 貧溶媒としては、例えば、ジイソプロピルエーテル、ジイソブチルエーテル、ジイソブチルカルビノール(2,6-ジメチル-4-ヘプタノール)、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、エチレングリコールモノブチルエーテル、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、1-(2-ブトキシエトキシ)-2-プロパノール、2-(2-ブトキシエトキシ)-1-プロパノール、プロピレングリコールモノメチルエーテルアセタート、プロピレングリコールジアセテート、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジメチルエーテル、エチレングリコールモノブチルエーテルアセタート、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、プロピレングリコールジアセテート、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、酢酸シクロヘキシル、酢酸4-メチル-2-ペンチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸エチル、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸n-ブチル、乳酸イソアミル、ジエチレングリコールモノエチルエーテル、ジイソブチルケトン(2,6-ジメチル-4-ヘプタノン)などが挙げられる。 Examples of poor solvents include diisopropyl ether, diisobutyl ether, diisobutylcarbinol (2,6-dimethyl-4-heptanol), ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, -hydroxy-4-methyl-2-pentanone, diethylene glycol methyl ethyl ether, diethylene glycol dibutyl ether, 3-ethoxybutyl acetate, 1-methylpentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, ethylene glycol mono Acetate, ethylene glycol diacetate, propylene carbonate, ethylene carbonate, ethylene glycol monobutyl ether, ethylene glycol monoisoamyl ether, ethylene glycol monohexyl ether, propylene glycol monomethyl ether, propylene glycol monobutyl ether, 1-(2-butoxyethoxy) -2-propanol, 2-(2-butoxyethoxy)-1-propanol, propylene glycol monomethyl ether acetate, propylene glycol diacetate, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol dimethyl ether, ethylene glycol monobutyl ether acetate, diethylene glycol monopropyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, 2-(2-ethoxyethoxy) ethyl acetate, diethylene glycol acetate, propylene glycol diacetate, n-butyl acetate, acetic acid Propylene glycol monoethyl ether, cyclohexyl acetate, 4-methyl-2-pentyl acetate, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, propyl 3-methoxypropionate, 3-methoxypropionate Butyl acid, n-butyl lactate, isoamyl lactate, diethylene glycol monoethyl ether, diisobutyl ketone (2,6-dimethyl-4-heptanone) and the like.
 なかでも、ジイソブチルカルビノール、プロピレングリコールモノブチルエーテル、プロピレングリコールジアセテート、ジエチレングリコールジエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジメチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、エチレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテルアセタート、又はジイソブチルケトンが好ましい。 Among them, diisobutyl carbinol, propylene glycol monobutyl ether, propylene glycol diacetate, diethylene glycol diethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol dimethyl ether, 4-hydroxy-4-methyl-2-pentanone, ethylene glycol monobutyl ether, ethylene Glycol monobutyl ether acetate or diisobutyl ketone are preferred.
 良溶媒と貧溶媒との好ましい溶媒の組み合わせとしては、N-メチル-2-ピロリドンとエチレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとエチレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテル、N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテル、N-エチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノン、N-エチル-2-ピロリドンとプロピレングリコールジアセテート、N,N-ジメチルラクトアミドとジイソブチルケトン、N-メチル-2-ピロリドンと3-エトキシプロピオン酸エチル、N-エチル-2-ピロリドンと3-エトキシプロピオン酸エチル、N-メチル-2-ピロリドンと3-エトキシプロピオン酸エチルとジプロピレングリコールモノメチルエーテル、N-エチル-2-ピロリドンと3-エトキシプロピオン酸エチルとプロピレングリコールモノブチルエーテル、N-メチル-2-ピロリドンと3-エトキシプロピオン酸エチルとジエチレングリコールモノプロピルエーテル、N-エチル-2-ピロリドンと3-エトキシプロピオン酸エチルとジエチレングリコールモノプロピルエーテル、N-メチル-2-ピロリドンとエチレングリコールモノブチルエーテルアセタート、N-エチル-2-ピロリドンとジプロピレングリコールジメチルエーテル、N,N-ジメチルラクトアミドとエチレングリコールモノブチルエーテル、N,N-ジメチルラクトアミドとプロピレングリコールジアセテート、N-エチル-2-ピロリドンとジエチレングリコールジエチルエーテル、N-エチル-2-ピロリドンとジエチレングリコールモノエチルエーテルとブチルセロソルブアセテート、N-メチル-2-ピロリドンとジエチレングリコールモノメチルエーテルとブチルセロソルブアセテート、N,N-ジメチルラクトアミドとジエチレングリコールジエチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンと4-ヒドロキシ-4-メチル-2-ペンタノンとジエチレングリコールジエチルエーテル、N-エチル-2-ピロリドンとN-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノン、N-エチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとプロピレングリコールモノブチルエーテル、N-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとジイソブチルケトン、N-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとジプロピレングリコールモノメチルエーテル、N-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとプロピレングリコールモノブチルエーテル、N-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとエチレングリコールモノブチルエーテル、N-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとプロピレングリコールジアセテート、N-エチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとジプロピレングリコールジメチルエーテル、γ-ブチロラクトンと4-ヒドロキシ-4-メチル-2-ペンタノンとジイソブチルケトン、γ-ブチロラクトンと4-ヒドロキシ-4-メチル-2-ペンタノンとプロピレングリコールジアセテート、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルとジイソブチルケトン、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルとジイソプロピルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルとジイソブチルカルビノール、N-メチル-2-ピロリドンとγ-ブチロラクトンとジプロピレングリコールジメチルエーテル、N-メチル-2-ピロリドンとプロピレングリコールモノブチルエーテルとジプロピレングリコールジメチルエーテル、N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテルとジプロピレングリコールモノメチルエーテル、N-エチル-2-ピロリドンとジエチレングリコールジエチルエーテルとジプロピレングリコールモノメチルエーテル、N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテルとプロピレングリコールジアセテート、N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテルとジイソブチルケトン、N-エチル-2-ピロリドンとγ-ブチロラクトンとジイソブチルケトン、N-エチル-2-ピロリドンとN,N-ジメチルラクトアミドとジイソブチルケトン、N-メチル-2-ピロリドンとエチレングリコールモノブチルエーテルとエチレングリコールモノブチルエーテルアセタート、γ-ブチロラクトンとエチレングリコールモノブチルエーテルアセタートとジプロピレングリコールジメチルエーテル、N-エチル-2-ピロリドンとエチレングリコールモノブチルエーテルアセタートとプロピレングリコールジメチルエーテル、N-メチル-2-ピロリドンと酢酸4-メチル-2-ペンチルとエチレングリコールモノブチルエーテル、N-エチル-2-ピロリドンと酢酸シクロヘキシルとジアセトンアルコール、N,N-ジメチルプロピオンアミドと4-ヒドロキシ-4-メチル-2-ペンタノン、N,N-ジメチルプロピオンアミドとプロピレングリコールジアセテート、テトラメチル尿素と4-ヒドロキシ-4-メチル-2-ペンタノン、テトラメチル尿素とプロピレングリコールジアセテート、N,N-ジメチルプロピオンアミドとプロピレングリコールモノブチルエーテル、テトラメチル尿素とプロピレングリコールモノブチルエーテル、テトラメチル尿素とシクロヘキサノンとプロピレングリコールモノメチルエーテル、N,N-ジメチルプロピオンアミドとプロピレングリコールモノメチルエーテル、N,N-ジメチルプロピオンアミドとエチレングリコールモノブチルエーテルアセテート、N,N-ジメチルプロピオンアミドとエチレングリコールモノブチルエーテル、テトラメチル尿素とプロピレングリコールモノメチルエーテル、N,N-ジメチルプロピオンアミドとシクロヘキサノンとジエチレングリコールジエチルエーテル、N,N-ジエチルホルムアミドとプロピレングリコールモノメチルエーテル、N,N-ジエチルホルムアミドと4-ヒドロキシ-4-メチル-2-ペンタノン、N,N-ジエチルホルムアミドとプロピレングリコールモノメチルエーテル、シクロヘキサノンとプロピレングリコールモノメチルエーテル、シクロペンタノンとプロピレングリコールモノメチルエーテル、N-メチル-2-ピロリドンとシクロヘキサノンとプロピレングリコールモノメチルエーテルなどを挙げることができる。 Preferred solvent combinations of a good solvent and a poor solvent include N-methyl-2-pyrrolidone and ethylene glycol monobutyl ether, N-methyl-2-pyrrolidone, γ-butyrolactone and ethylene glycol monobutyl ether, N-methyl-2- Pyrrolidone and γ-butyrolactone and propylene glycol monobutyl ether, N-ethyl-2-pyrrolidone and propylene glycol monobutyl ether, N-ethyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone, N-ethyl-2- pyrrolidone and propylene glycol diacetate, N,N-dimethyllactamide and diisobutyl ketone, N-methyl-2-pyrrolidone and ethyl 3-ethoxypropionate, N-ethyl-2-pyrrolidone and ethyl 3-ethoxypropionate, N- Methyl-2-pyrrolidone and ethyl 3-ethoxypropionate and dipropylene glycol monomethyl ether, N-ethyl-2-pyrrolidone and 3-ethoxyethyl propionate and propylene glycol monobutyl ether, N-methyl-2-pyrrolidone and 3-ethoxy Ethyl Propionate and Diethylene Glycol Monopropyl Ether, N-Ethyl-2-Pyrrolidone and 3-Ethoxy Ethyl Propionate and Diethylene Glycol Monopropyl Ether, N-Methyl-2-Pyrrolidone and Ethylene Glycol Monobutyl Ether Acetate, N-Ethyl-2- Pyrrolidone and dipropylene glycol dimethyl ether, N,N-dimethyl lactamide and ethylene glycol monobutyl ether, N,N-dimethyl lactamide and propylene glycol diacetate, N-ethyl-2-pyrrolidone and diethylene glycol diethyl ether, N-ethyl-2 - pyrrolidone and diethylene glycol monoethyl ether and butyl cellosolve acetate, N-methyl-2-pyrrolidone and diethylene glycol monomethyl ether and butyl cellosolve acetate, N,N-dimethyllactamide and diethylene glycol diethyl ether, N-methyl-2-pyrrolidone and γ-butyrolactone 4-hydroxy-4-methyl-2-pentanone and diethylene glycol diethyl ether, N-ethyl-2-pyrrolidone and N-methyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone, N-ethyl-2- pyrrolidone and 4-hydroxy-4-methyl-2-pentanone and propylene glycol monobutyl ether, N-methyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone and diisobutyl ketone, N-methyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone and dipropylene glycol monomethyl ether, N-methyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone and propylene glycol monobutyl ether, N-methyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone and ethylene glycol monobutyl ether, N-methyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone and propylene glycol diacetate, N-ethyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone and dipropylene glycol dimethyl ether, γ-butyrolactone and 4-hydroxy-4-methyl-2-pentanone and diisobutyl ketone, γ-butyrolactone and 4-hydroxy-4-methyl-2 -pentanone and propylene glycol diacetate, N-methyl-2-pyrrolidone and γ-butyrolactone and propylene glycol monobutyl ether and diisobutyl ketone, N-methyl-2-pyrrolidone and γ-butyrolactone and propylene glycol monobutyl ether and diisopropyl ether, N- Methyl-2-pyrrolidone, γ-butyrolactone, propylene glycol monobutyl ether and diisobutyl carbinol, N-methyl-2-pyrrolidone, γ-butyrolactone and dipropylene glycol dimethyl ether, N-methyl-2-pyrrolidone, propylene glycol monobutyl ether and diisobutyl carbinol Propylene glycol dimethyl ether, N-ethyl-2-pyrrolidone and propylene glycol monobutyl ether and dipropylene glycol monomethyl ether, N-ethyl-2-pyrrolidone and diethylene glycol diethyl ether and dipropylene glycol monomethyl ether, N-ethyl-2-pyrrolidone and propylene glycol monobutyl ether and propylene glycol diacetate, N-ethyl-2-pyrrolidone and propylene glycol monobutyl ether and diisobutyl ketone, N-ethyl-2-pyrrolidone and γ-butyrolactone and diisobutyl ketone, N-ethyl-2-pyrrolidone and N, N-dimethyl lactamide and diisobutyl ketone, N-methyl-2-pyrrolidone and ethylene glycol monobutyl ether and ethylene glycol monobutyl ether acetate, γ-butyrolactone and ethylene glycol monobutyl ether acetate and dipropylene glycol dimethyl ether, N-ethyl-2 -pyrrolidone and ethylene glycol monobutyl ether acetate and propylene glycol dimethyl ether, N-methyl-2-pyrrolidone and 4-methyl-2-pentyl acetate and ethylene glycol monobutyl ether, N-ethyl-2-pyrrolidone and cyclohexyl acetate and diacetone alcohol , N,N-dimethylpropionamide and 4-hydroxy-4-methyl-2-pentanone, N,N-dimethylpropionamide and propylene glycol diacetate, tetramethylurea and 4-hydroxy-4-methyl-2-pentanone, Tetramethylurea and propylene glycol diacetate, N,N-dimethylpropionamide and propylene glycol monobutyl ether, Tetramethylurea and propylene glycol monobutyl ether, Tetramethylurea and cyclohexanone and propylene glycol monomethyl ether, N,N-dimethylpropionamide and Propylene glycol monomethyl ether, N,N-dimethylpropionamide and ethylene glycol monobutyl ether acetate, N,N-dimethylpropionamide and ethylene glycol monobutyl ether, Tetramethylurea and propylene glycol monomethyl ether, N,N-dimethylpropionamide and cyclohexanone and diethylene glycol diethyl ether, N,N-diethylformamide and propylene glycol monomethyl ether, N,N-diethylformamide and 4-hydroxy-4-methyl-2-pentanone, N,N-diethylformamide and propylene glycol monomethyl ether, cyclohexanone and Examples include propylene glycol monomethyl ether, cyclopentanone and propylene glycol monomethyl ether, N-methyl-2-pyrrolidone, cyclohexanone and propylene glycol monomethyl ether.
 本発明の重合体組成物は、重合体成分及び有機溶媒以外の成分(以下、添加剤成分ともいう。)を追加的に含有してもよい。かかる添加剤成分としては、例えば、架橋性化合物、官能性シラン化合物、金属キレート化合物、硬化促進剤、界面活性剤、酸化防止剤、増感剤、防腐剤、樹脂膜の誘電率や電気抵抗を調整するための化合物などが挙げられる。
 上記架橋性化合物としては、例えば、エポキシ基、イソシアネート基、オキセタニル基、シクロカーボネート基、ブロックイソシアネート基、ヒドロキシ基及びアルコキシ基から選ばれる少なくとも1種の置換基を有する架橋性化合物(c-1)、並びに重合性不飽和基を有する架橋性化合物(c-2)からなる群から選ばれる少なくとも1種の架橋性化合物が挙げられる。
 上記架橋性化合物を含有することで、液晶の駆動直後にバックライト光が液晶表示素子に照射されることによって発生する、所謂フリッカー(ちらつき)等の発生が低減された液晶表示素子を得ることができる、といった効果も得られる。
The polymer composition of the present invention may additionally contain components other than the polymer component and the organic solvent (hereinafter also referred to as additive components). Such additive components include, for example, crosslinkable compounds, functional silane compounds, metal chelate compounds, curing accelerators, surfactants, antioxidants, sensitizers, preservatives, dielectric constant and electrical resistance of resin films. A compound for adjustment and the like can be mentioned.
Examples of the crosslinkable compound include a crosslinkable compound (c-1) having at least one substituent selected from an epoxy group, an isocyanate group, an oxetanyl group, a cyclocarbonate group, a blocked isocyanate group, a hydroxy group and an alkoxy group. , and at least one crosslinkable compound selected from the group consisting of the crosslinkable compound (c-2) having a polymerizable unsaturated group.
By containing the crosslinkable compound, it is possible to obtain a liquid crystal display element in which the occurrence of so-called flicker or the like, which occurs when the liquid crystal display element is irradiated with backlight immediately after the liquid crystal is driven, is reduced. You can also get the effect of being able to do it.
 上記架橋性化合物(c-1)、(c-2)の好ましい具体例としては、以下の化合物が挙げられる。
 エポキシ基を有する化合物(c-1)として、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、エピコート828(三菱ケミカル社製)などのビスフェノールA型エポキシ樹脂、エピコート807(三菱ケミカル社製)などのビスフェノールF型エポキシ樹脂、YX-8000(三菱ケミカル社製)などの水添ビスフェノールA型エポキシ樹脂、YX6954BH30(三菱ケミカル社製)などのビフェニル骨格含有エポキシ樹脂、EPPN-201(日本化薬社製)などのフェノールノボラック型エポキシ樹脂、EOCN-102S(日本化薬社製)などの(o,m,p-)クレゾールノボラック型エポキシ樹脂、テトラキス(グリシジルオキシメチル)メタン、N,N,N’,N’-テトラグリシジル-1,4-フェニレンジアミン、N,N,N’,N’-テトラグリシジル-2,2’-ジメチル-4.4’-ジアミノビフェニル、2,2-ビス[4-(N,N-ジグリシジル-4-アミノフェノキシ)フェニル]プロパン、N,N,N’,N’-テトラグリシジル-4,4’-ジアミノジフェニルメタンなどの第三級窒素原子が芳香族炭素原子と結合する化合物;N,N,N’,N’-テトラグリシジル-1,2-ジアミノシクロヘキサン、N,N,N’,N’-テトラグリシジル-1,3-ジアミノシクロヘキサン、N,N,N’,N’-テトラグリシジル-1,4-ジアミノシクロヘキサン、ビス(N,N-ジグリシジル-4-アミノシクロヘキシル)メタン、ビス(N,N-ジグリシジル-2-メチル-4-アミノシクロヘキシル)メタン、ビス(N,N-ジグリシジル-3-メチル-4-アミノシクロヘキシル)メタン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、1,4-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、1,3-ビス(N,N-ジグリシジルアミノメチル)ベンゼン、1,4-ビス(N,N-ジグリシジルアミノメチル)ベンゼン、1,3,5-トリス(N,N-ジグリシジルアミノメチル)シクロヘキサン、1,3,5-トリス(N,N-ジグリシジルアミノメチル)ベンゼンなどの第三級窒素原子が脂肪族炭素原子と結合する化合物、TEPIC(日産化学社製)などのトリグリシジルイソシアヌレートなどのイソシアヌレート化合物、日本特開平10-338880号公報の段落[0037]に記載の化合物や、WO2017/170483号に記載の化合物等;
 イソシアネート基を有する化合物として、上記したジイソシアネート化合物等;
 オキセタニル基を有する化合物(c-1)として、1,4-ビス{[(3-エチル-3-オキセタニル)メトキシ]メチル}ベンゼン(アロンオキセタンOXT-121(XDO))、ジ[2-(3-オキセタニル)ブチル]エーテル(アロンオキセタンOXT-221(DOX))、1,4-ビス〔(3-エチルオキセタン-3-イル)メトキシ〕ベンゼン(HQOX)、1,3-ビス〔(3-エチルオキセタン-3-イル)メトキシ〕ベンゼン(RSOX)、1,2-ビス〔(3-エチルオキセタン-3-イル)メトキシ〕ベンゼン(CTOX)、WO2011/132751号公報の段落[0170]~[0175]に記載の2個以上のオキセタニル基を有する化合物等;
 シクロカーボネート基を有する化合物(c-1)として、N,N,N’,N’-テトラキス[(2-オキソ-1,3-ジオキソラン-4-イル)メチル]-4,4’-ジアミノジフェニルメタン、N,N’-ビス[(2-オキソ-1,3-ジオキソラン-4-イル)メチル]-1,3-フェニレンジアミンや、WO2011/155577号に記載の化合物等;
 ブロックイソシアネート基を有する化合物として、コロネートAPステーブルM、コロネート2503、2515、2507、2513、2555、ミリオネートMS-50(以上、東ソー社製)、タケネートB-830、B-815N、B-820NSU、B-842N、B-846N、B-870N、B-874N、B-882N(以上、三井化学社製)、日本特開2014-224978号公報の段落[0046]~[0047]に記載の2個以上の保護イソシアネート基を有する化合物、WO2015/141598号の段落[0119]~[0120]に記載の3個以上の保護イソシアネート基を有する化合物等;
 ヒドロキシ基及び/又はアルコキシ基を有する化合物(c-1)として、N,N,N’,N’-テトラキス(2-ヒドロキシエチル)アジポアミド、2,2-ビス(4-ヒドロキシ-3,5-ジヒドロキシメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメトキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジヒドロキシメチルフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、国際公開2015/072554号や、日本特開2016-118753号公報の段落[0058]に記載の化合物、日本特開2016-200798号公報に記載の化合物、WO2010/074269号に記載の化合物等;
 重合性不飽和基を有する架橋性化合物(c-2)として、グリセリンモノ(メタ)アクリレート、グリセリンジ(メタ)アクリレート(1,2-,1,3-体混合物)、グリセリントリス(メタ)アクリレート、グリセロール1,3-ジグリセロラートジ(メタ)アクリレート、ペンタエリストールトリ(メタ)アクリレート、ジエチレングリコールモノ(メタ)アクリレート、トリエチレングリコールモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート、ペンタエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレート等。
Preferred specific examples of the crosslinkable compounds (c-1) and (c-2) include the following compounds.
Examples of the epoxy group-containing compound (c-1) include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol, Epicoat 828 (manufactured by Mitsubishi Chemical Corporation), etc. bisphenol A type epoxy resin, bisphenol F type epoxy resin such as Epicoat 807 (manufactured by Mitsubishi Chemical Corporation), hydrogenated bisphenol A type epoxy resin such as YX-8000 (manufactured by Mitsubishi Chemical Corporation), YX6954BH30 (manufactured by Mitsubishi Chemical Corporation), etc. biphenyl skeleton-containing epoxy resins, EPPN-201 (manufactured by Nippon Kayaku Co., Ltd.) and other phenol novolac-type epoxy resins, and EOCN-102S (manufactured by Nippon Kayaku Co., Ltd.) and other (o, m, p-) cresol novolac-type epoxy resins. , tetrakis(glycidyloxymethyl)methane, N,N,N′,N′-tetraglycidyl-1,4-phenylenediamine, N,N,N′,N′-tetraglycidyl-2,2′-dimethyl-4 .4'-diaminobiphenyl, 2,2-bis[4-(N,N-diglycidyl-4-aminophenoxy)phenyl]propane, N,N,N',N'-tetraglycidyl-4,4'-diamino Compounds in which a tertiary nitrogen atom is bound to an aromatic carbon atom such as diphenylmethane; N,N,N',N'-tetraglycidyl-1,2-diaminocyclohexane, N,N,N',N'-tetraglycidyl -1,3-diaminocyclohexane, N,N,N',N'-tetraglycidyl-1,4-diaminocyclohexane, bis(N,N-diglycidyl-4-aminocyclohexyl)methane, bis(N,N-diglycidyl) -2-methyl-4-aminocyclohexyl)methane, bis(N,N-diglycidyl-3-methyl-4-aminocyclohexyl)methane, 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane, 1, 4-bis(N,N-diglycidylaminomethyl)cyclohexane, 1,3-bis(N,N-diglycidylaminomethyl)benzene, 1,4-bis(N,N-diglycidylaminomethyl)benzene, 1 , 3,5-tris(N,N-diglycidylaminomethyl)cyclohexane, 1,3,5-tris(N,N-diglycidylaminomethyl)benzene, etc. where the tertiary nitrogen atom is bonded to the aliphatic carbon atom compounds, isocyanurate compounds such as triglycidyl isocyanurate such as TEPIC (manufactured by Nissan Chemical Industries, Ltd.), compounds described in paragraph [0037] of JP-A-10-338880, compounds described in WO2017/170483, etc. ;
As the compound having an isocyanate group, the diisocyanate compound described above;
As the compound (c-1) having an oxetanyl group, 1,4-bis{[(3-ethyl-3-oxetanyl)methoxy]methyl}benzene (arone oxetane OXT-121 (XDO)), di[2-(3 -oxetanyl)butyl] ether (aron oxetane OXT-221 (DOX)), 1,4-bis[(3-ethyloxetane-3-yl)methoxy]benzene (HQOX), 1,3-bis[(3-ethyl Oxetan-3-yl)methoxy]benzene (RSOX), 1,2-bis[(3-ethyloxetan-3-yl)methoxy]benzene (CTOX), paragraphs [0170] to [0175] of WO2011/132751 compounds having two or more oxetanyl groups according to;
N,N,N',N'-tetrakis[(2-oxo-1,3-dioxolan-4-yl)methyl]-4,4'-diaminodiphenylmethane as the compound (c-1) having a cyclocarbonate group , N,N'-bis[(2-oxo-1,3-dioxolan-4-yl)methyl]-1,3-phenylenediamine and compounds described in WO2011/155577;
Examples of compounds having a blocked isocyanate group include Coronate AP Stable M, Coronate 2503, 2515, 2507, 2513, 2555, Millionate MS-50 (manufactured by Tosoh Corporation), Takenate B-830, B-815N, B-820NSU, B-842N, B-846N, B-870N, B-874N, B-882N (manufactured by Mitsui Chemicals, Inc.), two pieces described in paragraphs [0046] to [0047] of Japanese Patent Application Laid-Open No. 2014-224978 compounds having the above protected isocyanate groups, compounds having three or more protected isocyanate groups described in paragraphs [0119] to [0120] of WO2015/141598;
As the compound (c-1) having a hydroxy group and/or an alkoxy group, N,N,N',N'-tetrakis(2-hydroxyethyl)adipamide, 2,2-bis(4-hydroxy-3,5- dihydroxymethylphenyl)propane, 2,2-bis(4-hydroxy-3,5-dimethoxyphenyl)propane, 2,2-bis(4-hydroxy-3,5-dihydroxymethylphenyl)-1,1,1, 3,3,3-hexafluoropropane, WO 2015/072554, the compound described in paragraph [0058] of JP 2016-118753, the compound described in JP 2016-200798, WO2010 / 074269 compounds and the like;
As the crosslinkable compound (c-2) having a polymerizable unsaturated group, glycerin mono(meth)acrylate, glycerin di(meth)acrylate (1,2-, 1,3-body mixture), glycerin tris(meth)acrylate , glycerol 1,3-diglycerolate di(meth)acrylate, pentaerythritol tri(meth)acrylate, diethylene glycol mono(meth)acrylate, triethylene glycol mono(meth)acrylate, tetraethylene glycol mono(meth)acrylate, penta ethylene glycol mono(meth)acrylate, hexaethylene glycol mono(meth)acrylate and the like.
 上記架橋性化合物(c-1)、(c-2)は、中でも、N,N,N’,N’-テトラグリシジル-m-キシリレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’-テトラグリシジル-4、4’-ジアミノジフェニルメタン、タケネートB-830、B-815N、B-820NSU、B-842N、B-846N、B-870N、B-874N、B-882N、1,3,5-トリス(2-ヒドロキシエチル)イソシアヌラート、イソシアヌル酸トリグリシジル、N,N,N’,N’-テトラキス(2-ヒドロキシエチル)アジポアミド、2,2-ビス(4-ヒドロキシ-3,5-ジヒドロキシメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメトキシメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジヒドロキシメチルフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパンが好ましい。 The crosslinkable compounds (c-1) and (c-2) are, among others, N,N,N',N'-tetraglycidyl-m-xylylenediamine, 1,3-bis(N,N-diglycidyl aminomethyl)cyclohexane, N,N,N',N'-tetraglycidyl-4,4'-diaminodiphenylmethane, Takenate B-830, B-815N, B-820NSU, B-842N, B-846N, B-870N , B-874N, B-882N, 1,3,5-tris(2-hydroxyethyl)isocyanurate, triglycidyl isocyanurate, N,N,N′,N′-tetrakis(2-hydroxyethyl)adipamide, 2,2-bis(4-hydroxy-3,5-dihydroxymethylphenyl)propane, 2,2-bis(4-hydroxy-3,5-dimethoxymethylphenyl)propane, 2,2-bis(4-hydroxy- 3,5-dihydroxymethylphenyl)-1,1,1,3,3,3-hexafluoropropane is preferred.
 上記は架橋性化合物の一例であり、これらに限定されない。また、本発明の重合体組成物に用いる架橋性化合物は、1種類でも、2種類以上組み合わせても良い。
 本発明の重合体組成物における、架橋性化合物の含有量は、全ての重合体成分100質量部に対して、0.1~150質量部、又は0.1~100質量部、又は1~50質量部である。
The above are examples of crosslinkable compounds, and are not limited to these. Moreover, the crosslinkable compound used in the polymer composition of the present invention may be of one type or a combination of two or more types.
The content of the crosslinkable compound in the polymer composition of the present invention is 0.1 to 150 parts by mass, or 0.1 to 100 parts by mass, or 1 to 50 parts by mass with respect to 100 parts by mass of all polymer components. part by mass.
 上記樹脂膜の誘電率や電気抵抗を調整するための化合物としては、3-ピコリルアミンなどの窒素原子含有芳香族複素環を有するモノアミンが挙げられる。窒素含有芳香族複素環を有するモノアミンを使用する場合は、重合体組成物に含まれる重合体成分100質量部に対して0.1~30質量部であることが好ましく、より好ましくは0.1~20質量部である。 Examples of compounds for adjusting the dielectric constant and electrical resistance of the resin film include monoamines having a nitrogen atom-containing aromatic heterocycle such as 3-picolylamine. When a monoamine having a nitrogen-containing aromatic heterocycle is used, it is preferably 0.1 to 30 parts by mass, more preferably 0.1 part by mass with respect to 100 parts by mass of the polymer component contained in the polymer composition. ~20 parts by mass.
 官能性シラン化合物の好ましい具体例としては、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルジエトキシメチルシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、トリス(3-トリメトキシシリルプロピル)イソシアヌレート、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン等が挙げられる。官能性シラン化合物を使用する場合、その使用量は、重合体組成物に含まれる重合体成分100質量部に対して0.1~30質量部であることが好ましく、より好ましくは0.1~20質量部である。 Preferred specific examples of functional silane compounds include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldiethoxymethylsilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane. Silane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxy silane, vinyltrimethoxysilane, vinyltriethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxysilane sidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, ethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, tris(3-trimethoxysilylpropyl)isocyanurate, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3 -isocyanatopropyltriethoxysilane and the like. When a functional silane compound is used, the amount used is preferably 0.1 to 30 parts by mass, more preferably 0.1 to 30 parts by mass, based on 100 parts by mass of the polymer component contained in the polymer composition. 20 parts by mass.
 重合体組成物における固形分濃度(重合体組成物の溶媒以外の成分の合計質量が重合体組成物の全質量に占める割合)は、粘性、揮発性などを考慮して適宜に選択されるが、好ましくは1~10質量%の範囲である。すなわち、重合体組成物は、後述するように基板表面に塗布され、好ましくは加熱されることにより樹脂膜が形成される。 The solid content concentration in the polymer composition (ratio of the total mass of components other than the solvent of the polymer composition to the total mass of the polymer composition) is appropriately selected in consideration of viscosity, volatility, etc. , preferably in the range of 1 to 10 mass %. That is, the polymer composition is applied to the surface of the substrate as described later, and preferably heated to form a resin film.
 特に好ましい固形分濃度の範囲は、基板に重合体組成物を塗布する際に用いる方法によって異なる。例えばスピンコート法を用いる場合には、固形分濃度が1.5~4.5質量%の範囲であることが特に好ましい。印刷法による場合には、固形分濃度を3~9質量%の範囲とし、それにより溶液粘度を12~50mPa・sの範囲とすることが特に好ましい。インクジェット法による場合には、固形分濃度を1~5質量%の範囲とし、それにより、溶液粘度を3~15mPa・sの範囲とすることが特に好ましい。重合体組成物を調製する際の温度は、好ましくは10~50℃であり、より好ましくは20~30℃である。 A particularly preferred solid content concentration range varies depending on the method used to apply the polymer composition to the substrate. For example, when a spin coating method is used, the solid content concentration is particularly preferably in the range of 1.5 to 4.5% by mass. When the printing method is used, it is particularly preferable to set the solid content concentration in the range of 3 to 9% by mass, thereby setting the solution viscosity in the range of 12 to 50 mPa·s. In the case of the ink jet method, it is particularly preferable to set the solid content concentration in the range of 1 to 5% by mass, thereby setting the solution viscosity in the range of 3 to 15 mPa·s. The temperature in preparing the polymer composition is preferably 10-50°C, more preferably 20-30°C.
<用途および樹脂膜>
 上記に説明した重合体組成物は、例えば基板上に塗布し、好ましくは加熱処理によって溶媒成分を揮発させることで樹脂膜を形成することができる。本発明に係る重合体組成物及び樹脂膜は、種々の技術用途に有効に適用することができ、例えば液晶配向剤、電子回路材料、半導体材料、電気絶縁材料、電線被覆材料、照明用途、成形材料等の各種用途に適用することができる。具体的には、表示素子、半導体素子、モータ等のアクチュエータ、圧電センサや焦電センサ等の各種センサ類などが備える種々の樹脂膜に適用でき、液晶配向膜(位相差フィルム用の液晶配向膜、走査アンテナや液晶アレイアンテナ用の液晶配向膜又は透過散乱型の液晶調光素子用の液晶配向膜)、保護膜(例:カラーフィルタ用の保護膜)、スペーサー膜、層間絶縁膜、反射防止膜、配線被覆膜、帯電防止フィルム、電動機絶縁膜(フレキシブルディスプレイのゲート絶縁膜)等が挙げられる。これらの中でも、本発明に係る重合体組成物は、液晶配向剤として好ましく適用することができる。
<Application and resin film>
The polymer composition described above can be applied, for example, onto a substrate and preferably subjected to heat treatment to volatilize the solvent component, thereby forming a resin film. The polymer composition and resin film according to the present invention can be effectively applied to various technical applications, such as liquid crystal aligning agents, electronic circuit materials, semiconductor materials, electrical insulation materials, wire coating materials, lighting applications, and molding. It can be applied to various uses such as materials. Specifically, it can be applied to various resin films including display elements, semiconductor elements, actuators such as motors, various sensors such as piezoelectric sensors and pyroelectric sensors, and liquid crystal alignment films (liquid crystal alignment films for retardation films). , liquid crystal alignment films for scanning antennas and liquid crystal array antennas, or liquid crystal alignment films for transmission scattering type liquid crystal light control elements), protective films (e.g. protective films for color filters), spacer films, interlayer insulating films, antireflection films, wiring coating films, antistatic films, electric motor insulating films (gate insulating films of flexible displays), and the like. Among these, the polymer composition according to the present invention can be preferably applied as a liquid crystal aligning agent.
<液晶配向剤>
 本発明に係る液晶配向剤は、本発明に係る重合体組成物からなる。すなわち、本発明に係る液晶配向剤は、重合体組成物と同様に、上記重合体(A)及びポリエステル(B)を含有する。また、その他の重合体、有機溶媒及び添加剤成分の少なくともいずれかを含有することが好ましい。上記重合体(A)、ポリエステル(B)、その他の重合体、有機溶媒、及び添加剤成分の具体例、配合割合、固形分濃度などの詳細については、上記重合体組成物の説明を適用することができる。
<Liquid crystal aligning agent>
The liquid crystal aligning agent according to the present invention comprises the polymer composition according to the present invention. That is, the liquid crystal aligning agent which concerns on this invention contains the said polymer (A) and polyester (B) similarly to a polymer composition. Moreover, it is preferable to contain at least one of other polymers, organic solvents and additive components. For specific examples of the polymer (A), polyester (B), other polymers, organic solvents, and additive components, the blending ratio, solid content concentration, etc., the description of the polymer composition is applied. be able to.
[液晶配向膜及び液晶表示素子]
 上記重合体組成物又は上記液晶配向剤を用いることにより、樹脂膜として液晶配向膜を製造することができる。また、本発明に係る液晶表示素子は、上記重合体組成物又は上記液晶配向剤を用いて形成した液晶配向膜を具備する。本発明に係る液晶表示素子の動作モードは特に限定せず、例えばTN型、STN(Super Twisted Nematic)型、垂直配向型(VA-MVA型、VA-PVA型などを含む。)、面内スイッチング型(IPS型)、FFS型、光学補償ベンド型(OCB型)など種々の動作モードに適用することができる。
[Liquid crystal alignment film and liquid crystal display element]
A liquid crystal alignment film can be manufactured as a resin film by using the said polymer composition or the said liquid crystal aligning agent. Moreover, the liquid crystal display element which concerns on this invention comprises the liquid crystal aligning film formed using the said polymer composition or said liquid crystal aligning agent. The operation mode of the liquid crystal display device according to the present invention is not particularly limited. It can be applied to various operation modes such as type (IPS type), FFS type, and optical compensation bend type (OCB type).
 本発明の液晶表示素子は、例えば以下の工程(1)~(4)を含む方法、工程(1)~(2)及び(4)を含む方法、工程(1)~(3)、(4-2)及び(4-4)を含む方法、又は工程(1)~(3)、(4-3)及び(4-4)を含む方法により製造することができる。 The liquid crystal display element of the present invention can be produced, for example, by a method including the following steps (1) to (4), a method including steps (1) to (2) and (4), steps (1) to (3), and (4). -2) and (4-4), or by a method including steps (1) to (3), (4-3) and (4-4).
<工程(1):液晶配向剤を基板上に塗布する工程>
 工程(1)は、本発明の液晶配向剤を基板上に塗布する工程である。工程(1)の具体例は以下のとおりである。
 パターニングされた透明導電膜が設けられている基板の一面に、本発明の液晶配向剤を、例えばロールコーター法、スピンコート法、印刷法、インクジェット法などの適宜の塗布方法により塗布する。ここで基板としては、透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板とともに、アクリル基板やポリカーボネート基板等のプラスチック基板等を用いることもできる。また、反射型の液晶表示素子では、片側の基板のみにならば、シリコンウエハー等の不透明な物でも使用でき、この場合の電極にはアルミニウム等の光を反射する材料も使用できる。また、IPS型又はFFS型の液晶表示素子を製造する場合には、櫛歯型にパターニングされた透明導電膜又は金属膜からなる電極が設けられている基板と、電極が設けられていない対向基板とを用いる。
<Step (1): Step of applying a liquid crystal aligning agent onto a substrate>
A process (1) is a process of apply|coating the liquid crystal aligning agent of this invention on a board|substrate. A specific example of step (1) is as follows.
The liquid crystal aligning agent of the present invention is applied to one surface of the substrate provided with the patterned transparent conductive film by an appropriate coating method such as a roll coater method, a spin coat method, a printing method, an inkjet method, or the like. Here, the substrate is not particularly limited as long as it is highly transparent, and in addition to a glass substrate and a silicon nitride substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate can also be used. In addition, in the reflective liquid crystal display element, if only one substrate is used, an opaque material such as a silicon wafer can be used, and in this case, a light-reflecting material such as aluminum can be used for the electrodes. In the case of manufacturing an IPS-type or FFS-type liquid crystal display element, a substrate provided with electrodes made of a transparent conductive film or a metal film patterned in a comb shape and a counter substrate provided with no electrodes are used. and
 液晶配向剤を基板に塗布し、成膜する方法としては、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェット法、又はスプレー法等が挙げられる。なかでも、インクジェット法による塗布、成膜法が好適に使用できる。 Screen printing, offset printing, flexographic printing, inkjet method, spray method, etc., can be used as methods for applying the liquid crystal aligning agent to the substrate and forming a film. Among them, the coating method and the film-forming method by the inkjet method can be preferably used.
<工程(2):塗布した液晶配向剤を焼成する工程>
 工程(2)は、基板上に塗布した液晶配向剤を焼成し、膜を形成する工程である。工程(2)の具体例は以下のとおりである。
 工程(1)において液晶配向剤を基板上に塗布した後は、ホットプレート、熱循環型オーブン又はIR(赤外線)型オーブンなどの加熱手段により、溶媒を蒸発させたり、ポリアミック酸又はポリアミック酸エステルの熱イミド化を行ったりすることができる。本発明の液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができ、複数回行ってもよい。液晶配向剤の溶媒を低減する温度としては、例えば40~180℃で行うことができる。プロセスを短縮する観点で、40~150℃で行ってもよい。焼成時間としては特に限定されないが、1~10分又は、1~5分が挙げられる。ポリアミック酸又はポリアミック酸エステルの熱イミド化を行う場合には、上記工程の後、例えば150~300℃、又は150~250℃の温度範囲で焼成する工程を追加してもよい。焼成時間としては特に限定されないが、5~40分、又は、5~30分の焼成時間が挙げられる。
 焼成後の膜状物の膜厚は、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5~300nmが好ましく、10~200nmがより好ましい。
<Step (2): Step of firing the applied liquid crystal aligning agent>
A process (2) is a process of baking the liquid crystal aligning agent apply|coated on the board|substrate, and forming a film|membrane. A specific example of step (2) is as follows.
After the liquid crystal aligning agent is applied onto the substrate in step (1), a heating means such as a hot plate, thermal circulation oven or IR (infrared) oven is used to evaporate the solvent or heat the polyamic acid or polyamic acid ester. Thermal imidization can be performed. The drying and baking steps after applying the liquid crystal aligning agent of the present invention can be performed at any desired temperature and time, and may be performed multiple times. The temperature for reducing the solvent of the liquid crystal aligning agent can be, for example, 40 to 180°C. From the viewpoint of shortening the process, it may be carried out at 40 to 150°C. The firing time is not particularly limited, but may be 1 to 10 minutes or 1 to 5 minutes. When thermal imidization of polyamic acid or polyamic acid ester is performed, a step of baking at a temperature range of 150 to 300° C. or 150 to 250° C. may be added after the above step. The firing time is not particularly limited, but may be 5 to 40 minutes or 5 to 30 minutes.
The thickness of the film-like material after baking is preferably 5 to 300 nm, more preferably 10 to 200 nm, because if it is too thin, the reliability of the liquid crystal display element may be lowered.
<工程(3):工程(2)で得られた膜に配向処理する工程>
 工程(3)は、場合により、工程(2)で得られた膜に配向処理する工程である。即ち、IPS方式又はFFS方式等の水平配向型の液晶表示素子では該塗膜に対し配向能付与処理を行う。一方、VA方式又はPSAモード等の垂直配向型の液晶表示素子では、形成した塗膜をそのまま液晶配向膜として使用することができるが、該塗膜に対し配向能付与処理を施してもよい。液晶配向膜の配向処理方法としては、ラビング処理法、光配向処理法が挙げられる。光配向処理法としては、上記膜状物の表面に、一定方向に偏向された放射線を照射し、場合により、加熱処理を行い、液晶配向性(液晶配向能ともいう)を付与する方法が挙げられる。放射線としては、100~800nmの波長を有する紫外線又は可視光線を用いることができる。なかでも、好ましくは100~400nm、より好ましくは、200~400nmの波長を有する紫外線である。
<Step (3): Step of subjecting the film obtained in Step (2) to orientation treatment>
Step (3) is a step of subjecting the film obtained in step (2) to orientation treatment. That is, in a horizontally aligned liquid crystal display element such as an IPS system or an FFS system, the coating film is subjected to an alignment ability imparting treatment. On the other hand, in a vertical alignment type liquid crystal display element such as VA mode or PSA mode, the formed coating film can be used as a liquid crystal alignment film as it is, but the coating film may be subjected to an alignment ability imparting treatment. Examples of the alignment treatment method for the liquid crystal alignment film include a rubbing treatment method and a photo-alignment treatment method. As the photo-alignment treatment method, the surface of the film-like material is irradiated with radiation polarized in a certain direction, and in some cases, heat treatment is performed to impart liquid crystal alignment (also referred to as liquid crystal alignment ability). be done. As radiation, ultraviolet light or visible light having a wavelength of 100 to 800 nm can be used. Among them, ultraviolet rays having a wavelength of 100 to 400 nm, more preferably 200 to 400 nm are preferred.
 上記放射線の照射量は、1~10,000mJ/cmが好ましく、100~5,000mJ/cmがより好ましい。また、放射線を照射する場合、液晶配向性を改善するために、上記膜状物を有する基板を、50~250℃で加熱しながら照射してもよい。このようにして作製した上記液晶配向膜は、液晶分子を一定の方向に安定して配向させることができる。
 更に、上記の方法で、偏光された放射線を照射した液晶配向膜に、水や溶媒を用いて、接触処理するか、放射線を照射した液晶配向膜を加熱処理することもできる。
The radiation dose is preferably 1 to 10,000 mJ/cm 2 , more preferably 100 to 5,000 mJ/cm 2 . In the case of irradiation with radiation, the substrate having the film-like material may be irradiated while being heated at 50 to 250° C. in order to improve liquid crystal orientation. The liquid crystal alignment film thus produced can stably orient liquid crystal molecules in a fixed direction.
Furthermore, the liquid crystal alignment film irradiated with polarized radiation can be subjected to contact treatment using water or a solvent, or the liquid crystal alignment film irradiated with radiation can be heat-treated.
 上記接触処理に使用する溶媒としては、放射線の照射によって膜状物から生成した分解物を溶解する溶媒であれば、特に限定されるものではない。具体例としては、水、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン、1-メトキシ-2-プロパノール、1-メトキシ-2-プロパノールアセテート、ブチルセロソルブ、乳酸エチル、乳酸メチル、ジアセトンアルコール、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、酢酸プロピル、酢酸ブチル、酢酸シクロヘキシル等が挙げられる。なかでも、汎用性や溶媒の安全性の点から、水、2-プロパンール、1-メトキシ-2-プロパノール又は乳酸エチルが好ましく、水、1-メトキシ-2-プロパノール又は乳酸エチルがより好ましい。溶媒は、1種類でも、2種類以上組み合わせてもよい。 The solvent used in the contact treatment is not particularly limited as long as it dissolves the decomposed product produced from the film-like material by irradiation with radiation. Specific examples include water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, 1-methoxy-2-propanol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, methyl lactate, diacetone alcohol, 3- methyl methoxypropionate, ethyl 3-ethoxypropionate, propyl acetate, butyl acetate, cyclohexyl acetate and the like. Among them, water, 2-propanol, 1-methoxy-2-propanol and ethyl lactate are preferred, and water, 1-methoxy-2-propanol and ethyl lactate are more preferred, from the viewpoint of versatility and solvent safety. Solvents may be used singly or in combination of two or more.
 上記の放射線を照射した塗膜に対する加熱処理の温度は、50~300℃がより好ましく、120~250℃がさらに好ましい。加熱処理の時間としては、それぞれ1~30分とすることが好ましい。 The temperature of the heat treatment for the above radiation-irradiated coating film is more preferably 50 to 300°C, more preferably 120 to 250°C. The heat treatment time is preferably 1 to 30 minutes.
<工程(4):液晶セルを作製する工程>
 上記のようにして液晶配向膜が形成された基板を2枚準備し、対向配置した2枚の基板間に液晶を配置する。具体的には以下の2つの方法が挙げられる。
 第一の方法は、先ず、それぞれの液晶配向膜が対向するように間隙(セルギャップ)を介して2枚の基板を対向配置する。次いで、2枚の基板の周辺部をシール剤を用いて貼り合わせ、基板表面及びシール剤により区画されたセルギャップ内に液晶組成物を注入充填して膜面に接触した後、注入孔を封止する。
 上記液晶組成物としては、特に制限はなく、少なくとも一種の液晶化合物(液晶分子)を含む組成物であって、誘電率異方性が正または負の各種の液晶組成物を用いることができる。なお、以下では、誘電率異方性が正の液晶組成物を、ポジ型液晶ともいい、誘電率異方性が負の液晶組成物を、ネガ型液晶ともいう。
 上記液晶組成物は、フッ素原子、ヒドロキシ基、アミノ基、フッ素原子含有基(例:トリフルオロメチル基)、シアノ基、アルキル基、アルコキシ基、アルケニル基、イソチオシアネート基、複素環、シクロアルカン、シクロアルケン、ステロイド骨格、ベンゼン環、又はナフタレン環を有する液晶化合物を含んでもよく、分子内に液晶性を発現する剛直な部位(メソゲン骨格)を2つ以上有する化合物(例えば、剛直な二つのビフェニル構造、又はターフェニル構造がアルキル基で連結されたバイメソゲン化合物など)を含んでもよい。液晶組成物は、ネマチック相を呈する液晶組成物、スメクチック相を呈する液晶組成物、又はコレステリック相を呈する液晶組成物であってもよい。
 また、上記液晶組成物は、液晶配向性を向上させる観点から、添加物をさらに添加してもよい。このような添加物は、重合性基(メタ(ア)クリロイル基、等)を有する化合物などの光重合性モノマー;光学活性な化合物(例:メルク(株)社製のS-811など);酸化防止剤;紫外線吸収剤;色素;消泡剤;重合開始剤;又は重合禁止剤などが挙げられる。
 ポジ型液晶としては、メルク社製のZLI-2293、ZLI-4792、MLC-2003、MLC-2041、MLC-3019又はMLC-7081などが挙げられる。
 ネガ型液晶としては、例えばメルク社製のMLC-6608、MLC-6609、MLC-6610、MLC-6882、MLC-6886、MLC-7026、MLC-7026-000、MLC-7026-100、又はMLC-7029などが挙げられる。
 また、PSAモードでは、重合性基を有する化合物を含有する液晶として、メルク社製のMLC-3023が挙げられる。
<Step (4): Step of producing a liquid crystal cell>
Two substrates on which liquid crystal alignment films are formed as described above are prepared, and liquid crystal is arranged between the two substrates facing each other. Specifically, the following two methods are mentioned.
In the first method, first, two substrates are arranged to face each other with a gap (cell gap) interposed therebetween so that the respective liquid crystal alignment films face each other. Next, the peripheries of the two substrates are bonded together using a sealing agent, and a liquid crystal composition is injected and filled into the cell gap defined by the substrate surface and the sealing agent to contact the film surface, and then the injection hole is sealed. stop.
The liquid crystal composition is not particularly limited, and various liquid crystal compositions containing at least one liquid crystal compound (liquid crystal molecule) and having positive or negative dielectric anisotropy can be used. In the following description, a liquid crystal composition with a positive dielectric anisotropy is also referred to as a positive liquid crystal, and a liquid crystal composition with a negative dielectric anisotropy is also referred to as a negative liquid crystal.
The above liquid crystal composition contains a fluorine atom, a hydroxy group, an amino group, a fluorine atom-containing group (e.g., trifluoromethyl group), a cyano group, an alkyl group, an alkoxy group, an alkenyl group, an isothiocyanate group, a heterocyclic ring, a cycloalkane, A liquid crystal compound having a cycloalkene, a steroid skeleton, a benzene ring, or a naphthalene ring may be included, and a compound having two or more rigid sites (mesogenic skeleton) exhibiting liquid crystallinity in the molecule (for example, two rigid biphenyl structure, or a bimesogenic compound in which a terphenyl structure is linked by an alkyl group). The liquid crystal composition may be a liquid crystal composition exhibiting a nematic phase, a liquid crystal composition exhibiting a smectic phase, or a liquid crystal composition exhibiting a cholesteric phase.
In addition, the liquid crystal composition may further contain an additive from the viewpoint of improving liquid crystal orientation. Such additives include photopolymerizable monomers such as compounds having a polymerizable group (meth(a)acryloyl group, etc.); optically active compounds (eg, S-811 manufactured by Merck Co., Ltd.); Antioxidants; ultraviolet absorbers; dyes; antifoaming agents; polymerization initiators;
Positive liquid crystals include ZLI-2293, ZLI-4792, MLC-2003, MLC-2041, MLC-3019 and MLC-7081 manufactured by Merck.
As the negative liquid crystal, for example, MLC-6608, MLC-6609, MLC-6610, MLC-6882, MLC-6886, MLC-7026, MLC-7026-000, MLC-7026-100, or MLC- 7029 and the like.
In addition, in the PSA mode, MLC-3023 manufactured by Merck Co., Ltd. can be used as a liquid crystal containing a compound having a polymerizable group.
 また、第二の方法は、ODF(One Drop Fill)方式と呼ばれる手法である。液晶配向膜を形成した2枚の基板のうちの一方の基板上の所定の場所に、例えば紫外光硬化性のシール剤を塗布し、更に液晶配向膜面上の所定の数箇所に液晶組成物を滴下する。その後、液晶配向膜が対向するように他方の基板を貼り合わせて液晶組成物を基板の全面に押し広げて膜面に接触させる。次いで、基板の全面に紫外光を照射してシール剤を硬化する。いずれの方法による場合でも、更に、用いた液晶組成物が等方相をとる温度まで加熱した後、室温まで徐冷することにより、液晶充填時の流動配向を除去することが望ましい。
 なお、塗膜に対してラビング処理を行った場合には、2枚の基板は、各塗膜におけるラビング方向が互いに所定の角度、例えば直交又は逆平行となるように対向配置される。
 シール剤としては、例えば硬化剤及びスペーサーとしての酸化アルミニウム球を含有するエポキシ樹脂等を用いることができる。液晶としては、ネマチック液晶及びスメクチック液晶を挙げることができ、その中でもネマチック液晶が好ましい。
The second method is a method called ODF (One Drop Fill) method. A predetermined place on one of the two substrates on which the liquid crystal alignment film is formed is coated with, for example, an ultraviolet light-curing sealant, and a liquid crystal composition is applied to several predetermined places on the surface of the liquid crystal alignment film. drip. Thereafter, the other substrate is attached so that the liquid crystal alignment films face each other, and the liquid crystal composition is spread over the entire surface of the substrate and brought into contact with the film surface. Next, the entire surface of the substrate is irradiated with ultraviolet light to cure the sealant. In any method, it is desirable to remove the flow orientation at the time of liquid crystal filling by heating to a temperature at which the liquid crystal composition used takes an isotropic phase and then slowly cooling to room temperature.
When the coating film is subjected to the rubbing treatment, the two substrates are arranged opposite to each other so that the rubbing directions of the respective coating films are at a predetermined angle, for example, orthogonal or antiparallel.
As the sealant, for example, an epoxy resin or the like containing aluminum oxide spheres as a curing agent and a spacer can be used. Liquid crystals include nematic liquid crystals and smectic liquid crystals, among which nematic liquid crystals are preferred.
 本発明の液晶配向剤は、電極を備えた一対の基板の間に液晶層を有してなり、一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、電極間に電圧を印加しつつ、活性エネルギー線の照射及び加熱の少なくとも一方により、重合性化合物を重合させる工程を経て製造される液晶表示素子(PSA型液晶表示素子)にも好ましく用いられる。
 また、本発明の液晶配向剤は、電極を備えた一対の基板の間に液晶層を有してなり、上記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性基を含む液晶配向膜を配置し、電極間に電圧を印加する工程を経て製造される液晶表示素子(SC-PVAモード型の液晶表示素子)にも好ましく用いられる。
The liquid crystal aligning agent of the present invention has a liquid crystal layer between a pair of substrates provided with electrodes, and a liquid crystal composition containing a polymerizable compound polymerized by at least one of active energy rays and heat between the pair of substrates. A liquid crystal display element (PSA type liquid crystal display element) manufactured through a process of polymerizing a polymerizable compound by at least one of irradiating an active energy ray and heating while placing an object and applying a voltage between electrodes. It is preferably used.
Further, the liquid crystal aligning agent of the present invention has a liquid crystal layer between a pair of substrates provided with electrodes, and a polymerizable group polymerized by at least one of active energy rays and heat is placed between the pair of substrates. It is also preferably used in a liquid crystal display element (SC-PVA mode type liquid crystal display element) manufactured through a process of arranging a liquid crystal alignment film containing a liquid crystal and applying a voltage between electrodes.
<工程(4-2):PSA型液晶表示素子の場合>
 重合性化合物を含有する液晶組成物を注入又は滴下する点以外は上記(4)と同様にする。重合性化合物としては、例えばアクリレート基やメタクリレート基などの重合性不飽和基を分子内に1個以上有する重合性化合物を挙げることができる。
<Step (4-2): For PSA type liquid crystal display element>
The procedure is the same as in (4) above except that a liquid crystal composition containing a polymerizable compound is injected or dropped. Examples of the polymerizable compound include polymerizable compounds having one or more polymerizable unsaturated groups such as acrylate groups and methacrylate groups in the molecule.
<工程(4-3):SC-PVAモード型の液晶表示素子の場合>
 上記(4)と同様にした後、後述する紫外線を照射する工程を経て液晶表示素子を製造する方法を採用してもよい。この方法によれば、上記PSA型液晶表示素子を製造する場合と同様に、少ない光照射量で応答速度に優れた液晶表示素子を得ることができる。重合性基を有する化合物は、上記重合性不飽和基を分子内に1個以上有する化合物であってもよく、その含有量は、全ての重合体成分100質量部に対して0.1~30質量部であることが好ましく、より好ましくは1~20質量部である。また、上記重合性基は液晶配向剤に用いる重合体が有していてもよく、このような重合体としては、例えば上記光重合性基を末端に有するジアミンを含むジアミン成分を反応に用いて得られる重合体が挙げられる。
<Step (4-3): For SC-PVA mode liquid crystal display element>
A method of manufacturing a liquid crystal display element may be employed in which a step of irradiating ultraviolet rays, which will be described later, is performed after performing the same as in (4) above. According to this method, a liquid crystal display device excellent in response speed can be obtained with a small amount of light irradiation, as in the case of manufacturing the PSA type liquid crystal display device. The compound having a polymerizable group may be a compound having one or more polymerizable unsaturated groups in the molecule, and its content is 0.1 to 30 per 100 parts by mass of all polymer components. It is preferably parts by mass, more preferably 1 to 20 parts by mass. Further, the polymerizable group may be possessed by the polymer used for the liquid crystal aligning agent, and such a polymer includes, for example, a diamine component containing a diamine having the photopolymerizable group at its end, and used for the reaction. The polymer obtained is mentioned.
<工程(4-4):紫外線を照射する工程>
 上記(4-2)又は(4-3)で得られた一対の基板の有する導電膜間に電圧を印加した状態で液晶セルに光照射する。ここで印加する電圧は、例えば5~50Vの直流又は交流とすることができる。また、照射する光としては、例えば150~800nmの波長の光を含む紫外線及び可視光線を用いることができるが、300~400nmの波長の光を含む紫外線が好ましい。照射光の光源としては、例えば低圧水銀ランプ、高圧水銀ランプ、重水素ランプ、メタルハライドランプ、アルゴン共鳴ランプ、キセノンランプ、エキシマレーザーなどを使用することができる。光の照射量としては、好ましくは1,000~200,000J/mであり、より好ましくは1,000~100,000J/mである。
<Step (4-4): Step of irradiating with ultraviolet rays>
The liquid crystal cell is irradiated with light while a voltage is applied between the conductive films of the pair of substrates obtained in (4-2) or (4-3) above. The voltage applied here can be, for example, 5 to 50 V direct current or alternating current. As the light to be irradiated, for example, ultraviolet rays and visible rays containing light having a wavelength of 150 to 800 nm can be used, but ultraviolet rays containing light having a wavelength of 300 to 400 nm are preferable. As a light source for irradiation light, for example, a low-pressure mercury lamp, a high-pressure mercury lamp, a deuterium lamp, a metal halide lamp, an argon resonance lamp, a xenon lamp, an excimer laser, or the like can be used. The irradiation amount of light is preferably 1,000 to 200,000 J/m 2 , more preferably 1,000 to 100,000 J/m 2 .
 そして、必要に応じて液晶セルの外側表面に偏光板を貼り合わせることにより液晶表示素子を得ることができる。液晶セルの外表面に貼り合わされる偏光板としては、ポリビニルアルコールを延伸配向させながらヨウ素を吸収させた「H膜」と称される偏光フィルムを酢酸セルロース保護膜で挟んだ偏光板又はH膜そのものからなる偏光板を挙げることができる。 Then, a liquid crystal display element can be obtained by bonding a polarizing plate to the outer surface of the liquid crystal cell as necessary. As the polarizing plate to be attached to the outer surface of the liquid crystal cell, a polarizing film called "H film" in which polyvinyl alcohol is stretched and oriented while absorbing iodine is sandwiched between cellulose acetate protective films, or the H film itself. A polarizing plate consisting of
 本発明の液晶表示素子は、種々の装置に有効に適用することができ、例えば、時計、携帯型ゲーム、ワープロ、ノート型パソコン、カーナビゲーションシステム、カムコーダー、PDA、デジタルカメラ、携帯電話、スマートフォン、各種モニター、液晶テレビ、インフォメーションディスプレイなどの各種表示装置に用いることができる。 The liquid crystal display device of the present invention can be effectively applied to various devices such as watches, portable games, word processors, notebook computers, car navigation systems, camcorders, PDAs, digital cameras, mobile phones, smart phones, It can be used for various display devices such as various monitors, liquid crystal televisions, and information displays.
 以下に、本発明について実施例等を挙げて具体的に説明するが、本発明は、これらの実施例に限定されるものではない。なお、化合物、溶媒の略号は、以下のとおりである。
(有機溶媒)
NMP:N-メチル-2-ピロリドン
GBL:γ-ブチロラクトン
BCS:エチレングリコールモノブチルエーテル
(ジアミン)
DA-1~DA-3:それぞれ、下記式(DA-1)~(DA-3)で表される化合物
(テトラカルボン酸二無水物)
CA-1~CA-2:それぞれ、下記式(CA-1)~(CA-2)で表される化合物
(ジイソシアネート)
DI-1:4,4’-ジフェニルメタンジイソシアネート
(ジオール)
EG-1:Polyethylene Glycol 600(東京化成工業社製)
(添加剤)
AD-1:下記式(AD-1)で表される化合物
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
EXAMPLES The present invention will be specifically described below with reference to examples, etc., but the present invention is not limited to these examples. Abbreviations of compounds and solvents are as follows.
(organic solvent)
NMP: N-methyl-2-pyrrolidone GBL: γ-butyrolactone BCS: ethylene glycol monobutyl ether (diamine)
DA-1 to DA-3: Compounds (tetracarboxylic dianhydrides) represented by the following formulas (DA-1) to (DA-3), respectively
CA-1 to CA-2: compounds (diisocyanates) represented by the following formulas (CA-1) to (CA-2), respectively
DI-1: 4,4'-diphenylmethane diisocyanate (diol)
EG-1: Polyethylene Glycol 600 (manufactured by Tokyo Chemical Industry Co., Ltd.)
(Additive)
AD-1: a compound represented by the following formula (AD-1)
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
<粘度>
 合成例において、重合体溶液の粘度は、E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL、コーンロータTE-1(1°34’、R24)、温度25℃で測定した。
<Viscosity>
In the synthesis examples, the viscosity of the polymer solution was measured using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.), a sample amount of 1.1 mL, a cone rotor TE-1 (1 ° 34', R24), and a temperature of 25. Measured in °C.
[重合体の合成]
(合成例1)
 撹拌装置及び窒素導入管付きの100mLのナスフラスコに、DA-1(4.81g、16.8mmol)、DA-3(1.25g、4.20mmol)、NMP(27.3g)及びGBL(27.3g)を量り取り、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-1(3.83g、19.5mmol)、NMP(17.2g)及びGBL(17.2g)を加え、窒素雰囲気下で2時間撹拌することで、ポリアミック酸溶液(PAA-1)を得た(粘度:108mPa・s)。
(合成例2)
 撹拌装置及び窒素導入管付きの100mLのナスフラスコに、DA-1(3.15g、11.0mmol)、DA-2(2.69g、11.0mmol)、NMP(26.3g)及びGBL(26.3g)を量り取り、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-1(4.01g、20.5mmol)、NMP(18.1g)及びGBL(18.1g)を加え、窒素雰囲気下で2時間撹拌することで、ポリアミック酸溶液(PAA-2)を得た(粘度:119mPa・s)。
(合成例3)
 撹拌装置及び窒素導入管付きの100mLのナスフラスコに、EG-1(15.0g、25.0mmol)、NMP(11.3g)及びGBL(11.3g)を量り取り、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-2(4.09g、18.8mmol)、NMP(3.07g)及びGBL(3.07g)を加え、窒素雰囲気下70℃で20時間撹拌した。その後、DI-1(1.38g、5.50mmol)、NMP(1.03g)及びGBL(1.03g)を加え、窒素雰囲気下23℃で6時間撹拌することで、ポリマーの溶液を得た(粘度:423mPa・s)。
 撹拌子の入った30mL三角フラスコに、上記で得られたポリマーの溶液(5.0g)を分取し、NMP(7.5g)及びGBL(7.5g)を加え、室温で2時間撹拌することで、ポリマーの希釈溶液(重合体-1)を得た。
(合成例4)
 撹拌装置及び窒素導入管付きの100mLのナスフラスコに、EG-1(15.0g、25.0mmol)、NMP(11.3g)及びGBL(11.3g)を量り取り、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-2(2.73g、12.5mmol)、NMP(2.04g)及びGBL(2.04g)を加え、窒素雰囲気下70℃で20時間撹拌した。その後、DI-1(2.94g、11.8mmol)、NMP(1.03g)及びGBL(1.03g)を加え、窒素雰囲気下23℃で6時間撹拌することで、ポリマーの溶液を得た(粘度:520mPa・s)。
 撹拌子の入った30mL三角フラスコに、上記で得られたポリマーの溶液(5.0g)を分取し、NMP(7.5g)及びGBL(7.5g)を加え、室温で2時間撹拌することで、ポリマーの希釈溶液(重合体-2)を得た。
(合成例5)
 撹拌装置及び窒素導入管付きの100mLのナスフラスコに、EG-1(15.0g、25.0mmol)、NMP(11.3g)及びGBL(11.3g)を量り取り、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-2(1.64g、7.50mmol)、NMP(1.23g)及びGBL(1.23g)を加え、窒素雰囲気下70℃で20時間撹拌した。その後、DI-1(4.19g、16.8mmol)、NMP(3.14g)及びGBL(3.14g)を加え、窒素雰囲気下23℃で6時間撹拌することで、ポリマーの溶液を得た(粘度:367mPa・s)。
 撹拌子の入った30mL三角フラスコに、上記で得られたポリマーの溶液(5.0g)を分取し、NMP(7.5g)及びGBL(7.5g)を加え、室温で2時間撹拌することで、ポリマーの希釈溶液(重合体-3)を得た。
(合成例6)
 撹拌装置及び窒素導入管付きの100mLのナスフラスコに、EG-1(15.0g、25.0mmol)、NMP(11.3g)及びGBL(11.3g)を量り取り、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-2(0.82g、3.75mmol)、NMP(0.61g)及びGBL(0.61g)を加え、窒素雰囲気下70℃で20時間撹拌した。その後、DI-1(5.13g、20.5mmol)、NMP(3.85g)及びGBL(3.85g)を加え、窒素雰囲気下23℃で6時間撹拌することで、ポリマーの溶液を得た(粘度:1120mPa・s)。
 撹拌子の入った30mL三角フラスコに、上記で得られたポリマーの溶液(5.0g)を分取し、NMP(7.5g)及びGBL(7.5g)を加え、室温で2時間撹拌することで、ポリマーの希釈溶液(重合体-4)を得た。
(合成例7)
 撹拌装置及び窒素導入管付きの100mLのナスフラスコに、EG-1(15.0g、25.0mmol)、NMP(11.3g)及びGBL(11.3g)を量り取り、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-2(5.34g、24.5mmol)、NMP(4.00g)及びGBL(4.00g)を加え、窒素雰囲気下70℃で20時間撹拌することで、ポリマーの溶液を得た(粘度:375mPa・s)。
 撹拌子の入った30mL三角フラスコに、上記で得られたポリマーの溶液(5.0g)を分取し、NMP(7.5g)及びGBL(7.5g)を加え、室温で2時間撹拌することで、ポリマーの希釈溶液(重合体-5)を得た。
 上記合成例で得られた重合体溶液の仕様を表1に示す。表1において、溶媒組成の括弧内の数値は、各溶液中の溶媒の合計100質量部に対する、各溶媒の量(質量部)を表す。
Figure JPOXMLDOC01-appb-T000050
[Synthesis of polymer]
(Synthesis example 1)
DA-1 (4.81 g, 16.8 mmol), DA-3 (1.25 g, 4.20 mmol), NMP (27.3 g) and GBL (27 .3 g) was weighed out and dissolved by stirring with nitrogen sparging. While stirring this diamine solution under water cooling, CA-1 (3.83 g, 19.5 mmol), NMP (17.2 g) and GBL (17.2 g) were added and stirred for 2 hours under a nitrogen atmosphere. , to obtain a polyamic acid solution (PAA-1) (viscosity: 108 mPa·s).
(Synthesis example 2)
DA-1 (3.15 g, 11.0 mmol), DA-2 (2.69 g, 11.0 mmol), NMP (26.3 g) and GBL (26 .3 g) was weighed out and dissolved by stirring with nitrogen sparging. While stirring this diamine solution under water cooling, CA-1 (4.01 g, 20.5 mmol), NMP (18.1 g) and GBL (18.1 g) were added and stirred for 2 hours under a nitrogen atmosphere. , to obtain a polyamic acid solution (PAA-2) (viscosity: 119 mPa·s).
(Synthesis Example 3)
EG-1 (15.0 g, 25.0 mmol), NMP (11.3 g) and GBL (11.3 g) were weighed into a 100 mL eggplant flask equipped with a stirrer and a nitrogen inlet tube, and stirred while supplying nitrogen. to dissolve. While stirring this diamine solution under water cooling, CA-2 (4.09 g, 18.8 mmol), NMP (3.07 g) and GBL (3.07 g) were added and stirred at 70° C. for 20 hours under a nitrogen atmosphere. . Then, DI-1 (1.38 g, 5.50 mmol), NMP (1.03 g) and GBL (1.03 g) were added and stirred at 23° C. for 6 hours under a nitrogen atmosphere to obtain a polymer solution. (Viscosity: 423 mPa·s).
Dispense the polymer solution (5.0 g) obtained above into a 30 mL Erlenmeyer flask equipped with a stirrer, add NMP (7.5 g) and GBL (7.5 g), and stir at room temperature for 2 hours. Thus, a diluted polymer solution (Polymer-1) was obtained.
(Synthesis Example 4)
EG-1 (15.0 g, 25.0 mmol), NMP (11.3 g) and GBL (11.3 g) were weighed into a 100 mL eggplant flask equipped with a stirrer and a nitrogen inlet tube, and stirred while supplying nitrogen. to dissolve. While stirring this diamine solution under water cooling, CA-2 (2.73 g, 12.5 mmol), NMP (2.04 g) and GBL (2.04 g) were added and stirred at 70° C. for 20 hours under a nitrogen atmosphere. . Then, DI-1 (2.94 g, 11.8 mmol), NMP (1.03 g) and GBL (1.03 g) were added and stirred at 23° C. for 6 hours under a nitrogen atmosphere to obtain a polymer solution. (Viscosity: 520 mPa·s).
Dispense the polymer solution (5.0 g) obtained above into a 30 mL Erlenmeyer flask equipped with a stirrer, add NMP (7.5 g) and GBL (7.5 g), and stir at room temperature for 2 hours. Thus, a diluted polymer solution (Polymer-2) was obtained.
(Synthesis Example 5)
EG-1 (15.0 g, 25.0 mmol), NMP (11.3 g) and GBL (11.3 g) were weighed into a 100 mL eggplant flask equipped with a stirrer and a nitrogen inlet tube, and stirred while supplying nitrogen. to dissolve. While stirring this diamine solution under water cooling, CA-2 (1.64 g, 7.50 mmol), NMP (1.23 g) and GBL (1.23 g) were added and stirred at 70° C. for 20 hours under a nitrogen atmosphere. . Then, DI-1 (4.19 g, 16.8 mmol), NMP (3.14 g) and GBL (3.14 g) were added and stirred at 23° C. for 6 hours under a nitrogen atmosphere to obtain a polymer solution. (Viscosity: 367 mPa·s).
Dispense the polymer solution (5.0 g) obtained above into a 30 mL Erlenmeyer flask equipped with a stirrer, add NMP (7.5 g) and GBL (7.5 g), and stir at room temperature for 2 hours. Thus, a diluted polymer solution (Polymer-3) was obtained.
(Synthesis Example 6)
EG-1 (15.0 g, 25.0 mmol), NMP (11.3 g) and GBL (11.3 g) were weighed into a 100 mL eggplant flask equipped with a stirrer and a nitrogen inlet tube, and stirred while supplying nitrogen. to dissolve. While stirring this diamine solution under water cooling, CA-2 (0.82 g, 3.75 mmol), NMP (0.61 g) and GBL (0.61 g) were added and stirred at 70° C. for 20 hours under a nitrogen atmosphere. . Then, DI-1 (5.13 g, 20.5 mmol), NMP (3.85 g) and GBL (3.85 g) were added and stirred at 23° C. for 6 hours under a nitrogen atmosphere to obtain a polymer solution. (Viscosity: 1120 mPa·s).
Dispense the polymer solution (5.0 g) obtained above into a 30 mL Erlenmeyer flask equipped with a stirrer, add NMP (7.5 g) and GBL (7.5 g), and stir at room temperature for 2 hours. Thus, a diluted polymer solution (Polymer-4) was obtained.
(Synthesis Example 7)
EG-1 (15.0 g, 25.0 mmol), NMP (11.3 g) and GBL (11.3 g) were weighed into a 100 mL eggplant flask equipped with a stirrer and a nitrogen inlet tube, and stirred while supplying nitrogen. to dissolve. While stirring this diamine solution under water cooling, CA-2 (5.34 g, 24.5 mmol), NMP (4.00 g) and GBL (4.00 g) are added and stirred at 70° C. for 20 hours under nitrogen atmosphere. Thus, a polymer solution was obtained (viscosity: 375 mPa·s).
Dispense the polymer solution (5.0 g) obtained above into a 30 mL Erlenmeyer flask equipped with a stirrer, add NMP (7.5 g) and GBL (7.5 g), and stir at room temperature for 2 hours. Thus, a diluted polymer solution (Polymer-5) was obtained.
Table 1 shows specifications of the polymer solutions obtained in the above synthesis examples. In Table 1, the numbers in parentheses for the solvent composition represent the amount (parts by mass) of each solvent with respect to a total of 100 parts by mass of the solvents in each solution.
Figure JPOXMLDOC01-appb-T000050
[液晶配向剤の調製]
(実施例1)
 撹拌子の入った50mL三角フラスコに、合成例1で得られたポリアミック酸溶液(PAA-1)(6.00g)及び合成例3で得られたポリマーの希釈溶液(重合体-1)(0.48g)を量り取り、NMP(1.31g)、GBL(3.91g)、BCS(4.00g)、及びAD-1を10質量%含むNMP溶液(添加剤溶液)(0.30g)を加え、室温で2時間撹拌することで、液晶配向剤(1)を得た。
[Preparation of Liquid Crystal Aligning Agent]
(Example 1)
A 50 mL Erlenmeyer flask containing a stirrer was charged with the polyamic acid solution (PAA-1) (6.00 g) obtained in Synthesis Example 1 and the diluted solution of the polymer obtained in Synthesis Example 3 (Polymer-1) (0 .48 g), NMP (1.31 g), GBL (3.91 g), BCS (4.00 g), and NMP solution (additive solution) (0.30 g) containing 10% by mass of AD-1 The liquid crystal aligning agent (1) was obtained by adding and stirring at room temperature for 2 hours.
(実施例2~10、比較例1~2)
 使用するポリマー溶液及び溶媒の種類及び量を下記表2に示すように変更した以外は実施例1と同様の実施することで、液晶配向剤(2)~(12)を得た。
Figure JPOXMLDOC01-appb-T000051
(Examples 2-10, Comparative Examples 1-2)
Liquid crystal aligning agents (2) to (12) were obtained in the same manner as in Example 1, except that the types and amounts of the polymer solution and solvent used were changed as shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000051
[FFS駆動液晶セルの作製]
 フリンジフィールドスィッチング(Fringe Field Switching:FFS)モード液晶表示素子の構成を備えた液晶セルを作製した。
 始めに、電極付きの基板を準備した。基板は、30mm×35mmの大きさで、厚さが0.7mmのガラス基板を用いた。基板上には第1層目として対向電極を構成する、ベタ状のパターンを備えたITO電極が形成され、第1層目の対向電極の上には第2層目として、CVD(化学蒸着)法により成膜されたSiN(窒化珪素)膜が形成されていた。第2層目のSiN膜は、層間絶縁膜として機能する膜厚は300nmのものを用いた。第2層目のSiN膜の上には、第3層目としてITO膜をパターニングして形成された櫛歯状の画素電極が配置され、第1画素及び第2画素の2つの画素が形成されており、各画素のサイズは、縦10mmで横約5mmであった。このとき、第1層目の対向電極と第3層目の画素電極とは、第2層目のSiN膜の作用により電気的に絶縁されていた。
 第3層目の画素電極は、中央部分が内角160°で屈曲した幅3μmの電極要素が6μmの間隔を開けて平行になるように複数配列された櫛歯形状を有しており、1つの画素は、複数の電極要素の屈曲部を結ぶ線を境にそれぞれ第1領域と第2領域を有していた。
 各画素の第1領域と第2領域とを比較すると、それらを構成する画素電極の電極要素の形成方向が異なるものとなっていた。すなわち、上記複数の電極要素の屈曲部を結ぶ方向を基準とした場合、画素の第1領域では画素電極の電極要素が時計回りに80°の角度をなすように形成され、画素の第2領域では画素電極の電極要素が反時計回りに80°の角度をなすように形成されていた。すなわち、各画素の第1領域と第2領域とでは、画素電極と対向電極との間の電圧印加によって誘起される液晶の、基板面内での回転動作(インプレーン・スイッチング)の方向が互いに逆方向となるように構成されていた。
 次に、上記で得られた液晶配向剤をそれぞれ孔径1.0μmのフィルターで濾過した後、上記で準備した電極付き基板(第1のガラス基板)の表面、及び裏面にITO膜が成膜されている高さ4μmの柱状スペーサーを有するガラス基板(第2のガラス基板)の表面にスピンコート法にて塗布した。次いで、80℃のホットプレート上で5分間乾燥させた後、230℃の熱風循環式オーブンで20分間焼成を行い、厚み100nmのポリイミド膜を得た。このポリイミド膜をレーヨン布(吉川化工製、YA-20R)でラビング処理(ローラー直径:120mm、ローラー回転数:500rpm、移動速度:30mm/sec、押し込み長:0.3mm、ラビング方向:第3層目の画素電極の上記複数の電極要素の屈曲部を結ぶ方向に対して180°の方向)した後、純水中にて1分間超音波照射をして洗浄を行い、エアブローにて水滴を除去した。その後、80℃のホットプレート上で15分間乾燥して、液晶配向膜付き基板を得た。これら2枚の液晶配向膜付き基板を1組とし、基板上に液晶注入口を残した形でシール剤(三井化学社製 XN-1500T)を印刷し、もう1枚の基板を、液晶配向膜面が向き合い、ラビング方向が逆平行になるようにして張り合わせた。その後、150℃で60分間の加熱処理を行い、シール剤を硬化させて、セルギャップが4μmの空セルを作製した。この空セルに減圧注入法によって、ネガ型液晶MLC-7026-100(メルク社製)を注入し、注入口を封止して、FFS方式の液晶セルを得た。その後、得られた液晶セルを120℃で1時間加熱し、23℃で一晩放置してから評価に使用した。
[長期交流駆動による配向安定性評価]
 本評価は、長期交流駆動において液晶配向膜の配向性能が低下することによって生ずる残像(AC残像ともいう。)を評価するものである。
 上記で作製した液晶セルを用い、表面温度が50℃の高輝度バックライト(光度:20000cd/m)の上で、±12Vの交流電圧を周波数60Hzで120時間印加した。その後、液晶セルの画素電極と対向電極との間をショートさせた状態にし、そのまま室温に一日放置した。放置の後、液晶セルを偏光軸が直交するように配置された2枚の偏光板の間に設置し、電圧無印加の状態でバックライトを点灯させておき、第1画素の第1領域の透過光強度が最も小さくなるように液晶セルの配置角度を調整し、次に第1画素の第2領域の透過光強度が最も小さくなるように液晶セルを回転させたときに要する回転角度を角度Δθとして算出した。第2画素でも同様に、第1領域と第2領域とを比較し、同様の角度Δθを算出した。そして、第1画素と第2画素の角度Δθの平均値を液晶セルの回転角度Δθとして算出した。液晶配向の安定性は、この回転角度Δθの値が小さいほど良好であると言える。評価基準として、上記で得られた液晶セルの回転角度Δθの値が、0.10度以下の場合は「〇」、0.10度を超えて0.20度以下であれば「△」、0.20度を超える場合には「×」として評価した。結果を表3に示す。
[プレチルト角評価用の液晶セルの作製]
 始めに電極付きの基板を準備した。基板は、30mm×40mmの大きさで、厚さが1.1mmのガラス基板である。基板上には膜厚35nmのITO電極が形成されており、電極は間隔が縦40mm、横10mmのストライプパターン状のものを用いた。
 次に、上記で得られた液晶配向剤をそれぞれ孔径1.0μmのフィルターで濾過した後、上記で準備した電極付き基板に、スピンコート法にて塗布した。次いで、80℃のホットプレート上で2分間乾燥させた後、230℃の赤外線加熱炉で20分間焼成を行い、厚み100nmの塗膜を形成させて液晶配向膜付き基板を得た。この液晶配向膜をレーヨン布(吉川化工製、YA-20R)でラビング処理(ローラー直径:120mm、ローラー回転数:1000rpm、移動速度:20mm/sec、押し込み長:0.4mm)した後、純水中にて1分間超音波照射をして洗浄を行い、エアブローにて水滴を除去した後、80℃で10分間乾燥して液晶配向膜付き基板を得た。この液晶配向膜付き基板を2枚用意し、その1枚の液晶配向膜面上に粒径4μmの球状スペーサーを散布した後、液晶注入口を残して周囲にシール剤(三井化学社製 XN-1500T)を印刷し、もう1枚の基板をラビング方向が逆方向、かつ膜面が向き合うようにして張り合わせた。その後、150℃で60分間の加熱処理を行い、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、ネガ型液晶MLC-7026(メルク社製)を注入し、注入口を封止して液晶セルを得た。その後、得られた液晶セルを120℃で1時間加熱し、23℃で一晩放置してから各評価に用いた。
[プレチルト角の測定]
 オプトメトリクス社製AxoScanミュラーマトリクスポーラリメーターを用い、上記液晶セル内のプレチルト角を測定した。プレチルト角の値が低いほど良好である。結果を表3に示す。
[Fabrication of FFS driven liquid crystal cell]
A liquid crystal cell having a configuration of a fringe field switching (FFS) mode liquid crystal display element was produced.
First, a substrate with electrodes was prepared. A glass substrate having a size of 30 mm×35 mm and a thickness of 0.7 mm was used as the substrate. An ITO electrode having a solid pattern is formed on the substrate as a first layer to form a counter electrode, and a CVD (chemical vapor deposition) electrode is formed as a second layer on the first layer counter electrode. A SiN (silicon nitride) film formed by the method was formed. The SiN film of the second layer has a film thickness of 300 nm and functions as an interlayer insulating film. On the SiN film of the second layer, a comb-shaped pixel electrode formed by patterning an ITO film is arranged as a third layer, and two pixels of a first pixel and a second pixel are formed. The size of each pixel was 10 mm long and about 5 mm wide. At this time, the counter electrode of the first layer and the pixel electrode of the third layer were electrically insulated by the action of the SiN film of the second layer.
The pixel electrode of the third layer has a comb shape in which a plurality of electrode elements each having a width of 3 μm and having a central portion bent at an internal angle of 160° are arranged in parallel with an interval of 6 μm. Each pixel had a first region and a second region bounded by a line connecting bent portions of a plurality of electrode elements.
Comparing the first region and the second region of each pixel, the forming directions of the electrode elements of the pixel electrodes constituting them were different. That is, when the direction connecting the bent portions of the plurality of electrode elements is taken as a reference, the electrode elements of the pixel electrode are formed so as to form an angle of 80° clockwise in the first region of the pixel, and the electrode elements of the pixel electrode are formed in the second region of the pixel. The electrode elements of the pixel electrode are formed so as to form an angle of 80° counterclockwise. That is, in the first region and the second region of each pixel, the directions of the rotational movement (in-plane switching) of the liquid crystal induced by the voltage application between the pixel electrode and the counter electrode in the plane of the substrate are mutually different. It was configured in the opposite direction.
Next, after filtering the liquid crystal aligning agent obtained above with a filter having a pore size of 1.0 μm, an ITO film is formed on the surface and the back surface of the substrate with electrodes (first glass substrate) prepared above. It was applied to the surface of a glass substrate (second glass substrate) having columnar spacers with a height of 4 μm, by a spin coating method. Then, after drying on a hot plate at 80° C. for 5 minutes, baking was performed in a hot air circulating oven at 230° C. for 20 minutes to obtain a polyimide film with a thickness of 100 nm. This polyimide film is rubbed with a rayon cloth (Yoshikawa Kako, YA-20R) (roller diameter: 120 mm, roller rotation speed: 500 rpm, moving speed: 30 mm / sec, indentation length: 0.3 mm, rubbing direction: 3rd layer 180° to the direction connecting the bent portions of the plurality of electrode elements of the pixel electrode of the eye), ultrasonic irradiation is performed for 1 minute in pure water for cleaning, and water droplets are removed by air blow. bottom. Then, it dried for 15 minutes on an 80 degreeC hotplate, and obtained the board|substrate with a liquid crystal aligning film. These two substrates with a liquid crystal alignment film are used as one set, and a sealant (XN-1500T manufactured by Mitsui Chemicals, Inc.) is printed on the substrate with the liquid crystal injection port left. They were laminated so that the surfaces faced each other and the rubbing directions were anti-parallel. After that, a heat treatment was performed at 150° C. for 60 minutes to cure the sealant, thereby producing an empty cell with a cell gap of 4 μm. A negative type liquid crystal MLC-7026-100 (manufactured by Merck & Co.) was injected into this empty cell by a vacuum injection method, and the injection port was sealed to obtain an FFS liquid crystal cell. After that, the obtained liquid crystal cell was heated at 120° C. for 1 hour and allowed to stand at 23° C. overnight before being used for evaluation.
[Evaluation of alignment stability by long-term AC drive]
This evaluation evaluates afterimages (also referred to as AC afterimages) caused by deterioration of the alignment performance of the liquid crystal alignment film during long-term AC driving.
Using the liquid crystal cell produced above, an AC voltage of ±12 V was applied at a frequency of 60 Hz for 120 hours on a high-brightness backlight (luminous intensity: 20000 cd/m 2 ) having a surface temperature of 50°C. After that, the pixel electrode and the counter electrode of the liquid crystal cell were short-circuited and left at room temperature for one day. After standing, the liquid crystal cell is placed between two polarizing plates arranged so that the polarizing axes are orthogonal to each other, the backlight is turned on with no voltage applied, and the transmitted light of the first region of the first pixel is obtained. The angle of rotation required when the arrangement angle of the liquid crystal cell is adjusted so that the intensity is minimized and then the liquid crystal cell is rotated so that the transmitted light intensity of the second region of the first pixel is minimized is defined as the angle Δθ. Calculated. Similarly, for the second pixel, the first region and the second region were compared to calculate a similar angle Δθ. Then, the average value of the angle Δθ between the first pixel and the second pixel was calculated as the rotation angle Δθ of the liquid crystal cell. It can be said that the smaller the rotation angle Δθ, the better the stability of the liquid crystal alignment. As evaluation criteria, if the value of the rotation angle Δθ of the liquid crystal cell obtained above is 0.10 degrees or less, "◯", if it exceeds 0.10 degrees and is 0.20 degrees or less, "Δ", When exceeding 0.20 degrees, it was evaluated as "x". Table 3 shows the results.
[Preparation of liquid crystal cell for pretilt angle evaluation]
First, a substrate with electrodes was prepared. The substrate is a glass substrate with a size of 30 mm×40 mm and a thickness of 1.1 mm. An ITO electrode having a film thickness of 35 nm was formed on the substrate, and the electrode had a stripe pattern with an interval of 40 mm in length and 10 mm in width.
Next, each of the liquid crystal aligning agents obtained above was filtered through a filter having a pore size of 1.0 μm, and then applied to the electrode-attached substrate prepared above by a spin coating method. Then, after drying on a hot plate at 80° C. for 2 minutes, baking was performed in an infrared heating furnace at 230° C. for 20 minutes to form a coating film having a thickness of 100 nm to obtain a substrate with a liquid crystal alignment film. After rubbing the liquid crystal alignment film with a rayon cloth (manufactured by Yoshikawa Kako, YA-20R) (roller diameter: 120 mm, roller rotation speed: 1000 rpm, moving speed: 20 mm / sec, pushing length: 0.4 mm), pure water The substrate was cleaned by irradiating ultrasonic waves for 1 minute inside, water droplets were removed by an air blow, and dried at 80° C. for 10 minutes to obtain a substrate with a liquid crystal alignment film. Two substrates with the liquid crystal alignment film were prepared, and spherical spacers with a particle size of 4 μm were sprayed on the surface of one of the liquid crystal alignment films. 1500T) was printed thereon, and another substrate was pasted with the rubbing direction reversed and the film surfaces facing each other. After that, a heat treatment was performed at 150° C. for 60 minutes to cure the sealant to prepare an empty cell. A negative type liquid crystal MLC-7026 (manufactured by Merck & Co.) was injected into this empty cell by a vacuum injection method, and the injection port was sealed to obtain a liquid crystal cell. After that, the obtained liquid crystal cell was heated at 120° C. for 1 hour and allowed to stand at 23° C. overnight before being used for each evaluation.
[Measurement of pretilt angle]
A pretilt angle in the liquid crystal cell was measured using an AxoScan Muller matrix polarimeter manufactured by Optometrics. The lower the pretilt angle value, the better. Table 3 shows the results.
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000052
 本発明の実施例の液晶配向剤を使用することにより、1.5度以下のプレチルト角が得られた。また、通常、液晶材料としてネガ液晶を用いた場合には良好な液晶配向性が得られにくいところ、本発明の実施例の液晶配向剤を使用することにより、液晶材料としてネガ液晶を用いた場合でも液晶配向性が良好な(すなわち、AC残像特性に優れた)液晶表示素子が得られた。 A pretilt angle of 1.5 degrees or less was obtained by using the liquid crystal aligning agent of the example of the present invention. Moreover, normally, when a negative liquid crystal is used as a liquid crystal material, it is difficult to obtain good liquid crystal orientation, but by using the liquid crystal aligning agent of the example of the present invention, when a negative liquid crystal is used as a liquid crystal material, However, a liquid crystal display element having good liquid crystal orientation (that is, having excellent AC afterimage properties) was obtained.
 なお、2021年10月28日に出願された日本特許出願2021-176518号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 In addition, the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2021-176518 filed on October 28, 2021 are cited here, and as a disclosure of the specification of the present invention, It is taken in.

Claims (22)

  1.  下記の(A)成分および(B)成分を含有することを特徴とする重合体組成物。
    (A)成分:下記式(a)で表される繰り返し単位を有するポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体(A)。
    (B)成分:下記式(b1)で表される繰り返し単位を有し、前記式(a)で表される繰り返し単位及びそのイミド化構造を有しない、ポリエステル(B)。
    Figure JPOXMLDOC01-appb-C000001
    (Xは4価の有機基を表す。Yはジアミンに由来する2価の有機基を表す。2個のRは、それぞれ独立に、水素原子又は1価の有機基を表す。2個のZは、それぞれ独立に、水素原子又は1価の有機基を表す。)
    Figure JPOXMLDOC01-appb-C000002
    (Xarは芳香族テトラカルボン酸二無水物又はその誘導体に由来する4価の有機基を表す。2個のRは、それぞれ独立に、水素原子又は1価の有機基を表す。Eは、有機ジオールから2つのヒドロキシ基中に含まれる水素原子を除いた2価の有機基であって、前記有機ジオールは下記式(EG)で表される2価の有機基を含む。)
    Figure JPOXMLDOC01-appb-C000003
    (nは5以上の整数である。Rは、水素原子又はメチル基を表す。)
    A polymer composition characterized by containing the following components (A) and (B).
    Component (A): At least one polymer (A) selected from the group consisting of a polyimide precursor having a repeating unit represented by the following formula (a) and a polyimide which is an imidized product of the polyimide precursor.
    Component (B): Polyester (B) which has a repeating unit represented by the following formula (b1) and does not have a repeating unit represented by the above formula (a) and its imidized structure.
    Figure JPOXMLDOC01-appb-C000001
    (X represents a tetravalent organic group.Y represents a divalent organic group derived from a diamine.Two R each independently represent a hydrogen atom or a monovalent organic group.Two Z each independently represents a hydrogen atom or a monovalent organic group.)
    Figure JPOXMLDOC01-appb-C000002
    (X ar represents a tetravalent organic group derived from an aromatic tetracarboxylic dianhydride or a derivative thereof. Each of the two R independently represents a hydrogen atom or a monovalent organic group. E is A divalent organic group obtained by removing hydrogen atoms contained in two hydroxy groups from an organic diol, wherein the organic diol contains a divalent organic group represented by the following formula (EG).)
    Figure JPOXMLDOC01-appb-C000003
    (n is an integer of 5 or more. R represents a hydrogen atom or a methyl group.)
  2.  上記式(EG)において、nが5~40の整数である、請求項1に記載の重合体組成物。 The polymer composition according to claim 1, wherein n is an integer of 5 to 40 in the formula (EG).
  3.  上記式(b1)における有機ジオールが、上記式(EG)で表される2価の有機基の両端に水素原子が結合したジオールである、請求項1または2に記載の重合体組成物。 The polymer composition according to claim 1 or 2, wherein the organic diol in formula (b1) is a diol in which hydrogen atoms are bonded to both ends of the divalent organic group represented by formula (EG).
  4.  上記式(b1)におけるXarが、下記式(t)で表されるテトラカルボン酸二無水物又はその誘導体に由来する4価の有機基である、請求項1~3のいずれか一項に記載の重合体組成物。
    Figure JPOXMLDOC01-appb-C000004
    (式中Xは、下記式(X1-24)および(X1-25)から選ばれる構造である。*は結合手を表す。)
    Figure JPOXMLDOC01-appb-C000005
     式(X1-24)~(X1-25)において、j及びkは、0又は1の整数であり、A及びAは、それぞれ独立して、単結合、-O-、-CO-、-COO-、フェニレン、スルホニル基、又はアミド基を表す。複数のAは、それぞれ同一でも異なってもよい。)
    X ar in the formula (b1) is a tetravalent organic group derived from a tetracarboxylic dianhydride represented by the following formula (t) or a derivative thereof, according to any one of claims 1 to 3 The polymer composition described.
    Figure JPOXMLDOC01-appb-C000004
    (In the formula, X 1 is a structure selected from the following formulas (X1-24) and (X1-25). * represents a bond.)
    Figure JPOXMLDOC01-appb-C000005
    In formulas (X1-24) to (X1-25), j and k are integers of 0 or 1, A 1 and A 2 are each independently a single bond, -O-, -CO-, -COO-, phenylene, sulfonyl group, or amido group; A plurality of A 2 may be the same or different. )
  5.  前記式(X1-24)および(X1-25)が、下記式(X1-26)~(X1-41)のいずれかである、請求項4に記載の重合体組成物。
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    5. The polymer composition according to claim 4, wherein the formulas (X1-24) and (X1-25) are any one of the following formulas (X1-26) to (X1-41).
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
  6.  前記ポリエステル(B)がさらに、下記式(b2)で表される繰り返し単位を有する、請求項1~5のいずれか一項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000008
    (Aはジイソシアネートに由来する2価の有機基である。Aは有機ジオールから2つのヒドロキシ基中に含まれる水素原子を除いた2価の有機基である。)
    The liquid crystal aligning agent according to any one of claims 1 to 5, wherein the polyester (B) further has a repeating unit represented by the following formula (b2).
    Figure JPOXMLDOC01-appb-C000008
    ( A1 is a divalent organic group derived from diisocyanate. A2 is a divalent organic group obtained by removing hydrogen atoms contained in two hydroxy groups from an organic diol.)
  7.  上記式(a)におけるYが、下記式(O)で表されるジアミン、アミド結合又はウレア結合を有するジアミン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノベンゾフェノン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(4-アミノベンジル)ベンゼン、下記式(d)で表されるジアミン、4-(2-(メチルアミノ)エチル)アニリン、4-(2-アミノエチル)アニリン、及び基「-N(D)-」(Dは加熱によって脱離し水素原子に置き換わる保護基を表す。)を有するジアミンからなる群から選ばれるジアミンに由来する2価の有機基である、請求項1~6のいずれか一項に記載の重合体組成物。
    Figure JPOXMLDOC01-appb-C000009
    (Arは、2価のベンゼン環、ビフェニル構造、又はナフタレン環を表す。2つのArは同一でも異なってもよく、上記ベンゼン環、ビフェニル構造、又はナフタレン環の任意の水素原子は1価の基で置き換えられてもよい。pは0又は1の整数である。Qは-(CH-(nは2~18の整数である。)、又は該-(CH-の-CH-の少なくとも一部を-O-、-C(=O)-又は-O-C(=O)-のいずれかで置き換えた基を表す。)
    Figure JPOXMLDOC01-appb-C000010
    (mが2つ以上ある場合、2つ以上のmはそれぞれ同一でも異なってもよい。ベンゼン環上の1つ以上の水素原子は1価の基で置換されてもよい。)
    Y in the above formula (a) is a diamine represented by the following formula (O), a diamine having an amide bond or a urea bond, 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 4,4'- diaminodiphenylmethane, 4,4′-diaminobenzophenone, 1,4-bis(4-aminophenyl)benzene, 1,3-bis(4-aminophenyl)benzene, 1,4-bis(4-aminobenzyl)benzene, A diamine represented by the following formula (d o ), 4-(2-(methylamino)ethyl)aniline, 4-(2-aminoethyl)aniline, and the group “—N(D)—” (D is heated to The polymer composition according to any one of claims 1 to 6, which is a divalent organic group derived from a diamine selected from the group consisting of diamines having a protecting group that is eliminated and replaced with a hydrogen atom. .
    Figure JPOXMLDOC01-appb-C000009
    (Ar represents a divalent benzene ring, biphenyl structure, or naphthalene ring. The two Ars may be the same or different, and any hydrogen atom in the benzene ring, biphenyl structure, or naphthalene ring is a monovalent group. p is an integer of 0 or 1. Q 2 is —(CH 2 ) n — (n is an integer of 2 to 18), or the —(CH 2 ) n — represents a group in which at least part of -CH 2 - is replaced with -O-, -C(=O)- or -O-C(=O)-.)
    Figure JPOXMLDOC01-appb-C000010
    (When there are two or more m, the two or more m may be the same or different. One or more hydrogen atoms on the benzene ring may be substituted with a monovalent group.)
  8.  上記式(b2)におけるAが、上記式(EG)で表される2価の有機基を有するジイソシアネート(DIEG)、ジイソシアネート(DIEG)以外の芳香族ジイソシアネートまたはジイソシアネート(DIEG)以外の脂肪族ジイソシアネートに由来する2価の有機基である、請求項6~7のいずれか一項に記載の重合体組成物。 A 1 in the formula (b2) is a diisocyanate (DI EG ) having a divalent organic group represented by the formula ( EG ), an aromatic diisocyanate other than the diisocyanate (DI EG ), or a diisocyanate other than the diisocyanate (DI EG ) The polymer composition according to any one of claims 6 to 7, which is a divalent organic group derived from an aliphatic diisocyanate.
  9.  上記式(b2)における有機ジオールが、上記式(EG)で表される2価の有機基を含むジオールである、請求項6~8のいずれか一項に記載の重合体組成物。 The polymer composition according to any one of claims 6 to 8, wherein the organic diol in formula (b2) is a diol containing a divalent organic group represented by formula (EG).
  10.  上記式(EG)で表される2価の有機基を含むジオールが、上記式(EG)で表される2価の有機基の両端に水素原子が結合したジオールである、請求項9に記載の重合体組成物。 The diol containing a divalent organic group represented by the above formula (EG) is a diol in which hydrogen atoms are bonded to both ends of the divalent organic group represented by the above formula (EG), according to claim 9. polymer composition.
  11.  上記(a)におけるXが、非環式脂肪族テトラカルボン酸二無水物又はその誘導体に由来する4価の有機基、脂環式テトラカルボン酸二無水物又はその誘導体に由来する4価の有機基又は芳香族テトラカルボン酸二無水物又はその誘導体に由来する4価の有機基である、請求項1~10のいずれか一項に記載の重合体組成物。 X in the above (a) is a tetravalent organic group derived from an acyclic aliphatic tetracarboxylic dianhydride or a derivative thereof, a tetravalent organic group derived from an alicyclic tetracarboxylic dianhydride or a derivative thereof or a tetravalent organic group derived from an aromatic tetracarboxylic dianhydride or a derivative thereof.
  12.  上記(a)におけるXが、式(t)で表されるテトラカルボン酸二無水物又はその誘導体に由来する4価の有機基である、請求項1~11のいずれか一項に記載の重合体組成物。
    Figure JPOXMLDOC01-appb-C000011
    (式中Xは、下記式(X1-1)~(X1-25)から選ばれる構造である。*は結合手を表す。)
    Figure JPOXMLDOC01-appb-C000012
    Figure JPOXMLDOC01-appb-C000013
    Figure JPOXMLDOC01-appb-C000014
    Figure JPOXMLDOC01-appb-C000015
    (式(X1-1)~(X1-4)において、R~R21は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、又はフェニル基を表す。*は結合手を表す。
     式(X1-24)~(X1-25)において、j及びkは、0又は1の整数であり、A及びAは、それぞれ独立して、単結合、-O-、-CO-、-COO-、フェニレン、スルホニル基、又はアミド基を表す。複数のAは、それぞれ同一でも異なってもよい。)
    The polymer according to any one of claims 1 to 11, wherein X in (a) is a tetravalent organic group derived from a tetracarboxylic dianhydride represented by formula (t) or a derivative thereof. Combined composition.
    Figure JPOXMLDOC01-appb-C000011
    (In the formula, X 1 is a structure selected from the following formulas (X1-1) to (X1-25). * represents a bond.)
    Figure JPOXMLDOC01-appb-C000012
    Figure JPOXMLDOC01-appb-C000013
    Figure JPOXMLDOC01-appb-C000014
    Figure JPOXMLDOC01-appb-C000015
    (In formulas (X1-1) to (X1-4), R 1 to R 21 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms , represents an alkynyl group having 2 to 6 carbon atoms, a monovalent organic group having 1 to 6 carbon atoms containing a fluorine atom, or a phenyl group, * represents a bond.
    In formulas (X1-24) to (X1-25), j and k are integers of 0 or 1, A 1 and A 2 are each independently a single bond, -O-, -CO-, -COO-, phenylene, sulfonyl group, or amido group; A plurality of A 2 may be the same or different. )
  13.  前記重合体(A)が、下記式(U)で表される繰り返し単位をさらに有する、請求項1~12のいずれか一項に記載の重合体組成物。
    Figure JPOXMLDOC01-appb-C000016
    (Uは2価の有機基であり、U1’はジアミンに由来する2価の有機基であり、C及びC1’は、それぞれ独立に、水素原子又は1価の有機基である。)
    The polymer composition according to any one of claims 1 to 12, wherein the polymer (A) further has a repeating unit represented by the following formula (U).
    Figure JPOXMLDOC01-appb-C000016
    (U 1 is a divalent organic group, U 1' is a divalent organic group derived from a diamine, and C 1 and C 1' are each independently a hydrogen atom or a monovalent organic group. .)
  14.  重合体(A)が、末端が封止された重合体である、請求項1~13のいずれか一項に記載の重合体組成物。 The polymer composition according to any one of claims 1 to 13, wherein the polymer (A) is a terminal-capped polymer.
  15.  上記式(b1)で表される繰り返し単位の含有割合は、ポリエステル(B)を構成する繰り返し単位全体の10モル%以上である、請求項5~14のいずれか一項に記載の重合体組成物。 The polymer composition according to any one of claims 5 to 14, wherein the content of the repeating unit represented by the formula (b1) is 10 mol% or more of the total repeating units constituting the polyester (B). thing.
  16.  架橋性化合物、官能性シラン化合物、金属キレート化合物、硬化促進剤、界面活性剤、酸化防止剤、増感剤、防腐剤、および樹脂膜の誘電率や電気抵抗を調整するための化合物からなる群から選ばれる少なくとも一種の添加剤成分をさらに含有する、請求項1~15のいずれか一項に記載の重合体組成物。 A group consisting of crosslinkable compounds, functional silane compounds, metal chelate compounds, curing accelerators, surfactants, antioxidants, sensitizers, preservatives, and compounds for adjusting the dielectric constant and electrical resistance of resin films The polymer composition according to any one of claims 1 to 15, further comprising at least one additive component selected from
  17.  前記ポリエステル(B)が、下記式(b2)で表される繰り返し単位を有さない、請求項1に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000017
    (Aはジイソシアネートに由来する2価の有機基である。Aは有機ジオールから2つのヒドロキシ基中に含まれる水素原子を除いた2価の有機基である。)
    The liquid crystal aligning agent according to claim 1, wherein the polyester (B) does not have a repeating unit represented by the following formula (b2).
    Figure JPOXMLDOC01-appb-C000017
    ( A1 is a divalent organic group derived from diisocyanate. A2 is a divalent organic group obtained by removing hydrogen atoms contained in two hydroxy groups from an organic diol.)
  18.  請求項1~17のいずれか一項に記載の重合体組成物からなる液晶配向剤。 A liquid crystal aligning agent comprising the polymer composition according to any one of claims 1 to 17.
  19.  請求項1~17のいずれか一項に記載の重合体組成物を用いて得られる樹脂膜。 A resin film obtained using the polymer composition according to any one of claims 1 to 17.
  20.  請求項18に記載の液晶配向剤を用いて形成される液晶配向膜。 A liquid crystal alignment film formed using the liquid crystal alignment agent according to claim 18.
  21.  請求項20に記載の液晶配向膜を具備する液晶表示素子。 A liquid crystal display element comprising the liquid crystal alignment film according to claim 20.
  22. 下記の工程(1)~(3)を含む、液晶表示素子の製造方法。
     工程(1):請求項18に記載の液晶配向剤を基板上に塗布する工程
     工程(2):塗布した前記液晶配向剤を焼成し、膜を得る工程
     工程(3):工程(2)で得られた前記膜に配向処理する工程
    A method for manufacturing a liquid crystal display device, comprising the following steps (1) to (3).
    Step (1): A step of applying the liquid crystal aligning agent according to claim 18 onto a substrate Step (2): A step of baking the applied liquid crystal aligning agent to obtain a film Step (3): In step (2) a step of subjecting the obtained film to orientation treatment;
PCT/JP2022/038192 2021-10-28 2022-10-13 Polymer composition, liquid crystal aligning agent, resin film, liquid crystal alignment film, method for producing liquid crystal display element, and liquid crystal display element WO2023074391A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-176518 2021-10-28
JP2021176518 2021-10-28

Publications (1)

Publication Number Publication Date
WO2023074391A1 true WO2023074391A1 (en) 2023-05-04

Family

ID=86157907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038192 WO2023074391A1 (en) 2021-10-28 2022-10-13 Polymer composition, liquid crystal aligning agent, resin film, liquid crystal alignment film, method for producing liquid crystal display element, and liquid crystal display element

Country Status (2)

Country Link
TW (1) TW202330691A (en)
WO (1) WO2023074391A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07509510A (en) * 1992-07-27 1995-10-19 ビーエーエスエフ アクチェンゲゼルシャフト How to use polycondensates and new polycondensates
JP2001270936A (en) * 2000-01-19 2001-10-02 Nippon Shokubai Co Ltd Polyether polyester and its preparation process
JP2009235162A (en) * 2008-03-26 2009-10-15 Toray Ind Inc Thermosetting resin composition
JP2012150503A (en) * 2006-06-29 2012-08-09 Jnc Corp Composition for liquid crystal alignment layer, liquid crystal alignment layer, and liquid crystal display element
WO2019082975A1 (en) * 2017-10-26 2019-05-02 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP2020514803A (en) * 2018-02-21 2020-05-21 エルジー・ケム・リミテッド Liquid crystal alignment agent composition, method for producing liquid crystal alignment film using the same, liquid crystal alignment film using the same, and liquid crystal display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07509510A (en) * 1992-07-27 1995-10-19 ビーエーエスエフ アクチェンゲゼルシャフト How to use polycondensates and new polycondensates
JP2001270936A (en) * 2000-01-19 2001-10-02 Nippon Shokubai Co Ltd Polyether polyester and its preparation process
JP2012150503A (en) * 2006-06-29 2012-08-09 Jnc Corp Composition for liquid crystal alignment layer, liquid crystal alignment layer, and liquid crystal display element
JP2009235162A (en) * 2008-03-26 2009-10-15 Toray Ind Inc Thermosetting resin composition
WO2019082975A1 (en) * 2017-10-26 2019-05-02 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP2020514803A (en) * 2018-02-21 2020-05-21 エルジー・ケム・リミテッド Liquid crystal alignment agent composition, method for producing liquid crystal alignment film using the same, liquid crystal alignment film using the same, and liquid crystal display device

Also Published As

Publication number Publication date
TW202330691A (en) 2023-08-01

Similar Documents

Publication Publication Date Title
WO2023286733A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, method for producing liquid crystal display element, and liquid crystal display element
WO2022176680A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2022153873A1 (en) Polymer composition, liquid crystal aligning agent, resin film, liquid crystal alignment film, method for manufacturing liquid crystal display element, and liquid crystal display element
WO2023074391A1 (en) Polymer composition, liquid crystal aligning agent, resin film, liquid crystal alignment film, method for producing liquid crystal display element, and liquid crystal display element
WO2022220199A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP7351435B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2023286735A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element production method, and liquid crystal display element
WO2023210532A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2022270287A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2022168722A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, method for producing liquid crystal display element, and liquid crystal display element
WO2022190896A1 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2023074569A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2023074392A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
TW202405141A (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2022234820A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
CN116981738A (en) Polymer composition, liquid crystal aligning agent, resin film, liquid crystal aligning film, method for producing liquid crystal display element, and liquid crystal display element
WO2023074570A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2023008203A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, compound and polymer
CN117940842A (en) Liquid crystal aligning agent, liquid crystal alignment film, method for manufacturing liquid crystal display element, and liquid crystal display element
WO2022176713A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and polymer-dispersed liquid crystal element
WO2022107541A1 (en) Liquid crystal aligning agent, method for producing polymer, liquid crystal alignment film and liquid crystal display element
CN117242396A (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2023074390A1 (en) Liquid crystal aligning agent, liquid crystal aligned film, liquid crystal display element, and compound
WO2023068085A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element, and compound
TW202409152A (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22886720

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023556310

Country of ref document: JP