WO2023008203A1 - Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, compound and polymer - Google Patents

Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, compound and polymer Download PDF

Info

Publication number
WO2023008203A1
WO2023008203A1 PCT/JP2022/027644 JP2022027644W WO2023008203A1 WO 2023008203 A1 WO2023008203 A1 WO 2023008203A1 JP 2022027644 W JP2022027644 W JP 2022027644W WO 2023008203 A1 WO2023008203 A1 WO 2023008203A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
liquid crystal
carbon atoms
formula
aligning agent
Prior art date
Application number
PCT/JP2022/027644
Other languages
French (fr)
Japanese (ja)
Inventor
歳幸 遠藤
雅倫 尹
司 藤枝
達也 結城
達哉 名木
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to KR1020247004455A priority Critical patent/KR20240037999A/en
Priority to CN202280052213.1A priority patent/CN117716282A/en
Priority to JP2023538422A priority patent/JPWO2023008203A1/ja
Publication of WO2023008203A1 publication Critical patent/WO2023008203A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/105Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to liquid crystal aligning agents, liquid crystal aligning films, liquid crystal display elements, and compounds and polymers that can be used therefor.
  • a liquid crystal display device includes, for example, a liquid crystal layer sandwiched between an element substrate and a color filter substrate, a pixel electrode and a common electrode for applying an electric field to the liquid crystal layer, an alignment film for controlling the orientation of liquid crystal molecules in the liquid crystal layer, A thin film transistor (TFT) or the like is provided for switching an electric signal supplied to the pixel electrode.
  • TFT thin film transistor
  • Driving methods for liquid crystal molecules include vertical electric field methods such as the TN (Twisted Nematic) method and VA (Vertical Alignment) method, and horizontal electric field methods such as the IPS (In-Plane Switching) method and the FFS (Fringe Field Switching) method.
  • TN Transmission Nematic
  • VA Very Alignment
  • IPS In-Plane Switching
  • FFS Frringe Field Switching
  • the liquid crystal alignment film that is most widely used industrially is formed on an electrode substrate, and the surface of a film made of a polymer typified by polyamic acid and/or polyimide imidized thereof is coated with cotton, nylon, or the like. It is produced by rubbing in one direction with a cloth such as polyester.
  • the rubbing treatment is a simple, highly productive and industrially useful method.
  • Non-Patent Document 1 and Patent Document 1 As an alignment treatment method that replaces the rubbing treatment, there is known a photo-alignment method in which polarized radiation is applied to impart liquid crystal alignment ability.
  • a photo-alignment method a method using a photoisomerization reaction, a method using a photocrosslinking reaction, a method using a photodecomposition reaction, and the like have been proposed (see, for example, Non-Patent Document 1 and Patent Document 1).
  • Patent Literature 2 proposes a polyimide precursor having a specific structure or a liquid crystal aligning agent containing polyimide as a means for solving the above problems.
  • an object of the present invention is to obtain a liquid crystal alignment film that has a small variation (non-uniformity) in the twist angle of the liquid crystal in the plane of the liquid crystal alignment film and can suppress the AC afterimage.
  • An aligning agent, a liquid crystal aligning film obtained from the liquid crystal aligning agent, a liquid crystal display device using the liquid crystal aligning film, and compounds and polymers that can be used for them are provided.
  • the present invention includes the following aspects.
  • At least one compound selected from the group consisting of tetracarboxylic dianhydrides and derivatives thereof (excluding tetracarboxylic acid diimide diester compounds) and a diimide diester compound (B) represented by the following formula (1) Contains one or more polymers (A) selected from the group consisting of polyimide precursors obtained by polymerizing a tetracarboxylic acid derivative component and a diamine component, and polyimides that are imidized products of the polyimide precursors. death,
  • the polymer (A) has a group represented by the following formula (1A) derived from the diimide diester compound (B), Liquid crystal aligning agent.
  • X 1 represents a tetravalent organic group derived from an acyclic aliphatic tetracarboxylic dianhydride or an alicyclic tetracarboxylic dianhydride or a derivative thereof.
  • Each R independently represents a carbon represents a monovalent organic group of numbers 1 to 5.
  • R represents a monovalent organic group having 1 to 5 carbon atoms. * represents a bond that binds to X 1.
  • the liquid crystal aligning agent which can obtain the liquid crystal aligning film which has a small variation (non-uniformity) of the twist angle of the liquid crystal in a liquid crystal aligning film plane, and can suppress an AC afterimage, and this liquid crystal aligning agent. It is possible to provide a liquid crystal alignment film obtained from, a liquid crystal display element using the liquid crystal alignment film, a compound that can be used for them, and a polymer. Although the mechanism by which the above effects are obtained by the present invention is not necessarily clear, the following is considered to be one of the reasons.
  • the portion derived from the diimide diester compound (B) in the polymer (A) is less likely to be imidized during baking, so that the amount of decomposition during irradiation with polarized ultraviolet rays is suppressed and the reorientation of the polymer is improved. be done. Further, when the polymer having the group represented by the formula (1A) contains two or more types of polymers, the effect of increasing the uneven distribution to the surface layer is exhibited, so it is considered that the above effect is exhibited.
  • halogen atom includes fluorine atom, chlorine atom, bromine atom, iodine atom and the like.
  • Boc represents a tert-butoxycarbonyl group, and "*" represents a binding position.
  • the liquid crystal aligning agent of this invention contains a polymer (A).
  • the polymer (A) is one or more selected from the group consisting of polyimide precursors and polyimides which are imidized products of the polyimide precursors.
  • a polyimide precursor is obtained by polymerizing a tetracarboxylic acid derivative component and a diamine component.
  • the tetracarboxylic acid derivative component is at least one compound selected from the group consisting of tetracarboxylic dianhydrides and derivatives thereof (excluding tetracarboxylic acid diimide diester compounds). Also referred to as an anhydride compound.) and the diimide diester compound (B) represented by the above formula (1).
  • the polymer (A) has a group represented by the formula (1A) derived from the diimide diester compound (B).
  • the polyimide precursor include polyamic acid and polyamic acid ester.
  • the tetracarboxylic dianhydride derivatives include tetracarboxylic acid dihalides, tetracarboxylic acid dialkyl esters, and tetracarboxylic acid dialkyl ester dihalides.
  • the polymer (A) itself is also an object of the present invention independently of the liquid crystal aligning agent of the present invention.
  • the polymer (A) is a polyamic acid
  • the polymer (A) is, for example, a tetracarboxylic acid containing a tetracarboxylic dianhydride and a diimide diester compound (B) represented by the formula (1). It is obtained by polymerizing (polycondensing) a derivative component and a diamine component.
  • the polyimide in the polymer (A) is obtained by imidizing the polyamic acid.
  • the polymer (A) is a polyamic acid ester
  • it can be obtained by the method described later, and a polyimide is obtained by imidating the polyamic acid ester.
  • tetracarboxylic dianhydride-based compound examples include aromatic tetracarboxylic dianhydrides, acyclic aliphatic tetracarboxylic dianhydrides, alicyclic tetracarboxylic dianhydrides, and derivatives thereof. be done.
  • the aromatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups including at least one carboxy group bonded to an aromatic ring.
  • An acyclic aliphatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups bonded to a chain hydrocarbon structure. However, it does not need to be composed only of a chain hydrocarbon structure, and may have an alicyclic structure or an aromatic ring structure in part thereof.
  • An alicyclic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups including at least one carboxy group bonded to an alicyclic structure. However, none of these four carboxy groups are bonded to the aromatic ring. Moreover, it is not necessary to consist only of an alicyclic structure, and a part thereof may have a chain hydrocarbon structure or an aromatic ring structure.
  • aromatic tetracarboxylic dianhydride acyclic aliphatic tetracarboxylic dianhydride or alicyclic tetracarboxylic dianhydride is, among others, a tetracarboxylic dianhydride represented by the following formula (2) is preferred.
  • R 1 to R 4 each independently contain a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, or a fluorine atom.
  • R 5 represents a monovalent organic group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an alkoxyalkyl group having 2 to 6 carbon atoms, an alkyloxycarbonyl group having 2 to 6 carbon atoms, or a phenyl group.
  • R6 each independently represent a hydrogen atom or a methyl group.
  • in formula (x-9) represents a single bond or a double bond.
  • a 1 and A 2 are integers of 0 or 1
  • a 1 and A 2 each independently represent a single bond, —O—, —CO—, —COO—, a phenylene group, a sulfonyl group, or an amide group; show.
  • a plurality of A 2 may be the same or different.
  • *1 is a bond that bonds to one acid anhydride group
  • *2 is a bond that bonds to the other acid anhydride group.
  • Preferred specific examples of the tetracarboxylic dianhydride represented by the above formula (2) include X being the above formulas (x-1) to (x-8), (x-10) to (x-11) , and (xr-1) to (xr-2).
  • the above formula (x-1) is preferably selected from the group consisting of the following formulas (x1-1) to (x1-6).
  • the polymer (A) of the present invention is obtained by using a tetracarboxylic acid derivative component containing the diimide diester compound (B) represented by the above formula (1).
  • a tetracarboxylic acid derivative component containing the diimide diester compound (B) represented by the above formula (1) By adopting such a mode, it is possible to provide the resulting liquid crystal alignment film with high AC afterimage resistance and small variation (non-uniformity) in the twist angle when used as a liquid crystal display device.
  • the diimide diester compound (B) itself is also the object of this invention.
  • the monovalent organic group having 1 to 5 carbon atoms for R in the above formula (1) includes an alkyl group having 1 to 5 carbon atoms (e.g., methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, isobutyl group, tert-butyl group, etc.), alkenyl groups having 2 to 5 carbon atoms (vinyl group, 2-propenyl group, etc.), alkynyl groups having 2 to 5 carbon atoms (2-propynyl group, etc.
  • alkyl group having 1 to 5 carbon atoms e.g., methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, isobutyl group, tert-butyl group, etc.
  • alkenyl groups having 2 to 5 carbon atoms vinyl group, 2-propen
  • Groups having a heteroatom include, for example, groups having at least one selected from the group consisting of an oxygen atom, a nitrogen atom, a silicon atom, a phosphorus atom and a sulfur atom, and the like, -O-, -NR-(R represents a hydrogen atom or a methyl group.), -CO-, -S-, -CO-, -Si(R')(R')-(R' is each independently alkyl having 1 to 3 carbon atoms represents a group.), and groups in which these are combined. Of these, -O- is preferred.
  • substituents include halogen atoms; alkoxy groups such as methoxy, ethoxy and propoxy; alkoxycarbonyl groups such as methoxycarbonyl and ethoxycarbonyl; alkoxycarbonyloxy such as methoxycarbonyloxy and ethoxycarbonyloxy; Group; cyano group, nitro group, hydroxy group and the like.
  • each R in the above formula (1) is independently an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, an alkynyl group having 2 to 5 carbon atoms, or It is preferably a group in which some or all of the hydrogen atoms of the alkyl group, alkenyl group or alkynyl group are substituted with a substituent.
  • X 1 in the above formula (1) represents a tetravalent organic group derived from an acyclic aliphatic tetracarboxylic dianhydride, an alicyclic tetracarboxylic dianhydride, or a derivative thereof.
  • Specific examples of the acyclic aliphatic tetracarboxylic dianhydride that gives the diimide diester compound (B) represented by the above formula (1) include intramolecular dehydration of four carboxy groups bonded to a chain hydrocarbon structure. It is an acid dianhydride obtained by However, it does not need to be composed only of a chain hydrocarbon structure, and may have an alicyclic structure or an aromatic ring structure in part thereof.
  • the chain hydrocarbon structure preferably has 2 to 15 carbon atoms.
  • the chain hydrocarbon structure may be linear or branched, and the chain hydrocarbon structure includes an oxygen atom-containing group (—O—, —CO—, etc.) and/or a nitrogen atom-containing group ( secondary, tertiary, quaternary amines, etc.) and/or sulfur atom-containing groups (-S-, -CS-, etc.) may be included.
  • the chain hydrocarbon structure may be a saturated hydrocarbon structure or an unsaturated hydrocarbon structure.
  • X 1 in the above formula (1) represents a tetravalent organic group derived from an acyclic aliphatic tetracarboxylic dianhydride or a derivative thereof include the above formula (x-8), (x-10), or (x-12).
  • alicyclic tetracarboxylic dianhydride that gives the diimide diester compound (B) represented by the above formula (1) include four carboxy groups including at least one carboxy group that bonds to the alicyclic structure. It is an acid dianhydride obtained by intramolecular dehydration of the group. However, none of these four carboxy groups are bonded to the aromatic ring. Moreover, it is not necessary to consist only of an alicyclic structure, and a part thereof may have a chain hydrocarbon structure or an aromatic ring structure.
  • the alicyclic structure preferably has 3 to 20 carbon atoms, more preferably 4 to 20 carbon atoms.
  • the alicyclic structure includes oxygen atom-containing groups (-O-, -CO-, etc.) and/or nitrogen atom-containing groups (secondary, tertiary, quaternary amines, etc.) and/or sulfur Atom containing groups (-S-, -CS-, etc.) may be included.
  • the alicyclic structure may be a saturated alicyclic structure or an unsaturated alicyclic structure.
  • X 1 in the above formula (1) represents a tetravalent organic group derived from an alicyclic tetracarboxylic dianhydride or a derivative thereof include the above formula (x-1). be done.
  • X 1 in formula (1) is an acyclic aliphatic hydrocarbon group having 4 to 16 carbon atoms or an alicyclic aliphatic hydrocarbon group having 4 to 16 carbon atoms. It is preferably a tetravalent organic group derived from a tetracarboxylic dianhydride or a derivative thereof, and more preferably represented by any one of formulas (x-1) to (x-18).
  • the diimide diester compound represented by the above formula (1) is any one of the compounds represented by the following formulas (b-1) to (b-9).
  • the amount of the diimide diester compound (B) represented by the above formula (1) used when producing the polymer (A) is 1 mol per 1 mol of the total tetracarboxylic acid derivative component to be reacted with the diamine component. % or more is preferable, and 5 mol % or more is more preferable. Further, the amount of the tetracarboxylic acid dianhydride represented by the above formula (2) or a derivative thereof when producing the polymer (A) is On the other hand, 99 mol% or less is preferable, and 95 mol% or less is more preferable.
  • Dicarbonic acid diester compounds can be purchased from reagent companies. Examples thereof include di-tert-butyl dicarbonate, diallyl dicarbonate, di-tert-amyl dicarbonate, and the like represented by the following formulas.
  • the reaction can be carried out in the presence of a catalyst.
  • Catalysts include, for example, 4-dimethylaminopyridine.
  • reaction solvents include aprotic polar organic solvents (DMF (N,N-dimethylformamide), DMSO (dimethylsulfoxide), DMAc (N,N-dimethylacetamide), NMP (N-methyl-2-pyrrolidone), etc.).
  • DMF N,N-dimethylformamide
  • DMSO dimethylsulfoxide
  • DMAc N,N-dimethylacetamide
  • NMP N-methyl-2-pyrrolidone
  • Ethers Et 2 O (diethyl ether), i-Pr 2 O (diisopropyl ether), TBME (tert-butyl methyl ether), CPME (cyclopentyl methyl ether), THF (tetrahydrofuran), dioxane, etc.); Aliphatic carbonization Hydrogens (pentane, hexane, heptane, petroleum ether, etc.); Aromatic hydrocarbons (benzene, toluene, xylene, mesitylene, chlorobenzene, dichlorobenzene, nitrobenzene, tetralin, etc.); Halogen hydrocarbons (chloroform, dichloromethane, carbon tetrachloride, dichloroethane, etc.); lower fatty acid esters (methyl acetate, ethyl acetate, butyl acetate, methyl propionate, etc.); nitriles (acetonitrile,
  • the reaction temperature can preferably be selected from a temperature range of -10°C or higher to the boiling point of the reaction solvent used.
  • the reaction time is 0.1 to 1000 hours, more preferably 0.5 to 100 hours.
  • the diimide diester compound (B) obtained by the above reaction is preferably purified by recrystallization or column chromatography using silica gel or the like.
  • the diimide diester compound (B) can be obtained by reacting the diimide compound (DI-0) and the chloroformate compound in the presence of a base such as triethylamine.
  • Chloroformate compounds can be purchased from reagent companies. Examples thereof include methyl chloroformate, ethyl chloroformate, allyl chloroformate, isopropyl chloroformate, propyl chloroformate, isobutyl chloroformate, butyl chloroformate, 2-methoxyethyl chloroformate, amyl chloroformate, and the like represented by the following formulas. .
  • Bases include inorganic bases such as sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium hydrogen carbonate, potassium hydrogen carbonate, potassium phosphate, sodium carbonate, potassium carbonate, lithium carbonate, and cesium carbonate; methylamine, dimethylamine, trimethylamine; , ethylamine, diethylamine, triethylamine, propylamine, dipropylamine, tripropylamine, isopropylamine, diisopropylamine, triisopropylamine, butylamine, dibutylamine, tributylamine, diisopropylethylamine, pyridine, imidazole, quinoline, collidine, pyrrolidine, piperidine , morpholine, and N-methylmorpholine.
  • inorganic bases such as sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium hydrogen carbonate, potassium hydrogen carbonate, potassium phosphate, sodium carbonate, potassium carbonate, lithium carbonate, and cesium carbonate
  • reaction solvents include water, aprotic polar organic solvents (DMF, DMSO, DMAc, NMP, etc.); ethers (Et 2 O, i-Pr 2 O, TBME, CPME, THF, dioxane, etc.); Hydrogens (pentane, hexane, heptane, petroleum ether, etc.); Aromatic hydrocarbons (benzene, toluene, xylene, mesitylene, chlorobenzene, dichlorobenzene, nitrobenzene, tetralin, etc.); Halogen hydrocarbons (chloroform, dichloromethane, carbon tetrachloride, dichloroethane, etc.); lower fatty acid esters (methyl acetate, ethyl acetate, butyl acetate, methyl propionate, etc.); nitriles (acetonitrile, propionitrile, butyronitrile, etc.).
  • the reaction temperature can preferably be selected from a temperature range of -10°C or higher to the boiling point of the reaction solvent used.
  • the reaction time is 0.1 to 1000 hours, more preferably 0.5 to 100 hours.
  • the diimide diester compound (B) obtained by the above reaction is preferably purified by recrystallization or column chromatography using silica gel or the like.
  • a diimide compound (DI-0) can be obtained by reacting a tetracarboxylic dianhydride with an ammonium compound.
  • Ammonium compounds can be purchased from reagent companies. Examples include ammonium chloride, ammonium acetate, hydroxylamine hydrochloride, ammonium hydroxide (ammonia water), urea, formamide and the like.
  • reaction solvent any reaction solvent can be used as long as it is stable under the reaction conditions, inert and does not interfere with the reaction.
  • acetic acid aprotic polar organic solvents (DMF, DMSO, DMAc, NMP, etc.), ethers (Et 2 O, i-Pr 2 O, TBME, CPME, THF, dioxane, etc.), aliphatic hydrocarbons (pentane, hexane, heptane, petroleum ether, etc.), aromatic hydrocarbons (benzene, toluene, xylene, mesitylene, chlorobenzene, dichlorobenzene, nitrobenzene, tetralin, etc.), halogenated hydrocarbons (chloroform, dichloromethane, tetraline, etc.) carbon chloride, dichloroethane, etc.), lower fatty acid esters (methyl acetate, ethyl acetate, butyl
  • the reaction temperature can preferably be selected from a temperature range of -10°C or higher to the boiling point of the reaction solvent used.
  • the reaction time is 0.1 to 1000 hours, more preferably 0.5 to 100 hours.
  • the diimide compound (DI-0) obtained by the above reaction is preferably purified by recrystallization or column chromatography using silica gel or the like.
  • the diamine component used for producing the polyimide precursor is not particularly limited, a diamine component containing a diamine represented by the following formula (3) is preferable.
  • Ar 1 and Ar 1′ in formula (3) above each represent a benzene ring, a biphenyl structure, or a naphthalene ring.
  • One or more hydrogen atoms on the benzene ring, biphenyl structure, or naphthalene ring may be substituted with a monovalent group, and the monovalent group includes a halogen atom, an alkyl group having 1 to 3 carbon atoms, a carbon alkenyl group having 2 to 3 carbon atoms, alkoxy group having 1 to 3 carbon atoms, fluoroalkyl group having 1 to 3 carbon atoms, fluoroalkenyl group having 2 to 3 carbon atoms, fluoroalkoxy group having 1 to 3 carbon atoms, 2 carbon atoms to 3 alkyloxycarbonyl groups, cyano groups, nitro groups, and the like.
  • the bonding position between the amino group and L 1 or L 1′ with respect to the benzene ring is more preferably 1,4-position or 1,3-position. , 1,4-positions are more preferred.
  • the binding positions of the amino group and L 1 or L 1′ with respect to the biphenyl structure are more preferably 4,4′-positions or 3,3′-positions, more preferably 4,4′-positions.
  • the bonding positions of the amino group and L 1 or L 1′ with respect to the naphthalene ring are more preferably 1,5-positions or 2,6-positions, and still more preferably 2,6-positions.
  • the alkylene group having 2 to 12 carbon atoms may be linear or branched, but is preferably linear.
  • n is an integer of 1-12, more preferably an integer of 2-12, and even more preferably an integer of 2-6.
  • the sum of m1, m2 and n' is an integer of 3-12, more preferably an integer of 6-12.
  • Each of m1 and m2 is more preferably an integer of 1 to 4, and still more preferably an integer of 2 to 4.
  • n′ is more preferably an integer of 2-6, and even more preferably an integer of 2-4.
  • the ratio of the diamine represented by the formula (3) is preferably 1 mol% or more, more preferably 10 mol% or more, and further preferably 20 mol% or more with respect to 1 mol of the diamine component. preferable.
  • the polymer (A) may contain diamines other than the diamines described above. Examples of other diamines are listed below, but the present invention is not limited to these. In addition to the diamine represented by the above formula (3), when other diamines are used in combination, the amount of the diamine represented by the formula (3) to the diamine component is preferably 90 mol% or less, and 80 mol%. The following are more preferred. Examples of other diamines are listed below, but the present invention is not limited to these. The other diamines may be used singly or in combination of two or more.
  • p-phenylenediamine 2,3,5,6-tetramethyl-p-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, m-phenylenediamine, 2,4-dimethyl-m-phenylenediamine, 1, 4-diamino-2,5-methoxybenzene, 2,5-diaminotoluene, 2,6-diaminotoluene, 4-aminobenzylamine, 2-(4-aminophenyl)ethylamine, 4-(2-(methylamino) ethyl)aniline, 4-(2-aminoethyl)aniline, 2-(6-aminonaphthyl)ethylamine, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4' -diaminobiphenyl, 3,3'-dimethoxy-4,4'-diaminobiphen
  • 2,4-diaminophenol 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol, 4,6-diaminoresorcinol, 4,4'-diamino-3,3'-dihydroxy Biphenyl; 2,4-diaminobenzoic acid, 2,5-diaminobenzoic acid, 3,5-diaminobenzoic acid, 4,4'-diaminobiphenyl-3-carboxylic acid, 4,4'-diaminodiphenylmethane-3-carboxylic acid acid, 1,2-bis(4-aminophenyl)-3-carboxylic acid, 4,4'-diaminobiphenyl-3,3'-dicarboxylic acid, 4,4'-diaminobiphenyl-2,2'-dicarboxylic acid , 3,3′-diaminobiphenyl-4,4′-dicarboxylic acid,
  • m and n are each an integer of 0 to 3 (provided that 1 ⁇ m + n ⁇ 4), j is an integer of 0 or 1, and X 1 is - (CH 2 ) a — (a is an integer of 1 to 15), —CONH—, —NHCO—, —CO—N(CH 3 )—, —NH—, —O—, —CH 2 O— , —CH 2 —OCO—, —COO—, or —OCO—, wherein R 1 is a fluorine atom, a fluorine atom-containing alkyl group having 1 to 10 carbon atoms, a fluorine atom-containing alkoxy group having 1 to 10 carbon atoms, represents an alkyl group having 3 to 10 carbon atoms, an alkoxy group having 3 to 10 carbon atoms, or an alkoxyalkyl group having 3 to 10 carbon atoms, wherein X 2 is -O- or -
  • D in -N(D)- of the other diamines described above is a carbamate organic group represented by a benzyloxycarbonyl group, 9-fluorenylmethyloxycarbonyl group, allyloxycarbonyl group, Boc, and the like.
  • Boc is particularly preferable from the viewpoint that it is efficiently desorbed by heat, is desorbed at a relatively low temperature, and is discharged as a harmless gas when desorbed.
  • diamines having a thermally leaving group are diamines selected from the following formulas (d-1) to (d-7).
  • R represents a hydrogen atom or Boc.
  • the diamine having the thermally-leaving group is used as the diamine component used in the production of the polyimide precursor, from the viewpoint of suitably obtaining the effect of the present invention, it is preferably 5 to 40 mol per 1 mol of the diamine component. %, more preferably 5 to 35 mol %, even more preferably 5 to 30 mol %.
  • the liquid crystal aligning agent of this invention may contain other polymers other than a polymer (A).
  • other polymers include a polyimide precursor obtained using a tetracarboxylic acid derivative component and a diamine component that do not contain the diimide diester compound (B) represented by the above formula (1), and the polyimide precursor.
  • At least one polymer (Q) selected from the group consisting of polyimides, polysiloxanes, polyesters, polyamides, polyureas, polyorganosiloxanes, cellulose derivatives, polyacetals, polystyrene derivatives, poly(styrene-maleic anhydride material) copolymers, poly(isobutylene-maleic anhydride) copolymers, poly(vinyl ether-maleic anhydride) copolymers, poly(styrene-phenylmaleimide) derivatives, and poly(meth)acrylates and polymers selected from.
  • polyimides polysiloxanes, polyesters, polyamides, polyureas, polyorganosiloxanes, cellulose derivatives, polyacetals, polystyrene derivatives, poly(styrene-maleic anhydride material) copolymers, poly(isobutylene-maleic anhydride) copolymers, poly(vinyl ether
  • the polymer (Q) is selected from the group consisting of a polyimide precursor obtained using a diamine component containing a diamine having a nitrogen atom-containing structure and an imidized product of the polyimide precursor. and at least one polymer (Q').
  • poly(styrene-maleic anhydride) copolymers include SMA1000, SMA2000, SMA3000 (manufactured by Cray Valley), GSM301 (manufactured by Gifu Shellac Manufacturing Co., Ltd.) and the like.
  • Anhydride copolymers include Isoban-600 (manufactured by Kuraray Co., Ltd.), and specific examples of poly(vinyl ether-maleic anhydride) copolymers include Gantrez AN-139 (methyl vinyl ether anhydride). maleic acid resin, manufactured by Ashland). Other polymers may be used singly or in combination of two or more. The content of the other polymer is more preferably 10 to 90 parts by mass, still more preferably 20 to 80 parts by mass, per 100 parts by mass of the polymer component contained in the liquid crystal aligning agent.
  • a polymer component is a general term for other polymers other than a polymer (A) and a polymer (A) contained in a liquid crystal aligning agent.
  • the polymer contained in the liquid crystal aligning agent is only the polymer (A)
  • the polymer component refers to the polymer (A).
  • a tetracarboxylic acid derivative component for obtaining the polymer (Q′) for example, a tetracarboxylic acid derivative component containing a tetracarboxylic dianhydride-based compound exemplified for the polymer (A) (provided that the above formula ( 1) does not contain the diimide diester compound (B).
  • the tetracarboxylic dianhydride represented by the above formula (2) or a derivative thereof is preferable.
  • the amount of the tetracarboxylic dianhydride or derivative thereof represented by the above formula (2) is preferably 10 mol% or more, preferably 20 mol%, based on 1 mol of the total tetracarboxylic acid derivative component to be reacted with the diamine component.
  • the above is more preferable.
  • Polyamic acid which is one of polyimide precursors, can be produced by the following method. Specifically, a tetracarboxylic acid derivative component containing a tetracarboxylic dianhydride and the diamine component are mixed in the presence of an organic solvent at ⁇ 20 to 150° C., preferably 0 to 50° C., for 30 minutes to 24 hours. Preferably, it can be synthesized by reacting (polycondensation reaction) for 1 to 12 hours.
  • organic solvent used in the above reaction examples include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, ⁇ -butyrolactone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, 1,3-dimethyl-2-imidazolidinone can be mentioned.
  • methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, or propylene glycol monomethyl ether ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, Ethylene glycol monopropyl ether, diethylene glycol monomethyl ether, or diethylene glycol monoethyl ether can be used. These may be used in combination of two or more.
  • the reaction can be carried out at any concentration, preferably 1 to 50% by mass, more preferably 5 to 30% by mass.
  • the initial stage of the reaction can be carried out at a high concentration, and then the solvent can be added.
  • the ratio of the total number of moles of the diamine component to the total number of moles of the tetracarboxylic acid derivative component is preferably 0.8 to 1.2. Similar to a normal polycondensation reaction, the closer this molar ratio is to 1.0, the greater the molecular weight of the polyamic acid produced.
  • the polyamic acid obtained in the above reaction can be recovered by precipitating the polyamic acid by injecting the reaction solution into a poor solvent while stirring well. Further, a purified polyamic acid powder can be obtained by performing precipitation several times, washing with a poor solvent, and drying at room temperature or by heating. Poor solvents include, but are not limited to, water, methanol, ethanol, hexane, butyl cellosolve, acetone, and toluene.
  • a polyamic acid ester which is one of the polyimide precursors, can be obtained by (1) a method of esterifying the polyamic acid, (2) a method of reacting a tetracarboxylic acid derivative component containing a tetracarboxylic acid diester dichloride with a diamine component, ( 3) It can be produced by a known method such as a method of polycondensing a tetracarboxylic acid derivative component including a tetracarboxylic acid diester with a diamine.
  • the above-mentioned polyamic acid and polyamic acid ester may be a terminal-modified polymer obtained by using an appropriate terminal blocking agent together with the tetracarboxylic acid derivative component and the diamine component as described above when producing them. .
  • Terminal blockers include, for example, acetic anhydride, maleic anhydride, nadic anhydride, phthalic anhydride, itaconic anhydride, cyclohexanedicarboxylic anhydride, 3-hydroxyphthalic anhydride, trimellitic anhydride, 3-( 3-trimethoxysilyl)propyl)-3,4-dihydrofuran-2,5-dione, 4,5,6,7-tetrafluoroisobenzofuran-1,3-dione, 4-ethynylphthalic anhydride, etc.
  • the polyimide used in the present invention can be produced by imidizing the above polyimide precursor by a known method.
  • the ring closure rate (also referred to as imidization rate) of the functional groups of the polyamic acid or polyamic acid ester does not necessarily need to be 100%, and can be arbitrarily adjusted according to the application and purpose.
  • thermal imidization is performed by heating the solution of the polyamic acid or polyamic acid ester as it is, or a catalyst (eg, catalyzed imidization by adding a basic catalyst such as pyridine, an acid anhydride such as acetic anhydride).
  • a catalyst eg, catalyzed imidization by adding a basic catalyst such as pyridine, an acid anhydride such as acetic anhydride.
  • the polyamic acid, polyamic acid ester and polyimide used in the present invention preferably have a solution viscosity of, for example, 10 to 1000 mPa s when the concentration is 10 to 15% by mass, from the viewpoint of workability. , is not particularly limited.
  • the solution viscosity (mPa s) of the polymer is a polymer having a concentration of 10 to 15 mass% prepared using a good solvent for the polymer (eg, ⁇ -butyrolactone, N-methyl-2-pyrrolidone, etc.). It is a value measured at 25° C. for a solution using an E-type rotational viscometer.
  • the polystyrene equivalent weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of the polyamic acid, polyamic acid ester and polyimide is preferably 1,000 to 500,000, more preferably 2,000. ⁇ 500,000.
  • the molecular weight distribution (Mw/Mn) represented by the ratio of Mw to the polystyrene equivalent number average molecular weight (Mn) measured by GPC is preferably 15 or less, more preferably 10 or less. With such a molecular weight range, it is possible to ensure good liquid crystal orientation of the liquid crystal display element.
  • the liquid crystal aligning agent of this invention is used in order to produce a liquid crystal aligning film, and takes the form of a coating liquid from a viewpoint of forming a uniform thin film. Also in the liquid crystal aligning agent of the present invention, it is preferable that the liquid crystal aligning agent is a coating liquid containing the above-described polymer component and a solvent.
  • the content (concentration) of the polymer component contained in the liquid crystal aligning agent of the present invention can be appropriately changed by setting the thickness of the coating film to be formed. 1% by mass or more is preferable from the point of view, and 10% by mass or less is preferable from the point of storage stability of the solution.
  • the solvent contained in the liquid crystal aligning agent is not particularly limited as long as it uniformly dissolves the polymer component.
  • Specific examples include N,N-dimethylformamide, N,N-dimethylacetamide, N,N-dimethyllactamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethylsulfoxide and ⁇ -butyrolactone.
  • ⁇ -valerolactone 1,3-dimethyl-2-imidazolidinone, methyl ethyl ketone, cyclohexanone, cyclopentanone, 3-methoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide, N-(n-propyl)-2-pyrrolidone, N-isopropyl-2-pyrrolidone, N-(n-butyl)-2-pyrrolidone, N-(tert-butyl)-2-pyrrolidone, N-(n-pentyl )-2-pyrrolidone, N-methoxypropyl-2-pyrrolidone, N-ethoxyethyl-2-pyrrolidone, N-methoxybutyl-2-pyrrolidone, N-cyclohexyl-2-pyrrolidone (these are collectively referred to as "good solvents" Also called) and the like.
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 3-methoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide and ⁇ -butyrolactone are preferred.
  • the content of the good solvent is preferably 20 to 99% by mass, more preferably 20 to 90% by mass, and particularly preferably 30 to 80% by mass of the total solvent contained in the liquid crystal aligning agent.
  • the solvent contained in the liquid crystal aligning agent is a mixed solvent in which a solvent (also referred to as a poor solvent) that improves the coatability and the surface smoothness of the coating film when applying the liquid crystal aligning agent is used in addition to the above solvent. is preferred. Specific examples of the poor solvent used in combination are shown below, but are not limited thereto.
  • the content of the poor solvent is preferably 1 to 80% by mass, more preferably 10 to 80% by mass, particularly preferably 20 to 70% by mass, of the total solvent contained in the liquid crystal aligning agent.
  • the type and content of the poor solvent are appropriately selected according to the liquid crystal aligning agent coating device, coating conditions, coating environment, and the like.
  • diisobutyl carbinol propylene glycol monobutyl ether, propylene glycol diacetate, diethylene glycol diethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol dimethyl ether, 4-hydroxy-4-methyl-2-pentanone, ethylene glycol monobutyl ether, ethylene Glycol monobutyl ether acetate or diisobutyl ketone are preferred.
  • Preferred solvent combinations of a good solvent and a poor solvent include N-methyl-2-pyrrolidone and ethylene glycol monobutyl ether, N-methyl-2-pyrrolidone, ⁇ -butyrolactone and ethylene glycol monobutyl ether, N-methyl-2- Pyrrolidone, ⁇ -butyrolactone and propylene glycol monobutyl ether, N-ethyl-2-pyrrolidone and propylene glycol monobutyl ether, N-methyl-2-pyrrolidone, ⁇ -butyrolactone, 4-hydroxy-4-methyl-2-pentanone and diethylene glycol diethyl ether, N-methyl-2-pyrrolidone and ⁇ -butyrolactone and propylene glycol monobutyl ether and diisobutyl ketone, N-methyl-2-pyrrolidone and ⁇ -butyrolactone and propylene glycol monobutyl ether and diisopropyl ether, N
  • the liquid crystal aligning agent of the present invention may additionally contain components (hereinafter also referred to as additive components) other than the polymer component and the solvent.
  • additive components include compounds for increasing the strength of the liquid crystal alignment film (hereinafter also referred to as cross-linking compounds), adhesion between the liquid crystal alignment film and the substrate, and adhesion between the liquid crystal alignment film and the sealing agent. Adhesion aids for increasing the dielectric constant and electrical resistance of the liquid crystal alignment film, dielectrics and conductive substances.
  • crosslinkable compound examples include a crosslinkable compound (c-1) having at least one substituent selected from an epoxy group, an oxetanyl group, an oxazoline structure, a cyclocarbonate group, a blocked isocyanate group, a hydroxy group and an alkoxy group.
  • crosslinkable compound (c-1) and (c-2) include the following compounds.
  • epoxy group-containing compounds include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, and 1,6-hexane.
  • Bisphenol A type epoxy resin bisphenol F type epoxy resin such as Epicoat 807 (manufactured by Mitsubishi Chemical Corporation), hydrogenated bisphenol A type epoxy resin such as YX-8000 (manufactured by Mitsubishi Chemical Corporation), YX6954BH30 (manufactured by Mitsubishi Chemical Corporation) and the like biphenyl skeleton-containing epoxy resins, phenol novolac type epoxy resins such as EPPN-201 (manufactured by Nippon Kayaku Co., Ltd.), (o, m, p-) cresol novolac type epoxy resins such as EOCN-102S (manufactured by Nippon Kayaku Co., Ltd.), tetrakis(glycidyloxymethyl)methane, N,N,N',N'-tetraglycidyl-1,4-phenylenediamine, N,N,N',N'-tetraglycidyl-2,2'-dimethyl-4.
  • Polymers and oligomers having an oxazoline group such as compounds described in paragraph [0115] of Japanese Patent Application Laid-Open No. 2007-286597;
  • compounds having a cyclocarbonate group N,N,N',N'-tetra[(2-oxo-1,3-dioxolan-4-yl)methyl]-4,4'-diaminodiphenylmethane, N,N' ,-Di[(2-oxo-1,3-dioxolan-4-yl)methyl]-1,3-phenylenediamine and paragraphs [0025] to [0030] and [0032] of WO2011/155577 compounds of;
  • Examples of compounds having a blocked isocyanate group include Coronate AP Stable M, Coronate 2503, 2515, 2507, 2513, 2555, Millionate MS-50 (manufactured by Tosoh Corporation), Takenate B-830, B-815N, B-820NSU, B
  • crosslinkable compounds are examples of crosslinkable compounds, and are not limited to these.
  • components other than those described above disclosed on pages 53 [0105] to 55 [0116] of WO2015/060357 may be used.
  • the content of the crosslinkable compound in the liquid crystal aligning agent is preferably 0.5 to 20 parts by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal aligning agent. , more preferably 1 to 15 parts by mass.
  • adhesion aid examples include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldiethoxymethylsilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N -(2-aminoethyl)-3-aminopropyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N -ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxycarbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyltriethylenetriamine, N-trimethoxysilylpropyltriethylenetriamine,
  • the content of the adhesion aid in the liquid crystal aligning agent is preferably 0.1 to 30 parts by weight with respect to 100 parts by weight of the polymer component contained in the liquid crystal aligning agent, and more It is preferably 0.1 to 20 parts by mass.
  • the liquid crystal aligning film of the present invention is formed using the liquid crystal aligning agent of the present invention.
  • the manufacturing method of the liquid crystal aligning film of the present invention includes, for example, applying the liquid crystal aligning agent to a substrate and irradiating a film obtained by baking the substrate with radiation.
  • a preferred embodiment of the method for producing a liquid crystal alignment film of the present invention includes, for example, the step of applying the liquid crystal alignment agent to the substrate (step (1)), and the step of baking the applied liquid crystal alignment agent (step (2)). and a method for producing a liquid crystal alignment film, which optionally includes a step (step (3)) of subjecting the film obtained in step (2) to orientation treatment.
  • the substrate to which the liquid crystal aligning agent used in the present invention is applied is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a silicon nitride substrate, a plastic substrate such as an acrylic substrate, a polycarbonate substrate, or the like can also be used. In that case, it is preferable to use a substrate on which an ITO (Indium Tin Oxide) electrode for driving the liquid crystal is formed, in terms of process simplification.
  • an opaque material such as a silicon wafer can be used, and in this case, a light-reflecting material such as aluminum can be used for the electrodes.
  • Screen printing, offset printing, flexographic printing, inkjet method, spray method, etc. can be used as methods for applying the liquid crystal aligning agent to the substrate and forming a film.
  • the coating method and the film-forming method by the inkjet method can be preferably used.
  • a process (2) is a process of baking the liquid crystal aligning agent apply
  • a heating means such as a hot plate, thermal circulation oven or IR (infrared) oven is used to evaporate the solvent or heat the amic acid or amic acid ester in the polymer. imidization can be performed.
  • the drying and baking steps after applying the liquid crystal aligning agent of the present invention can be performed at any desired temperature and time, and may be performed multiple times.
  • the temperature for evaporating the solvent of the liquid crystal aligning agent can be, for example, 40 to 180°C.
  • the firing time is not particularly limited, but may be 1 to 10 minutes or 1 to 5 minutes.
  • a step of calcination at a temperature range of 150 to 300° C. or 150 to 250° C. can be performed after the step of evaporating the solvent.
  • the firing time is not particularly limited, but may be 5 to 40 minutes or 5 to 30 minutes.
  • the thickness of the film after baking is preferably 5 to 300 nm, more preferably 10 to 200 nm, because if it is too thin, the reliability of the liquid crystal display element may be lowered.
  • Step (3) is a step of subjecting the film obtained in step (2) to orientation treatment. That is, in a vertical alignment type liquid crystal display element such as a VA mode or a PSA mode, the formed coating film can be used as a liquid crystal alignment film as it is, but the coating film may be subjected to an alignment treatment.
  • the orientation treatment described here means a treatment for imparting orientation anisotropy in the horizontal direction.
  • a rubbing treatment method may be used, but a photo-alignment treatment method is preferable.
  • the surface of the film-like material is irradiated with radiation so as to give an alignment direction in a certain direction, and in some cases, heat treatment is preferably performed at a temperature of 150 to 250 ° C. to align the liquid crystal.
  • a method of imparting properties also referred to as liquid crystal alignment ability.
  • the type of radiation is not particularly limited, ultraviolet rays, visible rays, electron beams, etc. can be used.
  • a polarizer also called a polarizing plate
  • polarized light hereinafter referred to as polarized light
  • the wavelength of ultraviolet rays and visible rays is not particularly limited because it is important to use wavelengths at which the photosensitive sites in the polymer react, but ultraviolet rays and visible rays in the range of 100 nm to 500 nm are preferable, and particularly preferably, It is polarized ultraviolet rays of 200 to 400 nm.
  • the irradiation dose of the radiation is preferably 1 to 10,000 mJ/cm 2 . Among them, 100 to 5,000 mJ/cm 2 is preferable.
  • irradiation may be performed while heating.
  • the temperature for heating is not particularly limited, it is preferably 50 to 250.degree.
  • the liquid crystal alignment film thus produced can stably orient liquid crystal molecules in a fixed direction.
  • the liquid crystal alignment film obtained by the above method may be subjected to contact treatment using a solvent, and further heat treatment may be performed after the contact treatment.
  • the solvent used in the contact treatment is not particularly limited as long as it dissolves the decomposition products produced by irradiation with radiation.
  • Specific examples include water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, 1-methoxy-2-propanol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, methyl lactate, diacetone alcohol, 3- methyl methoxypropionate, ethyl 3-ethoxypropionate, propyl acetate, butyl acetate, cyclohexyl acetate and the like.
  • water, 2-propanol, 1-methoxy-2-propanol and ethyl lactate are preferable from the viewpoint of versatility and solvent safety. More preferred are water, 1-methoxy-2-propanol or ethyl lactate.
  • Solvents may be used singly or in combination of two or more.
  • the above contact treatment includes immersion treatment and spray treatment (also called spray treatment).
  • the treatment time in these treatments is preferably 10 seconds to 1 hour from the viewpoint of efficiently dissolving the decomposition products produced by irradiation with radiation. Among them, it is preferable to perform the immersion treatment for 1 to 30 minutes.
  • the contact treatment may be performed by cooling or heating, and the preferred temperature of the solvent used in the contact treatment is 10 to 80°C. Among them, 20 to 50°C is preferable.
  • ultrasonic treatment or the like may be performed as necessary.
  • rinsing also called rinsing
  • a low-boiling solvent such as water, methanol, ethanol, 2-propanol, acetone, or methyl ethyl ketone
  • baking either one of rinsing and baking may be performed, or both may be performed.
  • the firing temperature is preferably 150 to 300°C. Among them, 180 to 250°C is preferable. More preferred is 200-230°C.
  • the baking time is preferably 10 seconds to 30 minutes. Among them, 1 to 10 minutes is preferable.
  • the heat treatment of the radiation-irradiated coating film is preferably carried out at 50 to 300° C. for 1 to 30 minutes, more preferably 120 to 250° C. for 1 to 30 minutes.
  • the liquid crystal display element of the present invention has the liquid crystal alignment film of the present invention.
  • the liquid crystal alignment film of the present invention is suitable as a liquid crystal alignment film for a liquid crystal display element of a horizontal electric field system such as an IPS system or an FFS system, and in particular, a liquid crystal display of the FFS system. It is useful as a liquid crystal alignment film for devices.
  • the liquid crystal display element is produced by obtaining a substrate with a liquid crystal alignment film obtained from the liquid crystal alignment agent of the present invention, producing a liquid crystal cell by a known method, and encapsulating the liquid crystal in the liquid crystal cell. can be done. Specifically, the following two methods are mentioned.
  • the first method first, two substrates are arranged facing each other with a gap (cell gap) so that the respective liquid crystal alignment films face each other. Next, the peripheral portions of the two substrates are bonded together using a sealant, and the liquid crystal composition is injected and filled into the cells partitioned by the substrate surfaces and the sealant to bring it into contact with the film surface, and then the injection hole is opened. Seal.
  • the second method is a technique called the ODF (One Drop Fill) method.
  • ODF One Drop Fill
  • an ultraviolet light-curing sealant is applied so as to create a compartment for enclosing the liquid crystal, and on the surface of the liquid crystal alignment film in the compartment , the amount of liquid crystal composition corresponding to the cell volume is dropped at regular intervals.
  • the other substrate is attached under vacuum so that the liquid crystal alignment films face each other, and the liquid crystal composition is spread over the entire surface of the substrate and brought into contact with the film surface.
  • the liquid crystal composition used is further heated to a temperature at which it assumes an isotropic phase, and then slowly cooled to room temperature, so that the flow orientation at the time of filling the liquid crystal should be removed.
  • the coating film is subjected to the rubbing treatment, the two substrates are arranged opposite to each other so that the rubbing directions of the respective coating films are at a predetermined angle, for example, orthogonal or antiparallel.
  • the alignment directions are arranged to face each other at a predetermined angle, for example, perpendicular or antiparallel.
  • Liquid crystals include nematic liquid crystals and smectic liquid crystals, among which nematic liquid crystals are preferred.
  • nematic liquid crystal examples include Schiff base liquid crystal compounds, azoxy liquid crystal compounds, biphenyl liquid crystal compounds, phenylcyclohexane liquid crystal compounds, ester liquid crystal compounds, terphenyl liquid crystal compounds, biphenylcyclohexane liquid crystal compounds, Examples include pyrimidine-based liquid crystal compounds, dioxane-based liquid crystal compounds, bicyclooctane-based liquid crystal compounds, and cubane-based liquid crystal compounds.
  • Either a positive-type liquid crystal composition or a negative-type liquid crystal composition may be used as the liquid-crystal composition, but the negative-type liquid crystal composition is preferable because the transmittance during driving can be increased.
  • Typical commercial products of positive liquid crystal compositions include ZLI-2293, ZLI-4792, MLC-2003, MLC-2041, MLC-3019 or MLC-7081 manufactured by Merck, PA-1492 manufactured by DIC, and the like. is mentioned.
  • Typical commercial products of negative liquid crystal compositions include MLC-6608, MLC-6609, MLC-6610, MLC-6882, MLC-6886, MLC-7026, MLC-7026-000 and MLC-7026 manufactured by Merck. -100, or MLC-7029.
  • the polarizing plate installs the polarizing plate.
  • a pair of polarizing plates are attached to the surfaces of the two substrates opposite to the liquid crystal layer.
  • the polarizing plate include a polarizing plate in which a polarizing film called "H film” in which iodine is absorbed while stretching orientation of polyvinyl alcohol is sandwiched between cellulose acetate protective films, or a polarizing plate composed of the H film itself.
  • the viscosity of the solution was measured using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.) with a sample volume of 1.1 mL and a cone rotor TE-1 (1°34', R24) at a temperature of 25°C. bottom.
  • the molecular weight of the polymer is determined using a room temperature gel permeation chromatography (GPC) device (GPC-101) (manufactured by Showa Denko) and a column (KD-803, KD-805 in series) (manufactured by Showa Denko).
  • GPC room temperature gel permeation chromatography
  • DI-1 to DI-4 are novel compounds that have not been published in literature, etc., and their synthesis methods are described in detail below.
  • a polymer solution (PAA-A1) (viscosity: 227 mPa ⁇ s) was obtained.
  • This polymer had a number average molecular weight of 10,861 and a weight average molecular weight of 26,472.
  • a peak derived from an ethyl carbamate group which was not observed in the polymers of Synthesis Examples 1 and 2, and a peak of 11.00 ppm were found near 1.29 ppm.
  • a new amide peak was confirmed to occur at ⁇ 8.00 ppm, suggesting that the group represented by formula (1A) derived from DI-1 was introduced.
  • a polymer solution (PAA-A2) (viscosity: 225 mPa ⁇ s) was obtained.
  • This polymer had a number average molecular weight of 10,531 and a weight average molecular weight of 26,987.
  • a peak 1 derived from the t-Bu carbamate group of DA-4 used in the polymers of Synthesis Example 1 and Synthesis Example 2 was found near 1.33 ppm.
  • a peak derived from a t-Bu group different from .42 ppm and a new amide peak occurring at 11.00 to 8.00 ppm were confirmed, so the group represented by the formula (1A) derived from DI-2 It is considered that it has been introduced.
  • a polymer solution (PAA-A3) (viscosity: 56.7 mPa ⁇ s) was obtained.
  • This polymer had a number average molecular weight of 6,432 and a weight average molecular weight of 13,826.
  • a peak 1 derived from the t-Bu carbamate group of DA-4 used in the polymers of Synthesis Example 1 and Synthesis Example 2 was found near 1.47 ppm.
  • a peak derived from a t-Bu group different from .42 ppm and a new amide peak at 11.00 to 8.00 ppm were confirmed, so the group represented by the formula (1A) derived from DI-3 It is considered that it has been introduced.
  • a polymer solution (PAA-A4) (viscosity: 32.7 mPa ⁇ s) was obtained.
  • This polymer had a number average molecular weight of 4,504 and a weight average molecular weight of 9,731.
  • a peak 1 derived from the t-Bu carbamate group of DA-4 used in the polymers of Synthesis Example 1 and Synthesis Example 2 was found near 1.40 ppm.
  • a peak derived from a t-Bu group different from .42 ppm and a new amide peak occurring at 11.00 to 8.00 ppm were confirmed, so the group represented by the formula (1A) derived from DI-4 It is considered that it has been introduced.
  • Example 2 A liquid crystal aligning agent (V-2) was obtained in the same manner as in Example 1, except that the polymer solution used was changed from PAA-A1 to PAA-A2.
  • Example 3 To the polymer solution PAA-A3 (10.00 g) obtained in Synthesis Example 6, NMP (14.00 g) and BCS (6.00 g) were added and stirred at room temperature for 2 hours to obtain a liquid crystal aligning agent (V- 3) was obtained.
  • Example 4 To the polymer solution PAA-A4 (10.00 g) obtained in Synthesis Example 7, NMP (14.00 g) and BCS (6.00 g) were added and stirred at room temperature for 2 hours to obtain a liquid crystal aligning agent (V- 4) was obtained.
  • Example 5 To the polymer solution PAA-A2 (1.88 g) obtained in Synthesis Example 4, the polyamic acid solution PAA-B1 (4.39 g) obtained in Synthesis Example 5, NMP (3.80 g), BCS (4. 80 g), an NMP 10% by mass diluted solution of AD-1 (0.376 g) and an NMP 1% by mass diluted solution of AD-2 (0.752 g) were added, stirred at room temperature for 2 hours, and a liquid crystal aligning agent (V-5 ).
  • Table 2 shows the specifications of the liquid crystal aligning agents obtained in Examples 1-5 and Comparative Examples 1-2.
  • the numbers in parentheses for the polymer components represent the ratio (parts by mass) of each polymer component with respect to the total 100 parts by mass of the polymer components.
  • an FFS-driven liquid crystal cell was produced according to the procedure shown below, and various evaluations were performed.
  • a liquid crystal cell having the structure of an FFS mode liquid crystal display element was produced.
  • a substrate with electrodes was prepared.
  • a glass substrate having a rectangular shape of 30 mm ⁇ 35 mm and a thickness of 0.7 mm was used as the substrate.
  • An ITO electrode having a solid pattern is formed as a first layer on the substrate to form a common electrode.
  • a SiN (silicon nitride) film formed by a CVD (chemical vapor deposition) method is formed as a second layer on the common electrode of the first layer.
  • the SiN film of the second layer has a film thickness of 300 nm and functions as an interlayer insulating film.
  • a comb-shaped pixel electrode formed by patterning an ITO film is arranged as a third layer, and two pixels of a first pixel and a second pixel are formed.
  • the size of each pixel is 10 mm long and 5 mm wide.
  • the electrode-attached substrate has a structure in which the common electrode of the first layer and the pixel electrode of the third layer are insulated by the SiN film of the second layer.
  • the pixel electrode of the third layer has a comb-like shape in which a central portion is bent at an internal angle of 160° and a plurality of electrode lines with a width of 3 ⁇ m are arranged in parallel at intervals of 6 ⁇ m.
  • a pixel is formed by a plurality of electrode lines, and has a first region and a second region bordering on a line connecting bent portions.
  • the liquid crystal aligning agents (V-1) to (V-5) and (RV-1) to (RV-2) obtained in Examples 1 to 5 and Comparative Examples 1 and 2 were used with a pore size of 1.0 ⁇ m.
  • the substrate with the electrode hereinafter referred to as the electrode substrate
  • the glass substrate hereinafter referred to as the counter substrate
  • the counter substrate having a columnar spacer with a height of 4 ⁇ m and having an ITO film formed on the back surface.
  • the coating film surface was subjected to alignment treatment by irradiating polarized ultraviolet rays through a 254 nm bandpass filter and a polarizer to obtain a substrate with a liquid crystal alignment film.
  • the irradiation dose is shown in Table 3 below.
  • the liquid crystal alignment film formed on the electrode substrate is subjected to an alignment treatment so that the direction of equally dividing the internal angle of the bent portion of the pixel and the alignment direction of the liquid crystal are orthogonal to each other.
  • the liquid crystal alignment film is subjected to an alignment treatment so that the alignment direction of the liquid crystal on the electrode substrate and the alignment direction of the liquid crystal on the counter substrate are aligned when the liquid crystal cell is produced.
  • the above two substrates are set as a set, a sealant (XN-1500T manufactured by Mitsui Chemicals, Inc.) is printed on the substrate with a dispenser, and another substrate is set so that the alignment direction of each liquid crystal alignment film is 0 °. I glued them together so that they would face each other.
  • the laminated substrates were pressure-bonded and heated in a hot air circulating oven at 150° C. for 60 minutes to cure the sealant, thereby producing an empty cell.
  • Liquid crystal PA-1492 (manufactured by DIC) was injected into this empty cell by a vacuum injection method, and the injection port was sealed to obtain an FFS-driven liquid crystal cell. After that, the obtained liquid crystal cell was heated at 120° C. for 1 hour and left to stand overnight before being used for evaluation.
  • the deviation between the alignment direction of the liquid crystal in the first region of the pixel and the alignment direction of the liquid crystal in the second region of the pixel was calculated as an angle when no voltage was applied.
  • a liquid crystal cell is placed between two polarizing plates whose polarization axes are orthogonal to each other, a backlight is turned on, and the liquid crystal cell is arranged so that the transmitted light intensity in the first region of the pixel is minimized. was adjusted, and then the rotation angle required when the liquid crystal cell was rotated so that the intensity of transmitted light in the second region of the pixel was minimized was obtained. It can be said that the smaller the rotation angle, the better the stability of the liquid crystal alignment.
  • the value of the rotation angle is "excellent” if it is less than 0.100°, "good” if it is 0.100° or more and 0.200° or less, and is greater than 0.200°. The value was set as "poor".
  • Table 3 shows the evaluation results of the liquid crystal display elements using the liquid crystal aligning agents of the above Examples and Comparative Examples.
  • the liquid crystal alignment films obtained from the liquid crystal alignment agents using the diimide diester compounds DI-1 to DI-4 are components that do not contain the diimide diester compound (B). It exhibited high in-plane uniformity and high stability of liquid crystal alignment compared to the liquid crystal alignment film obtained from the liquid crystal alignment agent.
  • the liquid crystal aligning film obtained from the liquid crystal aligning agent of the present invention can be suitably used for various liquid crystal display elements, typified by liquid crystal display elements of the IPS drive system and the FFS drive system. These display elements are not limited to liquid crystal displays intended for display, and are also useful in light control windows and optical shutters for controlling the transmission and blocking of light.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Liquid Crystal (AREA)

Abstract

A liquid crystal aligning agent which contains a polymer (A) that is obtained by a polymerization reaction of a diamine component and a tetracarboxylic acid derivative component that contains a diimide diester compound (B) represented by formula (1), wherein the polymer (A) has a group that is derived from the diimide diester compound (B) and is represented by formula (1A). In formula (1), X1 represents a tetravalent organic group that is derived from an acyclic aliphatic tetracarboxylic acid dianhydride, an alicyclic tetracarboxylic acid dianhydride or a derivative thereof; and each R independently represents a monovalent organic group having 1 to 5 carbon atoms. In formula (1A), R represents a monovalent organic group having 1 to 5 carbon atoms; and * represents a bonding hand that is bonded to X1.

Description

液晶配向剤、液晶配向膜、液晶表示素子、化合物、及び重合体liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element, compound, and polymer
 本発明は、液晶配向剤、液晶配向膜、液晶表示素子、並びにそれらに用いることができる化合物、及び重合体に関する。 The present invention relates to liquid crystal aligning agents, liquid crystal aligning films, liquid crystal display elements, and compounds and polymers that can be used therefor.
 従来から液晶表示装置は、パーソナルコンピュータ、スマートフォン、携帯電話、テレビジョン受像機等の表示部として幅広く用いられている。液晶表示装置は、例えば、素子基板とカラーフィルタ基板との間に挟持された液晶層、液晶層に電界を印加する画素電極及び共通電極、液晶層の液晶分子の配向性を制御する配向膜、画素電極に供給される電気信号をスイッチングする薄膜トランジスタ(TFT)等を備えている。液晶分子の駆動方式としては、TN(Twisted Nematic)方式、VA(Vertical Alignment)方式等の縦電界方式や、IPS(In-Plane Switching)方式、FFS(Fringe Field Switching)方式等の横電界方式が知られている。 Conventionally, liquid crystal display devices have been widely used as display units for personal computers, smartphones, mobile phones, television receivers, and the like. A liquid crystal display device includes, for example, a liquid crystal layer sandwiched between an element substrate and a color filter substrate, a pixel electrode and a common electrode for applying an electric field to the liquid crystal layer, an alignment film for controlling the orientation of liquid crystal molecules in the liquid crystal layer, A thin film transistor (TFT) or the like is provided for switching an electric signal supplied to the pixel electrode. Driving methods for liquid crystal molecules include vertical electric field methods such as the TN (Twisted Nematic) method and VA (Vertical Alignment) method, and horizontal electric field methods such as the IPS (In-Plane Switching) method and the FFS (Fringe Field Switching) method. Are known.
 現在、工業的に最も普及している液晶配向膜は、電極基板上に形成された、ポリアミック酸及び/又はこれをイミド化したポリイミドに代表される重合体からなる膜の表面を、綿、ナイロン、ポリエステル等の布で一方向に擦る、いわゆるラビング処理を行うことで作製されている。ラビング処理は、簡便で生産性に優れた工業的に有用な方法である。しかし、液晶表示素子の高性能化、高精細化、大型化に伴い、ラビング処理で発生する配向膜の表面の傷、発塵、機械的な力や静電気による影響、更には、配向処理面内の不均一性等の種々の問題が明らかとなっている。ラビング処理に代わる配向処理方法としては、偏光放射線を照射することにより、液晶配向能を付与する光配向法が知られている。光配向法は、光異性化反応を利用したもの、光架橋反応を利用したもの、光分解反応を利用したもの等が提案されている(例えば、非特許文献1、特許文献1参照)。 Currently, the liquid crystal alignment film that is most widely used industrially is formed on an electrode substrate, and the surface of a film made of a polymer typified by polyamic acid and/or polyimide imidized thereof is coated with cotton, nylon, or the like. It is produced by rubbing in one direction with a cloth such as polyester. The rubbing treatment is a simple, highly productive and industrially useful method. However, along with the high performance, high definition, and large size of liquid crystal display elements, scratches on the surface of the alignment film caused by rubbing, dust generation, mechanical force and static electricity, and furthermore, the alignment processing surface Various problems such as non-uniformity of . As an alignment treatment method that replaces the rubbing treatment, there is known a photo-alignment method in which polarized radiation is applied to impart liquid crystal alignment ability. As the photo-alignment method, a method using a photoisomerization reaction, a method using a photocrosslinking reaction, a method using a photodecomposition reaction, and the like have been proposed (see, for example, Non-Patent Document 1 and Patent Document 1).
 IPS駆動方式やFFS駆動方式の液晶表示素子に用いられる液晶配向膜には、長期交流駆動によって発生する残像(以下、AC残像ともいう。)を抑制するための高い配向規制力が必要とされる。
 特許文献2には、上記課題を解決する手段として、特定の構造を有するポリイミド前駆体又はポリイミドを含有する液晶配向剤が提案されている。
Liquid crystal alignment films used in liquid crystal display elements of the IPS driving method and the FFS driving method are required to have a high alignment regulating force for suppressing afterimages (hereinafter also referred to as AC afterimages) generated by long-term AC driving. .
Patent Literature 2 proposes a polyimide precursor having a specific structure or a liquid crystal aligning agent containing polyimide as a means for solving the above problems.
特開平9-297313号公報JP-A-9-297313 WO2016/152928号公報WO2016/152928
 近年では、大画面で高精細な液晶表示素子が主体となり、液晶表示素子に対する高品質化の要求は従来よりも増してさらに高まっている。特に、液晶表示素子が大型化するに伴い、製造工程でのバラツキによって液晶表示素子面内での液晶のツイスト角がわずかにばらついてしまう、という不具合が発生するようになった。このようなバラツキは、液晶表示素子では黒表示とした際に明るさが面内で不均一となり、液晶表示素子の品位を低下させることにつながる。 In recent years, large-screen, high-definition liquid crystal display elements have become the main focus, and the demand for high quality liquid crystal display elements is increasing more than ever before. In particular, as the size of the liquid crystal display element increases, a problem arises that the twist angle of the liquid crystal within the plane of the liquid crystal display element varies slightly due to variations in the manufacturing process. Such variations lead to non-uniform brightness in the plane of the liquid crystal display element when black is displayed, leading to deterioration of the quality of the liquid crystal display element.
 以上のようなことから、本発明の目的は、液晶配向膜面内での液晶のツイスト角度のバラツキ(不均一性)が小さく、また、AC残像を抑制できる液晶配向膜を得ることができる液晶配向剤、該液晶配向剤から得られる液晶配向膜、及び該液晶配向膜を用いた液晶表示素子、並びにそれらに用いることができる化合物、及び重合体を提供することにある。 In view of the above, an object of the present invention is to obtain a liquid crystal alignment film that has a small variation (non-uniformity) in the twist angle of the liquid crystal in the plane of the liquid crystal alignment film and can suppress the AC afterimage. An aligning agent, a liquid crystal aligning film obtained from the liquid crystal aligning agent, a liquid crystal display device using the liquid crystal aligning film, and compounds and polymers that can be used for them are provided.
 本発明者は、上記課題を達成するために鋭意研究を行った結果、特定の化合物を構成成分として有する重合体を含有する液晶配向剤が上記の目的を達成するために極めて有効であることを見出し、本発明を完成させた。 As a result of intensive research to achieve the above object, the present inventors have found that a liquid crystal aligning agent containing a polymer having a specific compound as a constituent is extremely effective for achieving the above object. He found this and completed the present invention.
 本発明は、以下の態様を包含するものである。
 テトラカルボン酸二無水物及びその誘導体からなる群から選ばれる少なくとも一つの化合物(但し、テトラカルボン酸ジイミドジエステル化合物を除く。)並びに下記式(1)で表されるジイミドジエステル化合物(B)を含むテトラカルボン酸誘導体成分とジアミン成分とを重合反応させることにより得られる、ポリイミド前駆体、及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる1つ以上の重合体(A)を含有し、
 前記重合体(A)が、前記ジイミドジエステル化合物(B)に由来する下記式(1A)で表される基を有する、
 液晶配向剤。
Figure JPOXMLDOC01-appb-C000015
(Xは、非環式脂肪族テトラカルボン酸二無水物若しくは脂環式テトラカルボン酸二無水物又はこれらの誘導体に由来する4価の有機基を表す。Rは、それぞれ独立して、炭素数1~5の1価の有機基を表す。)
Figure JPOXMLDOC01-appb-C000016
(Rは、炭素数1~5の1価の有機基を表す。*は、Xに結合する結合手を表す。)
The present invention includes the following aspects.
At least one compound selected from the group consisting of tetracarboxylic dianhydrides and derivatives thereof (excluding tetracarboxylic acid diimide diester compounds) and a diimide diester compound (B) represented by the following formula (1) Contains one or more polymers (A) selected from the group consisting of polyimide precursors obtained by polymerizing a tetracarboxylic acid derivative component and a diamine component, and polyimides that are imidized products of the polyimide precursors. death,
The polymer (A) has a group represented by the following formula (1A) derived from the diimide diester compound (B),
Liquid crystal aligning agent.
Figure JPOXMLDOC01-appb-C000015
(X 1 represents a tetravalent organic group derived from an acyclic aliphatic tetracarboxylic dianhydride or an alicyclic tetracarboxylic dianhydride or a derivative thereof. Each R independently represents a carbon represents a monovalent organic group of numbers 1 to 5.)
Figure JPOXMLDOC01-appb-C000016
(R represents a monovalent organic group having 1 to 5 carbon atoms. * represents a bond that binds to X 1. )
 本発明によれば、液晶配向膜面内での液晶のツイスト角度のバラツキ(不均一性)が小さく、また、AC残像を抑制できる液晶配向膜を得ることができる液晶配向剤、該液晶配向剤から得られる液晶配向膜、及び該液晶配向膜を用いた液晶表示素子、並びにそれらに用いることができる化合物、及び重合体を提供することができる。
 本発明によって上記効果が得られるメカニズムは必ずしも明らかではないが、以下に述べることが一因と考えられる。重合体(A)中の、ジイミドジエステル化合物(B)に由来する部分は、焼成時にイミド化が進行しにくいため、偏光紫外線照射時に分解量が抑制され、ポリマーの再配向性が向上したと考えられる。また、式(1A)で表される基を有する重合体は2種類以上の重合体を含む場合に、表層への偏在性を高める効果が発現するため、上記効果を奏すると考える。
ADVANTAGE OF THE INVENTION According to this invention, the liquid crystal aligning agent which can obtain the liquid crystal aligning film which has a small variation (non-uniformity) of the twist angle of the liquid crystal in a liquid crystal aligning film plane, and can suppress an AC afterimage, and this liquid crystal aligning agent. It is possible to provide a liquid crystal alignment film obtained from, a liquid crystal display element using the liquid crystal alignment film, a compound that can be used for them, and a polymer.
Although the mechanism by which the above effects are obtained by the present invention is not necessarily clear, the following is considered to be one of the reasons. It is believed that the portion derived from the diimide diester compound (B) in the polymer (A) is less likely to be imidized during baking, so that the amount of decomposition during irradiation with polarized ultraviolet rays is suppressed and the reorientation of the polymer is improved. be done. Further, when the polymer having the group represented by the formula (1A) contains two or more types of polymers, the effect of increasing the uneven distribution to the surface layer is exhibited, so it is considered that the above effect is exhibited.
 以下、特定の重合体を含有する液晶配向剤、該液晶配向剤を用いて形成される液晶配向膜、及び該液晶配向膜を有する液晶表示素子について詳細に説明するが、以下に記載する構成要件の説明は、本発明の一実施態様としての一例であり、これらの内容に特定されるものではない。
 以下の説明において、「ハロゲン原子」として、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。「Boc」は、tert-ブトキシカルボニル基を表し、「*」は結合位置を表す。
Hereinafter, a liquid crystal aligning agent containing a specific polymer, a liquid crystal aligning film formed using the liquid crystal aligning agent, and a liquid crystal display element having the liquid crystal aligning film will be described in detail. is an example as one embodiment of the present invention, and is not limited to these contents.
In the following description, "halogen atom" includes fluorine atom, chlorine atom, bromine atom, iodine atom and the like. "Boc" represents a tert-butoxycarbonyl group, and "*" represents a binding position.
<重合体(A)>
 本発明の液晶配向剤は、重合体(A)を含有する。
 重合体(A)は、ポリイミド前駆体、及び、該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる1つ以上である。
 ポリイミド前駆体は、テトラカルボン酸誘導体成分とジアミン成分とを重合反応させることにより得られる。
 テトラカルボン酸誘導体成分は、テトラカルボン酸二無水物及びその誘導体からなる群から選ばれる少なくとも一つの化合物(但し、テトラカルボン酸ジイミドジエステル化合物を除く。以下、これらを総称して、テトラカルボン酸二無水物系化合物ともいう。)並びに上記式(1)で表されるジイミドジエステル化合物(B)を含む。
 重合体(A)は、ジイミドジエステル化合物(B)に由来する上記式(1A)で表される基を有する。
 上記ポリイミド前駆体としては、ポリアミック酸、ポリアミック酸エステルが挙げられる。上記テトラカルボン酸二無水物の誘導体としては、テトラカルボン酸ジハライド、テトラカルボン酸ジアルキルエステル、又はテトラカルボン酸ジアルキルエステルジハライドが挙げられる。
 なお、本発明の液晶配向剤と独立して、重合体(A)それ自体も本発明の対象である。
<Polymer (A)>
The liquid crystal aligning agent of this invention contains a polymer (A).
The polymer (A) is one or more selected from the group consisting of polyimide precursors and polyimides which are imidized products of the polyimide precursors.
A polyimide precursor is obtained by polymerizing a tetracarboxylic acid derivative component and a diamine component.
The tetracarboxylic acid derivative component is at least one compound selected from the group consisting of tetracarboxylic dianhydrides and derivatives thereof (excluding tetracarboxylic acid diimide diester compounds). Also referred to as an anhydride compound.) and the diimide diester compound (B) represented by the above formula (1).
The polymer (A) has a group represented by the formula (1A) derived from the diimide diester compound (B).
Examples of the polyimide precursor include polyamic acid and polyamic acid ester. Examples of the tetracarboxylic dianhydride derivatives include tetracarboxylic acid dihalides, tetracarboxylic acid dialkyl esters, and tetracarboxylic acid dialkyl ester dihalides.
In addition, the polymer (A) itself is also an object of the present invention independently of the liquid crystal aligning agent of the present invention.
<<重合体(A)>>
 上記重合体(A)が、ポリアミック酸である場合、重合体(A)は、例えば、テトラカルボン酸二無水物と上記式(1)で表されるジイミドジエステル化合物(B)を含むテトラカルボン酸誘導体成分と、ジアミン成分と、を重合(重縮合)反応させることにより得られる。また、上記重合体(A)におけるポリイミドは、上記ポリアミック酸をイミド化することにより得られる。また、上記重合体(A)が、ポリアミック酸エステルである場合、後述する方法により得ることができ、該ポリアミック酸エステルをイミド化することによりポリイミドが得られる。
<<Polymer (A)>>
When the polymer (A) is a polyamic acid, the polymer (A) is, for example, a tetracarboxylic acid containing a tetracarboxylic dianhydride and a diimide diester compound (B) represented by the formula (1). It is obtained by polymerizing (polycondensing) a derivative component and a diamine component. The polyimide in the polymer (A) is obtained by imidizing the polyamic acid. Further, when the polymer (A) is a polyamic acid ester, it can be obtained by the method described later, and a polyimide is obtained by imidating the polyamic acid ester.
<<<テトラカルボン酸二無水物系化合物>>>
 上記テトラカルボン酸二無水物系化合物は、例えば、芳香族テトラカルボン酸二無水物、非環式脂肪族テトラカルボン酸二無水物若しくは脂環式テトラカルボン酸二無水物、又はこれらの誘導体が挙げられる。ここで、芳香族テトラカルボン酸二無水物は、芳香環に結合する少なくとも1つのカルボキシ基を含めて4つのカルボキシ基が分子内脱水することにより得られる酸二無水物である。非環式脂肪族テトラカルボン酸二無水物は、鎖状炭化水素構造に結合する4つのカルボキシ基が分子内脱水することにより得られる酸二無水物である。但し、鎖状炭化水素構造のみで構成されている必要はなく、その一部に脂環式構造や芳香環構造を有していてもよい。
<<<tetracarboxylic dianhydride-based compound>>>
Examples of the tetracarboxylic dianhydride compounds include aromatic tetracarboxylic dianhydrides, acyclic aliphatic tetracarboxylic dianhydrides, alicyclic tetracarboxylic dianhydrides, and derivatives thereof. be done. Here, the aromatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups including at least one carboxy group bonded to an aromatic ring. An acyclic aliphatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups bonded to a chain hydrocarbon structure. However, it does not need to be composed only of a chain hydrocarbon structure, and may have an alicyclic structure or an aromatic ring structure in part thereof.
 また、脂環式テトラカルボン酸二無水物は、脂環式構造に結合する少なくとも1つのカルボキシ基を含めて4つのカルボキシ基が分子内脱水することにより得られる酸二無水物である。但し、これら4つのカルボキシ基はいずれも芳香環には結合していない。
 また、脂環式構造のみで構成されている必要はなく、その一部に鎖状炭化水素構造や芳香環構造を有していてもよい。
An alicyclic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups including at least one carboxy group bonded to an alicyclic structure. However, none of these four carboxy groups are bonded to the aromatic ring.
Moreover, it is not necessary to consist only of an alicyclic structure, and a part thereof may have a chain hydrocarbon structure or an aromatic ring structure.
 上記芳香族テトラカルボン酸二無水物、非環式脂肪族テトラカルボン酸二無水物若しくは脂環式テトラカルボン酸二無水物は、中でも、下記式(2)で表されるテトラカルボン酸二無水物が好ましい。 The aromatic tetracarboxylic dianhydride, acyclic aliphatic tetracarboxylic dianhydride or alicyclic tetracarboxylic dianhydride is, among others, a tetracarboxylic dianhydride represented by the following formula (2) is preferred.
Figure JPOXMLDOC01-appb-C000017
(Xは、下記式(x-1)~(x-18)、及び(xr-1)~(xr-2)からなる群から選ばれる構造を表す。)
Figure JPOXMLDOC01-appb-C000017
(X represents a structure selected from the group consisting of the following formulas (x-1) to (x-18) and (xr-1) to (xr-2).)
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
(R~Rはそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、炭素数1~6のアルコキシ基、炭素数2~6のアルコキシアルキル基、炭素数2~6のアルキルオキシカルボニル基、又はフェニル基を表す。R及びRは、それぞれ独立して、水素原子又はメチル基を表す。
 式(x-9)における
Figure JPOXMLDOC01-appb-C000020
 は、単結合、又は二重結合を表す。
 j及びkは、0又は1の整数であり、A及びAは、それぞれ独立して、単結合、-O-、-CO-、-COO-、フェニレン基、スルホニル基、又はアミド基を表す。複数のAは、それぞれ同一でも異なってもよい。*1は一方の酸無水物基に結合する結合手であり、*2は他方の酸無水物基に結合する結合手である。)
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
(R 1 to R 4 each independently contain a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, or a fluorine atom. R 5 represents a monovalent organic group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an alkoxyalkyl group having 2 to 6 carbon atoms, an alkyloxycarbonyl group having 2 to 6 carbon atoms, or a phenyl group. and R6 each independently represent a hydrogen atom or a methyl group.
in formula (x-9)
Figure JPOXMLDOC01-appb-C000020
represents a single bond or a double bond.
j and k are integers of 0 or 1, and A 1 and A 2 each independently represent a single bond, —O—, —CO—, —COO—, a phenylene group, a sulfonyl group, or an amide group; show. A plurality of A 2 may be the same or different. *1 is a bond that bonds to one acid anhydride group, and *2 is a bond that bonds to the other acid anhydride group. )
 上記式(2)で表されるテトラカルボン酸二無水物の好ましい具体例としては、Xが、上記式(x-1)~(x-8)、(x-10)~(x-11)、及び(xr-1)~(xr-2)から選ばれるものが挙げられる。 Preferred specific examples of the tetracarboxylic dianhydride represented by the above formula (2) include X being the above formulas (x-1) to (x-8), (x-10) to (x-11) , and (xr-1) to (xr-2).
 上記式(x-1)は、なかでも、下記式(x1-1)~(x1-6)からなる群から選ばれるものが好ましい。 The above formula (x-1) is preferably selected from the group consisting of the following formulas (x1-1) to (x1-6).
Figure JPOXMLDOC01-appb-C000021
(*1は一方の酸無水物基に結合する結合手であり、*2は他方の酸無水物基に結合する結合手である。)
Figure JPOXMLDOC01-appb-C000021
(*1 is a bond that bonds to one acid anhydride group, and *2 is a bond that bonds to the other acid anhydride group.)
 上記式(xr-1)、(xr-2)の好ましい具体例としては、下記式(xr-3)~(xr-18)が挙げられる。 Preferable specific examples of the above formulas (xr-1) and (xr-2) include the following formulas (xr-3) to (xr-18).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
<<<ジイミドジエステル化合物(B)>>>
 本発明の重合体(A)は、上記式(1)で表されるジイミドジエステル化合物(B)を含むテトラカルボン酸誘導体成分を用いることにより得られる。このような態様とすることにより、得られる液晶配向膜に対して高いAC残像耐性と液晶表示素子とした際のツイスト角度のバラツキ(不均一性)が小さい機能を付与することができる。
 なお、本発明の液晶配向剤と独立して、ジイミドジエステル化合物(B)それ自体も本発明の対象である。
<<<diimide diester compound (B)>>>
The polymer (A) of the present invention is obtained by using a tetracarboxylic acid derivative component containing the diimide diester compound (B) represented by the above formula (1). By adopting such a mode, it is possible to provide the resulting liquid crystal alignment film with high AC afterimage resistance and small variation (non-uniformity) in the twist angle when used as a liquid crystal display device.
In addition, independently of the liquid crystal aligning agent of this invention, the diimide diester compound (B) itself is also the object of this invention.
 上記式(1)におけるRの炭素数1~5の1価の有機基としては、炭素数1~5のアルキル基(例:メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基等)、炭素数2~5のアルケニル基(ビニル基、2-プロペニル基等)、炭素数2~5のアルキニル基(2-プロピニル基等)、又はこれらの基の炭素-炭素結合間にヘテロ原子を有する基を含むヘテロ原子含有基、上記アルキル基、アルケニル基、アルキニル基及びヘテロ原子含有基が有する一部又は全部の水素原子を置換基で置換した基が挙げられる。 The monovalent organic group having 1 to 5 carbon atoms for R in the above formula (1) includes an alkyl group having 1 to 5 carbon atoms (e.g., methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, isobutyl group, tert-butyl group, etc.), alkenyl groups having 2 to 5 carbon atoms (vinyl group, 2-propenyl group, etc.), alkynyl groups having 2 to 5 carbon atoms (2-propynyl group, etc. ), or a heteroatom-containing group including a group having a heteroatom between the carbon-carbon bonds of these groups, the above alkyl groups, alkenyl groups, alkynyl groups and heteroatom-containing groups replace some or all of the hydrogen atoms A group substituted with a group is mentioned.
 ヘテロ原子を有する基としては、例えば、酸素原子、窒素原子、ケイ素原子、リン原子及びイオウ原子からなる群より選ばれる少なくとも1種を有する基等が挙げられ、-O-、-NR-(Rは、水素原子又はメチル基を表す。)、-CO-、-S-、-CO-、-Si(R’)(R’)-(R’はそれぞれ独立して炭素数1~3のアルキル基を表す。)、及びこれらを組み合わせた基等が挙げられる。なかでも、-O-が好ましい。 Groups having a heteroatom include, for example, groups having at least one selected from the group consisting of an oxygen atom, a nitrogen atom, a silicon atom, a phosphorus atom and a sulfur atom, and the like, -O-, -NR-(R represents a hydrogen atom or a methyl group.), -CO-, -S-, -CO-, -Si(R')(R')-(R' is each independently alkyl having 1 to 3 carbon atoms represents a group.), and groups in which these are combined. Of these, -O- is preferred.
 上記置換基としては、例えばハロゲン原子;メトキシ基、エトキシ基、プロポキシ基等のアルコキシ基;メトキシカルボニル基、エトキシカルボニル基等のアルコキシカルボニル基;メトキシカルボニルオキシ基、エトキシカルボニルオキシ基等のアルコキシカルボニルオキシ基;シアノ基、ニトロ基、ヒドロキシ基等が挙げられる。 Examples of the substituents include halogen atoms; alkoxy groups such as methoxy, ethoxy and propoxy; alkoxycarbonyl groups such as methoxycarbonyl and ethoxycarbonyl; alkoxycarbonyloxy such as methoxycarbonyloxy and ethoxycarbonyloxy; Group; cyano group, nitro group, hydroxy group and the like.
 液晶配向性を高める観点から、上記式(1)におけるRは、それぞれ独立して、炭素数1~5のアルキル基、炭素数2~5のアルケニル基、炭素数2~5のアルキニル基、又は上記アルキル基、アルケニル基、アルキニル基が有する一部又は全部の水素原子を置換基で置換した基であることが好ましい。 From the viewpoint of enhancing the liquid crystal orientation, each R in the above formula (1) is independently an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, an alkynyl group having 2 to 5 carbon atoms, or It is preferably a group in which some or all of the hydrogen atoms of the alkyl group, alkenyl group or alkynyl group are substituted with a substituent.
 上記式(1)におけるXは、非環式脂肪族テトラカルボン酸二無水物若しくは脂環式テトラカルボン酸二無水物又はこれらの誘導体に由来する4価の有機基を表す。上記式(1)で表されるジイミドジエステル化合物(B)を与える非環式脂肪族テトラカルボン酸二無水物の具体例としては、鎖状炭化水素構造に結合する4つのカルボキシ基が分子内脱水することにより得られる酸二無水物である。但し、鎖状炭化水素構造のみで構成されている必要はなく、その一部に脂環式構造や芳香環構造を有していてもよい。
 上記鎖状炭化水素構造の炭素数は2~15が好ましい。なお、該鎖状炭化水素構造は、直鎖状でも分枝状でもよく、該鎖状炭化水素構造には酸素原子含有基(-O-、-CO-等)及び/又は窒素原子含有基(第二級、第三級、第四級アミン等)及び/又は硫黄原子含有基(-S-、-CS-等)が含まれていてもよい。また、上記鎖状炭化水素構造は、飽和炭化水素構造であっても、不飽和炭化水素構造であってもよい。
 上記式(1)のXが非環式脂肪族テトラカルボン酸二無水物又はその誘導体に由来する4価の有機基を表す場合の好ましい具体例を挙げると、上記式(x-8)、(x-10)、又は(x-12)が挙げられる。
X 1 in the above formula (1) represents a tetravalent organic group derived from an acyclic aliphatic tetracarboxylic dianhydride, an alicyclic tetracarboxylic dianhydride, or a derivative thereof. Specific examples of the acyclic aliphatic tetracarboxylic dianhydride that gives the diimide diester compound (B) represented by the above formula (1) include intramolecular dehydration of four carboxy groups bonded to a chain hydrocarbon structure. It is an acid dianhydride obtained by However, it does not need to be composed only of a chain hydrocarbon structure, and may have an alicyclic structure or an aromatic ring structure in part thereof.
The chain hydrocarbon structure preferably has 2 to 15 carbon atoms. The chain hydrocarbon structure may be linear or branched, and the chain hydrocarbon structure includes an oxygen atom-containing group (—O—, —CO—, etc.) and/or a nitrogen atom-containing group ( secondary, tertiary, quaternary amines, etc.) and/or sulfur atom-containing groups (-S-, -CS-, etc.) may be included. Moreover, the chain hydrocarbon structure may be a saturated hydrocarbon structure or an unsaturated hydrocarbon structure.
Preferred specific examples of the case where X 1 in the above formula (1) represents a tetravalent organic group derived from an acyclic aliphatic tetracarboxylic dianhydride or a derivative thereof include the above formula (x-8), (x-10), or (x-12).
 上記式(1)で表されるジイミドジエステル化合物(B)を与える脂環式テトラカルボン酸二無水物の具体例としては、脂環式構造に結合する少なくとも1つのカルボキシ基を含めて4つのカルボキシ基が分子内脱水することにより得られる酸二無水物である。但し、これら4つのカルボキシ基はいずれも芳香環には結合していない。また、脂環式構造のみで構成されている必要はなく、その一部に鎖状炭化水素構造や芳香環構造を有していてもよい。
 上記脂環式構造の炭素数は3~20が好ましく、4~20がより好ましい。なお、該脂環式構造には、酸素原子含有基(-O-、-CO-等)及び/又は窒素原子含有基(第二級、第三級、第四級アミン等)及び/又は硫黄原子含有基(-S-、-CS-等)が含まれていてもよい。また、上記脂環式構造は、飽和脂環式構造であっても、不飽和脂環式構造であってもよい。
 上記式(1)のXが脂環式テトラカルボン酸二無水物又はこれらの誘導体に由来する4価の有機基を表す場合の好ましい具体例を挙げると、上記式(x-1)が挙げられる。
Specific examples of the alicyclic tetracarboxylic dianhydride that gives the diimide diester compound (B) represented by the above formula (1) include four carboxy groups including at least one carboxy group that bonds to the alicyclic structure. It is an acid dianhydride obtained by intramolecular dehydration of the group. However, none of these four carboxy groups are bonded to the aromatic ring. Moreover, it is not necessary to consist only of an alicyclic structure, and a part thereof may have a chain hydrocarbon structure or an aromatic ring structure.
The alicyclic structure preferably has 3 to 20 carbon atoms, more preferably 4 to 20 carbon atoms. The alicyclic structure includes oxygen atom-containing groups (-O-, -CO-, etc.) and/or nitrogen atom-containing groups (secondary, tertiary, quaternary amines, etc.) and/or sulfur Atom containing groups (-S-, -CS-, etc.) may be included. Moreover, the alicyclic structure may be a saturated alicyclic structure or an unsaturated alicyclic structure.
Preferred specific examples of the case where X 1 in the above formula (1) represents a tetravalent organic group derived from an alicyclic tetracarboxylic dianhydride or a derivative thereof include the above formula (x-1). be done.
 中でも本発明の効果を好適に得る観点から、式(1)におけるXは、炭素数4~16の非環式脂肪族炭化水素基または炭素数4~16の脂環式脂肪族炭化水素を有するテトラカルボン酸二無水物又はその誘導体に由来する4価の有機基であることが好ましく、式(x-1)~式(x-18)のいずれかを表されることがより好ましい。 Among them, from the viewpoint of suitably obtaining the effects of the present invention, X 1 in formula (1) is an acyclic aliphatic hydrocarbon group having 4 to 16 carbon atoms or an alicyclic aliphatic hydrocarbon group having 4 to 16 carbon atoms. It is preferably a tetravalent organic group derived from a tetracarboxylic dianhydride or a derivative thereof, and more preferably represented by any one of formulas (x-1) to (x-18).
 特に好ましくは、上記式(1)で表されるジイミドジエステル化合物が下記式(b-1)~(b-9)で表される化合物のいずれかである。 Particularly preferably, the diimide diester compound represented by the above formula (1) is any one of the compounds represented by the following formulas (b-1) to (b-9).
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 重合体(A)を製造する際の、上記式(1)で表されるジイミドジエステル化合物(B)の使用量は、ジアミン成分と反応させる全テトラカルボン酸誘導体成分1モルに対して、1モル%以上が好ましく、5モル%以上がより好ましい。
 また、重合体(A)を製造する際の、上記式(2)で表されるテトラカルボン酸二無水物若しくはその誘導体の使用量は、ジアミン成分と反応させる全テトラカルボン酸誘導体成分1モルに対して、99モル%以下が好ましく、95モル%以下がより好ましい。
The amount of the diimide diester compound (B) represented by the above formula (1) used when producing the polymer (A) is 1 mol per 1 mol of the total tetracarboxylic acid derivative component to be reacted with the diamine component. % or more is preferable, and 5 mol % or more is more preferable.
Further, the amount of the tetracarboxylic acid dianhydride represented by the above formula (2) or a derivative thereof when producing the polymer (A) is On the other hand, 99 mol% or less is preferable, and 95 mol% or less is more preferable.
<<<<ジイミドジエステル化合物(B)の製造方法>>>>
 以下に、上記ジイミドジエステル化合物(B)を得る方法について説明する。本発明のジイミドジエステル化合物を合成する方法は特に限定されないが、例えば、ジイミド化合物(DI-0)と二炭酸ジエステル化合物を反応させることで合成する方法を挙げることができる。
Figure JPOXMLDOC01-appb-C000025
<<<<Method for producing diimide diester compound (B)>>>>
The method for obtaining the diimide diester compound (B) is described below. Although the method for synthesizing the diimide diester compound of the present invention is not particularly limited, for example, a method of synthesizing by reacting the diimide compound (DI-0) with a dicarbonic acid diester compound can be mentioned.
Figure JPOXMLDOC01-appb-C000025
 二炭酸ジエステル化合物は試薬会社から購入することが可能である。例えば、下記式で示される、二炭酸ジ-tert-ブチル、二炭酸ジアリル、二炭酸ジ-tert-アミル、等が挙げられる。
Figure JPOXMLDOC01-appb-C000026
Dicarbonic acid diester compounds can be purchased from reagent companies. Examples thereof include di-tert-butyl dicarbonate, diallyl dicarbonate, di-tert-amyl dicarbonate, and the like represented by the following formulas.
Figure JPOXMLDOC01-appb-C000026
 反応は、触媒存在下で行うことができる。触媒としては、例えば4-ジメチルアミノピリジンが挙げられる。 The reaction can be carried out in the presence of a catalyst. Catalysts include, for example, 4-dimethylaminopyridine.
 触媒反応ではないが、ヨウ化ナトリウムを添加してジイミド化合物と二炭酸ジエステルを反応させる手法も報告されている(Journal of Chemical and Pharmaceutical Research (2016), 8(1), 510-518)。 Although not a catalytic reaction, a method of adding sodium iodide to react a diimide compound with a dicarbonic acid diester has also been reported (Journal of Chemical and Pharmaceutical Research (2016), 8(1), 510-518).
 反応溶媒としては、非プロトン性極性有機溶媒(DMF(N,N-ジメチルホルムアミド)、DMSO(ジメチルスルホキシド)、DMAc(N,N-ジメチルアセトアミド)、NMP(N-メチル-2-ピロリドン)など);エーテル類(EtO(ジエチルエーテル)、i-PrO(ジイソプロピルエーテル)、TBME(tert-ブチルメチルエーテル)、CPME(シクロペンチルメチルエーテル)、THF(テトラヒドロフラン)、ジオキサンなど);脂肪族炭化水素類(ペンタン、へキサン、ヘプタン、石油エーテルなど);芳香族炭化水素類(ベンゼン、トルエン、キシレン、メシチレン、クロロベンゼン、ジクロロベンゼン、ニトロベンゼン、テトラリンなど);ハロゲン系炭化水素類(クロロホルム、ジクロロメタン、四塩化炭素、ジクロロエタンなど);低級脂肪酸エステル類(酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル等);ニトリル類(アセトニトリル、プロピオニトリル、ブチロニトリル等);アルコール類(メタノール、エタノール、2-プロパノール等)などが使用できる。これらの溶媒は、反応の起こり易さなどを考慮して適宜選択することができ、1種単独で又は2種以上混合して用いることができる。 Examples of reaction solvents include aprotic polar organic solvents (DMF (N,N-dimethylformamide), DMSO (dimethylsulfoxide), DMAc (N,N-dimethylacetamide), NMP (N-methyl-2-pyrrolidone), etc.). Ethers (Et 2 O (diethyl ether), i-Pr 2 O (diisopropyl ether), TBME (tert-butyl methyl ether), CPME (cyclopentyl methyl ether), THF (tetrahydrofuran), dioxane, etc.); Aliphatic carbonization Hydrogens (pentane, hexane, heptane, petroleum ether, etc.); Aromatic hydrocarbons (benzene, toluene, xylene, mesitylene, chlorobenzene, dichlorobenzene, nitrobenzene, tetralin, etc.); Halogen hydrocarbons (chloroform, dichloromethane, carbon tetrachloride, dichloroethane, etc.); lower fatty acid esters (methyl acetate, ethyl acetate, butyl acetate, methyl propionate, etc.); nitriles (acetonitrile, propionitrile, butyronitrile, etc.); alcohols (methanol, ethanol, 2- propanol, etc.) can be used. These solvents can be appropriately selected in consideration of the easiness of reaction and the like, and can be used singly or in combination of two or more.
 反応温度は、好ましくは、-10℃以上から使用する反応溶媒の沸点の温度までの温度範囲を選ぶことができる。反応時間は、0.1~1000時間、より好ましくは0.5~100時間である。
 上記反応により得られたジイミドジエステル化合物(B)は、再結晶又はシリカゲルなどを用いたカラムクロマトグラフィーなどで精製するのが好ましい。
The reaction temperature can preferably be selected from a temperature range of -10°C or higher to the boiling point of the reaction solvent used. The reaction time is 0.1 to 1000 hours, more preferably 0.5 to 100 hours.
The diimide diester compound (B) obtained by the above reaction is preferably purified by recrystallization or column chromatography using silica gel or the like.
 他の手法としては、ジイミド化合物(DI-0)とクロロギ酸エステル化合物を、トリエチルアミンなどの塩基存在下で反応させることで、ジイミドジエステル化合物(B)を得ることができる。 As another method, the diimide diester compound (B) can be obtained by reacting the diimide compound (DI-0) and the chloroformate compound in the presence of a base such as triethylamine.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 クロロギ酸エステル化合物は試薬会社から購入することが可能である。例えば、下記式で示される、クロロギ酸メチル、クロロギ酸エチル、クロロギ酸アリル、クロロギ酸イソプロピル、クロロギ酸プロピル、クロロギ酸イソブチル、クロロギ酸ブチル、クロロギ酸2-メトキシエチル、クロロギ酸アミル等が挙げられる。
Figure JPOXMLDOC01-appb-C000028
Chloroformate compounds can be purchased from reagent companies. Examples thereof include methyl chloroformate, ethyl chloroformate, allyl chloroformate, isopropyl chloroformate, propyl chloroformate, isobutyl chloroformate, butyl chloroformate, 2-methoxyethyl chloroformate, amyl chloroformate, and the like represented by the following formulas. .
Figure JPOXMLDOC01-appb-C000028
 塩基としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸水素ナトリウム、炭酸水素カリウム、燐酸カリウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸セシウムなどの無機塩基;メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、プロピルアミン、ジプロピルアミン、トリプロピルアミン、イソプロピルアミン、ジイソプロピルアミン、トリイソプロピルアミン、ブチルアミン、ジブチルアミン、トリブチルアミン、ジイソプロピルエチルアミン、ピリジン、イミダゾール、キノリン、コリジン、ピロリジン、ピペリジン、モルフォリン、N-メチルモルフォリンなどの有機塩基などが使用できる。 Bases include inorganic bases such as sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium hydrogen carbonate, potassium hydrogen carbonate, potassium phosphate, sodium carbonate, potassium carbonate, lithium carbonate, and cesium carbonate; methylamine, dimethylamine, trimethylamine; , ethylamine, diethylamine, triethylamine, propylamine, dipropylamine, tripropylamine, isopropylamine, diisopropylamine, triisopropylamine, butylamine, dibutylamine, tributylamine, diisopropylethylamine, pyridine, imidazole, quinoline, collidine, pyrrolidine, piperidine , morpholine, and N-methylmorpholine.
 反応溶媒としては、水、非プロトン性極性有機溶媒(DMF、DMSO、DMAc、NMPなど);エーテル類(EtO、i-PrO、TBME、CPME、THF、ジオキサンなど);脂肪族炭化水素類(ペンタン、へキサン、ヘプタン、石油エーテルなど);芳香族炭化水素類(ベンゼン、トルエン、キシレン、メシチレン、クロロベンゼン、ジクロロベンゼン、ニトロベンゼン、テトラリンなど);ハロゲン系炭化水素類(クロロホルム、ジクロロメタン、四塩化炭素、ジクロロエタンなど);低級脂肪酸エステル類(酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル等);ニトリル類(アセトニトリル、プロピオニトリル、ブチロニトリル等)などが使用できる。これらの溶媒は、反応の起こり易さなどを考慮して適宜選択することができ、1種単独で又は2種以上混合して用いることができる。 Examples of reaction solvents include water, aprotic polar organic solvents (DMF, DMSO, DMAc, NMP, etc.); ethers (Et 2 O, i-Pr 2 O, TBME, CPME, THF, dioxane, etc.); Hydrogens (pentane, hexane, heptane, petroleum ether, etc.); Aromatic hydrocarbons (benzene, toluene, xylene, mesitylene, chlorobenzene, dichlorobenzene, nitrobenzene, tetralin, etc.); Halogen hydrocarbons (chloroform, dichloromethane, carbon tetrachloride, dichloroethane, etc.); lower fatty acid esters (methyl acetate, ethyl acetate, butyl acetate, methyl propionate, etc.); nitriles (acetonitrile, propionitrile, butyronitrile, etc.). These solvents can be appropriately selected in consideration of the easiness of reaction and the like, and can be used singly or in combination of two or more.
 反応温度は、好ましくは、-10℃以上から使用する反応溶媒の沸点の温度までの温度範囲を選ぶことができる。反応時間は、0.1~1000時間、より好ましくは0.5~100時間である。
 上記反応により得られたジイミドジエステル化合物(B)は、再結晶又はシリカゲルなどを用いたカラムクロマトグラフィーなどで精製するのが好ましい。
The reaction temperature can preferably be selected from a temperature range of -10°C or higher to the boiling point of the reaction solvent used. The reaction time is 0.1 to 1000 hours, more preferably 0.5 to 100 hours.
The diimide diester compound (B) obtained by the above reaction is preferably purified by recrystallization or column chromatography using silica gel or the like.
 ジイミド化合物(DI-0)はテトラカルボン酸二無水物とアンモニウム化合物を反応させることで得ることができる。 A diimide compound (DI-0) can be obtained by reacting a tetracarboxylic dianhydride with an ammonium compound.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 アンモニウム化合物は試薬会社から購入することが可能である。例えば、塩化アンモニウム、酢酸アンモニウム、塩酸ヒドロキシルアミン、水酸化アンモニウム(アンモニア水)、尿素、ホルムアミド等が挙げられる。 Ammonium compounds can be purchased from reagent companies. Examples include ammonium chloride, ammonium acetate, hydroxylamine hydrochloride, ammonium hydroxide (ammonia water), urea, formamide and the like.
 反応溶媒としては、当該反応条件下において安定であって、不活性で、反応を妨げないものであればいずれも使用できる。反応溶媒として、酢酸、非プロトン性極性有機溶媒(DMF、DMSO、DMAc、NMPなど)、エーテル類(EtO、i-PrO、TBME、CPME、THF、ジオキサンなど)、脂肪族炭化水素類(ペンタン、へキサン、ヘプタン、石油エーテルなど)、芳香族炭化水素類(ベンゼン、トルエン、キシレン、メシチレン、クロロベンゼン、ジクロロベンゼン、ニトロベンゼン、テトラリンなど)、ハロゲン系炭化水素類(クロロホルム、ジクロロメタン、四塩化炭素、ジクロロエタンなど)、低級脂肪酸エステル類(酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチルなど)、ニトリル類(アセトニトリル、プロピオニトリル、ブチロニトリルなど)などが使用できる。これらの溶媒は、反応の起こり易さなどを考慮して適宜選択することができ、1種単独で又は2種以上混合して用いることができる。 Any reaction solvent can be used as long as it is stable under the reaction conditions, inert and does not interfere with the reaction. As a reaction solvent, acetic acid, aprotic polar organic solvents (DMF, DMSO, DMAc, NMP, etc.), ethers (Et 2 O, i-Pr 2 O, TBME, CPME, THF, dioxane, etc.), aliphatic hydrocarbons (pentane, hexane, heptane, petroleum ether, etc.), aromatic hydrocarbons (benzene, toluene, xylene, mesitylene, chlorobenzene, dichlorobenzene, nitrobenzene, tetralin, etc.), halogenated hydrocarbons (chloroform, dichloromethane, tetraline, etc.) carbon chloride, dichloroethane, etc.), lower fatty acid esters (methyl acetate, ethyl acetate, butyl acetate, methyl propionate, etc.), nitriles (acetonitrile, propionitrile, butyronitrile, etc.). These solvents can be appropriately selected in consideration of the easiness of reaction and the like, and can be used singly or in combination of two or more.
 反応温度は、好ましくは、-10℃以上から使用する反応溶媒の沸点の温度までの温度範囲を選ぶことができる。反応時間は、0.1~1000時間、より好ましくは0.5~100時間である。
 上記反応により得られたジイミド化合物(DI-0)は、再結晶又はシリカゲルなどを用いたカラムクロマトグラフィーなどで精製するのが好ましい。
The reaction temperature can preferably be selected from a temperature range of -10°C or higher to the boiling point of the reaction solvent used. The reaction time is 0.1 to 1000 hours, more preferably 0.5 to 100 hours.
The diimide compound (DI-0) obtained by the above reaction is preferably purified by recrystallization or column chromatography using silica gel or the like.
<<<ジアミン成分>>>
 ポリイミド前駆体の製造に用いられるジアミン成分は特に限定されないが、下記式(3)で表されるジアミンを含むジアミン成分が好ましい。
Figure JPOXMLDOC01-appb-C000030
(Ar、及びAr1’は、それぞれ、ベンゼン環、ビフェニル構造、又はナフタレン環を表し、該ベンゼン環、該ビフェニル構造、又は該ナフタレン環上の1つ以上の水素原子は1価の基で置換されてもよい。L及びL1’は、それぞれ、単結合、-O-、-C(=O)-、又は-O-C(=O)-を表す。Aは、-CH-、炭素数2~12のアルキレン基、又は該アルキレン基の炭素-炭素結合の間に、-O-、-C(=O)-O-、及び-O-C(=O)-の少なくともいずれかの基が挿入されてなる2価の有機基を表す。Aが有する任意の水素原子は、ハロゲン原子で置換されていてもよい。)
<<<diamine component>>>
Although the diamine component used for producing the polyimide precursor is not particularly limited, a diamine component containing a diamine represented by the following formula (3) is preferable.
Figure JPOXMLDOC01-appb-C000030
(Ar 1 and Ar 1′ each represent a benzene ring, a biphenyl structure, or a naphthalene ring, and one or more hydrogen atoms on the benzene ring, the biphenyl structure, or the naphthalene ring are monovalent groups; optionally substituted, L 1 and L 1′ each represent a single bond, —O—, —C(=O)—, or —OC(=O)—, A is —CH 2 -, an alkylene group having 2 to 12 carbon atoms, or at least -O-, -C(=O)-O-, and -OC(=O)- between the carbon-carbon bonds of the alkylene group represents a divalent organic group into which any group is inserted.Any hydrogen atom of A may be substituted with a halogen atom.)
 上記式(3)におけるAr、及びAr1’は、それぞれ、ベンゼン環、ビフェニル構造、又はナフタレン環を表す。ベンゼン環、ビフェニル構造、又はナフタレン環上の1つ以上の水素原子は1価の基で置換されてもよく、該1価の基としては、ハロゲン原子、炭素数1~3のアルキル基、炭素数2~3のアルケニル基、炭素数1~3のアルコキシ基、炭素数1~3のフルオロアルキル基、炭素数2~3のフルオロアルケニル基、炭素数1~3のフルオロアルコキシ基、炭素数2~3のアルキルオキシカルボニル基、シアノ基、ニトロ基等が挙げられる。 Ar 1 and Ar 1′ in formula (3) above each represent a benzene ring, a biphenyl structure, or a naphthalene ring. One or more hydrogen atoms on the benzene ring, biphenyl structure, or naphthalene ring may be substituted with a monovalent group, and the monovalent group includes a halogen atom, an alkyl group having 1 to 3 carbon atoms, a carbon alkenyl group having 2 to 3 carbon atoms, alkoxy group having 1 to 3 carbon atoms, fluoroalkyl group having 1 to 3 carbon atoms, fluoroalkenyl group having 2 to 3 carbon atoms, fluoroalkoxy group having 1 to 3 carbon atoms, 2 carbon atoms to 3 alkyloxycarbonyl groups, cyano groups, nitro groups, and the like.
 上記式(3)のAr、及びAr1’において、ベンゼン環に対するアミノ基とL又はL1’との結合位置は、1,4-位又は1,3-位であることがより好ましく、1,4-位がさらに好ましい。ビフェニル構造に対するアミノ基とL又はL1’との結合位置は、4,4’-位又は3,3’-位がより好ましく、4,4’-位がさらに好ましい。ナフタレン環に対するアミノ基とL又はL1’との結合位置は、ナフタレン環の結合位置は、1,5-位又は2,6-位がより好ましく、2,6-位がさらに好ましい。 In Ar 1 and Ar 1′ in the above formula (3), the bonding position between the amino group and L 1 or L 1′ with respect to the benzene ring is more preferably 1,4-position or 1,3-position. , 1,4-positions are more preferred. The binding positions of the amino group and L 1 or L 1′ with respect to the biphenyl structure are more preferably 4,4′-positions or 3,3′-positions, more preferably 4,4′-positions. As for the bonding positions of the amino group and L 1 or L 1′ with respect to the naphthalene ring, the bonding positions of the naphthalene ring are more preferably 1,5-positions or 2,6-positions, and still more preferably 2,6-positions.
 Aは、-CH-を表すか、又は炭素数2~12のアルキレン基を表すか、又は該アルキレン基の炭素-炭素結合の間に、-O-、-C(=O)-O-、及び-O-C(=O)-の少なくともいずれかの基が挿入されてなる2価の有機基を表す。Aが有する任意の水素原子は、ハロゲン原子で置換されていてもよい。
 炭素数2~12のアルキレン基は、直鎖状であってもよいし、分岐状であってもよいが、直鎖状であることが好ましい。
 2価の有機基に挿入される-O-、-C(=O)-O-、及び-O-C(=O)-は、それぞれ1つであってもよいし、複数であってもよい。
A represents -CH 2 -, or represents an alkylene group having 2 to 12 carbon atoms, or between the carbon-carbon bonds of the alkylene group, -O-, -C(=O)-O- , and —O—C(=O)— represents a divalent organic group into which at least one group is inserted. Any hydrogen atom of A may be substituted with a halogen atom.
The alkylene group having 2 to 12 carbon atoms may be linear or branched, but is preferably linear.
-O-, -C(=O)-O-, and -OC(=O)- inserted into the divalent organic group may be one or more good.
 上記式(3)における基-L-A-L1’-の好ましい具体例を以下に挙げる。
 -(CH-、
 -O-(CH-、
 -O-(CH-O-、
 -C(=O)-(CH-C(=O)-、
 -O-C(=O)-(CH-O-、
 -O-C(=O)-(CH-O-C(=O)-、
 -O-C(=O)-(CH-C(=O)-O-、
 -C(=O)-O-(CH-O-C(=O)-、
 -(CH)m1-O-(CH)n’-O-(CH)m2-、
 -(CH)m1-O-C(=O)-(CH)n’-C(=O)-O-(CH)m2-、
 -(CH)m1-C(=O)-O-(CHn’-O-C(=O)-(CH)m2
Preferred specific examples of the group —L 1 —AL 1′ — in formula (3) are shown below.
—(CH 2 ) n —,
—O—(CH 2 ) n —,
—O—(CH 2 ) n —O—,
-C(=O)-(CH 2 ) n -C(=O)-,
-O-C(=O)-( CH2 ) n -O-,
-O-C(=O)-( CH2 ) n -O-C(=O)-,
-O-C(=O)-( CH2 ) n -C(=O)-O-,
-C(=O)-O-( CH2 ) n -O-C(=O)-,
—(CH 2 ) m1 —O—(CH 2 ) n′ —O—(CH 2 ) m2 —,
-(CH 2 ) m1 -O-C(=O)-(CH 2 ) n' -C(=O)-O-(CH 2 ) m2 -,
-(CH 2 ) m1 -C(=O)-O-(CH 2 ) n' -O-C(=O)-(CH 2 ) m2 -
 上記基-L-A-L1’-の好ましい具体例において、nは、1~12の整数、より好ましくは2~12の整数、更に好ましくは2~6の整数である。
 m1、m2及びn’は、それらの合計が、3~12の整数、より好ましくは6~12の整数である。m1、及びm2は、それぞれ、1~4の整数がより好ましく、2~4の整数がより一層好ましい。n’は、2~6の整数がより好ましく、2~4の整数がより一層好ましい。
In preferred embodiments of the group -L 1 -AL 1′ - above, n is an integer of 1-12, more preferably an integer of 2-12, and even more preferably an integer of 2-6.
The sum of m1, m2 and n' is an integer of 3-12, more preferably an integer of 6-12. Each of m1 and m2 is more preferably an integer of 1 to 4, and still more preferably an integer of 2 to 4. n′ is more preferably an integer of 2-6, and even more preferably an integer of 2-4.
 式(3)で表されるジアミンの割合は、ジアミン成分1モルに対して1モル以上%であることが好ましく、10モル%以上であることがより好ましく、20モル%以上であることがさらに好ましい。 The ratio of the diamine represented by the formula (3) is preferably 1 mol% or more, more preferably 10 mol% or more, and further preferably 20 mol% or more with respect to 1 mol of the diamine component. preferable.
 重合体(A)は、上記に記載のジアミン以外のその他のジアミンを含んでいてもよい。以下にその他のジアミンの例を挙げるが、本発明はこれらに限定されるものではない。上記式(3)で表されるジアミンに加えて、その他のジアミンを併用する場合は、ジアミン成分に対する式(3)で表されるジアミンの使用量は、90モル%以下が好ましく、80モル%以下がより好ましい。以下にその他のジアミンの例を挙げるが、本発明はこれらに限定されるものではない。上記その他のジアミンは、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。 The polymer (A) may contain diamines other than the diamines described above. Examples of other diamines are listed below, but the present invention is not limited to these. In addition to the diamine represented by the above formula (3), when other diamines are used in combination, the amount of the diamine represented by the formula (3) to the diamine component is preferably 90 mol% or less, and 80 mol%. The following are more preferred. Examples of other diamines are listed below, but the present invention is not limited to these. The other diamines may be used singly or in combination of two or more.
 p-フェニレンジアミン、2,3,5,6-テトラメチル-p-フェニレンジアミン、2,5-ジメチル-p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジメチル-m-フェニレンジアミン、1,4-ジアミノ-2,5-メトキシベンゼン、2,5-ジアミノトルエン、2,6-ジアミノトルエン、4-アミノベンジルアミン、2-(4-アミノフェニル)エチルアミン、4-(2-(メチルアミノ)エチル)アニリン、4-(2-アミノエチル)アニリン、2-(6-アミノナフチル)エチルアミン、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、3-トリフルオロメチル-4,4’-ジアミノビフェニル、2-トリフルオロメチル-4,4’-ジアミノビフェニル、3-フルオロ-4,4’-ジアミノビフェニル、2-フルオロ-4,4’-ジアミノビフェニル、2,2’-ジフルオロ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、3,3’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、4,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、2,2’-ジアミノビフェニル、2,3’-ジアミノビフェニル、1,5-ジアミノナフタレン、1,6-ジアミノナフタレン、1,7-ジアミノナフタレン、2,5-ジアミノナフタレン、2,6-ジアミノナフタレン、2,7-ジアミノナフタレン;N,N’-ビス(4-アミノフェニル)-シクロブタン-(1,2,3,4)-テトラカルボン酸ジイミド、N,N’-ビス(4-アミノフェニル)-1,3-ジメチルシクロブタン-(1,2,3,4)-テトラカルボン酸ジイミド、N,N’-ビス(2,2’-ビス(トリフルオロメチル)-4’-アミノ-1,1’-ビフェニル-4-イル)-シクロブタン-(1,2,3,4)-テトラカルボン酸ジイミドなどのテトラカルボン酸ジイミド構造を有するジアミン; p-phenylenediamine, 2,3,5,6-tetramethyl-p-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, m-phenylenediamine, 2,4-dimethyl-m-phenylenediamine, 1, 4-diamino-2,5-methoxybenzene, 2,5-diaminotoluene, 2,6-diaminotoluene, 4-aminobenzylamine, 2-(4-aminophenyl)ethylamine, 4-(2-(methylamino) ethyl)aniline, 4-(2-aminoethyl)aniline, 2-(6-aminonaphthyl)ethylamine, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4' -diaminobiphenyl, 3,3'-dimethoxy-4,4'-diaminobiphenyl, 3,3'-dihydroxy-4,4'-diaminobiphenyl, 3-trifluoromethyl-4,4'-diaminobiphenyl, 2- trifluoromethyl-4,4'-diaminobiphenyl, 3-fluoro-4,4'-diaminobiphenyl, 2-fluoro-4,4'-diaminobiphenyl, 2,2'-difluoro-4,4'-diaminobiphenyl , 3,3′-difluoro-4,4′-diaminobiphenyl, 2,2′-bis(trifluoromethyl)-4,4′-diaminobiphenyl, 3,3′-bis(trifluoromethyl)-4, 4'-diaminobiphenyl, 3,4'-diaminobiphenyl, 4,4'-diaminobiphenyl, 3,3'-diaminobiphenyl, 2,2'-diaminobiphenyl, 2,3'-diaminobiphenyl, 1,5- Diaminonaphthalene, 1,6-diaminonaphthalene, 1,7-diaminonaphthalene, 2,5-diaminonaphthalene, 2,6-diaminonaphthalene, 2,7-diaminonaphthalene; N,N'-bis(4-aminophenyl) -cyclobutane-(1,2,3,4)-tetracarboxylic diimide, N,N'-bis(4-aminophenyl)-1,3-dimethylcyclobutane-(1,2,3,4)-tetracarboxylic acid diimide, N,N'-bis(2,2'-bis(trifluoromethyl)-4'-amino-1,1'-biphenyl-4-yl)-cyclobutane-(1,2,3,4) - diamines having a tetracarboxylic diimide structure, such as tetracarboxylic diimide;
 1,4-フェニレンビス(4-アミノベンゾエート)、1,4-フェニレンビス(3-アミノベンゾエート)、1,3-フェニレンビス(4-アミノベンゾエート)、1,3-フェニレンビス(3-アミノベンゾエート)、ビス(4-アミノフェニル)テレフタレート、ビス(3-アミノフェニル)テレフタレート、ビス(4-アミノフェニル)イソフタレート、ビス(3-アミノフェニル)イソフタレート;4,4’-ジアミノアゾベンゼン、ジアミノトラン、4,4-ジアミノカルコン、又は[4-[(E)-3-[2-(2,4-ジアミノフェニル)エトキシ]-3-オキソ-プロパ-1-エニル]フェニル]4-(4,4,4-トリフルオロブトキシ)ベンゾエート、若しくは[4-[(E)-3-[[5-アミノ-2-[4-アミノ-2-[[(E)-3-[4-[4-(4,4,4-トリフルオロブトキシ)ベンゾイル]オキシフェニル]プロパ-2-エノイル]オキシメチル]フェニル]フェニル]メトキシ]-3-オキソ-プロパ-1-エニル]フェニル]4-(4,4,4-トリフルオロブトキシ)ベンゾエートに代表されるシンナメート構造を有する芳香族ジアミンなどの光配向性基を有するジアミン;メタクリル酸2-(2,4-ジアミノフェノキシ)エチル又は2,4-ジアミノ-N,N-ジアリルアニリンなどの光重合性基を末端に有するジアミン;1-(4-(2-(2,4-ジアミノフェノキシ)エトキシ)フェニル)-2-ヒドロキシ-2-メチルプロパノン、2-(4-(2-ヒドロキシ-2-メチルプロパノイル)フェノキシ)エチル-3,5-ジアミノベンゾエートなどのラジカル重合開始剤機能を有するジアミン;4,4’-ジアミノベンズアニリドなどのアミド結合を有するジアミン;4,4’-ジアミノジフェニルウレアなどのウレア結合を有するジアミン;HN-Y-NH(Yは、分子内に、-N(D)-(Dは、加熱によって脱離して水素原子に置き換わる保護基を表す。)を有する2価の有機基を表す。)などの熱脱離性基を有するジアミン; 1,4-phenylene bis(4-aminobenzoate), 1,4-phenylene bis(3-aminobenzoate), 1,3-phenylene bis(4-aminobenzoate), 1,3-phenylene bis(3-aminobenzoate ), bis(4-aminophenyl) terephthalate, bis(3-aminophenyl) terephthalate, bis(4-aminophenyl) isophthalate, bis(3-aminophenyl) isophthalate; 4,4′-diaminoazobenzene, diaminotran , 4,4-diaminochalcone, or [4-[(E)-3-[2-(2,4-diaminophenyl)ethoxy]-3-oxo-prop-1-enyl]phenyl]4-(4, 4,4-trifluorobutoxy)benzoate, or [4-[(E)-3-[[5-amino-2-[4-amino-2-[[(E)-3-[4-[4- (4,4,4-trifluorobutoxy)benzoyl]oxyphenyl]prop-2-enoyl]oxymethyl]phenyl]phenyl]methoxy]-3-oxo-prop-1-enyl]phenyl]4-(4,4 ,4-trifluorobutoxy) diamines having photoalignable groups such as aromatic diamines having a cinnamate structure typified by benzoate; 2-(2,4-diaminophenoxy)ethyl methacrylate or 2,4-diamino-N , N-diallylaniline and other photopolymerizable group-terminated diamines; 1-(4-(2-(2,4-diaminophenoxy)ethoxy)phenyl)-2-hydroxy-2-methylpropanone, 2- Diamines with a radical polymerization initiator function such as (4-(2-hydroxy-2-methylpropanoyl)phenoxy)ethyl-3,5-diaminobenzoate; Diamines with an amide bond such as 4,4′-diaminobenzanilide diamines having a urea bond such as 4,4′ - diaminodiphenylurea ; Represents a protective group that replaces a hydrogen atom.) Represents a divalent organic group having a diamine having a thermally releasable group such as);
 3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、4,4’-スルホニルジアニリン、3,3’-スルホニルジアニリン、ビス(4-アミノフェニル)シラン、ビス(3-アミノフェニル)シラン、ジメチル-ビス(4-アミノフェニル)シラン、ジメチル-ビス(3-アミノフェニル)シラン、4,4’-チオジアニリン、3,3’-チオジアニリン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、4,4’-ジアミノベンゾフェノン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(4-アミノベンジル)ベンゼン;2,6-ジアミノピリジン、3,4-ジアミノピリジン、2,4-ジアミノピリミジン、3,6-ジアミノカルバゾール、N-メチル-3,6-ジアミノカルバゾール、1,4-ビス-(4-アミノフェニル)-ピペラジン、3,6-ジアミノアクリジン、N-エチル-3,6-ジアミノカルバゾール、N-フェニル-3,6-ジアミノカルバゾール、N-(3-(1H-イミダゾール-1-イル)プロピル-3,5-ジアミノベンズアミド、4-[4-[(4-アミノフェノキシ)メチル]-4,5-ジヒドロ-4-メチル-2-オキサゾリル]-ベンゼンアミン、4-[4-[(4-アミノフェノキシ)メチル]-4,5-ジヒドロ-2-オキサゾリル]-ベンゼンアミン、1,4-ビス(p-アミノベンジル)ピペラジン、4,4’-[4,4’-プロパン-1,3-ジイルビス(ピペリジン-1,4-ジイル)]ジアニリン、4-(4-アミノフェノキシカルボニル)-1-(4-アミノフェニル)ピペリジン、2,5-ビス(4-アミノフェニル)ピロール、4,4’-(1-メチル-1H-ピロール-2,5-ジイル)ビス[ベンゼンアミン]、1,4-ビス-(4-アミノフェニル)-ピペラジン、2-N-(4-アミノフェニル)ピリジン-2,5-ジアミン、2-N-(5-アミノピリジン-2-イル)ピリジン-2,5-ジアミン、2-(4-アミノフェニル)-5-アミノベンズイミダゾール、2-(4-アミノフェニル)-6-アミノベンズイミダゾール、5-(1H-ベンズイミダゾール-2-イル)ベンゼン-1,3-ジアミン、若しくは下記式(z-1)~式(z-5)で表されるジアミンなどの複素環含有ジアミン、又は、4,4’-ジアミノジフェニルアミン、4,4’-ジアミノジフェニル-N-メチルアミン、N,N’-ビス(4-アミノフェニル)-ベンジジン、N,N’-ビス(4-アミノフェニル)-N,N’-ジメチルベンジジン、若しくは、N,N’-ビス(4-アミノフェニル)-N,N’-ジメチル-1,4-ベンゼンジアミンなどのジフェニルアミン構造を有するジアミンに代表される、窒素原子を含む複素環、第二級又は第三級のアミノ基よりなる群から選ばれる少なくとも一種の窒素原子含有構造(但し、-N(D)-(Dは加熱によって脱離し水素原子に置き換わる保護基を表す。)に由来するアミノ基を除く。)を有するジアミン; 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 4,4'-sulfonyldianiline, 3,3'-sulfonyldianiline, bis(4-aminophenyl)silane , bis(3-aminophenyl)silane, dimethyl-bis(4-aminophenyl)silane, dimethyl-bis(3-aminophenyl)silane, 4,4′-thiodianiline, 3,3′-thiodianiline, 1,4- bis(4-aminophenyl)benzene, 1,3-bis(4-aminophenyl)benzene, 4,4'-diaminobenzophenone, 1,4-bis(4-aminophenyl)benzene, 1,3-bis(4 -aminophenyl)benzene, 1,4-bis(4-aminobenzyl)benzene; 2,6-diaminopyridine, 3,4-diaminopyridine, 2,4-diaminopyrimidine, 3,6-diaminocarbazole, N-methyl -3,6-diaminocarbazole, 1,4-bis-(4-aminophenyl)-piperazine, 3,6-diaminoacridine, N-ethyl-3,6-diaminocarbazole, N-phenyl-3,6-diamino Carbazole, N-(3-(1H-imidazol-1-yl)propyl-3,5-diaminobenzamide, 4-[4-[(4-aminophenoxy)methyl]-4,5-dihydro-4-methyl- 2-oxazolyl]-benzenamine, 4-[4-[(4-aminophenoxy)methyl]-4,5-dihydro-2-oxazolyl]-benzenamine, 1,4-bis(p-aminobenzyl)piperazine, 4,4′-[4,4′-propane-1,3-diylbis(piperidine-1,4-diyl)]dianiline, 4-(4-aminophenoxycarbonyl)-1-(4-aminophenyl)piperidine, 2,5-bis(4-aminophenyl)pyrrole, 4,4′-(1-methyl-1H-pyrrole-2,5-diyl)bis[benzenamine], 1,4-bis-(4-aminophenyl )-piperazine, 2-N-(4-aminophenyl)pyridine-2,5-diamine, 2-N-(5-aminopyridin-2-yl)pyridine-2,5-diamine, 2-(4-amino Phenyl)-5-aminobenzimidazole, 2-(4-aminophenyl)-6-aminobenzimidazole, 5-(1H-benzimidazol-2-yl)benzene-1,3-diamine, or the following formula (z- 1) ~ Represented by formula (z-5) or 4,4′-diaminodiphenylamine, 4,4′-diaminodiphenyl-N-methylamine, N,N′-bis(4-aminophenyl)-benzidine, N,N Diphenylamine structures such as '-bis(4-aminophenyl)-N,N'-dimethylbenzidine or N,N'-bis(4-aminophenyl)-N,N'-dimethyl-1,4-benzenediamine At least one nitrogen atom-containing structure selected from the group consisting of a heterocyclic ring containing a nitrogen atom, a secondary or tertiary amino group (provided that -N (D) - (D is It represents a protective group that is eliminated by heating and replaced with a hydrogen atom. ) except amino groups derived from );
 2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、4,6-ジアミノレゾルシノール、4,4’-ジアミノ-3,3’-ジヒドロキシビフェニル;2,4-ジアミノ安息香酸、2,5-ジアミノ安息香酸、3,5-ジアミノ安息香酸、4,4’-ジアミノビフェニル-3-カルボン酸、4,4’-ジアミノジフェニルメタン-3-カルボン酸、1,2-ビス(4-アミノフェニル)-3-カルボン酸、4,4’-ジアミノビフェニル-3,3’-ジカルボン酸、4,4’-ジアミノビフェニル-2,2’-ジカルボン酸、3,3’-ジアミノビフェニル-4,4’-ジカルボン酸、3,3’-ジアミノビフェニル-2,4’-ジカルボン酸、4,4’-ジアミノジフェニルメタン-3,3’-ジカルボン酸、1,2-ビス(4-アミノフェニル)-3,3’-ジカルボン酸、4,4’-ジアミノジフェニルエーテル-3,3’-ジカルボン酸などのカルボキシ基を有するジアミン;1-(4-アミノフェニル)-1,3,3-トリメチル-1H-インダン-5-アミン、1-(4-アミノフェニル)-2,3-ジヒドロ-1,3,3-トリメチル-1H-インデン-6-アミン;コレスタニルオキシ-3,5-ジアミノベンゼン、コレステニルオキシ-3,5-ジアミノベンゼン、コレスタニルオキシ-2,4-ジアミノベンゼン、3,5-ジアミノ安息香酸コレスタニル、3,5-ジアミノ安息香酸コレステニル、3,5-ジアミノ安息香酸ラノスタニル及び3,6-ビス(4-アミノベンゾイルオキシ)コレスタンなどのステロイド骨格を有するジアミン;下記式(V-1)~(V-2)で表されるジアミン;1,3-ビス(3-アミノプロピル)-テトラメチルジシロキサンなどのシロキサン結合を有するジアミン;メタキシリレンジアミン、1,3-プロパンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミンなどの非環式脂肪族ジアミン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ジアミノシクロヘキサン、4,4’-メチレンビス(シクロヘキシルアミン)などの脂環式ジアミン、WO2018/117239号に記載の式(Y-1)~(Y-167)のいずれかで表される基に2つのアミノ基が結合したジアミンなど。 2,4-diaminophenol, 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol, 4,6-diaminoresorcinol, 4,4'-diamino-3,3'-dihydroxy Biphenyl; 2,4-diaminobenzoic acid, 2,5-diaminobenzoic acid, 3,5-diaminobenzoic acid, 4,4'-diaminobiphenyl-3-carboxylic acid, 4,4'-diaminodiphenylmethane-3-carboxylic acid acid, 1,2-bis(4-aminophenyl)-3-carboxylic acid, 4,4'-diaminobiphenyl-3,3'-dicarboxylic acid, 4,4'-diaminobiphenyl-2,2'-dicarboxylic acid , 3,3′-diaminobiphenyl-4,4′-dicarboxylic acid, 3,3′-diaminobiphenyl-2,4′-dicarboxylic acid, 4,4′-diaminodiphenylmethane-3,3′-dicarboxylic acid, 1 , 2-bis(4-aminophenyl)-3,3′-dicarboxylic acid, 4,4′-diaminodiphenyl ether-3,3′-dicarboxylic acid and other diamines having a carboxyl group; 1-(4-aminophenyl) -1,3,3-trimethyl-1H-indan-5-amine, 1-(4-aminophenyl)-2,3-dihydro-1,3,3-trimethyl-1H-indene-6-amine; cholestanil Oxy-3,5-diaminobenzene, Cholestenyloxy-3,5-diaminobenzene, Cholestanyloxy-2,4-diaminobenzene, Cholestanyl 3,5-diaminobenzoate, Cholestenyl 3,5-diaminobenzoate, 3 diamines having a steroid skeleton such as lanostanyl, 5-diaminobenzoate and 3,6-bis(4-aminobenzoyloxy)cholestane; diamines represented by the following formulas (V-1) to (V-2); Diamines with siloxane bonds such as 3-bis(3-aminopropyl)-tetramethyldisiloxane; Alicyclic diamines such as aliphatic diamines, 1,3-bis(aminomethyl)cyclohexane, 1,4-diaminocyclohexane, 4,4'-methylenebis(cyclohexylamine), formula (Y- 1) A diamine in which two amino groups are bonded to a group represented by any one of -(Y-167), and the like.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
(式(V-1)中、m、及びnはそれぞれ0~3の整数(但し、1≦m+n≦4を満たす。)であり、jは0又は1の整数であり、Xは、-(CH-(aは1~15の整数である。)、-CONH-、-NHCO-、-CO-N(CH)-、-NH-、-O-、-CHO-、-CH-OCO-、-COO-、又は-OCO-を表す。Rは、フッ素原子、炭素数1~10のフッ素原子含有アルキル基、炭素数1~10のフッ素原子含有アルコキシ基、炭素数3~10のアルキル基、炭素数3~10のアルコキシ基、又は炭素数3~10のアルコキシアルキル基を表す。式(V-2)中、Xは-O-、-CHO-、-CH-OCO-、-COO-、又は-OCO-を表し、Rは、炭素数3~30のアルキル基、炭素数3~20のフッ素原子含有アルキル基を表す。m、n、X、及びRが2つ存在する場合、それぞれ独立して、上記定義を有する。)
Figure JPOXMLDOC01-appb-C000032
(In formula (V-1), m and n are each an integer of 0 to 3 (provided that 1 ≤ m + n ≤ 4), j is an integer of 0 or 1, and X 1 is - (CH 2 ) a — (a is an integer of 1 to 15), —CONH—, —NHCO—, —CO—N(CH 3 )—, —NH—, —O—, —CH 2 O— , —CH 2 —OCO—, —COO—, or —OCO—, wherein R 1 is a fluorine atom, a fluorine atom-containing alkyl group having 1 to 10 carbon atoms, a fluorine atom-containing alkoxy group having 1 to 10 carbon atoms, represents an alkyl group having 3 to 10 carbon atoms, an alkoxy group having 3 to 10 carbon atoms, or an alkoxyalkyl group having 3 to 10 carbon atoms, wherein X 2 is -O- or -CH 2 O; -, -CH 2 -OCO-, -COO-, or -OCO-, where R 2 represents an alkyl group having 3 to 30 carbon atoms or a fluorine atom-containing alkyl group having 3 to 20 carbon atoms, m, n , X 1 and R 1 are each independently defined above.)
 なお、上記したその他のジアミンが有する-N(D)-におけるDは、ベンジルオキシカルボニル基、9-フルオレニルメチルオキシカルボニル基、アリルオキシカルボニル基、Bocなどに代表されるカルバメート系の有機基が好ましい。熱による脱離の効率が良く、比較的低い温度で脱離し、脱離した際に無害な気体として排出されるという観点では、Bocが特に好ましい。 D in -N(D)- of the other diamines described above is a carbamate organic group represented by a benzyloxycarbonyl group, 9-fluorenylmethyloxycarbonyl group, allyloxycarbonyl group, Boc, and the like. is preferred. Boc is particularly preferable from the viewpoint that it is efficiently desorbed by heat, is desorbed at a relatively low temperature, and is discharged as a harmless gas when desorbed.
 上記その他のジアミンとして例示した熱脱離性基を有するジアミンの好ましい例として、下記式(d-1)~(d-7)から選ばれるジアミンが好ましい。
Figure JPOXMLDOC01-appb-C000033
(式(d-2)、(d-6)、及び(d-7)中、Rは水素原子又はBocを表す。)
Preferred examples of diamines having a thermally leaving group exemplified as other diamines are diamines selected from the following formulas (d-1) to (d-7).
Figure JPOXMLDOC01-appb-C000033
(In formulas (d-2), (d-6), and (d-7), R represents a hydrogen atom or Boc.)
 ポリイミド前駆体の製造に用いられるジアミン成分として、上記熱脱離性基を有するジアミンを用いる場合、本発明の効果を好適に得る観点から、好ましくは、ジアミン成分1モルに対して5~40モル%であることが好ましく、5~35モル%であることがより好ましく、5~30モル%であることがさらに好ましい。 When the diamine having the thermally-leaving group is used as the diamine component used in the production of the polyimide precursor, from the viewpoint of suitably obtaining the effect of the present invention, it is preferably 5 to 40 mol per 1 mol of the diamine component. %, more preferably 5 to 35 mol %, even more preferably 5 to 30 mol %.
 本発明の液晶配向剤は、重合体(A)以外のその他の重合体を含有してもよい。その他の重合体の具体例を挙げると、上記式(1)で表されるジイミドジエステル化合物(B)を含まないテトラカルボン酸誘導体成分とジアミン成分を用いて得られるポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体(Q)、ポリシロキサン、ポリエステル、ポリアミド、ポリウレア、ポリオルガノシロキサン、セルロース誘導体、ポリアセタール、ポリスチレン誘導体、ポリ(スチレン-マレイン酸無水物)共重合体、ポリ(イソブチレン-マレイン酸無水物)共重合体、ポリ(ビニルエーテル-マレイン酸無水物)共重合体、ポリ(スチレン-フェニルマレイミド)誘導体、及びポリ(メタ)アクリレートからなる群から選ばれる重合体などが挙げられる。上記重合体(Q)として、電圧保持率を高める観点から、上記窒素原子含有構造を有するジアミンを含有するジアミン成分を用いて得られるポリイミド前駆体及び該ポリイミド前駆体のイミド化物からなる群から選ばれる少なくとも1種の重合体(Q’)が挙げられる。ポリ(スチレン-マレイン酸無水物)共重合体の具体例としては、SMA1000、SMA2000、SMA3000(Cray Valley社製)、GSM301(岐阜セラツク製造所社製)などが挙げられ、ポリ(イソブチレン-マレイン酸無水物)共重合体の具体例としては、イソバン-600(クラレ社製)が挙げられ、ポリ(ビニルエーテル-マレイン酸無水物)共重合体の具体例としては、Gantrez AN-139(メチルビニルエーテル無水マレイン酸樹脂、アシュランド社製)が挙げられる。
 その他の重合体は、一種を単独で使用してもよく、また二種以上を組み合わせて使用してもよい。その他の重合体の含有割合は、液晶配向剤中に含まれる重合体成分100質量部に対して、10~90質量部がより好ましく、20~80質量部が更に好ましい。
 なお、本明細書において重合体成分とは、液晶配向剤に含有される、重合体(A)及び重合体(A)以外のその他の重合体の総称である。液晶配向剤に含有される重合体が重合体(A)のみの場合、重合体成分は重合体(A)を指す。
The liquid crystal aligning agent of this invention may contain other polymers other than a polymer (A). Specific examples of other polymers include a polyimide precursor obtained using a tetracarboxylic acid derivative component and a diamine component that do not contain the diimide diester compound (B) represented by the above formula (1), and the polyimide precursor. At least one polymer (Q) selected from the group consisting of polyimides, polysiloxanes, polyesters, polyamides, polyureas, polyorganosiloxanes, cellulose derivatives, polyacetals, polystyrene derivatives, poly(styrene-maleic anhydride material) copolymers, poly(isobutylene-maleic anhydride) copolymers, poly(vinyl ether-maleic anhydride) copolymers, poly(styrene-phenylmaleimide) derivatives, and poly(meth)acrylates and polymers selected from. From the viewpoint of increasing the voltage holding ratio, the polymer (Q) is selected from the group consisting of a polyimide precursor obtained using a diamine component containing a diamine having a nitrogen atom-containing structure and an imidized product of the polyimide precursor. and at least one polymer (Q'). Specific examples of poly(styrene-maleic anhydride) copolymers include SMA1000, SMA2000, SMA3000 (manufactured by Cray Valley), GSM301 (manufactured by Gifu Shellac Manufacturing Co., Ltd.) and the like. Anhydride) copolymers include Isoban-600 (manufactured by Kuraray Co., Ltd.), and specific examples of poly(vinyl ether-maleic anhydride) copolymers include Gantrez AN-139 (methyl vinyl ether anhydride). maleic acid resin, manufactured by Ashland).
Other polymers may be used singly or in combination of two or more. The content of the other polymer is more preferably 10 to 90 parts by mass, still more preferably 20 to 80 parts by mass, per 100 parts by mass of the polymer component contained in the liquid crystal aligning agent.
In addition, in this specification, a polymer component is a general term for other polymers other than a polymer (A) and a polymer (A) contained in a liquid crystal aligning agent. When the polymer contained in the liquid crystal aligning agent is only the polymer (A), the polymer component refers to the polymer (A).
 上記重合体(Q’)を得るためのテトラカルボン酸誘導体成分として、例えば、上記重合体(A)で例示したテトラカルボン酸二無水物系化合物を含むテトラカルボン酸誘導体成分(但し、上記式(1)で表されるジイミドジエステル化合物(B)を含まない。)が挙げられる。中でも上記式(2)で表されるテトラカルボン酸二無水物若しくはその誘導体が好ましい。上記式(2)で表されるテトラカルボン酸二無水物若しくはその誘導体の使用量は、ジアミン成分と反応させる全テトラカルボン酸誘導体成分1モルに対して、10モル%以上が好ましく、20モル%以上がより好ましい。 As a tetracarboxylic acid derivative component for obtaining the polymer (Q′), for example, a tetracarboxylic acid derivative component containing a tetracarboxylic dianhydride-based compound exemplified for the polymer (A) (provided that the above formula ( 1) does not contain the diimide diester compound (B). Among them, the tetracarboxylic dianhydride represented by the above formula (2) or a derivative thereof is preferable. The amount of the tetracarboxylic dianhydride or derivative thereof represented by the above formula (2) is preferably 10 mol% or more, preferably 20 mol%, based on 1 mol of the total tetracarboxylic acid derivative component to be reacted with the diamine component. The above is more preferable.
<ポリイミド前駆体の製造方法>
 ポリイミド前駆体の一つであるポリアミック酸は、以下の方法により製造できる。具体的には、テトラカルボン酸二無水物を含むテトラカルボン酸誘導体成分と上記ジアミン成分とを有機溶媒の存在下で-20~150℃、好ましくは0~50℃において、30分~24時間、好ましくは1~12時間反応(重縮合反応)させることによって合成できる。
 上記の反応に用いる有機溶媒の具体例としては、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、1,3-ジメチル-2-イミダゾリジノンが挙げられる。また、重合体の溶媒溶解性が高い場合は、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン、又はプロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、ジエチレングリコールモノメチルエーテル、又はジエチレングリコールモノエチルエーテルを用いることができる。これらは2種以上を混合して用いてもよい。
<Method for producing polyimide precursor>
Polyamic acid, which is one of polyimide precursors, can be produced by the following method. Specifically, a tetracarboxylic acid derivative component containing a tetracarboxylic dianhydride and the diamine component are mixed in the presence of an organic solvent at −20 to 150° C., preferably 0 to 50° C., for 30 minutes to 24 hours. Preferably, it can be synthesized by reacting (polycondensation reaction) for 1 to 12 hours.
Specific examples of the organic solvent used in the above reaction include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, γ-butyrolactone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, 1,3-dimethyl-2-imidazolidinone can be mentioned. Further, when the solvent solubility of the polymer is high, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, or propylene glycol monomethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, Ethylene glycol monopropyl ether, diethylene glycol monomethyl ether, or diethylene glycol monoethyl ether can be used. These may be used in combination of two or more.
 反応は任意の濃度で行うことができるが、好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、溶媒を追加することもできる。反応においては、ジアミン成分の合計モル数とテトラカルボン酸誘導体成分の合計モル数の比は0.8~1.2であることが好ましい。通常の重縮合反応同様、このモル比が1.0に近いほど生成するポリアミック酸の分子量は大きくなる。 The reaction can be carried out at any concentration, preferably 1 to 50% by mass, more preferably 5 to 30% by mass. The initial stage of the reaction can be carried out at a high concentration, and then the solvent can be added. In the reaction, the ratio of the total number of moles of the diamine component to the total number of moles of the tetracarboxylic acid derivative component is preferably 0.8 to 1.2. Similar to a normal polycondensation reaction, the closer this molar ratio is to 1.0, the greater the molecular weight of the polyamic acid produced.
 上記反応で得られたポリアミック酸は、反応溶液をよく撹拌させながら貧溶媒に注入することで、ポリアミック酸を析出させて回収することができる。また、析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥することで精製されたポリアミック酸の粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。 The polyamic acid obtained in the above reaction can be recovered by precipitating the polyamic acid by injecting the reaction solution into a poor solvent while stirring well. Further, a purified polyamic acid powder can be obtained by performing precipitation several times, washing with a poor solvent, and drying at room temperature or by heating. Poor solvents include, but are not limited to, water, methanol, ethanol, hexane, butyl cellosolve, acetone, and toluene.
 ポリイミド前駆体の一つであるポリアミック酸エステルは、(1)上記ポリアミック酸をエステル化する方法、(2)テトラカルボン酸ジエステルジクロリドを含むテトラカルボン酸誘導体成分とジアミン成分との反応による方法、(3)テトラカルボン酸ジエステルを含むテトラカルボン酸誘導体成分とジアミンとを重縮合させる方法、等の既知の方法による製造できる。 A polyamic acid ester, which is one of the polyimide precursors, can be obtained by (1) a method of esterifying the polyamic acid, (2) a method of reacting a tetracarboxylic acid derivative component containing a tetracarboxylic acid diester dichloride with a diamine component, ( 3) It can be produced by a known method such as a method of polycondensing a tetracarboxylic acid derivative component including a tetracarboxylic acid diester with a diamine.
 上記ポリアミック酸、ポリアミック酸エステルは、それを製造するに際して、上記の如きテトラカルボン酸誘導体成分及びジアミン成分とともに、適当な末端封止剤を用いて得られる末端修飾型の重合体であってもよい。
 末端封止剤としては、例えば無水酢酸、無水マレイン酸、無水ナジック酸、無水フタル酸、無水イタコン酸、シクロヘキサンジカルボン酸無水物、3-ヒドロキシフタル酸無水物、トリメリット酸無水物、3-(3-トリメトキシシリル)プロピル)-3,4-ジヒドロフラン-2,5-ジオン、4,5,6,7-テトラフルオロイソベンゾフラン-1,3-ジオン、4-エチニルフタル酸無水物などの酸一無水物;二炭酸ジ-tert-ブチル、二炭酸ジアリルなどの二炭酸ジエステル化合物;アクリロイルクロリド、メタクリロイルクロリド、ニコチン酸クロリドなどのクロロカルボニル化合物;アニリン、2-アミノフェノール、3-アミノフェノール、4-アミノサリチル酸、5-アミノサリチル酸、6-アミノサリチル酸、2-アミノ安息香酸、3-アミノ安息香酸、4-アミノ安息香酸、シクロヘキシルアミン、n-ブチルアミン、n-ペンチルアミン、n-ヘキシルアミン、n-ヘプチルアミン、n-オクチルアミンなどのモノアミン化合物;エチルイソシアネート、フェニルイソシアネート、ナフチルイソシアネート、2-アクリロイルオキシエチルイソシアネ-ト及び2-メタクリロイルオキシエチルイソシアネ-トなどの不飽和結合を有するイソシアネートなどのモノイソシアネート化合物;エチルイソチオシアネート、アリルイソチオシアネートなどのイソチオシアネート化合物等が挙げられる。
 末端封止剤の使用割合は、使用するジアミン成分の計100モル部に対して、40モル部以下とすることが好ましく、30モル部以下とすることがより好ましい。
The above-mentioned polyamic acid and polyamic acid ester may be a terminal-modified polymer obtained by using an appropriate terminal blocking agent together with the tetracarboxylic acid derivative component and the diamine component as described above when producing them. .
Terminal blockers include, for example, acetic anhydride, maleic anhydride, nadic anhydride, phthalic anhydride, itaconic anhydride, cyclohexanedicarboxylic anhydride, 3-hydroxyphthalic anhydride, trimellitic anhydride, 3-( 3-trimethoxysilyl)propyl)-3,4-dihydrofuran-2,5-dione, 4,5,6,7-tetrafluoroisobenzofuran-1,3-dione, 4-ethynylphthalic anhydride, etc. acid monoanhydride; di-tert-butyl dicarbonate, dicarbonic acid diester compounds such as diallyl dicarbonate; acryloyl chloride, methacryloyl chloride, chlorocarbonyl compounds such as nicotinic acid chloride; aniline, 2-aminophenol, 3-aminophenol, 4-aminosalicylic acid, 5-aminosalicylic acid, 6-aminosalicylic acid, 2-aminobenzoic acid, 3-aminobenzoic acid, 4-aminobenzoic acid, cyclohexylamine, n-butylamine, n-pentylamine, n-hexylamine, monoamine compounds such as n-heptylamine and n-octylamine; isocyanates having unsaturated bonds such as ethyl isocyanate, phenyl isocyanate, naphthyl isocyanate, 2-acryloyloxyethyl isocyanate and 2-methacryloyloxyethyl isocyanate and isothiocyanate compounds such as ethyl isothiocyanate and allyl isothiocyanate.
The proportion of the terminal blocking agent used is preferably 40 mol parts or less, more preferably 30 mol parts or less, with respect to a total of 100 mol parts of the diamine component used.
<ポリイミドの製造方法>
 本発明に用いられるポリイミドは、上記のポリイミド前駆体を既知の方法によりイミド化することにより製造できる。
 ポリイミドにおいては、ポリアミック酸又はポリアミック酸エステルが有する官能基の閉環率(イミド化率ともいう)は必ずしも100%である必要はなく、用途や目的に応じて任意に調整することができる。
<Method for producing polyimide>
The polyimide used in the present invention can be produced by imidizing the above polyimide precursor by a known method.
In polyimide, the ring closure rate (also referred to as imidization rate) of the functional groups of the polyamic acid or polyamic acid ester does not necessarily need to be 100%, and can be arbitrarily adjusted according to the application and purpose.
 上記ポリアミック酸又はポリアミック酸エステルをイミド化してポリイミドを得る方法としては、上記ポリアミック酸又はポリアミック酸エステルの溶液をそのまま加熱する熱イミド化、又は上記ポリアミック酸又はポリアミック酸エステルの溶液に触媒(例:ピリジンなどの塩基性触媒、無水酢酸などの酸無水物)を添加する触媒イミド化が挙げられる。 As a method of imidizing the polyamic acid or polyamic acid ester to obtain a polyimide, thermal imidization is performed by heating the solution of the polyamic acid or polyamic acid ester as it is, or a catalyst (eg, catalyzed imidization by adding a basic catalyst such as pyridine, an acid anhydride such as acetic anhydride).
<重合体の溶液粘度・分子量>
 本発明に用いられるポリアミック酸、ポリアミック酸エステル及びポリイミドは、これを濃度10~15質量%の溶液としたときに、例えば10~1000mPa・sの溶液粘度を持つものが作業性の観点から好ましいが、特に限定されない。なお、上記重合体の溶液粘度(mPa・s)は、当該重合体の良溶媒(例えばγ-ブチロラクトン、N-メチル-2-ピロリドンなど)を用いて調製した濃度10~15質量%の重合体溶液につき、E型回転粘度計を用いて25℃において測定した値である。
<Polymer Solution Viscosity/Molecular Weight>
The polyamic acid, polyamic acid ester and polyimide used in the present invention preferably have a solution viscosity of, for example, 10 to 1000 mPa s when the concentration is 10 to 15% by mass, from the viewpoint of workability. , is not particularly limited. The solution viscosity (mPa s) of the polymer is a polymer having a concentration of 10 to 15 mass% prepared using a good solvent for the polymer (eg, γ-butyrolactone, N-methyl-2-pyrrolidone, etc.). It is a value measured at 25° C. for a solution using an E-type rotational viscometer.
 上記ポリアミック酸、ポリアミック酸エステル及びポリイミドのゲルパーミエーションクロマトグラフィー(GPC)により測定したポリスチレン換算の重量平均分子量(Mw)は、好ましくは1,000~500,000であり、より好ましくは2,000~500,000である。また、Mwと、GPCにより測定したポリスチレン換算の数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)は、好ましくは15以下であり、より好ましくは10以下である。このような分子量範囲にあることで、液晶表示素子の良好な液晶配向性を確保することができる。 The polystyrene equivalent weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of the polyamic acid, polyamic acid ester and polyimide is preferably 1,000 to 500,000, more preferably 2,000. ~500,000. In addition, the molecular weight distribution (Mw/Mn) represented by the ratio of Mw to the polystyrene equivalent number average molecular weight (Mn) measured by GPC is preferably 15 or less, more preferably 10 or less. With such a molecular weight range, it is possible to ensure good liquid crystal orientation of the liquid crystal display element.
<液晶配向剤>
 本発明の液晶配向剤は、液晶配向膜を作製するために用いられるものであり、均一な薄膜を形成させるという観点から、塗布液の形態をとる。本発明の液晶配向剤においても上記した重合体成分と、溶媒とを含有する塗布液であることが好ましい。
 本発明の液晶配向剤に含有される重合体成分の含有量(濃度)は、形成させようとする塗膜の厚みの設定によっても適宜変更できるが、均一で欠陥のない塗膜を形成させるという点から1質量%以上が好ましく、溶液の保存安定性の点からは10質量%以下が好ましい。
<Liquid crystal aligning agent>
The liquid crystal aligning agent of this invention is used in order to produce a liquid crystal aligning film, and takes the form of a coating liquid from a viewpoint of forming a uniform thin film. Also in the liquid crystal aligning agent of the present invention, it is preferable that the liquid crystal aligning agent is a coating liquid containing the above-described polymer component and a solvent.
The content (concentration) of the polymer component contained in the liquid crystal aligning agent of the present invention can be appropriately changed by setting the thickness of the coating film to be formed. 1% by mass or more is preferable from the point of view, and 10% by mass or less is preferable from the point of storage stability of the solution.
 液晶配向剤に含有される溶媒は、重合体成分が均一に溶解するものであれば特に限定されない。その具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルラクトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン、γ-バレロラクトン、1,3-ジメチル-2-イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、N-(n-プロピル)-2-ピロリドン、N-イソプロピル-2-ピロリドン、N-(n-ブチル)-2-ピロリドン、N-(tert-ブチル)-2-ピロリドン、N-(n-ペンチル)-2-ピロリドン、N-メトキシプロピル-2-ピロリドン、N-エトキシエチル-2-ピロリドン、N-メトキシブチル-2-ピロリドン、N-シクロヘキシル-2-ピロリドン(これらを総称して「良溶媒」ともいう)などを挙げられる。なかでも、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド又はγ-ブチロラクトンが好ましい。良溶媒の含有量は、液晶配向剤に含まれる溶媒全体の20~99質量%であることが好ましく、20~90質量%がより好ましく、特に好ましいのは、30~80質量%である。 The solvent contained in the liquid crystal aligning agent is not particularly limited as long as it uniformly dissolves the polymer component. Specific examples include N,N-dimethylformamide, N,N-dimethylacetamide, N,N-dimethyllactamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethylsulfoxide and γ-butyrolactone. , γ-valerolactone, 1,3-dimethyl-2-imidazolidinone, methyl ethyl ketone, cyclohexanone, cyclopentanone, 3-methoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide, N-(n-propyl)-2-pyrrolidone, N-isopropyl-2-pyrrolidone, N-(n-butyl)-2-pyrrolidone, N-(tert-butyl)-2-pyrrolidone, N-(n-pentyl )-2-pyrrolidone, N-methoxypropyl-2-pyrrolidone, N-ethoxyethyl-2-pyrrolidone, N-methoxybutyl-2-pyrrolidone, N-cyclohexyl-2-pyrrolidone (these are collectively referred to as "good solvents" Also called) and the like. Among them, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 3-methoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide and γ-butyrolactone are preferred. The content of the good solvent is preferably 20 to 99% by mass, more preferably 20 to 90% by mass, and particularly preferably 30 to 80% by mass of the total solvent contained in the liquid crystal aligning agent.
 また、液晶配向剤に含有される溶媒は、上記溶媒に加えて液晶配向剤を塗布する際の塗布性や塗膜の表面平滑性を向上させる溶媒(貧溶媒ともいう。)を併用した混合溶媒の使用が好ましい。併用する貧溶媒の具体例を下記するが、これらに限定されない。 In addition, the solvent contained in the liquid crystal aligning agent is a mixed solvent in which a solvent (also referred to as a poor solvent) that improves the coatability and the surface smoothness of the coating film when applying the liquid crystal aligning agent is used in addition to the above solvent. is preferred. Specific examples of the poor solvent used in combination are shown below, but are not limited thereto.
 例えば、ジイソプロピルエーテル、ジイソブチルエーテル、ジイソブチルカルビノール(2,6-ジメチル-4-ヘプタノール)、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、1,2-ブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、エチレングリコールモノブチルエーテル、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、プロピレングリコールモノブチルエーテル、1-(2-ブトキシエトキシ)-2-プロパノール、2-(2-ブトキシエトキシ)-1-プロパノール、プロピレングリコールモノメチルエーテルアセタート、プロピレングリコールジアセテート、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジメチルエーテル、エチレングリコールモノブチルエーテルアセタート、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、プロピレングリコールジアセテート、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸エチル、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸n-ブチル、乳酸イソアミル、ジエチレングリコールモノエチルエーテル、ジイソブチルケトン(2,6-ジメチル-4-ヘプタノン)などを挙げることができる。貧溶媒の含有量は、液晶配向剤に含まれる溶媒全体の1~80質量%が好ましく、10~80質量%がより好ましく、20~70質量%が特に好ましい。貧溶媒の種類及び含有量は、液晶配向剤の塗布装置、塗布条件、塗布環境などに応じて適宜選択される。 For example, diisopropyl ether, diisobutyl ether, diisobutylcarbinol (2,6-dimethyl-4-heptanol), ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, 1,2-butoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether , 4-hydroxy-4-methyl-2-pentanone, diethylene glycol methyl ethyl ether, diethylene glycol dibutyl ether, 3-ethoxybutyl acetate, 1-methylpentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, ethylene Glycol monoacetate, ethylene glycol diacetate, propylene carbonate, ethylene carbonate, ethylene glycol monobutyl ether, ethylene glycol monoisoamyl ether, ethylene glycol monohexyl ether, propylene glycol monobutyl ether, 1-(2-butoxyethoxy)-2- Propanol, 2-(2-butoxyethoxy)-1-propanol, propylene glycol monomethyl ether acetate, propylene glycol diacetate, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol dimethyl ether, ethylene glycol monobutyl ether acetate tart, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, 2-(2-ethoxyethoxy) ethyl acetate, diethylene glycol acetate, propylene glycol diacetate, n-butyl acetate, propylene glycol monoethyl ether acetate, 3- Methyl methoxypropionate, ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, propyl 3-methoxypropionate, butyl 3-methoxypropionate, n-butyl lactate, isoamyl lactate, diethylene glycol monoethyl ether, diisobutyl ketone (2 , 6-dimethyl-4-heptanone) and the like. The content of the poor solvent is preferably 1 to 80% by mass, more preferably 10 to 80% by mass, particularly preferably 20 to 70% by mass, of the total solvent contained in the liquid crystal aligning agent. The type and content of the poor solvent are appropriately selected according to the liquid crystal aligning agent coating device, coating conditions, coating environment, and the like.
 なかでも、ジイソブチルカルビノール、プロピレングリコールモノブチルエーテル、プロピレングリコールジアセテート、ジエチレングリコールジエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジメチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、エチレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテルアセタート、又はジイソブチルケトンが好ましい。 Among them, diisobutyl carbinol, propylene glycol monobutyl ether, propylene glycol diacetate, diethylene glycol diethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol dimethyl ether, 4-hydroxy-4-methyl-2-pentanone, ethylene glycol monobutyl ether, ethylene Glycol monobutyl ether acetate or diisobutyl ketone are preferred.
 良溶媒と貧溶媒との好ましい溶媒の組み合わせとしては、N-メチル-2-ピロリドンとエチレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとエチレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテル、N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンと4-ヒドロキシ-4-メチル-2-ペンタノンとジエチレングリコールジエチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルとジイソブチルケトン、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルとジイソプロピルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルとジイソブチルカルビノール、N-メチル-2-ピロリドンとγ-ブチロラクトンとジプロピレングリコールジメチルエーテル、N-メチル-2-ピロリドンとプロピレングリコールモノブチルエーテルとジプロピレングリコールジメチルエーテルなどを挙げることができる。 Preferred solvent combinations of a good solvent and a poor solvent include N-methyl-2-pyrrolidone and ethylene glycol monobutyl ether, N-methyl-2-pyrrolidone, γ-butyrolactone and ethylene glycol monobutyl ether, N-methyl-2- Pyrrolidone, γ-butyrolactone and propylene glycol monobutyl ether, N-ethyl-2-pyrrolidone and propylene glycol monobutyl ether, N-methyl-2-pyrrolidone, γ-butyrolactone, 4-hydroxy-4-methyl-2-pentanone and diethylene glycol diethyl ether, N-methyl-2-pyrrolidone and γ-butyrolactone and propylene glycol monobutyl ether and diisobutyl ketone, N-methyl-2-pyrrolidone and γ-butyrolactone and propylene glycol monobutyl ether and diisopropyl ether, N-methyl-2-pyrrolidone and Examples include γ-butyrolactone, propylene glycol monobutyl ether and diisobutyl carbinol, N-methyl-2-pyrrolidone, γ-butyrolactone and dipropylene glycol dimethyl ether, N-methyl-2-pyrrolidone, propylene glycol monobutyl ether and dipropylene glycol dimethyl ether. be able to.
 本発明の液晶配向剤は、重合体成分及び溶媒以外の成分(以下、添加剤成分ともいう。)を追加的に含有してもよい。このような添加剤成分としては、液晶配向膜の強度を高めるための化合物(以下、架橋性化合物ともいう。)、液晶配向膜と基板との密着性や液晶配向膜とシール剤との密着性を高めるための密着助剤、液晶配向膜の誘電率や電気抵抗を調整するための誘電体や導電物質などが挙げられる。 The liquid crystal aligning agent of the present invention may additionally contain components (hereinafter also referred to as additive components) other than the polymer component and the solvent. Examples of such additive components include compounds for increasing the strength of the liquid crystal alignment film (hereinafter also referred to as cross-linking compounds), adhesion between the liquid crystal alignment film and the substrate, and adhesion between the liquid crystal alignment film and the sealing agent. Adhesion aids for increasing the dielectric constant and electrical resistance of the liquid crystal alignment film, dielectrics and conductive substances.
 上記架橋性化合物としては、例えば、エポキシ基、オキセタニル基、オキサゾリン構造、シクロカーボネート基、ブロックイソシアネート基、ヒドロキシ基及びアルコキシ基から選ばれる少なくとも1種の置換基を有する架橋性化合物(c-1)、並びに重合性不飽和基を有する架橋性化合物(c-2)からなる群から選ばれる少なくとも1種の架橋性化合物、が挙げられる。
 上記架橋性化合物(c-1)、(c-2)の好ましい具体例としては、以下の化合物が挙げられる。エポキシ基を有する化合物として、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、エピコート828(三菱ケミカル社製)などのビスフェノールA型エポキシ樹脂、エピコート807(三菱ケミカル社製)などのビスフェノールF型エポキシ樹脂、YX-8000(三菱ケミカル社製)などの水添ビスフェノールA型エポキシ樹脂、YX6954BH30(三菱ケミカル社製)などのビフェニル骨格含有エポキシ樹脂、EPPN-201(日本化薬社製)などのフェノールノボラック型エポキシ樹脂、EOCN-102S(日本化薬社製)などの(o,m,p-)クレゾールノボラック型エポキシ樹脂、テトラキス(グリシジルオキシメチル)メタン、N,N,N’,N’-テトラグリシジル-1,4-フェニレンジアミン、N,N,N’,N’-テトラグリシジル-2,2’-ジメチル-4.4’-ジアミノビフェニル、2,2-ビス[4-(N,N-ジグリシジル-4-アミノフェノキシ)フェニル]プロパン、N,N,N’,N’-テトラグリシジル-4,4’-ジアミノジフェニルメタンなどの第三級窒素原子が芳香族炭素原子と結合する化合物;N,N,N’,N’-テトラグリシジル-1,2-ジアミノシクロヘキサン、N,N,N’,N’-テトラグリシジル-1,3-ジアミノシクロヘキサン、N,N,N’,N’-テトラグリシジル-1,4-ジアミノシクロヘキサン、ビス(N,N-ジグリシジル-4-アミノシクロヘキシル)メタン、ビス(N,N-ジグリシジル-2-メチル-4-アミノシクロヘキシル)メタン、ビス(N,N-ジグリシジル-3-メチル-4-アミノシクロヘキシル)メタン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、1,4-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、1,3-ビス(N,N-ジグリシジルアミノメチル)ベンゼン、1,4-ビス(N,N-ジグリシジルアミノメチル)ベンゼン、1,3,5-トリス(N,N-ジグリシジルアミノメチル)シクロヘキサン、1,3,5-トリス(N,N-ジグリシジルアミノメチル)ベンゼンなどの第三級窒素原子が脂肪族炭素原子と結合する化合物、TEPIC(日産化学社製)などのトリグリシジルイソシアヌレートなどのイソシアヌレート化合物、日本特開平10-338880号公報の段落[0037]に記載の化合物や、WO2017/170483号に記載の化合物等;
 オキセタニル基を有する化合物として、1,4-ビス{[(3-エチル-3-オキセタニル)メトキシ]メチル}ベンゼン(アロンオキセタンOXT-121(XDO))、ジ[2-(3-オキセタニル)ブチル]エーテル(アロンオキセタンOXT-221(DOX))、1,4-ビス〔(3-エチルオキセタン-3-イル)メトキシ〕ベンゼン(HQOX)、1,3-ビス〔(3-エチルオキセタン-3-イル)メトキシ〕ベンゼン(RSOX)、1,2-ビス〔(3-エチルオキセタン-3-イル)メトキシ〕ベンゼン(CTOX)、WO2011/132751号公報の段落[0170]~[0175]に記載の2個以上のオキセタニル基を有する化合物等;
 オキサゾリン構造を有する化合物として、2,2’-ビス(2-オキサゾリン)、2,2’-ビス(4-メチル-2-オキサゾリン)等の化合物、エポクロス(商品名、株式会社日本触媒製)のようなオキサゾリン基を有するポリマーやオリゴマー、日本特開2007-286597号公報の段落[0115]に記載の化合物等;
 シクロカーボネート基を有する化合物として、N,N,N’,N’-テトラ[(2-オキソ-1,3-ジオキソラン-4-イル)メチル]-4,4’-ジアミノジフェニルメタン、N,N’,-ジ[(2-オキソ-1,3-ジオキソラン-4-イル)メチル]-1,3-フェニレンジアミンや、WO2011/155577号公報の段落[0025]~[0030]、[0032]に記載の化合物等;
 ブロックイソシアネート基を有する化合物として、コロネートAPステーブルM、コロネート2503、2515、2507、2513、2555、ミリオネートMS-50(以上、東ソー社製)、タケネートB-830、B-815N、B-820NSU、B-842N、B-846N、B-870N、B-874N、B-882N(以上、三井化学社製)、日本特開2014-224978号公報の段落[0046]~[0047]に記載の2個以上の保護イソシアネート基を有する化合物、WO2015/141598号の段落[0119]~[0120]に記載の3個以上の保護イソシアネート基を有する化合物等;
 ヒドロキシ基及び/又はアルコキシ基を有する化合物として、N,N,N’,N’-テトラキス(2-ヒドロキシエチル)アジポアミド、2,2-ビス(4-ヒドロキシ-3,5-ジヒドロキシメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメトキシメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジヒドロキシメチルフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、WO2015/072554号や、日本特開2016-118753号公報の段落[0058]に記載の化合物、日本特開2016-200798号公報に記載の化合物、WO2010/074269号に記載の化合物等;
 重合性不飽和基を有する架橋性化合物として、グリセリンモノ(メタ)アクリレート、グリセリンジ(メタ)アクリレート(1,2-,1,3-体混合物)、グリセリントリス(メタ)アクリレート、グリセロール1,3-ジグリセロラートジ(メタ)アクリレート、ペンタエリストールトリ(メタ)アクリレート、ジエチレングリコールモノ(メタ)アクリレート、トリエチレングリコールモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート、ペンタエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレート等。
Examples of the crosslinkable compound include a crosslinkable compound (c-1) having at least one substituent selected from an epoxy group, an oxetanyl group, an oxazoline structure, a cyclocarbonate group, a blocked isocyanate group, a hydroxy group and an alkoxy group. , and at least one crosslinkable compound selected from the group consisting of crosslinkable compounds (c-2) having a polymerizable unsaturated group.
Preferred specific examples of the crosslinkable compounds (c-1) and (c-2) include the following compounds. Examples of epoxy group-containing compounds include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, and 1,6-hexane. Diol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol, Epicoat 828 (manufactured by Mitsubishi Chemical Corporation), etc. Bisphenol A type epoxy resin, bisphenol F type epoxy resin such as Epicoat 807 (manufactured by Mitsubishi Chemical Corporation), hydrogenated bisphenol A type epoxy resin such as YX-8000 (manufactured by Mitsubishi Chemical Corporation), YX6954BH30 (manufactured by Mitsubishi Chemical Corporation) and the like biphenyl skeleton-containing epoxy resins, phenol novolac type epoxy resins such as EPPN-201 (manufactured by Nippon Kayaku Co., Ltd.), (o, m, p-) cresol novolac type epoxy resins such as EOCN-102S (manufactured by Nippon Kayaku Co., Ltd.), tetrakis(glycidyloxymethyl)methane, N,N,N',N'-tetraglycidyl-1,4-phenylenediamine, N,N,N',N'-tetraglycidyl-2,2'-dimethyl-4. 4'-diaminobiphenyl, 2,2-bis[4-(N,N-diglycidyl-4-aminophenoxy)phenyl]propane, N,N,N',N'-tetraglycidyl-4,4'-diaminodiphenylmethane compounds in which a tertiary nitrogen atom is bound to an aromatic carbon atom such as; 1,3-diaminocyclohexane, N,N,N',N'-tetraglycidyl-1,4-diaminocyclohexane, bis(N,N-diglycidyl-4-aminocyclohexyl)methane, bis(N,N-diglycidyl- 2-methyl-4-aminocyclohexyl)methane, bis(N,N-diglycidyl-3-methyl-4-aminocyclohexyl)methane, 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane, 1,4 -bis(N,N-diglycidylaminomethyl)cyclohexane, 1,3-bis(N,N-diglycidylaminomethyl)benzene, 1,4-bis(N,N-diglycidylaminomethyl) Tertiary nitrogen such as lysidylaminomethyl)benzene, 1,3,5-tris(N,N-diglycidylaminomethyl)cyclohexane, 1,3,5-tris(N,N-diglycidylaminomethyl)benzene Compounds whose atoms are bonded to aliphatic carbon atoms, isocyanurate compounds such as triglycidyl isocyanurate such as TEPIC (manufactured by Nissan Chemical Industries, Ltd.), compounds described in paragraph [0037] of JP-A-10-338880, and WO2017 / compounds described in No. 170483;
As compounds having an oxetanyl group, 1,4-bis{[(3-ethyl-3-oxetanyl)methoxy]methyl}benzene (aron oxetane OXT-121 (XDO)), di[2-(3-oxetanyl)butyl] Ether (aron oxetane OXT-221 (DOX)), 1,4-bis[(3-ethyloxetan-3-yl)methoxy]benzene (HQOX), 1,3-bis[(3-ethyloxetan-3-yl ) methoxy]benzene (RSOX), 1,2-bis[(3-ethyloxetan-3-yl)methoxy]benzene (CTOX), two described in paragraphs [0170] to [0175] of WO2011/132751 Compounds having the above oxetanyl group, etc.;
Compounds having an oxazoline structure include compounds such as 2,2'-bis(2-oxazoline) and 2,2'-bis(4-methyl-2-oxazoline), and Epocross (trade name, manufactured by Nippon Shokubai Co., Ltd.). Polymers and oligomers having an oxazoline group, such as compounds described in paragraph [0115] of Japanese Patent Application Laid-Open No. 2007-286597;
As compounds having a cyclocarbonate group, N,N,N',N'-tetra[(2-oxo-1,3-dioxolan-4-yl)methyl]-4,4'-diaminodiphenylmethane, N,N' ,-Di[(2-oxo-1,3-dioxolan-4-yl)methyl]-1,3-phenylenediamine and paragraphs [0025] to [0030] and [0032] of WO2011/155577 compounds of;
Examples of compounds having a blocked isocyanate group include Coronate AP Stable M, Coronate 2503, 2515, 2507, 2513, 2555, Millionate MS-50 (manufactured by Tosoh Corporation), Takenate B-830, B-815N, B-820NSU, B-842N, B-846N, B-870N, B-874N, B-882N (manufactured by Mitsui Chemicals, Inc.), two pieces described in paragraphs [0046] to [0047] of Japanese Patent Application Laid-Open No. 2014-224978 compounds having the above protected isocyanate groups, compounds having three or more protected isocyanate groups described in paragraphs [0119] to [0120] of WO2015/141598;
N,N,N',N'-tetrakis(2-hydroxyethyl)adipamide, 2,2-bis(4-hydroxy-3,5-dihydroxymethylphenyl)propane as compounds having a hydroxy group and/or an alkoxy group , 2,2-bis(4-hydroxy-3,5-dimethoxymethylphenyl)propane, 2,2-bis(4-hydroxy-3,5-dihydroxymethylphenyl)-1,1,1,3,3, 3-Hexafluoropropane, WO2015/072554, compounds described in paragraph [0058] of JP-A-2016-118753, compounds described in JP-A-2016-200798, compounds described in WO2010/074269 compounds, etc.;
As crosslinkable compounds having a polymerizable unsaturated group, glycerin mono(meth)acrylate, glycerin di(meth)acrylate (1,2-,1,3-body mixture), glycerin tris(meth)acrylate, glycerol 1,3 - diglycerolate di(meth)acrylate, pentaerythritol tri(meth)acrylate, diethylene glycol mono(meth)acrylate, triethylene glycol mono(meth)acrylate, tetraethylene glycol mono(meth)acrylate, pentaethylene glycol mono(meth)acrylate ) acrylate, hexaethylene glycol mono(meth)acrylate and the like.
 上記化合物は架橋性化合物の一例であり、これらに限定されるものではない。例えば、WO2015/060357号の53頁[0105]~55頁[0116]に開示されている上記以外の成分などが挙げられる。また、架橋性化合物は、2種類以上組み合わせてもよい。 The above compounds are examples of crosslinkable compounds, and are not limited to these. For example, components other than those described above disclosed on pages 53 [0105] to 55 [0116] of WO2015/060357 may be used. Moreover, you may combine two or more types of crosslinkable compounds.
 架橋性化合物を使用する場合は、液晶配向剤における、架橋性化合物の含有量は、液晶配向剤に含まれる重合体成分100質量部に対して、0.5~20質量部であることが好ましく、より好ましくは1~15質量部である。 When using a crosslinkable compound, the content of the crosslinkable compound in the liquid crystal aligning agent is preferably 0.5 to 20 parts by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal aligning agent. , more preferably 1 to 15 parts by mass.
 上記密着助剤としては、例えば3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルジエトキシメチルシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、トリス-(トリメトキシシリルプロピル)イソシアヌレート、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン等のシランカップリング剤が挙げられる。
 密着助剤を使用する場合は、液晶配向剤における密着助剤の含有量は、液晶配向剤に含まれる重合体成分100質量部に対して0.1~30質量部であることが好ましく、より好ましくは0.1~20質量部である。
Examples of the adhesion aid include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldiethoxymethylsilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N -(2-aminoethyl)-3-aminopropyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N -ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxycarbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyltriethylenetriamine, N-trimethoxysilylpropyltriethylenetriamine, 10-trimethoxysilyl -1,4,7-triazadecane, 10-triethoxysilyl-1,4,7-triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3,6-diaza nonyl acetate, N-benzyl-3-aminopropyltrimethoxysilane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane , N-bis(oxyethylene)-3-aminopropyltrimethoxysilane, N-bis(oxyethylene)-3-aminopropyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 2-(3,4- epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p -styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane Silane couplings such as silane, tris-(trimethoxysilylpropyl)isocyanurate, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane ing agents.
When using an adhesion aid, the content of the adhesion aid in the liquid crystal aligning agent is preferably 0.1 to 30 parts by weight with respect to 100 parts by weight of the polymer component contained in the liquid crystal aligning agent, and more It is preferably 0.1 to 20 parts by mass.
(液晶配向膜)
 本発明の液晶配向膜は、上記本発明の液晶配向剤を用いて形成される。
 本発明の液晶配向膜の製造方法は、例えば、上記の液晶配向剤を基板に塗布し、焼成して得られる膜に放射線を照射することを含む。
 本発明の液晶配向膜の製造方法の好ましい態様としては、例えば、上記の液晶配向剤を基板に塗布する工程(工程(1))、塗布した液晶配向剤を焼成する工程(工程(2))、場合により、工程(2)で得られた膜に配向処理する工程(工程(3))を含む液晶配向膜の製造方法が挙げられる。
(Liquid crystal alignment film)
The liquid crystal aligning film of the present invention is formed using the liquid crystal aligning agent of the present invention.
The manufacturing method of the liquid crystal aligning film of the present invention includes, for example, applying the liquid crystal aligning agent to a substrate and irradiating a film obtained by baking the substrate with radiation.
A preferred embodiment of the method for producing a liquid crystal alignment film of the present invention includes, for example, the step of applying the liquid crystal alignment agent to the substrate (step (1)), and the step of baking the applied liquid crystal alignment agent (step (2)). and a method for producing a liquid crystal alignment film, which optionally includes a step (step (3)) of subjecting the film obtained in step (2) to orientation treatment.
<工程(1)>
 本発明に用いられる液晶配向剤を塗布する基板としては透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板、アクリル基板やポリカーボネート基板などのプラスチック基板等を用いることもできる。その際、液晶を駆動させるためのITO(Indium Tin Oxide)電極などが形成された基板を用いると、プロセスの簡素化の点から好ましい。また、反射型の液晶表示素子では、片側の基板のみにならばシリコンウエハーなどの不透明な物でも使用でき、この場合の電極にはアルミニウムなどの光を反射する材料も使用できる。
<Step (1)>
The substrate to which the liquid crystal aligning agent used in the present invention is applied is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a silicon nitride substrate, a plastic substrate such as an acrylic substrate, a polycarbonate substrate, or the like can also be used. In that case, it is preferable to use a substrate on which an ITO (Indium Tin Oxide) electrode for driving the liquid crystal is formed, in terms of process simplification. In addition, in a reflective liquid crystal display element, if only one substrate is used, an opaque material such as a silicon wafer can be used, and in this case, a light-reflecting material such as aluminum can be used for the electrodes.
 液晶配向剤を基板に塗布し、成膜する方法としては、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェット法、又はスプレー法等が挙げられる。なかでも、インクジェット法による塗布、成膜法が好適に使用できる。 Screen printing, offset printing, flexographic printing, inkjet method, spray method, etc., can be used as methods for applying the liquid crystal aligning agent to the substrate and forming a film. Among them, the coating method and the film-forming method by the inkjet method can be preferably used.
<工程(2)>
 工程(2)は、基板上に塗布した液晶配向剤を焼成し、膜を形成する工程である。液晶配向剤を基板上に塗布した後は、ホットプレート、熱循環型オーブン又はIR(赤外線)型オーブンなどの加熱手段により、溶媒を蒸発させたり、重合体中のアミック酸又はアミック酸エステルの熱イミド化を行ったりすることができる。本発明の液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができ、複数回行ってもよい。液晶配向剤の溶媒を蒸発させる温度としては、例えば40~180℃で行うことができる。プロセスを短縮する観点で、40~150℃で行ってもよい。焼成時間としては特に限定されないが、1~10分又は、1~5分が挙げられる。重合体中のアミック酸又はアミック酸エステルの熱イミド化を行う場合には、上記溶媒を蒸発させる工程の後、例えば150~300℃、又は150~250℃の温度範囲で焼成する工程ができる。焼成時間としては特に限定されないが、5~40分、又は、5~30分の焼成時間が挙げられる。
 焼成後の膜状物は、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5~300nmが好ましく、10~200nmがより好ましい。
<Step (2)>
A process (2) is a process of baking the liquid crystal aligning agent apply|coated on the board|substrate, and forming a film|membrane. After the liquid crystal aligning agent is applied onto the substrate, a heating means such as a hot plate, thermal circulation oven or IR (infrared) oven is used to evaporate the solvent or heat the amic acid or amic acid ester in the polymer. imidization can be performed. The drying and baking steps after applying the liquid crystal aligning agent of the present invention can be performed at any desired temperature and time, and may be performed multiple times. The temperature for evaporating the solvent of the liquid crystal aligning agent can be, for example, 40 to 180°C. From the viewpoint of shortening the process, it may be carried out at 40 to 150°C. The firing time is not particularly limited, but may be 1 to 10 minutes or 1 to 5 minutes. When the amic acid or amic acid ester in the polymer is thermally imidized, a step of calcination at a temperature range of 150 to 300° C. or 150 to 250° C. can be performed after the step of evaporating the solvent. The firing time is not particularly limited, but may be 5 to 40 minutes or 5 to 30 minutes.
The thickness of the film after baking is preferably 5 to 300 nm, more preferably 10 to 200 nm, because if it is too thin, the reliability of the liquid crystal display element may be lowered.
<工程(3)>
 工程(3)は、場合により、工程(2)で得られた膜に配向処理する工程である。即ち、VA方式又はPSAモード等の垂直配向型の液晶表示素子では、形成した塗膜をそのまま液晶配向膜として使用することができるが、該塗膜に対し配向処理を施してもよい。ここで述べる配向処理は水平方向に配向異方性を持たせる処理を意味する。液晶配向膜の配向処理方法としては、ラビング処理法でもよいが、光配向処理法が好適である。光配向処理法としては、上記膜状物の表面に、一定方向に配向方位を付与するように放射線を照射し、場合により、好ましくは、150~250℃の温度で加熱処理を行い、液晶配向性(液晶配向能ともいう)を付与する方法が挙げられる。放射線の種類は特に限定はしないが、紫外線又は可視光線、電子線などを用いることができ、紫外線や可視光を用いる場合は偏光子(偏光板ともいう)を用いて偏光状態になった光(以後偏光と呼ぶ)を用いることが好ましい。紫外線や可視光線の波長において、重合体中の感光性部位が反応する波長を用いることが重要であるため特に限定はしないが、100nm~500nmの範囲の紫外線や可視光線が好ましく、特に好ましくは、200~400nmの偏光紫外線である。
<Step (3)>
Step (3) is a step of subjecting the film obtained in step (2) to orientation treatment. That is, in a vertical alignment type liquid crystal display element such as a VA mode or a PSA mode, the formed coating film can be used as a liquid crystal alignment film as it is, but the coating film may be subjected to an alignment treatment. The orientation treatment described here means a treatment for imparting orientation anisotropy in the horizontal direction. As the alignment treatment method for the liquid crystal alignment film, a rubbing treatment method may be used, but a photo-alignment treatment method is preferable. As a photo-alignment treatment method, the surface of the film-like material is irradiated with radiation so as to give an alignment direction in a certain direction, and in some cases, heat treatment is preferably performed at a temperature of 150 to 250 ° C. to align the liquid crystal. a method of imparting properties (also referred to as liquid crystal alignment ability). Although the type of radiation is not particularly limited, ultraviolet rays, visible rays, electron beams, etc. can be used. When using ultraviolet rays or visible light, a polarizer (also called a polarizing plate) is used to obtain polarized light ( hereinafter referred to as polarized light) is preferably used. The wavelength of ultraviolet rays and visible rays is not particularly limited because it is important to use wavelengths at which the photosensitive sites in the polymer react, but ultraviolet rays and visible rays in the range of 100 nm to 500 nm are preferable, and particularly preferably, It is polarized ultraviolet rays of 200 to 400 nm.
 上記放射線の照射量は、1~10,000mJ/cmが好ましい。なかでも、100~5,000mJ/cmが好ましい。また、放射線を照射する場合、液晶配向性を改善するために、加熱しながら照射してもよい。加熱する際の温度は特に限定しないが、好ましくは50~250℃である。このようにして作製した上記液晶配向膜は、液晶分子を一定の方向に安定して配向させることができる。
 更に、上記の方法で得られた液晶配向膜に、溶媒を用いて接触処理を行っても良く、更には接触処理後に加熱処理を行っても良い。
The irradiation dose of the radiation is preferably 1 to 10,000 mJ/cm 2 . Among them, 100 to 5,000 mJ/cm 2 is preferable. Moreover, when irradiating with radiation, in order to improve liquid crystal orientation, irradiation may be performed while heating. Although the temperature for heating is not particularly limited, it is preferably 50 to 250.degree. The liquid crystal alignment film thus produced can stably orient liquid crystal molecules in a fixed direction.
Furthermore, the liquid crystal alignment film obtained by the above method may be subjected to contact treatment using a solvent, and further heat treatment may be performed after the contact treatment.
 上記接触処理に使用する溶媒としては、放射線の照射によって生成した分解物を溶解する溶媒であれば特に限定されるものではない。具体例としては、水、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン、1-メトキシ-2-プロパノール、1-メトキシ-2-プロパノールアセテート、ブチルセロソルブ、乳酸エチル、乳酸メチル、ジアセトンアルコール、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、酢酸プロピル、酢酸ブチル、酢酸シクロヘキシル等が挙げられる。なかでも、汎用性や溶媒の安全性の点から、水、2-プロパノール、1-メトキシ-2-プロパノール又は乳酸エチルが好ましい。より好ましいのは、水、1-メトキシ-2-プロパノール又は乳酸エチルである。溶媒は、1種類でも、2種類以上組み合わせ
てもよい。
The solvent used in the contact treatment is not particularly limited as long as it dissolves the decomposition products produced by irradiation with radiation. Specific examples include water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, 1-methoxy-2-propanol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, methyl lactate, diacetone alcohol, 3- methyl methoxypropionate, ethyl 3-ethoxypropionate, propyl acetate, butyl acetate, cyclohexyl acetate and the like. Among them, water, 2-propanol, 1-methoxy-2-propanol and ethyl lactate are preferable from the viewpoint of versatility and solvent safety. More preferred are water, 1-methoxy-2-propanol or ethyl lactate. Solvents may be used singly or in combination of two or more.
 上記の接触処理としては、浸漬処理や噴霧処理(スプレー処理ともいう)が挙げられる。これらの処理における処理時間は、放射線の照射によって生成した分解物を効率的に溶解させる点から、10秒~1時間であることが好ましい。なかでも、1~30分間浸漬処理をすることが好ましい。また、上記接触処理時は、冷却しても加熱しても良く、接触処理時に使用する溶媒の好ましい温度は、10~80℃である。なかでも、20~50℃が好ましい。加えて、分解物の溶解性の点から、必要に応じて超音波処理等を行っても良い。 The above contact treatment includes immersion treatment and spray treatment (also called spray treatment). The treatment time in these treatments is preferably 10 seconds to 1 hour from the viewpoint of efficiently dissolving the decomposition products produced by irradiation with radiation. Among them, it is preferable to perform the immersion treatment for 1 to 30 minutes. The contact treatment may be performed by cooling or heating, and the preferred temperature of the solvent used in the contact treatment is 10 to 80°C. Among them, 20 to 50°C is preferable. In addition, from the viewpoint of solubility of the decomposed product, ultrasonic treatment or the like may be performed as necessary.
 上記接触処理の後に、水、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン等の低沸点溶媒によるすすぎ(リンスともいう)や焼成を行うことが好ましい。その際、リンスと焼成のどちらか一方を行っても、又は、両方を行っても良い。焼成の温度は、150~300℃であることが好ましい。なかでも、180~250℃が好ましい。より好ましいのは、200~230℃である。また、焼成の時間は、10秒~30分が好ましい。なかでも、1~10分が好ましい。
 上記の放射線を照射した塗膜に対する加熱処理は、50~300℃で1~30分とすることがより好ましく、120~250℃で1~30分とすることがさらに好ましい。
After the contact treatment, it is preferable to perform rinsing (also called rinsing) with a low-boiling solvent such as water, methanol, ethanol, 2-propanol, acetone, or methyl ethyl ketone, or baking. At that time, either one of rinsing and baking may be performed, or both may be performed. The firing temperature is preferably 150 to 300°C. Among them, 180 to 250°C is preferable. More preferred is 200-230°C. Also, the baking time is preferably 10 seconds to 30 minutes. Among them, 1 to 10 minutes is preferable.
The heat treatment of the radiation-irradiated coating film is preferably carried out at 50 to 300° C. for 1 to 30 minutes, more preferably 120 to 250° C. for 1 to 30 minutes.
(液晶表示素子)
 本発明の液晶表示素子は、本発明の液晶配向膜を有する。
 本発明の液晶配向膜は、良好な水平一軸配向性が得られる観点から、IPS方式やFFS方式などの横電界方式の液晶表示素子の液晶配向膜として好適であり、特に、FFS方式の液晶表示素子の液晶配向膜として有用である。
 液晶表示素子は、本発明の液晶配向剤から得られる液晶配向膜付きの基板を得た後、既知の方法で液晶セルを作製し、該液晶セル内に液晶を封入することにより、製造することができる。具体的には以下の2つの方法が挙げられる。
(liquid crystal display element)
The liquid crystal display element of the present invention has the liquid crystal alignment film of the present invention.
From the viewpoint of obtaining good horizontal uniaxial alignment, the liquid crystal alignment film of the present invention is suitable as a liquid crystal alignment film for a liquid crystal display element of a horizontal electric field system such as an IPS system or an FFS system, and in particular, a liquid crystal display of the FFS system. It is useful as a liquid crystal alignment film for devices.
The liquid crystal display element is produced by obtaining a substrate with a liquid crystal alignment film obtained from the liquid crystal alignment agent of the present invention, producing a liquid crystal cell by a known method, and encapsulating the liquid crystal in the liquid crystal cell. can be done. Specifically, the following two methods are mentioned.
 第一の方法は、先ず、それぞれの液晶配向膜が対向するように間隙(セルギャップ)を設けて2枚の基板を対向配置する。次いで、2枚の基板の周辺部を、シール剤を用いて貼り合わせ、基板表面及びシール剤により区画されたセル内に液晶組成物を注入充填して膜面に接触させた後、注入孔を封止する。 In the first method, first, two substrates are arranged facing each other with a gap (cell gap) so that the respective liquid crystal alignment films face each other. Next, the peripheral portions of the two substrates are bonded together using a sealant, and the liquid crystal composition is injected and filled into the cells partitioned by the substrate surfaces and the sealant to bring it into contact with the film surface, and then the injection hole is opened. Seal.
 第二の方法は、ODF(One Drop Fill)方式と呼ばれる手法である。液晶配向膜を形成した2枚の基板のうちのどちらか一方の基板上に、液晶を封入する区画を作るように紫外光硬化性のシール剤を塗布し、区画内の液晶配向膜面上に、セル容積に相当する量の液晶組成物を一定間隔になるように滴下する。その後、真空下で液晶配向膜が対向するように他方の基板を貼り合わせて液晶組成物を基板の全面に押し広げて膜面に接触させる。次いで、基板の全面、あるいは液晶配向膜に光が当たらないようにフォトマスクを介し、紫外光を照射し仮硬化を経て、加熱処理にて更にシール剤を硬化させることで液晶表示素子を得る方法である。 The second method is a technique called the ODF (One Drop Fill) method. On either one of the two substrates on which the liquid crystal alignment film is formed, an ultraviolet light-curing sealant is applied so as to create a compartment for enclosing the liquid crystal, and on the surface of the liquid crystal alignment film in the compartment , the amount of liquid crystal composition corresponding to the cell volume is dropped at regular intervals. After that, the other substrate is attached under vacuum so that the liquid crystal alignment films face each other, and the liquid crystal composition is spread over the entire surface of the substrate and brought into contact with the film surface. Next, a method of obtaining a liquid crystal display element by irradiating ultraviolet light through a photomask so that the entire surface of the substrate or the liquid crystal alignment film is not exposed to light, performing temporary curing, and further curing the sealant by heat treatment. is.
 第一の方法及び第二の方法のいずれの方法による場合でも、更に、用いた液晶組成物が等方相をとる温度まで加熱した後、室温まで徐冷することにより、液晶充填時の流動配向を除去することが望ましい。
 なお、塗膜に対してラビング処理を行った場合には、2枚の基板は、各塗膜におけるラビング方向が互いに所定の角度、例えば直交又は逆平行となるように対向配置される。光配向処理を行った場合も同様に、配向方向が互いに所定の角度、例えば直交又は逆平行となるように対向配置される。
 シール剤としては、例えば硬化剤及びスペーサーとしての酸化アルミニウム球を含有するエポキシ樹脂等を用いることができる。液晶としては、ネマチック液晶及びスメクチック液晶を挙げることができ、その中でもネマチック液晶が好ましい。
 上記ネマチック液晶を構成する化合物の具体例として、シッフベース系液晶化合物、アゾキシ系液晶化合物、ビフェニル系液晶化合物、フェニルシクロヘキサン系液晶化合物、エステル系液晶化合物、ターフェニル系液晶化合物、ビフェニルシクロヘキサン系液晶化合物、ピリミジン系液晶化合物、ジオキサン系液晶化合物、ビシクロオクタン系液晶化合物、又は、キュバン系液晶化合物などが挙げられる。
In either method of the first method and the second method, the liquid crystal composition used is further heated to a temperature at which it assumes an isotropic phase, and then slowly cooled to room temperature, so that the flow orientation at the time of filling the liquid crystal should be removed.
When the coating film is subjected to the rubbing treatment, the two substrates are arranged opposite to each other so that the rubbing directions of the respective coating films are at a predetermined angle, for example, orthogonal or antiparallel. Similarly, when the optical alignment treatment is performed, the alignment directions are arranged to face each other at a predetermined angle, for example, perpendicular or antiparallel.
As the sealant, for example, an epoxy resin or the like containing a curing agent and aluminum oxide spheres as spacers can be used. Liquid crystals include nematic liquid crystals and smectic liquid crystals, among which nematic liquid crystals are preferred.
Specific examples of compounds constituting the nematic liquid crystal include Schiff base liquid crystal compounds, azoxy liquid crystal compounds, biphenyl liquid crystal compounds, phenylcyclohexane liquid crystal compounds, ester liquid crystal compounds, terphenyl liquid crystal compounds, biphenylcyclohexane liquid crystal compounds, Examples include pyrimidine-based liquid crystal compounds, dioxane-based liquid crystal compounds, bicyclooctane-based liquid crystal compounds, and cubane-based liquid crystal compounds.
 液晶組成物は、ポジ型液晶組成物やネガ型液晶組成物のいずれを用いてもよいが、駆動時の透過率が高くできる点から、好ましいのはネガ型液晶組成物である。
 ポジ型液晶組成物の代表的な市販品として、メルク社製のZLI-2293、ZLI-4792、MLC-2003、MLC-2041、MLC-3019又はMLC-7081、又はDIC社製のPA-1492などが挙げられる。
 ネガ型液晶組成物の代表的な市販品として、メルク社製のMLC-6608、MLC-6609、MLC-6610、MLC-6882、MLC-6886、MLC-7026、MLC-7026-000、MLC-7026-100、又はMLC-7029などが挙げられる。
Either a positive-type liquid crystal composition or a negative-type liquid crystal composition may be used as the liquid-crystal composition, but the negative-type liquid crystal composition is preferable because the transmittance during driving can be increased.
Typical commercial products of positive liquid crystal compositions include ZLI-2293, ZLI-4792, MLC-2003, MLC-2041, MLC-3019 or MLC-7081 manufactured by Merck, PA-1492 manufactured by DIC, and the like. is mentioned.
Typical commercial products of negative liquid crystal compositions include MLC-6608, MLC-6609, MLC-6610, MLC-6882, MLC-6886, MLC-7026, MLC-7026-000 and MLC-7026 manufactured by Merck. -100, or MLC-7029.
 次に、偏光板の設置を行う。具体的には、2枚の基板の液晶層とは反対側の面に一対の偏光板を貼り付ける。偏光板としては、ポリビニルアルコールを延伸配向させながらヨウ素を吸収させた「H膜」と称される偏光フィルムを酢酸セルロース保護膜で挟んだ偏光板又はH膜そのものからなる偏光板を挙げることができる。 Next, install the polarizing plate. Specifically, a pair of polarizing plates are attached to the surfaces of the two substrates opposite to the liquid crystal layer. Examples of the polarizing plate include a polarizing plate in which a polarizing film called "H film" in which iodine is absorbed while stretching orientation of polyvinyl alcohol is sandwiched between cellulose acetate protective films, or a polarizing plate composed of the H film itself. .
 以下に実施例を挙げ、本発明を更に詳しく説明するが、本発明はこれらに限定されるものではない。以下における化合物の略号及び各特性の測定方法は、次のとおりである。 The present invention will be described in more detail with examples below, but the present invention is not limited to these. The abbreviations of the compounds and the methods for measuring each property are as follows.
(ジアミン)
Figure JPOXMLDOC01-appb-C000034
(diamine)
Figure JPOXMLDOC01-appb-C000034
(テトラカルボン酸二無水物)
Figure JPOXMLDOC01-appb-C000035
(tetracarboxylic dianhydride)
Figure JPOXMLDOC01-appb-C000035
(ジイミドジエステル化合物)
Figure JPOXMLDOC01-appb-C000036
(Diimide diester compound)
Figure JPOXMLDOC01-appb-C000036
(添加剤)
Figure JPOXMLDOC01-appb-C000037
(Additive)
Figure JPOXMLDOC01-appb-C000037
(溶媒)
 NMP:N-メチル-2-ピロリドン
 BCS:エチレングリコールモノブチルエーテル
(solvent)
NMP: N-methyl-2-pyrrolidone BCS: ethylene glycol monobutyl ether
<粘度の測定>
 溶液の粘度は、E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL、コーンロータTE-1(1°34’、R24)を用いて、温度25℃で測定した。
<Measurement of viscosity>
The viscosity of the solution was measured using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.) with a sample volume of 1.1 mL and a cone rotor TE-1 (1°34', R24) at a temperature of 25°C. bottom.
<分子量の測定>
 重合体の分子量は、常温ゲル浸透クロマトグラフィー(GPC)装置(GPC-101)(昭和電工社製)、カラム(KD-803,KD-805の直列)(昭和電工社製)を用いて、以下のようにして測定した。
 カラム温度:50℃
 溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム一水和物(LiBr・HO)が30mmol/L(リットル)、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10mL/L)
 流速:1.0ml/分
 検量線作成用標準サンプル:TSK 標準ポリエチレンオキサイド(分子量;約900,000、150,000、100,000及び30,000)(東ソー社製)及びポリエチレングリコール(分子量;約12,000、4,000及び1,000)(ポリマーラボラトリー社製)。
<Measurement of molecular weight>
The molecular weight of the polymer is determined using a room temperature gel permeation chromatography (GPC) device (GPC-101) (manufactured by Showa Denko) and a column (KD-803, KD-805 in series) (manufactured by Showa Denko). was measured as
Column temperature: 50°C
Eluent: N,N-dimethylformamide (as additives, lithium bromide monohydrate (LiBr.H 2 O) at 30 mmol/L (liter), phosphoric acid/anhydrous crystals (o-phosphoric acid) at 30 mmol/L (liter) L, tetrahydrofuran (THF) is 10 mL/L)
Flow rate: 1.0 ml/min Standard sample for creating a calibration curve: TSK standard polyethylene oxide (molecular weight; 12,000, 4,000 and 1,000) (manufactured by Polymer Laboratories).
<モノマーの合成>
 DI-1~DI-4は文献等未公開の新規化合物であり、以下に合成法を詳述する。
<Synthesis of Monomer>
DI-1 to DI-4 are novel compounds that have not been published in literature, etc., and their synthesis methods are described in detail below.
 下記モノマー合成実施例1~4記載の生成物は1H-NMR分析により同定した(分析条件は下記の通り)。
 装置:Varian社製 NMR System 400 NB (400 MHz)
 測定溶媒:DMSO-d
 基準物質:テトラメチルシラン(TMS)(δ0.0 ppm for H)
The products described in Monomer Synthesis Examples 1 to 4 below were identified by 1 H-NMR analysis (analysis conditions are as follows).
Apparatus: NMR System 400 NB (400 MHz) manufactured by Varian
Measurement solvent: DMSO-d 6
Reference substance: tetramethylsilane (TMS) (δ0.0 ppm for 1 H)
(モノマー合成実施例1 DI-1の合成) (Monomer Synthesis Example 1 Synthesis of DI-1)
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
<DI-1-1の合成>
 2L四つ口フラスコへ、酢酸(AcOH、489g)、CA-1(61.1g、312mmоl)、及び酢酸アンモニウム(AcNH、24.0g、312mmоl)を仕込み、窒素雰囲気還流条件下で約2日間反応させた。反応終了後、反応溶液に純水(1500g)を加えて撹拌後、生じた析出物をろ別し、純水及びメタノールでろ物を洗浄し、乾燥することでDI-1-1を得た(収量:51.9g、267mmоl、収率:86%、性状:白色結晶)。
<Synthesis of DI-1-1>
Acetic acid (AcOH, 489 g), CA-1 (61.1 g, 312 mmol), and ammonium acetate (AcNH 4 , 24.0 g, 312 mmol) were charged into a 2 L four-necked flask, and refluxed under a nitrogen atmosphere for about 2 days. reacted. After completion of the reaction, pure water (1500 g) was added to the reaction solution and stirred, the resulting precipitate was filtered off, the filtered product was washed with pure water and methanol, and dried to obtain DI-1-1 ( Yield: 51.9 g, 267 mmol, yield: 86%, properties: white crystals).
<DI-1の合成>
 1L四つ口フラスコへ、N,N-ジメチルアセトアミド(DMAc、260g)、DI-1-1(26.0g、134mmоl)、4-ジメチルアミノピリジン(DMAP、1.64g、13.4mmоl)、及びトリエチルアミン(EtN、34.9g、345mmоl)を仕込み、窒素雰囲気氷冷条件下でクロロぎ酸エチル(32.0g、295mmоl)を滴下した。滴下後、反応温度を室温(25℃)にして15時間反応させて原料を消失させた(スラリー溶液)。スラリー溶液をろ過し、過剰量の塩化メチレンでろ物を洗浄、乾燥することでDI-1を得た(収量:11.0g、32.5mmоl、収率:24%、性状:白桃色結晶)。
 H-NMR(400MHz,DMSO-d):δ(ppm)=4.37(q,4H,J=7.2Hz),3.52(s,4H),1.30(t,6H,J=7.2Hz)
<Synthesis of DI-1>
To a 1 L four-necked flask, N,N-dimethylacetamide (DMAc, 260 g), DI-1-1 (26.0 g, 134 mmol), 4-dimethylaminopyridine (DMAP, 1.64 g, 13.4 mmol), and Triethylamine (Et 3 N, 34.9 g, 345 mmol) was charged, and ethyl chloroformate (32.0 g, 295 mmol) was added dropwise under ice cooling conditions in a nitrogen atmosphere. After the dropwise addition, the reaction temperature was changed to room temperature (25° C.) and the reaction was allowed to proceed for 15 hours to eliminate the raw material (slurry solution). The slurry solution was filtered, and the filtrate was washed with an excess amount of methylene chloride and dried to obtain DI-1 (yield: 11.0 g, 32.5 mmol, yield: 24%, properties: white pink crystals).
1 H-NMR (400 MHz, DMSO-d 6 ): δ (ppm) = 4.37 (q, 4H, J = 7.2 Hz), 3.52 (s, 4H), 1.30 (t, 6H, J=7.2Hz)
(モノマー合成実施例2 DI-2の合成) (Monomer Synthesis Example 2 Synthesis of DI-2)
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
<DI-2の合成>
 2L四つ口フラスコへ、N,N-ジメチルアセトアミド(250g)、DI-1-1(25.0g、129mmоl)、及び4-ジメチルアミノピリジン(1.58g、12.9mmоl)を仕込み、窒素雰囲気室温(25℃)条件下で二炭酸ジ-tert-ブチル(BocO、61.9g、284mmоl)を滴下した。滴下後、室温条件下で14時間反応させて原料を消失させた。反応終了後、反応液に2-プロパノール(750g)を加えて撹拌し、生じた析出物をろ別し、2-プロパノールで洗浄することでDI-2を得た(収量:48.1g、122mmоl、収率:95%、性状:白色結晶)。
 H-NMR(400MHz,DMSO-d):δ(ppm)=3.50(s,4H),1.52(s,18H)
<Synthesis of DI-2>
N,N-dimethylacetamide (250 g), DI-1-1 (25.0 g, 129 mmol), and 4-dimethylaminopyridine (1.58 g, 12.9 mmol) were charged into a 2 L four-necked flask, and a nitrogen atmosphere was placed. Di-tert-butyl dicarbonate (Boc 2 O, 61.9 g, 284 mmol) was added dropwise under room temperature (25° C.) conditions. After the dropwise addition, the reaction was allowed to proceed for 14 hours at room temperature to eliminate the raw material. After completion of the reaction, 2-propanol (750 g) was added to the reaction solution and stirred, and the resulting precipitate was filtered off and washed with 2-propanol to obtain DI-2 (yield: 48.1 g, 122 mmol , yield: 95%, properties: white crystals).
1 H-NMR (400 MHz, DMSO-d 6 ): δ (ppm) = 3.50 (s, 4H), 1.52 (s, 18H)
(モノマー合成実施例3 DI-3の合成) (Monomer Synthesis Example 3 Synthesis of DI-3)
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
<DI-3の合成>
 モノマー合成実施例1およびモノマー合成実施例2に記載の方法と同様の操作にて、上記スキームの内容を実施することによりDI-3を得た(収量:20.6g、48.7mmоl、収率:83%、性状:白色結晶)。
 H-NMR(400MHz,DMSO-d):δ(ppm)=3.30-3.01(m、4H)、2.05-2.03(m、4H)、1.50-1.49(m、18H)
<Synthesis of DI-3>
DI-3 was obtained by carrying out the above scheme in the same manner as in Monomer Synthesis Example 1 and Monomer Synthesis Example 2 (yield: 20.6 g, 48.7 mmol, yield : 83%, properties: white crystals).
1 H-NMR (400 MHz, DMSO-d 6 ): δ (ppm) = 3.30-3.01 (m, 4H), 2.05-2.03 (m, 4H), 1.50-1. 49 (m, 18H)
(モノマー合成実施例3 DI-4の合成) (Monomer Synthesis Example 3 Synthesis of DI-4)
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
<DI-4-1の合成>
 300mL四つ口フラスコへ、酢酸(245g)、CA-4(14.0g、46.3mmоl)、及び酢酸アンモニウム(21.5g、278mmоl)を仕込み、窒素雰囲気還流条件下で約20時間反応させた。反応終了後、反応溶液に純水(150g)を加えて撹拌後、生じた析出物をろ別し、純水及びメタノールでろ物を洗浄し、乾燥することでDI-4-1を得た(収量:6.98g、23.2mmоl、収率:50%、性状:白色結晶)。
<Synthesis of DI-4-1>
Acetic acid (245 g), CA-4 (14.0 g, 46.3 mmol), and ammonium acetate (21.5 g, 278 mmol) were charged into a 300 mL four-necked flask and reacted under reflux conditions in a nitrogen atmosphere for about 20 hours. . After completion of the reaction, pure water (150 g) was added to the reaction solution and stirred, the resulting precipitate was filtered off, the filtered product was washed with pure water and methanol, and dried to obtain DI-4-1 ( Yield: 6.98 g, 23.2 mmol, yield: 50%, properties: white crystals).
<DI-4の合成>
 200mL四つ口フラスコへ、テトラヒドロフラン(125g)、DI-4-1(6.0g、20mmоl)、及び4-ジメチルアミノピリジン(0.024g、0.2mmоl)を仕込み、窒素雰囲気室温(25℃)条件下で二炭酸ジ-tert-ブチル(9.6g、44mmоl)を滴下した。滴下後、40℃で16時間反応させた。反応終了後、反応液にヘキサン(150g)を加えて撹拌し、生じた析出物をろ別し、酢酸エチル(85g)で洗浄することでDI-4を得た(収量:4.37g、8.73mmоl、収率:44%、性状:白色結晶)。
 H-NMR(400MHz,DMSO-d):δ(ppm)=3.01(s,2H),2.72(s,2H),2.62(s,2H),2.60(s,2H),1.99(s,2H),1.52(d,1H,J=13.0Hz),1.48(d,18H,J=3.2Hz),1.30(d,1H,J=11.0Hz),1.10(d,1H,J=11.0Hz),0.79(d,1H,J=12.8Hz).
<Synthesis of DI-4>
Tetrahydrofuran (125 g), DI-4-1 (6.0 g, 20 mmol), and 4-dimethylaminopyridine (0.024 g, 0.2 mmol) were charged into a 200 mL four-necked flask and placed in a nitrogen atmosphere at room temperature (25°C). Di-tert-butyl dicarbonate (9.6 g, 44 mmol) was added dropwise under these conditions. After dropping, the mixture was reacted at 40° C. for 16 hours. After completion of the reaction, hexane (150 g) was added to the reaction solution and stirred, and the resulting precipitate was filtered off and washed with ethyl acetate (85 g) to obtain DI-4 (yield: 4.37 g, 8 .73 mmol, yield: 44%, properties: white crystals).
1 H-NMR (400 MHz, DMSO-d 6 ): δ (ppm) = 3.01 (s, 2H), 2.72 (s, 2H), 2.62 (s, 2H), 2.60 (s , 2H), 1.99 (s, 2H), 1.52 (d, 1H, J = 13.0 Hz), 1.48 (d, 18H, J = 3.2 Hz), 1.30 (d, 1H , J = 11.0 Hz), 1.10 (d, 1H, J = 11.0 Hz), 0.79 (d, 1H, J = 12.8 Hz).
<重合体の合成>
(合成例1)
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-1(0.357g、3.30mmol)、DA-2(0.806g、3.30mmol)、DA-3(0.705g、2.20mmol)、DA-4(0.877g、2.20mmol)、及びNMP(30.4g)を加えて、室温で撹拌して溶解させた。その後、CA-1(2.34g、10.4mmol)を添加し、更に固形分濃度が12質量%になるようにNMPを加えて、40℃で24時間撹拌して、ポリアミック酸溶液(PAA-R1)(粘度:388mPa・s)を得た。このポリアミック酸の数平均分子量は11,244、重量平均分子量は30,370であった。
<Synthesis of polymer>
(Synthesis example 1)
DA-1 (0.357 g, 3.30 mmol), DA-2 (0.806 g, 3.30 mmol), DA-3 (0.705 g, 2.20 mmol), DA-4 (0.877 g, 2.20 mmol), and NMP (30.4 g) were added and dissolved with stirring at room temperature. Then, CA-1 (2.34 g, 10.4 mmol) was added, NMP was added so that the solid content concentration was 12% by mass, and the mixture was stirred at 40° C. for 24 hours to form a polyamic acid solution (PAA- R1) (viscosity: 388 mPa·s) was obtained. This polyamic acid had a number average molecular weight of 11,244 and a weight average molecular weight of 30,370.
(合成例2)
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-1(0.357g、3.30mmol)、DA-2(0.806g、3.30mmol)、DA-3(0.705g、2.20mmol)、DA-4(0.877g、2.20mmol)、及びNMP(30.9g)を加えて、室温で撹拌して溶解させた。その後、CA-1(1.85g、8.25mmol)及びCA-2(0.431g、2.20mmol)を添加し、更に固形分濃度が12質量%になるようにNMPを加えて、40℃で24時間撹拌して、ポリアミック酸溶液(PAA-R2)(粘度:349mPa・s)を得た。このポリアミック酸の数平均分子量は12,175、重量平均分子量は30,201であった。
(Synthesis example 2)
DA-1 (0.357 g, 3.30 mmol), DA-2 (0.806 g, 3.30 mmol), DA-3 (0.705 g, 2.20 mmol), DA-4 (0.877 g, 2.20 mmol), and NMP (30.9 g) were added and dissolved with stirring at room temperature. After that, CA-1 (1.85 g, 8.25 mmol) and CA-2 (0.431 g, 2.20 mmol) were added, NMP was further added so that the solid content concentration was 12% by mass, and the temperature was 40 ° C. for 24 hours to obtain a polyamic acid solution (PAA-R2) (viscosity: 349 mPa·s). This polyamic acid had a number average molecular weight of 12,175 and a weight average molecular weight of 30,201.
(合成例3)
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-1(0.324g、3.00mmol)、DA-2(0.733g、3.00mmol)、DA-3(0.641g、2.00mmol)、DA-4(0.797g、2.00mmol)、及びNMP(30.8g)を加えて、室温で撹拌して溶解させた。その後、DI-1(0.677g、2.00mmol)を添加し、60℃で5時間撹拌して溶解させた。その後、40℃まで冷却し、CA-1(1.78g、7.95mmol)を添加し、更に固形分濃度が12質量%になるようにNMPを加えて、40℃で24時間撹拌して、重合体溶液(PAA-A1)(粘度:227mPa・s)を得た。この重合体の数平均分子量は10,861、重量平均分子量は26,472であった。
 上記で得られた重合体のH-NMR測定を行ったところ、1.29ppm近傍に、合成例1および合成例2の重合体では見られなかったエチルカルバメート基由来のピークと、11.00~8.00ppmに新たなアミドピークの発生が確認され、DI-1由来の式(1A)で表される基が導入できていると考えられる。
(Synthesis Example 3)
DA-1 (0.324 g, 3.00 mmol), DA-2 (0.733 g, 3.00 mmol), DA-3 (0.641 g, 2.00 mmol), DA-4 (0.797 g, 2.00 mmol), and NMP (30.8 g) were added and dissolved with stirring at room temperature. DI-1 (0.677 g, 2.00 mmol) was then added and dissolved by stirring at 60° C. for 5 hours. Then, cool to 40 ° C., add CA-1 (1.78 g, 7.95 mmol), further add NMP so that the solid content concentration is 12% by mass, stir at 40 ° C. for 24 hours, A polymer solution (PAA-A1) (viscosity: 227 mPa·s) was obtained. This polymer had a number average molecular weight of 10,861 and a weight average molecular weight of 26,472.
When 1 H-NMR measurement of the polymer obtained above was performed, a peak derived from an ethyl carbamate group, which was not observed in the polymers of Synthesis Examples 1 and 2, and a peak of 11.00 ppm were found near 1.29 ppm. A new amide peak was confirmed to occur at ~8.00 ppm, suggesting that the group represented by formula (1A) derived from DI-1 was introduced.
(合成例4)
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-1(0.324g、3.00mmol)、DA-2(0.733g、3.00mmol)、DA-3(0.641g、2.00mmol)、DA-4(0.797g、2.00mmol)、及びNMP(30.8g)を加えて、室温で撹拌して溶解させた。その後、DI-2(0.789g、2.00mmol)を添加し、60℃で5時間撹拌して溶解させた。その後、40℃まで冷却し、CA-1(1.78g、7.95mmol)を添加し、更に固形分濃度が12質量%になるようにNMPを加えて、40℃で24時間撹拌して、重合体溶液(PAA-A2)(粘度:225mPa・s)を得た。この重合体の数平均分子量は10,531、重量平均分子量は26,987であった。
 上記で得られた重合体のH-NMR測定にて、1.33ppm近傍に、合成例1および合成例2の重合体で使用されているDA-4のt-Buカルバメート基由来のピーク1.42ppmとは異なるt-Bu基由来のピークと、11.00~8.00ppmに新たなアミドピークの発生が確認できたことから、DI-2由来の式(1A)で表される基が導入できていると考えられる。
(Synthesis Example 4)
DA-1 (0.324 g, 3.00 mmol), DA-2 (0.733 g, 3.00 mmol), DA-3 (0.641 g, 2.00 mmol), DA-4 (0.797 g, 2.00 mmol), and NMP (30.8 g) were added and dissolved with stirring at room temperature. DI-2 (0.789 g, 2.00 mmol) was then added and dissolved by stirring at 60° C. for 5 hours. Then, cool to 40 ° C., add CA-1 (1.78 g, 7.95 mmol), further add NMP so that the solid content concentration is 12% by mass, stir at 40 ° C. for 24 hours, A polymer solution (PAA-A2) (viscosity: 225 mPa·s) was obtained. This polymer had a number average molecular weight of 10,531 and a weight average molecular weight of 26,987.
In the 1 H-NMR measurement of the polymer obtained above, a peak 1 derived from the t-Bu carbamate group of DA-4 used in the polymers of Synthesis Example 1 and Synthesis Example 2 was found near 1.33 ppm. A peak derived from a t-Bu group different from .42 ppm and a new amide peak occurring at 11.00 to 8.00 ppm were confirmed, so the group represented by the formula (1A) derived from DI-2 It is considered that it has been introduced.
(合成例5)
 撹拌装置付き及び窒素導入管付きの200mL四つ口フラスコに、DA-5(6.38g、32.0mmol)、DA-6(1.22g、8.00mmol)及びNMP(109g)を加えて、室温で撹拌して溶解させた。その後、CA-3(11.3g、38.3mmol)を添加し、更に固形分濃度が12質量%になるようにNMPを加えて、室温で24時間撹拌し、ポリアミック酸溶液(PAA-B1)(粘度:384mPa・s)を得た。
(Synthesis Example 5)
DA-5 (6.38 g, 32.0 mmol), DA-6 (1.22 g, 8.00 mmol) and NMP (109 g) were added to a 200 mL four-necked flask equipped with a stirrer and nitrogen inlet tube, Dissolved by stirring at room temperature. Then, CA-3 (11.3 g, 38.3 mmol) is added, NMP is added so that the solid content concentration is 12% by mass, and the mixture is stirred at room temperature for 24 hours to form a polyamic acid solution (PAA-B1). (viscosity: 384 mPa·s).
<合成例6>
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、DA-1(0.324g、3.00mmol)、DA-2(0.733g、3.00mmol)、DA-3(0.641g、2.00mmol)、DA-4(0.797g、2.00mmol)、及びNMP(30.8g)を加えて、室温で撹拌して溶解させた。その後、DI-3(0.634g、1.50mmol)を添加し、60℃で5時間撹拌して溶解させた。その後、40℃まで冷却し、CA-1(1.79g、8.00mmol)を添加し、更に固形分濃度が12質量%になるようにNMPを加えて、40℃で24時間撹拌して、重合体溶液(PAA-A3)(粘度:56.7mPa・s)を得た。この重合体の数平均分子量は6,432、重量平均分子量は13,826であった。
 上記で得られた重合体のH-NMR測定にて、1.47ppm近傍に、合成例1および合成例2の重合体で使用されているDA-4のt-Buカルバメート基由来のピーク1.42ppmとは異なるt-Bu基由来のピークと、11.00~8.00ppmに新たなアミドピークの発生が確認できたことから、DI-3由来の式(1A)で表される基が導入できていると考えられる。
<Synthesis Example 6>
DA-1 (0.324 g, 3.00 mmol), DA-2 (0.733 g, 3.00 mmol), DA-3 (0.641 g, 2.00 mmol), DA-4 (0.797 g, 2.00 mmol), and NMP (30.8 g) were added and dissolved with stirring at room temperature. DI-3 (0.634 g, 1.50 mmol) was then added and dissolved by stirring at 60° C. for 5 hours. Then, cool to 40 ° C., add CA-1 (1.79 g, 8.00 mmol), further add NMP so that the solid content concentration is 12% by mass, stir at 40 ° C. for 24 hours, A polymer solution (PAA-A3) (viscosity: 56.7 mPa·s) was obtained. This polymer had a number average molecular weight of 6,432 and a weight average molecular weight of 13,826.
In the 1 H-NMR measurement of the polymer obtained above, a peak 1 derived from the t-Bu carbamate group of DA-4 used in the polymers of Synthesis Example 1 and Synthesis Example 2 was found near 1.47 ppm. A peak derived from a t-Bu group different from .42 ppm and a new amide peak at 11.00 to 8.00 ppm were confirmed, so the group represented by the formula (1A) derived from DI-3 It is considered that it has been introduced.
<合成例7>
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、DA-1(0.324g、3.00mmol)、DA-2(0.733g、3.00mmol)、DA-3(0.641g、2.00mmol)、DA-4(0.797g、2.00mmol)、及びNMP(30.8g)を加えて、室温で撹拌して溶解させた。その後、DI-4(0.751g、1.50mmol)を添加し、60℃で5時間撹拌して溶解させた。その後、40℃まで冷却し、CA-1(1.79g、8.00mmol)を添加し、更に固形分濃度が12質量%になるようにNMPを加えて、40℃で24時間撹拌して、重合体溶液(PAA-A4)(粘度:32.7mPa・s)を得た。この重合体の数平均分子量は4,504、重量平均分子量は9,731であった。
 上記で得られた重合体のH-NMR測定にて、1.40ppm近傍に、合成例1および合成例2の重合体で使用されているDA-4のt-Buカルバメート基由来のピーク1.42ppmとは異なるt-Bu基由来のピークと、11.00~8.00ppmに新たなアミドピークの発生が確認できたことから、DI-4由来の式(1A)で表される基が導入できていると考えられる。
<Synthesis Example 7>
DA-1 (0.324 g, 3.00 mmol), DA-2 (0.733 g, 3.00 mmol), DA-3 (0.641 g, 2.00 mmol), DA-4 (0.797 g, 2.00 mmol), and NMP (30.8 g) were added and dissolved with stirring at room temperature. DI-4 (0.751 g, 1.50 mmol) was then added and dissolved by stirring at 60° C. for 5 hours. Then, cool to 40 ° C., add CA-1 (1.79 g, 8.00 mmol), further add NMP so that the solid content concentration is 12% by mass, stir at 40 ° C. for 24 hours, A polymer solution (PAA-A4) (viscosity: 32.7 mPa·s) was obtained. This polymer had a number average molecular weight of 4,504 and a weight average molecular weight of 9,731.
In the 1 H-NMR measurement of the polymer obtained above, a peak 1 derived from the t-Bu carbamate group of DA-4 used in the polymers of Synthesis Example 1 and Synthesis Example 2 was found near 1.40 ppm. A peak derived from a t-Bu group different from .42 ppm and a new amide peak occurring at 11.00 to 8.00 ppm were confirmed, so the group represented by the formula (1A) derived from DI-4 It is considered that it has been introduced.
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
<液晶配向剤の調製>
(実施例1)
 合成例3で得られた重合体溶液PAA-A1(8.33g)に、NMP(5.67g)及びBCS(6.00g)を加え、室温で2時間撹拌して、液晶配向剤(V-1)を得た。
<Preparation of liquid crystal aligning agent>
(Example 1)
NMP (5.67 g) and BCS (6.00 g) were added to the polymer solution PAA-A1 (8.33 g) obtained in Synthesis Example 3 and stirred at room temperature for 2 hours to obtain a liquid crystal aligning agent (V- 1) was obtained.
(実施例2)
 使用する重合体溶液をPAA-A1からPAA-A2に変更した点以外は、実施例1と同様に操作することで、液晶配向剤(V-2)を得た。
(Example 2)
A liquid crystal aligning agent (V-2) was obtained in the same manner as in Example 1, except that the polymer solution used was changed from PAA-A1 to PAA-A2.
(実施例3)
 合成例6で得られた重合体溶液PAA-A3(10.00g)に、NMP(14.00g)及びBCS(6.00g)を加え、室温で2時間撹拌して、液晶配向剤(V-3)を得た。
(Example 3)
To the polymer solution PAA-A3 (10.00 g) obtained in Synthesis Example 6, NMP (14.00 g) and BCS (6.00 g) were added and stirred at room temperature for 2 hours to obtain a liquid crystal aligning agent (V- 3) was obtained.
(実施例4)
 合成例7で得られた重合体溶液PAA-A4(10.00g)に、NMP(14.00g)及びBCS(6.00g)を加え、室温で2時間撹拌して、液晶配向剤(V-4)を得た。
(Example 4)
To the polymer solution PAA-A4 (10.00 g) obtained in Synthesis Example 7, NMP (14.00 g) and BCS (6.00 g) were added and stirred at room temperature for 2 hours to obtain a liquid crystal aligning agent (V- 4) was obtained.
(実施例5)
 合成例4で得られた重合体溶液PAA-A2(1.88g)に、合成例5で得られたポリアミック酸溶液PAA-B1(4.39g)、NMP(3.80g)、BCS(4.80g)、AD-1のNMP10質量%希釈溶液(0.376g)及びAD-2のNMP1質量%希釈溶液(0.752g)を加え、室温で2時間撹拌して、液晶配向剤(V-5)を得た。
(Example 5)
To the polymer solution PAA-A2 (1.88 g) obtained in Synthesis Example 4, the polyamic acid solution PAA-B1 (4.39 g) obtained in Synthesis Example 5, NMP (3.80 g), BCS (4. 80 g), an NMP 10% by mass diluted solution of AD-1 (0.376 g) and an NMP 1% by mass diluted solution of AD-2 (0.752 g) were added, stirred at room temperature for 2 hours, and a liquid crystal aligning agent (V-5 ).
(比較例1)~(比較例2)
 使用する重合体をPAA-A1からポリアミック酸溶液PAA-R1~PAA-R2に変更した点以外は、実施例5と同様に操作することで、液晶配向剤(RV-1)~(RV-2)を得た。
(Comparative Example 1) to (Comparative Example 2)
Liquid crystal aligning agents (RV-1) to (RV-2) were prepared in the same manner as in Example 5, except that the polymer used was changed from PAA-A1 to polyamic acid solutions PAA-R1 to PAA-R2. ).
 上記実施例1~5及び比較例1~2で得られた液晶配向剤の仕様を表2に示す。重合体成分の括弧内の数値は、重合体成分の合計100質量部に対する、各重合体成分の割合(質量部)を表す。 Table 2 shows the specifications of the liquid crystal aligning agents obtained in Examples 1-5 and Comparative Examples 1-2. The numbers in parentheses for the polymer components represent the ratio (parts by mass) of each polymer component with respect to the total 100 parts by mass of the polymer components.
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000043
 上記で得られた液晶配向剤を用いて以下に示す手順でFFS駆動液晶セルを作製し、各種評価を行った。 Using the liquid crystal aligning agent obtained above, an FFS-driven liquid crystal cell was produced according to the procedure shown below, and various evaluations were performed.
<FFS駆動液晶セルの構成>
 FFSモード液晶表示素子の構成を備えた液晶セルを作製した。
 始めに、電極付きの基板を準備した。基板は、30mm×35mmの長方形で、厚みが0.7mmのガラス基板を用いた。基板上には第1層目として共通電極を構成する、ベタ状のパターンを備えたITO電極が形成されている。第1層目の共通電極の上には第2層目として、CVD(化学蒸着)法により成膜されたSiN(窒化珪素)膜が形成されている。第2層目のSiN膜の膜厚は300nmであり、層間絶縁膜として機能する。第2層目のSiN膜の上には、第3層目としてITO膜をパターニングして形成された櫛歯状の画素電極が配置され、第1画素及び第2画素の2つの画素が形成されており、各画素のサイズは、縦10mm、横5mmである。本電極付き基板は、第1層目の共通電極と第3層目の画素電極が、第2層目のSiN膜にて絶縁された構造を有する。
 第3層目の画素電極は、中央部分が内角160°で屈曲し、幅が3μmの電極線が6μmの間隔で平行になるように複数配列された櫛歯形状を有しており、1つの画素は、複数の電極線によって形成されており、屈曲部を結ぶ線を境に第1領域と第2領域を有している。
 次に、上記実施例1~5及び比較例1~2で得られた液晶配向剤(V-1)~(V-5)、(RV-1)~(RV-2)を孔径1.0μmのフィルターで濾過した後、上記電極付き基板(以後、電極基板と呼ぶ)と、裏面にITO膜が成膜されている高さ4μmの柱状スペーサーを有するガラス基板(以後、対向基板と呼ぶ)に、スピンコート法にて塗布した。80℃のホットプレート上で2分間乾燥させた後、230℃の熱風循環式オーブンで20分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面に、254nmバンドパスフィルターと偏光子を介した偏光紫外線を照射して配向処理を施し、液晶配向膜付き基板を得た。照射量は下記表3に示す。なお、上記電極基板に形成された液晶配向膜は、画素屈曲部の内角を等分する方向と、液晶の配向方向とが直交するように配向処理が施されており、対向基板に形成された液晶配向膜は、液晶セルを作製する際に電極基板上の液晶の配向方向と、対向基板上の液晶の配向方向とが一致するように配向処理が施されている。上記2枚の基板を一組とし、基板上にシール剤(三井化学社製 XN-1500T)をディスペンサーにて印刷し、もう1枚の基板を、それぞれの液晶配向膜の配向方向が0°になって向かい合うようにして張り合わせた。その後、張り合わせた基板を圧着し、150℃の熱風循環式オーブンで60分間加熱しシール剤を硬化させ、空セルを作製した。この空セルに減圧注入法によって、液晶PA-1492(DIC社製)を注入し、注入口を封止することによりFFS駆動液晶セルを得た。その後、得られた液晶セルを120℃で1時間加熱し、一晩放置してから評価に使用した。
<Configuration of FFS-driven liquid crystal cell>
A liquid crystal cell having the structure of an FFS mode liquid crystal display element was produced.
First, a substrate with electrodes was prepared. A glass substrate having a rectangular shape of 30 mm×35 mm and a thickness of 0.7 mm was used as the substrate. An ITO electrode having a solid pattern is formed as a first layer on the substrate to form a common electrode. A SiN (silicon nitride) film formed by a CVD (chemical vapor deposition) method is formed as a second layer on the common electrode of the first layer. The SiN film of the second layer has a film thickness of 300 nm and functions as an interlayer insulating film. On the SiN film of the second layer, a comb-shaped pixel electrode formed by patterning an ITO film is arranged as a third layer, and two pixels of a first pixel and a second pixel are formed. The size of each pixel is 10 mm long and 5 mm wide. The electrode-attached substrate has a structure in which the common electrode of the first layer and the pixel electrode of the third layer are insulated by the SiN film of the second layer.
The pixel electrode of the third layer has a comb-like shape in which a central portion is bent at an internal angle of 160° and a plurality of electrode lines with a width of 3 μm are arranged in parallel at intervals of 6 μm. A pixel is formed by a plurality of electrode lines, and has a first region and a second region bordering on a line connecting bent portions.
Next, the liquid crystal aligning agents (V-1) to (V-5) and (RV-1) to (RV-2) obtained in Examples 1 to 5 and Comparative Examples 1 and 2 were used with a pore size of 1.0 μm. After filtering with a filter, the substrate with the electrode (hereinafter referred to as the electrode substrate) and the glass substrate (hereinafter referred to as the counter substrate) having a columnar spacer with a height of 4 μm and having an ITO film formed on the back surface. , was applied by a spin coating method. After drying on a hot plate at 80° C. for 2 minutes, baking was performed in a hot air circulating oven at 230° C. for 20 minutes to form a coating film with a thickness of 100 nm. The coating film surface was subjected to alignment treatment by irradiating polarized ultraviolet rays through a 254 nm bandpass filter and a polarizer to obtain a substrate with a liquid crystal alignment film. The irradiation dose is shown in Table 3 below. The liquid crystal alignment film formed on the electrode substrate is subjected to an alignment treatment so that the direction of equally dividing the internal angle of the bent portion of the pixel and the alignment direction of the liquid crystal are orthogonal to each other. The liquid crystal alignment film is subjected to an alignment treatment so that the alignment direction of the liquid crystal on the electrode substrate and the alignment direction of the liquid crystal on the counter substrate are aligned when the liquid crystal cell is produced. The above two substrates are set as a set, a sealant (XN-1500T manufactured by Mitsui Chemicals, Inc.) is printed on the substrate with a dispenser, and another substrate is set so that the alignment direction of each liquid crystal alignment film is 0 °. I glued them together so that they would face each other. After that, the laminated substrates were pressure-bonded and heated in a hot air circulating oven at 150° C. for 60 minutes to cure the sealant, thereby producing an empty cell. Liquid crystal PA-1492 (manufactured by DIC) was injected into this empty cell by a vacuum injection method, and the injection port was sealed to obtain an FFS-driven liquid crystal cell. After that, the obtained liquid crystal cell was heated at 120° C. for 1 hour and left to stand overnight before being used for evaluation.
<コントラストの面内均一性の評価>
 AXOMETRICS社製AxoStepを用いて液晶表示素子のツイスト角のばらつきの評価を行った。上記で作製した液晶セルを測定ステージに設置し、電圧無印加の状態で、画素面内のCircular Retardanceの分布を測定して標準偏差σの3倍である3σを算出した。面内均一性は、この3σの値が小さいほど良好であると言える。評価基準として、上記3σ値が、それぞれ、1.10以下の場合を「優良」、1.10より大きく1.30以下の場合を「良」、1.30より大きい場合を「不良」とした。
 上記実施例及び比較例の各液晶配向剤を使用する液晶表示素子に関して実施した評価結果を表3に示す。
<Evaluation of in-plane uniformity of contrast>
Variation in the twist angle of the liquid crystal display element was evaluated using AxoStep manufactured by AXOMETRICS. The liquid crystal cell produced above was placed on a measurement stage, and the distribution of Circular Retardance in the pixel plane was measured with no voltage applied to calculate 3σ, which is three times the standard deviation σ. It can be said that the smaller the 3σ value, the better the in-plane uniformity. As evaluation criteria, the 3σ value was "excellent" when it was 1.10 or less, "good" when it was greater than 1.10 and 1.30 or less, and "poor" when it was greater than 1.30. .
Table 3 shows the evaluation results of the liquid crystal display elements using the liquid crystal aligning agents of the above Examples and Comparative Examples.
<液晶配向の安定性の評価>
 本評価は、長期交流駆動において液晶配向膜の配向性能が低下することによって生ずる残像(AC残像ともいう。)を評価するものである。
 上記で作製したFFS駆動液晶セルに対し、60℃の恒温環境下、周波数60Hzで±4.2Vの交流電圧を120時間印加した。その後、液晶セルの画素電極と共通電極との間をショートさせた状態にし、室温(23℃)下で一日放置した。上記の処理を行った液晶セルに関して、電圧無印加状態における、画素の第1領域の液晶の配向方向と、画素の第2領域の液晶の配向方向とのずれを角度として算出した。具体的には、偏光軸が直交するように配置された2枚の偏光板の間に液晶セルを設置し、バックライトを点灯させ、画素の第1領域の透過光強度が最も小さくなるように液晶セルの配置角度を調整し、次に画素の第2領域の透過光強度が最も小さくなるように液晶セルを回転させたときに要する回転角度を求めた。液晶配向の安定性は、この回転角度の値が小さいほど良好であると言える。
 評価基準として、上記回転角度の値が、それぞれ、0.100°未満の場合を「優良」、0.100°以上で0.200°以下の場合を「良」、0.200°より大きい場合値を「不良」とした。
<Evaluation of stability of liquid crystal alignment>
This evaluation evaluates afterimages (also referred to as AC afterimages) caused by deterioration of the alignment performance of the liquid crystal alignment film during long-term AC driving.
An AC voltage of ±4.2 V at a frequency of 60 Hz was applied to the FFS-driven liquid crystal cell produced above for 120 hours in a constant temperature environment of 60°C. After that, the pixel electrode and the common electrode of the liquid crystal cell were short-circuited, and left at room temperature (23° C.) for one day. With respect to the liquid crystal cell subjected to the above treatment, the deviation between the alignment direction of the liquid crystal in the first region of the pixel and the alignment direction of the liquid crystal in the second region of the pixel was calculated as an angle when no voltage was applied. Specifically, a liquid crystal cell is placed between two polarizing plates whose polarization axes are orthogonal to each other, a backlight is turned on, and the liquid crystal cell is arranged so that the transmitted light intensity in the first region of the pixel is minimized. was adjusted, and then the rotation angle required when the liquid crystal cell was rotated so that the intensity of transmitted light in the second region of the pixel was minimized was obtained. It can be said that the smaller the rotation angle, the better the stability of the liquid crystal alignment.
As evaluation criteria, the value of the rotation angle is "excellent" if it is less than 0.100°, "good" if it is 0.100° or more and 0.200° or less, and is greater than 0.200°. The value was set as "poor".
 上記実施例及び比較例の各液晶配向剤を使用する液晶表示素子に関して実施した評価結果を表3に示す。 Table 3 shows the evaluation results of the liquid crystal display elements using the liquid crystal aligning agents of the above Examples and Comparative Examples.
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000044
 実施例1~5と比較例1~2の比較から、ジイミドジエステル化合物DI-1~DI-4を用いた液晶配向剤から得られる液晶配向膜は、ジイミドジエステル化合物(B)を含まない成分で構成される液晶配向剤から得られる液晶配向膜に比べて、高い面内均一性と高い液晶配向の安定性を示した。 From the comparison between Examples 1 to 5 and Comparative Examples 1 to 2, the liquid crystal alignment films obtained from the liquid crystal alignment agents using the diimide diester compounds DI-1 to DI-4 are components that do not contain the diimide diester compound (B). It exhibited high in-plane uniformity and high stability of liquid crystal alignment compared to the liquid crystal alignment film obtained from the liquid crystal alignment agent.
 本発明の液晶配向剤から得られる液晶配向膜は、IPS駆動方式やFFS駆動方式の液晶表示素子に代表される、種々の液晶表示素子に好適に用いることができる。そして、これらの表示素子は、表示を目的とする液晶ディスプレイに限定されず、さらには、光の透過と遮断を制御する調光窓や光シャッターなどにおいても有用である。 The liquid crystal aligning film obtained from the liquid crystal aligning agent of the present invention can be suitably used for various liquid crystal display elements, typified by liquid crystal display elements of the IPS drive system and the FFS drive system. These display elements are not limited to liquid crystal displays intended for display, and are also useful in light control windows and optical shutters for controlling the transmission and blocking of light.

Claims (16)

  1.  テトラカルボン酸二無水物及びその誘導体からなる群から選ばれる少なくとも一つの化合物(但し、テトラカルボン酸ジイミドジエステル化合物を除く。)並びに下記式(1)で表されるジイミドジエステル化合物(B)を含むテトラカルボン酸誘導体成分とジアミン成分とを重合反応させることにより得られる、ポリイミド前駆体、及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる1つ以上の重合体(A)を含有し、
     前記重合体(A)が、前記ジイミドジエステル化合物(B)に由来する下記式(1A)で表される基を有する、
     液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
    (Xは、非環式脂肪族テトラカルボン酸二無水物若しくは脂環式テトラカルボン酸二無水物又はこれらの誘導体に由来する4価の有機基を表す。Rは、それぞれ独立して、炭素数1~5の1価の有機基を表す。)
    Figure JPOXMLDOC01-appb-C000002
    (Rは、炭素数1~5の1価の有機基を表す。*は、Xに結合する結合手を表す。)
    At least one compound selected from the group consisting of tetracarboxylic dianhydrides and derivatives thereof (excluding tetracarboxylic acid diimide diester compounds) and a diimide diester compound (B) represented by the following formula (1) Contains one or more polymers (A) selected from the group consisting of polyimide precursors obtained by polymerizing a tetracarboxylic acid derivative component and a diamine component, and polyimides that are imidized products of the polyimide precursors. death,
    The polymer (A) has a group represented by the following formula (1A) derived from the diimide diester compound (B),
    Liquid crystal aligning agent.
    Figure JPOXMLDOC01-appb-C000001
    (X 1 represents a tetravalent organic group derived from an acyclic aliphatic tetracarboxylic dianhydride or an alicyclic tetracarboxylic dianhydride or a derivative thereof. Each R independently represents a carbon represents a monovalent organic group of numbers 1 to 5.)
    Figure JPOXMLDOC01-appb-C000002
    (R represents a monovalent organic group having 1 to 5 carbon atoms. * represents a bond that binds to X 1. )
  2.  前記式(1)におけるXが、炭素数4~16の非環式脂肪族炭化水素基または炭素数4~16の脂環式脂肪族炭化水素基を有するテトラカルボン酸二無水物又はその誘導体に由来する4価の有機基を表す、請求項1に記載の液晶配向剤。 X 1 in the formula (1) is a tetracarboxylic acid dianhydride or derivative thereof having an acyclic aliphatic hydrocarbon group having 4 to 16 carbon atoms or an alicyclic aliphatic hydrocarbon group having 4 to 16 carbon atoms The liquid crystal aligning agent according to claim 1, which represents a tetravalent organic group derived from.
  3.  前記式(1)におけるXが、下記式(x-1)~式(x-18)のいずれかを表す、請求項1に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000003
    (R~Rはそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、炭素数1~6のアルコキシ基、炭素数2~6のアルコキシアルキル基、炭素数2~6のアルキルオキシカルボニル基、又はフェニル基を表す。R及びRは、それぞれ独立して、水素原子又はメチル基を表す。
     式(x-9)における
    Figure JPOXMLDOC01-appb-C000004
     は、単結合、又は二重結合を表す。)
    The liquid crystal aligning agent according to claim 1, wherein X 1 in the formula (1) represents any one of the following formulas (x-1) to (x-18).
    Figure JPOXMLDOC01-appb-C000003
    (R 1 to R 4 each independently contain a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, or a fluorine atom. R 5 represents a monovalent organic group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an alkoxyalkyl group having 2 to 6 carbon atoms, an alkyloxycarbonyl group having 2 to 6 carbon atoms, or a phenyl group. and R6 each independently represent a hydrogen atom or a methyl group.
    in formula (x-9)
    Figure JPOXMLDOC01-appb-C000004
    represents a single bond or a double bond. )
  4.  前記ジイミドジエステル化合物(B)が、下記式(b-1)~(b-9)で表される化合物の少なくともいずれかである、請求項1に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000005
    The liquid crystal aligning agent according to claim 1, wherein the diimide diester compound (B) is at least one of compounds represented by the following formulas (b-1) to (b-9).
    Figure JPOXMLDOC01-appb-C000005
  5.  前記テトラカルボン酸誘導体成分が、下記式(2)で表されるテトラカルボン酸二無水物を含む、請求項1に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000006
    (Xは、下記式(x-1)~(x-18)、及び(xr-1)~(xr-2)からなる群から選ばれる構造を表す。)
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
    (R~Rはそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、炭素数1~6のアルコキシ基、炭素数2~6のアルコキシアルキル基、炭素数2~6のアルキルオキシカルボニル基、又はフェニル基を表す。R及びRは、それぞれ独立して、水素原子又はメチル基を表す。
     式(x-9)における
    Figure JPOXMLDOC01-appb-C000009
     は、単結合、又は二重結合を表す。
     j及びkは、0又は1の整数であり、A及びAは、それぞれ独立して、単結合、-O-、-CO-、-COO-、フェニレン基、スルホニル基、又はアミド基を表す。複数のAは、それぞれ同一でも異なってもよい。*1は一方の酸無水物基に結合する結合手であり、*2は他方の酸無水物基に結合する結合手である。)
    The liquid crystal aligning agent according to claim 1, wherein the tetracarboxylic acid derivative component contains a tetracarboxylic dianhydride represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000006
    (X represents a structure selected from the group consisting of the following formulas (x-1) to (x-18) and (xr-1) to (xr-2).)
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
    (R 1 to R 4 each independently contain a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, or a fluorine atom. R 5 represents a monovalent organic group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an alkoxyalkyl group having 2 to 6 carbon atoms, an alkyloxycarbonyl group having 2 to 6 carbon atoms, or a phenyl group. and R6 each independently represent a hydrogen atom or a methyl group.
    in formula (x-9)
    Figure JPOXMLDOC01-appb-C000009
    represents a single bond or a double bond.
    j and k are integers of 0 or 1, and A 1 and A 2 each independently represent a single bond, —O—, —CO—, —COO—, a phenylene group, a sulfonyl group, or an amide group; show. A plurality of A 2 may be the same or different. *1 is a bond that bonds to one acid anhydride group, and *2 is a bond that bonds to the other acid anhydride group. )
  6.  前記式(x-1)が、下記式(x1-1)~(x1-6)からなる群から選ばれる請求項5に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000010
    (*1は一方の酸無水物基に結合する結合手であり、*2は他方の酸無水物基に結合する結合手である。)
    The liquid crystal aligning agent according to claim 5, wherein the formula (x-1) is selected from the group consisting of the following formulas (x1-1) to (x1-6).
    Figure JPOXMLDOC01-appb-C000010
    (*1 is a bond that bonds to one acid anhydride group, and *2 is a bond that bonds to the other acid anhydride group.)
  7.  前記ジアミン成分が、下記式(3)で表されるジアミンを含む、請求項1に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000011
    (Ar、及びAr1’は、それぞれ、ベンゼン環、ビフェニル構造、又はナフタレン環を表し、該ベンゼン環、該ビフェニル構造、又は該ナフタレン環上の1つ以上の水素原子は1価の基で置換されてもよい。L及びL1’は、それぞれ、単結合、-O-、-C(=O)-、又は-O-C(=O)-を表す。Aは、-CH-、炭素数2~12のアルキレン基、又は該アルキレン基の炭素-炭素結合の間に、-O-、-C(=O)-O-、及び-O-C(=O)-の少なくともいずれかの基が挿入されてなる2価の有機基を表す。Aが有する任意の水素原子は、ハロゲン原子で置換されていてもよい。)
    The liquid crystal aligning agent according to claim 1, wherein the diamine component contains a diamine represented by the following formula (3).
    Figure JPOXMLDOC01-appb-C000011
    (Ar 1 and Ar 1′ each represent a benzene ring, a biphenyl structure, or a naphthalene ring, and one or more hydrogen atoms on the benzene ring, the biphenyl structure, or the naphthalene ring are monovalent groups; optionally substituted, L 1 and L 1′ each represent a single bond, —O—, —C(=O)—, or —OC(=O)—, A is —CH 2 -, an alkylene group having 2 to 12 carbon atoms, or at least -O-, -C(=O)-O-, and -OC(=O)- between the carbon-carbon bonds of the alkylene group represents a divalent organic group into which any group is inserted.Any hydrogen atom of A may be substituted with a halogen atom.)
  8.  請求項1~7のいずれか1項に記載の液晶配向剤を基板に塗布し、焼成し、得られる膜に放射線を照射することを含む、液晶配向膜の製造方法。 A method for producing a liquid crystal alignment film, comprising applying the liquid crystal alignment agent according to any one of claims 1 to 7 to a substrate, baking it, and irradiating the resulting film with radiation.
  9.  前記焼成における焼成温度が150~250℃である、請求項8に記載の液晶配向膜の製造方法。 The method for producing a liquid crystal alignment film according to claim 8, wherein the firing temperature in the firing is 150 to 250°C.
  10.  請求項1~7のいずれか1項に記載の液晶配向剤から形成されてなる液晶配向膜。 A liquid crystal alignment film formed from the liquid crystal alignment agent according to any one of claims 1 to 7.
  11.  請求項10に記載の液晶配向膜を具備する液晶表示素子。 A liquid crystal display element comprising the liquid crystal alignment film according to claim 10.
  12.  IPS駆動方式又はFFS駆動方式である請求項11に記載の液晶表示素子。 The liquid crystal display element according to claim 11, which is an IPS drive system or an FFS drive system.
  13.  下記式(1)で表されるジイミドジエステル化合物。
    Figure JPOXMLDOC01-appb-C000012
    (Xは、非環式脂肪族テトラカルボン酸二無水物若しくは脂環式テトラカルボン酸二無水物又はこれらの誘導体に由来する4価の有機基を表す。Rは、それぞれ独立して、炭素数1~5の1価の有機基を表す。)
    A diimide diester compound represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000012
    (X 1 represents a tetravalent organic group derived from an acyclic aliphatic tetracarboxylic dianhydride or an alicyclic tetracarboxylic dianhydride or a derivative thereof. Each R independently represents a carbon represents a monovalent organic group of numbers 1 to 5.)
  14.  前記式(1)におけるXが、炭素数4~16の非環式脂肪族炭化水素基または炭素数4~16の脂環式脂肪族炭化水素基を有するテトラカルボン酸二無水物又はその誘導体に由来する4価の有機基を表す、請求項13に記載のジイミドジエステル化合物。 X 1 in the formula (1) is a tetracarboxylic acid dianhydride or derivative thereof having an acyclic aliphatic hydrocarbon group having 4 to 16 carbon atoms or an alicyclic aliphatic hydrocarbon group having 4 to 16 carbon atoms 14. The diimide diester compound according to claim 13, which represents a tetravalent organic group derived from.
  15.  下記式(b-1)~(b-6)及び式(b-8)で表される化合物のいずれかである、請求項13に記載のジイミドジエステル化合物。
    Figure JPOXMLDOC01-appb-C000013
    The diimide diester compound according to claim 13, which is any one of compounds represented by the following formulas (b-1) to (b-6) and formula (b-8).
    Figure JPOXMLDOC01-appb-C000013
  16.  テトラカルボン酸二無水物及びその誘導体からなる群から選ばれる少なくとも一つの化合物(但し、テトラカルボン酸ジイミドジエステル化合物を除く。)並びに請求項13~15のいずれか1項に記載のジイミドジエステル化合物を含むテトラカルボン酸誘導体成分とジアミン成分とを重合反応させることにより得られる、ポリイミド前駆体、及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる1つ以上であり、
     前記ジイミドジエステル化合物に由来する下記式(1A)で表される基を有する、
     重合体。
    Figure JPOXMLDOC01-appb-C000014
    (Rは、炭素数1~5の1価の有機基を表す。*は、Xに結合する結合手を表す。)

     
    At least one compound selected from the group consisting of tetracarboxylic dianhydrides and derivatives thereof (excluding tetracarboxylic acid diimide diester compounds) and the diimide diester compound according to any one of claims 13 to 15. One or more selected from the group consisting of a polyimide precursor and a polyimide that is an imidized product of the polyimide precursor, obtained by polymerizing a tetracarboxylic acid derivative component and a diamine component containing
    Having a group represented by the following formula (1A) derived from the diimide diester compound,
    polymer.
    Figure JPOXMLDOC01-appb-C000014
    (R represents a monovalent organic group having 1 to 5 carbon atoms. * represents a bond that binds to X 1. )

PCT/JP2022/027644 2021-07-30 2022-07-14 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, compound and polymer WO2023008203A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020247004455A KR20240037999A (en) 2021-07-30 2022-07-14 Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display device, compound, and polymer
CN202280052213.1A CN117716282A (en) 2021-07-30 2022-07-14 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, compound and polymer
JP2023538422A JPWO2023008203A1 (en) 2021-07-30 2022-07-14

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-125651 2021-07-30
JP2021125651 2021-07-30

Publications (1)

Publication Number Publication Date
WO2023008203A1 true WO2023008203A1 (en) 2023-02-02

Family

ID=85087567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027644 WO2023008203A1 (en) 2021-07-30 2022-07-14 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, compound and polymer

Country Status (5)

Country Link
JP (1) JPWO2023008203A1 (en)
KR (1) KR20240037999A (en)
CN (1) CN117716282A (en)
TW (1) TW202309155A (en)
WO (1) WO2023008203A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06298931A (en) * 1993-04-20 1994-10-25 Chisso Corp Silicon-containing polyamic acid derivative and photosensitive resin composition containing the derivative

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3893659B2 (en) 1996-03-05 2007-03-14 日産化学工業株式会社 Liquid crystal alignment treatment method
JP6669161B2 (en) 2015-03-24 2020-03-18 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06298931A (en) * 1993-04-20 1994-10-25 Chisso Corp Silicon-containing polyamic acid derivative and photosensitive resin composition containing the derivative

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DEUTSCH HOWARD M, GELBAUM LESLIE T, MCLAUGHLIN MARK, FLEISCHMANN THOMAS J, BARNHART LAURENCE L, HAUGWITZ RUDIGER D, ZALKOW LEON H: "Synthesis of Congeners and Prodrugs of the Benzene Maleimide Photoadduct Mitindomide as Potential Antitumor Agents. 2", JOURNAL OF MEDICINAL CHEMISTRY, vol. 29, 1 November 1986 (1986-11-01), pages 2164 - 2170, XP093028715 *

Also Published As

Publication number Publication date
KR20240037999A (en) 2024-03-22
CN117716282A (en) 2024-03-15
TW202309155A (en) 2023-03-01
JPWO2023008203A1 (en) 2023-02-02

Similar Documents

Publication Publication Date Title
WO2022176680A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2022270287A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2023286733A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, method for producing liquid crystal display element, and liquid crystal display element
WO2022234820A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2023008203A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, compound and polymer
WO2022190896A1 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2024142964A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP7505643B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2023286735A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element production method, and liquid crystal display element
WO2024111498A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP7497782B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2024162336A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2024154728A1 (en) Liquid crystal display element and method for manufacturing same
JP7302744B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2023210532A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2024157869A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2022085674A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2023032753A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2022181311A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2024029576A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2024122359A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2023068084A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element, compound and polymer
WO2024166693A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, compound and polymer
WO2023074390A1 (en) Liquid crystal aligning agent, liquid crystal aligned film, liquid crystal display element, and compound
WO2023068085A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element, and compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849267

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023538422

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280052213.1

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247004455

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22849267

Country of ref document: EP

Kind code of ref document: A1