WO2023286735A1 - Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element production method, and liquid crystal display element - Google Patents

Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element production method, and liquid crystal display element Download PDF

Info

Publication number
WO2023286735A1
WO2023286735A1 PCT/JP2022/027256 JP2022027256W WO2023286735A1 WO 2023286735 A1 WO2023286735 A1 WO 2023286735A1 JP 2022027256 W JP2022027256 W JP 2022027256W WO 2023286735 A1 WO2023286735 A1 WO 2023286735A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
bis
formula
aminophenyl
Prior art date
Application number
PCT/JP2022/027256
Other languages
French (fr)
Japanese (ja)
Inventor
崇 仲井
幸司 巴
功一朗 別府
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to KR1020247002913A priority Critical patent/KR20240032874A/en
Priority to JP2023534791A priority patent/JPWO2023286735A1/ja
Publication of WO2023286735A1 publication Critical patent/WO2023286735A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to a liquid crystal aligning agent, a liquid crystal aligning film, a method for manufacturing a liquid crystal display element, and a liquid crystal display element.
  • Liquid crystal display elements used in liquid crystal televisions, navigators, smartphones, etc. usually have a liquid crystal alignment film inside the element to control the alignment state of liquid crystals.
  • a liquid crystal alignment film has a function of controlling the alignment of liquid crystal molecules in a certain direction in a liquid crystal display element.
  • a liquid crystal display element has a structure in which liquid crystal molecules forming a liquid crystal layer are sandwiched between liquid crystal alignment films formed on respective surfaces of a pair of substrates. There, the liquid crystal molecules are aligned in a certain direction by the liquid crystal alignment film and respond by applying a voltage to the electrodes provided between the substrate and the liquid crystal alignment film. As a result, the liquid crystal display element displays a desired image by utilizing the alignment change due to the response of the liquid crystal molecules.
  • liquid crystal alignment films have mainly been polyimide-based liquid crystal alignment films, which are obtained by applying a liquid crystal alignment agent whose main component is a polyimide precursor such as polyamic acid (polyamic acid) or a solution of soluble polyimide to a glass substrate or the like and baking it. used.
  • a liquid crystal alignment agent whose main component is a polyimide precursor such as polyamic acid (polyamic acid) or a solution of soluble polyimide to a glass substrate or the like and baking it. used.
  • the liquid crystal alignment film used in the IPS drive system and FFS drive system liquid crystal display elements requires an alignment regulating force for suppressing afterimages (hereinafter also referred to as AC afterimages) generated by long-term AC driving.
  • AC afterimages afterimages generated by long-term AC driving.
  • the liquid crystal display elements which are rapidly becoming higher in definition, backlights with higher brightness than before are being applied, and the specifications for display defects such as "afterimages" are becoming more and more severe. It's becoming
  • Patent Document 1 describes a liquid crystal alignment film for photo-alignment suitable for liquid crystal display elements of the IPS drive system and the FFS drive system.
  • Patent Document 2 describes that a liquid crystal alignment film obtained from a liquid crystal alignment agent containing two kinds of polyamic acids has high resistance to AC afterimages.
  • liquid crystal display elements used for the above applications are required to have a lower pretilt angle than conventional ones due to the demand for viewing angle characteristics. was found to be insufficient.
  • the present invention provides a liquid crystal aligning agent, the liquid crystal alignment film, and the liquid crystal alignment film that provide a liquid crystal alignment film having excellent resistance to AC afterimages, low pretilt angle characteristics, and high voltage holding ratio.
  • An object of the present invention is to provide a liquid crystal display element having
  • the present inventors by forming a liquid crystal aligning film using a liquid crystal aligning agent containing a specific polymer component, to achieve the above objects It was found to be effective, and the present invention was completed.
  • the present invention is based on such findings, and has the following gist.
  • a liquid crystal aligning agent characterized by containing the following (A) component and (B) component.
  • (A) component a polyimide precursor having 60 mol% or more of repeating units represented by the following formula (1) with respect to 1 mol of all repeating units in the polymer and a polyimide that is an imidized product of the polyimide precursor
  • R 11 to R 14 each independently contain a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, a fluorine atom represents a monovalent organic group having 1 to 6 carbon atoms or a phenyl group, at least one of R 11 to R 14 represents a group other than a hydrogen atom as defined above, and Ar 1 and Ar 1' each represent: represents a benzene ring, and one or more hydrogen atoms on the benzene ring may be substituted with a monovalent group.
  • X f is a tetravalent organic group having a 5-membered or more alicyclic structure.
  • Y represents a nitrogen atom-containing heterocyclic ring and a group "*21-NR-*22" (*21 and *22 represent a bond that binds to a carbon atom constituting an aromatic ring, provided that the carbon atom does not form a ring with the nitrogen atom to which R is bonded.
  • R represents a hydrogen atom or a monovalent organic group, and the above monovalent organic group is bonded to the nitrogen atom at a carbon atom other than the carbonyl carbon. represents a divalent organic group having a nitrogen atom-containing structure selected from the group consisting of amino groups.
  • a halogen atom is a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc., preferably a fluorine atom.
  • * represents a bond.
  • Boc represents a tert-butoxycarbonyl group.
  • liquid crystal aligning agent of the present invention it is possible to obtain a liquid crystal aligning agent having excellent resistance to AC afterimages, low pretilt angle characteristics, and a high voltage holding ratio. Further, a liquid crystal display element having the liquid crystal alignment film has excellent viewing angle characteristics and high display quality.
  • the stretchability of the polyimide increases, and the uniformity of the pretilt angle of the liquid crystal in the film increases, so it is thought that the pretilt angle of the liquid crystal decreases.
  • FIG. 1 is a schematic cross-sectional view showing an example of a lateral electric field liquid crystal display device of the present invention
  • FIG. 4 is a schematic cross-sectional view showing another example of the horizontal electric field liquid crystal display device of the present invention
  • Polymers (A) and (B) contained in the liquid crystal aligning agent of the present invention are polyimide precursors obtained using a tetracarboxylic acid derivative component and a diamine component, or polyimides that are imidized products of the polyimide precursors.
  • the polyimide precursor is a polymer from which a polyimide can be obtained by imidating polyamic acid, polyamic acid ester, or the like.
  • Polymers (A) and (B) are more preferably polyimide precursors, and still more preferably polyamic acids, from the viewpoint of suitably obtaining the effects of the present invention.
  • the polymer (A) is a polyamic acid
  • the polymer (A) has a repeating unit represented by formula (1) in which R1 is a hydrogen atom.
  • the polymer (A) is a polyamic acid ester
  • the polymer (A) has a repeating unit represented by formula (1) in which at least one of R 1 is a group other than a hydrogen atom.
  • the liquid crystal aligning agent of the present invention is a polyimide precursor having 60 mol% or more of repeating units represented by the above formula (1) with respect to 1 mol of all repeating units in the polymer (A), and the polyimide precursor It contains at least one polymer (A) selected from the group consisting of polyimides which are imidized products.
  • the polymer (A) contains the substituted cyclobutane skeleton, thereby defining the conformation upon imidization. Therefore, since the obtained polymer (A) has high stereoregularity, a liquid crystal alignment film having excellent resistance to AC afterimages can be obtained.
  • the repeating unit represented by formula (1) may be of one type or two or more types.
  • Examples of monovalent organic groups for R 1 and Z 1 in the above formula (1) include alkyl groups such as methyl group, ethyl group and propyl group; alkenyl groups such as vinyl group; , ethoxy group) and the like.
  • R 1 and Z 1 are preferably hydrogen atoms or methyl groups.
  • alkyl groups having 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms for R 11 to R 14 in formula (1) include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group and isobutyl group. , sec-butyl group, tert-butyl group, n-pentyl group and the like.
  • alkenyl group having 2 to 6 carbon atoms, preferably 2 to 4 carbon atoms in R 1 to R 4 include vinyl group, propenyl group, butynyl group and the like, and these may be linear or branched. .
  • alkynyl groups having 2 to 6, preferably 2 to 3 carbon atoms in R 11 to R 14 include ethynyl, 1-propynyl and 2-propynyl groups.
  • the fluorine atom-containing monovalent organic group having 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms for R 11 to R 14 is fluoromethyl group, trifluoromethyl group, pentafluoroethyl group, pentafluoropropyl and the like.
  • a more preferred combination of R 11 to R 14 is that R 11 and R 14 have the same structure, and R 12 and R 13 have the same structure, from the viewpoint of developing low pretilt angle characteristics. .
  • R 11 to R 14 are hydrogen atoms or methyl groups, at least one of R 11 to R 14 is preferably a methyl group, more preferably at least two of R 11 to R 14 are methyl groups. preferable. More preferably, R 11 and R 14 are methyl groups and R 12 and R 13 are hydrogen atoms.
  • the alkylene group of A in the above formula (1) may be linear or branched, but is preferably a linear alkylene group.
  • n is an integer of 5-12, more preferably an integer of 5-10, more preferably an integer of 5-7.
  • the sum of n1 and n2 is an integer of 5-12, more preferably an integer of 5-10.
  • n1 and n2 are preferably integers of 2-8, more preferably integers of 2-4.
  • the sum of m1, m2 and n' is an integer of 5-12, more preferably an integer of 5-10.
  • Each of m1 and m2 is more preferably an integer of 1 to 4, and still more preferably an integer of 2 to 4.
  • n′ is more preferably an integer of 2-6, and even more preferably an integer of 2-4.
  • the bonding positions of Ar 1 and Ar 1′ in the above formula (1) are preferably 1,4-positions or 1,3-positions, respectively, from the viewpoint of obtaining high liquid crystal orientation. position is even more preferred.
  • one or more hydrogen atoms on the benzene ring may be substituted with a monovalent group, and the monovalent group includes a halogen atom and 1 to 10 carbon atoms. (preferably 1 to 5 carbon atoms, more preferably 1 to 3 carbon atoms) alkyl group, 2 to 10 carbon atoms (preferably 2 to 5 carbon atoms, more preferably 2 to 3 carbon atoms) alkenyl group, carbon Alkoxy group having 1 to 10 carbon atoms (preferably 1 to 5 carbon atoms, more preferably 1 to 3 carbon atoms), 1 to 10 carbon atoms (preferably 1 to 5 carbon atoms, more preferably 1 to 3 carbon atoms) fluoroalkyl group, fluoroalkenyl group having 2 to 10 carbon atoms (preferably 2 to 5 carbon atoms, more preferably 2 to 3 carbon atoms), 1 to 10 carbon atoms (preferably 1 to 5 carbon atoms, more preferably carbon fluoroalkoxy groups having
  • the ratio of the repeating unit represented by the above formula (1) is preferably 60 mol % to 100 mol % with respect to 1 mol of all repeating units in the polymer (A).
  • the ratio of the repeating unit represented by the above formula (1) is more preferably 80 mol % to 100 mol %, still more preferably 90 mol % to 100 mol %, from the viewpoint of suitably obtaining the effects of the present invention.
  • the polyamic acid is, for example, a tetracarboxylic acid derivative component containing a tetracarboxylic dianhydride represented by the following formula (T 1 ) and a diamine (1) (H- NZ 1 -Ar 1 -L 1 -AL 1′ -Ar 1′ -NZ 1 -H (A, L 1 , L 1′ , Ar 1 , Ar 1′ , Z 1 , Y 1 are represented by formula (1 ) is synonymous with )) can be obtained by reacting a diamine component containing ).
  • a tetracarboxylic acid containing a tetracarboxylic dianhydride represented by the above formula (T 1 ) It can be obtained by reacting an acid derivative component with a diamine component containing a diamine (H—NZ 2 —Y 2 —NZ 2 —H (Y 2 and Z 2 are as defined in formula (2))).
  • the liquid crystal aligning agent of the present invention may be a polyimide precursor containing a repeating unit represented by the following formula (2) in addition to the repeating unit represented by the above formula (1), and the polyimide precursor.
  • the repeating unit may be of one type or two or more types.
  • R 2 and Z 2 are R 1 and Z 1 in formula (1), respectively. is synonymous with
  • R 11 to R 14 have the same definitions as R 11 to R 14 in formula (1).
  • Y 2 is a divalent organic group and a diamine (H-NZ 2 -Y 2 -NZ 2 -H (Y 2 and Z 2 have the same meaning as in formula (2).) ) from which two amino groups (—NZ 2 —H) have been removed.
  • Various diamines hereinafter also referred to as other diamines (a)
  • the diamine can be used as the diamine depending on the desired properties of the liquid crystal aligning agent.
  • the other diamine (a) the following can be used.
  • diamines having no side chain groups having 4 or more carbon atoms excluding protective groups that are detached by heating and replaced with hydrogen atoms, which will be described later). preferable.
  • diamines represented by the formula (d n ) (excluding diamines represented by the formula (d n )); diamines having a siloxane bond such as 1,3-bis(3-aminopropyl)-tetramethyldisiloxane; meta-xylylenediamine , 1,3-propanediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, 1,3-bis(aminomethyl)cyclohexane, 1,4-diaminocyclohexane, 4,4′-methylenebis(cyclohexylamine), WO2018 and diamines in which two amino groups are bonded to a group represented by any one of formulas (Y-1) to (Y-167) described in JP, 117239/117239.
  • diamines having a siloxane bond such as 1,3-bis(3-aminopropyl)-tetramethyldisiloxane; meta-xyly
  • the two or more m may be the same or different.
  • One or more hydrogen atoms on the benzene ring may be substituted with a monovalent group.
  • An example of formula (d 0 ) will be described later.
  • m and n are integers of 0 to 3 (provided that 1 ⁇ m + n ⁇ 4), j is an integer of 0 or 1,
  • X 1 is -(CH 2 ) a- (a is an integer of 1 to 15), -CONH-, -NHCO-, -CO-N(CH 3 )-, -NH-, -O-, -CH 2 O-, - represents CH 2 —OCO—, —COO—, or —OCO—, where R 1 is a fluorine atom, a fluorine atom-containing alkyl group having 1 to 10 carbon atoms, a fluorine atom-containing alkoxy group having 1 to 10 carbon atoms, or represents an alkyl group having 3 to 10 carbon atoms, an alkoxy group having 3 to 10 carbon atoms, or an alkoxyalkyl group having 3 to 10 carbon atoms, wherein X 2 is —O—, —CH 2
  • monovalent group in the above formula (d o ) include the structures exemplified for the monovalent group in the above formula (d AL ).
  • diamine represented by the above formula (d o ) from the viewpoint of lowering the pretilt angle, diamines represented by the following formulas (d o -1) to (d o -6), 3,3′-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether and 4,4'-diaminodiphenyl ether are preferred.
  • the ratio of the repeating unit represented by the above formula (2) is 0 per 1 mol of all repeating units in the polymer (A) from the viewpoint of suitably obtaining the effects of the present invention. ⁇ 40 mol% is preferred, 0 to 20 mol% is preferred, and 0 to 10 mol% is more preferred.
  • the diamine component used for producing the polymer (B) contained in the liquid crystal aligning agent of the present invention contains the diamine represented by the above formula (d n ). By containing the diamine component, it becomes possible to trap impurities that cause a decrease in voltage holding ratio, and the obtained liquid crystal alignment film has a high voltage holding ratio.
  • the diamines represented by the above formula (d n ) may be used singly or in combination of two or more.
  • the diamine component used for producing the polymer (B) may be composed of a diamine component that does not contain a diamine represented by the following formula (d AL ).
  • (A is a group “*11-(CH 2 ) n —O—*12” (*11 represents a bond that bonds to an oxygen atom or a bond that bonds to a carbon atom that constitutes a benzene ring, and *12 is represents a bond
  • n is an integer of 1 to 5. Any hydrogen atom of the benzene ring bonded to the NH 2 group is replaced with a monovalent group, and is also good.)
  • Examples of the nitrogen atom-containing heterocyclic ring in the above formula ( dn ) include pyrrole ring, imidazole ring, pyrazole ring, triazole ring, pyridine ring, pyrimidine ring, pyridazine ring, pyrazine ring, indole ring, benzimidazole ring and purine ring.
  • quinoline ring isoquinoline ring, naphthyridine ring, quinoxaline ring, phthalazine ring, triazine ring, carbazole ring, acridine ring, piperidine ring, piperazine ring, pyrrolidine ring, hexamethyleneimine ring and the like.
  • a pyridine ring, a pyrimidine ring, a pyrazine ring, a piperidine ring, a piperazine ring, a quinoline ring, a carbazole ring and an acridine ring are preferred.
  • the monovalent organic group represented by R in the above formula (d n ) includes, for example, alkyl groups such as methyl group, ethyl group and propyl group; alkenyl groups such as vinyl group; cycloalkyl groups such as cyclohexyl group; , an aryl group such as a methylphenyl group, an alkoxy group (eg, a methoxy group, an ethoxy group), and the like.
  • R is preferably a hydrogen atom or a methyl group.
  • diamine represented by the formula (d n ) examples include 2,6-diaminopyridine, 3,4-diaminopyridine, 2,4-diaminopyrimidine, 3,6-diaminocarbazole, N-methyl -3,6-diaminocarbazole, 1,4-bis-(4-aminophenyl)-piperazine, 3,6-diaminoacridine, N-ethyl-3,6-diaminocarbazole, N-phenyl-3,6-diamino Examples include carbazole and diamines represented by the following formulas (d n -1) to (d n -3).
  • n1 and m1′ are each independently an integer of 1 to 2.
  • n1 is an integer of 1-3.
  • R 1 has the same definition as R in the amino group represented by "*21-NR-*22" above.
  • the plurality of R1 and m1' may be the same or different.
  • X 2 represents a monovalent nitrogen atom-containing heterocyclic group
  • specific examples of the nitrogen atom-containing heterocyclic ring in the monovalent nitrogen atom-containing heterocyclic group are the above formulas (d n ) and the structures exemplified for the nitrogen atom-containing heterocycle in ).
  • n1 is an integer of 1 to 2
  • L 1 and L 2 are each independently a single bond, —CO—, an alkylene group having 1 to 6 carbon atoms, or —O— or —CO— between the carbon-carbon bonds of the alkylene group or at the terminal is a divalent organic group in which is inserted, and a nitrogen atom represents a divalent organic group bonded to a carbon atom.
  • R represents a hydrogen atom or a methyl group.
  • multiple X 2 , L 2 and R may be the same or different.
  • X 3 represents a divalent group having a nitrogen atom-containing heterocyclic ring. Examples include the structures illustrated.
  • Ar 3 represents a divalent aromatic ring group or a divalent saturated nitrogen atom-containing heterocyclic group.
  • the aromatic ring in the divalent aromatic ring group include benzene ring, naphthalene ring, anthracene ring, pyridine ring, pyrimidine ring, pyrazine ring, pyridazine ring, triazine ring, pyrrole ring, imidazole ring, pyrazole ring, quinoline ring, isoquinoline ring, carbazole ring, benzimidazole ring, indole ring, quinoxaline ring and acridine ring.
  • saturated nitrogen atom-containing heterocyclic ring in the divalent saturated nitrogen atom-containing heterocyclic group include a piperidine ring and a piperazine ring.
  • a hydrogen atom of an aromatic ring and a saturated nitrogen atom-containing heterocyclic ring may be substituted with a monovalent group.
  • Specific examples of the monovalent group include the structures exemplified for the monovalent group in the above formula (d AL ).
  • L 3 is a single bond, -(CH 2 ) n - (n is an integer of 1 to 6), -NR'-, -(CH 2 ) n -NR'- (n is an integer of 1 to 6 ), -O-, -NR'-CO-, -CO-NR'-, -O-CO-, or -CO-O-, and R' is a hydrogen atom, a methyl group, or tert- represents a butoxycarbonyl group.
  • n3 and m3' are each independently an integer of 0 to 2, and either m3 or m3' is an integer of 1 or more.
  • the plurality of Ar 3 and L 3 may be the same or different.
  • diamines represented by the above formulas (d n -1) to (d n -3) include the diamines represented by the following formulas (Dp-1) to (Dp-6), the following formulas (z- 1) to diamines represented by formulas (z-14).
  • the content of the diamine represented by the formula (d n ) in the constituent components of the polymer (B) is preferably 20 to 95 mol% of the total diamine components used in the production of the polymer (B). , more preferably 30 to 90 mol %, more preferably 40 to 90 mol %, and even more preferably 50 to 80 mol %.
  • the diamine component used in the production of the polymer (B) contained in the liquid crystal aligning agent of the present invention is, in addition to the above diamines, various diamines (hereinafter referred to as other diamines ( Also referred to as b).) can be used.
  • diamines (b) include, for example, the compounds exemplified for the diamines used in the production of the polymer (A) (diamine (1), other diamines (a)).
  • diamine (1) diamine (1), other diamines (a)
  • a side chain group having 4 or more carbon atoms excluding the above-described protecting group that is eliminated by heating and replaced with a hydrogen atom. Diamines that do not are preferred.
  • the content of the other diamine (b) in the constituent components of the polymer (B) is preferably 5 to 80 mol%, preferably 10 to 70 mol%, of the total diamine component used in the production of the polymer (B).
  • mol % is more preferred, 10 to 60 mol % is even more preferred, and 20 to 50 mol % is even more preferred.
  • the tetracarboxylic acid derivative component used in the production of the polymer (B) contained in the liquid crystal aligning agent of the present invention is the tetracarboxylic dianhydride represented by the above formula (T f ). contains 5 mol % or more of
  • the decrease in the molecular weight of the polymer (B) is suppressed, resulting in high liquid crystal orientation and excellent resistance to AC afterimages.
  • a liquid crystal alignment film is obtained.
  • the polymer (B) has a specific tetracarboxylic dianhydride that is difficult to imidize, a polymer having many hydrophilic groups such as carboxyl groups can be obtained.
  • a liquid crystal alignment film having excellent two-layer separability from the union (B) is obtained. Therefore, as described above, a liquid crystal alignment film having high liquid crystal alignment properties and excellent resistance to AC afterimages can be obtained.
  • the tetravalent organic group having a 5- or more-membered alicyclic structure for X f in the formula (T f ) is preferably a tetravalent organic group having a 5- to 8-membered alicyclic structure.
  • a tetravalent organic group having a membered alicyclic structure is more preferred.
  • the 5-membered or more alicyclic structure means that in each ring contained in the polycyclic structure, the atoms constituting the ring All numbers are 5 or more.
  • the alicyclic structure may be bonded to at least one of the two acid anhydride groups, and may have a chain hydrocarbon structure or an aromatic ring structure together with the alicyclic structure.
  • X f include tetravalent organic groups represented by any one of the following formulas (X f -1) to (X f -17).
  • X f is more preferably (X f ⁇ 1) to (X f ⁇ 4) from the viewpoint of suitably obtaining the effects of the present invention.
  • the total amount of the tetracarboxylic dianhydride represented by the above formula (T f ) is 10 mol% of the total tetracarboxylic acid derivative component used in the production of the polymer (B).
  • the above is more preferable, and 20 mol % or more is even more preferable.
  • the tetracarboxylic acid derivative component used in the production of the polymer (B) contained in the liquid crystal aligning agent of the present invention is, in addition to the tetracarboxylic dianhydride represented by the above formula (T f ), the desired liquid crystal alignment.
  • a tetracarboxylic dianhydride other than the tetracarboxylic dianhydride represented by the above formula (T f ) (these are collectively referred to as other tetracarboxylic dianhydrides (b) ) may be used.
  • the other tetracarboxylic dianhydrides (b) may be used singly or in combination of two or more.
  • tetracarboxylic dianhydrides (b) include alicyclic tetracarboxylic dianhydrides other than the tetracarboxylic dianhydrides represented by the above formula (T f ), acyclic aliphatic A tetracarboxylic dianhydride or an aromatic tetracarboxylic dianhydride may be mentioned.
  • the alicyclic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups including at least one carboxy group bonded to an alicyclic structure. However, none of these four carboxy groups are bonded to the aromatic ring. Moreover, it is not necessary to consist only of an alicyclic structure, and a part thereof may have a chain hydrocarbon structure or an aromatic ring structure.
  • An acyclic aliphatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups bonded to a chain hydrocarbon structure.
  • the aromatic tetracarboxylic dianhydride is not particularly limited as long as it is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups including at least one carboxy group bonded to an aromatic ring.
  • the acyclic aliphatic tetracarboxylic dianhydride, alicyclic tetracarboxylic dianhydride, or aromatic tetracarboxylic dianhydride in the other tetracarboxylic dianhydride (b) is preferably It is a tetracarboxylic dianhydride represented by the above formula (T c ) or a tetracarboxylic dianhydride represented by the following formula (t).
  • X 1 is a structure selected from formula (g) above and formulas (X1-1) to (X1-10) below.
  • j and k are integers of 0 or 1
  • a 1 and A 2 are each independently a single bond, -O-, -CO- , —COO—, a phenylene group, a sulfonyl group, or an amide bond.A plurality of A 2 may be the same or different, and * represents a bond.
  • Preferred specific examples of the above formulas (X1-9) to (X1-10) include the following formulas (X R -1) to (X R -14).
  • the above formulas (X1-9) to (X1-10) are preferably the above (X R -1) to (X R -8), and (X R -1), (X R -4) to (X R -6) and (X R -8) are more preferred.
  • the tetracarboxylic acid derivative component used for producing the polymer (B) contained in the liquid crystal aligning agent of the present invention contains other tetracarboxylic dianhydride (b), other tetracarboxylic dianhydride
  • the content of (b) is preferably 5 to 95 mol%, more preferably 10 to 90 mol%, and more preferably 20 to 95 mol% of the total tetracarboxylic acid derivative component used in the production of the polymer (B). More preferably 80 mol %.
  • the total amount of the tetracarboxylic dianhydride represented by the above formula (T f ) is preferably 5 to 95 mol%, more preferably 10 to 90 mol% of the total tetracarboxylic acid derivative component. and more preferably 20 to 80 mol %.
  • the content ratio of the above components (A) and (B) is such that the content ratio of the components (A) and (B) is [(A) component] / [(B) component ] may be from 10/90 to 90/10, from 20/80 to 90/10, or from 20/80 to 80/20.
  • Polyamic acid which is a polyimide precursor contained in the liquid crystal aligning agent of the present invention, can be produced, for example, by the following method.
  • the tetracarboxylic acid derivative used in the production of the polymer (A) or polymer (B) includes not only tetracarboxylic dianhydride, but also derivatives thereof such as tetracarboxylic acid dihalide compound and tetracarboxylic acid dialkyl. Esters, tetracarboxylic acid dialkyl ester dihalides, and the like can also be used.
  • the tetracarboxylic acid derivative component containing the tetracarboxylic dianhydride and the diamine component containing the diamine are mixed in the presence of an organic solvent at preferably ⁇ 20 to 150° C., more preferably 0 to 50° C. , preferably 0.5 to 24 hours, more preferably 1 to 12 hours (polycondensation).
  • organic solvent used in the above reaction examples include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, ⁇ -butyrolactone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, 1,3-dimethyl-2-imidazolidinone and the like.
  • methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, propylene glycol monomethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene Glycol monopropyl ether, diethylene glycol monomethyl ether, or diethylene glycol monoethyl ether can be used. These may be used in combination of two or more.
  • the reaction of polyamic acid can be carried out at any concentration, preferably 1 to 50% by mass, more preferably 5 to 30% by mass.
  • the initial stage of the reaction can be carried out at a high concentration, and then the solvent can be added.
  • the ratio of the total number of moles of the diamine component to the total number of moles of the tetracarboxylic acid component is preferably 0.8 to 1.2. Similar to a normal polycondensation reaction, the closer this molar ratio is to 1.0, the greater the molecular weight of the polyamic acid produced.
  • the polyamic acid obtained by the above reaction can be recovered by precipitating the polyamic acid by injecting the reaction solution into a poor solvent while stirring well. Further, a purified polyamic acid powder can be obtained by performing precipitation several times, washing with a poor solvent, and drying at room temperature or by heating. Poor solvents include, but are not limited to, water, methanol, ethanol, hexane, butyl cellosolve, acetone, and toluene.
  • Polyamic acid esters are produced by, for example, [I] a method of reacting the polyamic acid obtained by the above method with an esterifying agent, [II] a method of reacting a tetracarboxylic acid diester with a diamine, [III] a tetracarboxylic acid It can be obtained by a known method such as a method of reacting a diester dihalide and a diamine. (Synthesis of polyimide) Moreover, a polyimide can be obtained by ring-closing (imidating) a polyimide precursor such as the above polyamic acid or polyamic acid ester.
  • the imidization ratio as used herein means the ratio of imide groups to the total amount of imide groups derived from tetracarboxylic dianhydride or derivatives thereof and carboxy groups (or derivatives thereof).
  • the imidization rate does not necessarily have to be 100%, and can be arbitrarily adjusted according to the application and purpose.
  • Terminal blocking agent When synthesizing the polymers (A) and (B) in the present invention, a tetracarboxylic acid derivative component containing a tetracarboxylic dianhydride, a diamine component, and an appropriate end-blocking agent are used to form a terminal-blocking polymer. It is good also as synthesize
  • Terminal blockers include, for example, acetic anhydride, maleic anhydride, nadic anhydride, phthalic anhydride, itaconic anhydride, cyclohexanedicarboxylic anhydride, 3-hydroxyphthalic anhydride, trimellitic anhydride, 3-( 3-trimethoxysilyl)propyl)-3,4-dihydrofuran-2,5-dione, 4,5,6,7-tetrafluoroisobenzofuran-1,3-dione, 4-ethynylphthalic anhydride, etc.
  • the proportion of the terminal blocking agent used is preferably 0.1 to 30 mol parts, more preferably 0.1 to 20 mol parts, per 100 mol parts in total of the diamine components used.
  • the reaction solution may be added to the solvent to precipitate.
  • Solvents used for precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, and water.
  • the polyamic acid precipitated by putting it into a solvent can be filtered and recovered, and then dried at room temperature or under heat under normal pressure or reduced pressure.
  • the impurities in the polymer can be reduced by redissolving the precipitated and recovered polymer in an organic solvent and repeating the operation of reprecipitating and recovering 2 to 10 times.
  • Solvents in this case include, for example, alcohols, ketones, hydrocarbons, and the like, and it is preferable to use three or more kinds of solvents selected from these, because the purification efficiency is further improved.
  • the molecular weights of the polymer (A) and polymer (B) used in the present invention are determined by GPC (Gel Permeation Chromatography) when considering the strength of the liquid crystal alignment film obtained therefrom, workability during film formation, and coating film properties. ), the weight average molecular weight is preferably 5,000 to 1,000,000, more preferably 10,000 to 150,000.
  • the total content of the polymer contained in the liquid crystal aligning agent of the present invention can be appropriately changed depending on the setting of the thickness of the coating film to be formed. % or more is preferable, and 10% by mass or less is preferable from the viewpoint of storage stability of the solution. A particularly preferred total polymer content is 2 to 8% by weight.
  • the liquid crystal aligning agent of the present invention may contain polymers other than the polymer (A) and the polymer (B).
  • polymers include polyimide precursors other than the polymer (A) and the polymer (B), polyimides, polysiloxanes, polyesters, polyamides, polyurea, polyurethanes, polyorganosiloxanes, cellulose derivatives, polyacetals, Polystyrene derivatives, poly(styrene-maleic anhydride) copolymers, poly(isobutylene-maleic anhydride) copolymers, poly(vinyl ether-maleic anhydride) copolymers, poly(styrene-phenylmaleimide) derivatives , and polymers selected from the group consisting of poly(meth)acrylates.
  • poly(styrene-maleic anhydride) copolymers include SMA1000, 2000, 3000 (manufactured by Cray Valley), GSM301 (manufactured by Gifu Shellac), etc.
  • Poly(isobutylene-maleic anhydride) ) copolymers include Isoban-600 (manufactured by Kuraray), and specific examples of poly(vinyl ether-maleic anhydride) copolymers include GANTREZ AN-139 (methyl vinyl ether maleic anhydride resin , manufactured by ISP Japan).
  • the content of the other polymer is preferably 90 parts by mass or less, more preferably 10 to 90 parts by mass, and further 20 to 80 parts by mass with respect to the total 100 parts by mass of the polymer contained in the liquid crystal aligning agent. preferable.
  • the liquid crystal aligning agent according to the present invention is preferably a liquid composition in which the polymer (A) and polymer (B) are dissolved or dispersed in an organic solvent.
  • the organic solvent contained in the liquid crystal aligning agent is not particularly limited as long as it uniformly dissolves the polyamic acid, but N,N-dimethylformamide, N,N-diethylformamide, N,N -dimethylacetamide, N,N-dimethyllactamide, N,N-dimethylpropionamide, tetramethylurea, N,N-diethylformamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethylsulfoxide, ⁇ -butyrolactone, ⁇ -valerolactone, 1,3-dimethyl-2-imidazolidinone, methyl ethyl ketone, cyclohexanone, cyclopentanone, 3-methoxy-N,N-dimethylprop
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 3-methoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide and ⁇ -butyrolactone are preferred.
  • the content of the good solvent is preferably 20 to 99% by mass, more preferably 20 to 90% by mass, and particularly preferably 30 to 80% by mass of the total solvent contained in the liquid crystal aligning agent.
  • the organic solvent contained in the liquid crystal aligning agent is a mixture of the above solvents and a solvent (also referred to as a poor solvent) that improves the coatability and the surface smoothness of the coating film when applying the liquid crystal aligning agent.
  • a solvent also referred to as a poor solvent
  • the use of solvents is preferred. Specific examples of the poor solvent used in combination are shown below, but are not limited thereto.
  • the content of the poor solvent is preferably 1 to 80% by mass, more preferably 10 to 80% by mass, particularly preferably 20 to 70% by mass, of the total solvent contained in the liquid crystal aligning agent.
  • the type and content of the poor solvent are appropriately selected according to the liquid crystal aligning agent coating device, coating conditions, coating environment, and the like.
  • poor solvents examples include diisopropyl ether, diisobutyl ether, diisobutyl carbinol (2,6-dimethyl-4-heptanol), ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, 1,2-butoxyethane, and diethylene glycol.
  • diisobutyl carbinol propylene glycol monobutyl ether, propylene glycol diacetate, diethylene glycol diethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol dimethyl ether, 4-hydroxy-4-methyl-2-pentanone, ethylene glycol monobutyl ether, ethylene Glycol monobutyl ether acetate or diisobutyl ketone are preferred.
  • Preferred solvent combinations of a good solvent and a poor solvent include N-methyl-2-pyrrolidone, ⁇ -butyrolactone and ethylene glycol monobutyl ether, N-methyl-2-pyrrolidone, ⁇ -butyrolactone and propylene glycol monobutyl ether, N, N-dimethyl lactamide and diisobutyl ketone, N-methyl-2-pyrrolidone and ethyl 3-ethoxypropionate and dipropylene glycol monomethyl ether, N-ethyl-2-pyrrolidone and ethyl 3-ethoxypropionate and propylene glycol monobutyl ether, N-methyl-2-pyrrolidone and ethyl 3-ethoxypropionate and diethylene glycol monopropyl ether, N-ethyl-2-pyrrolidone and ethyl 3-ethoxypropionate and diethylene glycol monopropyl ether, N-ethyl-2-
  • the liquid crystal aligning agent of the present invention may additionally contain components other than the components (A), (B), and organic solvent (hereinafter also referred to as additive components).
  • additive components include, for example, a crosslinkable compound (c-1) having at least one substituent selected from an epoxy group, an oxetane group, an oxazoline structure, a cyclocarbonate group, a blocked isocyanate group, a hydroxy group and an alkoxy group.
  • crosslinkable compound selected from the group consisting of a crosslinkable compound (c-2) having a polymerizable unsaturated group, a functional silane compound, a metal chelate compound, a curing accelerator, a surfactant, an antioxidant agents, sensitizers, preservatives, and compounds for adjusting the dielectric constant and electrical resistance of the resin film.
  • crosslinkable compounds (c-1) and (c-2) include the following compounds.
  • epoxy group-containing compounds include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, and 1,6-hexane.
  • Bisphenol A type epoxy resin bisphenol F type epoxy resin such as Epicoat 807 (manufactured by Mitsubishi Chemical Corporation), hydrogenated bisphenol A type epoxy resin such as YX-8000 (manufactured by Mitsubishi Chemical Corporation), YX6954BH30 (manufactured by Mitsubishi Chemical Corporation) and the like biphenyl skeleton-containing epoxy resins, phenol novolac type epoxy resins such as EPPN-201 (manufactured by Nippon Kayaku Co., Ltd.), (o, m, p-) cresol novolac type epoxy resins such as EOCN-102S (manufactured by Nippon Kayaku Co., Ltd.), tetrakis(glycidyloxymethyl)methane, N,N,N',N'-tetraglycidyl-1,4-phenylenediamine, N,N,N',N'-tetraglycidyl-2,2'-dimethyl-4.
  • Polymers and oligomers having an oxazoline group such as compounds described in paragraph [0115] of Japanese Patent Application Laid-Open No. 2007-286597;
  • compounds having a cyclocarbonate group N,N,N',N'-tetra[(2-oxo-1,3-dioxolan-4-yl)methyl]-4,4'-diaminodiphenylmethane, N,N' ,-Di[(2-oxo-1,3-dioxolan-4-yl)methyl]-1,3-phenylenediamine and paragraphs [0025] to [0030] and [0032] of WO2011/155577 compounds of;
  • Examples of compounds having a blocked isocyanate group include Coronate AP Stable M, Coronate 2503, 2515, 2507, 2513, 2555, Millionate MS-50 (manufactured by Tosoh Corporation), Takenate B-830, B-815N, B-820NSU, B
  • crosslinkable compounds having a polymerizable unsaturated group glycerin mono(meth)acrylate, glycerin di(meth)acrylate (1,2-,1,3-body mixture), glycerin tris(meth)acrylate, glycerol 1,3 - diglycerolate di(meth)acrylate, pentaerythritol tri(meth)acrylate, diethylene glycol mono(meth)acrylate, triethylene glycol mono(meth)acrylate, tetraethylene glycol mono(meth)acrylate, pentaethylene glycol mono(meth)acrylate ) acrylate, hexaethylene glycol mono(meth)acrylate and the like.
  • the content of the crosslinkable compounds (c-1) and (c-2) contained in the liquid crystal aligning agent of the present invention is 0.5 parts per 100 parts by mass in total of the polymer components contained in the liquid crystal aligning agent. It is preferably 1 to 30 parts by mass, more preferably 0.1 to 20 parts by mass, still more preferably 1 to 10 parts by mass.
  • Examples of compounds for adjusting the dielectric constant and electrical resistance of the resin film include monoamines having a nitrogen atom-containing aromatic heterocycle such as 3-picolylamine.
  • the content is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal aligning agent, more preferably is 0.1 to 20 parts by mass.
  • Preferred specific examples of functional silane compounds include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldiethoxymethylsilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane.
  • Silane N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxy silane, vinyltrimethoxysilane, vinyltriethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxysilane sidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane,
  • the solid content concentration in the liquid crystal aligning agent (ratio of the total mass of components other than the solvent of the liquid crystal aligning agent to the total mass of the liquid crystal aligning agent) is appropriately selected in consideration of viscosity, volatility, etc., but preferably It is in the range of 1 to 10% by mass.
  • a particularly preferable solid content concentration range varies depending on the method used when applying the liquid crystal aligning agent to the substrate.
  • the solid content concentration is particularly preferably in the range of 1.5 to 4.5% by mass.
  • the printing method it is particularly preferable to set the solid content concentration in the range of 3 to 9% by mass, thereby setting the solution viscosity in the range of 12 to 50 mPa ⁇ s.
  • the ink jet method it is particularly preferable to set the solid content concentration in the range of 1 to 5% by mass, thereby setting the solution viscosity in the range of 3 to 15 mPa ⁇ s.
  • the temperature in preparing the polymer composition is preferably 10-50°C, more preferably 20-30°C.
  • the liquid crystal aligning agent described above can be effectively applied to various technical applications.
  • type liquid crystal alignment film for liquid crystal light control element protective film (e.g. protective film for color filter), spacer film, interlayer insulation film, antireflection film, wiring coating film, antistatic film, motor insulation film ( It can also be applied to gate insulating films of flexible displays, etc.
  • a liquid crystal aligning film can be manufactured by using the said liquid crystal aligning agent.
  • the liquid crystal display element which concerns on this invention comprises the liquid crystal aligning film formed using the said liquid crystal aligning agent.
  • the operation mode of the liquid crystal display device according to the present invention is not particularly limited. It can be applied to various operation modes such as type (IPS type, FFS type) and optically compensated bend type (OCB type).
  • the liquid crystal display element of the present invention can be produced, for example, by a method including the following steps (1) to (4), a method including steps (1) to (2) and (4), steps (1) to (3), and (4). -2) and (4-4), or by a method including steps (1) to (3), (4-3) and (4-4).
  • Step (1) Step of applying a liquid crystal aligning agent onto a substrate>
  • a process (1) is a process of apply
  • a specific example of step (1) is as follows.
  • the liquid crystal aligning agent of the present invention is applied to one surface of the substrate provided with the patterned transparent conductive film by an appropriate coating method such as a roll coater method, a spin coat method, a printing method, an inkjet method, or the like.
  • the substrate is not particularly limited as long as it is highly transparent, and in addition to a glass substrate and a silicon nitride substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate can also be used.
  • a reflective liquid crystal display element if only one substrate is used, an opaque material such as a silicon wafer can be used, and in this case, a light-reflecting material such as aluminum can be used for the electrodes.
  • a substrate provided with electrodes made of a transparent conductive film or a metal film patterned in a comb shape and a counter substrate provided with no electrodes are used.
  • Step (2) Step of firing the applied liquid crystal aligning agent>
  • a process (2) is a process of baking the liquid crystal aligning agent apply
  • a specific example of step (2) is as follows.
  • the solvent is evaporated or the polyamic acid is thermally imidized by heating means such as a hot plate, a thermal circulation oven, or an IR (infrared) oven. you can go
  • the drying and baking steps after applying the liquid crystal aligning agent of the present invention can be performed at any desired temperature and time, and may be performed multiple times.
  • the temperature for baking the liquid crystal aligning agent can be, for example, 40 to 180.degree. From the viewpoint of shortening the process, it may be carried out at 40 to 150°C.
  • the firing time is not particularly limited, but may be 1 to 10 minutes or 1 to 5 minutes.
  • a step of firing at a temperature range of 150 to 300° C. or 150 to 250° C. may be added after the above step.
  • the firing time is not particularly limited, but may be 5 to 40 minutes or 5 to 30 minutes.
  • the film thickness of the film after baking is preferably 5 to 300 nm, more preferably 10 to 200 nm, because if it is too thin, the reliability of the liquid crystal display element may be lowered.
  • Step (3) is a step of subjecting the film obtained in step (2) to orientation treatment. That is, in a horizontally aligned liquid crystal display element such as an IPS system or an FFS system, the coating film is subjected to an alignment ability imparting treatment. On the other hand, in a vertical alignment type liquid crystal display element such as VA mode or PSA mode, the formed coating film can be used as a liquid crystal alignment film as it is, but the coating film may be subjected to an alignment ability imparting treatment. Examples of the alignment treatment method for the liquid crystal alignment film include a rubbing treatment method and a photo-alignment treatment method.
  • the surface of the film is irradiated with radiation polarized in a certain direction, and optionally, preferably, heat treatment is performed at a temperature of 150 to 250 ° C. to improve liquid crystal alignment (liquid crystal alignment (also referred to as ability).
  • radiation ultraviolet light or visible light having a wavelength of 100 to 800 nm can be used. Among them, ultraviolet rays having a wavelength of 100 to 400 nm, more preferably 200 to 400 nm are preferred.
  • the irradiation dose of the radiation is preferably 1 to 10,000 mJ/cm 2 . Among them, 100 to 5,000 mJ/cm 2 is preferable.
  • the substrate having the film-like material may be irradiated with heating at 50 to 250° C. in order to improve liquid crystal orientation.
  • the liquid crystal alignment film thus produced can stably orient liquid crystal molecules in a fixed direction.
  • liquid crystal alignment film irradiated with polarized radiation can be subjected to contact treatment using water or a solvent, or the liquid crystal alignment film irradiated with radiation can be heat-treated.
  • the solvent used in the contact treatment is not particularly limited as long as it dissolves the decomposed product produced from the film-like material by irradiation with radiation.
  • Specific examples include water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, 1-methoxy-2-propanol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, methyl lactate, diacetone alcohol, 3- methyl methoxypropionate, ethyl 3-ethoxypropionate, propyl acetate, butyl acetate, cyclohexyl acetate and the like.
  • Solvents may be used singly or in combination of two or more.
  • the temperature of the heat treatment for the coating film irradiated with radiation is more preferably 50 to 300.degree. C., further preferably 120 to 250.degree.
  • the heat treatment time is preferably 1 to 30 minutes.
  • the first method first, two substrates are arranged facing each other with a gap (cell gap) between them so that the respective liquid crystal alignment films face each other. Next, the peripheries of the two substrates are bonded together using a sealing agent, and a liquid crystal composition is injected and filled into the cell gap defined by the substrate surface and the sealing agent to contact the film surface, and then the injection hole is sealed. stop.
  • the liquid crystal composition is not particularly limited, and various liquid crystal compositions containing at least one liquid crystal compound (liquid crystal molecule) and having positive or negative dielectric anisotropy can be used.
  • a liquid crystal composition with a positive dielectric anisotropy is also referred to as a positive liquid crystal
  • a liquid crystal composition with a negative dielectric anisotropy is also referred to as a negative liquid crystal.
  • the above liquid crystal composition contains a fluorine atom, a hydroxy group, an amino group, a fluorine atom-containing group (e.g., trifluoromethyl group), a cyano group, an alkyl group, an alkoxy group, an alkenyl group, an isothiocyanate group, a heterocyclic ring, a cycloalkane,
  • a liquid crystal compound having a cycloalkene, a steroid skeleton, a benzene ring, or a naphthalene ring may be included, and a compound having two or more rigid sites (mesogenic skeleton) exhibiting liquid crystallinity in the molecule (for example, two rigid biphenyl structure, or a bimesogenic compound in which a terphenyl structure is linked by an alkyl group).
  • the liquid crystal composition may be a liquid crystal composition exhibiting a nematic phase, a liquid crystal composition exhibiting a smectic phase, or a liquid crystal composition exhibiting a cholesteric phase.
  • the liquid crystal composition may further contain an additive from the viewpoint of improving liquid crystal orientation.
  • additives include photopolymerizable monomers such as compounds having a polymerizable group described below; optically active compounds (eg, S-811 manufactured by Merck Co., Ltd.); antioxidants; UV absorbers; dyes; antifoaming agents; polymerization initiators; or polymerization inhibitors.
  • Positive liquid crystals include ZLI-2293, ZLI-4792, MLC-2003, MLC-2041, MLC-3019 and MLC-7081 manufactured by Merck.
  • MLC-3023 manufactured by Merck Co., Ltd. can be used as a liquid crystal containing a compound having a polymerizable group.
  • the second method is a method called the ODF (One Drop Fill) method.
  • a predetermined place on one of the two substrates on which the liquid crystal alignment film is formed is coated with, for example, an ultraviolet light-curing sealant, and a liquid crystal composition is applied to several predetermined places on the surface of the liquid crystal alignment film. drip.
  • the other substrate is attached so that the liquid crystal alignment films face each other, and the liquid crystal composition is spread over the entire surface of the substrate and brought into contact with the film surface.
  • the entire surface of the substrate is irradiated with ultraviolet light to cure the sealant.
  • it is desirable to remove the flow orientation at the time of liquid crystal filling by heating the liquid crystal composition to a temperature at which the used liquid crystal composition assumes an isotropic phase and then slowly cooling to room temperature.
  • the two substrates are arranged opposite to each other so that the rubbing directions in each coating film are at a predetermined angle, for example, perpendicular or antiparallel.
  • an epoxy resin or the like containing a curing agent and aluminum oxide spheres as spacers can be used.
  • liquid crystals include nematic liquid crystals and smectic liquid crystals. Among them, nematic liquid crystals are preferable. Liquid crystals, terphenyl-based liquid crystals, biphenylcyclohexane-based liquid crystals, pyrimidine-based liquid crystals, dioxane-based liquid crystals, bicyclooctane-based liquid crystals, cubane-based liquid crystals, and the like can be used.
  • liquid crystals may also contain cholesteric liquid crystals such as cholestyl chloride, cholesteryl nonaate and cholesteryl carbonate; a ferroelectric liquid crystal such as p-decyloxybenzylidene-p-amino-2-methylbutyl cinnamate may be added and used.
  • cholesteric liquid crystals such as cholestyl chloride, cholesteryl nonaate and cholesteryl carbonate
  • ferroelectric liquid crystal such as p-decyloxybenzylidene-p-amino-2-methylbutyl cinnamate
  • various types such as those disclosed in Japanese Patent Application Laid-Open No. 2019-132952 can be used.
  • the liquid crystal described above is prepared by mixing several liquid crystals so as to satisfy desired physical properties according to the intended use (hereinafter, a liquid crystal component obtained by mixing a plurality of liquid crystals is also referred to as a mixed liquid crystal). is common.
  • the fluorine-based mixed liquid crystal means a mixed liquid crystal containing one or more fluorine-based liquid crystals
  • the cyano-based mixed liquid crystal means a mixed liquid crystal containing one or more cyano-based liquid crystals.
  • the mixed liquid crystals described above are generally known and commercially available. -4792, and is sold by Merck Co., Ltd. under the trade name of MLC-6608 as a liquid crystal having a negative dielectric anisotropy ⁇ (also referred to as a negative type liquid crystal). Furthermore, the cyano-based mixed liquid crystal is sold by Chisso Petrochemical Co., Ltd. under the trade name of JC-5066XX as a positive type liquid crystal.
  • the present invention provides a liquid crystal alignment film suitable for a liquid crystal display element using a negative liquid crystal, and a liquid crystal alignment agent that provides the liquid crystal alignment film.
  • the liquid crystal aligning agent of the present invention has a liquid crystal layer between a pair of substrates provided with electrodes, and a liquid crystal composition containing a polymerizable compound polymerized by at least one of active energy rays and heat between the pair of substrates.
  • a liquid crystal display element (PSA type liquid crystal display element) manufactured through a process of polymerizing a polymerizable compound by at least one of irradiating an active energy ray and heating while placing an object and applying a voltage between electrodes. It is preferably used.
  • the liquid crystal aligning agent of the present invention has a liquid crystal layer between a pair of substrates provided with electrodes, and a polymerizable group polymerized by at least one of active energy rays and heat is placed between the pair of substrates. It is also preferably used in a liquid crystal display element (SC-PVA mode type liquid crystal display element) manufactured through a process of arranging a liquid crystal alignment film containing a liquid crystal and applying a voltage between electrodes.
  • SC-PVA mode type liquid crystal display element liquid crystal display element manufactured through a process of arranging a liquid crystal alignment film containing a liquid crystal and applying a voltage between electrodes.
  • Step (4-3) For SC-PVA mode liquid crystal display element> A method of manufacturing a liquid crystal display element may be employed in which a step of irradiating ultraviolet rays, which will be described later, is performed after performing the same as in the above (4). According to this method, a liquid crystal display device excellent in response speed can be obtained with a small amount of light irradiation, as in the case of manufacturing the PSA type liquid crystal display device.
  • the compound having a polymerizable group may be a compound having one or more polymerizable unsaturated groups in the molecule, and its content is 0.1 to 30 per 100 parts by mass of all polymer components. It is preferably parts by mass, more preferably 1 to 20 parts by mass.
  • the polymerizable group may be present in the polymer used for the liquid crystal alignment agent, and such a polymer includes, for example, a diamine component containing a diamine having a photopolymerizable group at the end thereof, which is used in the reaction. The polymer obtained is mentioned.
  • Step (4-4) Step of irradiating with ultraviolet rays>
  • the liquid crystal cell is irradiated with light while a voltage is applied between the conductive films of the pair of substrates obtained in (4-2) or (4-3) above.
  • the voltage applied here can be, for example, 5 to 50 V direct current or alternating current.
  • As the light for irradiation for example, ultraviolet light containing light with a wavelength of 150 to 800 nm and visible light can be used, but ultraviolet light containing light with a wavelength of 300 to 400 nm is preferable.
  • a low-pressure mercury lamp, a high-pressure mercury lamp, a deuterium lamp, a metal halide lamp, an argon resonance lamp, a xenon lamp, an excimer laser, or the like can be used as the light source for the irradiation light.
  • the irradiation amount of light is preferably 1,000 to 200,000 J/m 2 , more preferably 1,000 to 100,000 J/m 2 .
  • a liquid crystal display element can be obtained by bonding a polarizing plate to the outer surface of the liquid crystal cell as necessary.
  • a polarizing plate to be attached to the outer surface of the liquid crystal cell, a polarizing film called "H film” in which polyvinyl alcohol is stretched and oriented while absorbing iodine is sandwiched between cellulose acetate protective films, or the H film itself.
  • a polarizing plate consisting of
  • a liquid crystal display element can be obtained by bonding a polarizing plate to the outer surface of the liquid crystal cell as necessary.
  • a polarizing plate to be attached to the outer surface of the liquid crystal cell, a polarizing film called "H film” in which polyvinyl alcohol is stretched and oriented while absorbing iodine is sandwiched between cellulose acetate protective films, or the H film itself.
  • a polarizing plate consisting of
  • the IPS substrate which is a comb-teeth electrode substrate used in the IPS mode, includes a base material, a plurality of linear electrodes formed on the base material and arranged in a comb-like shape, and the base material covering the linear electrodes. and a liquid crystal alignment film formed as follows.
  • the FFS substrate which is a comb-teeth electrode substrate used in the FFS mode, includes a substrate, a plane electrode formed on the substrate, an insulating film formed on the plane electrode, and an insulating film formed on the insulating film. , a plurality of linear electrodes arranged in a comb shape, and a liquid crystal alignment film formed on an insulating film so as to cover the linear electrodes.
  • FIG. 1 is a schematic cross-sectional view showing an example of the lateral electric field liquid crystal display element of the present invention, which is an example of an IPS mode liquid crystal display element.
  • the liquid crystal 3 is sandwiched between the comb-teeth electrode substrate 2 having the liquid crystal alignment film 2c and the opposing substrate 4 having the liquid crystal alignment film 4a.
  • the comb-shaped electrode substrate 2 includes a substrate 2a, a plurality of linear electrodes 2b formed on the substrate 2a and arranged in a comb-like shape, and formed on the substrate 2a so as to cover the linear electrodes 2b. and a liquid crystal alignment film 2c.
  • the counter substrate 4 has a base material 4b and a liquid crystal alignment film 4a formed on the base material 4b.
  • the liquid crystal alignment film 2c is, for example, the liquid crystal alignment film of the present invention.
  • the liquid crystal alignment film 4c is also the liquid crystal alignment film of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing another example of the lateral electric field liquid crystal display element of the present invention, which is an example of an FFS mode liquid crystal display element.
  • the liquid crystal 3 is sandwiched between the comb-teeth electrode substrate 2 having the liquid crystal alignment film 2h and the opposing substrate 4 having the liquid crystal alignment film 4a.
  • the comb-teeth electrode substrate 2 includes a base material 2d, a plane electrode 2e formed on the base material 2d, an insulating film 2f formed on the plane electrode 2e, and formed on the insulating film 2f to form a comb-like shape. It has a plurality of arranged linear electrodes 2g and a liquid crystal alignment film 2h formed on the insulating film 2f so as to cover the linear electrodes 2g.
  • the counter substrate 4 has a base material 4b and a liquid crystal alignment film 4a formed on the base material 4b.
  • the liquid crystal alignment film 2h is, for example, the liquid crystal alignment film of the present invention.
  • the liquid crystal alignment film 4a is also the liquid crystal alignment film of the present invention.
  • the liquid crystal alignment film of the present invention can be applied to various uses other than the liquid crystal alignment film for the above uses. It can also be used for a liquid crystal alignment film for a transmission scattering type liquid crystal light control device. Furthermore, applications other than liquid crystal alignment films, such as protective films (e.g. protective films for color filters), spacer films, interlayer insulating films, antireflection films, wiring coating films, antistatic films, motor insulating films (flexible It can also be used for a gate insulating film of a display).
  • protective films e.g. protective films for color filters
  • spacer films e.g. protective films for color filters
  • interlayer insulating films e.g. antireflection films
  • wiring coating films e.g. antistatic films
  • motor insulating films flexible It can also be used for a gate insulating film of a display.
  • the liquid crystal display device of the present invention can be effectively applied to various devices such as watches, portable games, word processors, notebook computers, car navigation systems, camcorders, PDAs, digital cameras, mobile phones, smart phones, It can be used for various display devices such as various monitors, liquid crystal televisions, and information displays.
  • diamine (diamine) (The diamine of formula (DA-2) is included in the range of diamines represented by formula (d n ).)
  • tetracarboxylic dianhydride (tetracarboxylic dianhydride) (The tetracarboxylic dianhydrides of formulas (CA-3) and (CA-6) are included in the range of tetracarboxylic dianhydrides represented by formula (T f ).)
  • the viscosity of the polymer solution was measured using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.), a sample amount of 1.1 mL, a cone rotor TE-1 (1 ° 34', R24), and a temperature of 25. Measured in °C.
  • ⁇ Synthesis of polyamic acid> (Synthesis example 1) 3.15 g (11.0 mmol) of DA-1 was weighed into a 100 mL eggplant flask equipped with a stirrer and a nitrogen inlet tube, 28.4 g of NMP was added, and dissolved by stirring while sending nitrogen.
  • an FFS mode liquid crystal cell was produced according to the procedure described below, and the pretilt angle and the afterimage properties by long-term AC drive were evaluated. Moreover, using the same liquid crystal aligning agent, a longitudinal electric field liquid crystal cell was produced according to the procedure shown below, and the evaluation of the backlight resistance of the voltage holding ratio was evaluated.
  • a glass substrate with electrodes having a size of 30 mm ⁇ 35 mm and a thickness of 0.7 mm was prepared.
  • An IZO electrode having a solid pattern is formed as the first layer on the substrate to constitute the counter electrode.
  • a SiN (silicon nitride) film formed by the method was formed.
  • the film thickness of the SiN film of the second layer As for the film thickness of the SiN film of the second layer, a film having a film thickness of 500 nm functioning as an interlayer insulating film was used.
  • a comb-like pixel electrode formed by patterning an IZO film as a third layer is arranged on the SiN film of the second layer, and two pixels, a first pixel and a second pixel, are formed. The size of each pixel is 10 mm long and 5 mm wide.
  • the counter electrode of the first layer and the pixel electrode of the third layer were electrically insulated by the action of the SiN film of the second layer.
  • the pixel electrode of the third layer has a comb shape in which a plurality of electrode elements each having a width of 3 ⁇ m and having a central portion bent at an internal angle of 160° are arranged in parallel with an interval of 6 ⁇ m.
  • Each pixel had a first region and a second region bounded by a line connecting bent portions of a plurality of electrode elements.
  • Liquid crystal MLC-7026-100 (manufactured by Merck Co., Ltd., negative type liquid crystal) was vacuum-injected into this empty cell at normal temperature, and then the injection port was sealed to obtain an anti-parallel aligned liquid crystal cell.
  • the obtained liquid crystal cell constituted an FFS mode liquid crystal display device. After that, the liquid crystal cell was heated at 120° C. for 1 hour, left overnight at 23° C., and then used for each evaluation described below.
  • [Fabrication of vertical electric field liquid crystal cell] First, a glass substrate having a size of 30 mm ⁇ 40 mm and a thickness of 1.1 mm was prepared.
  • An ITO electrode having a film thickness of 35 nm was formed on the substrate, and the electrode had a stripe pattern of 40 mm long and 10 mm wide.
  • preparation It was applied by spin coating to the above substrate with electrodes. After drying on a hot plate at 80° C. for 2 minutes, baking was performed in an IR oven at 230° C. for 20 minutes to form a coating film having a thickness of 100 nm to obtain a substrate with a liquid crystal alignment film.
  • Liquid crystal MLC-7026-100 (manufactured by Merck Ltd., negative type liquid crystal) was injected into this empty cell by a vacuum injection method, and the injection port was sealed to obtain a liquid crystal cell. After that, the obtained liquid crystal cell was heated at 120° C. for 1 hour and allowed to stand at 23° C. overnight before being used for each evaluation.
  • ⁇ Evaluation of pretilt angle> The pretilt angle of the FFS mode liquid crystal cell was evaluated using an AxoScan Muller matrix polarimeter manufactured by Optometrics. Viewing angle characteristics are better as the pretilt angle is lower. Specifically, a pretilt angle of less than 2.0° was defined as "good", and a pretilt angle of 2.0° or more was defined as "bad".
  • the liquid crystal cell After standing overnight at 23° C., the liquid crystal cell was placed between two polarizing plates arranged so that their polarization axes were orthogonal to each other, and the backlight was turned on with no voltage applied to measure the brightness of the transmitted light. The arrangement angle of the liquid crystal cell was adjusted so that . Then, the rotation angle when the liquid crystal cell is rotated from the angle at which the second region of the first pixel is the darkest to the angle at which the first region is the darkest is calculated as the angle ⁇ 1. The angle ⁇ 2 was calculated by comparing with the first region. The average value of these ⁇ 1 and ⁇ 2 was defined as the angle ⁇ of the liquid crystal cell, and the smaller the value, the better the liquid crystal orientation.
  • VHR BLU the aging resistance of the backlight is excellent, ie, "good", and when it is less than 90%, it is defined as “poor” and evaluated.
  • Table 3 below shows the evaluation results of the liquid crystal display elements using the liquid crystal aligning agents of Examples 1 to 9 and Comparative Examples 1 and 2.
  • the liquid crystal display elements using the liquid crystal aligning agents of Comparative Examples 1 and 2 were poor in at least one of the viewing angle characteristics, the afterimage characteristics, and the backlight resistance of the voltage holding ratio
  • the liquid crystal display elements using the liquid crystal aligning agent of the present invention of Examples 1 to 9 had good viewing angle characteristics, afterimage characteristics, and backlight resistance such as voltage holding ratio. From the above, it can be said that the liquid crystal display element using the liquid crystal aligning agent of the present invention has a small pretilt angle, good afterimage properties, and a good voltage holding ratio resistance to backlight aging.
  • Horizontal electric field liquid crystal display element 2 Comb tooth electrode substrates 2a, 4b, 2d: Base material 2b, 2g: Linear electrodes 2c, 2h, 4a: Liquid crystal alignment film 2e: Planar electrodes 2f: Insulating film 3: Liquid crystal 4: Opposite substrate L: Line of electric force

Abstract

Provided is a liquid crystal alignment agent that is used to obtain a liquid crystal alignment film having excellent resistance to AC image persistence, low pre-tilt angle characteristics, and a high voltage holding rate. This liquid crystal alignment agent is characterized by containing component (A) and component (B). Component (A): At least one polymer (A) selected from the group consisting of polyimide precursors having at least 60 mol% of a repeating unit represented by formula (1) with respect to 1 mol of all repeating units in the polymer, and polyimides that are imidized products of the polyimide precursors. Component (B): At least one polymer (B) selected from the group consisting of: polyimide precursors that are each a reaction product between a tetracarbonic acid derivative component containing at least 5 mol% of a tetracarboxylic dianhydride represented by formula (Tf) with respect to the all tetracarbonic acid derivative components, and a diamine component containing a diamine represented by formula (dn); and polyimides that are imidized products of the polyimide precursors. (In the formulae, the definition of each symbol is as described in the description.)

Description

液晶配向剤、液晶配向膜、液晶表示素子の製造方法及び液晶表示素子Liquid crystal alignment agent, liquid crystal alignment film, method for manufacturing liquid crystal display element, and liquid crystal display element
 本発明は、液晶配向剤、液晶配向膜、液晶表示素子の製造方法及び液晶表示素子に関する。 The present invention relates to a liquid crystal aligning agent, a liquid crystal aligning film, a method for manufacturing a liquid crystal display element, and a liquid crystal display element.
 液晶テレビ、ナビゲーター、スマートフォンなどに用いられる液晶表示素子は、通常、液晶の配列状態を制御するための液晶配向膜が素子内に設けられている。液晶配向膜は、液晶表示素子において、液晶分子の配向を一定方向に制御する機能を有する。例えば、液晶表示素子は、液晶層をなす液晶分子が、一対の基板のそれぞれの表面に形成された液晶配向膜で挟まれた構造を有する。そこでは、液晶分子が、液晶配向膜によって一定方向に配向し、基板と液晶配向膜との間に設けられた電極への電圧印加により応答をする。その結果、液晶表示素子は、液晶分子の応答による配向変化を利用して所望とする画像の表示を行う。液晶配向膜としては、これまで、ポリアミック酸(ポリアミド酸)などのポリイミド前駆体や可溶性ポリイミドの溶液を主成分とする液晶配向剤をガラス基板等に塗布し焼成したポリイミド系の液晶配向膜が主として用いられている。 Liquid crystal display elements used in liquid crystal televisions, navigators, smartphones, etc. usually have a liquid crystal alignment film inside the element to control the alignment state of liquid crystals. A liquid crystal alignment film has a function of controlling the alignment of liquid crystal molecules in a certain direction in a liquid crystal display element. For example, a liquid crystal display element has a structure in which liquid crystal molecules forming a liquid crystal layer are sandwiched between liquid crystal alignment films formed on respective surfaces of a pair of substrates. There, the liquid crystal molecules are aligned in a certain direction by the liquid crystal alignment film and respond by applying a voltage to the electrodes provided between the substrate and the liquid crystal alignment film. As a result, the liquid crystal display element displays a desired image by utilizing the alignment change due to the response of the liquid crystal molecules. Until now, liquid crystal alignment films have mainly been polyimide-based liquid crystal alignment films, which are obtained by applying a liquid crystal alignment agent whose main component is a polyimide precursor such as polyamic acid (polyamic acid) or a solution of soluble polyimide to a glass substrate or the like and baking it. used.
 近年、液晶表示素子の高性能化に伴い、大画面で高精細の液晶テレビなどの用途に加えて、車載用(例えば、カーナビゲーションシステムやメーターパネル)、監視用カメラや医療用カメラのモニターなどに液晶表示素子が用いられており、視野角特性の需要から、IPS(In Plane Switching)方式、FFS(Fringe Field Switching)方式等の横電界方式が検討されている(特許文献1、特許文献2)。 In recent years, as the performance of liquid crystal display elements has improved, in addition to applications such as large-screen, high-definition liquid crystal televisions, in-vehicle applications (e.g., car navigation systems and meter panels), monitoring cameras and medical camera monitors, etc. In view of the demand for viewing angle characteristics, lateral electric field systems such as IPS (In Plane Switching) and FFS (Fringe Field Switching) are being studied (Patent Documents 1 and 2). ).
WO2017-061575号公報WO2017-061575 WO2020-116585号公報WO2020-116585
 IPS駆動方式やFFS駆動方式の液晶表示素子に用いられる液晶配向膜には、長期交流駆動によって発生する残像(以下、AC残像ともいう)を抑制するための配向規制力が必要とされる。上記急速に高精細化している液晶表示素子では、従来よりも高輝度のバックライトが適用されるようになってきており、「残像」と称されるような表示不良に対するスペックも益々厳しいものとなっている。 The liquid crystal alignment film used in the IPS drive system and FFS drive system liquid crystal display elements requires an alignment regulating force for suppressing afterimages (hereinafter also referred to as AC afterimages) generated by long-term AC driving. In the liquid crystal display elements, which are rapidly becoming higher in definition, backlights with higher brightness than before are being applied, and the specifications for display defects such as "afterimages" are becoming more and more severe. It's becoming
 特許文献1には、IPS駆動方式やFFS駆動方式の液晶表示素子に好適な光配向用液晶配向膜が記載されている。 Patent Document 1 describes a liquid crystal alignment film for photo-alignment suitable for liquid crystal display elements of the IPS drive system and the FFS drive system.
 また、特許文献2には、2種類のポリアミック酸を含む液晶配向剤から得られる液晶配向膜がAC残像に対する耐性が高いことが記載されている。
 一方、上記用途に用いられる液晶表示素子においては、視野角特性の需要から従来よりも低いプレチルト角が要求されているが、本発明者が検討したところ、該液晶配向膜ではプレチルト角の低減効果が十分でないことが明らかとなった。
 さらに、液晶表示素子には、上記高輝度のバックライトの適用により従来よりも更に高い電圧保持率を示すことも要求特性の一つとなっている。電圧保持率が低いと、光や温度などの外部刺激により経時的に発生する画像焼き付き(区画及び線の画像焼き付き)、ムラ、又はヨゴレなどの表示不良が発生してしまう。
Further, Patent Document 2 describes that a liquid crystal alignment film obtained from a liquid crystal alignment agent containing two kinds of polyamic acids has high resistance to AC afterimages.
On the other hand, liquid crystal display elements used for the above applications are required to have a lower pretilt angle than conventional ones due to the demand for viewing angle characteristics. was found to be insufficient.
Furthermore, it is one of the required characteristics for the liquid crystal display element to exhibit a voltage holding ratio higher than that of the conventional one by applying the above-mentioned high-brightness backlight. If the voltage holding ratio is low, display defects such as image burn-in (image burn-in of divisions and lines), unevenness, and staining that occur over time due to external stimuli such as light and temperature will occur.
 本発明は、上記に鑑み、AC残像に対する耐性に優れ、低いプレチルト角特性を有すると共に、高い電圧保持率を有する液晶配向膜が得られる、液晶配向剤、該液晶配向膜、及び該液晶配向膜を有する液晶表示素子を提供することを目的とする。 In view of the above, the present invention provides a liquid crystal aligning agent, the liquid crystal alignment film, and the liquid crystal alignment film that provide a liquid crystal alignment film having excellent resistance to AC afterimages, low pretilt angle characteristics, and high voltage holding ratio. An object of the present invention is to provide a liquid crystal display element having
 本発明者は、上記課題を達成するために鋭意研究を行った結果、特定の重合体成分を含有する液晶配向剤を用いて液晶配向膜を形成することにより、上記の目的を達成するために有効であることを見出し、本発明を完成するに至った。 As a result of intensive research to achieve the above objects, the present inventors, by forming a liquid crystal aligning film using a liquid crystal aligning agent containing a specific polymer component, to achieve the above objects It was found to be effective, and the present invention was completed.
 本発明は、かかる知見に基づくものであり、下記を要旨とするものである。 The present invention is based on such findings, and has the following gist.
 下記の(A)成分および(B)成分を含有することを特徴とする液晶配向剤。
(A)成分:重合体中の全繰り返し単位1モルに対して、下記式(1)で表される繰り返し単位を60モル%以上有するポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体(A)。
(B)成分:下記式(T)で表されるテトラカルボン酸二無水物を全テトラカルボン酸誘導体成分の5モル%以上含むテトラカルボン酸誘導体成分と、下記式(d)で表されるジアミンを含むジアミン成分との反応物であるポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体(B)。
A liquid crystal aligning agent characterized by containing the following (A) component and (B) component.
(A) component: a polyimide precursor having 60 mol% or more of repeating units represented by the following formula (1) with respect to 1 mol of all repeating units in the polymer and a polyimide that is an imidized product of the polyimide precursor At least one polymer (A) selected from the group consisting of;
(B) component: a tetracarboxylic acid derivative component containing 5 mol% or more of the total tetracarboxylic acid derivative component of a tetracarboxylic dianhydride represented by the following formula (T f ), and a tetracarboxylic acid derivative component represented by the following formula (d n ) At least one polymer (B) selected from the group consisting of a polyimide precursor that is a reactant with a diamine component containing a diamine, and a polyimide that is an imidized product of the polyimide precursor.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(R11~R14はそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、又はフェニル基を表し、R11~R14の少なくとも一つは上記定義中の水素原子以外の基を表す。Ar、Ar1’は、それぞれ、ベンゼン環を表し、ベンゼン環上の1つ以上の水素原子は1価の基で置換されていてもよい。L及びL1’は、それぞれ、単結合、-O-、-C(=O)-、-O-C(=O)-を表す。Aは、炭素数5~12のアルキレン基、又は該アルキレン基の炭素-炭素結合の間に、-O-又は-C(=O)-O-のいずれかの基が挿入されてなる2価の有機基(Qa)を表す。但し、L及びL1’が、単結合を表す場合、Aは2価の有機基(Qa)を表す。R及びZは、それぞれ独立して、水素原子又は炭素数1~5の1価の有機基を表し、2つのR及びZはそれぞれ同じでも異なってもよい。) (R 11 to R 14 each independently contain a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, a fluorine atom represents a monovalent organic group having 1 to 6 carbon atoms or a phenyl group, at least one of R 11 to R 14 represents a group other than a hydrogen atom as defined above, and Ar 1 and Ar 1' each represent: represents a benzene ring, and one or more hydrogen atoms on the benzene ring may be substituted with a monovalent group.L 1 and L 1′ are each a single bond, —O—, —C (=O )-, -O-C(=O)-, where A is an alkylene group having 5 to 12 carbon atoms, or between the carbon-carbon bonds of the alkylene group, -O- or -C(=O) Represents a divalent organic group (Qa) in which any group of —O— is inserted, provided that when L 1 and L 1′ represent a single bond, A is a divalent organic group (Qa) and each of R 1 and Z 1 independently represents a hydrogen atom or a monovalent organic group having 1 to 5 carbon atoms, and the two R 1 and Z 1 may be the same or different.)
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(Xは5員環以上の脂環構造を有する4価の有機基である。) (X f is a tetravalent organic group having a 5-membered or more alicyclic structure.)
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(Yは、窒素原子含有複素環及び基「*21-NR-*22」(*21、及び*22は、芳香族環を構成する炭素原子と結合する結合手を表す。但し、該炭素原子はRが結合する窒素原子と環を形成しない。Rは水素原子又は1価の有機基を表し、上記1価の有機基はカルボニル炭素以外の炭素原子で窒素原子と結合する。)で表されるアミノ基からなる群から選ばれる窒素原子含有構造を有する2価の有機基を表す。)
 なお、本明細書全体を通して、以下の用語及び略号の意味は、それぞれ、以下のとおりである。ハロゲン原子は、フッ素原子、塩素原子、臭素原子、ヨウ素原子などであり、好ましくは、フッ素原子である。*は結合手を表す。また、Bocは、tert-ブトキシカルボニル基を表す。
(Y represents a nitrogen atom-containing heterocyclic ring and a group "*21-NR-*22" (*21 and *22 represent a bond that binds to a carbon atom constituting an aromatic ring, provided that the carbon atom does not form a ring with the nitrogen atom to which R is bonded.R represents a hydrogen atom or a monovalent organic group, and the above monovalent organic group is bonded to the nitrogen atom at a carbon atom other than the carbonyl carbon. represents a divalent organic group having a nitrogen atom-containing structure selected from the group consisting of amino groups.)
Throughout this specification, the following terms and abbreviations have the following meanings. A halogen atom is a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc., preferably a fluorine atom. * represents a bond. Boc represents a tert-butoxycarbonyl group.
 本発明の液晶配向剤によれば、AC残像に対する耐性に優れ、低いプレチルト角特性を有すると共に、高い電圧保持率を有する液晶配向膜が得られる、液晶配向剤を得ることができる。また、該液晶配向膜を有する液晶表示素子は、視野角特性に優れ、高い表示品位を有する。 According to the liquid crystal aligning agent of the present invention, it is possible to obtain a liquid crystal aligning agent having excellent resistance to AC afterimages, low pretilt angle characteristics, and a high voltage holding ratio. Further, a liquid crystal display element having the liquid crystal alignment film has excellent viewing angle characteristics and high display quality.
 本発明の上記効果が得られるメカニズムは必ずしも明らかではないが、ほぼ次のように推定される。即ち、液晶配向剤に用いる重合体成分として、2種類の重合体(重合体(A)、重合体(B))を用い、且つ片方の重合体(重合体(A))を構成する繰り返し単位が、特定のアルキレン鎖長を有するジアミン由来の構造を有することで、重合体(A)の表面への偏在性を高めることができる。また、該アルキレン鎖長を有するジアミンは、ベンゼン環同士が一定の距離で存在するため、重合体(A)のガラス転移温度を低くすることが可能となる。そうすると、ポリイミド膜にラビング配向処理を行った際に、ポリイミドの延伸性が高くなり、液晶のプレチルト角の膜内での均一性が高まるため、液晶のプレチルト角が低減すると考えられる。 Although the mechanism by which the above effects of the present invention are obtained is not necessarily clear, it is estimated as follows. That is, two types of polymers (polymer (A) and polymer (B)) are used as the polymer component used in the liquid crystal aligning agent, and a repeating unit constituting one polymer (polymer (A)) However, by having a diamine-derived structure having a specific alkylene chain length, the uneven distribution on the surface of the polymer (A) can be enhanced. Further, in the diamine having the alkylene chain length, the benzene rings are present at a certain distance from each other, so that the glass transition temperature of the polymer (A) can be lowered. Then, when the polyimide film is subjected to a rubbing alignment treatment, the stretchability of the polyimide increases, and the uniformity of the pretilt angle of the liquid crystal in the film increases, so it is thought that the pretilt angle of the liquid crystal decreases.
本発明の横電界液晶表示素子の一例を示す概略断面図である。1 is a schematic cross-sectional view showing an example of a lateral electric field liquid crystal display device of the present invention; FIG. 本発明の横電界液晶表示素子の他の例を示す概略断面図である。FIG. 4 is a schematic cross-sectional view showing another example of the horizontal electric field liquid crystal display device of the present invention;
 以下に、本開示の液晶配向剤に含まれる各成分、及び必要に応じて任意に配合されるその他の成分について説明する。
 本発明の液晶配向剤に含有される重合体(A)、(B)は、テトラカルボン酸誘導体成分とジアミン成分を用いて得られるポリイミド前駆体、又は該ポリイミド前駆体のイミド化物であるポリイミドである。ここにおいて、ポリイミド前駆体は、ポリアミック酸、ポリアミック酸エステルなどのイミド化することによりポリイミドを得ることができる重合体である。
Below, each component contained in the liquid crystal aligning agent of this indication, and the other component arbitrarily mix|blended as needed are demonstrated.
Polymers (A) and (B) contained in the liquid crystal aligning agent of the present invention are polyimide precursors obtained using a tetracarboxylic acid derivative component and a diamine component, or polyimides that are imidized products of the polyimide precursors. be. Here, the polyimide precursor is a polymer from which a polyimide can be obtained by imidating polyamic acid, polyamic acid ester, or the like.
 重合体(A)、(B)は、本発明の効果を好適に得る観点から、ポリイミド前駆体がより好ましく、ポリアミック酸がさらに好ましい。尚、重合体(A)がポリアミック酸である場合、重合体(A)は、Rが水素原子である式(1)で表される繰り返し単位を有する。また、重合体(A)がポリアミック酸エステルである場合、重合体(A)は、Rの少なくとも一つは水素原子以外の基である式(1)で表される繰り返し単位を有する。
<重合体(A)>
 本発明の液晶配向剤は、重合体(A)中の全繰り返し単位1モルに対して、上記式(1)で表される繰り返し単位を60モル%以上有するポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体(A)を含有する。重合体(A)は上記の置換シクロブタン骨格を含有することで、イミド化した際のコンフォメーションが規定される。したがって、得られる重合体(A)が高い立体規則性を有するため、AC残像に対する耐性が優れた液晶配向膜が得られる。また、上記の置換シクロブタン骨格は置換された構造を有するため、高い液晶配向性を有する重合体(A)成分が表層に偏在する確率が高くなり、本発明の効果を好適に得ることができたと考えられる。式(1)で表される繰り返し単位は、一種であっても、又は二種以上であってもよい。
 上記式(1)中のRおよびZの1価の有機基としては、例えば、メチル基、エチル基、プロピル基等のアルキル基;ビニル基等のアルケニル基;アルコキシ基(例えば、メトキシ基、エトキシ基)等が挙げられる。RおよびZは、好ましくは水素原子又はメチル基である。
 式(1)のR11~R14における炭素数1~6、好ましくは1~3のアルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基などが挙げられる。上記R~Rにおける炭素数2~6、好ましくは2~4のアルケニル基の具体例としては、ビニル基、プロペニル基、ブチニル基などが挙げられ、これらは直鎖状でも分岐状でもよい。上記R11~R14における炭素数2~6、好ましくは2~3のアルキニル基の具体例としては、例えばエチニル基、1-プロピニル基、2-プロピニル基などが挙げられる。上記R11~R14における、フッ素原子を含有する炭素数1~6、好ましくは1~3の1価の有機基としては、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロプロピル基などが挙げられる。
 より好ましいR11~R14の組合せは、低いプレチルト角特性を発現する観点から、R11及びR14が同一の構造を有し、且つ、R12及びR13が同一の構造を有することが好ましい。
 また、R11~R14が、水素原子又はメチル基であり、R11~R14の少なくとも一つがメチル基であることが好ましく、R11~R14の少なくとも2つがメチル基であることがより好ましい。更に好ましいのは、R11及びR14がメチル基であり、R12及びR13が水素原子である場合である。
Polymers (A) and (B) are more preferably polyimide precursors, and still more preferably polyamic acids, from the viewpoint of suitably obtaining the effects of the present invention. When the polymer (A) is a polyamic acid, the polymer (A) has a repeating unit represented by formula (1) in which R1 is a hydrogen atom. Moreover, when the polymer (A) is a polyamic acid ester, the polymer (A) has a repeating unit represented by formula (1) in which at least one of R 1 is a group other than a hydrogen atom.
<Polymer (A)>
The liquid crystal aligning agent of the present invention is a polyimide precursor having 60 mol% or more of repeating units represented by the above formula (1) with respect to 1 mol of all repeating units in the polymer (A), and the polyimide precursor It contains at least one polymer (A) selected from the group consisting of polyimides which are imidized products. The polymer (A) contains the substituted cyclobutane skeleton, thereby defining the conformation upon imidization. Therefore, since the obtained polymer (A) has high stereoregularity, a liquid crystal alignment film having excellent resistance to AC afterimages can be obtained. In addition, since the above-mentioned substituted cyclobutane skeleton has a substituted structure, the probability that the polymer (A) component having high liquid crystal orientation is unevenly distributed in the surface layer is increased, and the effects of the present invention can be preferably obtained. Conceivable. The repeating unit represented by formula (1) may be of one type or two or more types.
Examples of monovalent organic groups for R 1 and Z 1 in the above formula (1) include alkyl groups such as methyl group, ethyl group and propyl group; alkenyl groups such as vinyl group; , ethoxy group) and the like. R 1 and Z 1 are preferably hydrogen atoms or methyl groups.
Specific examples of alkyl groups having 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms for R 11 to R 14 in formula (1) include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group and isobutyl group. , sec-butyl group, tert-butyl group, n-pentyl group and the like. Specific examples of the alkenyl group having 2 to 6 carbon atoms, preferably 2 to 4 carbon atoms in R 1 to R 4 include vinyl group, propenyl group, butynyl group and the like, and these may be linear or branched. . Specific examples of alkynyl groups having 2 to 6, preferably 2 to 3 carbon atoms in R 11 to R 14 include ethynyl, 1-propynyl and 2-propynyl groups. The fluorine atom-containing monovalent organic group having 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms for R 11 to R 14 is fluoromethyl group, trifluoromethyl group, pentafluoroethyl group, pentafluoropropyl and the like.
A more preferred combination of R 11 to R 14 is that R 11 and R 14 have the same structure, and R 12 and R 13 have the same structure, from the viewpoint of developing low pretilt angle characteristics. .
Further, R 11 to R 14 are hydrogen atoms or methyl groups, at least one of R 11 to R 14 is preferably a methyl group, more preferably at least two of R 11 to R 14 are methyl groups. preferable. More preferably, R 11 and R 14 are methyl groups and R 12 and R 13 are hydrogen atoms.
 上記式(1)におけるAが有するアルキレン基は、直鎖状であっても分岐状であってもよいが、好ましくは、直鎖状アルキレン基である。 The alkylene group of A in the above formula (1) may be linear or branched, but is preferably a linear alkylene group.
 上記式(1)における基-L-A-L1’-の好ましい具体例を挙げると、以下の構造が挙げられる。
-O-(CH-O-、
-O-(CHn1-O-(CHn2-O-、
-C(=O)-(CH-C(=O)-、
-O-C(=O)-(CH-O-、
-O-C(=O)-(CH-O-C(=O)-、
-O-C(=O)-(CH-C(=O)-O-、
-(CH)m1-O-C(=O)-(CH) n’-C(=O)-O-(CH)m2-、
-(CH)m1-O-(CH) n’-O-(CH)m2-、
-C(=O)-O-(CH-O-C(=O)-、
-(CH)m1-C(=O)-O-(CHn’-O-C(=O)-(CH)m2-、
-O-(CH-、等。
 上記化学式において、nは、5~12の整数、より好ましくは5~10の整数、更に好ましくは5~7の整数である。
 n1、n2は、その合計が、5~12の整数、より好ましくは5~10の整数である。n1、n2は、2~8の整数が好ましく、2~4の整数がより一層好ましい。
 m1、m2及びn’は、それらの合計が、5~12の整数、より好ましくは5~10の整数である。m1、及びm2は、それぞれ、1~4の整数がより好ましく、2~4の整数がより一層好ましい。n’は、2~6の整数がより好ましく、2~4の整数がより一層好ましい。
Preferred specific examples of the group —L 1 —AL 1′ — in the above formula (1) include the following structures.
—O—(CH 2 ) n —O—,
—O—(CH 2 ) n1 —O—(CH 2 ) n2 —O—,
-C(=O)-(CH 2 ) n -C(=O)-,
-O-C(=O)-( CH2 ) n -O-,
-O-C(=O)-( CH2 ) n -O-C(=O)-,
-O-C(=O)-( CH2 ) n -C(=O)-O-,
-(CH 2 ) m1 -O-C(=O)-(CH 2 ) n' -C(=O)-O-(CH 2 ) m2 -,
—(CH 2 ) m1 —O—(CH 2 ) n′ —O—(CH 2 ) m2 —,
-C(=O)-O-( CH2 ) n -O-C(=O)-,
-(CH 2 ) m1 -C(=O)-O-(CH 2 ) n' -O-C(=O)-(CH 2 ) m2 -,
—O—(CH 2 ) n —, and the like.
In the above chemical formula, n is an integer of 5-12, more preferably an integer of 5-10, more preferably an integer of 5-7.
The sum of n1 and n2 is an integer of 5-12, more preferably an integer of 5-10. n1 and n2 are preferably integers of 2-8, more preferably integers of 2-4.
The sum of m1, m2 and n' is an integer of 5-12, more preferably an integer of 5-10. Each of m1 and m2 is more preferably an integer of 1 to 4, and still more preferably an integer of 2 to 4. n′ is more preferably an integer of 2-6, and even more preferably an integer of 2-4.
 上記式(1)におけるAr、Ar1’の結合位置は、高い液晶配向性が得られる観点から、それぞれ、1,4-位又は1,3-位であることが好ましく、1,4-位がより一層好ましい。 The bonding positions of Ar 1 and Ar 1′ in the above formula (1) are preferably 1,4-positions or 1,3-positions, respectively, from the viewpoint of obtaining high liquid crystal orientation. position is even more preferred.
 上記Ar、Ar1’は、それぞれ、ベンゼン環上の1つ以上の水素原子が1価の基で置換されていてもよく、該1価の基としては、ハロゲン原子、炭素数1~10(好ましくは炭素数1~5、より好ましくは炭素数1~3)のアルキル基、炭素数2~10(好ましくは炭素数2~5、より好ましくは炭素数2~3)のアルケニル基、炭素数1~10(好ましくは炭素数1~5、より好ましくは炭素数1~3)のアルコキシ基、炭素数1~10(好ましくは炭素数1~5、より好ましくは炭素数1~3)のフルオロアルキル基、炭素数2~10(好ましくは炭素数2~5、より好ましくは炭素数2~3)のフルオロアルケニル基、炭素数1~10(好ましくは炭素数1~5、より好ましくは炭素数1~3)のフルオロアルコキシ基、炭素数1~10(好ましくは炭素数2~5、より好ましくは炭素数2~3)のアルキルオキシカルボニル基、シアノ基、ニトロ基等が挙げられる。 In each of Ar 1 and Ar 1′ , one or more hydrogen atoms on the benzene ring may be substituted with a monovalent group, and the monovalent group includes a halogen atom and 1 to 10 carbon atoms. (preferably 1 to 5 carbon atoms, more preferably 1 to 3 carbon atoms) alkyl group, 2 to 10 carbon atoms (preferably 2 to 5 carbon atoms, more preferably 2 to 3 carbon atoms) alkenyl group, carbon Alkoxy group having 1 to 10 carbon atoms (preferably 1 to 5 carbon atoms, more preferably 1 to 3 carbon atoms), 1 to 10 carbon atoms (preferably 1 to 5 carbon atoms, more preferably 1 to 3 carbon atoms) fluoroalkyl group, fluoroalkenyl group having 2 to 10 carbon atoms (preferably 2 to 5 carbon atoms, more preferably 2 to 3 carbon atoms), 1 to 10 carbon atoms (preferably 1 to 5 carbon atoms, more preferably carbon fluoroalkoxy groups having numbers 1 to 3), alkyloxycarbonyl groups having 1 to 10 carbon atoms (preferably 2 to 5 carbon atoms, more preferably 2 to 3 carbon atoms), cyano groups, nitro groups, and the like.
 重合体(A)において、上記式(1)で表される繰り返し単位の比率は、重合体(A)中の全繰り返し単位1モルに対して、60モル%~100モル%が好ましい。上記式(1)で表される繰り返し単位の比率は、本発明の効果を好適に得る観点で、80モル%~100モル%がより好ましく、90モル%~100モル%がさらに好ましい。
 重合体(A)がポリアミック酸である場合、該ポリアミック酸は、例えば、下記式(T)で表されるテトラカルボン酸二無水物を含むテトラカルボン酸誘導体成分とジアミン(1)(H-NZ-Ar-L-A-L1’-Ar1’-NZ-H(A、L、L1’、Ar、Ar1’、Z、Yは、式(1)と同義である。))を含むジアミン成分を反応させて得ることができる。また、重合体(A)が、後述する式(2)で表される繰り返し単位を含有するポリアミック酸である場合、上記式(T)で表されるテトラカルボン酸二無水物を含むテトラカルボン酸誘導体成分とジアミン(H-NZ-Y-NZ-H(Y、Zは、式(2)と同義である。))を含むジアミン成分を反応させて得ることができる。
In the polymer (A), the ratio of the repeating unit represented by the above formula (1) is preferably 60 mol % to 100 mol % with respect to 1 mol of all repeating units in the polymer (A). The ratio of the repeating unit represented by the above formula (1) is more preferably 80 mol % to 100 mol %, still more preferably 90 mol % to 100 mol %, from the viewpoint of suitably obtaining the effects of the present invention.
When the polymer (A) is a polyamic acid, the polyamic acid is, for example, a tetracarboxylic acid derivative component containing a tetracarboxylic dianhydride represented by the following formula (T 1 ) and a diamine (1) (H- NZ 1 -Ar 1 -L 1 -AL 1′ -Ar 1′ -NZ 1 -H (A, L 1 , L 1′ , Ar 1 , Ar 1′ , Z 1 , Y 1 are represented by formula (1 ) is synonymous with )) can be obtained by reacting a diamine component containing ). Further, when the polymer (A) is a polyamic acid containing a repeating unit represented by the formula (2) described later, a tetracarboxylic acid containing a tetracarboxylic dianhydride represented by the above formula (T 1 ) It can be obtained by reacting an acid derivative component with a diamine component containing a diamine (H—NZ 2 —Y 2 —NZ 2 —H (Y 2 and Z 2 are as defined in formula (2))).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
(R11~R14は、式(1)のR11~R14と同義である。)
 本発明の液晶配向剤は、上記式(1)で表される繰り返し単位以外に下記式(2)で表される繰り返し単位を含有するポリイミド前駆体及び該ポリイミド前駆体であってもよい。該繰り返し単位は、一種であっても、又は二種以上であってもよい。
(R 11 to R 14 have the same definitions as R 11 to R 14 in formula (1).)
The liquid crystal aligning agent of the present invention may be a polyimide precursor containing a repeating unit represented by the following formula (2) in addition to the repeating unit represented by the above formula (1), and the polyimide precursor. The repeating unit may be of one type or two or more types.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
(Xは、下記式(g)で表される4価の有機基を表し、Yは、基-Ar-L-A-L1’-Ar1’-(Ar、Ar1’、L、L1’の定義は式(1)と同義である。)以外の2価の有機基を表す。R及びZは、それぞれ、式(1)のR及びZと同義である。) (X 2 represents a tetravalent organic group represented by the following formula (g), and Y 2 represents the group —Ar 1 —L 1 —AL 1′ —Ar 1′ —(Ar 1 , Ar 1 ' , L 1 , and L 1 ' have the same definitions as in formula (1).) R 2 and Z 2 are R 1 and Z 1 in formula (1), respectively. is synonymous with
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
(式(g)において、R11~R14は、式(1)のR11~R14と同義である。)
 上記式(2)において、Yは2価の有機基であり、ジアミン(H-NZ-Y-NZ-H(Y及びZは、式(2)と同義である。))から2つのアミノ基(-NZ-H)を除いた基が挙げられる。該ジアミンは、求められる液晶配向剤の特性に応じ、種々のジアミン(以下、その他のジアミン(a)ともいう。)を用いることができる。上記その他のジアミン(a)としては、以下のものを用いることができる。その他のジアミンは、中でも、本発明の効果を好適に得る観点から、炭素数4以上の側鎖基(但し、後述する加熱によって脱離し水素原子に置き換わる保護基を除く。)を有しないジアミンが好ましい。
(In formula (g), R 11 to R 14 have the same definitions as R 11 to R 14 in formula (1).)
In the above formula (2), Y 2 is a divalent organic group and a diamine (H-NZ 2 -Y 2 -NZ 2 -H (Y 2 and Z 2 have the same meaning as in formula (2).) ) from which two amino groups (—NZ 2 —H) have been removed. Various diamines (hereinafter also referred to as other diamines (a)) can be used as the diamine depending on the desired properties of the liquid crystal aligning agent. As the other diamine (a), the following can be used. Among other diamines, from the viewpoint of suitably obtaining the effects of the present invention, diamines having no side chain groups having 4 or more carbon atoms (excluding protective groups that are detached by heating and replaced with hydrogen atoms, which will be described later). preferable.
 上記式(d)で表されるジアミン、p-フェニレンジアミン、2,3,5,6-テトラメチル-p-フェニレンジアミン、2,5-ジメチル-p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジメチル-m-フェニレンジアミン、2,5-ジアミノトルエン、2,6-ジアミノトルエンなどのフェニレンジアミン;2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、2,2’-ジフルオロ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、3,3’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、4,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、2,2’-ジアミノビフェニル、2,3’-ジアミノビフェニルなどのビフェニル構造含有ジアミン;1,2-ビス(6-アミノ-2-ナフチルオキシ)エタン、1,2-ビス(6-アミノ-2-ナフチル)エタン、6-[2-(4-アミノフェノキシ)エトキシ]-2-ナフチルアミン、1,5-ジアミノナフタレン、1,6-ジアミノナフタレン、1,7-ジアミノナフタレン、2,5-ジアミノナフタレン、2,6-ジアミノナフタレン、2,7-ジアミノナフタレンなどのナフタレン構造を有するジアミン;4,4’-ジアミノアゾベンゼン又はジアミノトランなどの光配向性基を有するジアミン;下記式(h-1)~(h-5)で表されるジアミンなどのアミド結合又はウレア結合を有するジアミン;3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、1,2-ビス(4-アミノフェニル)エタン、1,2-ビス(3-アミノフェニル)エタン、1,3-ビス(4-アミノフェニル)プロパン、1,3-ビス(3-アミノフェニル)プロパン、1,4-ビス(4-アミノフェニル)ブタン、1,4-ビス(3-アミノフェニル)ブタン、1,5-ビス(4-アミノフェニル)ペンタン、1,5-ビス(3-アミノフェニル)ペンタン、1,6-ビス(4-アミノフェニル)ヘキサン、1,6-ビス(3-アミノフェニル)ヘキサン、4,4’-ジアミノベンゾフェノン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(4-アミノベンジル)ベンゼン、ビス(4-アミノフェノキシ)メタン、1,2-ビス(4-アミノフェノキシ)エタン、1,2-ビス(4-アミノ-2-メチルフェノキシ)エタン、1,3-ビス(4-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、4-(2-(4-アミノフェノキシ)エトキシ)-3-フルオロアニリン、4-アミノ-4’-(2-(4-アミノフェノキシ)エトキシ)ビフェニル、下記式(d)で表されるジアミン;2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、4,6-ジアミノレゾルシノール;4,4’-ジアミノ-3,3’-ジヒドロキシビフェニル;2,4-ジアミノ安息香酸、2,5-ジアミノ安息香酸、3,5-ジアミノ安息香酸及び2,4-ジアミノ安息香酸、2,5-ジアミノ安息香酸、3,5-ジアミノ安息香酸、4,4’-ジアミノビフェニル-3-カルボン酸、4,4’-ジアミノジフェニルメタン-3-カルボン酸、1,2-ビス(4-アミノフェニル)エタン-3-カルボン酸、4,4’-ジアミノビフェニル-3,3’-ジカルボン酸、4,4’-ジアミノビフェニル-2,2’-ジカルボン酸、3,3’-ジアミノビフェニル-4,4’-ジカルボン酸、3,3’-ジアミノビフェニル-2,4’-ジカルボン酸、4,4’-ジアミノジフェニルメタン-3,3’-ジカルボン酸、1,2-ビス(4-アミノフェニル)エタン-3,3’-ジカルボン酸、4,4’-ジアミノジフェニルエーテル-3,3’-ジカルボン酸などのカルボキシ基を有するジアミン;4-(2-(メチルアミノ)エチル)アニリン、4-(2-アミノエチル)アニリン、1-(4-アミノフェニル)-1,3,3-トリメチル-1H-インダン-5-アミン、1-(4-アミノフェニル)-2,3-ジヒドロ-1,3,3-トリメチル-1H-インデン-6-アミン;メタクリル酸2-(2,4-ジアミノフェノキシ)エチル及び2,4-ジアミノ-N,N-ジアリルアニリン等の光重合性基を末端に有するジアミン;コレスタニルオキシ-3,5-ジアミノベンゼン、コレステニルオキシ-3,5-ジアミノベンゼン、コレスタニルオキシ-2,4-ジアミノベンゼン、3,5-ジアミノ安息香酸コレスタニル、3,5-ジアミノ安息香酸コレステニル、3,5-ジアミノ安息香酸ラノスタニル及び3,6-ビス(4-アミノベンゾイルオキシ)コレスタン等のステロイド骨格を有するジアミン;下記式(V-1)~(V-2)で表されるジアミン;下記式(5-1)~(5-9)などの基「-N(D)-」(Dは加熱によって脱離し水素原子に置き換わる保護基を表し、好ましくはtert-ブトキシカルボニル基である。)を有するジアミン(但し、式(d)で表されるジアミンを除く。);1,3-ビス(3-アミノプロピル)-テトラメチルジシロキサン等のシロキサン結合を有するジアミン;メタキシリレンジアミン、1,3-プロパンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ジアミノシクロヘキサン、4,4’-メチレンビス(シクロヘキシルアミン)、WO2018/117239号に記載の式(Y-1)~(Y-167)のいずれかで表される基に2つのアミノ基が結合したジアミン等。 Diamines represented by the above formula (d n ), p-phenylenediamine, 2,3,5,6-tetramethyl-p-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, m-phenylenediamine, 2 ,4-dimethyl-m-phenylenediamine, 2,5-diaminotoluene, phenylenediamine such as 2,6-diaminotoluene; 2,2′-dimethyl-4,4′-diaminobiphenyl, 3,3′-dimethyl- 4,4'-diaminobiphenyl, 3,3'-dimethoxy-4,4'-diaminobiphenyl, 3,3'-dihydroxy-4,4'-diaminobiphenyl, 2,2'-difluoro-4,4'- Diaminobiphenyl, 3,3'-difluoro-4,4'-diaminobiphenyl, 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl, 3,3'-bis(trifluoromethyl)- Biphenyls such as 4,4'-diaminobiphenyl, 3,4'-diaminobiphenyl, 4,4'-diaminobiphenyl, 3,3'-diaminobiphenyl, 2,2'-diaminobiphenyl, 2,3'-diaminobiphenyl structure containing diamine; 1,2-bis(6-amino-2-naphthyloxy)ethane, 1,2-bis(6-amino-2-naphthyl)ethane, 6-[2-(4-aminophenoxy)ethoxy] -Naphthalene structures such as 2-naphthylamine, 1,5-diaminonaphthalene, 1,6-diaminonaphthalene, 1,7-diaminonaphthalene, 2,5-diaminonaphthalene, 2,6-diaminonaphthalene and 2,7-diaminonaphthalene diamine having a photoalignment group such as 4,4′-diaminoazobenzene or diaminotran; amide bond or urea bond such as diamine represented by the following formulas (h-1) to (h-5) 3,3′-diaminodiphenylmethane, 3,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylmethane, 1,2-bis(4-aminophenyl)ethane, 1,2-bis(3-aminophenyl ) ethane, 1,3-bis(4-aminophenyl)propane, 1,3-bis(3-aminophenyl)propane, 1,4-bis(4-aminophenyl)butane, 1,4-bis(3- aminophenyl)butane, 1,5-bis(4-aminophenyl)pentane, 1,5-bis(3-aminophenyl)pentane, 1,6-bis(4-aminophenyl)hexane, 1,6-bis( 3-aminophen nyl)hexane, 4,4'-diaminobenzophenone, 1,4-bis(4-aminophenyl)benzene, 1,3-bis(4-aminophenyl)benzene, 1,4-bis(4-aminobenzyl)benzene , bis(4-aminophenoxy)methane, 1,2-bis(4-aminophenoxy)ethane, 1,2-bis(4-amino-2-methylphenoxy)ethane, 1,3-bis(4-aminophenoxy) ) propane, 1,4-bis(4-aminophenoxy)butane, 4-(2-(4-aminophenoxy)ethoxy)-3-fluoroaniline, 4-amino-4′-(2-(4-aminophenoxy )ethoxy)biphenyl, a diamine represented by the following formula (d o ); 2,4-diaminophenol, 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol, 4,6 -diaminoresorcinol; 4,4'-diamino-3,3'-dihydroxybiphenyl; 2,4-diaminobenzoic acid, 2,5-diaminobenzoic acid, 3,5-diaminobenzoic acid and 2,4-diaminobenzoic acid , 2,5-diaminobenzoic acid, 3,5-diaminobenzoic acid, 4,4′-diaminobiphenyl-3-carboxylic acid, 4,4′-diaminodiphenylmethane-3-carboxylic acid, 1,2-bis(4 -aminophenyl)ethane-3-carboxylic acid, 4,4'-diaminobiphenyl-3,3'-dicarboxylic acid, 4,4'-diaminobiphenyl-2,2'-dicarboxylic acid, 3,3'-diaminobiphenyl -4,4'-dicarboxylic acid, 3,3'-diaminobiphenyl-2,4'-dicarboxylic acid, 4,4'-diaminodiphenylmethane-3,3'-dicarboxylic acid, 1,2-bis(4-amino phenyl)ethane-3,3′-dicarboxylic acid, 4,4′-diaminodiphenyl ether-3,3′-dicarboxylic acid and other diamines having a carboxyl group; 4-(2-(methylamino)ethyl)aniline, 4- (2-aminoethyl)aniline, 1-(4-aminophenyl)-1,3,3-trimethyl-1H-indan-5-amine, 1-(4-aminophenyl)-2,3-dihydro-1, 3,3-trimethyl-1H-indene-6-amine; 2-(2,4-diaminophenoxy)ethyl methacrylate and 2,4-diamino-N,N-diallylaniline having a photopolymerizable group at its end Diamine; cholestanyloxy-3,5-diaminobenzene, cholestenyl oxy-3,5-diaminobenzene, cholestanyloxy-2,4-diaminobenzene, cholestanyl 3,5-diaminobenzoate, cholestenyl 3,5-diaminobenzoate, lanostanyl 3,5-diaminobenzoate and 3,6 -diamines having a steroid skeleton such as bis(4-aminobenzoyloxy)cholestane; diamines represented by the following formulas (V-1) to (V-2); the following formulas (5-1) to (5-9) A group such as “—N(D)—” (D represents a protective group that is eliminated by heating and replaced by a hydrogen atom, preferably a tert-butoxycarbonyl group. ) (excluding diamines represented by the formula (d n )); diamines having a siloxane bond such as 1,3-bis(3-aminopropyl)-tetramethyldisiloxane; meta-xylylenediamine , 1,3-propanediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, 1,3-bis(aminomethyl)cyclohexane, 1,4-diaminocyclohexane, 4,4′-methylenebis(cyclohexylamine), WO2018 and diamines in which two amino groups are bonded to a group represented by any one of formulas (Y-1) to (Y-167) described in JP, 117239/117239.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
(mが2つ以上ある場合、2つ以上のmはそれぞれ同一でも異なってもよい。ベンゼン環上の1つ以上の水素原子は1価の基で置換されていてもよい。)
 式(d)の例示については後述する。
(When there are two or more m, the two or more m may be the same or different. One or more hydrogen atoms on the benzene ring may be substituted with a monovalent group.)
An example of formula (d 0 ) will be described later.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
(式(V-1)中、m、nは0~3の整数(但し、1≦m+n≦4を満たす。)であり、jは0又は1の整数であり、Xは、-(CH-(aは1~15の整数である。)、-CONH-、-NHCO-、-CO-N(CH)-、-NH-、-O-、-CHO-、-CH-OCO-、-COO-、又は-OCO-を表す。Rは、フッ素原子、炭素数1~10のフッ素原子含有アルキル基、炭素数1~10のフッ素原子含有アルコキシ基、炭素数3~10のアルキル基、炭素数3~10のアルコキシ基、又は炭素数3~10のアルコキシアルキル基を表す。式(V-2)中、Xは-O-、-CHO-、-CH-OCO-、-COO-、又は-OCO-を表し、m、n、X、Rが2つ存在する場合、それぞれ独立して、上記定義を有する。) (In the formula (V-1), m and n are integers of 0 to 3 (provided that 1 ≤ m + n ≤ 4), j is an integer of 0 or 1, X 1 is -(CH 2 ) a- (a is an integer of 1 to 15), -CONH-, -NHCO-, -CO-N(CH 3 )-, -NH-, -O-, -CH 2 O-, - represents CH 2 —OCO—, —COO—, or —OCO—, where R 1 is a fluorine atom, a fluorine atom-containing alkyl group having 1 to 10 carbon atoms, a fluorine atom-containing alkoxy group having 1 to 10 carbon atoms, or represents an alkyl group having 3 to 10 carbon atoms, an alkoxy group having 3 to 10 carbon atoms, or an alkoxyalkyl group having 3 to 10 carbon atoms, wherein X 2 is —O—, —CH 2 O—, —CH 2 —OCO—, —COO—, or —OCO—, and when there are two m, n, X 1 and R 1 , each independently has the above definition.)
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 上記式(d)における1価の基の具体的な例として、上記式(dAL)における1価の基で例示した構造が挙げられる。 Specific examples of the monovalent group in the above formula (d o ) include the structures exemplified for the monovalent group in the above formula (d AL ).
 上記式(d)で表されるジアミンとして、プレチルト角を低くする観点から、下記式(d-1)~(d-6)で表されるジアミン、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル及び4,4’-ジアミノジフェニルエーテルが好ましい。 As the diamine represented by the above formula (d o ), from the viewpoint of lowering the pretilt angle, diamines represented by the following formulas (d o -1) to (d o -6), 3,3′-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether and 4,4'-diaminodiphenyl ether are preferred.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 重合体(A)において、上記式(2)で表される繰り返し単位の比率は、本発明の効果を好適に得る観点から、重合体(A)中の全繰り返し単位1モルに対して、0~40モル%が好ましく、0~20モル%が好ましく、0~10モル%がさらに好ましい。
<重合体(B)>
 本発明の液晶配向剤に含有される重合体(B)の製造に用いられるジアミン成分は、上記式(d)で表されるジアミンを含有する。該ジアミン成分を含有することにより、電圧保持率の低下要因となる不純物のトラップが可能となり、得られる液晶配向膜が高い電圧保持率を有する。上記式(d)で表されるジアミンは、それぞれ、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 上記重合体(B)の製造に用いられるジアミン成分は、下記式(dAL)で表されるジアミンを含まない、ジアミン成分で構成されてもよい。
Figure JPOXMLDOC01-appb-C000020
(Aは、基「*11-(CH-O-*12」(*11は酸素原子と結合する結合手又はベンゼン環を構成する炭素原子と結合する結合手を表し、*12は結合手を表す。nは1~5の整数である。)を有する2価の有機基を表す。NH基と結合する上記ベンゼン環の任意の水素原子は1価の基で置き換えられていてもよい。)
In the polymer (A), the ratio of the repeating unit represented by the above formula (2) is 0 per 1 mol of all repeating units in the polymer (A) from the viewpoint of suitably obtaining the effects of the present invention. ~40 mol% is preferred, 0 to 20 mol% is preferred, and 0 to 10 mol% is more preferred.
<Polymer (B)>
The diamine component used for producing the polymer (B) contained in the liquid crystal aligning agent of the present invention contains the diamine represented by the above formula (d n ). By containing the diamine component, it becomes possible to trap impurities that cause a decrease in voltage holding ratio, and the obtained liquid crystal alignment film has a high voltage holding ratio. The diamines represented by the above formula (d n ) may be used singly or in combination of two or more.
The diamine component used for producing the polymer (B) may be composed of a diamine component that does not contain a diamine represented by the following formula (d AL ).
Figure JPOXMLDOC01-appb-C000020
(A is a group “*11-(CH 2 ) n —O—*12” (*11 represents a bond that bonds to an oxygen atom or a bond that bonds to a carbon atom that constitutes a benzene ring, and *12 is represents a bond, n is an integer of 1 to 5. Any hydrogen atom of the benzene ring bonded to the NH 2 group is replaced with a monovalent group, and is also good.)
 上記式(d)における窒素原子含有複素環としては、例えば、ピロール環、イミダゾール環、ピラゾール環、トリアゾール環、ピリジン環、ピリミジン環、ピリダジン環、ピラジン環、インドール環、ベンゾイミダゾール環、プリン環、キノリン環、イソキノリン環、ナフチリジン環、キノキサリン環、フタラジン環、トリアジン環、カルバゾール環、アクリジン環、ピペリジン環、ピペラジン環、ピロリジン環、ヘキサメチレンイミン環等が挙げられる。これらのなかでも、ピリジン環、ピリミジン環、ピラジン環、ピペリジン環、ピペラジン環、キノリン環、カルバゾール環又はアクリジン環が好ましい。 Examples of the nitrogen atom-containing heterocyclic ring in the above formula ( dn ) include pyrrole ring, imidazole ring, pyrazole ring, triazole ring, pyridine ring, pyrimidine ring, pyridazine ring, pyrazine ring, indole ring, benzimidazole ring and purine ring. , quinoline ring, isoquinoline ring, naphthyridine ring, quinoxaline ring, phthalazine ring, triazine ring, carbazole ring, acridine ring, piperidine ring, piperazine ring, pyrrolidine ring, hexamethyleneimine ring and the like. Among these, a pyridine ring, a pyrimidine ring, a pyrazine ring, a piperidine ring, a piperazine ring, a quinoline ring, a carbazole ring and an acridine ring are preferred.
 上記式(d)中のRの1価の有機基としては、例えば、メチル基、エチル基、プロピル基等のアルキル基;ビニル基等のアルケニル基;シクロヘキシル基等のシクロアルキル基;フェニル基、メチルフェニル基等のアリール基、アルコキシ基(例えば、メトキシ基、エトキシ基)等が挙げられる。Rは、好ましくは水素原子又はメチル基である。 The monovalent organic group represented by R in the above formula (d n ) includes, for example, alkyl groups such as methyl group, ethyl group and propyl group; alkenyl groups such as vinyl group; cycloalkyl groups such as cyclohexyl group; , an aryl group such as a methylphenyl group, an alkoxy group (eg, a methoxy group, an ethoxy group), and the like. R is preferably a hydrogen atom or a methyl group.
 上記式(d)で表されるジアミンの具体例としては、例えば、2,6-ジアミノピリジン、3,4-ジアミノピリジン、2,4-ジアミノピリミジン、3,6-ジアミノカルバゾール、N-メチル-3,6-ジアミノカルバゾール、1,4-ビス-(4-アミノフェニル)-ピペラジン、3,6-ジアミノアクリジン、N-エチル-3,6-ジアミノカルバゾール、N-フェニル-3,6-ジアミノカルバゾール、又は下記式(d-1)~(d-3)で表されるジアミンが挙げられる。 Specific examples of the diamine represented by the formula (d n ) include 2,6-diaminopyridine, 3,4-diaminopyridine, 2,4-diaminopyrimidine, 3,6-diaminocarbazole, N-methyl -3,6-diaminocarbazole, 1,4-bis-(4-aminophenyl)-piperazine, 3,6-diaminoacridine, N-ethyl-3,6-diaminocarbazole, N-phenyl-3,6-diamino Examples include carbazole and diamines represented by the following formulas (d n -1) to (d n -3).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 式(d-1)において、m1、及びm1’は、それぞれ独立して、1~2の整数である。n1は1~3の整数である。Rは、上記「*21-NR-*22」で表されるアミノ基におけるRと同義である。 In formula (d n −1), m1 and m1′ are each independently an integer of 1 to 2. n1 is an integer of 1-3. R 1 has the same definition as R in the amino group represented by "*21-NR-*22" above.
 R、及びm1’が複数存在する場合、複数のR1、及びm1’は同じであってもよいし、異なっていてもよい。 When a plurality of R 1 and m1' are present, the plurality of R1 and m1' may be the same or different.
 式(d-2)において、Xは、1価の窒素原子含有複素環基を表し、該1価の窒素原子含有複素環基における窒素原子含有複素環の具体例は上記式(d)における窒素原子含有複素環で例示した構造が挙げられる。 In formula (d n -2), X 2 represents a monovalent nitrogen atom-containing heterocyclic group, and specific examples of the nitrogen atom-containing heterocyclic ring in the monovalent nitrogen atom-containing heterocyclic group are the above formulas (d n ) and the structures exemplified for the nitrogen atom-containing heterocycle in ).
 n1は1~2の整数であり、n2はn1+n2=2を満たす整数である。L、及びLは、それぞれ独立して、単結合、-CO-、炭素数1~6のアルキレン基、又は該アルキレン基の炭素-炭素結合間若しくは末端に、-O-若しくは-CO-が挿入された2価の有機基であって、窒素原子とは炭素原子で結合する2価の有機基を表す。Rは水素原子又はメチル基を表す。 n1 is an integer of 1 to 2, and n2 is an integer satisfying n1+n2=2. L 1 and L 2 are each independently a single bond, —CO—, an alkylene group having 1 to 6 carbon atoms, or —O— or —CO— between the carbon-carbon bonds of the alkylene group or at the terminal is a divalent organic group in which is inserted, and a nitrogen atom represents a divalent organic group bonded to a carbon atom. R represents a hydrogen atom or a methyl group.
 X2、、及びRが複数存在する場合、複数のX2、、及びRは同じであってもよいし、異なっていてもよい。 When multiple X 2 , L 2 and R are present, multiple X 2 , L 2 and R may be the same or different.
 式(d-3)において、Xは、窒素原子含有複素環を有する2価基を表し、該窒素原子含有複素環の具体例として、上記式(d)における窒素原子含有複素環で例示した構造が挙げられる。 In formula ( d n -3), X 3 represents a divalent group having a nitrogen atom-containing heterocyclic ring. Examples include the structures illustrated.
 Arは、2価の芳香族環基、又は2価の飽和窒素原子含有複素環基を表す。2価の芳香族環基における芳香族環の具体例として、ベンゼン環、ナフタレン環、アントラセン環、ピリジン環、ピリミジン環、ピラジン環、ピリダジン環、トリアジン環、ピロール環、イミダゾール環、ピラゾール環、キノリン環、イソキノリン環、カルバゾール環、ベンゾイミダゾール環、インドール環、キノキサリン環、アクリジン環が挙げられる。2価の飽和窒素原子含有複素環基における飽和窒素原子含有複素環の具体例としては、ピペリジン環、ピペラジン環が挙げられる。芳香族環及び飽和窒素原子含有複素環の水素原子は、1価の基で置換されていてもよい。1価の基の具体的な例としては、上記式(dAL)における1価の基で例示した構造等が挙げられる。 Ar 3 represents a divalent aromatic ring group or a divalent saturated nitrogen atom-containing heterocyclic group. Specific examples of the aromatic ring in the divalent aromatic ring group include benzene ring, naphthalene ring, anthracene ring, pyridine ring, pyrimidine ring, pyrazine ring, pyridazine ring, triazine ring, pyrrole ring, imidazole ring, pyrazole ring, quinoline ring, isoquinoline ring, carbazole ring, benzimidazole ring, indole ring, quinoxaline ring and acridine ring. Specific examples of the saturated nitrogen atom-containing heterocyclic ring in the divalent saturated nitrogen atom-containing heterocyclic group include a piperidine ring and a piperazine ring. A hydrogen atom of an aromatic ring and a saturated nitrogen atom-containing heterocyclic ring may be substituted with a monovalent group. Specific examples of the monovalent group include the structures exemplified for the monovalent group in the above formula (d AL ).
 Lは、単結合、-(CH-(nは1~6の整数である。)、-NR’-、-(CH-NR’-(nは1~6の整数である。)、-O-、-NR’-CO-、-CO-NR’-、-O-CO-、又は-CO-O-を表し、R’は水素原子、メチル基、又はtert-ブトキシカルボニル基を表す。 L 3 is a single bond, -(CH 2 ) n - (n is an integer of 1 to 6), -NR'-, -(CH 2 ) n -NR'- (n is an integer of 1 to 6 ), -O-, -NR'-CO-, -CO-NR'-, -O-CO-, or -CO-O-, and R' is a hydrogen atom, a methyl group, or tert- represents a butoxycarbonyl group.
 m3、及びm3’は、それぞれ独立して、0~2の整数であり、かつm3及びm3’のいずれかは1以上の整数である。 m3 and m3' are each independently an integer of 0 to 2, and either m3 or m3' is an integer of 1 or more.
 Ar及びLが複数存在する場合、複数のAr及びLは同じであってもよいし、異なっていてもよい。 When a plurality of Ar 3 and L 3 are present, the plurality of Ar 3 and L 3 may be the same or different.
 また、式(d-3)における両端のNH基は、いずれも芳香族環を構成する炭素原子と結合する。 Both NH 2 groups at both ends of formula (d n -3) are bonded to carbon atoms constituting the aromatic ring.
 上記式(d-1)~(d-3)で表されるジアミンの好ましい具体例として、下記式(Dp-1)~(Dp-6)で表されるジアミン、下記式(z-1)~式(z-14)で表されるジアミンが挙げられる。 Preferred specific examples of the diamines represented by the above formulas (d n -1) to (d n -3) include the diamines represented by the following formulas (Dp-1) to (Dp-6), the following formulas (z- 1) to diamines represented by formulas (z-14).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 上記重合体(B)の構成成分における上記式(d)で表されるジアミンの含有量は、重合体(B)の製造に用いられる全ジアミン成分の20~95モル%であることが好ましく、30~90モル%がより好ましく、40~90モル%がさらに好ましく、50~80モル%がより一層好ましい。 The content of the diamine represented by the formula (d n ) in the constituent components of the polymer (B) is preferably 20 to 95 mol% of the total diamine components used in the production of the polymer (B). , more preferably 30 to 90 mol %, more preferably 40 to 90 mol %, and even more preferably 50 to 80 mol %.
 本発明の液晶配向剤に含有される重合体(B)の製造に用いられるジアミン成分は、上記のジアミンに加え、求められる液晶配向剤の特性に応じ、種々のジアミン(以下、その他のジアミン(b)ともいう。)を用いることが出来る。 The diamine component used in the production of the polymer (B) contained in the liquid crystal aligning agent of the present invention is, in addition to the above diamines, various diamines (hereinafter referred to as other diamines ( Also referred to as b).) can be used.
 その他のジアミン(b)としては、例えば、上記重合体(A)の製造に用いられるジアミンで例示した化合物(ジアミン(1)、その他のジアミン(a))が挙げられる。その他のジアミン(b)は、中でも、本発明の効果を好適に得る観点から、炭素数4以上の側鎖基(但し、上述した加熱によって脱離し水素原子に置き換わる保護基を除く。)を有しないジアミンが好ましい。その他のジアミン(b)は、中でも、本発明の効果を好適に得る観点から、上記フェニレンジアミン、上記ビフェニル構造含有ジアミン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、1,2-ビス(4-アミノフェニル)エタン、1,2-ビス(3-アミノフェニル)エタン、1,3-ビス(4-アミノフェニル)プロパン、1,3-ビス(3-アミノフェニル)プロパン、1,4-ビス(4-アミノフェニル)ブタン、1,4-ビス(3-アミノフェニル)ブタン、1,5-ビス(4-アミノフェニル)ペンタン、1,5-ビス(3-アミノフェニル)ペンタン、1,6-ビス(4-アミノフェニル)ヘキサン、1,6-ビス(3-アミノフェニル)ヘキサン、4,4’-ジアミノベンゾフェノン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(4-アミノベンジル)ベンゼン、ビス(4-アミノフェノキシ)メタン、1,2-ビス(4-アミノフェノキシ)エタン、1,2-ビス(4-アミノ-2-メチルフェノキシ)エタン、1,3-ビス(4-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、4-(2-(4-アミノフェノキシ)エトキシ)-3-フルオロアニリン、4-アミノ-4’-(2-(4-アミノフェノキシ)エトキシ)ビフェニル、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、アミド結合又はウレア結合を有するジアミン及び4-(2-(メチルアミノ)エチル)アニリンからなる群から選ばれる少なくとも1種のジアミンが好ましい。上記その他のジアミン(b)は、それぞれ、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。 Other diamines (b) include, for example, the compounds exemplified for the diamines used in the production of the polymer (A) (diamine (1), other diamines (a)). Among other diamines (b), from the viewpoint of suitably obtaining the effects of the present invention, a side chain group having 4 or more carbon atoms (excluding the above-described protecting group that is eliminated by heating and replaced with a hydrogen atom). Diamines that do not are preferred. Among other diamines (b), from the viewpoint of suitably obtaining the effects of the present invention, the above phenylenediamine, the above biphenyl structure-containing diamine, 3,3′-diaminodiphenylmethane, 3,4′-diaminodiphenylmethane, 4,4 '-Diaminodiphenylmethane, 1,2-bis(4-aminophenyl)ethane, 1,2-bis(3-aminophenyl)ethane, 1,3-bis(4-aminophenyl)propane, 1,3-bis( 3-aminophenyl)propane, 1,4-bis(4-aminophenyl)butane, 1,4-bis(3-aminophenyl)butane, 1,5-bis(4-aminophenyl)pentane, 1,5- bis(3-aminophenyl)pentane, 1,6-bis(4-aminophenyl)hexane, 1,6-bis(3-aminophenyl)hexane, 4,4′-diaminobenzophenone, 1,4-bis(4 -aminophenyl)benzene, 1,3-bis(4-aminophenyl)benzene, 1,4-bis(4-aminobenzyl)benzene, bis(4-aminophenoxy)methane, 1,2-bis(4-amino phenoxy)ethane, 1,2-bis(4-amino-2-methylphenoxy)ethane, 1,3-bis(4-aminophenoxy)propane, 1,4-bis(4-aminophenoxy)butane, 4-( 2-(4-aminophenoxy)ethoxy)-3-fluoroaniline, 4-amino-4'-(2-(4-aminophenoxy)ethoxy)biphenyl, 3,3'-diaminodiphenyl ether, 3,4'-diamino At least one diamine selected from the group consisting of diphenyl ether, 4,4'-diaminodiphenyl ether, diamines having an amide bond or urea bond, and 4-(2-(methylamino)ethyl)aniline is preferred. Each of the other diamines (b) may be used alone or in combination of two or more.
 上記重合体(B)の構成成分における上記その他のジアミン(b)の含有量は、重合体(B)の製造に用いられる全ジアミン成分の5~80モル%であることが好ましく、10~70モル%がより好ましく、10~60モル%が更に好ましく、20~50モル%がより一層好ましい。 The content of the other diamine (b) in the constituent components of the polymer (B) is preferably 5 to 80 mol%, preferably 10 to 70 mol%, of the total diamine component used in the production of the polymer (B). mol % is more preferred, 10 to 60 mol % is even more preferred, and 20 to 50 mol % is even more preferred.
 本発明の液晶配向剤に含有される重合体(B)の製造に用いられるテトラカルボン酸誘導体成分は、上記式(T)で表されるテトラカルボン酸二無水物を全テトラカルボン酸誘導体成分の5モル%以上含む。 The tetracarboxylic acid derivative component used in the production of the polymer (B) contained in the liquid crystal aligning agent of the present invention is the tetracarboxylic dianhydride represented by the above formula (T f ). contains 5 mol % or more of
 上記式(T)で表されるテトラカルボン酸二無水物を含有することで、重合体(B)の分子量低下が抑制されるため、高い液晶配向性が得られ、AC残像に対する耐性に優れた液晶配向膜が得られる。また、重合体(B)はイミド化が進行しにくい特定のテトラカルボン酸二無水物を有するため、カルボキシ基等の親水性基が多く存在する重合体が得られ、重合体(A)と重合体(B)との二層分離性に優れた液晶配向膜が得られる。したがって、上記したように高い液晶配向性と、AC残像に対する耐性に優れた液晶配向膜が得られる。 By containing the tetracarboxylic dianhydride represented by the above formula (T f ), the decrease in the molecular weight of the polymer (B) is suppressed, resulting in high liquid crystal orientation and excellent resistance to AC afterimages. A liquid crystal alignment film is obtained. In addition, since the polymer (B) has a specific tetracarboxylic dianhydride that is difficult to imidize, a polymer having many hydrophilic groups such as carboxyl groups can be obtained. A liquid crystal alignment film having excellent two-layer separability from the union (B) is obtained. Therefore, as described above, a liquid crystal alignment film having high liquid crystal alignment properties and excellent resistance to AC afterimages can be obtained.
 前記式(T)のXにおける5員環以上の脂環構造を有する4価の有機基としては、5~8員環の脂環構造を有する4価の有機基が好ましく、5~7員環の脂環構造を有する4価の有機基がより好ましい。なお、5員環以上の脂環構造とは、酸無水基が結合する脂環構造が多環式構造の場合には、その多環式構造に含まれるそれぞれの環において、環を構成する原子数がいずれも5以上であることを示す。また、前記脂環構造は2つの酸無水基の少なくとも一つに結合していればよく、脂環構造とともに鎖状炭化水素構造や芳香環構造を有していてもよい。 The tetravalent organic group having a 5- or more-membered alicyclic structure for X f in the formula (T f ) is preferably a tetravalent organic group having a 5- to 8-membered alicyclic structure. A tetravalent organic group having a membered alicyclic structure is more preferred. In addition, when the alicyclic structure to which the acid anhydride group is bonded is a polycyclic structure, the 5-membered or more alicyclic structure means that in each ring contained in the polycyclic structure, the atoms constituting the ring All numbers are 5 or more. Moreover, the alicyclic structure may be bonded to at least one of the two acid anhydride groups, and may have a chain hydrocarbon structure or an aromatic ring structure together with the alicyclic structure.
 Xの好ましい具体例としては、下記式(X-1)~(X-17)のいずれかで表される4価の有機基が挙げられる。本発明の効果を好適に得る観点から、Xは、(X-1)~(X-4)がより好ましい。 Preferred specific examples of X f include tetravalent organic groups represented by any one of the following formulas (X f -1) to (X f -17). X f is more preferably (X f −1) to (X f −4) from the viewpoint of suitably obtaining the effects of the present invention.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 上記式(T)で表されるテトラカルボン酸二無水物の合計量は、本発明の効果を得る観点から、重合体(B)の製造に用いられる全テトラカルボン酸誘導体成分の10モル%以上がより好ましく、20モル%以上がさらに好ましい。
 本発明の液晶配向剤に含有される重合体(B)の製造に用いられるテトラカルボン酸誘導体成分は、上記式(T)で表されるテトラカルボン酸二無水物に加え、求められる液晶配向剤の特性に応じ、上記式(T)で表されるテトラカルボン酸二無水物以外のテトラカルボン酸二無水物(これらを総称して、その他のテトラカルボン酸二無水物(b)ともいう。)を用いてもよい。上記その他のテトラカルボン酸二無水物(b)は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
From the viewpoint of obtaining the effect of the present invention, the total amount of the tetracarboxylic dianhydride represented by the above formula (T f ) is 10 mol% of the total tetracarboxylic acid derivative component used in the production of the polymer (B). The above is more preferable, and 20 mol % or more is even more preferable.
The tetracarboxylic acid derivative component used in the production of the polymer (B) contained in the liquid crystal aligning agent of the present invention is, in addition to the tetracarboxylic dianhydride represented by the above formula (T f ), the desired liquid crystal alignment. Depending on the properties of the agent, a tetracarboxylic dianhydride other than the tetracarboxylic dianhydride represented by the above formula (T f ) (these are collectively referred to as other tetracarboxylic dianhydrides (b) ) may be used. The other tetracarboxylic dianhydrides (b) may be used singly or in combination of two or more.
 その他のテトラカルボン酸二無水物(b)の具体例としては、上記式(T)で表されるテトラカルボン酸二無水物以外の脂環式テトラカルボン酸二無水物、非環式脂肪族テトラカルボン酸二無水物、又は芳香族テトラカルボン酸二無水物が挙げられる。 Specific examples of other tetracarboxylic dianhydrides (b) include alicyclic tetracarboxylic dianhydrides other than the tetracarboxylic dianhydrides represented by the above formula (T f ), acyclic aliphatic A tetracarboxylic dianhydride or an aromatic tetracarboxylic dianhydride may be mentioned.
 ここで、脂環式テトラカルボン酸二無水物は、脂環式構造に結合する少なくとも1つのカルボキシ基を含めて4つのカルボキシ基が分子内脱水することにより得られる酸二無水物である。但し、これら4つのカルボキシ基はいずれも芳香環には結合していない。また、脂環式構造のみで構成されている必要はなく、その一部に鎖状炭化水素構造や芳香環構造を有していてもよい。
 非環式脂肪族テトラカルボン酸二無水物は、鎖状炭化水素構造に結合する4つのカルボキシ基が分子内脱水することにより得られる酸二無水物である。但し、鎖状炭化水素構造のみで構成されている必要はなく、その一部に脂環式構造や芳香環構造を有していてもよい。
 芳香族テトラカルボン酸二無水物は、芳香環に結合する少なくとも1つのカルボキシ基を含めて4つのカルボキシ基が分子内脱水することにより得られる酸二無水物であれば特に限定されない。
Here, the alicyclic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups including at least one carboxy group bonded to an alicyclic structure. However, none of these four carboxy groups are bonded to the aromatic ring. Moreover, it is not necessary to consist only of an alicyclic structure, and a part thereof may have a chain hydrocarbon structure or an aromatic ring structure.
An acyclic aliphatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups bonded to a chain hydrocarbon structure. However, it does not need to be composed only of a chain hydrocarbon structure, and may have an alicyclic structure or an aromatic ring structure in part thereof.
The aromatic tetracarboxylic dianhydride is not particularly limited as long as it is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups including at least one carboxy group bonded to an aromatic ring.
 上記その他のテトラカルボン酸二無水物(b)における、非環式脂肪族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、又は芳香族テトラカルボン酸二無水物は、好ましくは、上記式(T)で表されるテトラカルボン酸二無水物、又は下記式(t)で表されるテトラカルボン酸二無水物である。 The acyclic aliphatic tetracarboxylic dianhydride, alicyclic tetracarboxylic dianhydride, or aromatic tetracarboxylic dianhydride in the other tetracarboxylic dianhydride (b) is preferably It is a tetracarboxylic dianhydride represented by the above formula (T c ) or a tetracarboxylic dianhydride represented by the following formula (t).
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 式中Xは、上記式(g)、下記式(X1-1)~(X1-10)から選ばれる構造である。 In the formula, X 1 is a structure selected from formula (g) above and formulas (X1-1) to (X1-10) below.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
(式(X1-9)~(X1-10)において、j及びkは、0又は1の整数であり、A及びAは、それぞれ独立して、単結合、-O-、-CO-、-COO-、フェニレン基、スルホニル基、又はアミド結合を表す。複数のAは、それぞれ同一でも異なってもよい。*は結合手を表す。)
 上記式(X1-9)~(X1-10)の好ましい具体例としては、下記式(X-1)~(X-14)が挙げられる。液晶配向性を高める観点から、上記式(X1-9)~(X1-10)は、上記(X-1)~(X-8)が好ましく、(X-1)、(X-4)~(X-6)、及び(X-8)がより好ましい。
(In formulas (X1-9) to (X1-10), j and k are integers of 0 or 1, A 1 and A 2 are each independently a single bond, -O-, -CO- , —COO—, a phenylene group, a sulfonyl group, or an amide bond.A plurality of A 2 may be the same or different, and * represents a bond.)
Preferred specific examples of the above formulas (X1-9) to (X1-10) include the following formulas (X R -1) to (X R -14). From the viewpoint of enhancing liquid crystal orientation, the above formulas (X1-9) to (X1-10) are preferably the above (X R -1) to (X R -8), and (X R -1), (X R -4) to (X R -6) and (X R -8) are more preferred.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 本発明の液晶配向剤に含有される重合体(B)の製造に用いられるテトラカルボン酸誘導体成分が、その他のテトラカルボン酸二無水物(b)を含む場合、その他のテトラカルボン酸二無水物(b)の含有量は、重合体(B)の製造に用いられる全テトラカルボン酸誘導体成分の5~95モル%であることが好ましく、10~90モル%であることがより好ましく、20~80モル%であることがさらに好ましい。また、この場合において、上記式(T)で表されるテトラカルボン酸二無水物の合計量は、全テトラカルボン酸誘導体成分の5~95モル%であることが好ましく、10~90モル%であることがより好ましく、20~80モル%であることがさらに好ましい。 When the tetracarboxylic acid derivative component used for producing the polymer (B) contained in the liquid crystal aligning agent of the present invention contains other tetracarboxylic dianhydride (b), other tetracarboxylic dianhydride The content of (b) is preferably 5 to 95 mol%, more preferably 10 to 90 mol%, and more preferably 20 to 95 mol% of the total tetracarboxylic acid derivative component used in the production of the polymer (B). More preferably 80 mol %. In this case, the total amount of the tetracarboxylic dianhydride represented by the above formula (T f ) is preferably 5 to 95 mol%, more preferably 10 to 90 mol% of the total tetracarboxylic acid derivative component. and more preferably 20 to 80 mol %.
 上記(A)成分および(B)成分の含有割合は、本発明の効果を得る観点から、(A)成分と(B)成分の含有割合が、[(A)成分]/[(B)成分]の質量比で、10/90~90/10であってもよく、20/80~90/10であってもよく、20/80~80/20であってもよい。
<重合体(A)、重合体(B)の製造>
(ポリアミック酸の合成)
 本発明の液晶配向剤に含有されるポリイミド前駆体であるポリアミック酸は、例えば、以下の方法により製造できる。なお、重合体(A)又は重合体(B)の製造に用いられるテトラカルボン酸誘導体としては、テトラカルボン酸二無水物だけでなく、その誘導体である、テトラカルボン酸ジハライド化合物、テトラカルボン酸ジアルキルエステル、テトラカルボン酸ジアルキルエステルジハライドなども用いることができる。具体的には、上記テトラカルボン酸二無水物を含むテトラカルボン酸誘導体成分と上記ジアミンを含むジアミン成分とを有機溶媒の存在下で好ましくは-20~150℃、より好ましくは0~50℃において、好ましくは0.5~24時間、より好ましくは1~12時間(重縮合)反応させることによって合成できる。
From the viewpoint of obtaining the effect of the present invention, the content ratio of the above components (A) and (B) is such that the content ratio of the components (A) and (B) is [(A) component] / [(B) component ] may be from 10/90 to 90/10, from 20/80 to 90/10, or from 20/80 to 80/20.
<Production of polymer (A) and polymer (B)>
(Synthesis of polyamic acid)
Polyamic acid, which is a polyimide precursor contained in the liquid crystal aligning agent of the present invention, can be produced, for example, by the following method. The tetracarboxylic acid derivative used in the production of the polymer (A) or polymer (B) includes not only tetracarboxylic dianhydride, but also derivatives thereof such as tetracarboxylic acid dihalide compound and tetracarboxylic acid dialkyl. Esters, tetracarboxylic acid dialkyl ester dihalides, and the like can also be used. Specifically, the tetracarboxylic acid derivative component containing the tetracarboxylic dianhydride and the diamine component containing the diamine are mixed in the presence of an organic solvent at preferably −20 to 150° C., more preferably 0 to 50° C. , preferably 0.5 to 24 hours, more preferably 1 to 12 hours (polycondensation).
 上記の反応に用いる有機溶媒の具体例としては、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、1,3-ジメチル-2-イミダゾリジノンなどが挙げられる。また、重合体の溶媒溶解性が高い場合は、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、ジエチレングリコールモノメチルエーテル、又はジエチレングリコールモノエチルエーテルを用いることができる。これらは2種以上を混合して用いてもよい。 Specific examples of the organic solvent used in the above reaction include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, γ-butyrolactone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, 1,3-dimethyl-2-imidazolidinone and the like. In addition, when the solvent solubility of the polymer is high, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, propylene glycol monomethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene Glycol monopropyl ether, diethylene glycol monomethyl ether, or diethylene glycol monoethyl ether can be used. These may be used in combination of two or more.
 ポリアミック酸の反応は任意の濃度で行うことができるが、好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、溶媒を追加することもできる。反応においては、ジアミン成分の合計モル数とテトラカルボン酸成分の合計モル数の比は0.8~1.2であることが好ましい。通常の重縮合反応同様、このモル比が1.0に近いほど生成するポリアミック酸の分子量は大きくなる。 The reaction of polyamic acid can be carried out at any concentration, preferably 1 to 50% by mass, more preferably 5 to 30% by mass. The initial stage of the reaction can be carried out at a high concentration, and then the solvent can be added. In the reaction, the ratio of the total number of moles of the diamine component to the total number of moles of the tetracarboxylic acid component is preferably 0.8 to 1.2. Similar to a normal polycondensation reaction, the closer this molar ratio is to 1.0, the greater the molecular weight of the polyamic acid produced.
 上記反応で得られたポリアミック酸は、反応溶液をよく撹拌させながら貧溶媒に注入することで、ポリアミック酸を析出させて回収することができる。また、析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥することで精製されたポリアミック酸の粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。
(ポリアミック酸エスエルの合成)
 ポリアミック酸エステルは、例えば、[I]上記の方法で得られたポリアミック酸とエステル化剤とを反応させる方法、[II]テトラカルボン酸ジエステルとジアミンとを反応させる方法、[III]テトラカルボン酸ジエステルジハロゲン化物とジアミンとを反応させる方法、などの既知の方法によって得ることができる。
(ポリイミドの合成)
 また、上記ポリアミック酸又はポリアミック酸エステルなどのポリイミド前駆体を閉環(イミド化)させることによりポリイミドを得ることができる。なお、本明細書でいうイミド化率とは、テトラカルボン酸二無水物またはその誘導体由来のイミド基とカルボキシ基(またはその誘導体)との合計量に占めるイミド基の割合のことである。イミド化率は、必ずしも100%である必要はなく、用途や目的に応じて任意に調整できる。
[末端封止剤]
 本発明における重合体(A)および(B)を合成するに際して、テトラカルボン酸二無水物を含むテトラカルボン酸誘導体成分、ジアミン成分と共に、適当な末端封止剤を用いて末端封止型の重合体を合成することとしてもよい。
The polyamic acid obtained by the above reaction can be recovered by precipitating the polyamic acid by injecting the reaction solution into a poor solvent while stirring well. Further, a purified polyamic acid powder can be obtained by performing precipitation several times, washing with a poor solvent, and drying at room temperature or by heating. Poor solvents include, but are not limited to, water, methanol, ethanol, hexane, butyl cellosolve, acetone, and toluene.
(Synthesis of Polyamic Acid Ester)
Polyamic acid esters are produced by, for example, [I] a method of reacting the polyamic acid obtained by the above method with an esterifying agent, [II] a method of reacting a tetracarboxylic acid diester with a diamine, [III] a tetracarboxylic acid It can be obtained by a known method such as a method of reacting a diester dihalide and a diamine.
(Synthesis of polyimide)
Moreover, a polyimide can be obtained by ring-closing (imidating) a polyimide precursor such as the above polyamic acid or polyamic acid ester. The imidization ratio as used herein means the ratio of imide groups to the total amount of imide groups derived from tetracarboxylic dianhydride or derivatives thereof and carboxy groups (or derivatives thereof). The imidization rate does not necessarily have to be 100%, and can be arbitrarily adjusted according to the application and purpose.
[Terminal blocking agent]
When synthesizing the polymers (A) and (B) in the present invention, a tetracarboxylic acid derivative component containing a tetracarboxylic dianhydride, a diamine component, and an appropriate end-blocking agent are used to form a terminal-blocking polymer. It is good also as synthesize|combining union.
 末端封止剤としては、例えば無水酢酸、無水マレイン酸、無水ナジック酸、無水フタル酸、無水イタコン酸、シクロヘキサンジカルボン酸無水物、3-ヒドロキシフタル酸無水物、トリメリット酸無水物、3-(3-トリメトキシシリル)プロピル)-3,4-ジヒドロフラン-2,5-ジオン、4,5,6,7-テトラフルオロイソベンゾフラン-1,3-ジオン、4-エチニルフタル酸無水物などの酸一無水物;二炭酸ジ-tert-ブチル、二炭酸ジアリルなどの二炭酸ジエステル化合物;アクリロイルクロリド、メタクリロイルクロリド、ニコチン酸クロリドなどのクロロカルボニル化合物;アニリン、2-アミノフェノール、3-アミノフェノール、4-アミノサリチル酸、5-アミノサリチル酸、6-アミノサリチル酸、2-アミノ安息香酸、3-アミノ安息香酸、4-アミノ安息香酸、シクロヘキシルアミン、n-ブチルアミン、n-ペンチルアミン、n-ヘキシルアミン、n-ヘプチルアミン、n-オクチルアミンなどのモノアミン化合物;エチルイソシアネート、フェニルイソシアネート、ナフチルイソシアネート、2-アクリロイルオキシエチルイソシアネ-ト及び2-メタクリロイルオキシエチルイソシアネ-トなどの不飽和結合を有するイソシアネートなどのモノイソシアネート化合物;エチルイソチオシアネート、アリルイソチオシアネートなどのイソチオシアネート化合物などを挙げることができる。 Terminal blockers include, for example, acetic anhydride, maleic anhydride, nadic anhydride, phthalic anhydride, itaconic anhydride, cyclohexanedicarboxylic anhydride, 3-hydroxyphthalic anhydride, trimellitic anhydride, 3-( 3-trimethoxysilyl)propyl)-3,4-dihydrofuran-2,5-dione, 4,5,6,7-tetrafluoroisobenzofuran-1,3-dione, 4-ethynylphthalic anhydride, etc. acid monoanhydride; di-tert-butyl dicarbonate, dicarbonic acid diester compounds such as diallyl dicarbonate; acryloyl chloride, methacryloyl chloride, chlorocarbonyl compounds such as nicotinic acid chloride; aniline, 2-aminophenol, 3-aminophenol, 4-aminosalicylic acid, 5-aminosalicylic acid, 6-aminosalicylic acid, 2-aminobenzoic acid, 3-aminobenzoic acid, 4-aminobenzoic acid, cyclohexylamine, n-butylamine, n-pentylamine, n-hexylamine, monoamine compounds such as n-heptylamine and n-octylamine; isocyanates having unsaturated bonds such as ethyl isocyanate, phenyl isocyanate, naphthyl isocyanate, 2-acryloyloxyethyl isocyanate and 2-methacryloyloxyethyl isocyanate and isothiocyanate compounds such as ethyl isothiocyanate and allyl isothiocyanate.
 末端封止剤の使用割合は、使用するジアミン成分の合計100モル部に対して、0.1~30モル部とすることが好ましく、0.1~20モル部とすることがより好ましい。 The proportion of the terminal blocking agent used is preferably 0.1 to 30 mol parts, more preferably 0.1 to 20 mol parts, per 100 mol parts in total of the diamine components used.
 ポリアミック酸の反応溶液から、生成したポリアミック酸を回収する場合には、反応溶液を溶媒に投入して沈殿させてもよい。沈殿に用いる溶媒としてはメタノール、エタノール、イソプロピルアルコール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、トルエン、ベンゼン、水などを挙げることができる。溶媒に投入して沈殿させたポリアミック酸は濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収した重合体を、有機溶媒に再溶解させ、再沈殿回収する操作を2~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の溶媒として、例えば、アルコール類、ケトン類又は炭化水素などが挙げられ、これらの内から選ばれる3種類以上の溶媒を用いると、より一層精製の効率が上がるので好ましい。 When recovering the generated polyamic acid from the polyamic acid reaction solution, the reaction solution may be added to the solvent to precipitate. Solvents used for precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, and water. The polyamic acid precipitated by putting it into a solvent can be filtered and recovered, and then dried at room temperature or under heat under normal pressure or reduced pressure. In addition, the impurities in the polymer can be reduced by redissolving the precipitated and recovered polymer in an organic solvent and repeating the operation of reprecipitating and recovering 2 to 10 times. Solvents in this case include, for example, alcohols, ketones, hydrocarbons, and the like, and it is preferable to use three or more kinds of solvents selected from these, because the purification efficiency is further improved.
 本発明で使用する重合体(A)、重合体(B)の分子量は、そこから得られる液晶配向膜の強度、膜形成時の作業性及び塗膜性を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量で5,000~1,000,000とするのが好ましく、より好ましくは、10,000~150,000である。 The molecular weights of the polymer (A) and polymer (B) used in the present invention are determined by GPC (Gel Permeation Chromatography) when considering the strength of the liquid crystal alignment film obtained therefrom, workability during film formation, and coating film properties. ), the weight average molecular weight is preferably 5,000 to 1,000,000, more preferably 10,000 to 150,000.
 本発明の液晶配向剤に含まれる重合体の合計含有量は、形成させようとする塗膜の厚みの設定によっても適宜変更できるが、均一で欠陥のない塗膜を形成させるという点から1質量%以上が好ましく、溶液の保存安定性の点からは、10質量%以下が好ましい。特に好ましい重合体の合計含有量は、2~8質量%である。 The total content of the polymer contained in the liquid crystal aligning agent of the present invention can be appropriately changed depending on the setting of the thickness of the coating film to be formed. % or more is preferable, and 10% by mass or less is preferable from the viewpoint of storage stability of the solution. A particularly preferred total polymer content is 2 to 8% by weight.
 本発明の液晶配向剤は、重合体(A)及び重合体(B)以外のその他の重合体を含有してもよい。その他の重合体の具体例を挙げると、重合体(A)及び重合体(B)以外のポリイミド前駆体やポリイミド、ポリシロキサン、ポリエステル、ポリアミド、ポリウレア、ポリウレタン、ポリオルガノシロキサン、セルロース誘導体、ポリアセタール、ポリスチレン誘導体、ポリ(スチレン-マレイン酸無水物)共重合体、ポリ(イソブチレン-マレイン酸無水物)共重合体、ポリ(ビニルエーテル-マレイン酸無水物)共重合体、ポリ(スチレン-フェニルマレイミド)誘導体、及びポリ(メタ)アクリレートからなる群から選ばれる重合体などが挙げられる。ポリ(スチレン-マレイン酸無水物)共重合体の具体例としては、SMA1000、2000、3000(Cray Valley社製)、GSM301(岐阜セラック社製)などが挙げられ、ポリ(イソブチレン-マレイン酸無水物)共重合体の具体例としては、イソバン-600(クラレ製)が挙げられ、ポリ(ビニルエーテル-マレイン酸無水物)共重合体の具体例としては、GANTREZ AN-139(メチルビニルエーテル無水マレイン酸樹脂、ISPジャパン社製)が挙げられる。 The liquid crystal aligning agent of the present invention may contain polymers other than the polymer (A) and the polymer (B). Specific examples of other polymers include polyimide precursors other than the polymer (A) and the polymer (B), polyimides, polysiloxanes, polyesters, polyamides, polyurea, polyurethanes, polyorganosiloxanes, cellulose derivatives, polyacetals, Polystyrene derivatives, poly(styrene-maleic anhydride) copolymers, poly(isobutylene-maleic anhydride) copolymers, poly(vinyl ether-maleic anhydride) copolymers, poly(styrene-phenylmaleimide) derivatives , and polymers selected from the group consisting of poly(meth)acrylates. Specific examples of poly(styrene-maleic anhydride) copolymers include SMA1000, 2000, 3000 (manufactured by Cray Valley), GSM301 (manufactured by Gifu Shellac), etc. Poly(isobutylene-maleic anhydride) ) copolymers include Isoban-600 (manufactured by Kuraray), and specific examples of poly(vinyl ether-maleic anhydride) copolymers include GANTREZ AN-139 (methyl vinyl ether maleic anhydride resin , manufactured by ISP Japan).
 その他の重合体は、一種を単独で使用してもよく、また二種以上を組み合わせて使用してもよい。その他の重合体の含有割合は、液晶配向剤中に含まれる重合体の合計100質量部に対して、90質量部以下が好ましく、10~90質量部がより好ましく、20~80質量部が更に好ましい。 Other polymers may be used singly or in combination of two or more. The content of the other polymer is preferably 90 parts by mass or less, more preferably 10 to 90 parts by mass, and further 20 to 80 parts by mass with respect to the total 100 parts by mass of the polymer contained in the liquid crystal aligning agent. preferable.
 本発明に係る液晶配向剤は、上記重合体(A)および重合体(B)が有機溶媒中に溶解又は分散された液状の組成物であることが好ましい。具体的には、上記液晶配向剤に含有される有機溶媒は、ポリアミック酸が均一に溶解するものであれば特に限定されないが、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルラクトアミド、N,N-ジメチルプロピオンアミド、テトラメチル尿素、N,N-ジエチルホルムアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン、γ-バレロラクトン、1,3-ジメチル-2-イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、N-(n-プロピル)-2-ピロリドン、N-イソプロピル-2-ピロリドン、N-(n-ブチル)-2-ピロリドン、N-(t-ブチル)-2-ピロリドン、N-(n-ペンチル)-2-ピロリドン、N-メトキシプロピル-2-ピロリドン、N-エトキシエチル-2-ピロリドン、N-メトキシブチル-2-ピロリドン、N-シクロヘキシル-2-ピロリドン(これらを総称して「良溶媒」ともいう)などが挙げられる。なかでも、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド又はγ-ブチロラクトンが好ましい。良溶媒の含有量は、液晶配向剤に含まれる溶媒全体の20~99質量%であることが好ましく、20~90質量%がより好ましく、特に好ましいのは、30~80質量%である。 The liquid crystal aligning agent according to the present invention is preferably a liquid composition in which the polymer (A) and polymer (B) are dissolved or dispersed in an organic solvent. Specifically, the organic solvent contained in the liquid crystal aligning agent is not particularly limited as long as it uniformly dissolves the polyamic acid, but N,N-dimethylformamide, N,N-diethylformamide, N,N -dimethylacetamide, N,N-dimethyllactamide, N,N-dimethylpropionamide, tetramethylurea, N,N-diethylformamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethylsulfoxide, γ-butyrolactone, γ-valerolactone, 1,3-dimethyl-2-imidazolidinone, methyl ethyl ketone, cyclohexanone, cyclopentanone, 3-methoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethyl Propanamide, N-(n-propyl)-2-pyrrolidone, N-isopropyl-2-pyrrolidone, N-(n-butyl)-2-pyrrolidone, N-(t-butyl)-2-pyrrolidone, N-( n-pentyl)-2-pyrrolidone, N-methoxypropyl-2-pyrrolidone, N-ethoxyethyl-2-pyrrolidone, N-methoxybutyl-2-pyrrolidone, N-cyclohexyl-2-pyrrolidone (these are collectively referred to as " (also referred to as "good solvent"). Among them, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 3-methoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide and γ-butyrolactone are preferred. The content of the good solvent is preferably 20 to 99% by mass, more preferably 20 to 90% by mass, and particularly preferably 30 to 80% by mass of the total solvent contained in the liquid crystal aligning agent.
 また、液晶配向剤に含有される有機溶媒は、上記溶媒に加えて液晶配向剤を塗布する際の塗布性や塗膜の表面平滑性を向上させる溶媒(貧溶媒ともいう。)を併用した混合溶媒の使用が好ましい。併用する貧溶媒の具体例を下記するが、これらに限定されない。貧溶媒の含有量は、液晶配向剤に含まれる溶媒全体の1~80質量%が好ましく、10~80質量%がより好ましく、20~70質量%が特に好ましい。貧溶媒の種類及び含有量は、液晶配向剤の塗布装置、塗布条件、塗布環境などに応じて適宜選択される。 Further, the organic solvent contained in the liquid crystal aligning agent is a mixture of the above solvents and a solvent (also referred to as a poor solvent) that improves the coatability and the surface smoothness of the coating film when applying the liquid crystal aligning agent. The use of solvents is preferred. Specific examples of the poor solvent used in combination are shown below, but are not limited thereto. The content of the poor solvent is preferably 1 to 80% by mass, more preferably 10 to 80% by mass, particularly preferably 20 to 70% by mass, of the total solvent contained in the liquid crystal aligning agent. The type and content of the poor solvent are appropriately selected according to the liquid crystal aligning agent coating device, coating conditions, coating environment, and the like.
 貧溶媒としては、例えば、ジイソプロピルエーテル、ジイソブチルエーテル、ジイソブチルカルビノール(2,6-ジメチル-4-ヘプタノール)、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、1,2-ブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、エチレングリコールモノブチルエーテル、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、1-(2-ブトキシエトキシ)-2-プロパノール、2-(2-ブトキシエトキシ)-1-プロパノール、プロピレングリコールモノメチルエーテルアセタート、プロピレングリコールジアセテート、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジメチルエーテル、エチレングリコールモノブチルエーテルアセタート、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、酢酸シクロヘキシル、酢酸4-メチル-2-ペンチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸エチル、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸n-ブチル、乳酸イソアミル、ジエチレングリコールモノエチルエーテル、ジイソブチルケトン(2,6-ジメチル-4-ヘプタノン)などが挙げられる。 Examples of poor solvents include diisopropyl ether, diisobutyl ether, diisobutyl carbinol (2,6-dimethyl-4-heptanol), ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, 1,2-butoxyethane, and diethylene glycol. dimethyl ether, diethylene glycol diethyl ether, 4-hydroxy-4-methyl-2-pentanone, diethylene glycol methyl ethyl ether, diethylene glycol dibutyl ether, 3-ethoxybutyl acetate, 1-methylpentyl acetate, 2-ethylbutyl acetate, 2- ethylhexyl acetate, ethylene glycol monoacetate, ethylene glycol diacetate, propylene carbonate, ethylene carbonate, ethylene glycol monobutyl ether, ethylene glycol monoisoamyl ether, ethylene glycol monohexyl ether, propylene glycol monomethyl ether, propylene glycol monobutyl ether, 1 -(2-butoxyethoxy)-2-propanol, 2-(2-butoxyethoxy)-1-propanol, propylene glycol monomethyl ether acetate, propylene glycol diacetate, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, Dipropylene glycol dimethyl ether, ethylene glycol monobutyl ether acetate, diethylene glycol monopropyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, 2-(2-ethoxyethoxy) ethyl acetate, diethylene glycol acetate, n-butyl acetate , propylene glycol monoethyl ether acetate, cyclohexyl acetate, 4-methyl-2-pentyl acetate, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, propyl 3-methoxypropionate, 3- butyl methoxypropionate, n-butyl lactate, isoamyl lactate, diethylene glycol monoethyl ether, diisobutyl ketone (2,6-dimethyl-4-heptanone) and the like.
 なかでも、ジイソブチルカルビノール、プロピレングリコールモノブチルエーテル、プロピレングリコールジアセテート、ジエチレングリコールジエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジメチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、エチレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテルアセタート、又はジイソブチルケトンが好ましい。 Among them, diisobutyl carbinol, propylene glycol monobutyl ether, propylene glycol diacetate, diethylene glycol diethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol dimethyl ether, 4-hydroxy-4-methyl-2-pentanone, ethylene glycol monobutyl ether, ethylene Glycol monobutyl ether acetate or diisobutyl ketone are preferred.
 良溶媒と貧溶媒との好ましい溶媒の組み合わせとしては、N-メチル-2-ピロリドンとγ-ブチロラクトンとエチレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテル、N,N-ジメチルラクトアミドとジイソブチルケトン、N-メチル-2-ピロリドンと3-エトキシプロピオン酸エチルとジプロピレングリコールモノメチルエーテル、N-エチル-2-ピロリドンと3-エトキシプロピオン酸エチルとプロピレングリコールモノブチルエーテル、N-メチル-2-ピロリドンと3-エトキシプロピオン酸エチルとジエチレングリコールモノプロピルエーテル、N-エチル-2-ピロリドンと3-エトキシプロピオン酸エチルとジエチレングリコールモノプロピルエーテル、N,N-ジメチルラクトアミドとエチレングリコールモノブチルエーテル、N,N-ジメチルラクトアミドとプロピレングリコールジアセテート、N-エチル-2-ピロリドンとジエチレングリコールジエチルエーテル、N-エチル-2-ピロリドンとジエチレングリコールモノエチルエーテルとブチルセロソルブアセテート、N-メチル-2-ピロリドンとジエチレングリコールモノメチルエーテルとブチルセロソルブアセテート、N,N-ジメチルラクトアミドとジエチレングリコールジエチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンと4-ヒドロキシ-4-メチル-2-ペンタノンとジエチレングリコールジエチルエーテル、N-エチル-2-ピロリドンとN-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノン、N-エチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとプロピレングリコールモノブチルエーテル、N-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとジイソブチルケトン、N-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとジプロピレングリコールモノメチルエーテル、N-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとプロピレングリコールモノブチルエーテル、N-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとプロピレングリコールジアセテート、N-エチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとジプロピレングリコールジメチルエーテル、γ-ブチロラクトンと4-ヒドロキシ-4-メチル-2-ペンタノンとジイソブチルケトン、γ-ブチロラクトンと4-ヒドロキシ-4-メチル-2-ペンタノンとプロピレングリコールジアセテート、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルとジイソブチルケトン、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルとジイソプロピルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルとジイソブチルカルビノール、N-メチル-2-ピロリドンとγ-ブチロラクトンとジプロピレングリコールジメチルエーテル、N-メチル-2-ピロリドンとプロピレングリコールモノブチルエーテルとジプロピレングリコールジメチルエーテル、N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテルとジプロピレングリコールモノメチルエーテル、N-エチル-2-ピロリドンとジエチレングリコールジエチルエーテルとジプロピレングリコールモノメチルエーテル、N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテルとプロピレングリコールジアセテート、N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテルとジイソブチルケトン、N-エチル-2-ピロリドンとγ-ブチロラクトンとジイソブチルケトン、N-エチル-2-ピロリドンとN,N-ジメチルラクトアミドとジイソブチルケトン、N-メチル-2-ピロリドンとエチレングリコールモノブチルエーテルとエチレングリコールモノブチルエーテルアセタート、γ-ブチロラクトンとエチレングリコールモノブチルエーテルアセタートとジプロピレングリコールジメチルエーテル、N-エチル-2-ピロリドンとエチレングリコールモノブチルエーテルアセタートとプロピレングリコールジメチルエーテル、N-メチル-2-ピロリドンと酢酸4-メチル-2-ペンチルとエチレングリコールモノブチルエーテル、N-エチル-2-ピロリドンと酢酸シクロヘキシルとジアセトンアルコール、シクロヘキサノンとプロピレングリコールモノメチルエーテル、シクロペンタノンとプロピレングリコールモノメチルエーテル、N-メチル-2-ピロリドンとシクロヘキサノンとプロピレングリコールモノメチルエーテル、テトラメチル尿素と4-ヒドロキシ-4-メチル-2-ペンタノン、テトラメチル尿素とプロピレングリコールジアセテート、N,N-ジメチルプロピオンアミドとプロピレングリコールモノブチルエーテル、テトラメチル尿素とプロピレングリコールモノブチルエーテル、テトラメチル尿素とシクロヘキサノンとプロピレングリコールモノメチルエーテル、N,N-ジメチルプロピオンアミドとプロピレングリコールモノメチルエーテル、N,N-ジメチルプロピオンアミドとエチレングリコールモノブチルエーテルアセテート、N,N-ジメチルプロピオンアミドとエチレングリコールモノブチルエーテル、テトラメチル尿素とプロピレングリコールモノメチルエーテル、N,N-ジメチルプロピオンアミドとシクロヘキサノンとジエチレングリコールジエチルエーテル、N,N-ジエチルホルムアミドとプロピレングリコールモノメチルエーテル、N,N-ジエチルホルムアミドと4-ヒドロキシ-4-メチル-2-ペンタノン、N,N-ジエチルホルムアミドとプロピレングリコールモノメチルエーテルなどを挙げることができる。 Preferred solvent combinations of a good solvent and a poor solvent include N-methyl-2-pyrrolidone, γ-butyrolactone and ethylene glycol monobutyl ether, N-methyl-2-pyrrolidone, γ-butyrolactone and propylene glycol monobutyl ether, N, N-dimethyl lactamide and diisobutyl ketone, N-methyl-2-pyrrolidone and ethyl 3-ethoxypropionate and dipropylene glycol monomethyl ether, N-ethyl-2-pyrrolidone and ethyl 3-ethoxypropionate and propylene glycol monobutyl ether, N-methyl-2-pyrrolidone and ethyl 3-ethoxypropionate and diethylene glycol monopropyl ether, N-ethyl-2-pyrrolidone and ethyl 3-ethoxypropionate and diethylene glycol monopropyl ether, N,N-dimethyllactamide and ethylene glycol Monobutyl ether, N,N-dimethyllactamide and propylene glycol diacetate, N-ethyl-2-pyrrolidone and diethylene glycol diethyl ether, N-ethyl-2-pyrrolidone and diethylene glycol monoethyl ether and butyl cellosolve acetate, N-methyl-2- pyrrolidone and diethylene glycol monomethyl ether and butyl cellosolve acetate, N,N-dimethyllactamide and diethylene glycol diethyl ether, N-methyl-2-pyrrolidone and γ-butyrolactone and 4-hydroxy-4-methyl-2-pentanone and diethylene glycol diethyl ether, N -ethyl-2-pyrrolidone and N-methyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone, N-ethyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone and propylene glycol mono Butyl ether, N-methyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone and diisobutyl ketone, N-methyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone and dipropylene glycol monomethyl ether , N-methyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone and propylene glycol monobutyl ether, N-methyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone and propylene glycol diacetate , N-ethyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone and dipropylene glycol dimethyl ether, γ-butyrolactone and 4-hydroxy-4-methyl-2-pentanone and diisobutyl ketone, γ-butyrolactone and 4-hydroxy-4-methyl-2-pentanone and propylene glycol diacetate, N-methyl-2-pyrrolidone and γ-butyrolactone and propylene glycol monobutyl ether and diisobutyl ketone, N-methyl-2-pyrrolidone and γ-butyrolactone and propylene glycol monobutyl ether and diisopropyl ether, N-methyl-2-pyrrolidone and γ-butyrolactone and propylene glycol monobutyl ether and Diisobutylcarbinol, N-methyl-2-pyrrolidone and γ-butyrolactone and dipropylene glycol dimethyl ether, N-methyl-2-pyrrolidone and propylene glycol monobutyl ether and dipropylene glycol dimethyl ether, N-ethyl-2-pyrrolidone and propylene glycol mono Butyl ether and dipropylene glycol monomethyl ether, N-ethyl-2-pyrrolidone and diethylene glycol diethyl ether and dipropylene glycol monomethyl ether, N-ethyl-2-pyrrolidone and propylene glycol monobutyl ether and propylene glycol diacetate, N-ethyl-2- Pyrrolidone and propylene glycol monobutyl ether and diisobutyl ketone, N-ethyl-2-pyrrolidone and γ-butyrolactone and diisobutyl ketone, N-ethyl-2-pyrrolidone and N,N-dimethyllactamide and diisobutyl ketone, N-methyl-2- pyrrolidone and ethylene glycol monobutyl ether and ethylene glycol monobutyl ether acetate, γ-butyrolactone and ethylene glycol monobutyl ether acetate and dipropylene glycol dimethyl ether, N-ethyl-2-pyrrolidone and ethylene glycol monobutyl ether acetate and propylene glycol dimethyl ether, N -methyl-2-pyrrolidone and 4-methyl-2-pentyl acetate and ethylene glycol monobutyl ether, N-ethyl-2-pyrrolidone and cyclohexyl acetate and diacetone alcohol, cyclohexanone and propylene glycol monomethyl ether, cyclopentanone and propylene glycol monomethyl ether ether, N-methyl-2-pyrrolidone and cyclohexanone and propylene glycol monomethyl ether, tetramethyl luurea and 4-hydroxy-4-methyl-2-pentanone, tetramethylurea and propylene glycol diacetate, N,N-dimethylpropionamide and propylene glycol monobutyl ether, tetramethylurea and propylene glycol monobutyl ether, tetramethylurea and Cyclohexanone and propylene glycol monomethyl ether, N,N-dimethylpropionamide and propylene glycol monomethyl ether, N,N-dimethylpropionamide and ethylene glycol monobutyl ether acetate, N,N-dimethylpropionamide and ethylene glycol monobutyl ether, tetramethylurea and propylene glycol monomethyl ether, N,N-dimethylpropionamide, cyclohexanone and diethylene glycol diethyl ether, N,N-diethylformamide and propylene glycol monomethyl ether, N,N-diethylformamide and 4-hydroxy-4-methyl-2-pentanone , N,N-diethylformamide and propylene glycol monomethyl ether.
(添加剤成分)
 本発明の液晶配向剤は、上記(A)成分、(B)成分、及び有機溶媒以外の成分(以下、添加剤成分ともいう。)を追加的に含有してもよい。かかる添加剤成分としては、例えば、エポキシ基、オキセタン基、オキサゾリン構造、シクロカーボネート基、ブロックイソシアネート基、ヒドロキシ基及びアルコキシ基から選ばれる少なくとも1種の置換基を有する架橋性化合物(c-1)、並びに重合性不飽和基を有する架橋性化合物(c-2)からなる群から選ばれる少なくとも1種の架橋性化合物、官能性シラン化合物、金属キレート化合物、硬化促進剤、界面活性剤、酸化防止剤、増感剤、防腐剤、樹脂膜の誘電率や電気抵抗を調整するための化合物などが挙げられる。
(Additive component)
The liquid crystal aligning agent of the present invention may additionally contain components other than the components (A), (B), and organic solvent (hereinafter also referred to as additive components). Such additive components include, for example, a crosslinkable compound (c-1) having at least one substituent selected from an epoxy group, an oxetane group, an oxazoline structure, a cyclocarbonate group, a blocked isocyanate group, a hydroxy group and an alkoxy group. , and at least one crosslinkable compound selected from the group consisting of a crosslinkable compound (c-2) having a polymerizable unsaturated group, a functional silane compound, a metal chelate compound, a curing accelerator, a surfactant, an antioxidant agents, sensitizers, preservatives, and compounds for adjusting the dielectric constant and electrical resistance of the resin film.
 上記架橋性化合物(c-1)、(c-2)の好ましい具体例としては、以下の化合物が挙げられる。エポキシ基を有する化合物として、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、エピコート828(三菱ケミカル社製)などのビスフェノールA型エポキシ樹脂、エピコート807(三菱ケミカル社製)などのビスフェノールF型エポキシ樹脂、YX-8000(三菱ケミカル社製)などの水添ビスフェノールA型エポキシ樹脂、YX6954BH30(三菱ケミカル社製)などのビフェニル骨格含有エポキシ樹脂、EPPN-201(日本化薬社製)などのフェノールノボラック型エポキシ樹脂、EOCN-102S(日本化薬社製)などの(o,m,p-)クレゾールノボラック型エポキシ樹脂、テトラキス(グリシジルオキシメチル)メタン、N,N,N’,N’-テトラグリシジル-1,4-フェニレンジアミン、N,N,N’,N’-テトラグリシジル-2,2’-ジメチル-4.4’-ジアミノビフェニル、2,2-ビス[4-(N,N-ジグリシジル-4-アミノフェノキシ)フェニル]プロパン、N,N,N’,N’-テトラグリシジル-4,4’-ジアミノジフェニルメタンなどの第三級窒素原子が芳香族炭素原子と結合する化合物;N,N,N’,N’-テトラグリシジル-1,2-ジアミノシクロヘキサン、N,N,N’,N’-テトラグリシジル-1,3-ジアミノシクロヘキサン、N,N,N’,N’-テトラグリシジル-1,4-ジアミノシクロヘキサン、ビス(N,N-ジグリシジル-4-アミノシクロヘキシル)メタン、ビス(N,N-ジグリシジル-2-メチル-4-アミノシクロヘキシル)メタン、ビス(N,N-ジグリシジル-3-メチル-4-アミノシクロヘキシル)メタン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、1,4-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、1,3-ビス(N,N-ジグリシジルアミノメチル)ベンゼン、1,4-ビス(N,N-ジグリシジルアミノメチル)ベンゼン、1,3,5-トリス(N,N-ジグリシジルアミノメチル)シクロヘキサン、1,3,5-トリス(N,N-ジグリシジルアミノメチル)ベンゼンなどの第三級窒素原子が脂肪族炭素原子と結合する化合物、TEPIC(日産化学社製)などのトリグリシジルイソシアヌレートなどのイソシアヌレート化合物、日本特開平10-338880号公報の段落[0037]に記載の化合物や、WO2017/170483号に記載の化合物等;
オキセタニル基を有する化合物として、1,4-ビス{[(3-エチル-3-オキセタニル)メトキシ]メチル}ベンゼン(アロンオキセタンOXT-121(XDO))、ジ[2-(3-オキセタニル)ブチル]エーテル(アロンオキセタンOXT-221(DOX))、1,4-ビス〔(3-エチルオキセタン-3-イル)メトキシ〕ベンゼン(HQOX)、1,3-ビス〔(3-エチルオキセタン-3-イル)メトキシ〕ベンゼン(RSOX)、1,2-ビス〔(3-エチルオキセタン-3-イル)メトキシ〕ベンゼン(CTOX)、WO2011/132751号公報の段落[0170]~[0175]に記載の2個以上のオキセタニル基を有する化合物等;
オキサゾリン基を有する化合物として、2,2’-ビス(2-オキサゾリン)、2,2’-ビス(4-メチル-2-オキサゾリン)等の化合物、エポクロス(商品名、株式会社日本触媒製)のようなオキサゾリン基を有するポリマーやオリゴマー、日本特開2007-286597号公報の段落[0115]に記載の化合物等;
シクロカーボネート基を有する化合物として、N,N,N’,N’-テトラ[(2-オキソ-1,3-ジオキソラン-4-イル)メチル]-4,4’-ジアミノジフェニルメタン、N,N’,-ジ[(2-オキソ-1,3-ジオキソラン-4-イル)メチル]-1,3-フェニレンジアミンや、WO2011/155577号公報の段落[0025]~[0030]、[0032]に記載の化合物等;
ブロックイソシアネート基を有する化合物として、コロネートAPステーブルM、コロネート2503、2515、2507、2513、2555、ミリオネートMS-50(以上、東ソー社製)、タケネートB-830、B-815N、B-820NSU、B-842N、B-846N、B-870N、B-874N、B-882N(以上、三井化学社製)、日本特開2014-224978号公報の段落[0046]~[0047]に記載の2個以上の保護イソシアネート基を有する化合物、WO2015/141598号の段落[0119]~[0120]に記載の3個以上の保護イソシアネート基を有する化合物等;
 ヒドロキシ基及びアルコキシ基を有する化合物として、N,N,N’,N’-テトラキス(2-ヒドロキシエチル)アジポアミド、2,2-ビス(4-ヒドロキシ-3,5-ジヒドロキシメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメトキシメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジヒドロキシメチルフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、WO2015/072554号や、日本特開2016-118753号公報の段落[0058]に記載の化合物、日本特開2016-200798号公報に記載の化合物、WO2010/074269号に記載の化合物等;
重合性不飽和基を有する架橋性化合物として、グリセリンモノ(メタ)アクリレート、グリセリンジ(メタ)アクリレート(1,2-,1,3-体混合物)、グリセリントリス(メタ)アクリレート、グリセロール1,3-ジグリセロラートジ(メタ)アクリレート、ペンタエリストールトリ(メタ)アクリレート、ジエチレングリコールモノ(メタ)アクリレート、トリエチレングリコールモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート、ペンタエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレート等。
 本発明の液晶配向剤に含有される架橋性化合物(c-1)、(c-2)の含有量は、液晶配向剤に含有される重合体成分の合計100質量部に対して、0.1~30質量部が好ましく、より好ましくは0.1~20質量部、さらに好ましくは1~10質量部である。
Preferred specific examples of the crosslinkable compounds (c-1) and (c-2) include the following compounds. Examples of epoxy group-containing compounds include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, and 1,6-hexane. Diol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol, Epicoat 828 (manufactured by Mitsubishi Chemical Corporation), etc. Bisphenol A type epoxy resin, bisphenol F type epoxy resin such as Epicoat 807 (manufactured by Mitsubishi Chemical Corporation), hydrogenated bisphenol A type epoxy resin such as YX-8000 (manufactured by Mitsubishi Chemical Corporation), YX6954BH30 (manufactured by Mitsubishi Chemical Corporation) and the like biphenyl skeleton-containing epoxy resins, phenol novolac type epoxy resins such as EPPN-201 (manufactured by Nippon Kayaku Co., Ltd.), (o, m, p-) cresol novolac type epoxy resins such as EOCN-102S (manufactured by Nippon Kayaku Co., Ltd.), tetrakis(glycidyloxymethyl)methane, N,N,N',N'-tetraglycidyl-1,4-phenylenediamine, N,N,N',N'-tetraglycidyl-2,2'-dimethyl-4. 4'-diaminobiphenyl, 2,2-bis[4-(N,N-diglycidyl-4-aminophenoxy)phenyl]propane, N,N,N',N'-tetraglycidyl-4,4'-diaminodiphenylmethane compounds in which a tertiary nitrogen atom is bound to an aromatic carbon atom such as; 1,3-diaminocyclohexane, N,N,N',N'-tetraglycidyl-1,4-diaminocyclohexane, bis(N,N-diglycidyl-4-aminocyclohexyl)methane, bis(N,N-diglycidyl- 2-methyl-4-aminocyclohexyl)methane, bis(N,N-diglycidyl-3-methyl-4-aminocyclohexyl)methane, 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane, 1,4 -bis(N,N-diglycidylaminomethyl)cyclohexane, 1,3-bis(N,N-diglycidylaminomethyl)benzene, 1,4-bis(N,N-diglycidylaminomethyl) Tertiary nitrogen such as lysidylaminomethyl)benzene, 1,3,5-tris(N,N-diglycidylaminomethyl)cyclohexane, 1,3,5-tris(N,N-diglycidylaminomethyl)benzene Compounds whose atoms are bonded to aliphatic carbon atoms, isocyanurate compounds such as triglycidyl isocyanurate such as TEPIC (manufactured by Nissan Chemical Industries, Ltd.), compounds described in paragraph [0037] of JP-A-10-338880, and WO2017 / compounds described in No. 170483;
As compounds having an oxetanyl group, 1,4-bis{[(3-ethyl-3-oxetanyl)methoxy]methyl}benzene (aron oxetane OXT-121 (XDO)), di[2-(3-oxetanyl)butyl] Ether (aron oxetane OXT-221 (DOX)), 1,4-bis[(3-ethyloxetan-3-yl)methoxy]benzene (HQOX), 1,3-bis[(3-ethyloxetan-3-yl ) methoxy]benzene (RSOX), 1,2-bis[(3-ethyloxetan-3-yl)methoxy]benzene (CTOX), two described in paragraphs [0170] to [0175] of WO2011/132751 Compounds having the above oxetanyl group, etc.;
Compounds having an oxazoline group include compounds such as 2,2'-bis(2-oxazoline) and 2,2'-bis(4-methyl-2-oxazoline), and Epocross (trade name, manufactured by Nippon Shokubai Co., Ltd.). Polymers and oligomers having an oxazoline group, such as compounds described in paragraph [0115] of Japanese Patent Application Laid-Open No. 2007-286597;
As compounds having a cyclocarbonate group, N,N,N',N'-tetra[(2-oxo-1,3-dioxolan-4-yl)methyl]-4,4'-diaminodiphenylmethane, N,N' ,-Di[(2-oxo-1,3-dioxolan-4-yl)methyl]-1,3-phenylenediamine and paragraphs [0025] to [0030] and [0032] of WO2011/155577 compounds of;
Examples of compounds having a blocked isocyanate group include Coronate AP Stable M, Coronate 2503, 2515, 2507, 2513, 2555, Millionate MS-50 (manufactured by Tosoh Corporation), Takenate B-830, B-815N, B-820NSU, B-842N, B-846N, B-870N, B-874N, B-882N (manufactured by Mitsui Chemicals, Inc.), two pieces described in paragraphs [0046] to [0047] of Japanese Patent Application Laid-Open No. 2014-224978 compounds having the above protected isocyanate groups, compounds having three or more protected isocyanate groups described in paragraphs [0119] to [0120] of WO2015/141598;
As compounds having a hydroxy group and an alkoxy group, N,N,N',N'-tetrakis(2-hydroxyethyl)adipamide, 2,2-bis(4-hydroxy-3,5-dihydroxymethylphenyl)propane, 2 , 2-bis(4-hydroxy-3,5-dimethoxymethylphenyl)propane, 2,2-bis(4-hydroxy-3,5-dihydroxymethylphenyl)-1,1,1,3,3,3- Hexafluoropropane, WO2015/072554, the compound described in paragraph [0058] of JP 2016-118753, the compound described in JP 2016-200798, the compound described in WO2010/074269, etc. ;
As crosslinkable compounds having a polymerizable unsaturated group, glycerin mono(meth)acrylate, glycerin di(meth)acrylate (1,2-,1,3-body mixture), glycerin tris(meth)acrylate, glycerol 1,3 - diglycerolate di(meth)acrylate, pentaerythritol tri(meth)acrylate, diethylene glycol mono(meth)acrylate, triethylene glycol mono(meth)acrylate, tetraethylene glycol mono(meth)acrylate, pentaethylene glycol mono(meth)acrylate ) acrylate, hexaethylene glycol mono(meth)acrylate and the like.
The content of the crosslinkable compounds (c-1) and (c-2) contained in the liquid crystal aligning agent of the present invention is 0.5 parts per 100 parts by mass in total of the polymer components contained in the liquid crystal aligning agent. It is preferably 1 to 30 parts by mass, more preferably 0.1 to 20 parts by mass, still more preferably 1 to 10 parts by mass.
 上記樹脂膜の誘電率や電気抵抗を調整するための化合物としては、3-ピコリルアミンなどの窒素原子含有芳香族複素環を有するモノアミンが挙げられる。窒素原子含有芳香族複素環を有するモノアミンを使用する場合は、その含有量は液晶配向剤に含まれる重合体成分100質量部に対して0.1~30質量部であることが好ましく、より好ましくは0.1~20質量部である。 Examples of compounds for adjusting the dielectric constant and electrical resistance of the resin film include monoamines having a nitrogen atom-containing aromatic heterocycle such as 3-picolylamine. When using a monoamine having a nitrogen atom-containing aromatic heterocycle, the content is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal aligning agent, more preferably is 0.1 to 20 parts by mass.
 官能性シラン化合物の好ましい具体例としては、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルジエトキシメチルシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、トリス(3-トリメトキシシリルプロピル)イソシアヌレート、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン等が挙げられる。官能性シラン化合物を使用する場合、その含有量は、液晶配向剤に含まれる重合体成分100質量部に対して0.1~30質量部であることが好ましく、より好ましくは0.1~20質量部である。 Preferred specific examples of functional silane compounds include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldiethoxymethylsilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane. Silane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxy silane, vinyltrimethoxysilane, vinyltriethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxysilane sidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, ethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, tris(3-trimethoxysilylpropyl)isocyanurate, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3 -isocyanatopropyltriethoxysilane and the like. When a functional silane compound is used, its content is preferably 0.1 to 30 parts by mass, more preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal aligning agent. part by mass.
 液晶配向剤における固形分濃度(液晶配向剤の溶媒以外の成分の合計質量が液晶配向剤の全質量に占める割合)は、粘性、揮発性などを考慮して適宜に選択されるが、好ましくは1~10質量%の範囲である。 The solid content concentration in the liquid crystal aligning agent (ratio of the total mass of components other than the solvent of the liquid crystal aligning agent to the total mass of the liquid crystal aligning agent) is appropriately selected in consideration of viscosity, volatility, etc., but preferably It is in the range of 1 to 10% by mass.
 特に好ましい固形分濃度の範囲は、基板に液晶配向剤を塗布する際に用いる方法によって異なる。例えばスピンコート法を用いる場合には、固形分濃度が1.5~4.5質量%の範囲であることが特に好ましい。印刷法による場合には、固形分濃度を3~9質量%の範囲とし、それにより溶液粘度を12~50mPa・sの範囲とすることが特に好ましい。インクジェット法による場合には、固形分濃度を1~5質量%の範囲とし、それにより、溶液粘度を3~15mPa・sの範囲とすることが特に好ましい。重合体組成物を調製する際の温度は、好ましくは10~50℃であり、より好ましくは20~30℃である。 A particularly preferable solid content concentration range varies depending on the method used when applying the liquid crystal aligning agent to the substrate. For example, when a spin coating method is used, the solid content concentration is particularly preferably in the range of 1.5 to 4.5% by mass. When the printing method is used, it is particularly preferable to set the solid content concentration in the range of 3 to 9% by mass, thereby setting the solution viscosity in the range of 12 to 50 mPa·s. In the case of the ink jet method, it is particularly preferable to set the solid content concentration in the range of 1 to 5% by mass, thereby setting the solution viscosity in the range of 3 to 15 mPa·s. The temperature in preparing the polymer composition is preferably 10-50°C, more preferably 20-30°C.
 上記に説明した液晶配向剤は、種々の技術用途に有効に適用することができ、例えば液晶配向膜(位相差フィルム用の液晶配向膜、走査アンテナや液晶アレイアンテナ用の液晶配向膜又は透過散乱型の液晶調光素子用の液晶配向膜)、保護膜(例:カラーフィルタ用の保護膜)、スペーサー膜、層間絶縁膜、反射防止膜、配線被覆膜、帯電防止フィルム、電動機絶縁膜(フレキシブルディスプレイのゲート絶縁膜)等にも適用できる。
[液晶配向膜及び液晶表示素子]
 上記液晶配向剤を用いることにより、液晶配向膜を製造することができる。また、本発明に係る液晶表示素子は、上記液晶配向剤を用いて形成した液晶配向膜を具備する。本発明に係る液晶表示素子の動作モードは特に限定せず、例えばTN型、STN(Super Twisted Nematic)型、垂直配向型(VA-MVA型、VA-PVA型などを含む。)、面内スイッチング型(IPS型、FFS型)、光学補償ベンド型(OCB型)など種々の動作モードに適用することができる。
The liquid crystal aligning agent described above can be effectively applied to various technical applications. type liquid crystal alignment film for liquid crystal light control element), protective film (e.g. protective film for color filter), spacer film, interlayer insulation film, antireflection film, wiring coating film, antistatic film, motor insulation film ( It can also be applied to gate insulating films of flexible displays, etc.
[Liquid crystal alignment film and liquid crystal display element]
A liquid crystal aligning film can be manufactured by using the said liquid crystal aligning agent. Moreover, the liquid crystal display element which concerns on this invention comprises the liquid crystal aligning film formed using the said liquid crystal aligning agent. The operation mode of the liquid crystal display device according to the present invention is not particularly limited. It can be applied to various operation modes such as type (IPS type, FFS type) and optically compensated bend type (OCB type).
 本発明の液晶表示素子は、例えば以下の工程(1)~(4)を含む方法、工程(1)~(2)及び(4)を含む方法、工程(1)~(3)、(4-2)及び(4-4)を含む方法、又は工程(1)~(3)、(4-3)及び(4-4)を含む方法により製造することができる。
<工程(1):液晶配向剤を基板上に塗布する工程>
 工程(1)は、本発明の液晶配向剤を基板上に塗布する工程である。工程(1)の具体例は以下のとおりである。
The liquid crystal display element of the present invention can be produced, for example, by a method including the following steps (1) to (4), a method including steps (1) to (2) and (4), steps (1) to (3), and (4). -2) and (4-4), or by a method including steps (1) to (3), (4-3) and (4-4).
<Step (1): Step of applying a liquid crystal aligning agent onto a substrate>
A process (1) is a process of apply|coating the liquid crystal aligning agent of this invention on a board|substrate. A specific example of step (1) is as follows.
 パターニングされた透明導電膜が設けられている基板の一面に、本発明の液晶配向剤を、例えばロールコーター法、スピンコート法、印刷法、インクジェット法などの適宜の塗布方法により塗布する。ここで基板としては、透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板とともに、アクリル基板やポリカーボネート基板等のプラスチック基板等を用いることもできる。また、反射型の液晶表示素子では、片側の基板のみにならば、シリコンウエハー等の不透明な物でも使用でき、この場合の電極にはアルミニウム等の光を反射する材料も使用できる。また、IPS型又はFFS型の液晶表示素子を製造する場合には、櫛歯型にパターニングされた透明導電膜又は金属膜からなる電極が設けられている基板と、電極が設けられていない対向基板とを用いる。 The liquid crystal aligning agent of the present invention is applied to one surface of the substrate provided with the patterned transparent conductive film by an appropriate coating method such as a roll coater method, a spin coat method, a printing method, an inkjet method, or the like. Here, the substrate is not particularly limited as long as it is highly transparent, and in addition to a glass substrate and a silicon nitride substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate can also be used. In addition, in a reflective liquid crystal display element, if only one substrate is used, an opaque material such as a silicon wafer can be used, and in this case, a light-reflecting material such as aluminum can be used for the electrodes. In the case of manufacturing an IPS type or FFS type liquid crystal display element, a substrate provided with electrodes made of a transparent conductive film or a metal film patterned in a comb shape and a counter substrate provided with no electrodes are used. and
 液晶配向剤を基板に塗布し、成膜する方法としては、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェット法、又はスプレー法等が挙げられる。なかでも、インクジェット法による塗布、成膜法が好適に使用できる。
<工程(2):塗布した液晶配向剤を焼成する工程>
 工程(2)は、基板上に塗布した液晶配向剤を焼成し、膜を形成する工程である。工程(2)の具体例は以下のとおりである。
Screen printing, offset printing, flexographic printing, an inkjet method, a spray method, etc. are mentioned as a method of apply|coating a liquid crystal aligning agent to a board|substrate and forming into a film. Among them, the coating method and the film-forming method by the inkjet method can be preferably used.
<Step (2): Step of firing the applied liquid crystal aligning agent>
A process (2) is a process of baking the liquid crystal aligning agent apply|coated on the board|substrate, and forming a film|membrane. A specific example of step (2) is as follows.
 工程(1)において液晶配向剤を基板上に塗布した後は、ホットプレート、熱循環型オーブン又はIR(赤外線)型オーブンなどの加熱手段により、溶媒を蒸発させたり、ポリアミック酸の熱イミド化を行ったりすることができる。本発明の液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができ、複数回行ってもよい。液晶配向剤を焼成する温度としては、例えば40~180℃で行うことができる。プロセスを短縮する観点で、40~150℃で行ってもよい。焼成時間としては特に限定されないが、1~10分又は、1~5分が挙げられる。ポリアミック酸の熱イミド化を行う場合には、上記工程の後、例えば150~300℃、又は150~250℃の温度範囲で焼成する工程を追加してもよい。焼成時間としては特に限定されないが、5~40分、又は、5~30分の焼成時間が挙げられる。 After the liquid crystal aligning agent is applied onto the substrate in step (1), the solvent is evaporated or the polyamic acid is thermally imidized by heating means such as a hot plate, a thermal circulation oven, or an IR (infrared) oven. you can go The drying and baking steps after applying the liquid crystal aligning agent of the present invention can be performed at any desired temperature and time, and may be performed multiple times. The temperature for baking the liquid crystal aligning agent can be, for example, 40 to 180.degree. From the viewpoint of shortening the process, it may be carried out at 40 to 150°C. The firing time is not particularly limited, but may be 1 to 10 minutes or 1 to 5 minutes. When the polyamic acid is thermally imidized, a step of firing at a temperature range of 150 to 300° C. or 150 to 250° C. may be added after the above step. The firing time is not particularly limited, but may be 5 to 40 minutes or 5 to 30 minutes.
 焼成後の膜状物の膜厚は、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5~300nmが好ましく、10~200nmがより好ましい。 The film thickness of the film after baking is preferably 5 to 300 nm, more preferably 10 to 200 nm, because if it is too thin, the reliability of the liquid crystal display element may be lowered.
 <工程(3):工程(2)で得られた膜に配向処理する工程>
 工程(3)は、場合により、工程(2)で得られた膜に配向処理する工程である。即ち、IPS方式又はFFS方式等の水平配向型の液晶表示素子では該塗膜に対し配向能付与処理を行う。一方、VA方式又はPSAモード等の垂直配向型の液晶表示素子では、形成した塗膜をそのまま液晶配向膜として使用することができるが、該塗膜に対し配向能付与処理を施してもよい。液晶配向膜の配向処理方法としては、ラビング処理法、光配向処理法が挙げられる。光配向処理法としては、上記膜状物の表面に、一定方向に偏向された放射線を照射し、場合により、好ましくは、150~250℃の温度で加熱処理を行い、液晶配向性(液晶配向能ともいう)を付与する方法が挙げられる。放射線としては、100~800nmの波長を有する紫外線又は可視光線を用いることができる。なかでも、好ましくは100~400nm、より好ましくは、200~400nmの波長を有する紫外線である。
<Step (3): Step of subjecting the film obtained in Step (2) to orientation treatment>
Step (3) is a step of subjecting the film obtained in step (2) to orientation treatment. That is, in a horizontally aligned liquid crystal display element such as an IPS system or an FFS system, the coating film is subjected to an alignment ability imparting treatment. On the other hand, in a vertical alignment type liquid crystal display element such as VA mode or PSA mode, the formed coating film can be used as a liquid crystal alignment film as it is, but the coating film may be subjected to an alignment ability imparting treatment. Examples of the alignment treatment method for the liquid crystal alignment film include a rubbing treatment method and a photo-alignment treatment method. As a photo-alignment treatment method, the surface of the film is irradiated with radiation polarized in a certain direction, and optionally, preferably, heat treatment is performed at a temperature of 150 to 250 ° C. to improve liquid crystal alignment (liquid crystal alignment (also referred to as ability). As radiation, ultraviolet light or visible light having a wavelength of 100 to 800 nm can be used. Among them, ultraviolet rays having a wavelength of 100 to 400 nm, more preferably 200 to 400 nm are preferred.
 上記放射線の照射量は、1~10,000mJ/cmが好ましい。なかでも、100~5,000mJ/cmが好ましい。また、放射線を照射する場合、液晶配向性を改善するために、上記膜状物を有する基板を、50~250℃で加熱しながら照射してもよい。このようにして作製した上記液晶配向膜は、液晶分子を一定の方向に安定して配向させることができる。 The irradiation dose of the radiation is preferably 1 to 10,000 mJ/cm 2 . Among them, 100 to 5,000 mJ/cm 2 is preferable. In addition, when irradiating with radiation, the substrate having the film-like material may be irradiated with heating at 50 to 250° C. in order to improve liquid crystal orientation. The liquid crystal alignment film thus produced can stably orient liquid crystal molecules in a fixed direction.
 更に、上記の方法で、偏光された放射線を照射した液晶配向膜に、水や溶媒を用いて、接触処理するか、放射線を照射した液晶配向膜を加熱処理することもできる。 Furthermore, the liquid crystal alignment film irradiated with polarized radiation can be subjected to contact treatment using water or a solvent, or the liquid crystal alignment film irradiated with radiation can be heat-treated.
 上記接触処理に使用する溶媒としては、放射線の照射によって膜状物から生成した分解物を溶解する溶媒であれば、特に限定されるものではない。具体例としては、水、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン、1-メトキシ-2-プロパノール、1-メトキシ-2-プロパノールアセテート、ブチルセロソルブ、乳酸エチル、乳酸メチル、ジアセトンアルコール、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、酢酸プロピル、酢酸ブチル、酢酸シクロヘキシル等が挙げられる。溶媒は、1種類でも、2種類以上組み合わせてもよい。 The solvent used in the contact treatment is not particularly limited as long as it dissolves the decomposed product produced from the film-like material by irradiation with radiation. Specific examples include water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, 1-methoxy-2-propanol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, methyl lactate, diacetone alcohol, 3- methyl methoxypropionate, ethyl 3-ethoxypropionate, propyl acetate, butyl acetate, cyclohexyl acetate and the like. Solvents may be used singly or in combination of two or more.
 上記の放射線を照射した塗膜に対する加熱処理の温度は、50~300℃がより好ましく、120~250℃がさらに好ましい。加熱処理の時間としては、それぞれ1~30分とすることが好ましい。
<工程(4):液晶セルを作製する工程>
 上記のようにして液晶配向膜が形成された基板を2枚準備し、対向配置した2枚の基板間に液晶を配置する。具体的には以下の2つの方法が挙げられる。
The temperature of the heat treatment for the coating film irradiated with radiation is more preferably 50 to 300.degree. C., further preferably 120 to 250.degree. The heat treatment time is preferably 1 to 30 minutes.
<Step (4): Step of producing a liquid crystal cell>
Two substrates on which liquid crystal alignment films are formed as described above are prepared, and liquid crystal is arranged between the two substrates facing each other. Specifically, the following two methods are mentioned.
 第一の方法は、先ず、それぞれの液晶配向膜が対向するように間隙(セルギャップ)を介して2枚の基板を対向配置する。次いで、2枚の基板の周辺部をシール剤を用いて貼り合わせ、基板表面及びシール剤により区画されたセルギャップ内に液晶組成物を注入充填して膜面に接触した後、注入孔を封止する。 In the first method, first, two substrates are arranged facing each other with a gap (cell gap) between them so that the respective liquid crystal alignment films face each other. Next, the peripheries of the two substrates are bonded together using a sealing agent, and a liquid crystal composition is injected and filled into the cell gap defined by the substrate surface and the sealing agent to contact the film surface, and then the injection hole is sealed. stop.
 上記液晶組成物としては、特に制限はなく、少なくとも一種の液晶化合物(液晶分子)を含む組成物であって、誘電率異方性が正または負の各種の液晶組成物を用いることができる。なお、以下では、誘電率異方性が正の液晶組成物を、ポジ型液晶ともいい、誘電率異方性が負の液晶組成物を、ネガ型液晶ともいう。
 上記液晶組成物は、フッ素原子、ヒドロキシ基、アミノ基、フッ素原子含有基(例:トリフルオロメチル基)、シアノ基、アルキル基、アルコキシ基、アルケニル基、イソチオシアネート基、複素環、シクロアルカン、シクロアルケン、ステロイド骨格、ベンゼン環、又はナフタレン環を有する液晶化合物を含んでもよく、分子内に液晶性を発現する剛直な部位(メソゲン骨格)を2つ以上有する化合物(例えば、剛直な二つのビフェニル構造、又はターフェニル構造がアルキル基で連結されたバイメソゲン化合物など)を含んでもよい。液晶組成物は、ネマチック相を呈する液晶組成物、スメクチック相を呈する液晶組成物、又はコレステリック相を呈する液晶組成物であってもよい。
 また、上記液晶組成物は、液晶配向性を向上させる観点から、添加物をさらに添加してもよい。このような添加物は、下記する重合性基を有する化合物などの光重合性モノマー;光学活性な化合物(例:メルク(株)社製のS-811など);酸化防止剤;紫外線吸収剤;色素;消泡剤;重合開始剤;又は重合禁止剤などが挙げられる。
 ポジ型液晶としては、メルク社製のZLI-2293、ZLI-4792、MLC-2003、MLC-2041、MLC-3019又はMLC-7081などが挙げられる。
 ネガ型液晶としては、例えばメルク社製のMLC-6608、MLC-6609、MLC-6610、MLC-6882、MLC-6886、MLC-7026、MLC-7026-000、MLC-7026-100、又はMLC-7029などが挙げられる。
 また、PSAモードでは、重合性基を有する化合物を含有する液晶として、メルク社製のMLC-3023が挙げられる。
The liquid crystal composition is not particularly limited, and various liquid crystal compositions containing at least one liquid crystal compound (liquid crystal molecule) and having positive or negative dielectric anisotropy can be used. In the following description, a liquid crystal composition with a positive dielectric anisotropy is also referred to as a positive liquid crystal, and a liquid crystal composition with a negative dielectric anisotropy is also referred to as a negative liquid crystal.
The above liquid crystal composition contains a fluorine atom, a hydroxy group, an amino group, a fluorine atom-containing group (e.g., trifluoromethyl group), a cyano group, an alkyl group, an alkoxy group, an alkenyl group, an isothiocyanate group, a heterocyclic ring, a cycloalkane, A liquid crystal compound having a cycloalkene, a steroid skeleton, a benzene ring, or a naphthalene ring may be included, and a compound having two or more rigid sites (mesogenic skeleton) exhibiting liquid crystallinity in the molecule (for example, two rigid biphenyl structure, or a bimesogenic compound in which a terphenyl structure is linked by an alkyl group). The liquid crystal composition may be a liquid crystal composition exhibiting a nematic phase, a liquid crystal composition exhibiting a smectic phase, or a liquid crystal composition exhibiting a cholesteric phase.
In addition, the liquid crystal composition may further contain an additive from the viewpoint of improving liquid crystal orientation. Such additives include photopolymerizable monomers such as compounds having a polymerizable group described below; optically active compounds (eg, S-811 manufactured by Merck Co., Ltd.); antioxidants; UV absorbers; dyes; antifoaming agents; polymerization initiators; or polymerization inhibitors.
Positive liquid crystals include ZLI-2293, ZLI-4792, MLC-2003, MLC-2041, MLC-3019 and MLC-7081 manufactured by Merck.
As the negative liquid crystal, for example, MLC-6608, MLC-6609, MLC-6610, MLC-6882, MLC-6886, MLC-7026, MLC-7026-000, MLC-7026-100, or MLC- 7029 and the like.
In addition, in the PSA mode, MLC-3023 manufactured by Merck Co., Ltd. can be used as a liquid crystal containing a compound having a polymerizable group.
 また、第二の方法は、ODF(One Drop Fill)方式と呼ばれる手法である。液晶配向膜を形成した2枚の基板のうちの一方の基板上の所定の場所に、例えば紫外光硬化性のシール剤を塗布し、更に液晶配向膜面上の所定の数箇所に液晶組成物を滴下する。その後、液晶配向膜が対向するように他方の基板を貼り合わせて液晶組成物を基板の全面に押し広げて膜面に接触させる。次いで、基板の全面に紫外光を照射してシール剤を硬化する。いずれの方法による場合でも、更に、用いた液晶組成物が等方相をとる温度まで加熱した後、室温まで徐冷することにより、液晶充填時の流動配向を除去することが望ましい。 The second method is a method called the ODF (One Drop Fill) method. A predetermined place on one of the two substrates on which the liquid crystal alignment film is formed is coated with, for example, an ultraviolet light-curing sealant, and a liquid crystal composition is applied to several predetermined places on the surface of the liquid crystal alignment film. drip. Thereafter, the other substrate is attached so that the liquid crystal alignment films face each other, and the liquid crystal composition is spread over the entire surface of the substrate and brought into contact with the film surface. Next, the entire surface of the substrate is irradiated with ultraviolet light to cure the sealant. In any method, it is desirable to remove the flow orientation at the time of liquid crystal filling by heating the liquid crystal composition to a temperature at which the used liquid crystal composition assumes an isotropic phase and then slowly cooling to room temperature.
 なお、塗膜に対してラビング処理を行った場合には、2枚の基板は、各塗膜におけるラビング方向が互いに所定の角度、例えば直交又は逆平行となるように対向配置される。 When the coating film is subjected to the rubbing treatment, the two substrates are arranged opposite to each other so that the rubbing directions in each coating film are at a predetermined angle, for example, perpendicular or antiparallel.
 シール剤としては、例えば硬化剤及びスペーサーとしての酸化アルミニウム球を含有するエポキシ樹脂等を用いることができる。液晶としては、ネマチック液晶及びスメクチック液晶を挙げることができ、その中でもネマチック液晶が好ましく、例えばフッ素系液晶、シアノ系液晶、シッフベース系液晶、アゾキシ系液晶、ビフェニル系液晶、フェニルシクロヘキサン系液晶、エステル系液晶、ターフェニル系液晶、ビフェニルシクロヘキサン系液晶、ピリミジン系液晶、ジオキサン系液晶、ビシクロオクタン系液晶、キュバン系液晶などを用いることができる。また、これらの液晶に、例えばコレスチルクロライド、コレステリルノナエート、コレステリルカーボネートなどのコレステリック液晶;商品名「C-15」、「CB-15」(メルク社製)として販売されているようなカイラル剤;p-デシロキシベンジリデン-p-アミノ-2-メチルブチルシンナメートなどの強誘電性液晶などを、添加して使用してもよい。その他、特開2019-132952号公報に開示されているような種々のものを用いることができる。 As the sealant, for example, an epoxy resin or the like containing a curing agent and aluminum oxide spheres as spacers can be used. Examples of liquid crystals include nematic liquid crystals and smectic liquid crystals. Among them, nematic liquid crystals are preferable. Liquid crystals, terphenyl-based liquid crystals, biphenylcyclohexane-based liquid crystals, pyrimidine-based liquid crystals, dioxane-based liquid crystals, bicyclooctane-based liquid crystals, cubane-based liquid crystals, and the like can be used. These liquid crystals may also contain cholesteric liquid crystals such as cholestyl chloride, cholesteryl nonaate and cholesteryl carbonate; a ferroelectric liquid crystal such as p-decyloxybenzylidene-p-amino-2-methylbutyl cinnamate may be added and used. In addition, various types such as those disclosed in Japanese Patent Application Laid-Open No. 2019-132952 can be used.
 上記した液晶は、使用用途にあわせて所望の物性を満たすように幾つかの液晶を混合することによって調製される(以下、複数の液晶を混合して得られる液晶成分を混合液晶ともいう。)のが一般的である。 The liquid crystal described above is prepared by mixing several liquid crystals so as to satisfy desired physical properties according to the intended use (hereinafter, a liquid crystal component obtained by mixing a plurality of liquid crystals is also referred to as a mixed liquid crystal). is common.
 これらの中でも、現在、液晶表示装置に一般的に使用されているフッ素系混合液晶を用いることが好ましい。ここで、本明細書におけるフッ素系混合液晶とは、1種以上のフッ素系液晶を含む混合液晶を意味し、シアノ系混合液晶とは、1種以上のシアノ系液晶を含む混合液晶を意味する。 Among these, it is preferable to use fluorine-based mixed liquid crystals, which are currently generally used in liquid crystal display devices. In this specification, the fluorine-based mixed liquid crystal means a mixed liquid crystal containing one or more fluorine-based liquid crystals, and the cyano-based mixed liquid crystal means a mixed liquid crystal containing one or more cyano-based liquid crystals. .
 上記の混合液晶は、一般的に公知であると共に商業的に利用可能であり、例えば、フッ素系混合液晶は、誘電率異方性Δεが正の液晶(ポジ型液晶ともいう。)として、ZLI-4792という商品名で、また、誘電率異方性Δεが負の液晶(ネガ型液晶ともいう。)として、MLC-6608という商品名で、メルク株式会社によって販売されている。さらに、シアノ系混合液晶は、ポジ型液晶として、JC-5066XXという商品名でチッソ石油化学株式会社によって販売されている。本発明は、中でも、ネガ型液晶が用いられる液晶表示素子に好適な液晶配向膜、及び該液晶配向膜を与える液晶配向剤を提供する。 The mixed liquid crystals described above are generally known and commercially available. -4792, and is sold by Merck Co., Ltd. under the trade name of MLC-6608 as a liquid crystal having a negative dielectric anisotropy Δε (also referred to as a negative type liquid crystal). Furthermore, the cyano-based mixed liquid crystal is sold by Chisso Petrochemical Co., Ltd. under the trade name of JC-5066XX as a positive type liquid crystal. Among others, the present invention provides a liquid crystal alignment film suitable for a liquid crystal display element using a negative liquid crystal, and a liquid crystal alignment agent that provides the liquid crystal alignment film.
 本発明の液晶配向剤は、電極を備えた一対の基板の間に液晶層を有してなり、一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、電極間に電圧を印加しつつ、活性エネルギー線の照射及び加熱の少なくとも一方により、重合性化合物を重合させる工程を経て製造される液晶表示素子(PSA型液晶表示素子)にも好ましく用いられる。 The liquid crystal aligning agent of the present invention has a liquid crystal layer between a pair of substrates provided with electrodes, and a liquid crystal composition containing a polymerizable compound polymerized by at least one of active energy rays and heat between the pair of substrates. A liquid crystal display element (PSA type liquid crystal display element) manufactured through a process of polymerizing a polymerizable compound by at least one of irradiating an active energy ray and heating while placing an object and applying a voltage between electrodes. It is preferably used.
 また、本発明の液晶配向剤は、電極を備えた一対の基板の間に液晶層を有してなり、上記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性基を含む液晶配向膜を配置し、電極間に電圧を印加する工程を経て製造される液晶表示素子(SC-PVAモード型の液晶表示素子)にも好ましく用いられる。
<工程(4-2):PSA型液晶表示素子の場合>
 重合性化合物を含有する液晶組成物を注入又は滴下する点以外は上記(4)と同様にする。重合性化合物としては、例えばアクリレート基やメタクリレート基などの重合性不飽和基を分子内に1個以上有する重合性化合物を挙げることができる。
<工程(4-3):SC-PVAモード型の液晶表示素子の場合>
 上記(4)と同様にした後、後述する紫外線を照射する工程を経て液晶表示素子を製造する方法を採用してもよい。この方法によれば、上記PSA型液晶表示素子を製造する場合と同様に、少ない光照射量で応答速度に優れた液晶表示素子を得ることができる。重合性基を有する化合物は、上記重合性不飽和基を分子内に1個以上有する化合物であってもよく、その含有量は、全ての重合体成分100質量部に対して0.1~30質量部であることが好ましく、より好ましくは1~20質量部である。また、上記重合性基は液晶配向剤に用いる重合体が有していてもよく、このような重合体としては、例えば上記光重合性基を末端に有するジアミンを含むジアミン成分を反応に用いて得られる重合体が挙げられる。
<工程(4-4):紫外線を照射する工程>
 上記(4-2)又は(4-3)で得られた一対の基板の有する導電膜間に電圧を印加した状態で液晶セルに光照射する。ここで印加する電圧は、例えば5~50Vの直流又は交流とすることができる。また、照射する光としては、例えば150~800nmの波長の光を含む紫外線及び可視光線を用いることができるが、300~400nmの波長の光を含む紫外線が好ましい。照射光の光源としては、例えば低圧水銀ランプ、高圧水銀ランプ、重水素ランプ、メタルハライドランプ、アルゴン共鳴ランプ、キセノンランプ、エキシマレーザーなどを使用することができる。光の照射量としては、好ましくは1,000~200,000J/mであり、より好ましくは1,000~100,000J/mである。
Further, the liquid crystal aligning agent of the present invention has a liquid crystal layer between a pair of substrates provided with electrodes, and a polymerizable group polymerized by at least one of active energy rays and heat is placed between the pair of substrates. It is also preferably used in a liquid crystal display element (SC-PVA mode type liquid crystal display element) manufactured through a process of arranging a liquid crystal alignment film containing a liquid crystal and applying a voltage between electrodes.
<Step (4-2): For PSA type liquid crystal display element>
The procedure is the same as in (4) above except that a liquid crystal composition containing a polymerizable compound is injected or dropped. Examples of the polymerizable compound include polymerizable compounds having one or more polymerizable unsaturated groups such as acrylate groups and methacrylate groups in the molecule.
<Step (4-3): For SC-PVA mode liquid crystal display element>
A method of manufacturing a liquid crystal display element may be employed in which a step of irradiating ultraviolet rays, which will be described later, is performed after performing the same as in the above (4). According to this method, a liquid crystal display device excellent in response speed can be obtained with a small amount of light irradiation, as in the case of manufacturing the PSA type liquid crystal display device. The compound having a polymerizable group may be a compound having one or more polymerizable unsaturated groups in the molecule, and its content is 0.1 to 30 per 100 parts by mass of all polymer components. It is preferably parts by mass, more preferably 1 to 20 parts by mass. Further, the polymerizable group may be present in the polymer used for the liquid crystal alignment agent, and such a polymer includes, for example, a diamine component containing a diamine having a photopolymerizable group at the end thereof, which is used in the reaction. The polymer obtained is mentioned.
<Step (4-4): Step of irradiating with ultraviolet rays>
The liquid crystal cell is irradiated with light while a voltage is applied between the conductive films of the pair of substrates obtained in (4-2) or (4-3) above. The voltage applied here can be, for example, 5 to 50 V direct current or alternating current. As the light for irradiation, for example, ultraviolet light containing light with a wavelength of 150 to 800 nm and visible light can be used, but ultraviolet light containing light with a wavelength of 300 to 400 nm is preferable. A low-pressure mercury lamp, a high-pressure mercury lamp, a deuterium lamp, a metal halide lamp, an argon resonance lamp, a xenon lamp, an excimer laser, or the like can be used as the light source for the irradiation light. The irradiation amount of light is preferably 1,000 to 200,000 J/m 2 , more preferably 1,000 to 100,000 J/m 2 .
 そして、必要に応じて液晶セルの外側表面に偏光板を貼り合わせることにより液晶表示素子を得ることができる。液晶セルの外表面に貼り合わされる偏光板としては、ポリビニルアルコールを延伸配向させながらヨウ素を吸収させた「H膜」と称される偏光フィルムを酢酸セルロース保護膜で挟んだ偏光板又はH膜そのものからなる偏光板を挙げることができる。 Then, a liquid crystal display element can be obtained by bonding a polarizing plate to the outer surface of the liquid crystal cell as necessary. As the polarizing plate to be attached to the outer surface of the liquid crystal cell, a polarizing film called "H film" in which polyvinyl alcohol is stretched and oriented while absorbing iodine is sandwiched between cellulose acetate protective films, or the H film itself. A polarizing plate consisting of
 そして、必要に応じて液晶セルの外側表面に偏光板を貼り合わせることにより液晶表示素子を得ることができる。液晶セルの外表面に貼り合わされる偏光板としては、ポリビニルアルコールを延伸配向させながらヨウ素を吸収させた「H膜」と称される偏光フィルムを酢酸セルロース保護膜で挟んだ偏光板又はH膜そのものからなる偏光板を挙げることができる。 Then, a liquid crystal display element can be obtained by bonding a polarizing plate to the outer surface of the liquid crystal cell as necessary. As the polarizing plate to be attached to the outer surface of the liquid crystal cell, a polarizing film called "H film" in which polyvinyl alcohol is stretched and oriented while absorbing iodine is sandwiched between cellulose acetate protective films, or the H film itself. A polarizing plate consisting of
 IPSモードにおいて使用される櫛歯電極基板であるIPS基板は、基材と、基材上に形成され、櫛歯状に配置された複数の線状電極と、基材上に線状電極を覆うように形成された液晶配向膜とを有する。 The IPS substrate, which is a comb-teeth electrode substrate used in the IPS mode, includes a base material, a plurality of linear electrodes formed on the base material and arranged in a comb-like shape, and the base material covering the linear electrodes. and a liquid crystal alignment film formed as follows.
 なお、FFSモードにおいて使用される櫛歯電極基板であるFFS基板は、基材と、基材上に形成された面電極と、面電極上に形成された絶縁膜と、絶縁膜上に形成され、櫛歯状に配置された複数の線状電極と、絶縁膜上に線状電極を覆うように形成された液晶配向膜とを有する。 The FFS substrate, which is a comb-teeth electrode substrate used in the FFS mode, includes a substrate, a plane electrode formed on the substrate, an insulating film formed on the plane electrode, and an insulating film formed on the insulating film. , a plurality of linear electrodes arranged in a comb shape, and a liquid crystal alignment film formed on an insulating film so as to cover the linear electrodes.
 図1は、本発明の横電界液晶表示素子の一例を示す概略断面図であり、IPSモード液晶表示素子の例である。 FIG. 1 is a schematic cross-sectional view showing an example of the lateral electric field liquid crystal display element of the present invention, which is an example of an IPS mode liquid crystal display element.
 図1に例示する横電界液晶表示素子1においては、液晶配向膜2cを具備する櫛歯電極基板2と液晶配向膜4aを具備する対向基板4との間に、液晶3が挟持されている。櫛歯電極基板2は、基材2aと、基材2a上に形成され、櫛歯状に配置された複数の線状電極2bと、基材2a上に線状電極2bを覆うように形成された液晶配向膜2cとを有している。対向基板4は、基材4bと、基材4b上に形成された液晶配向膜4aとを有している。液晶配向膜2cは、例えば、本発明の液晶配向膜である。液晶配向膜4cも同様に本発明の液晶配向膜である。 In the lateral electric field liquid crystal display element 1 illustrated in FIG. 1, the liquid crystal 3 is sandwiched between the comb-teeth electrode substrate 2 having the liquid crystal alignment film 2c and the opposing substrate 4 having the liquid crystal alignment film 4a. The comb-shaped electrode substrate 2 includes a substrate 2a, a plurality of linear electrodes 2b formed on the substrate 2a and arranged in a comb-like shape, and formed on the substrate 2a so as to cover the linear electrodes 2b. and a liquid crystal alignment film 2c. The counter substrate 4 has a base material 4b and a liquid crystal alignment film 4a formed on the base material 4b. The liquid crystal alignment film 2c is, for example, the liquid crystal alignment film of the present invention. The liquid crystal alignment film 4c is also the liquid crystal alignment film of the present invention.
 この横電界液晶表示素子1においては、線状電極2bに電圧が印加されると、電気力線Lで示すように線状電極2b間で電界が発生する。 In the horizontal electric field liquid crystal display element 1, when a voltage is applied to the linear electrodes 2b, an electric field is generated between the linear electrodes 2b as indicated by the electric line of force L.
 図2は、本発明の横電界液晶表示素子の他の例を示す概略断面図であり、FFSモード液晶表示素子の例である。 FIG. 2 is a schematic cross-sectional view showing another example of the lateral electric field liquid crystal display element of the present invention, which is an example of an FFS mode liquid crystal display element.
 図2に例示する横電界液晶表示素子1においては、液晶配向膜2hを具備する櫛歯電極基板2と液晶配向膜4aを具備する対向基板4との間に、液晶3が挟持されている。櫛歯電極基板2は、基材2dと、基材2d上に形成された面電極2eと、面電極2e上に形成された絶縁膜2fと、絶縁膜2f上に形成され、櫛歯状に配置された複数の線状電極2gと、絶縁膜2f上に線状電極2gを覆うように形成された液晶配向膜2hとを有している。対向基板4は、基材4bと、基材4b上に形成された液晶配向膜4aとを有している。液晶配向膜2hは、例えば、本発明の液晶配向膜である。液晶配向膜4aも同様に本発明の液晶配向膜である。 In the lateral electric field liquid crystal display element 1 illustrated in FIG. 2, the liquid crystal 3 is sandwiched between the comb-teeth electrode substrate 2 having the liquid crystal alignment film 2h and the opposing substrate 4 having the liquid crystal alignment film 4a. The comb-teeth electrode substrate 2 includes a base material 2d, a plane electrode 2e formed on the base material 2d, an insulating film 2f formed on the plane electrode 2e, and formed on the insulating film 2f to form a comb-like shape. It has a plurality of arranged linear electrodes 2g and a liquid crystal alignment film 2h formed on the insulating film 2f so as to cover the linear electrodes 2g. The counter substrate 4 has a base material 4b and a liquid crystal alignment film 4a formed on the base material 4b. The liquid crystal alignment film 2h is, for example, the liquid crystal alignment film of the present invention. The liquid crystal alignment film 4a is also the liquid crystal alignment film of the present invention.
 この横電界液晶表示素子1においては、面電極2eおよび線状電極2gに電圧が印加されると、電気力線Lで示すように面電極2eおよび線状電極2g間で電界が発生する。 In the horizontal electric field liquid crystal display element 1, when a voltage is applied to the planar electrode 2e and the linear electrode 2g, an electric field is generated between the planar electrode 2e and the linear electrode 2g as indicated by the electric line of force L.
 本発明の液晶配向膜は、上記用途の液晶配向膜以外に、種々の用途に適用することができ、例えば、位相差フィルム用の液晶配向膜、走査アンテナや液晶アレイアンテナ用の液晶配向膜又は透過散乱型の液晶調光素子用としての液晶配向膜に用いることもできる。さらには、液晶配向膜以外の用途、例えば、保護膜(例:カラーフィルタ用の保護膜)、スペーサー膜、層間絶縁膜、反射防止膜、配線被覆膜、帯電防止フィルム、電動機絶縁膜(フレキシブルディスプレイのゲート絶縁膜)にも用いることができる。 The liquid crystal alignment film of the present invention can be applied to various uses other than the liquid crystal alignment film for the above uses. It can also be used for a liquid crystal alignment film for a transmission scattering type liquid crystal light control device. Furthermore, applications other than liquid crystal alignment films, such as protective films (e.g. protective films for color filters), spacer films, interlayer insulating films, antireflection films, wiring coating films, antistatic films, motor insulating films (flexible It can also be used for a gate insulating film of a display).
 本発明の液晶表示素子は、種々の装置に有効に適用することができ、例えば、時計、携帯型ゲーム、ワープロ、ノート型パソコン、カーナビゲーションシステム、カムコーダー、PDA、デジタルカメラ、携帯電話、スマートフォン、各種モニター、液晶テレビ、インフォメーションディスプレイなどの各種表示装置に用いることができる。 The liquid crystal display device of the present invention can be effectively applied to various devices such as watches, portable games, word processors, notebook computers, car navigation systems, camcorders, PDAs, digital cameras, mobile phones, smart phones, It can be used for various display devices such as various monitors, liquid crystal televisions, and information displays.
 以下に、本発明について実施例等を挙げて具体的に説明するが、本発明は、これらの実施例に限定されるものではない。なお、化合物、溶媒の略号は、以下のとおりである。
(有機溶媒)
NMP:N-メチル-2-ピロリドン
GBL:γ-ブチロラクトン
BCS:ブチルセロソルブ
EXAMPLES The present invention will be specifically described below with reference to examples, etc., but the present invention is not limited to these examples. Abbreviations of compounds and solvents are as follows.
(organic solvent)
NMP: N-methyl-2-pyrrolidone GBL: γ-butyrolactone BCS: butyl cellosolve
(ジアミン)
Figure JPOXMLDOC01-appb-C000031
(式(DA-2)のジアミンは、式(d)で表されるジアミンの範囲に含まれる。)
(diamine)
Figure JPOXMLDOC01-appb-C000031
(The diamine of formula (DA-2) is included in the range of diamines represented by formula (d n ).)
(テトラカルボン酸二無水物)
Figure JPOXMLDOC01-appb-C000032
(式(CA-3)、(CA-6)のテトラカルボン酸二無水物は、式(T)で表されるテトラカルボン酸二無水物の範囲に含まれる。)
(tetracarboxylic dianhydride)
Figure JPOXMLDOC01-appb-C000032
(The tetracarboxylic dianhydrides of formulas (CA-3) and (CA-6) are included in the range of tetracarboxylic dianhydrides represented by formula (T f ).)
(添加剤)
AD-1:3-グリシドキシプロピルトリエトキシシラン
(Additive)
AD-1: 3-glycidoxypropyltriethoxysilane
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
(粘度の測定)
 合成例において、重合体溶液の粘度は、E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL、コーンロータTE-1(1°34’、R24)、温度25℃で測定した。
<ポリアミック酸の合成>
(合成例1)
 撹拌装置及び窒素導入管付きの100mLのナスフラスコに、DA-1を3.15g(11.0mmol)量り取り、NMPを28.4g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-1を2.37g(10.6mmol)添加し、さらにNMPを11.6g加え、窒素雰囲気下40℃で3時間撹拌し、ポリアミック酸の溶液(粘度:550mPa・s)PAA-A1を得た。
(合成例2)
 撹拌装置及び窒素導入管付きの100mLのナスフラスコに、DA-2を4.78g(24.0mmol)、DA-3を1.19g(6.00mmol)量り取り、NMPを56.9g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-2を1.35g(6.90mmol)添加し、さらにNMPを9.0g加え、窒素雰囲気下で1時間撹拌した。さらに、CA-3を5.63g(22.5mmol)添加し、さらにNMPを7.5g加え、窒素雰囲気下50℃で15時間撹拌し、ポリアミック酸の溶液(粘度:530mPa・s)PAA-B1を得た。
(合成例3)
 撹拌装置及び窒素導入管付きの100mLのナスフラスコに、DA-2を2.99g(15.0mmol)、DA-3を2.97g(15.0mmol)量り取り、NMPを56.8g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-2を1.24g(6.32mmol)添加し、さらにNMPを8.0g加え、窒素雰囲気下で1時間撹拌した。さらに、CA-3を5.63g(22.5mmol)添加し、さらにNMPを7.9g加え、窒素雰囲気下50℃で15時間撹拌し、ポリアミック酸の溶液(粘度:310mPa・s)PAA-B2を得た。
(合成例4)
 撹拌装置及び窒素導入管付きの200mLのナスフラスコに、DA-2を6.97g(35.0mmol)、DA-3を6.94g(35.0mmol)量り取り、NMPを102g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-3を8.76g(35.0mmol)添加し、さらにNMPを26.4g加え、窒素雰囲気下50℃で2時間撹拌した。さらに、CA-4を9.54g(32.4mmol)添加し、さらにNMPを53.7g加え、窒素雰囲気下50℃で15時間撹拌し、ポリアミック酸の溶液(粘度:400mPa・s)PAA-B3を得た。
(合成例5)
 撹拌装置及び窒素導入管付きの100mLのナスフラスコに、DA-2を2.99g(15.0mmol)、DA-3を2.97g(15.0mmol)量り取り、NMPを53.7g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-3を5.63g(22.5mmol)添加し、さらにNMPを12.0g加え、窒素雰囲気下50℃で2時間撹拌した。さらに、CA-4を1.90g(6.46mmol)添加し、さらにNMPを10.8g加え、窒素雰囲気下50℃で15時間撹拌し、ポリアミック酸の溶液(粘度:340mPa・s)PAA-B4を得た。
(合成例6)
 撹拌装置及び窒素導入管付きの100mLのナスフラスコに、DA-2を2.99g(15.0mmol)、DA-3を2.97g(15.0mmol)量り取り、NMPを53.7g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-3を5.63g(22.5mmol)添加し、さらにNMPを12.0g加え、窒素雰囲気下50℃で2時間撹拌した。さらに、CA-5を1.41g(6.45mmol)添加し、さらにNMPを8.4g加え、窒素雰囲気下50℃で15時間撹拌し、ポリアミック酸の溶液(粘度:340mPa・s)PAA-B5を得た。
(合成例7)
 撹拌装置及び窒素導入管付きの100mLのナスフラスコに、DA-4を1.83g(7.50mmol)、DA-5を0.540g(5.00mmol)、DA-6を2.40g(7.50mmol)、DA-7を1.99g(5.00mmol)量り取り、NMPを77.8g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-1を5.38g(24.0mmol)添加し、さらにNMPを11.3g加え、窒素雰囲気下40℃で15時間撹拌し、ポリアミック酸の溶液(粘度:410mPa・s)PAA-A2を得た。
(合成例8)
 撹拌装置及び窒素導入管付きの100mLのナスフラスコに、DA-1を6.87g(24.0mmol)量り取り、NMPを61.9g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-5を5.05g(23.2mmol)添加し、さらにNMPを25.6g加え、窒素雰囲気下50℃で15時間撹拌し、ポリアミック酸の溶液(粘度:530mPa・s)PAA-A3を得た。
(合成例9)
 撹拌装置及び窒素導入管付きの100mLのナスフラスコに、DA-4を3.66g(15.0mmol)、DA-2を2.99g(15.0mmol)量り取り、NMPを59.9g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-3を5.63g(22.5mmol)添加し、さらにNMPを9.7g加え、窒素雰囲気下50℃で2時間撹拌した。さらに、CA-4を1.90g(6.45mmol)添加し、さらにNMPを10.8g加え、窒素雰囲気下50℃で15時間撹拌し、ポリアミック酸の溶液(粘度:515mPa・s)PAA-B6を得た。
(合成例10)
 撹拌装置及び窒素導入管付きの100mLのナスフラスコに、DA-2を4.74g(23.8mmol)、DA-3を2.02g(10.2mmol)量り取り、NMPを54.7g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-6を3.81g(17.0mmol)添加し、さらにNMPを5.20g加え、窒素雰囲気下50℃で2時間撹拌した。さらに、CA-4を4.40g(15.0mmol)添加し、さらにNMPを24.7g加え、窒素雰囲気下50℃で15時間撹拌し、ポリアミック酸の溶液(粘度:299mPa・s)PAA-B7を得た。
(合成例11)
 撹拌装置及び窒素導入管付きの100mLのナスフラスコに、DA-2を4.74g(23.8mmol)、DA-8を3.04g(10.2mmol)量り取り、NMPを63.0g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-6を3.81g(17.0mmol)添加し、さらにNMPを2.72g加え、窒素雰囲気下50℃で2時間撹拌した。さらに、CA-4を4.40g(15.0mmol)添加し、さらにNMPを24.7g加え、窒素雰囲気下50℃で15時間撹拌し、ポリアミック酸の溶液(粘度:330mPa・s)PAA-B8を得た。
(合成例12)
 撹拌装置及び窒素導入管付きの100mLのナスフラスコに、DA-2を4.74g(23.8mmol)、DA-9を1.53g(10.2mmol)量り取り、NMPを50.8g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-6を3.81g(17.0mmol)添加し、さらにNMPを6.38g加え、窒素雰囲気下50℃で2時間撹拌した。さらに、CA-4を4.40g(15.0mmol)添加し、さらにNMPを24.7g加え、窒素雰囲気下50℃で15時間撹拌し、ポリアミック酸の溶液(粘度:298mPa・s)PAA-B9を得た。
 合成例1~12において使用した、ジアミン成分及びテトラカルボン酸誘導体成分の種類及び量を表1にまとめて示した。表1中、括弧内の数値は、各成分中の合計100モル部に対するモノマーの使用量(モル部)を表す。
(Measurement of viscosity)
In the synthesis examples, the viscosity of the polymer solution was measured using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.), a sample amount of 1.1 mL, a cone rotor TE-1 (1 ° 34', R24), and a temperature of 25. Measured in °C.
<Synthesis of polyamic acid>
(Synthesis example 1)
3.15 g (11.0 mmol) of DA-1 was weighed into a 100 mL eggplant flask equipped with a stirrer and a nitrogen inlet tube, 28.4 g of NMP was added, and dissolved by stirring while sending nitrogen. While stirring this diamine solution under water cooling, 2.37 g (10.6 mmol) of CA-1 was added, further 11.6 g of NMP was added, and the solution of polyamic acid ( Viscosity: 550 mPa·s) PAA-A1 was obtained.
(Synthesis example 2)
4.78 g (24.0 mmol) of DA-2 and 1.19 g (6.00 mmol) of DA-3 are weighed into a 100 mL eggplant flask equipped with a stirrer and a nitrogen inlet tube, and 56.9 g of NMP is added and nitrogen is added. was stirred while feeding to dissolve. While stirring this diamine solution under water cooling, 1.35 g (6.90 mmol) of CA-2 was added, 9.0 g of NMP was further added, and the mixture was stirred for 1 hour under a nitrogen atmosphere. Furthermore, 5.63 g (22.5 mmol) of CA-3 was added, and 7.5 g of NMP was added, and the mixture was stirred at 50°C for 15 hours under a nitrogen atmosphere to form a polyamic acid solution (viscosity: 530 mPa s) PAA-B1. got
(Synthesis Example 3)
2.99 g (15.0 mmol) of DA-2 and 2.97 g (15.0 mmol) of DA-3 are weighed into a 100 mL eggplant flask equipped with a stirrer and a nitrogen inlet tube, and 56.8 g of NMP is added, and nitrogen is added. was stirred while feeding to dissolve. While stirring this diamine solution under water cooling, 1.24 g (6.32 mmol) of CA-2 was added, 8.0 g of NMP was further added, and the mixture was stirred for 1 hour under a nitrogen atmosphere. Furthermore, 5.63 g (22.5 mmol) of CA-3 was added, and 7.9 g of NMP was added, and the mixture was stirred at 50°C for 15 hours under a nitrogen atmosphere to form a polyamic acid solution (viscosity: 310 mPa s) PAA-B2. got
(Synthesis Example 4)
6.97 g (35.0 mmol) of DA-2 and 6.94 g (35.0 mmol) of DA-3 are weighed into a 200 mL eggplant flask equipped with a stirring device and a nitrogen inlet tube, 102 g of NMP is added, and nitrogen is sent. Dissolved by stirring while stirring. While stirring this diamine solution under water cooling, 8.76 g (35.0 mmol) of CA-3 was added, 26.4 g of NMP was further added, and the mixture was stirred at 50° C. for 2 hours under a nitrogen atmosphere. Further, 9.54 g (32.4 mmol) of CA-4 was added, and 53.7 g of NMP was added, and the mixture was stirred at 50°C for 15 hours under a nitrogen atmosphere to form a solution of polyamic acid (viscosity: 400 mPa s) PAA-B3. got
(Synthesis Example 5)
2.99 g (15.0 mmol) of DA-2 and 2.97 g (15.0 mmol) of DA-3 are weighed into a 100 mL eggplant flask equipped with a stirrer and a nitrogen inlet tube, and 53.7 g of NMP is added and nitrogen is added. was stirred while feeding to dissolve. While stirring this diamine solution under water cooling, 5.63 g (22.5 mmol) of CA-3 was added, 12.0 g of NMP was further added, and the mixture was stirred at 50° C. for 2 hours under a nitrogen atmosphere. Furthermore, 1.90 g (6.46 mmol) of CA-4 was added, and 10.8 g of NMP was added, and the mixture was stirred at 50°C for 15 hours under a nitrogen atmosphere to form a polyamic acid solution (viscosity: 340 mPa s) PAA-B4. got
(Synthesis Example 6)
2.99 g (15.0 mmol) of DA-2 and 2.97 g (15.0 mmol) of DA-3 are weighed into a 100 mL eggplant flask equipped with a stirrer and a nitrogen inlet tube, and 53.7 g of NMP is added and nitrogen is added. was stirred while feeding to dissolve. While stirring this diamine solution under water cooling, 5.63 g (22.5 mmol) of CA-3 was added, 12.0 g of NMP was further added, and the mixture was stirred at 50° C. for 2 hours under a nitrogen atmosphere. Furthermore, 1.41 g (6.45 mmol) of CA-5 was added, and 8.4 g of NMP was added, and the mixture was stirred at 50°C for 15 hours under a nitrogen atmosphere to form a polyamic acid solution (viscosity: 340 mPa s) PAA-B5. got
(Synthesis Example 7)
1.83 g (7.50 mmol) of DA-4, 0.540 g (5.00 mmol) of DA-5, 2.40 g (7.00 mmol) of DA-6, and 2.40 g (7. 50 mmol), 1.99 g (5.00 mmol) of DA-7 was weighed out, 77.8 g of NMP was added, and dissolved by stirring while sending nitrogen. While stirring this diamine solution under water cooling, 5.38 g (24.0 mmol) of CA-1 was added, 11.3 g of NMP was further added, and the solution of polyamic acid ( Viscosity: 410 mPa·s) PAA-A2 was obtained.
(Synthesis Example 8)
6.87 g (24.0 mmol) of DA-1 was weighed into a 100 mL eggplant flask equipped with a stirrer and a nitrogen inlet tube, 61.9 g of NMP was added, and the mixture was dissolved by stirring while supplying nitrogen. While stirring this diamine solution under water cooling, 5.05 g (23.2 mmol) of CA-5 was added, 25.6 g of NMP was added, and the mixture was stirred at 50° C. for 15 hours under a nitrogen atmosphere to obtain a polyamic acid solution ( Viscosity: 530 mPa·s) PAA-A3 was obtained.
(Synthesis Example 9)
DA-4 3.66 g (15.0 mmol) and DA-2 2.99 g (15.0 mmol) are weighed into a 100 mL eggplant flask equipped with a stirring device and a nitrogen inlet tube, 59.9 g of NMP is added, and nitrogen is added. was stirred while feeding to dissolve. While stirring this diamine solution under water cooling, 5.63 g (22.5 mmol) of CA-3 was added, 9.7 g of NMP was further added, and the mixture was stirred at 50° C. for 2 hours under a nitrogen atmosphere. Further, 1.90 g (6.45 mmol) of CA-4 was added, and 10.8 g of NMP was added, and the mixture was stirred at 50°C for 15 hours under a nitrogen atmosphere to form a polyamic acid solution (viscosity: 515 mPa s) PAA-B6. got
(Synthesis Example 10)
4.74 g (23.8 mmol) of DA-2 and 2.02 g (10.2 mmol) of DA-3 are weighed into a 100 mL eggplant flask equipped with a stirrer and a nitrogen inlet tube, and 54.7 g of NMP is added and nitrogen is added. was stirred while feeding to dissolve. While stirring this diamine solution under water cooling, 3.81 g (17.0 mmol) of CA-6 was added, 5.20 g of NMP was further added, and the mixture was stirred at 50° C. for 2 hours under a nitrogen atmosphere. Further, 4.40 g (15.0 mmol) of CA-4 was added, and 24.7 g of NMP was added, and the mixture was stirred at 50°C for 15 hours under a nitrogen atmosphere to form a polyamic acid solution (viscosity: 299 mPa s) PAA-B7. got
(Synthesis Example 11)
4.74 g (23.8 mmol) of DA-2 and 3.04 g (10.2 mmol) of DA-8 are weighed into a 100 mL eggplant flask equipped with a stirrer and a nitrogen inlet tube, and 63.0 g of NMP is added, and nitrogen is added. was stirred while feeding to dissolve. While stirring this diamine solution under water cooling, 3.81 g (17.0 mmol) of CA-6 was added, 2.72 g of NMP was further added, and the mixture was stirred at 50° C. for 2 hours under a nitrogen atmosphere. Further, 4.40 g (15.0 mmol) of CA-4 was added, 24.7 g of NMP was added, and the mixture was stirred at 50°C for 15 hours under a nitrogen atmosphere to form a solution of polyamic acid (viscosity: 330 mPa s) PAA-B8. got
(Synthesis Example 12)
4.74 g (23.8 mmol) of DA-2 and 1.53 g (10.2 mmol) of DA-9 are weighed into a 100 mL eggplant flask equipped with a stirrer and a nitrogen inlet tube, and 50.8 g of NMP is added, and nitrogen is added. was stirred while feeding to dissolve. While stirring this diamine solution under water cooling, 3.81 g (17.0 mmol) of CA-6 was added, 6.38 g of NMP was further added, and the mixture was stirred at 50° C. for 2 hours under a nitrogen atmosphere. Further, 4.40 g (15.0 mmol) of CA-4 was added, 24.7 g of NMP was added, and the mixture was stirred at 50°C for 15 hours under a nitrogen atmosphere to form a solution of polyamic acid (viscosity: 298 mPa s) PAA-B9. got
Table 1 summarizes the types and amounts of the diamine component and the tetracarboxylic acid derivative component used in Synthesis Examples 1 to 12. In Table 1, the numbers in parentheses represent the amounts (mol parts) of the monomers used per 100 mol parts in total in each component.
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
<液晶配向剤の調製>
(実施例1~9)及び(比較例1~2)
 合成例1~12で得られたポリアミック酸の溶液を、下記の表に示されるポリマー1及びポリマー2の組成の組み合わせとなるように秤取し、混合した。次に、NMP、GBL、BCS、AD-1を1重量%含むGBL溶液、及びAD-2を10重量%含むNMP溶液を、下記表2に示す組成になるように、撹拌しながら加え、更に室温で2時間撹拌することにより実施例1~9の液晶配向剤(1)~(9)、及び比較例1~2の液晶配向剤(R1)~(R2)を得た。上記実施例1~9、及び比較例1~2で得られた液晶配向剤の仕様を表2に示す。
<Preparation of liquid crystal aligning agent>
(Examples 1-9) and (Comparative Examples 1-2)
The polyamic acid solutions obtained in Synthesis Examples 1 to 12 were weighed and mixed so as to obtain a composition combination of Polymer 1 and Polymer 2 shown in the table below. Next, a GBL solution containing 1% by weight of NMP, GBL, BCS, and AD-1, and an NMP solution containing 10% by weight of AD-2 were added with stirring so as to have the composition shown in Table 2 below. By stirring at room temperature for 2 hours, liquid crystal aligning agents (1) to (9) of Examples 1 to 9 and liquid crystal aligning agents (R1) to (R2) of Comparative Examples 1 and 2 were obtained. Table 2 shows the specifications of the liquid crystal aligning agents obtained in Examples 1 to 9 and Comparative Examples 1 and 2.
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
 上記で得られた各液晶配向剤を用いて以下に示す手順でFFSモード液晶セルを作成し、プレチルト角、長期交流駆動による残像特性を評価した。また、同様の液晶配向剤を用いて、以下に示す手順で縦電界液晶セルを作成し、電圧保持率のバックライト耐性評価を評価した。
[FFSモード液晶セルの作製]
 始めに、30mm×35mmの大きさで、厚さが0.7mmの電極付きのガラス基板を準備した。基板上には第1層目として対向電極を構成する、ベタ状のパターンを備えたIZO電極が形成され、第1層目の対向電極の上には第2層目として、CVD(化学蒸着)法により成膜されたSiN(窒化珪素)膜が形成されていた。第2層目のSiN膜の膜厚は、層間絶縁膜として機能する膜厚が500nmのものを用いた。第2層目のSiN膜の上には、第3層目としてIZO膜をパターニングして形成された櫛歯状の画素電極が配置され、第1画素及び第2画素の2つの画素が形成されており、各画素のサイズは、縦10mmで横5mmである。このとき、第1層目の対向電極と第3層目の画素電極とは、第2層目のSiN膜の作用により電気的に絶縁されていた。
 第3層目の画素電極は、中央部分が内角160°で屈曲した幅3μmの電極要素が6μmの間隔を開けて平行になるように複数配列された櫛歯形状を有しており、1つの画素は、複数の電極要素の屈曲部を結ぶ線を境にそれぞれ第1領域と第2領域を有していた。
Using each of the liquid crystal aligning agents obtained above, an FFS mode liquid crystal cell was produced according to the procedure described below, and the pretilt angle and the afterimage properties by long-term AC drive were evaluated. Moreover, using the same liquid crystal aligning agent, a longitudinal electric field liquid crystal cell was produced according to the procedure shown below, and the evaluation of the backlight resistance of the voltage holding ratio was evaluated.
[Fabrication of FFS mode liquid crystal cell]
First, a glass substrate with electrodes having a size of 30 mm×35 mm and a thickness of 0.7 mm was prepared. An IZO electrode having a solid pattern is formed as the first layer on the substrate to constitute the counter electrode. A SiN (silicon nitride) film formed by the method was formed. As for the film thickness of the SiN film of the second layer, a film having a film thickness of 500 nm functioning as an interlayer insulating film was used. A comb-like pixel electrode formed by patterning an IZO film as a third layer is arranged on the SiN film of the second layer, and two pixels, a first pixel and a second pixel, are formed. The size of each pixel is 10 mm long and 5 mm wide. At this time, the counter electrode of the first layer and the pixel electrode of the third layer were electrically insulated by the action of the SiN film of the second layer.
The pixel electrode of the third layer has a comb shape in which a plurality of electrode elements each having a width of 3 μm and having a central portion bent at an internal angle of 160° are arranged in parallel with an interval of 6 μm. Each pixel had a first region and a second region bounded by a line connecting bent portions of a plurality of electrode elements.
 次に、上記実施例1~9及び比較例1~2で得られた液晶配向剤(1)~(9)、(R1)~(R2)を孔径1.0μmのフィルターで濾過した後、上記で準備した電極付き基板(第1のガラス基板)の表面、及び裏面にITO膜が成膜されており、かつ高さ4μmの柱状のスペーサーを有するガラス基板(第2のガラス基板)の表面にスピンコートで塗布した。次いで、80℃のホットプレート上で2分間乾燥後、230℃で20分間焼成し、各基板上に膜厚60nmのポリイミド膜を得た。この液晶配向膜をレーヨン布でラビング(ローラー直径:140mm、ローラー回転数:1000rpm、移動速度:30mm/sec、押し込み長:0.3mm)した後、純水中にて1分間超音波照射をして洗浄を行い、エアブローにて水滴を除去した後、80℃で10分間乾燥して液晶配向膜付き基板を得た。
 上記液晶配向膜付きの2種類の基板を用いて、それぞれのラビング方向が逆平行になるように組み合わせ、液晶注入口を残して周囲をシールし、セルギャップが4μmの空セルを作製した。この空セルに液晶MLC-7026-100(メルク社製、ネガ型液晶)を常温で真空注入した後、注入口を封止してアンチパラレル配向の液晶セルとした。得られた液晶セルは、FFSモード液晶表示素子を構成した。その後、液晶セルを120℃で1時間加熱し、23℃で一晩放置してから下記する各評価に用いた。
[縦電界液晶セルの作製]
 初めに、30mm×40mmの大きさで、厚さが1.1mmのガラス基板を準備した。基板上には膜厚35nmのITO電極が形成されており、電極は縦40mm、横10mmのストライプパターンであった。
 次に、上記実施例1~9及び比較例1~2で得られた液晶配向剤(1)~(9)、(R1)~(R2)を孔径1.0μmのフィルターで濾過した後、準備された上記電極付き基板に、スピンコートにて塗布した。80℃のホットプレート上で2分間乾燥させた後、230℃のIR式オーブンで20分間焼成を行い、膜厚100nmの塗膜を形成させて液晶配向膜付き基板を得た。この液晶配向膜をレーヨン布でラビング(ローラー直径:140mm、ローラー回転数:1000rpm、移動速度:30mm/sec、押し込み長:0.3mm)した後、純水中にて1分間超音波照射をして洗浄を行い、エアブローにて水滴を除去した後、80℃で10分間乾燥して液晶配向膜付き基板を得た。この液晶配向膜付き基板を2枚用意し、その1枚の液晶配向膜面上に4μmのスペーサーを散布した後、その上からシール剤を印刷し、もう1枚の基板をラビング方向が逆方向、かつ膜面が向き合うようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-7026-100(メルク社製、ネガ型液晶)を注入し、注入口を封止して液晶セルを得た。その後、得られた液晶セルを120℃で1時間加熱し、23℃で一晩放置してから各評価に用いた。
<プレチルト角の評価>
 オプトメトリクス社製AxoScanミュラーマトリクスポーラリメーターを用い、上記FFSモード液晶セルのプレチルト角を評価した。視野角特性はプレチルト角が低いほど良好である。具体的には、プレチルト角が2.0°未満の場合は「良好」、2.0°以上の場合は「不良」と定義して評価した。
<長期交流駆動による残像特性の評価>
 上記FFSモード液晶セルを用い、高輝度バックライト(30,000cd/m)の照射下、周波数30Hzで±5.5Vの交流電圧を72時間印加した。その後、液晶セルの画素電極と対向電極との間を短絡させた状態にした。
Next, after filtering the liquid crystal aligning agents (1) to (9) and (R1) to (R2) obtained in Examples 1 to 9 and Comparative Examples 1 to 2 with a filter having a pore size of 1.0 μm, the above An ITO film is formed on the surface and the back surface of the substrate with electrodes (first glass substrate) prepared in , and a glass substrate (second glass substrate) having a columnar spacer with a height of 4 μm. It was applied by spin coating. Then, after drying on a hot plate at 80° C. for 2 minutes, baking was performed at 230° C. for 20 minutes to obtain a polyimide film having a thickness of 60 nm on each substrate. After rubbing this liquid crystal alignment film with a rayon cloth (roller diameter: 140 mm, roller rotation speed: 1000 rpm, moving speed: 30 mm/sec, indentation length: 0.3 mm), ultrasonic irradiation was performed in pure water for 1 minute. After the substrate was washed with an air blower to remove water droplets, it was dried at 80° C. for 10 minutes to obtain a substrate with a liquid crystal alignment film.
Using the above two types of substrates with liquid crystal alignment films, they were combined so that their rubbing directions were antiparallel, and the surroundings were sealed except for a liquid crystal injection port to prepare an empty cell with a cell gap of 4 μm. Liquid crystal MLC-7026-100 (manufactured by Merck Co., Ltd., negative type liquid crystal) was vacuum-injected into this empty cell at normal temperature, and then the injection port was sealed to obtain an anti-parallel aligned liquid crystal cell. The obtained liquid crystal cell constituted an FFS mode liquid crystal display device. After that, the liquid crystal cell was heated at 120° C. for 1 hour, left overnight at 23° C., and then used for each evaluation described below.
[Fabrication of vertical electric field liquid crystal cell]
First, a glass substrate having a size of 30 mm×40 mm and a thickness of 1.1 mm was prepared. An ITO electrode having a film thickness of 35 nm was formed on the substrate, and the electrode had a stripe pattern of 40 mm long and 10 mm wide.
Next, after filtering the liquid crystal aligning agents (1) to (9) and (R1) to (R2) obtained in Examples 1 to 9 and Comparative Examples 1 to 2 with a filter having a pore size of 1.0 μm, preparation It was applied by spin coating to the above substrate with electrodes. After drying on a hot plate at 80° C. for 2 minutes, baking was performed in an IR oven at 230° C. for 20 minutes to form a coating film having a thickness of 100 nm to obtain a substrate with a liquid crystal alignment film. After rubbing this liquid crystal alignment film with a rayon cloth (roller diameter: 140 mm, roller rotation speed: 1000 rpm, moving speed: 30 mm/sec, indentation length: 0.3 mm), ultrasonic irradiation was performed in pure water for 1 minute. After the substrate was washed with an air blower to remove water droplets, it was dried at 80° C. for 10 minutes to obtain a substrate with a liquid crystal alignment film. Two substrates with this liquid crystal alignment film were prepared, and after scattering a 4 μm spacer on the surface of one of the liquid crystal alignment films, a sealant was printed thereon, and another substrate was rubbed in the opposite direction. , and after lamination with the film surfaces facing each other, the sealant was cured to prepare an empty cell. Liquid crystal MLC-7026-100 (manufactured by Merck Ltd., negative type liquid crystal) was injected into this empty cell by a vacuum injection method, and the injection port was sealed to obtain a liquid crystal cell. After that, the obtained liquid crystal cell was heated at 120° C. for 1 hour and allowed to stand at 23° C. overnight before being used for each evaluation.
<Evaluation of pretilt angle>
The pretilt angle of the FFS mode liquid crystal cell was evaluated using an AxoScan Muller matrix polarimeter manufactured by Optometrics. Viewing angle characteristics are better as the pretilt angle is lower. Specifically, a pretilt angle of less than 2.0° was defined as "good", and a pretilt angle of 2.0° or more was defined as "bad".
<Evaluation of afterimage characteristics by long-term AC drive>
Using the above FFS mode liquid crystal cell, an AC voltage of ±5.5 V was applied at a frequency of 30 Hz for 72 hours under illumination from a high luminance backlight (30,000 cd/m 2 ). After that, the pixel electrode and the counter electrode of the liquid crystal cell were short-circuited.
 23℃で一晩放置した後、この液晶セルを偏光軸が直交するように配置された2枚の偏光板の間に設置し、電圧無印加の状態でバックライトを点灯させておき、透過光の輝度が最も小さくなるように液晶セルの配置角度を調整した。そして、第1画素の第2領域が最も暗くなる角度から第1領域が最も暗くなる角度まで液晶セルを回転させたときの回転角度を角度Δθ1として算出し、第2画素でも同様に2領域と第1領域とを比較し角度Δθ2を算出した。これらΔθ1とΔθ2の平均値を液晶セルの角度Δθとし、この値が小さいほど液晶配向性が良好と定義し評価した。
 具体的にはこの角度Δθが0.4°未満の場合、残像特性に優れている、即ち「良好」とし、0.4°以上である場合は「不良」と定義して評価を行った。
<電圧保持率のバックライト耐性評価>
 東陽テクニカ社製液晶総合評価装置を用い、上記縦電界液晶セルに60℃の温度下で1Vの電圧を60μsec印加し、16.67msec後の電圧を測定して、電圧がどのくらい保持できているかを電圧保持率として評価した。本値をVHRiniとした。
 次に、高輝度バックライト(30,000cd/m)の照射下で上記縦電界液晶セルを72時間放置し、上記VHRiniと同様に電圧保持率を測定した。本値をVHRBLUとした。
このVHRBLUが90%以上の場合、バックライトのエージング耐性が優れている、すなわち「良好」とし、90%未満である場合は「不良」と定義して評価を行った。
After standing overnight at 23° C., the liquid crystal cell was placed between two polarizing plates arranged so that their polarization axes were orthogonal to each other, and the backlight was turned on with no voltage applied to measure the brightness of the transmitted light. The arrangement angle of the liquid crystal cell was adjusted so that . Then, the rotation angle when the liquid crystal cell is rotated from the angle at which the second region of the first pixel is the darkest to the angle at which the first region is the darkest is calculated as the angle Δθ1. The angle Δθ2 was calculated by comparing with the first region. The average value of these Δθ1 and Δθ2 was defined as the angle Δθ of the liquid crystal cell, and the smaller the value, the better the liquid crystal orientation.
Specifically, when the angle Δθ was less than 0.4°, the afterimage characteristics were excellent, that is, evaluated as “good”, and when the angle Δθ was 0.4° or more, the evaluation was performed by defining as “poor”.
<Backlight resistance evaluation of voltage holding rate>
Using a liquid crystal comprehensive evaluation device manufactured by Toyo Technica Co., Ltd., a voltage of 1 V was applied to the vertical electric field liquid crystal cell at a temperature of 60 ° C. for 60 μsec, and the voltage after 16.67 msec was measured to determine how long the voltage was maintained. It was evaluated as a voltage holding rate. This value was defined as VHR ini .
Next, the vertical electric field liquid crystal cell was left for 72 hours under irradiation of a high luminance backlight (30,000 cd/m 2 ), and the voltage holding ratio was measured in the same manner as the VHR ini . This value was defined as VHR BLU .
When this VHR BLU is 90% or more, the aging resistance of the backlight is excellent, ie, "good", and when it is less than 90%, it is defined as "poor" and evaluated.
 上記実施例1~9、及び比較例1~2の各液晶配向剤を使用する液晶表示素子について、実施した評価結果を下記表3に示す。 Table 3 below shows the evaluation results of the liquid crystal display elements using the liquid crystal aligning agents of Examples 1 to 9 and Comparative Examples 1 and 2.
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
 上記表に示されるように、比較例1~2の液晶配向剤を使用した液晶表示素子は視野角特性、残像特性及び電圧保持率のバックライト耐性の少なくともいずれかが不良だったのに対し、実施例1~9の本発明の液晶配向剤を使用した液晶表示素子は、視野角特性、残像特性及び電圧保持率のバックライト耐性がいずれも良好であった。以上から、本発明の液晶配向剤を使用した液晶表示素子は、プレチルト角が小さく且つ残像特性が良好で、さらに電圧保持率のバックライトエージングに対する耐性が良好であるといえる。 As shown in the above table, the liquid crystal display elements using the liquid crystal aligning agents of Comparative Examples 1 and 2 were poor in at least one of the viewing angle characteristics, the afterimage characteristics, and the backlight resistance of the voltage holding ratio, The liquid crystal display elements using the liquid crystal aligning agent of the present invention of Examples 1 to 9 had good viewing angle characteristics, afterimage characteristics, and backlight resistance such as voltage holding ratio. From the above, it can be said that the liquid crystal display element using the liquid crystal aligning agent of the present invention has a small pretilt angle, good afterimage properties, and a good voltage holding ratio resistance to backlight aging.
1: 横電界液晶表示素子  2: 櫛歯電極基板  2a、4b、2d: 基材  2b、2g: 線状電極  2c、2h、4a: 液晶配向膜  2e: 面電極  2f: 絶縁膜  3: 液晶  4: 対向基板  L: 電気力線 1: Horizontal electric field liquid crystal display element 2: Comb tooth electrode substrates 2a, 4b, 2d: Base material 2b, 2g: Linear electrodes 2c, 2h, 4a: Liquid crystal alignment film 2e: Planar electrodes 2f: Insulating film 3: Liquid crystal 4: Opposite substrate L: Line of electric force
 なお、2021年7月12日に出願された日本特許出願2021-115168号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 In addition, the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2021-115168 filed on July 12, 2021 are cited here, and as a disclosure of the specification of the present invention, It is taken in.

Claims (12)

  1.  下記の(A)成分および(B)成分を含有することを特徴とする液晶配向剤。
    (A)成分:重合体中の全繰り返し単位1モルに対して、下記式(1)で表される繰り返し単位を60モル%以上有するポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体(A)。
    (B)成分:下記式(T)で表されるテトラカルボン酸二無水物を全テトラカルボン酸誘導体成分の5モル%以上含むテトラカルボン酸誘導体成分と、下記式(d)で表されるジアミンを含むジアミン成分との反応物であるポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体(B)。
    Figure JPOXMLDOC01-appb-C000001
    (R11~R14はそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、又はフェニル基を表し、R11~R14の少なくとも一つは上記定義中の水素原子以外の基を表す。Ar、Ar1’は、それぞれ、ベンゼン環を表し、ベンゼン環上の1つ以上の水素原子は1価の基で置換されていてもよい。L及びL1’は、それぞれ、単結合、-O-、-C(=O)-、-O-C(=O)-を表す。Aは、炭素数5~12のアルキレン基、又は該アルキレン基の炭素-炭素結合の間に、-O-又は-C(=O)-O-のいずれかの基が挿入されてなる2価の有機基(Qa)を表す。但し、L及びL1’が、単結合を表す場合、Aは2価の有機基(Qa)を表す。R及びZは、それぞれ独立して、水素原子又は炭素数1~5の1価の有機基を表し、2つのR及びZはそれぞれ同じでも異なってもよい。)
    Figure JPOXMLDOC01-appb-C000002
    (Xは5員環以上の脂環構造を有する4価の有機基である。)
    Figure JPOXMLDOC01-appb-C000003
    (Yは、窒素原子含有複素環及び基「*21-NR-*22」(*21、及び*22は、芳香族環を構成する炭素原子と結合する結合手を表す。但し、該炭素原子はRが結合する窒素原子と環を形成しない。Rは水素原子又は1価の有機基を表し、上記1価の有機基はカルボニル炭素以外の炭素原子で窒素原子と結合する。)で表されるアミノ基からなる群から選ばれる窒素原子含有構造を有する2価の有機基を表す。)
    A liquid crystal aligning agent characterized by containing the following (A) component and (B) component.
    (A) component: a polyimide precursor having 60 mol% or more of repeating units represented by the following formula (1) with respect to 1 mol of all repeating units in the polymer and a polyimide that is an imidized product of the polyimide precursor At least one polymer (A) selected from the group consisting of;
    (B) component: a tetracarboxylic acid derivative component containing 5 mol% or more of the total tetracarboxylic acid derivative component of a tetracarboxylic dianhydride represented by the following formula (T f ), and a tetracarboxylic acid derivative component represented by the following formula (d n ) At least one polymer (B) selected from the group consisting of a polyimide precursor that is a reactant with a diamine component containing a diamine, and a polyimide that is an imidized product of the polyimide precursor.
    Figure JPOXMLDOC01-appb-C000001
    (R 11 to R 14 each independently contain a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, a fluorine atom represents a monovalent organic group having 1 to 6 carbon atoms or a phenyl group, at least one of R 11 to R 14 represents a group other than a hydrogen atom as defined above, and Ar 1 and Ar 1' each represent: represents a benzene ring, and one or more hydrogen atoms on the benzene ring may be substituted with a monovalent group.L 1 and L 1′ are each a single bond, —O—, —C (=O )-, -O-C(=O)-, where A is an alkylene group having 5 to 12 carbon atoms, or between the carbon-carbon bonds of the alkylene group, -O- or -C(=O) Represents a divalent organic group (Qa) in which any group of —O— is inserted, provided that when L 1 and L 1′ represent a single bond, A is a divalent organic group (Qa) and each of R 1 and Z 1 independently represents a hydrogen atom or a monovalent organic group having 1 to 5 carbon atoms, and the two R 1 and Z 1 may be the same or different.)
    Figure JPOXMLDOC01-appb-C000002
    (X f is a tetravalent organic group having a 5-membered or more alicyclic structure.)
    Figure JPOXMLDOC01-appb-C000003
    (Y represents a nitrogen atom-containing heterocyclic ring and a group "*21-NR-*22" (*21 and *22 represent a bond that binds to a carbon atom constituting an aromatic ring, provided that the carbon atom does not form a ring with the nitrogen atom to which R is bonded.R represents a hydrogen atom or a monovalent organic group, and the above monovalent organic group is bonded to the nitrogen atom at a carbon atom other than the carbonyl carbon. represents a divalent organic group having a nitrogen atom-containing structure selected from the group consisting of amino groups.)
  2.  前記式(1)における基-L-A-L1’-が、下記のいずれかである(nは5~12の整数である。n1、n2は、その合計が5~12の整数である。m1、m2及びn’は、それらの合計が5~12の整数である。)、請求項1に記載の液晶配向剤。
    -O-(CH-O-、
    -O-(CHn1-O-(CHn2-O-、
    -C(=O)-(CH-C(=O)-、
    -O-C(=O)-(CH-O-、
    -O-C(=O)-(CH-O-C(=O)-、
    -O-C(=O)-(CH-C(=O)-O-、
    -(CH)m1-O-C(=O)-(CH) n’-C(=O)-O-(CH)m2-、
    -(CH)m1-O-(CH) n’-O-(CH)m2-、
    -C(=O)-O-(CH-O-C(=O)-、
    -(CH)m1-C(=O)-O-(CHn’-O-C(=O)-(CH)m2-、
    -O-(CH
    The group -L 1 -AL 1' - in the formula (1) is any of the following (n is an integer of 5 to 12; n1 and n2 are integers of 5 to 12 in total; The sum of m1, m2 and n' is an integer of 5 to 12.), the liquid crystal aligning agent according to claim 1.
    —O—(CH 2 ) n —O—,
    —O—(CH 2 ) n1 —O—(CH 2 ) n2 —O—,
    -C(=O)-(CH 2 ) n -C(=O)-,
    -O-C(=O)-( CH2 ) n -O-,
    -O-C(=O)-( CH2 ) n -O-C(=O)-,
    -O-C(=O)-( CH2 ) n -C(=O)-O-,
    -(CH 2 ) m1 -O-C(=O)-(CH 2 ) n' -C(=O)-O-(CH 2 ) m2 -,
    —(CH 2 ) m1 —O—(CH 2 ) n′ —O—(CH 2 ) m2 —,
    -C(=O)-O-( CH2 ) n -O-C(=O)-,
    -(CH 2 ) m1 -C(=O)-O-(CH 2 ) n' -O-C(=O)-(CH 2 ) m2 -,
    —O—(CH 2 ) n
  3.  前記重合体(B)の構成成分における前記式(d)で表されるジアミンの含有量が、上記重合体(B)の製造に用いられる全ジアミン成分の20~95モル%である、請求項1~2のいずれか一項に記載の液晶配向剤。 The content of the diamine represented by the formula (d n ) in the constituent components of the polymer (B) is 20 to 95 mol% of the total diamine component used in the production of the polymer (B). Item 3. The liquid crystal aligning agent according to any one of Items 1 and 2.
  4.  上記式(d)で表されるジアミンが、2,6-ジアミノピリジン、3,4-ジアミノピリジン、2,4-ジアミノピリミジン、3,6-ジアミノカルバゾール、N-メチル-3,6-ジアミノカルバゾール、1,4-ビス-(4-アミノフェニル)-ピペラジン、3,6-ジアミノアクリジン、N-エチル-3,6-ジアミノカルバゾール、N-フェニル-3,6-ジアミノカルバゾール、及び下記式(d-1)~(d-3)で表されるジアミンからなる群から選ばれる少なくとも1種のジアミンである、請求項1~3のいずれか一項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000004
    (式(d-1)において、m1、及びm1’は、それぞれ独立して、1~2の整数である。n1は1~3の整数である。Rは、上記式(d)中の「*21-NR-*22」で表されるアミノ基におけるRと同義である。
     R、及びm1’が複数存在する場合、複数のR、及びm1’は同じであってもよいし、異なっていてもよい。
     式(d-2)において、Xは、1価の窒素原子含有複素環基を表す。n1は1~2の整数であり、n2はn1+n2=2を満たす整数である。L、及びLは、それぞれ独立して、単結合、-CO-、炭素数1~6のアルキレン基、又は該炭素数1~6のアルキレン基の炭素-炭素結合間若しくは末端に、-O-若しくは-CO-が挿入された2価の有機基であって、窒素原子とは炭素原子で結合する2価の有機基を表す。Rは水素原子又はメチル基を表す。
     X2、、及びRが複数存在する場合、複数のX2、、及びRは同じであってもよいし、異なっていてもよい。
     式(d-3)において、Xは、窒素原子含有複素環を有する2価基を表す。Arは、2価の芳香族環基、又は2価の飽和窒素原子含有複素環基を表す。芳香族環基、及び飽和窒素原子含有複素環基の任意の水素原子は1価の基で置き換えられていてもよい。
     Lは、単結合、-(CH-(nは1~6の整数である。)、-NR’-、-(CH-NR’-(nは1~6の整数である。)、-O-、-NR’-CO-、-CO-NR’-、-O-CO-、又は-CO-O-を表し、R’は水素原子、メチル基、又はtert-ブトキシカルボニル基を表す。
     m3、及びm3’は、それぞれ独立して、0~2の整数であり、かつm3及びm3’のいずれかは1以上の整数である。
     Ar及びLが複数存在する場合、複数のAr及びLは同じであってもよいし、異なっていてもよい。
     但し、式(d-3)の両端のNH基は、いずれも芳香族環を構成する炭素原子と結合する。)
    The diamine represented by the above formula (d n ) is 2,6-diaminopyridine, 3,4-diaminopyridine, 2,4-diaminopyrimidine, 3,6-diaminocarbazole, N-methyl-3,6-diamino Carbazole, 1,4-bis-(4-aminophenyl)-piperazine, 3,6-diaminoacridine, N-ethyl-3,6-diaminocarbazole, N-phenyl-3,6-diaminocarbazole, and the following formula ( 4. The liquid crystal aligning agent according to any one of claims 1 to 3, which is at least one diamine selected from the group consisting of diamines represented by d n -1) to (d n -3).
    Figure JPOXMLDOC01-appb-C000004
    (In the formula (d n −1), m1 and m1′ are each independently an integer of 1 to 2. n1 is an integer of 1 to 3. R 1 is the above formula (d n ) is synonymous with R in the amino group represented by "*21-NR-*22" in the above.
    When a plurality of R 1 and m1' are present, the plurality of R 1 and m1' may be the same or different.
    In formula (d n -2), X 2 represents a monovalent nitrogen atom-containing heterocyclic group. n1 is an integer of 1 to 2, and n2 is an integer satisfying n1+n2=2. L 1 and L 2 are each independently a single bond, —CO—, an alkylene group having 1 to 6 carbon atoms, or between the carbon-carbon bonds of the alkylene group having 1 to 6 carbon atoms or at the terminal, — A divalent organic group into which O- or -CO- is inserted, and represents a divalent organic group bonded to a nitrogen atom via a carbon atom. R represents a hydrogen atom or a methyl group.
    When multiple X 2 , L 2 and R are present, multiple X 2 , L 2 and R may be the same or different.
    In formula (d n -3), X 3 represents a divalent group having a nitrogen atom-containing heterocyclic ring. Ar 3 represents a divalent aromatic ring group or a divalent saturated nitrogen atom-containing heterocyclic group. Arbitrary hydrogen atoms of aromatic ring groups and saturated nitrogen atom-containing heterocyclic groups may be replaced with monovalent groups.
    L 3 is a single bond, -(CH 2 ) n - (n is an integer of 1 to 6), -NR'-, -(CH 2 ) n -NR'- (n is an integer of 1 to 6 ), -O-, -NR'-CO-, -CO-NR'-, -O-CO-, or -CO-O-, and R' is a hydrogen atom, a methyl group, or tert- represents a butoxycarbonyl group.
    m3 and m3' are each independently an integer of 0 to 2, and either m3 or m3' is an integer of 1 or more.
    When a plurality of Ar 3 and L 3 are present, the plurality of Ar 3 and L 3 may be the same or different.
    However, both NH 2 groups at both ends of formula (d n -3) are bonded to carbon atoms constituting the aromatic ring. )
  5.  前記式(d-1)~(d-3)で表されるジアミンが、下記式(Dp-1)~(Dp-6)で表されるジアミン、および下記式(z-1)~式(z-14)で表されるジアミンから選ばれるジアミンである、請求項4に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    The diamines represented by the formulas (d n -1) to (d n -3) are the diamines represented by the following formulas (Dp-1) to (Dp-6), and the following formulas (z-1) to The liquid crystal aligning agent according to claim 4, which is a diamine selected from diamines represented by formula (z-14).
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
  6.  前記重合体(B)を得るためのジアミン成分として、更に、p-フェニレンジアミン、2,3,5,6-テトラメチル-p-フェニレンジアミン、2,5-ジメチル-p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジメチル-m-フェニレンジアミン、2,5-ジアミノトルエン、2,6-ジアミノトルエン、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、2,2’-ジフルオロ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、3,3’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、4,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、2,2’-ジアミノビフェニル、2,3’-ジアミノビフェニル、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、1,2-ビス(4-アミノフェニル)エタン、1,2-ビス(3-アミノフェニル)エタン、1,3-ビス(4-アミノフェニル)プロパン、1,3-ビス(3-アミノフェニル)プロパン、1,4-ビス(4-アミノフェニル)ブタン、1,4-ビス(3-アミノフェニル)ブタン、1,5-ビス(4-アミノフェニル)ペンタン、1,5-ビス(3-アミノフェニル)ペンタン、1,6-ビス(4-アミノフェニル)ヘキサン、1,6-ビス(3-アミノフェニル)ヘキサン、4,4’-ジアミノベンゾフェノン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(4-アミノベンジル)ベンゼン、ビス(4-アミノフェノキシ)メタン、1,2-ビス(4-アミノフェノキシ)エタン、1,2-ビス(4-アミノ-2-メチルフェノキシ)エタン、1,3-ビス(4-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、4-(2-(4-アミノフェノキシ)エトキシ)-3-フルオロアニリン、4-アミノ-4’-(2-(4-アミノフェノキシ)エトキシ)ビフェニル、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、アミド結合又はウレア結合を有するジアミン及び4-(2-(メチルアミノ)エチル)アニリンからなる群から選ばれる少なくとも1種のジアミンを用いる、請求項1~5のいずれか一項に記載の液晶配向剤。 As a diamine component for obtaining the polymer (B), p-phenylenediamine, 2,3,5,6-tetramethyl-p-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, m- phenylenediamine, 2,4-dimethyl-m-phenylenediamine, 2,5-diaminotoluene, 2,6-diaminotoluene, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethyl- 4,4'-diaminobiphenyl, 3,3'-dimethoxy-4,4'-diaminobiphenyl, 3,3'-dihydroxy-4,4'-diaminobiphenyl, 2,2'-difluoro-4,4'- Diaminobiphenyl, 3,3'-difluoro-4,4'-diaminobiphenyl, 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl, 3,3'-bis(trifluoromethyl)- 4,4'-diaminobiphenyl, 3,4'-diaminobiphenyl, 4,4'-diaminobiphenyl, 3,3'-diaminobiphenyl, 2,2'-diaminobiphenyl, 2,3'-diaminobiphenyl, 3, 3′-diaminodiphenylmethane, 3,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylmethane, 1,2-bis(4-aminophenyl)ethane, 1,2-bis(3-aminophenyl)ethane, 1, 3-bis(4-aminophenyl)propane, 1,3-bis(3-aminophenyl)propane, 1,4-bis(4-aminophenyl)butane, 1,4-bis(3-aminophenyl)butane, 1,5-bis(4-aminophenyl)pentane, 1,5-bis(3-aminophenyl)pentane, 1,6-bis(4-aminophenyl)hexane, 1,6-bis(3-aminophenyl) Hexane, 4,4'-diaminobenzophenone, 1,4-bis(4-aminophenyl)benzene, 1,3-bis(4-aminophenyl)benzene, 1,4-bis(4-aminobenzyl)benzene, bis (4-aminophenoxy)methane, 1,2-bis(4-aminophenoxy)ethane, 1,2-bis(4-amino-2-methylphenoxy)ethane, 1,3-bis(4-aminophenoxy)propane , 1,4-bis(4-aminophenoxy)butane, 4-(2-(4-aminophenoxy)ethoxy)-3-fluoroaniline, 4-amino-4′-(2-(4-aminophenoxy)ethoxy ) biphenyl, 3,3′-diaminodiphenyl ether, 3 , 4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, a diamine having an amide bond or a urea bond, and at least one diamine selected from the group consisting of 4-(2-(methylamino)ethyl)aniline, The liquid crystal aligning agent according to any one of claims 1 to 5.
  7.  上記式(T)のXが、下記式(X-1)~(X-17)のいずれかで表される4価の有機基である、請求項1~6のいずれか一項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000008
    (*は結合手を表す。)
    Any one of claims 1 to 6, wherein X f in the formula (T f ) is a tetravalent organic group represented by any one of the following formulas (X f -1) to (X f -17). The liquid crystal aligning agent according to the item.
    Figure JPOXMLDOC01-appb-C000008
    (* represents a bond.)
  8.  上記(A)成分および(B)成分の含有割合が、[(A)成分]/[(B)成分]の質量比で10/90~90/10である、請求項1~7のいずれか一項に記載の液晶配向剤。 Any one of claims 1 to 7, wherein the content ratio of the components (A) and (B) is 10/90 to 90/10 in terms of the mass ratio of [component (A)]/[component (B)]. The liquid crystal aligning agent according to item 1.
  9.  前記液晶配向剤が、エポキシ基、オキセタン基、オキサゾリン構造、シクロカーボネート基、ブロックイソシアネート基、ヒドロキシ基及びアルコキシ基から選ばれる少なくとも1種の置換基を有する架橋性化合物(c-1)、並びに重合性不飽和基を有する架橋性化合物(c-2)からなる群から選ばれる少なくとも1種の架橋性化合物、官能性シラン化合物、金属キレート化合物、硬化促進剤、界面活性剤、酸化防止剤、増感剤、防腐剤、および樹脂膜の誘電率や電気抵抗を調整するための化合物から成る群から選ばれる少なくとも一種の添加剤成分をさらに含有する、請求項1~8のいずれか一項に記載の液晶配向剤。 a crosslinkable compound (c-1) in which the liquid crystal aligning agent has at least one substituent selected from an epoxy group, an oxetane group, an oxazoline structure, a cyclocarbonate group, a blocked isocyanate group, a hydroxy group and an alkoxy group; at least one crosslinkable compound selected from the group consisting of a crosslinkable compound (c-2) having a polyunsaturated group, a functional silane compound, a metal chelate compound, a curing accelerator, a surfactant, an antioxidant, an 9. The composition according to any one of claims 1 to 8, further comprising at least one additive component selected from the group consisting of sensitizers, preservatives, and compounds for adjusting the dielectric constant and electrical resistance of the resin film. liquid crystal aligning agent.
  10.  請求項1~9のいずれか一項に記載の液晶配向剤を用いて形成される液晶配向膜。 A liquid crystal alignment film formed using the liquid crystal alignment agent according to any one of claims 1 to 9.
  11.  請求項10に記載の液晶配向膜を具備する液晶表示素子。 A liquid crystal display element comprising the liquid crystal alignment film according to claim 10.
  12.  下記の工程(1)~(3)を含む、液晶表示素子の製造方法。
     工程(1):請求項1~9のいずれか一項に記載の液晶配向剤を基板上に塗布する工程
     工程(2):塗布した前記液晶配向剤を焼成し、膜を得る工程
     工程(3):工程(2)で得られた前記膜に配向処理する工程
    A method for manufacturing a liquid crystal display device, comprising the following steps (1) to (3).
    Step (1): A step of applying the liquid crystal aligning agent according to any one of claims 1 to 9 onto a substrate Step (2): A step of baking the applied liquid crystal aligning agent to obtain a film Step (3) ): a step of subjecting the film obtained in step (2) to orientation treatment
PCT/JP2022/027256 2021-07-12 2022-07-11 Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element production method, and liquid crystal display element WO2023286735A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020247002913A KR20240032874A (en) 2021-07-12 2022-07-11 Liquid crystal alignment agent, liquid crystal alignment film, manufacturing method of liquid crystal display device, and liquid crystal display device
JP2023534791A JPWO2023286735A1 (en) 2021-07-12 2022-07-11

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-115168 2021-07-12
JP2021115168 2021-07-12

Publications (1)

Publication Number Publication Date
WO2023286735A1 true WO2023286735A1 (en) 2023-01-19

Family

ID=84919373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027256 WO2023286735A1 (en) 2021-07-12 2022-07-11 Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element production method, and liquid crystal display element

Country Status (4)

Country Link
JP (1) JPWO2023286735A1 (en)
KR (1) KR20240032874A (en)
TW (1) TW202321427A (en)
WO (1) WO2023286735A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016224415A (en) * 2015-05-26 2016-12-28 Jnc株式会社 Liquid crystal aligning agent for forming liquid crystal alignment film for photoalignment, liquid crystal alignment film and liquid crystal display element using the same
WO2018062440A1 (en) * 2016-09-29 2018-04-05 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108369359B (en) 2015-10-07 2021-07-27 日产化学工业株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
KR20210099569A (en) 2018-12-06 2021-08-12 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element using same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016224415A (en) * 2015-05-26 2016-12-28 Jnc株式会社 Liquid crystal aligning agent for forming liquid crystal alignment film for photoalignment, liquid crystal alignment film and liquid crystal display element using the same
WO2018062440A1 (en) * 2016-09-29 2018-04-05 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element

Also Published As

Publication number Publication date
JPWO2023286735A1 (en) 2023-01-19
KR20240032874A (en) 2024-03-12
TW202321427A (en) 2023-06-01

Similar Documents

Publication Publication Date Title
JP5831674B2 (en) Liquid crystal alignment agent
WO2022176680A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2022153873A1 (en) Polymer composition, liquid crystal aligning agent, resin film, liquid crystal alignment film, method for manufacturing liquid crystal display element, and liquid crystal display element
WO2023286735A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element production method, and liquid crystal display element
WO2023286733A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, method for producing liquid crystal display element, and liquid crystal display element
TW202144552A (en) Liquid crystal alignment agent, liquid crystal alignment film, method for manufacturing liquid crystal alignment film, and liquid crystal device capable of obtaining a liquid crystal device that exhibits a low pretilt angle even when using a negative type liquid crystal, hardly produces an afterimage, has a high voltage retention rate, and is excellent in reliability
WO2022220199A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2022190896A1 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2022270287A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2022168722A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, method for producing liquid crystal display element, and liquid crystal display element
WO2023210532A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP7468365B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using the same
WO2022239658A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal element
WO2023032753A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
TWI830451B (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2022181311A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2023068085A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element, and compound
TW202405141A (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
CN117916657A (en) Liquid crystal aligning agent, liquid crystal alignment film, method for manufacturing liquid crystal display element, and liquid crystal display element
WO2023074392A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2023074570A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2023068084A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element, compound and polymer
WO2023074569A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2023074391A1 (en) Polymer composition, liquid crystal aligning agent, resin film, liquid crystal alignment film, method for producing liquid crystal display element, and liquid crystal display element
WO2022234820A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22842079

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023534791

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20247002913

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE