WO2023074570A1 - Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element - Google Patents

Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element Download PDF

Info

Publication number
WO2023074570A1
WO2023074570A1 PCT/JP2022/039298 JP2022039298W WO2023074570A1 WO 2023074570 A1 WO2023074570 A1 WO 2023074570A1 JP 2022039298 W JP2022039298 W JP 2022039298W WO 2023074570 A1 WO2023074570 A1 WO 2023074570A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
carbon
diamine
boc
Prior art date
Application number
PCT/JP2022/039298
Other languages
French (fr)
Japanese (ja)
Inventor
里枝 軍司
佳和 原田
雄介 山本
亮一 芦澤
奈穂 国見
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to JP2023556398A priority Critical patent/JPWO2023074570A1/ja
Priority to CN202280029013.4A priority patent/CN117178225A/en
Publication of WO2023074570A1 publication Critical patent/WO2023074570A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to a liquid crystal aligning agent, a liquid crystal aligning film obtained from the liquid crystal aligning agent, a liquid crystal display element comprising the liquid crystal aligning film, and a novel diamine and polymer suitable for them.
  • Liquid crystal display elements are used in a wide range of applications, from small applications such as mobile phones and smartphones to relatively large applications such as televisions and monitors.
  • various driving methods with different electrode structures and physical properties of the liquid crystal molecules used have been developed.
  • -Plane Switching FFS (Fringe Field Switching), and other liquid crystal display devices using various modes are known.
  • These liquid crystal display elements generally have a liquid crystal alignment film that is indispensable for controlling the alignment state of liquid crystal molecules.
  • Polyamic acid and polyimide are generally used as materials for liquid crystal alignment films because of their excellent properties such as heat resistance, mechanical strength, and affinity with liquid crystals.
  • the liquid crystal alignment film that is most widely used industrially is a so-called rubbing alignment treatment in which the surface of a resin film such as polyimide formed on an electrode substrate is rubbed in one direction with a cloth such as cotton, nylon, or polyester. It is made by doing.
  • the rubbing orientation treatment is a useful method that is simple and excellent in productivity.
  • a photo-alignment treatment method is known in which polarized radiation is applied to impart liquid crystal alignment ability.
  • a method using a photoisomerization reaction, a method using a photocrosslinking reaction, a method using a photodecomposition reaction, etc. have been proposed (for example, Non-Patent Document 1, Patent Document 1, Patent Document 2).
  • liquid crystal display elements In recent years, as the performance of liquid crystal display elements has improved, in addition to large-screen, high-definition liquid crystal televisions, it has been applied to in-vehicle applications such as car navigation systems, meter panels, surveillance cameras, and medical camera monitors. is being considered. Therefore, the demand for higher performance, particularly higher definition, of liquid crystal display elements is increasing, and a liquid crystal alignment film capable of further improving various characteristics of liquid crystal display elements is desired.
  • the present invention has been made in view of the above circumstances, and when the variation (non-uniformity) of the twist angle of the liquid crystal in the plane of the liquid crystal alignment film is small and two or more types of polymers are used
  • Another object of the present invention is to provide a liquid crystal aligning agent capable of forming a liquid crystal aligning film with high layer separability, and a liquid crystal display element having the liquid crystal aligning film.
  • the present invention provides at least one selected from the group consisting of a polyimide precursor obtained using a diamine component containing a diamine (0) represented by the following formula (D A ) and a polyimide that is an imidized product of the polyimide precursor.
  • a liquid crystal aligning agent characterized by containing a polymer (P) of No., a liquid crystal aligning film obtained from the liquid crystal aligning agent, and a liquid crystal display element having the liquid crystal aligning film.
  • Z 1 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms or an alkynyl group having 2 to 6 carbon atoms, and the above alkyl group, alkenyl group, or A hydrogen atom of the alkynyl group may be substituted with a monovalent group Any hydrogen atom on the benzene ring to which the amino groups at both ends are bonded may be substituted with a monovalent group.
  • A represents a divalent organic group (a) in which any carbon-carbon bond in an alkylene group having 4 to 10 carbon atoms satisfies either of the following conditions (1) and (2).
  • *1 is bonded to a carbon atom possessed by an alkylene group, and the carbon-carbon bond is a carbon-carbon bond forming the main chain of the polymer (P).
  • P polymer
  • *1 is bonded to a carbon atom possessed by an alkylene group, and the carbon-carbon bond is a carbon-carbon bond forming the main chain of the polymer (P).
  • R represents a hydrogen atom or a monovalent organic group.
  • Boc represents a tert-butoxycarbonyl group.
  • a fluorine atom, a chlorine atom, a bromine atom, an iodine atom etc. are mentioned as a halogen atom.
  • Boc represents a tert-butoxycarbonyl group.
  • the liquid crystal that has a small variation (non-uniformity) in the twist angle of the liquid crystal in the plane of the liquid crystal alignment film and that can obtain high layer separation even when two or more types of polymers are used.
  • a liquid crystal aligning agent forming an alignment film, a liquid crystal aligning film obtained from the liquid crystal aligning agent, a high-performance liquid crystal display element provided with the liquid crystal aligning film, and a novel diamine and polymer used for their production can get.
  • the liquid crystal aligning agent of the present invention is, as described above, a polyimide precursor obtained using a diamine component containing a diamine (0) represented by the following formula (D A ) (also referred to as a specific diamine in the present invention) and at least one polymer (P) selected from the group consisting of polyimide which is an imidized product of the polyimide precursor.
  • D A diamine component containing a diamine (0) represented by the following formula (D A ) (also referred to as a specific diamine in the present invention) and at least one polymer (P) selected from the group consisting of polyimide which is an imidized product of the polyimide precursor.
  • D A diamine component containing a diamine (0) represented by the following formula (D A ) (also referred to as a specific diamine in the present invention) and at least one polymer (P) selected from the group consisting of polyimide which is an imidized product of the polyimide precursor.
  • a and Z 1 are each as defined
  • the number of carbon atoms in the alkylene group of A in the above formula (D A ) is preferably 6 to 10 from the viewpoint of obtaining high liquid crystal orientation.
  • the alkylene group for A in the above formula (D A ) may be either a linear or branched alkylene group, but a linear alkylene group is preferred from the viewpoint of favorably obtaining the effects of the present invention.
  • the hydrogen atom of the alkyl group, alkenyl group, or alkynyl group of Z 1 in the above formula (D A ) may be substituted with a monovalent group, and the monovalent group includes a halogen atom, a carboxy group, hydroxy group, cyano group, nitro group and the like. Among them, a halogen atom is preferable.
  • Z 1 in the above formula (D A ) is preferably a hydrogen atom or a methyl group.
  • R is preferably a hydrogen atom or a Boc group.
  • the hydrogen atoms on the benzene ring to which the amino groups at both ends in the above formula (D A ) are bonded may be substituted with a monovalent group, and the monovalent group includes a halogen atom, a methyl group, a methoxy group, carboxy group, hydroxy group, cyano group, nitro group and the like. Among them, a halogen atom, a methyl group, or a methoxy group is preferable.
  • the two amino groups in the above formula (D A ) are preferably para-positions with respect to the divalent organic group connecting the benzene rings.
  • a in the above formula (D A ) preferably has the following aspects.
  • n1, n1′, n1′′, n2, n2′, n3, n3′ and n3′′ are each independently an integer of 1 or more, and the sum of n1, n1′ and n1′′ is 4 to 10.
  • the sum of n2 and n2′ is 4-10
  • the sum of n3, n3′ and n3′′ is 4-10.
  • R When R is present more than once, it has the above definition independently of each other.
  • Preferred examples of the above formula (D A ) include the following formulas (d A -1) to (d A -2).
  • Z 1 , R, n1, n1′, n1′′, n2 and n2′ are as defined above.
  • Any hydrogen atom on the benzene ring to which the amino groups at both ends are bonded may be substituted with a monovalent group, and the monovalent group includes a monovalent group capable of substituting the hydrogen atom on the benzene ring to which the amino groups at both ends in the above formula (D A ) are bonded. groups can be mentioned.
  • the polymer (P) contained in the liquid crystal aligning agent of the present invention is a polyimide precursor obtained using a diamine component containing the diamine (0), or a polyimide that is an imidized product of the polyimide precursor.
  • the polyimide precursor is a polymer from which a polyimide can be obtained by imidating polyamic acid, polyamic acid ester, or the like.
  • a polymer (P) may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the polymer (P) is a polymer having at least one repeating unit selected from the group consisting of repeating units (p1) represented by the following formula (1) and imidized structural units of the repeating units (p1).
  • X 1 represents a tetravalent organic group.
  • Y 1 is a divalent organic group obtained by removing two amino groups from the specific diamine.
  • R and Z each independently represent a hydrogen atom. Or represents a monovalent organic group.
  • the monovalent organic group for R and Z in the above formula (1) includes a monovalent hydrocarbon group having 1 to 6 carbon atoms, and the methylene group of the hydrocarbon group is -O-, -S-, -CO -, -COO-, -COS-, -NR 3 -, -CO-NR 3 -, -Si(R 3 ) 2 - (where R 3 is a hydrogen atom or a monovalent carbon atom having 1 to 6 carbon atoms) is a hydrogen group), a monovalent group A substituted with —SO 2 —, etc., the above monovalent hydrocarbon group, or at least one hydrogen atom bonded to a carbon atom of the above monovalent group A is a halogen Atoms
  • Examples include a substituted monovalent group and a monovalent group having a heterocyclic ring.
  • the monovalent organic group for R and Z in the above formula (1) includes, among others, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, or a tert A -butoxycarbonyl group is preferred, an alkyl group having 1 to 3 carbon atoms is more preferred, and a methyl group is even more preferred.
  • R and Z are each independently preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, more preferably a hydrogen atom or a methyl group.
  • X 1 in the above formula (1) includes, for example, a tetravalent organic group derived from a tetracarboxylic dianhydride or a derivative thereof, which will be described later.
  • Preferred embodiments of the tetracarboxylic dianhydride or derivative thereof in X 1 above include preferred embodiments of the tetracarboxylic dianhydride or derivative thereof that can be used for synthesizing the polymer (P) described later.
  • a polyamic acid (P′) which is a polyimide precursor of the polymer (P), can be obtained by a polymerization reaction between a diamine component containing the diamine (0) and a tetracarboxylic acid component.
  • the diamine (0) may be used alone or in combination of two or more.
  • the amount of diamine (0) used is preferably 5 mol % or more, more preferably 10 mol % or more, and even more preferably 20 mol % or more, relative to the total diamine component.
  • the diamine component used for producing the polyamic acid (P') may contain diamines other than diamine (0) (hereinafter also referred to as other diamines).
  • diamines other diamines
  • the amount of the diamine (0) used is preferably 90 mol % or less, more preferably 80 mol % or less, relative to the diamine component.
  • diamines examples include other diamines listed below, but are not limited to these.
  • the other diamines may be used singly or in combination of two or more.
  • a diamine having a photoalignable group such as 4,4′-diaminoazobenzene or diaminotran; 2-(2,4-diaminophenoxy)ethyl methacrylate or 2,4-diamino-N,N-diallylaniline Diamines terminated with photopolymerizable groups; 1-(4-(2-(2,4-diaminophenoxy)ethoxy)phenyl)-2-hydroxy-2-methylpropanone, 2-(4-(2-hydroxy -2-methylpropanoyl)phenoxy)ethyl diamines having a radical polymerization initiator function such as 3,5-diaminobenzoate; diamines having an amide bond such as 4,4'-diaminobenzanilide, 1,3-bis(4 -aminophenyl)urea, 1,3-bis(4-aminobenzyl)urea, 1,3-bis(4-aminophenethyl)urea and other di
  • m and n are each independently an integer of 0 to 3 and satisfy 1 ⁇ m+n ⁇ 4.
  • j is an integer of 0 or 1;
  • X 1 is -(CH 2 ) a - (a is an integer of 1 to 15), -CONH-, -NHCO-, -CO-N(CH 3 )-, -NH-, -O-, represents -CH 2 O-, -CH 2 -OCO-, -COO- or -OCO-;
  • R 1 is a fluorine atom, a fluorine atom-containing alkyl group having 1 to 10 carbon atoms, a fluorine atom-containing alkoxy group having 1 to 10 carbon atoms, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and It represents a monovalent group such as an alkoxyalkyl group having 2 to 10 carbon atoms.
  • X 2 represents -O-, -CH 2 O-, -CH 2 -OCO-, -COO- or -OCO-.
  • m, n, X 1 and R 1 each independently has the above definition.
  • the diamine component used in the production of the polyamic acid (P′) should contain at least one diamine selected from the group consisting of the above other diamines (a). is preferred.
  • the amount of the other diamines used is preferably 10 to 90 mol% with respect to the total diamine components used in the production of the polymer (P). and more preferably 20 to 80 mol %.
  • the tetracarboxylic acid component to be reacted with the diamine component is not only tetracarboxylic dianhydride, but also tetracarboxylic acid, tetracarboxylic acid dihalide, tetracarboxylic acid dialkyl ester, or tetracarboxylic acid.
  • tetracarboxylic dianhydrides such as carboxylic acid dialkyl ester dihalides can also be used.
  • the tetracarboxylic dianhydride or derivative thereof includes an acyclic aliphatic tetracarboxylic dianhydride, an alicyclic tetracarboxylic dianhydride, an aromatic tetracarboxylic dianhydride, or derivatives thereof. . Among them, it is more preferable to contain a tetracarboxylic dianhydride having at least one partial structure selected from the group consisting of a benzene ring, a cyclobutane ring, a cyclopentane ring and a cyclohexane ring, or a derivative thereof.
  • a tetracarboxylic dianhydride having at least one structure selected from the group consisting of a cyclobutane ring, a cyclopentane ring and a cyclohexane ring, or a derivative thereof.
  • the tetracarboxylic dianhydrides or derivatives thereof may be used singly or in combination of two or more.
  • the acyclic aliphatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups bonded to a chain hydrocarbon structure.
  • An alicyclic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups including at least one carboxy group bonded to an alicyclic structure. However, none of these four carboxy groups are bonded to the aromatic ring. Moreover, it is not necessary to consist only of an alicyclic structure, and a part thereof may have a chain hydrocarbon structure or an aromatic ring structure.
  • An aromatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups including at least one carboxy group bonded to an aromatic ring. However, it is not necessary to consist only of an aromatic ring structure, and a part thereof may have a chain hydrocarbon structure or an alicyclic structure.
  • the tetracarboxylic acid component that can be used in the production of the polyamic acid (P′) preferably includes the following tetracarboxylic dianhydrides or derivatives thereof (in the present invention, these are collectively referred to as specific tetracarboxylic acids Also called derivatives.).
  • Acyclic aliphatic tetracarboxylic dianhydrides such as 1,2,3,4-butanetetracarboxylic dianhydride; 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2-dimethyl -1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-dichloro-1,2,3 ,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-difluoro-1,2,3, 4-cyclobutanetetracarboxylic dianhydride, 1,3-bis(trifluoromethyl)-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracar
  • Preferred examples of the above specific tetracarboxylic acid derivatives include 1,2,3,4-butanetetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2-dimethyl -1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-tetramethyl- 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-difluoro-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-bis(trifluoromethyl)-1 , 2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 3, 3
  • the proportion of the above-mentioned specific tetracarboxylic acid derivative used is preferably 10 mol% or more, more preferably 20 mol% or more, and even more preferably 50 mol% or more, relative to the total tetracarboxylic acid components used.
  • the liquid crystal aligning agent of the present invention is a liquid composition in which the polymer (P) and optionally other components are preferably dispersed or dissolved in a suitable solvent.
  • the total content of the polymer components contained in the liquid crystal aligning agent of the present invention can be appropriately changed by setting the thickness of the coating film to be formed. 1 mass % or more is preferable with respect to the total mass of a liquid crystal aligning agent, and 10 mass % or less is preferable from the point of the storage stability of a solution.
  • the content of the polymer (P) used in the present invention is preferably 1 to 100 parts by mass, more preferably 10 to 100 parts by mass, with respect to the total 100 parts by mass of the polymer contained in the liquid crystal aligning agent. 20 to 100 parts by weight is particularly preferred.
  • the liquid crystal aligning agent of the present invention may contain polymers other than the polymer (P).
  • polymers other than the polymer (P) include at least one polymer selected from the group consisting of a polyimide precursor obtained using a diamine component that does not have the specific diamine and a polyimide that is an imidized product of the polyimide precursor.
  • polysiloxane (Also referred to as polymer (B) in the present invention.), polysiloxane, polyester, polyamide, polyurea, polyorganosiloxane, cellulose derivative, polyacetal, polystyrene derivative, poly(styrene-maleic anhydride) copolymer, poly( isobutylene-maleic anhydride) copolymers, poly(vinyl ether-maleic anhydride) copolymers, poly(styrene-phenylmaleimide) derivatives, polymers selected from the group consisting of poly(meth)acrylates, and the like. .
  • poly(styrene-maleic anhydride) copolymers include SMA1000, SMA2000, SMA3000 (manufactured by Cray Valley), GSM301 (manufactured by Gifu Shellac Manufacturing Co., Ltd.) and the like.
  • Anhydride) copolymers include Isoban-600 (manufactured by Kuraray Co., Ltd.).
  • a specific example of the poly(vinyl ether-maleic anhydride) copolymer is Gantrez AN-139 (methyl vinyl ether maleic anhydride resin, manufactured by Ashland).
  • the polymer (B) is more preferable from the viewpoint of reducing afterimages derived from residual DC.
  • the content of the other polymer is preferably 90 parts by mass or less, more preferably 10 to 90 parts by mass, and further 20 to 80 parts by mass with respect to the total 100 parts by mass of the polymer contained in the liquid crystal aligning agent.
  • 90 mass parts or less may be sufficient as content of the said polymer (P) with respect to a total of 100 mass parts of the polymers contained in a liquid crystal aligning agent, and 80 mass parts or less may be sufficient.
  • the tetracarboxylic acid component used in the production of the polymer (B) include the same compounds as those exemplified for the polymer (P), including preferred specific examples.
  • the tetracarboxylic acid component used for producing the polymer (B) is more preferably a tetracarboxylic dianhydride having at least one partial structure selected from the group consisting of a benzene ring, a cyclobutane ring, a cyclopentane ring and a cyclohexane ring.
  • the amount of the specific tetracarboxylic acid derivative used is preferably 10 mol % or more, more preferably 20 mol % or more, more preferably 50 mol % or more, relative to the total tetracarboxylic acid component used in the production of the polymer (B). More preferably mol% or more.
  • Examples of the diamine component for obtaining the polymer (B) include the diamines exemplified for the polymer (P) above. Among them, diamine, 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4 having at least one group selected from the group consisting of urea bond, amide bond, carboxy group and hydroxy group in the molecule '-Diaminodiphenyl ether, at least one diamine selected from the group consisting of diamines represented by the above formulas (d AL -1) to (d AL -10), and diamines having the above specific nitrogen atom-containing structure ( In the present invention, these are also referred to as specific diamines (b).) are preferably included.
  • the diamine component one type of diamine may be used alone, or two or more types may be used in combination.
  • the amount used is preferably 10 mol % or more, more preferably 20 mol % or more, of the total diamine component used in the production of the polymer (B).
  • the amount used is preferably 90 mol% or less, more preferably 80 mol% or less, of the total diamine component used in the production of the polymer (B).
  • a polyamic acid is produced by reacting a diamine component and a tetracarboxylic acid component in an organic solvent.
  • the ratio of the tetracarboxylic acid component and the diamine component used in the polyamic acid production reaction is 0.5 to 2 equivalents of the acid anhydride group of the tetracarboxylic acid component per 1 equivalent of the amino group of the diamine component. is preferably 0.8 to 1.2 equivalents.
  • the closer the equivalent of the acid anhydride group of the tetracarboxylic acid component is to 1 equivalent the greater the molecular weight of the resulting polyamic acid.
  • the reaction temperature in the production of polyamic acid is preferably -20 to 150°C, more preferably 0 to 100°C. Also, the reaction time is preferably 0.1 to 24 hours, more preferably 0.5 to 12 hours. Polyamic acid can be produced at any concentration. The concentration of polyamic acid is preferably 1 to 50% by mass, more preferably 5 to 30% by mass. The initial stage of the reaction can be carried out at a high concentration, and then the solvent can be added.
  • organic solvent examples include cyclohexanone, cyclopentanone, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, ⁇ -butyrolactone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethyl sulfoxide, 1,3-dimethyl-2-imidazolidinone.
  • methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, propylene glycol monomethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene Solvents such as glycol monopropyl ether, diethylene glycol monomethyl ether, or diethylene glycol monoethyl ether can be used.
  • Polyamic acid esters are produced by, for example, [I] a method of reacting the polyamic acid obtained by the above method with an esterifying agent, [II] a method of reacting a tetracarboxylic acid diester with a diamine, [III] a tetracarboxylic acid It can be obtained by a known method such as a method of reacting a diester dihalide and a diamine.
  • a polyimide can be obtained by ring-closing (imidizing) a polyimide precursor such as the above polyamic acid or polyamic acid ester.
  • the imidization ratio is the ratio of imide groups to the total amount of imide groups derived from tetracarboxylic dianhydride or derivatives thereof and carboxy groups (or derivatives thereof).
  • the imidization rate does not necessarily have to be 100%, and can be arbitrarily adjusted according to the application and purpose.
  • Examples of the method for imidizing the polyimide precursor include thermal imidization in which the solution of the polyimide precursor is heated as it is, and catalytic imidization in which a catalyst is added to the solution of the polyimide precursor.
  • the temperature is preferably 100 to 400° C., more preferably 120 to 250° C., and water produced by the imidization reaction is removed from the system. is preferred.
  • Catalytic imidization of the polyimide precursor is carried out by adding a basic catalyst and an acid anhydride to the solution of the polyimide precursor, preferably -20 to 250°C, more preferably stirring at 0 to 180°C. can be done.
  • the amount of the basic catalyst is preferably 0.5 to 30 times the molar amount of the amic acid group, more preferably 2 to 20 times the molar amount, and the amount of the acid anhydride is preferably 1 to 50 times the molar amount of the amic acid group. It is preferably 3 to 30 molar times.
  • the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine, etc.
  • pyridine is preferable because it has appropriate basicity for advancing the reaction.
  • the acid anhydride include acetic anhydride, trimellitic anhydride, and pyromellitic anhydride.
  • acetic anhydride is preferably used because it facilitates purification after the reaction is completed.
  • the imidization rate by catalytic imidization can be controlled by adjusting the catalyst amount, reaction temperature, and reaction time.
  • the reaction solution may be put into a solvent to precipitate.
  • Solvents used for precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, and water.
  • the polymer precipitated by adding it to the solvent can be filtered and recovered, and then dried at room temperature or under heat under normal pressure or reduced pressure.
  • the impurities in the polymer can be reduced by repeating the operation of redissolving the recovered polymer in an organic solvent and recovering it by reprecipitation 2 to 10 times.
  • Solvents in this case include, for example, alcohols, ketones, hydrocarbons, and the like, and it is preferable to use three or more solvents selected from these, because the efficiency of purification is further increased.
  • a tetracarboxylic acid component containing a tetracarboxylic acid dianhydride or a derivative thereof, and a diamine component containing the diamine, together with an appropriate terminal blocker to end block A polymer of the type may be produced.
  • the end-blocking polymer has effects of improving the film hardness of the liquid crystal alignment film obtained by the coating film and improving the adhesion properties between the sealing agent and the liquid crystal alignment film.
  • the terminal of the polyimide precursor or polyimide in the present invention include an amino group, a carboxyl group, an acid anhydride group, or a group derived from a terminal blocking agent to be described later.
  • An amino group, a carboxyl group, and an acid anhydride group can be obtained by a normal condensation reaction, or can be obtained by terminal blocking using the following terminal blocking agents.
  • Terminal blockers include, for example, acetic anhydride, maleic anhydride, nadic anhydride, phthalic anhydride, itaconic anhydride, 1,2-cyclohexanedicarboxylic anhydride, 3-hydroxyphthalic anhydride, and trimellitic anhydride.
  • the polystyrene equivalent weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of the polyimide precursor and polyimide is preferably 1,000 to 500,000, more preferably 2,000 to 300,000. is.
  • the molecular weight distribution (Mw/Mn) represented by the ratio of Mw to the polystyrene equivalent number average molecular weight (Mn) measured by GPC is preferably 15 or less, more preferably 10 or less.
  • the organic solvent contained in the liquid crystal aligning agent according to the present invention is not particularly limited as long as it uniformly dissolves the polymer (P) and other polymers added as necessary.
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 3-methoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide and ⁇ -butyrolactone are preferred.
  • the content of the good solvent is preferably 20 to 99% by mass, more preferably 20 to 90% by mass, and particularly preferably 30 to 80% by mass of the total solvent contained in the liquid crystal aligning agent.
  • the organic solvent contained in the liquid crystal aligning agent is a mixture of the above solvents and a solvent (also referred to as a poor solvent) that improves the coatability and the surface smoothness of the coating film when applying the liquid crystal aligning agent.
  • a solvent also referred to as a poor solvent
  • the use of solvents is preferred. Specific examples of the poor solvent are given below, but are not limited thereto.
  • the content of the poor solvent is preferably 1 to 80% by mass, more preferably 10 to 80% by mass, particularly preferably 20 to 70% by mass, of the total solvent contained in the liquid crystal aligning agent.
  • the type and content of the poor solvent are appropriately selected according to the liquid crystal aligning agent coating device, coating conditions, coating environment, and the like.
  • Examples of poor solvents include diisopropyl ether, diisobutyl ether, diisobutylcarbinol (2,6-dimethyl-4-heptanol), ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, -hydroxy-4-methyl-2-pentanone, diethylene glycol methyl ethyl ether, diethylene glycol dibutyl ether, 3-ethoxybutyl acetate, 1-methylpentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, ethylene glycol mono Acetate, ethylene glycol diacetate, propylene carbonate, ethylene carbonate, ethylene glycol monobutyl ether, ethylene glycol monoisoamyl ether, ethylene glycol monohexyl ether, propylene glycol monomethyl
  • diisobutyl carbinol propylene glycol monobutyl ether, propylene glycol diacetate, diethylene glycol diethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol dimethyl ether, 4-hydroxy-4-methyl-2-pentanone, ethylene glycol monobutyl ether, ethylene Glycol monobutyl ether acetate or diisobutyl ketone are preferred.
  • Preferred solvent combinations of a good solvent and a poor solvent include N-methyl-2-pyrrolidone and ethylene glycol monobutyl ether, N-methyl-2-pyrrolidone, ⁇ -butyrolactone and ethylene glycol monobutyl ether, N-methyl-2- Pyrrolidone and ⁇ -butyrolactone and propylene glycol monobutyl ether, N-ethyl-2-pyrrolidone and propylene glycol monobutyl ether, N-ethyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone, N-ethyl-2- pyrrolidone and propylene glycol diacetate, N,N-dimethyllactamide and diisobutyl ketone, N-methyl-2-pyrrolidone and ethyl 3-ethoxypropionate, N-ethyl-2-pyrrolidone and ethyl 3-ethoxypropionate, N- Methy
  • the liquid crystal aligning agent of the present invention may contain other components (hereinafter also referred to as additive components) in addition to the polymer (P), the other polymer, and the organic solvent.
  • additive components include, for example, a crosslinkable compound having at least one substituent selected from an oxiranyl group, an oxetanyl group, a blocked isocyanate group, an oxazoline group, a cyclocarbonate group, a hydroxy group and an alkoxy group; At least one crosslinkable compound selected from the group consisting of crosslinkable compounds having saturated groups, functional silane compounds, metal chelate compounds, curing accelerators, surfactants, antioxidants, sensitizers, preservatives, and compounds for adjusting the dielectric constant and electrical resistance of the liquid crystal alignment film.
  • crosslinkable compound examples include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, ,6-hexanediol diglycidyl ether, glycerol diglycidyl ether, dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol, Epicoat 828 (manufactured by Mitsubishi Chemical Corporation), etc.
  • Bisphenol A type epoxy resin bisphenol F type epoxy resin such as Epicoat 807 (manufactured by Mitsubishi Chemical Corporation), hydrogenated bisphenol A type epoxy resin such as YX-8000 (manufactured by Mitsubishi Chemical Corporation), YX6954BH30 (manufactured by Mitsubishi Chemical Corporation) and the like biphenyl skeleton-containing epoxy resins, phenol novolac type epoxy resins such as EPPN-201 (manufactured by Nippon Kayaku Co., Ltd.), (o, m, p-) cresol novolac type epoxy resins such as EOCN-102S (manufactured by Nippon Kayaku Co., Ltd.), Triglycidyl isocyanurate such as TEPIC (manufactured by Nissan Chemical Industries, Ltd.), alicyclic epoxy resins such as Celoxide 2021P (manufactured by Daicel), N,N,N',N'-tetraglycidyl-m-xylylenediamine, 1, Compound
  • Examples of compounds for adjusting the dielectric constant and electrical resistance include monoamines having a nitrogen atom-containing aromatic heterocycle such as 3-picolylamine.
  • the content of the monoamine having a nitrogen atom-containing aromatic heterocyclic ring is preferably 0.1 to 30 parts by mass, more preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal aligning agent. part by mass.
  • Preferred specific examples of the above functional silane compounds include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldiethoxymethylsilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltrimethoxysilane.
  • the solid content concentration in the liquid crystal aligning agent (ratio of the total mass of components other than the solvent of the liquid crystal aligning agent to the total mass of the liquid crystal aligning agent) is appropriately selected in consideration of viscosity, volatility, etc., but preferably It is 1 to 10% by mass.
  • a particularly preferable solid content concentration range varies depending on the method used when applying the liquid crystal aligning agent to the substrate. For example, when a spin coating method is used, the solid content concentration is particularly preferably 1.5 to 4.5% by mass. When the printing method is used, it is particularly preferable to set the solid content concentration to 3 to 9% by mass and thereby the solution viscosity to 12 to 50 mPa ⁇ s.
  • the solid content concentration is preferably 1 to 5% by mass and thereby the solution viscosity to 3 to 15 mPa ⁇ s.
  • the temperature for preparing the liquid crystal aligning agent is preferably 10 to 50°C, more preferably 20 to 30°C.
  • a liquid crystal display element according to the present invention comprises a liquid crystal alignment film formed using the liquid crystal alignment agent.
  • the operation mode of the liquid crystal display element is not particularly limited. , an optically compensated bend method (OCB method), and various other operation modes.
  • the liquid crystal display element of the present invention can be produced, for example, by a method including the following steps (1) to (4), a method including steps (1) to (2) and (4), steps (1) to (3), ( 4-2) and (4-4), or by a method including steps (1) to (3), (4-3) and (4-4).
  • a process (1) is a process of apply
  • a specific example of step (1) is as follows.
  • a liquid crystal aligning agent is applied to one surface of the substrate provided with the patterned transparent conductive film by an appropriate coating method such as a roll coater method, a spin coat method, a printing method, an inkjet method, or a spray method.
  • the material of the substrate is not particularly limited as long as it is highly transparent, and glass, silicon nitride, plastic such as acrylic, polycarbonate, etc., can also be used.
  • a reflective liquid crystal display element if only one substrate is used, an opaque material such as a silicon wafer can be used, and in this case, a light-reflecting material such as aluminum can be used for the electrodes.
  • a substrate provided with electrodes made of a transparent conductive film or a metal film patterned in a comb shape and a counter substrate provided with no electrodes are used.
  • An IPS substrate which is a comb-teeth electrode substrate used in an IPS-type liquid crystal display element, includes, for example, a substrate, a plurality of linear electrodes formed on the substrate and arranged in a comb-teeth shape, and and a liquid crystal alignment film formed to cover the linear electrodes.
  • the FFS substrate which is a comb-teeth electrode substrate used in an FFS mode liquid crystal display element, includes, for example, a base material, a plane electrode formed on the base material, an insulating film formed on the plane electrode, It has a plurality of linear electrodes formed on an insulating film and arranged in a comb shape, and a liquid crystal alignment film formed on the insulating film so as to cover the linear electrodes.
  • More preferable examples of the method of applying the liquid crystal aligning agent to the substrate to form a film include a printing method such as screen printing, offset printing, or flexo printing, a spin coating method, an inkjet method, or a spray method.
  • a printing method such as screen printing, offset printing, or flexo printing
  • spin coating method such as screen printing, offset printing, or flexo printing
  • inkjet method such as inkjet nozzle
  • spray method such as screen printing, offset printing, or flexo printing
  • a spin coating method such as screen printing, offset printing, or flexo printing
  • a spin coating method such as screen printing, offset printing, or flexo printing
  • a spin coating method such as screen printing, offset printing, or flexo printing
  • a spin coating method such as an inkjet method
  • a spray method such as a flexographic printing, spin coating, or ink-jet coating and film-forming methods can be preferably used.
  • a process (2) is a process of baking the liquid crystal aligning agent apply
  • a specific example of step (2) is as follows. After applying the liquid crystal aligning agent on the substrate in step (1), the solvent is evaporated by heating means such as a hot plate, a thermal circulation oven or an IR (infrared) oven, or polyimide typified by polyamic acid Thermal imidization of the precursor can be performed. Drying after applying a liquid crystal aligning agent and a baking process can select arbitrary temperature and time, and may be performed in multiple times. The temperature for baking the liquid crystal aligning agent can be, for example, 40 to 180.degree.
  • the firing time is not particularly limited, but may be 1 to 10 minutes or 1 to 5 minutes.
  • a step of baking at 150 to 300° C. or 150 to 250° C. may be added after the above step.
  • the firing time is not particularly limited, but is, for example, 5 to 40 minutes, preferably 5 to 30 minutes.
  • the thickness of the film after baking is preferably 5 to 300 nm, more preferably 10 to 200 nm, because if it is too thin, the reliability of the liquid crystal display element may deteriorate.
  • Step (3) is a step of subjecting the film obtained in step (2) to orientation treatment. That is, in a horizontally aligned liquid crystal display element such as an IPS system or an FFS system, the coating film is subjected to an alignment ability imparting treatment. On the other hand, in a liquid crystal display element of a vertical alignment type such as a VA system or a PSA (Polymer Sustained Alignment) system, the formed coating film can be used as it is as a liquid crystal alignment film. may be applied. Examples of the alignment treatment method for the liquid crystal alignment film include a rubbing alignment treatment method and a photo-alignment treatment method.
  • the surface of the film is irradiated with radiation polarized in a certain direction, and in some cases, preferably, heat treatment is performed to impart liquid crystal alignment (also referred to as liquid crystal alignment ability).
  • radiation ultraviolet light or visible light having a wavelength of 100 to 800 nm can be used. Among them, ultraviolet rays having a wavelength of 100 to 400 nm, more preferably 200 to 400 nm are preferred.
  • the radiation dose is preferably 1 to 10,000 mJ/cm 2 , more preferably 100 to 5,000 mJ/cm 2 .
  • the substrate having the film-like material may be irradiated with heating at 50 to 250° C. in order to improve liquid crystal orientation.
  • the liquid crystal alignment film thus produced can stably orient liquid crystal molecules in a fixed direction.
  • the coating film irradiated with polarized radiation or the coating film subjected to rubbing alignment treatment by the above method may be subjected to contact treatment using water or a solvent. Further, the film subjected to the alignment treatment may be subjected to heat treatment without being subjected to contact treatment. Furthermore, the film subjected to the contact treatment may be further subjected to heat treatment.
  • the solvent used in the contact treatment is not particularly limited as long as it dissolves the decomposed product produced from the film-like material by irradiation with radiation.
  • Specific examples include water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, 1-methoxy-2-propanol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, methyl lactate, diacetone alcohol, 3- methyl methoxypropionate, ethyl 3-ethoxypropionate, propyl acetate, butyl acetate, cyclohexyl acetate and the like.
  • Solvents may be used singly or in combination of two or more.
  • the temperature of the heat treatment for the above radiation-irradiated coating film is more preferably 50 to 300°C, more preferably 120 to 250°C.
  • the heat treatment time is preferably 1 to 30 minutes.
  • Step (4) Step of producing a liquid crystal cell> Two substrates on which liquid crystal alignment films are formed as described above are prepared, and liquid crystal is arranged between the two substrates facing each other. Specifically, the following two methods are mentioned. In the first method, first, two substrates are arranged to face each other with a gap (cell gap) interposed therebetween so that the respective liquid crystal alignment films face each other. Next, the peripheries of the two substrates are bonded together using a sealing agent, and a liquid crystal composition is injected and filled into the cell gap defined by the substrate surface and the sealing agent to contact the film surface, and then the injection hole is sealed. stop.
  • the liquid crystal composition is not particularly limited, and various liquid crystal compositions containing at least one liquid crystal compound (liquid crystal molecule) and having positive or negative dielectric anisotropy can be used.
  • a liquid crystal composition with a positive dielectric anisotropy is also referred to as a positive liquid crystal
  • a liquid crystal composition with a negative dielectric anisotropy is also referred to as a negative liquid crystal.
  • the above liquid crystal composition contains a fluorine atom, a hydroxy group, an amino group, a fluorine atom-containing group (e.g., trifluoromethyl group), a cyano group, an alkyl group, an alkoxy group, an alkenyl group, an isothiocyanate group, a heterocyclic ring, a cycloalkane,
  • a liquid crystal compound having a cycloalkene, a steroid skeleton, a benzene ring, or a naphthalene ring may be included, and a compound having two or more rigid sites (mesogenic skeleton) exhibiting liquid crystallinity in the molecule (for example, two rigid biphenyl structure, or a bimesogenic compound in which a terphenyl structure is linked by an alkyl group).
  • the liquid crystal composition may be a liquid crystal composition exhibiting a nematic phase, a liquid crystal composition exhibiting a smectic phase, or a liquid crystal composition exhibiting a cholesteric phase.
  • the liquid crystal composition may further contain an additive from the viewpoint of improving liquid crystal orientation.
  • Such additives include photopolymerizable monomers such as compounds having a polymerizable group ((meth)acryloyl group, etc.); optically active compounds (eg, S-811 manufactured by Merck Co., Ltd.); oxidation Antifoaming agents; UV absorbers; dyes; antifoaming agents; polymerization initiators; Positive liquid crystals include ZLI-2293, ZLI-4792, MLC-2003, MLC-2041, MLC-3019 and MLC-7081 manufactured by Merck.
  • photopolymerizable monomers such as compounds having a polymerizable group ((meth)acryloyl group, etc.); optically active compounds (eg, S-811 manufactured by Merck Co., Ltd.); oxidation Antifoaming agents; UV absorbers; dyes; antifoaming agents; polymerization initiators; Positive liquid crystals include ZLI-2293, ZLI-4792, MLC-2003, MLC-2041, MLC-3019 and MLC-7081 manufactured by Mer
  • MLC-3023 manufactured by Merck Co., Ltd. can be used as a liquid crystal containing a compound having a polymerizable group.
  • the second method is a method called ODF (One Drop Fill) method.
  • ODF One Drop Fill
  • a predetermined place on one of the two substrates on which the liquid crystal alignment film is formed is coated with, for example, an ultraviolet light-curing sealant, and a liquid crystal composition is applied to several predetermined places on the surface of the liquid crystal alignment film. drip.
  • the other substrate is attached so that the liquid crystal alignment films face each other, and the liquid crystal composition is spread over the entire surface of the substrate and brought into contact with the film surface.
  • the entire surface of the substrate is irradiated with ultraviolet light to cure the sealant.
  • liquid crystal filling it is desirable to remove the flow orientation at the time of liquid crystal filling by heating the liquid crystal composition to a temperature at which the used liquid crystal composition assumes an isotropic phase and then slowly cooling to room temperature.
  • the two substrates are arranged opposite to each other so that the rubbing directions of the respective coating films are at a predetermined angle, for example, orthogonal or antiparallel.
  • the sealant for example, an epoxy resin or the like containing a curing agent and aluminum oxide spheres as spacers can be used.
  • Liquid crystals include nematic liquid crystals and smectic liquid crystals, among which nematic liquid crystals are preferred.
  • the liquid crystal aligning agent of the present invention has a liquid crystal layer between a pair of substrates provided with electrodes, and a liquid crystal composition containing a polymerizable compound polymerized by at least one of active energy rays and heat between the pair of substrates.
  • a liquid crystal display element (PSA type liquid crystal display element) manufactured through a process of polymerizing a polymerizable compound by at least one of irradiating an active energy ray and heating while placing an object and applying a voltage between electrodes. is also preferably used.
  • the liquid crystal aligning agent of the present invention has a liquid crystal layer between a pair of substrates provided with electrodes, and a polymerizable group polymerized by at least one of active energy rays and heat is placed between the pair of substrates. It is also preferably used in a liquid crystal display element (SC-PVA type liquid crystal display element) manufactured through a process of arranging a liquid crystal alignment film containing the liquid crystal and applying a voltage between electrodes.
  • SC-PVA type liquid crystal display element manufactured through a process of arranging a liquid crystal alignment film containing the liquid crystal and applying a voltage between electrodes.
  • Step (4-2) For PSA liquid crystal display device> It is carried out in the same manner as in (4) above, except that the liquid crystal composition containing a polymerizable compound is injected or dropped.
  • the polymerizable compound include polymerizable compounds having one or more polymerizable unsaturated groups such as acrylate groups and methacrylate groups in the molecule.
  • a method of manufacturing a liquid crystal display element may be employed in which a step of irradiating ultraviolet rays, which will be described later, is performed after performing the same as in the above (4). According to this method, a liquid crystal display device having an excellent response speed can be obtained with a small amount of light irradiation, as in the case of manufacturing the PSA type liquid crystal display device.
  • the compound having a polymerizable group may be a compound having one or more polymerizable unsaturated groups in the molecule, and its content is 0.1 to 30 per 100 parts by mass of all polymer components. It is preferably parts by mass, more preferably 1 to 20 parts by mass.
  • the polymerizable group may be present in the polymer used for the liquid crystal alignment agent, and such a polymer includes, for example, a diamine component containing a diamine having a photopolymerizable group at the end thereof, which is used in the reaction.
  • a diamine component containing a diamine having a photopolymerizable group at the end thereof which is used in the reaction.
  • the polymer obtained is mentioned.
  • Step (4-4) Step of irradiating with ultraviolet rays>
  • the liquid crystal cell is irradiated with light while a voltage is applied between the conductive films of the pair of substrates obtained in (4-2) or (4-3) above.
  • the voltage applied here can be, for example, 5 to 50 V direct current or alternating current.
  • As the light for irradiation for example, ultraviolet light containing light with a wavelength of 150 to 800 nm and visible light can be used, but ultraviolet light containing light with a wavelength of 300 to 400 nm is preferable.
  • a low-pressure mercury lamp, a high-pressure mercury lamp, a deuterium lamp, a metal halide lamp, an argon resonance lamp, a xenon lamp, an excimer laser, or the like can be used as the light source for the irradiation light.
  • the irradiation amount of light is preferably 1,000 to 200,000 J/m 2 , more preferably 1,000 to 100,000 J/m 2 .
  • a liquid crystal display element can be obtained by bonding a polarizing plate to the outer surface of the liquid crystal cell as necessary.
  • a polarizing plate to be attached to the outer surface of the liquid crystal cell, a polarizing film called "H film” in which polyvinyl alcohol is stretched and oriented while absorbing iodine is sandwiched between cellulose acetate protective films, or the H film itself.
  • a polarizing plate consisting of
  • NMP N-methyl-2-pyrrolidone
  • BCS butyl cellosolve (ethylene glycol monobutyl ether)
  • THF Tetrahydrofuran
  • DMF N,N-dimethylformamide
  • CA-1 to CA-2 compounds represented by the following formulas (CA-1) to (CA-2), respectively
  • (diamine) DA-1 to DA-10 compounds represented by the following formulas (DA-1) to (DA-10), respectively.
  • Diamines included in the scope of the specific diamine of the present invention are compounds represented by the following formulas (DA-1) to (DA-2).
  • DA-1 and DA-2 are novel compounds that have not been published in literature, etc., and their synthesis methods are described in detail below.
  • -OTMS represents a tetramethylsiloxy group.
  • reaction solution was transferred to a separatory funnel, washed twice with water (300 g), the organic layer was dried over magnesium sulfate (40.0 g), and the magnesium sulfate was removed by filtration. After concentrating the resulting filtrate, it was vacuum-dried (40° C.) to obtain oily DA-2-1 (60.3 g, 188 mmol, yield 98.0%, colorless and transparent oil).
  • DA-2-1 (41.2 g, 129 mmol), 4-nitrofluorobenzene (39.8 g, 282 mmol), potassium hydroxide (17.2 g, 307 mmol), and NMP ( 380 g) was added, and the mixture was stirred at 0° C. for 24 hours to react.
  • water (460 g) cooled to 0° C. was added to the reaction solution, and the wet product obtained by filtering the precipitated solid was washed with water (300 g) three times and then with acetonitrile (300 g) three times. gone.
  • the resulting solid was dried to give DA-2-2 (38.9 g, 93.0 mmol, 72.1% yield, yellow solid).
  • DA-2-2 (34.0 g, 81.3 mmol), di-tert-butyl dicarbonate (28.0 g, 128 mmol), THF (169 g), and 4-dimethylamino were placed in a 500 mL four-necked flask. Pyridine (99.8 mg, 0.82 mmol) was added and reacted at 60° C. for 24 hours. After the reaction, the mixture was concentrated until the content weight reached 117 g, and then isopropyl alcohol (156 g) was added to precipitate crystals.
  • Table 1 shows the specifications of the polyamic acid solution obtained in the above synthesis example.
  • the numbers in parentheses for the tetracarboxylic acid component and the diamine component are the amounts (mol parts) of each tetracarboxylic acid component and each diamine component used with respect to the total amount of 100 mol parts of the diamine component used in each polymerization step. represents
  • Example 2 Liquid crystal aligning agent (AL-2), (AL-C1) to (AL-C3) were obtained.
  • Example 3 NMP (6. 80 g) and BCS (7.20 g) were added and stirred at room temperature for 2 hours to obtain a liquid crystal aligning agent (AL-3).
  • Example 4 NMP (6.0 g) was added to the solution (4.0 g) of polyamic acid (PAA-7) obtained in Synthesis Example 7 and the solution (6.0 g) of polyamic acid (PAA-11) obtained in Synthesis Example 11 above. 80 g) and BCS (7.20 g) were added and stirred at room temperature for 2 hours to obtain a liquid crystal aligning agent (AL-4).
  • PAA-7 polyamic acid
  • PAA-11 polyamic acid obtained in Synthesis Example 11 above.
  • 80 g) and BCS (7.20 g) were added and stirred at room temperature for 2 hours to obtain a liquid crystal aligning agent (AL-4).
  • a liquid crystal aligning agent (AL-C4) was obtained in the same manner as in Example 3 except that the polyamic acid solution used was replaced with (PAA-8) from (PAA-6).
  • Table 2 shows the specifications of the liquid crystal aligning agents obtained in the above examples and comparative examples.
  • the numbers in parentheses for the polyamic acid represent the blending amount (parts by mass) of each polymer with respect to the total of 100 parts by mass of the polymer components.
  • liquid crystal aligning agent obtained above, a liquid crystal cell was produced in the following procedure. After each liquid crystal aligning agent was filtered through a filter with a pore size of 1.0 ⁇ m, it was applied to a glass substrate with ITO electrodes (length 40 mm ⁇ width 30 mm ⁇ thickness 0.7 mm) by a spin coating method and placed on a hot plate at 80° C. for 60 seconds. After drying, it was baked in an infrared heating furnace at 230° C. for 20 minutes to form a liquid crystal alignment film with a film thickness of 100 nm.
  • the coating film surface was subjected to an orientation treatment by irradiating linearly polarized ultraviolet light having a wavelength of 254 nm with an extinction ratio of 26:1 through a polarizing plate at 200 mJ/cm 2 , 300 mJ/cm 2 or 400 mJ/cm 2 . Furthermore, it was baked in an infrared heating furnace at 230° C. for 30 minutes to obtain a substrate with a liquid crystal alignment film (first glass substrate). A substrate with a liquid crystal alignment film (second glass substrate) was obtained in the same manner as described above, except that the alignment treatment was performed so that the alignment direction was orthogonal to that of the first glass substrate.
  • the above two substrates are set as a set, and a bead spacer with a diameter of 4 ⁇ m (manufactured by Nikki Shokubai Kasei Co., Ltd., Shinshikyu, SW-D1) is applied on one of the liquid crystal alignment films, leaving a liquid crystal injection port.
  • a sealant (XN-1500T, manufactured by Mitsui Chemicals, Inc.) was printed, and another substrate was attached so that the alignment direction of the liquid crystal alignment film surfaces facing each other was 0°. After that, a heat treatment was performed at 150° C. for 60 minutes to cure the sealant to prepare an empty cell.
  • Liquid crystal MLC-3019 (manufactured by Merck & Co.) was injected into this empty cell by a vacuum injection method, and the injection port was sealed to obtain a liquid crystal cell. Thereafter, the obtained liquid crystal cell was heated at 120° C. for 1 hour and then used for evaluation.
  • the irradiation amount of ultraviolet rays is set to 300 mJ / cm 2 , and the above A liquid crystal cell was produced in the same procedure, and the in-plane uniformity of contrast was evaluated. (Hereinafter, the value obtained by the evaluation is referred to as 3 ⁇ (single film).) Further, using the liquid crystal aligning agents (AL-3) to (AL-4) and (AL-C4) to (AL-C6) obtained in the liquid crystal aligning agent preparation examples, the irradiation amount of ultraviolet rays was 300 mJ / cm.
  • a liquid crystal cell was produced in the same procedure as above, and the in-plane uniformity of contrast was evaluated.
  • 3 ⁇ the value obtained by the evaluation is referred to as 3 ⁇ (blend film).
  • the difference between 3 ⁇ (single film) and 3 ⁇ (blended film) is ⁇ 3 ⁇ , and the case where ⁇ 3 ⁇ is less than 0.60 is “ ⁇ ” and the case of 0.60 or more is “ ⁇ ”, and the layer separation property is evaluated. gone.
  • Table 5 shows the results. When the layer separability is low, the value of 3 ⁇ (blend film) becomes larger than that of 3 ⁇ (single film), and the value of ⁇ 3 ⁇ becomes large. On the other hand, when the layer separability is high, the value of ⁇ 3 ⁇ becomes small.
  • the liquid crystal alignment film obtained from the liquid crystal alignment agent using the diamine component containing the specific diamine (0) had good in-plane uniformity of contrast. Moreover, as shown in Table 5, high layer separation was exhibited when two or more types of polymers were used.
  • the liquid crystal alignment film obtained from the liquid crystal alignment agent of the present invention is widely used in liquid crystal display elements of various operation modes. It can also be used for a film or a liquid crystal alignment film for a transmission scattering type liquid crystal light control device.
  • the liquid crystal display device of the present invention can be effectively applied to devices having various functions, such as liquid crystal televisions, clocks, portable games, word processors, notebook computers, car navigation systems, camcorders, PDAs, and digital cameras. , mobile phones, smart phones, various monitors, information displays, etc.

Abstract

Provided is a liquid crystal alignment agent capable of forming a liquid crystal alignment film that has little in-plane variations (non-uniformity) in the liquid crystal twist angle, and that demonstrates an excellent layer separation property even when two or more types of polymers are used. Also provided is a liquid crystal display element comprising said liquid crystal alignment film. The liquid crystal alignment agent is characterized by containing at least one polymer (P) selected from the group consisting of a polyimide precursor obtained by using a diamine component that includes a diamine (0) represented by formula (DA), and a polyimide that is an imidization product of said polyimide precursor. (The definitions of symbols are as stated in the specification.)

Description

液晶配向剤、液晶配向膜及び液晶表示素子Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
 本発明は、液晶配向剤、該液晶配向剤から得られた液晶配向膜、及び該液晶配向膜を具備する液晶表示素子、並びにそれらに適した新規なジアミン、及び重合体に関する。 The present invention relates to a liquid crystal aligning agent, a liquid crystal aligning film obtained from the liquid crystal aligning agent, a liquid crystal display element comprising the liquid crystal aligning film, and a novel diamine and polymer suitable for them.
 液晶表示素子は、携帯電話、スマートフォンなどの小型用途から、テレビ用、モニター用などの比較的大型の用途まで幅広く使用されている。また、電極構造や、使用する液晶分子の物性等が異なる種々の駆動方式が開発され、例えば、TN(Twisted Nematic)方式、STN(Super Twisted Nematic)方式、VA(Vertical Alignment)方式、IPS(In-Plane Switching)方式、FFS(Fringe Field Switching)方式等の各種のモードを用いた液晶表示素子が知られている。これらの液晶表示素子は、一般的に、液晶分子の配列状態を制御するために不可欠な液晶配向膜を有する。液晶配向膜の材料としては、耐熱性、機械的強度、液晶との親和性などの各種特性が良好である点から、ポリアミック酸やポリイミドが一般に使用されている。 Liquid crystal display elements are used in a wide range of applications, from small applications such as mobile phones and smartphones to relatively large applications such as televisions and monitors. In addition, various driving methods with different electrode structures and physical properties of the liquid crystal molecules used have been developed. -Plane Switching), FFS (Fringe Field Switching), and other liquid crystal display devices using various modes are known. These liquid crystal display elements generally have a liquid crystal alignment film that is indispensable for controlling the alignment state of liquid crystal molecules. Polyamic acid and polyimide are generally used as materials for liquid crystal alignment films because of their excellent properties such as heat resistance, mechanical strength, and affinity with liquid crystals.
 現在、工業的に最も普及している液晶配向膜は、電極基板上に形成されたポリイミド等の樹脂膜の表面を、綿、ナイロン、ポリエステルなどの布で一方向に擦る、いわゆるラビング配向処理を行うことで作製されている。ラビング配向処理は、簡便で生産性に優れた有用な方法である。ラビング配向処理に代わる配向処理方法としては、偏光された放射線を照射することにより、液晶配向能を付与する光配向処理法が知られている。光配向処理法は、光異性化反応を利用したもの、光架橋反応を利用したもの、光分解反応を利用したものなどが提案されている(例えば、非特許文献1、特許文献1、特許文献2参照)。 Currently, the liquid crystal alignment film that is most widely used industrially is a so-called rubbing alignment treatment in which the surface of a resin film such as polyimide formed on an electrode substrate is rubbed in one direction with a cloth such as cotton, nylon, or polyester. It is made by doing. The rubbing orientation treatment is a useful method that is simple and excellent in productivity. As an alignment treatment method that replaces the rubbing alignment treatment, a photo-alignment treatment method is known in which polarized radiation is applied to impart liquid crystal alignment ability. As the photo-alignment treatment method, a method using a photoisomerization reaction, a method using a photocrosslinking reaction, a method using a photodecomposition reaction, etc. have been proposed (for example, Non-Patent Document 1, Patent Document 1, Patent Document 2).
日本特開平9-297313号公報Japanese Patent Laid-Open No. 9-297313 日本特開2004-206091号公報Japanese Patent Application Laid-Open No. 2004-206091
 近年、液晶表示素子の高性能化に伴い、大画面で高精細な液晶テレビなどに加えて、車載用、例えば、カーナビゲーションシステムやメーターパネル、監視用カメラや医療用カメラのモニターなどへの適用が検討されている。そのため、液晶表示素子の特に高精細化などの高性能化に対する要求は更に高まっており、液晶配向膜としては液晶表示素子における各種特性を更に良好にできるものが求められている。 In recent years, as the performance of liquid crystal display elements has improved, in addition to large-screen, high-definition liquid crystal televisions, it has been applied to in-vehicle applications such as car navigation systems, meter panels, surveillance cameras, and medical camera monitors. is being considered. Therefore, the demand for higher performance, particularly higher definition, of liquid crystal display elements is increasing, and a liquid crystal alignment film capable of further improving various characteristics of liquid crystal display elements is desired.
 また、液晶表示素子が大型化するに伴い、製造工程でのバラツキによって液晶表示素子面内での液晶のツイスト角がわずかにばらついてしまう、という不具合が発生するようになった。このようなバラツキは、液晶表示素子では黒表示とした際に明るさが面内で不均一となり、液晶表示素子の品位を低下させることにつながる。 In addition, as the size of the liquid crystal display element has increased, there has been a problem that the twist angle of the liquid crystal within the plane of the liquid crystal display element varies slightly due to variations in the manufacturing process. Such variations lead to non-uniform brightness in the plane of the liquid crystal display element when black is displayed, leading to deterioration of the quality of the liquid crystal display element.
 さらに、上記各種特性を同時に満たす観点から、特性が異なる2種類以上の重合体を混合する手段も考えられるが、重合体の種類によっては、基板との親和性が高い重合体が下層に、他方の重合体が上層に移動する、所謂層分離が十分に機能せず、求められる要求を十分に満足するものが得られないことがあった。 Furthermore, from the viewpoint of simultaneously satisfying the various properties described above, it is possible to mix two or more types of polymers having different properties. polymer moves to the upper layer, so-called layer separation does not function sufficiently, and a product that fully satisfies the required requirements may not be obtained.
 本発明は、上記の事情に鑑みてなされたものであり、液晶配向膜面内での液晶のツイスト角度のバラツキ(不均一性)が小さく、且つ、2種類以上の重合体を用いた場合においても、高い層分離性が得られる液晶配向膜を形成することができる液晶配向剤、及び該液晶配向膜を具備する液晶表示素子を提供することを目的とする。 The present invention has been made in view of the above circumstances, and when the variation (non-uniformity) of the twist angle of the liquid crystal in the plane of the liquid crystal alignment film is small and two or more types of polymers are used Another object of the present invention is to provide a liquid crystal aligning agent capable of forming a liquid crystal aligning film with high layer separability, and a liquid crystal display element having the liquid crystal aligning film.
 本発明者は、上記課題を達成するために鋭意研究を行った結果、特定の構造を有する新規なジアミンを使用する重合体を含有する液晶配向剤が、上記の目的を達成するために有効であることを見出し、本発明を完成するに至った。 As a result of intensive research to achieve the above object, the present inventors found that a liquid crystal aligning agent containing a polymer using a novel diamine having a specific structure is effective for achieving the above object. We found a certain thing and came to complete the present invention.
 本発明は、下記式(D)で表されるジアミン(0)を含むジアミン成分を用いて得られるポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体(P)を含有することを特徴とする液晶配向剤、該液晶配向剤から得られた液晶配向膜、及び該液晶配向膜を有する液晶表示素子である。
Figure JPOXMLDOC01-appb-C000007
(Zは、互いに独立して、水素原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基または炭素数2~6のアルキニル基を表し、上記アルキル基、アルケニル基、又はアルキニル基が有する水素原子は、1価の基で置換されてもよい。両端のアミノ基が結合しているベンゼン環上の任意の水素原子は、1価の基で置換されてもよい。
Aは、炭素数4~10のアルキレン基において、任意の炭素-炭素結合が以下の条件(1)および(2)のいずれかを満たす2価の有機基(a)を表す。なお、以下の条件(1)および(2)において、*1は、アルキレン基が有する炭素原子と結合し、上記炭素-炭素結合は、重合体(P)の主鎖を形成する炭素-炭素結合から選ばれる。
(1)2箇所以上の炭素-炭素結合間に「*1-N(Boc)-*1」が挿入される。
(2)1箇所以上の炭素-炭素結合間に「*1-N(Boc)-C(=O)-N(R)-*1」が挿入される。Rは、水素原子又は1価の有機基を表す。Bocは、tert-ブトキシカルボニル基を表す。)
 なお、本発明において、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。Bocは、tert-ブトキシカルボニル基を表す。
The present invention provides at least one selected from the group consisting of a polyimide precursor obtained using a diamine component containing a diamine (0) represented by the following formula (D A ) and a polyimide that is an imidized product of the polyimide precursor. A liquid crystal aligning agent characterized by containing a polymer (P) of No., a liquid crystal aligning film obtained from the liquid crystal aligning agent, and a liquid crystal display element having the liquid crystal aligning film.
Figure JPOXMLDOC01-appb-C000007
(Z 1 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms or an alkynyl group having 2 to 6 carbon atoms, and the above alkyl group, alkenyl group, or A hydrogen atom of the alkynyl group may be substituted with a monovalent group Any hydrogen atom on the benzene ring to which the amino groups at both ends are bonded may be substituted with a monovalent group.
A represents a divalent organic group (a) in which any carbon-carbon bond in an alkylene group having 4 to 10 carbon atoms satisfies either of the following conditions (1) and (2). In the following conditions (1) and (2), *1 is bonded to a carbon atom possessed by an alkylene group, and the carbon-carbon bond is a carbon-carbon bond forming the main chain of the polymer (P). selected from
(1) "*1-N(Boc)-*1" is inserted between two or more carbon-carbon bonds.
(2) "*1-N(Boc)-C(=O)-N(R)-*1" is inserted between one or more carbon-carbon bonds. R represents a hydrogen atom or a monovalent organic group. Boc represents a tert-butoxycarbonyl group. )
In addition, in this invention, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom etc. are mentioned as a halogen atom. Boc represents a tert-butoxycarbonyl group.
 本発明によれば、液晶配向膜面内での液晶のツイスト角度のバラツキ(不均一性)が小さく、且つ、2種類以上の重合体を用いた場合においても、高い層分離性が得られる液晶配向膜を形成する液晶配向剤、該液晶配向剤から得られた液晶配向膜、該液晶配向膜を備えた高性能な液晶表示素子、及びそれらの製造に使用する新規なジアミン、及び重合体が得られる。 According to the present invention, the liquid crystal that has a small variation (non-uniformity) in the twist angle of the liquid crystal in the plane of the liquid crystal alignment film and that can obtain high layer separation even when two or more types of polymers are used. A liquid crystal aligning agent forming an alignment film, a liquid crystal aligning film obtained from the liquid crystal aligning agent, a high-performance liquid crystal display element provided with the liquid crystal aligning film, and a novel diamine and polymer used for their production can get.
 本発明の上記効果が得られるメカニズムは必ずしも明らかではないが、ほぼ次のように推定される。本発明のジアミン(0)に含まれるオキシアニリン構造により液晶のツイスト角のバラツキが小さい液晶配向膜が得られ、2種類以上の重合体を用いた場合に、ジアミン(0)を含む重合体はBoc基の疎水性により膜表面に偏在しやすく高い層分離性を達成できるため、上記効果が得られたと考えられる。 Although the mechanism by which the above effects of the present invention are obtained is not necessarily clear, it is estimated as follows. Due to the oxyaniline structure contained in the diamine (0) of the present invention, a liquid crystal alignment film having a small variation in the twist angle of the liquid crystal can be obtained. It is considered that the above effect was obtained because the hydrophobicity of the Boc group makes it easy to be unevenly distributed on the membrane surface, thereby achieving high layer separation.
 <特定ジアミン>
 本発明の液晶配向剤は、上記のように、下記式(D)で表されるジアミン(0)(本発明では、特定ジアミンともいう。)を含むジアミン成分を用いて得られるポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体(P)を含有することを特徴とする。
Figure JPOXMLDOC01-appb-C000008
 上記式(D)において、A、及びZは、それぞれ上記で定義したとおりである。
<Specific diamine>
The liquid crystal aligning agent of the present invention is, as described above, a polyimide precursor obtained using a diamine component containing a diamine (0) represented by the following formula (D A ) (also referred to as a specific diamine in the present invention) and at least one polymer (P) selected from the group consisting of polyimide which is an imidized product of the polyimide precursor.
Figure JPOXMLDOC01-appb-C000008
In the above formula (D A ), A and Z 1 are each as defined above.
 上記式(D)におけるAのアルキレン基の炭素数は、高い液晶配向性が得られる観点から、6~10が好ましい。
 上記式(D)におけるAのアルキレン基は、直鎖状でも分岐状アルキレン基のいずれでもよいが、本発明の効果を好適に得る観点から、直鎖状アルキレン基が好ましい。
The number of carbon atoms in the alkylene group of A in the above formula (D A ) is preferably 6 to 10 from the viewpoint of obtaining high liquid crystal orientation.
The alkylene group for A in the above formula (D A ) may be either a linear or branched alkylene group, but a linear alkylene group is preferred from the viewpoint of favorably obtaining the effects of the present invention.
 上記式(D)におけるZのアルキル基、アルケニル基、又はアルキニル基が有する水素原子は、1価の基で置換されてもよく、該1価の基としては、ハロゲン原子、カルボキシ基、ヒドロキシ基、シアノ基、ニトロ基等が挙げられる。なかでも、ハロゲン原子が好ましい。
 上記式(D)におけるZは、水素原子、又はメチル基が好ましい。
The hydrogen atom of the alkyl group, alkenyl group, or alkynyl group of Z 1 in the above formula (D A ) may be substituted with a monovalent group, and the monovalent group includes a halogen atom, a carboxy group, hydroxy group, cyano group, nitro group and the like. Among them, a halogen atom is preferable.
Z 1 in the above formula (D A ) is preferably a hydrogen atom or a methyl group.
 上記「*1-N(Boc)-C(=O)-N(R)-*1」におけるRの1価の有機基としては、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数2~3のアルケニル基、炭素数2~3のアシル基、炭素数1~3のアルキルシリル基、炭素数1~3のアルコキシシリル基、Boc基、又はこれらの基が有する水素原子の一部がハロゲン原子及びヒドロキシ基の少なくともいずれかで置換された1価の有機基が挙げられる。
 Rは、水素原子又はBoc基が好ましい。
The monovalent organic group for R in the above "*1-N(Boc)-C(=O)-N(R)-*1" includes an alkyl group having 1 to 3 carbon atoms, an alkyl group having 1 to 3 carbon atoms, Alkoxy group, alkenyl group having 2 to 3 carbon atoms, acyl group having 2 to 3 carbon atoms, alkylsilyl group having 1 to 3 carbon atoms, alkoxysilyl group having 1 to 3 carbon atoms, Boc group, or these groups possess Monovalent organic groups in which a portion of hydrogen atoms are substituted with at least one of halogen atoms and hydroxy groups can be mentioned.
R is preferably a hydrogen atom or a Boc group.
 上記式(D)における両端のアミノ基が結合しているベンゼン環上の水素原子は、1価の基で置換されてもよく、該1価の基としては、ハロゲン原子、メチル基、メトキシ基、カルボキシ基、ヒドロキシ基、シアノ基、ニトロ基等が挙げられる。なかでも、ハロゲン原子、メチル基、又はメトキシ基が好ましい。 The hydrogen atoms on the benzene ring to which the amino groups at both ends in the above formula (D A ) are bonded may be substituted with a monovalent group, and the monovalent group includes a halogen atom, a methyl group, a methoxy group, carboxy group, hydroxy group, cyano group, nitro group and the like. Among them, a halogen atom, a methyl group, or a methoxy group is preferable.
 上記式(D)における2つのアミノ基は、高い液晶配向性が得られる観点から、ベンゼン環を連結する2価の有機基に対してパラ位であることが好ましい。 From the viewpoint of obtaining high liquid crystal orientation, the two amino groups in the above formula (D A ) are preferably para-positions with respect to the divalent organic group connecting the benzene rings.
 上記式(D)におけるAは、本発明の効果を好適に得る観点から、以下の態様が好ましい。なお、n1、n1’、n1”、n2、n2’、n3、n3’及びn3”は、互いに独立して、1以上の整数であり、n1、n1’及びn1”の合計は4~10であり、n2及びn2’の合計は4~10であり、n3、n3’及びn3”の合計は4~10である。なお、下記の態様において、Rは上記「*1-N(Boc)-C(=O)-N(R)-*1」におけるRと同義である。Rが複数個存在する場合は、互いに独立して上記定義を有する。
 *-(CHn1-N(Boc)-(CHn1’-N(Boc)-(CHn1”-*、
 *-(CHn2-N(Boc)-C(=O)-N(R)-(CHn2’-*、
 *-(CHn3-N(Boc)-C(=O)-N(R)-(CHn3’ -N(R)-C(=O)-N(Boc)-(CHn3”-*。
From the viewpoint of suitably obtaining the effects of the present invention, A in the above formula (D A ) preferably has the following aspects. Note that n1, n1′, n1″, n2, n2′, n3, n3′ and n3″ are each independently an integer of 1 or more, and the sum of n1, n1′ and n1″ is 4 to 10. , the sum of n2 and n2′ is 4-10, and the sum of n3, n3′ and n3″ is 4-10. In the following embodiments, R has the same definition as R in "*1-N(Boc)-C(=O)-N(R)-*1" above. When R is present more than once, it has the above definition independently of each other.
*—(CH 2 ) n1 —N(Boc)—(CH 2 ) n1′ —N(Boc)—(CH 2 ) n1″ —*,
*-( CH2 ) n2 -N(Boc)-C(=O)-N(R)-( CH2 ) n2' -*,
*-( CH2 ) n3 -N(Boc)-C(=O)-N(R)-( CH2 ) n3' -N(R)-C(=O)-N(Boc)-( CH2 ) n3″ -*.
 上記式(D)の好ましい例としては、下記式(d-1)~(d-2)が挙げられる。
Figure JPOXMLDOC01-appb-C000009
(上記式中、Z、R、n1、n1’、n1”、n2及びn2’は、それぞれ上記で定義したとおりである。両端のアミノ基が結合しているベンゼン環上の任意の水素原子は、1価の基で置換されてもよい。前記1価の基としては、上記式(D)における両端のアミノ基が結合しているベンゼン環上の水素原子と置換し得る1価の基を挙げることができる。)
Preferred examples of the above formula (D A ) include the following formulas (d A -1) to (d A -2).
Figure JPOXMLDOC01-appb-C000009
(In the above formula, Z 1 , R, n1, n1′, n1″, n2 and n2′ are as defined above. Any hydrogen atom on the benzene ring to which the amino groups at both ends are bonded may be substituted with a monovalent group, and the monovalent group includes a monovalent group capable of substituting the hydrogen atom on the benzene ring to which the amino groups at both ends in the above formula (D A ) are bonded. groups can be mentioned.)
(重合体(P))
 本発明の液晶配向剤に含有される重合体(P)は、上記ジアミン(0)を含有するジアミン成分を用いて得られるポリイミド前駆体、又は該ポリイミド前駆体のイミド化物であるポリイミドである。ここにおいて、ポリイミド前駆体は、ポリアミック酸、ポリアミック酸エステルなどのイミド化することによりポリイミドを得ることができる重合体である。重合体(P)は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 上記重合体(P)は、下記式(1)で表される繰り返し単位(p1)及び該繰り返し単位(p1)のイミド化構造単位からなる群から選ばれる少なくとも1種の繰り返し単位を有する重合体であってもよい。
Figure JPOXMLDOC01-appb-C000010
(式(1)中、Xは4価の有機基を表す。Yは上記特定ジアミンから2つのアミノ基を除いた2価の有機基である。R及びZはそれぞれ独立して水素原子又は1価の有機基を表す。)
 上記式(1)におけるR、及びZにおける1価の有機基としては、炭素数1~6の1価の炭化水素基、当該炭化水素基のメチレン基を-O-、-S-、-CO-、-COO-、-COS-、-NR-、-CO-NR-、-Si(R-(ただし、Rは、水素原子又は炭素数1~6の1価の炭化水素基である。)、-SO-等で置き換えてなる1価の基A、上記1価の炭化水素基又は上記1価の基Aの炭素原子に結合する水素原子の少なくとも1個をハロゲン原子、ヒドロキシ基、アルコキシ基、ニトロ基、アミノ基、メルカプト基、ニトロソ基、アルキルシリル基、アルコキシシリル基、シラノール基、スルフィノ基、ホスフィノ基、カルボキシ基、シアノ基、スルホ基、アシル基等で置換してなる1価の基、複素環を有する1価の基が挙げられる。
 上記式(1)におけるR、及びZにおける1価の有機基としては、中でも、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、又はtert-ブトキシカルボニル基が好ましく、炭素数1~3のアルキル基が更に好ましく、メチル基がより一層好ましい。
 R及びZは、本発明の効果を好適に得る観点から、それぞれ独立に、水素原子又は炭素数1~3のアルキル基が好ましく、水素原子またはメチル基がより好ましい。
 上記式(1)におけるXとしては、例えば、後述するテトラカルボン酸二無水物又はその誘導体に由来する4価の有機基が挙げられる。上記Xにおけるテトラカルボン酸二無水物又はその誘導体の好ましい態様として、後述の重合体(P)の合成に用いることが出来るテトラカルボン酸二無水物又はその誘導体の好ましい態様を挙げることが出来る。
 上記重合体(P)のポリイミド前駆体であるポリアミック酸(P’)は、上記ジアミン(0)を含有するジアミン成分とテトラカルボン酸成分との重合反応により得ることができる。上記ジアミン(0)は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 ジアミン(0)の使用量は、全ジアミン成分に対して、5モル%以上が好ましく、10モル%以上がより好ましく、20モル%以上がさらに好ましい。
(Polymer (P))
The polymer (P) contained in the liquid crystal aligning agent of the present invention is a polyimide precursor obtained using a diamine component containing the diamine (0), or a polyimide that is an imidized product of the polyimide precursor. Here, the polyimide precursor is a polymer from which a polyimide can be obtained by imidating polyamic acid, polyamic acid ester, or the like. A polymer (P) may be used individually by 1 type, and may be used in combination of 2 or more types.
The polymer (P) is a polymer having at least one repeating unit selected from the group consisting of repeating units (p1) represented by the following formula (1) and imidized structural units of the repeating units (p1). may be
Figure JPOXMLDOC01-appb-C000010
(In formula (1), X 1 represents a tetravalent organic group. Y 1 is a divalent organic group obtained by removing two amino groups from the specific diamine. R and Z each independently represent a hydrogen atom. Or represents a monovalent organic group.)
The monovalent organic group for R and Z in the above formula (1) includes a monovalent hydrocarbon group having 1 to 6 carbon atoms, and the methylene group of the hydrocarbon group is -O-, -S-, -CO -, -COO-, -COS-, -NR 3 -, -CO-NR 3 -, -Si(R 3 ) 2 - (where R 3 is a hydrogen atom or a monovalent carbon atom having 1 to 6 carbon atoms) is a hydrogen group), a monovalent group A substituted with —SO 2 —, etc., the above monovalent hydrocarbon group, or at least one hydrogen atom bonded to a carbon atom of the above monovalent group A is a halogen Atoms, hydroxy groups, alkoxy groups, nitro groups, amino groups, mercapto groups, nitroso groups, alkylsilyl groups, alkoxysilyl groups, silanol groups, sulphino groups, phosphino groups, carboxy groups, cyano groups, sulfo groups, acyl groups, etc. Examples include a substituted monovalent group and a monovalent group having a heterocyclic ring.
The monovalent organic group for R and Z in the above formula (1) includes, among others, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, or a tert A -butoxycarbonyl group is preferred, an alkyl group having 1 to 3 carbon atoms is more preferred, and a methyl group is even more preferred.
From the viewpoint of suitably obtaining the effects of the present invention, R and Z are each independently preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, more preferably a hydrogen atom or a methyl group.
X 1 in the above formula (1) includes, for example, a tetravalent organic group derived from a tetracarboxylic dianhydride or a derivative thereof, which will be described later. Preferred embodiments of the tetracarboxylic dianhydride or derivative thereof in X 1 above include preferred embodiments of the tetracarboxylic dianhydride or derivative thereof that can be used for synthesizing the polymer (P) described later.
A polyamic acid (P′), which is a polyimide precursor of the polymer (P), can be obtained by a polymerization reaction between a diamine component containing the diamine (0) and a tetracarboxylic acid component. The diamine (0) may be used alone or in combination of two or more.
The amount of diamine (0) used is preferably 5 mol % or more, more preferably 10 mol % or more, and even more preferably 20 mol % or more, relative to the total diamine component.
 上記ポリアミック酸(P’)の製造に用いられるジアミン成分は、ジアミン(0)以外のジアミン(以下、その他のジアミンともいう。)を含んでいてもよい。上記ジアミン(0)に加えて、その他のジアミンを併用する場合は、ジアミン成分に対するジアミン(0)の使用量は、90モル%以下が好ましく、80モル%以下がより好ましい。 The diamine component used for producing the polyamic acid (P') may contain diamines other than diamine (0) (hereinafter also referred to as other diamines). When other diamines are used in addition to the diamine (0), the amount of the diamine (0) used is preferably 90 mol % or less, more preferably 80 mol % or less, relative to the diamine component.
 以下にその他のジアミンの例を挙げるが、これらに限定されるものではない。上記その他のジアミンは、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。p-フェニレンジアミン、2,3,5,6-テトラメチル-p-フェニレンジアミン、2,5-ジメチル-p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジメチル-m-フェニレンジアミン、2,5-ジアミノトルエン、2,6-ジアミノトルエン、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、2,2’-ジフルオロ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、3,3’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、4,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、2,2’-ジアミノビフェニル、2,3’-ジアミノビフェニル、下記式(dAL-1)~(dAL-10)で表されるジアミン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,7-ビス(3-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,8-ビス(3-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,9-ビス(3-アミノフェノキシ)ノナン、1,10-ビス(4-アミノフェノキシ)デカン、1,10-ビス(3-アミノフェノキシ)デカン、1,11-ビス(4-アミノフェノキシ)ウンデカン、1,11-ビス(3-アミノフェノキシ)ウンデカン、1,12-ビス(4-アミノフェノキシ)ドデカン、1,12-ビス(3-アミノフェノキシ)ドデカン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(4-アミノフェノキシ)ジフェニルエーテル、1,4-ビス[4-(4-アミノフェノキシ)フェノキシ]ベンゼン、1,2-ビス(6-アミノ-2-ナフチルオキシ)エタン、1,2-ビス(6-アミノ-2-ナフチル)エタン、6-[2-(4-アミノフェノキシ)エトキシ]-2-ナフチルアミン、1,4-フェニレンビス(4-アミノベンゾエート)、1,4-フェニレンビス(3-アミノベンゾエート)、1,3-フェニレンビス(4-アミノベンゾエート)、1,3-フェニレンビス(3-アミノベンゾエート)、ビス(4-アミノフェニル)テレフタレート、ビス(3-アミノフェニル)テレフタレート、ビス(4-アミノフェニル)イソフタレート、ビス(3-アミノフェニル)イソフタレート(以下、これらのジアミンをその他のジアミン(a)ともいう。);4,4’-ジアミノアゾベンゼン又はジアミノトランなどの光配向性基を有するジアミン;メタクリル酸2-(2,4-ジアミノフェノキシ)エチル又は2,4-ジアミノ-N,N-ジアリルアニリン等の光重合性基を末端に有するジアミン;1-(4-(2-(2,4-ジアミノフェノキシ)エトキシ)フェニル)-2-ヒドロキシ-2-メチルプロパノン、2-(4-(2-ヒドロキシ-2-メチルプロパノイル)フェノキシ)エチル 3,5-ジアミノベンゾエートなどのラジカル重合開始剤機能を有するジアミン;4,4’-ジアミノベンズアニリドなどのアミド結合を有するジアミン、1,3-ビス(4-アミノフェニル)ウレア、1,3-ビス(4-アミノベンジル)ウレア、1,3-ビス(4-アミノフェネチル)ウレアなどのウレア結合を有するジアミン;3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(3-アミノフェニル)プロパン、2,2-ビス(3-アミノ-4-メチルフェニル)プロパン、4,4’-ジアミノベンゾフェノン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(4-アミノベンジル)ベンゼン;2,6-ジアミノピリジン、3,4-ジアミノピリジン、2,4-ジアミノピリミジン、3,6-ジアミノカルバゾール、N-メチル-3,6-ジアミノカルバゾール、1,4-ビス-(4-アミノフェニル)-ピペラジン、3,6-ジアミノアクリジン、N-エチル-3,6-ジアミノカルバゾール、N-フェニル-3,6-ジアミノカルバゾール、N-[3-(1H-イミダゾール-1-イル)プロピル] 3,5-ジアミノベンズアミド、4-[4-[(4-アミノフェノキシ)メチル]-4,5-ジヒドロ-4-メチル-2-オキサゾリル]-ベンゼンアミン、若しくは下記式(z-1)~式(z-13)で表されるジアミンなどの複素環含有ジアミン、又は、4,4’-ジアミノジフェニルアミン、4,4’-ジアミノジフェニル-N-メチルアミン、N,N’-ビス(4-アミノフェニル)-ベンジジン、N,N’-ビス(4-アミノフェニル)-N,N’-ジメチルベンジジン、若しくは、N,N’-ビス(4-アミノフェニル)-N,N’-ジメチル-1,4-ベンゼンジアミンなどのジフェニルアミン構造を有するジアミンに代表される、窒素原子含有複素環、第二級アミノ基及び第三級アミノ基よりなる群から選ばれる少なくとも一種の窒素原子含有構造(以下、特定の窒素原子含有構造ともいう。)を有するジアミン(但し、加熱によって脱離し、水素原子に置き換わる保護基が結合したアミノ基を分子内に有しない。);2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、4,6-ジアミノレゾルシノール、4,4’-ジアミノ-3,3’-ジヒドロキシビフェニル;2,4-ジアミノ安息香酸、2,5-ジアミノ安息香酸、3,5-ジアミノ安息香酸、4,4’-ジアミノビフェニル-3-カルボン酸、4,4’-ジアミノジフェニルメタン-3-カルボン酸、1,2-ビス(4-アミノフェニル)エタン-3-カルボン酸、4,4’-ジアミノビフェニル-3,3’-ジカルボン酸、4,4’-ジアミノビフェニル-2,2’-ジカルボン酸、3,3’-ジアミノビフェニル-4,4’-ジカルボン酸、3,3’-ジアミノビフェニル-2,4’-ジカルボン酸、4,4’-ジアミノジフェニルメタン-3,3’-ジカルボン酸、1,2-ビス(4-アミノフェニル)エタン-3,3’-ジカルボン酸、4,4’-ジアミノジフェニルエーテル-3,3’-ジカルボン酸などのカルボキシ基を有するジアミン;4-(2-(メチルアミノ)エチル)アニリン、4-(2-アミノエチル)アニリン、1-(4-アミノフェニル)-1,3,3-トリメチル-1H-インダン-5-アミン、1-(4-アミノフェニル)-2,3-ジヒドロ-1,3,3-トリメチル-1H-インデン-6-アミン;下記式(5-1)~(5-6)などの基「-N(D)-」(Dは加熱によって脱離し水素原子に置き換わる保護基を表し、好ましくはカルバメート系保護基であり、より好ましくはtert-ブトキシカルボニル基である。但し、上記特定ジアミンを除く。)を有するジアミン、コレスタニルオキシ-3,5-ジアミノベンゼン、コレステニルオキシ-3,5-ジアミノベンゼン、コレスタニルオキシ-2,4-ジアミノベンゼン、3,5-ジアミノ安息香酸コレスタニル、3,5-ジアミノ安息香酸コレステニル、3,5-ジアミノ安息香酸ラノスタニル及び3,6-ビス(4-アミノベンゾイルオキシ)コレスタン等のステロイド骨格を有するジアミン、下記式(V-1)~(V-2)で表されるジアミン;1,3-ビス(3-アミノプロピル)-テトラメチルジシロキサン等のシロキサン結合を有するジアミン;メタキシリレンジアミン、1,3-プロパンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ジアミノシクロヘキサン、4,4’-メチレンビス(シクロヘキシルアミン)、国際公開第2018/117239号に記載の式(Y-1)~(Y-167)のいずれかで表される基に2つのアミノ基が結合したジアミン等。 Examples of other diamines are listed below, but are not limited to these. The other diamines may be used singly or in combination of two or more. p-phenylenediamine, 2,3,5,6-tetramethyl-p-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, m-phenylenediamine, 2,4-dimethyl-m-phenylenediamine, 2, 5-diaminotoluene, 2,6-diaminotoluene, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethoxy-4 ,4'-diaminobiphenyl, 3,3'-dihydroxy-4,4'-diaminobiphenyl, 2,2'-difluoro-4,4'-diaminobiphenyl, 3,3'-difluoro-4,4'-diamino biphenyl, 2,2′-bis(trifluoromethyl)-4,4′-diaminobiphenyl, 3,3′-bis(trifluoromethyl)-4,4′-diaminobiphenyl, 3,4′-diaminobiphenyl, 4,4′-diaminobiphenyl, 3,3′-diaminobiphenyl, 2,2′-diaminobiphenyl, 2,3′-diaminobiphenyl represented by the following formulas (d AL -1) to (d AL -10) diamine, 1,7-bis(4-aminophenoxy)heptane, 1,7-bis(3-aminophenoxy)heptane, 1,8-bis(4-aminophenoxy)octane, 1,8-bis(3- aminophenoxy)octane, 1,9-bis(4-aminophenoxy)nonane, 1,9-bis(3-aminophenoxy)nonane, 1,10-bis(4-aminophenoxy)decane, 1,10-bis( 3-aminophenoxy)decane, 1,11-bis(4-aminophenoxy)undecane, 1,11-bis(3-aminophenoxy)undecane, 1,12-bis(4-aminophenoxy)dodecane, 1,12- bis(3-aminophenoxy)dodecane, 1,4-bis(4-aminophenoxy)benzene, 1,3-bis(4-aminophenoxy)benzene, 4,4′-bis(4-aminophenoxy)biphenyl, 4 , 4′-bis(4-aminophenoxy)diphenyl ether, 1,4-bis[4-(4-aminophenoxy)phenoxy]benzene, 1,2-bis(6-amino-2-naphthyloxy)ethane, 1, 2-bis(6-amino-2-naphthyl)ethane, 6-[2-(4-aminophenoxy)ethoxy]-2-naphthylamine, 1,4-phenylenebis(4-aminobenzoate), 1,4-phenylene Bis(3-aminobenzoate), 1,3-phenylenebis(4-aminobenzoate), 1,3-phenylenebis(3-aminobenzoate), bis(4-aminophenyl)terephthalate, bis(3-aminophenyl) Terephthalate, bis(4-aminophenyl)isophthalate, bis(3-aminophenyl)isophthalate (hereinafter, these diamines are also referred to as other diamines (a). ); a diamine having a photoalignable group such as 4,4′-diaminoazobenzene or diaminotran; 2-(2,4-diaminophenoxy)ethyl methacrylate or 2,4-diamino-N,N-diallylaniline Diamines terminated with photopolymerizable groups; 1-(4-(2-(2,4-diaminophenoxy)ethoxy)phenyl)-2-hydroxy-2-methylpropanone, 2-(4-(2-hydroxy -2-methylpropanoyl)phenoxy)ethyl diamines having a radical polymerization initiator function such as 3,5-diaminobenzoate; diamines having an amide bond such as 4,4'-diaminobenzanilide, 1,3-bis(4 -aminophenyl)urea, 1,3-bis(4-aminobenzyl)urea, 1,3-bis(4-aminophenethyl)urea and other diamines having a urea bond; 3,3′-diaminodiphenyl ether, 3,4 '-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 2,2-bis[4-(4-aminophenoxy)phenyl]propane, 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane , 2,2-bis(4-aminophenyl)hexafluoropropane, 2,2-bis(3-aminophenyl)hexafluoropropane, 2,2-bis(3-amino-4-methylphenyl)hexafluoropropane, 2,2-bis(4-aminophenyl)propane, 2,2-bis(3-aminophenyl)propane, 2,2-bis(3-amino-4-methylphenyl)propane, 4,4'-diaminobenzophenone , 1,4-bis(4-aminophenyl)benzene, 1,3-bis(4-aminophenyl)benzene, 1,4-bis(4-aminobenzyl)benzene; 2,6-diaminopyridine, 3,4 -diaminopyridine, 2,4-diaminopyrimidine, 3,6-diaminocarbazole, N-methyl-3,6-diaminocarbazole, 1,4-bis-(4-aminophenyl)-piperazine, 3,6-diaminoacridine , N-ethyl-3,6-diaminocarbazole, N-phenyl-3,6-diaminocarbazole, N-[3-(1H-imidazol-1-yl)propyl] 3,5-diaminobenzamide, 4-[4 -[(4-aminophenoxy)methyl]-4,5-dihydro-4-methyl-2-oxazolyl]-benzenamine, diamines represented by the following formulas (z-1) to (z-13), etc. or 4,4'-diaminodiphenylamine, 4,4'-diaminodiphenyl-N-methylamine, N,N'-bis(4-aminophenyl)-benzidine, N,N'-bis (4-aminophenyl)-N,N'-dimethylbenzidine or diamines having a diphenylamine structure such as N,N'-bis(4-aminophenyl)-N,N'-dimethyl-1,4-benzenediamine At least one nitrogen atom-containing structure selected from the group consisting of a nitrogen atom-containing heterocycle, a secondary amino group and a tertiary amino group (hereinafter also referred to as a specific nitrogen atom-containing structure). ) (provided that the molecule does not have an amino group bonded with a protective group that is eliminated by heating and replaced with a hydrogen atom.); 2,4-diaminophenol, 3,5-diaminophenol, 3,5- diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol, 4,6-diaminoresorcinol, 4,4'-diamino-3,3'-dihydroxybiphenyl; 2,4-diaminobenzoic acid, 2,5-diaminobenzoic acid, 3,5-diaminobenzoic acid, 4,4'-diaminobiphenyl-3-carboxylic acid, 4,4'-diaminodiphenylmethane-3-carboxylic acid, 1,2-bis(4-aminophenyl)ethane-3-carboxylic acid acid, 4,4'-diaminobiphenyl-3,3'-dicarboxylic acid, 4,4'-diaminobiphenyl-2,2'-dicarboxylic acid, 3,3'-diaminobiphenyl-4,4'-dicarboxylic acid, 3,3'-diaminobiphenyl-2,4'-dicarboxylic acid, 4,4'-diaminodiphenylmethane-3,3'-dicarboxylic acid, 1,2-bis(4-aminophenyl)ethane-3,3'- dicarboxylic acids, diamines having a carboxyl group such as 4,4'-diaminodiphenyl ether-3,3'-dicarboxylic acid; 4-(2-(methylamino)ethyl)aniline, 4-(2-aminoethyl)aniline, 1 -(4-aminophenyl)-1,3,3-trimethyl-1H-indan-5-amine, 1-(4-aminophenyl)-2,3-dihydro-1,3,3-trimethyl-1H-indene -6-amine; groups such as the following formulas (5-1) to (5-6) "-N(D)-" (D represents a protecting group that is eliminated by heating and replaced with a hydrogen atom, preferably carbamate-based protection a tert-butoxycarbonyl group, more preferably a tert-butoxycarbonyl group, excluding the above specific diamines), cholestanyloxy-3,5-diaminobenzene, cholestenyloxy-3,5-diaminobenzene, Cholestanyloxy-2,4-diaminobenzene, cholestanyl 3,5-diaminobenzoate, cholestenyl 3,5-diaminobenzoate, lanostanyl 3,5-diaminobenzoate and 3,6-bis(4-aminobenzoyloxy) Diamines having a steroid skeleton such as cholestane, diamines represented by the following formulas (V-1) to (V-2); 1,3-bis(3-aminopropyl)-tetramethyldisiloxane having a siloxane bond Diamine; metaxylylenediamine, 1,3-propanediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, 1,3-bis(aminomethyl)cyclohexane, 1,4-diaminocyclohexane, 4,4′-methylenebis (cyclohexylamine), a diamine in which two amino groups are bonded to a group represented by any one of formulas (Y-1) to (Y-167) described in WO 2018/117239, and the like.
Figure JPOXMLDOC01-appb-C000011
(式(dAL-6)および(dAL-8)において、m1およびm2は、それぞれ独立して上記定義を有する。)
Figure JPOXMLDOC01-appb-C000011
(In formulas (d AL -6) and (d AL -8), m1 and m2 each independently have the above definition.)
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
 上記式(V-1)中、m、nは、それぞれ独立して、0~3の整数であり、1≦m+n≦4を満たす。jは0又は1の整数である。Xは、-(CH-(aは1~15の整数である。)、-CONH-、-NHCO-、-CO-N(CH)-、-NH-、-O-、-CHO-、-CH-OCO-、-COO-、又は-OCO-を表す。Rは、フッ素原子、炭素数1~10のフッ素原子含有アルキル基、炭素数1~10のフッ素原子含有アルコキシ基、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、及び炭素数2~10のアルコキシアルキル基などの1価の基を表す。上記式(V-2)中、Xは-O-、-CHO-、-CH-OCO-、-COO-、又は-OCO-を表す。m、n、X、Rが2つ存在する場合、それぞれ独立して上記定義を有する。
Figure JPOXMLDOC01-appb-C000015
In the above formula (V-1), m and n are each independently an integer of 0 to 3 and satisfy 1≦m+n≦4. j is an integer of 0 or 1; X 1 is -(CH 2 ) a - (a is an integer of 1 to 15), -CONH-, -NHCO-, -CO-N(CH 3 )-, -NH-, -O-, represents -CH 2 O-, -CH 2 -OCO-, -COO- or -OCO-; R 1 is a fluorine atom, a fluorine atom-containing alkyl group having 1 to 10 carbon atoms, a fluorine atom-containing alkoxy group having 1 to 10 carbon atoms, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and It represents a monovalent group such as an alkoxyalkyl group having 2 to 10 carbon atoms. In formula (V-2) above, X 2 represents -O-, -CH 2 O-, -CH 2 -OCO-, -COO- or -OCO-. When two of m, n, X 1 and R 1 are present, each independently has the above definition.
 上記ポリアミック酸(P’)の製造に用いられるジアミン成分は、本発明の効果を好適に得る観点から、中でも、上記その他のジアミン(a)からなる群から選ばれる少なくとも1種のジアミンを含むことが好ましい。   From the viewpoint of suitably obtaining the effects of the present invention, the diamine component used in the production of the polyamic acid (P′) should contain at least one diamine selected from the group consisting of the above other diamines (a). is preferred.  
 上記ジアミン(0)に加えてその他のジアミンを使用する場合、上記その他のジアミンの使用量は、重合体(P)の製造に使用される全ジアミン成分に対して、好ましくは10~90モル%であり、より好ましくは20~80モル%である。 When other diamines are used in addition to the diamine (0), the amount of the other diamines used is preferably 10 to 90 mol% with respect to the total diamine components used in the production of the polymer (P). and more preferably 20 to 80 mol %.
(テトラカルボン酸成分)
 上記ポリアミック酸(P’)を製造する場合、ジアミン成分と反応させるテトラカルボン酸成分は、テトラカルボン酸二無水物だけでなく、テトラカルボン酸、テトラカルボン酸ジハライド、テトラカルボン酸ジアルキルエステル、又はテトラカルボン酸ジアルキルエステルジハライドなどのテトラカルボン酸二無水物の誘導体を用いることもできる。
(Tetracarboxylic acid component)
When producing the polyamic acid (P'), the tetracarboxylic acid component to be reacted with the diamine component is not only tetracarboxylic dianhydride, but also tetracarboxylic acid, tetracarboxylic acid dihalide, tetracarboxylic acid dialkyl ester, or tetracarboxylic acid. Derivatives of tetracarboxylic dianhydrides such as carboxylic acid dialkyl ester dihalides can also be used.
 上記テトラカルボン酸二無水物又はその誘導体は、非環式脂肪族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、芳香族テトラカルボン酸二無水物、又はこれらの誘導体が挙げられる。なかでも、ベンゼン環、シクロブタン環、シクロペンタン環及びシクロヘキサン環よりなる群から選ばれる少なくとも一種の部分構造を有するテトラカルボン酸二無水物又はこれらの誘導体を含むことがより好ましい。特に、シクロブタン環、シクロペンタン環及びシクロヘキサン環よりなる群から選ばれる少なくとも一種の構造を有するテトラカルボン酸二無水物又はこれらの誘導体を含むことが更に好ましい。
 上記テトラカルボン酸二無水物又はその誘導体は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 なお、非環式脂肪族テトラカルボン酸二無水物は、鎖状炭化水素構造に結合する4つのカルボキシ基が分子内脱水することにより得られる酸二無水物である。但し、鎖状炭化水素構造のみで構成されている必要はなく、その一部に脂環式構造や芳香環構造を有していてもよい。
 脂環式テトラカルボン酸二無水物は、脂環式構造に結合する少なくとも1つのカルボキシ基を含めて4つのカルボキシ基が分子内脱水することにより得られる酸二無水物である。但し、これら4つのカルボキシ基はいずれも芳香環には結合していない。また、脂環式構造のみで構成されている必要はなく、その一部に鎖状炭化水素構造や芳香環構造を有していてもよい。
 芳香族テトラカルボン酸二無水物は、芳香環に結合する少なくとも1つのカルボキシ基を含めて4つのカルボキシ基が分子内脱水することにより得られる酸二無水物である。但し、芳香環構造のみで構成されている必要はなく、その一部に鎖状炭化水素構造や脂環式構造を有していてもよい。
The tetracarboxylic dianhydride or derivative thereof includes an acyclic aliphatic tetracarboxylic dianhydride, an alicyclic tetracarboxylic dianhydride, an aromatic tetracarboxylic dianhydride, or derivatives thereof. . Among them, it is more preferable to contain a tetracarboxylic dianhydride having at least one partial structure selected from the group consisting of a benzene ring, a cyclobutane ring, a cyclopentane ring and a cyclohexane ring, or a derivative thereof. In particular, it is more preferable to contain a tetracarboxylic dianhydride having at least one structure selected from the group consisting of a cyclobutane ring, a cyclopentane ring and a cyclohexane ring, or a derivative thereof.
The tetracarboxylic dianhydrides or derivatives thereof may be used singly or in combination of two or more.
The acyclic aliphatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups bonded to a chain hydrocarbon structure. However, it does not need to be composed only of a chain hydrocarbon structure, and may have an alicyclic structure or an aromatic ring structure in part thereof.
An alicyclic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups including at least one carboxy group bonded to an alicyclic structure. However, none of these four carboxy groups are bonded to the aromatic ring. Moreover, it is not necessary to consist only of an alicyclic structure, and a part thereof may have a chain hydrocarbon structure or an aromatic ring structure.
An aromatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups including at least one carboxy group bonded to an aromatic ring. However, it is not necessary to consist only of an aromatic ring structure, and a part thereof may have a chain hydrocarbon structure or an alicyclic structure.
 上記ポリアミック酸(P’)の製造に用いることのできるテトラカルボン酸成分としては、好ましくは、以下のテトラカルボン酸二無水物又はその誘導体(本発明では、これらを総称して特定のテトラカルボン酸誘導体ともいう。)を含む。
 1,2,3,4-ブタンテトラカルボン酸二無水物等の非環式脂肪族テトラカルボン酸二無水物;1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジクロロ-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジフルオロ-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ビス(トリフルオロメチル)-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、3,3’,4,4’-ジシクロヘキシルテトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)テトラヒドロナフタレン-1,2-ジカルボン酸無水物、5-(2,5-ジオキソテトラヒドロフラン-3-イル)-3a,4,5,9b-テトラヒドロナフト[1,2-c]フラン-1,3-ジオン、5-(2,5-ジオキソテトラヒドロフラン-3-イル)-8-メチル-3a,4,5,9b-テトラヒドロナフト[1,2-c]フラン-1,3-ジオン、ビシクロ[2.2.2]オクタ-7-エン-2,3,5,6-テトラカルボン酸二無水物、ビシクロ[2.2.2]オクタン-2,3,5,6-テトラカルボン酸二無水物、2,4,6,8-テトラカルボキシビシクロ[3.3.0]オクタン-2:4,6:8-二無水物等の脂環式テトラカルボン酸二無水物;ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)-2,2-ジフェニルプロパン二無水物、エチレングリコールビスアンヒドロトリメリテート、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、4,4’-カルボニルジフタル酸無水物、4,4’-(1,4-フェニレンジオキシ)ビス(フタル酸無水物)、又は4,4’-(1,4-フェニレンジメチレン)ビス(フタル酸無水物)等の芳香族テトラカルボン酸二無水物;そのほか、特開2010-97188号公報に記載のテトラカルボン酸二無水物等。
The tetracarboxylic acid component that can be used in the production of the polyamic acid (P′) preferably includes the following tetracarboxylic dianhydrides or derivatives thereof (in the present invention, these are collectively referred to as specific tetracarboxylic acids Also called derivatives.).
Acyclic aliphatic tetracarboxylic dianhydrides such as 1,2,3,4-butanetetracarboxylic dianhydride; 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2-dimethyl -1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-dichloro-1,2,3 ,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-difluoro-1,2,3, 4-cyclobutanetetracarboxylic dianhydride, 1,3-bis(trifluoromethyl)-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic acid dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 3,3′,4,4′-dicyclohexyltetracarboxylic dianhydride, 2,3,5-tricarboxycyclopentylacetic dianhydride 4-(2,5-dioxotetrahydrofuran-3-yl)tetrahydronaphthalene-1,2-dicarboxylic anhydride, 5-(2,5-dioxotetrahydrofuran-3-yl)-3a,4,5 ,9b-tetrahydronaphtho[1,2-c]furan-1,3-dione, 5-(2,5-dioxotetrahydrofuran-3-yl)-8-methyl-3a,4,5,9b-tetrahydronaphtho [1,2-c]furan-1,3-dione, bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, bicyclo[2.2. 2] octane-2,3,5,6-tetracarboxylic dianhydride, 2,4,6,8-tetracarboxybicyclo[3.3.0]octane-2:4,6:8-dianhydride alicyclic tetracarboxylic dianhydrides such as; Carboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 3,3′,4,4′-diphenyl ether tetra Carboxylic dianhydride, 3,3′,4,4′-biphenyltetracarboxylic dianhydride, 2,2′,3,3′-biphenyltetracarboxylic dianhydride, 4,4′-bis(3 ,4-dicarboxyphenoxy)-2,2-diphenylpropane dianhydride, ethylene glycol bisanhydrotrimellitate, 4,4′-(hexafluoroisopropylidene)diphthalic anhydride, 4,4′-carbonyldi phthalic anhydride, 4,4'-(1,4-phenylenedioxy)bis(phthalic anhydride), or 4,4'-(1,4-phenylenedimethylene)bis(phthalic anhydride), etc. Aromatic tetracarboxylic dianhydrides; In addition, tetracarboxylic dianhydrides described in JP-A-2010-97188.
 上記特定のテトラカルボン酸誘導体の好ましい例としては、1,2,3,4-ブタンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジフルオロ-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ビス(トリフルオロメチル)-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、3,3’,4,4’-ジシクロヘキシルテトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、5-(2,5-ジオキソテトラヒドロフラン-3-イル)-3a,4,5,9b-テトラヒドロナフト[1,2-c]フラン-1,3-ジオン、5-(2,5-ジオキソテトラヒドロフラン-3-イル)-8-メチル-3a,4,5,9b-テトラヒドロナフト[1,2-c]フラン-1,3-ジオン、2,4,6,8-テトラカルボキシビシクロ[3.3.0]オクタン-2:4,6:8-二無水物、ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、又はこれらの誘導体である。 Preferred examples of the above specific tetracarboxylic acid derivatives include 1,2,3,4-butanetetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2-dimethyl -1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-tetramethyl- 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-difluoro-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-bis(trifluoromethyl)-1 , 2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 3, 3′,4,4′-dicyclohexyltetracarboxylic dianhydride, 2,3,5-tricarboxycyclopentylacetic dianhydride, 5-(2,5-dioxotetrahydrofuran-3-yl)-3a,4, 5,9b-tetrahydronaphtho[1,2-c]furan-1,3-dione, 5-(2,5-dioxotetrahydrofuran-3-yl)-8-methyl-3a,4,5,9b-tetrahydro naphtho[1,2-c]furan-1,3-dione, 2,4,6,8-tetracarboxybicyclo[3.3.0]octane-2:4,6:8-dianhydride, pyromellit acid dianhydride, 3,3′,4,4′-benzophenonetetracarboxylic dianhydride, 3,3′,4,4′-diphenylsulfonetetracarboxylic dianhydride, 1,4,5,8- naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 3,3′,4,4′-diphenyl ether tetracarboxylic dianhydride, 3,3′,4,4 '-biphenyltetracarboxylic dianhydride, 2,2',3,3'-biphenyltetracarboxylic dianhydride, or derivatives thereof.
 上記特定のテトラカルボン酸誘導体の使用割合は、使用される全テトラカルボン酸成分に対して、10モル%以上が好ましく、20モル%以上がより好ましく、50モル%以上がさらに好ましい。 The proportion of the above-mentioned specific tetracarboxylic acid derivative used is preferably 10 mol% or more, more preferably 20 mol% or more, and even more preferably 50 mol% or more, relative to the total tetracarboxylic acid components used.
(液晶配向剤)
 本発明の液晶配向剤は、重合体(P)、及び必要に応じて使用されるその他の成分が、好ましくは適当な溶媒中に分散又は溶解してなる液状の組成物である。
 本発明の液晶配向剤に含まれる重合体成分の合計含有量は、形成させようとする塗膜の厚みの設定によっても適宜変更できるが、均一で欠陥のない塗膜を形成させるという点から、液晶配向剤の全質量に対して1質量%以上が好ましく、溶液の保存安定性の点からは10質量%以下が好ましい。
 本発明に用いられる重合体(P)の含有量は、液晶配向剤中に含まれる重合体の合計100質量部に対して、1~100質量部が好ましく、10~100質量部がより好ましく、20~100質量部が特に好ましい。
(Liquid crystal aligning agent)
The liquid crystal aligning agent of the present invention is a liquid composition in which the polymer (P) and optionally other components are preferably dispersed or dissolved in a suitable solvent.
The total content of the polymer components contained in the liquid crystal aligning agent of the present invention can be appropriately changed by setting the thickness of the coating film to be formed. 1 mass % or more is preferable with respect to the total mass of a liquid crystal aligning agent, and 10 mass % or less is preferable from the point of the storage stability of a solution.
The content of the polymer (P) used in the present invention is preferably 1 to 100 parts by mass, more preferably 10 to 100 parts by mass, with respect to the total 100 parts by mass of the polymer contained in the liquid crystal aligning agent. 20 to 100 parts by weight is particularly preferred.
 本発明の液晶配向剤は、重合体(P)以外のその他の重合体を含有してもよい。その他の重合体の具体例を挙げると、上記特定ジアミンを有しないジアミン成分を用いて得られるポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体(本発明では重合体(B)ともいう。)、ポリシロキサン、ポリエステル、ポリアミド、ポリウレア、ポリオルガノシロキサン、セルロース誘導体、ポリアセタール、ポリスチレン誘導体、ポリ(スチレン-マレイン酸無水物)共重合体、ポリ(イソブチレン-マレイン酸無水物)共重合体、ポリ(ビニルエーテル-マレイン酸無水物)共重合体、ポリ(スチレン-フェニルマレイミド)誘導体、ポリ(メタ)アクリレートからなる群から選ばれる重合体などが挙げられる。 The liquid crystal aligning agent of the present invention may contain polymers other than the polymer (P). Specific examples of other polymers include at least one polymer selected from the group consisting of a polyimide precursor obtained using a diamine component that does not have the specific diamine and a polyimide that is an imidized product of the polyimide precursor. (Also referred to as polymer (B) in the present invention.), polysiloxane, polyester, polyamide, polyurea, polyorganosiloxane, cellulose derivative, polyacetal, polystyrene derivative, poly(styrene-maleic anhydride) copolymer, poly( isobutylene-maleic anhydride) copolymers, poly(vinyl ether-maleic anhydride) copolymers, poly(styrene-phenylmaleimide) derivatives, polymers selected from the group consisting of poly(meth)acrylates, and the like. .
 ポリ(スチレン-マレイン酸無水物)共重合体の具体例としては、SMA1000、SMA2000、SMA3000(Cray Valley社製)、GSM301(岐阜セラツク製造所社製)などが挙げられ、ポリ(イソブチレン-マレイン酸無水物)共重合体の具体例としては、イソバン-600(クラレ社製)が挙げられる。ポリ(ビニルエーテル-マレイン酸無水物)共重合体の具体例としては、Gantrez AN-139(メチルビニルエーテル無水マレイン酸樹脂、アシュランド社製)が挙げられる。
 なかでも、残留DC由来の残像を少なくする点から、重合体(B)がより好ましい。
 上記その他の重合体は、一種を単独で使用してもよく、また二種以上を組み合わせて使用してもよい。その他の重合体の含有割合は、液晶配向剤中に含まれる重合体の合計100質量部に対して、90質量部以下が好ましく、10~90質量部がより好ましく、20~80質量部が更に好ましい。
 上記重合体(P)の含有量は、液晶配向剤中に含まれる重合体の合計100質量部に対して、90質量部以下でもよく、80質量部以下でもよい。
Specific examples of poly(styrene-maleic anhydride) copolymers include SMA1000, SMA2000, SMA3000 (manufactured by Cray Valley), GSM301 (manufactured by Gifu Shellac Manufacturing Co., Ltd.) and the like. Anhydride) copolymers include Isoban-600 (manufactured by Kuraray Co., Ltd.). A specific example of the poly(vinyl ether-maleic anhydride) copolymer is Gantrez AN-139 (methyl vinyl ether maleic anhydride resin, manufactured by Ashland).
Among them, the polymer (B) is more preferable from the viewpoint of reducing afterimages derived from residual DC.
These other polymers may be used singly or in combination of two or more. The content of the other polymer is preferably 90 parts by mass or less, more preferably 10 to 90 parts by mass, and further 20 to 80 parts by mass with respect to the total 100 parts by mass of the polymer contained in the liquid crystal aligning agent. preferable.
90 mass parts or less may be sufficient as content of the said polymer (P) with respect to a total of 100 mass parts of the polymers contained in a liquid crystal aligning agent, and 80 mass parts or less may be sufficient.
(重合体(B))
 上記重合体(B)の製造に用いられるテトラカルボン酸成分の具体例は、好ましい具体例を含めて、重合体(P)で例示した化合物と同様の化合物が挙げられる。重合体(B)の製造に用いられるテトラカルボン酸成分は、より好ましくは、ベンゼン環、シクロブタン環、シクロペンタン環及びシクロヘキサン環よりなる群から選ばれる少なくとも一種の部分構造を有するテトラカルボン酸二無水物又はこれらの誘導体を含むことがより好ましく、上記特定のテトラカルボン酸誘導体がさらに好ましく、上記特定のテトラカルボン酸誘導体のより好ましい具体例を用いることが最も好ましい。
 また、上記特定のテトラカルボン酸誘導体の使用量は、重合体(B)の製造に使用される全テトラカルボン酸成分に対して、10モル%以上が好ましく、20モル%以上がより好ましく、50モル%以上がさらに好ましい。
(Polymer (B))
Specific examples of the tetracarboxylic acid component used in the production of the polymer (B) include the same compounds as those exemplified for the polymer (P), including preferred specific examples. The tetracarboxylic acid component used for producing the polymer (B) is more preferably a tetracarboxylic dianhydride having at least one partial structure selected from the group consisting of a benzene ring, a cyclobutane ring, a cyclopentane ring and a cyclohexane ring. or derivatives thereof, more preferably the above-mentioned specific tetracarboxylic acid derivative, and most preferably using more preferred specific examples of the above-mentioned specific tetracarboxylic acid derivative.
The amount of the specific tetracarboxylic acid derivative used is preferably 10 mol % or more, more preferably 20 mol % or more, more preferably 50 mol % or more, relative to the total tetracarboxylic acid component used in the production of the polymer (B). More preferably mol% or more.
 重合体(B)を得るためのジアミン成分としては、例えば、上記重合体(P)で例示したジアミンが挙げられる。中でも、分子内にウレア結合、アミド結合、カルボキシ基及びヒドロキシ基からなる群から選ばれる少なくとも1種の基を有するジアミン、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、上記式(dAL-1)~(dAL-10)で表されるジアミン及び、上記特定の窒素原子含有構造を有するジアミン、からなる群から選ばれる少なくとも1種のジアミン(本発明では、これらを特定ジアミン(b)ともいう。)を含むことが好ましい。前記ジアミン成分は、一種のジアミンを単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 上記特定ジアミン(b)を用いる場合、その使用量は、重合体(B)の製造に用いられる全ジアミン成分の10モル%以上が好ましく、20モル%以上がより好ましい。特定ジアミン(b)以外のジアミンを用いる場合、その使用量は、重合体(B)の製造に用いられる全ジアミン成分の90モル%以下が好ましく、80モル%以下がより好ましい。
Examples of the diamine component for obtaining the polymer (B) include the diamines exemplified for the polymer (P) above. Among them, diamine, 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4 having at least one group selected from the group consisting of urea bond, amide bond, carboxy group and hydroxy group in the molecule '-Diaminodiphenyl ether, at least one diamine selected from the group consisting of diamines represented by the above formulas (d AL -1) to (d AL -10), and diamines having the above specific nitrogen atom-containing structure ( In the present invention, these are also referred to as specific diamines (b).) are preferably included. As the diamine component, one type of diamine may be used alone, or two or more types may be used in combination.
When the specific diamine (b) is used, the amount used is preferably 10 mol % or more, more preferably 20 mol % or more, of the total diamine component used in the production of the polymer (B). When using a diamine other than the specific diamine (b), the amount used is preferably 90 mol% or less, more preferably 80 mol% or less, of the total diamine component used in the production of the polymer (B).
(ポリアミック酸の製造)
 ポリアミック酸の製造は、ジアミン成分とテトラカルボン酸成分とを有機溶媒中で反応させることにより行われる。ポリアミック酸の製造反応に供されるテトラカルボン酸成分とジアミン成分との使用割合は、ジアミン成分のアミノ基1当量に対して、テトラカルボン酸成分の酸無水物基が0.5~2当量となる割合が好ましく、さらに好ましくは0.8~1.2当量である。通常の重縮合反応と同様に、このテトラカルボン酸成分の酸無水物基の当量が1当量に近いほど、生成するポリアミック酸の分子量は大きくなる。
 ポリアミック酸の製造における反応温度は-20~150℃が好ましく、0~100℃がより好ましい。また、反応時間は0.1~24時間が好ましく、0.5~12時間がより好ましい。ポリアミック酸の製造は、任意の濃度で行うことができる。ポリアミック酸の濃度は、好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、溶媒を追加することもできる。
(Production of polyamic acid)
A polyamic acid is produced by reacting a diamine component and a tetracarboxylic acid component in an organic solvent. The ratio of the tetracarboxylic acid component and the diamine component used in the polyamic acid production reaction is 0.5 to 2 equivalents of the acid anhydride group of the tetracarboxylic acid component per 1 equivalent of the amino group of the diamine component. is preferably 0.8 to 1.2 equivalents. As in ordinary polycondensation reactions, the closer the equivalent of the acid anhydride group of the tetracarboxylic acid component is to 1 equivalent, the greater the molecular weight of the resulting polyamic acid.
The reaction temperature in the production of polyamic acid is preferably -20 to 150°C, more preferably 0 to 100°C. Also, the reaction time is preferably 0.1 to 24 hours, more preferably 0.5 to 12 hours. Polyamic acid can be produced at any concentration. The concentration of polyamic acid is preferably 1 to 50% by mass, more preferably 5 to 30% by mass. The initial stage of the reaction can be carried out at a high concentration, and then the solvent can be added.
 上記有機溶媒の具体例としては、シクロヘキサノン、シクロペンタノン、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、1,3-ジメチル-2-イミダゾリジノンが挙げられる。また、重合体の溶媒溶解性が高い場合は、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、ジエチレングリコールモノメチルエーテル、又はジエチレングリコールモノエチルエーテルなどの溶媒を用いることができる。 Specific examples of the organic solvent include cyclohexanone, cyclopentanone, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, γ-butyrolactone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethyl sulfoxide, 1,3-dimethyl-2-imidazolidinone. In addition, when the solvent solubility of the polymer is high, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, propylene glycol monomethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene Solvents such as glycol monopropyl ether, diethylene glycol monomethyl ether, or diethylene glycol monoethyl ether can be used.
(ポリアミック酸エスエルの製造)
 ポリアミック酸エステルは、例えば、[I]上記の方法で得られたポリアミック酸とエステル化剤とを反応させる方法、[II]テトラカルボン酸ジエステルとジアミンとを反応させる方法、[III]テトラカルボン酸ジエステルジハロゲン化物とジアミンとを反応させる方法、などの既知の方法によって得ることができる。
(Production of Polyamic Acid Ester)
Polyamic acid esters are produced by, for example, [I] a method of reacting the polyamic acid obtained by the above method with an esterifying agent, [II] a method of reacting a tetracarboxylic acid diester with a diamine, [III] a tetracarboxylic acid It can be obtained by a known method such as a method of reacting a diester dihalide and a diamine.
(ポリイミドの製造)
 ポリイミドは、上記ポリアミック酸又はポリアミック酸エステルなどのポリイミド前駆体を閉環(イミド化)させることによりポリイミドを得ることができる。なお、本明細書でいうイミド化率とは、テトラカルボン酸二無水物又はその誘導体由来のイミド基とカルボキシ基(又はその誘導体)との合計量に占めるイミド基の割合のことである。イミド化率は、必ずしも100%である必要はなく、用途や目的に応じて任意に調整できる。
(Manufacturing of polyimide)
A polyimide can be obtained by ring-closing (imidizing) a polyimide precursor such as the above polyamic acid or polyamic acid ester. As used herein, the imidization ratio is the ratio of imide groups to the total amount of imide groups derived from tetracarboxylic dianhydride or derivatives thereof and carboxy groups (or derivatives thereof). The imidization rate does not necessarily have to be 100%, and can be arbitrarily adjusted according to the application and purpose.
 ポリイミド前駆体をイミド化させる方法としては、ポリイミド前駆体の溶液をそのまま加熱する熱イミド化又はポリイミド前駆体の溶液に触媒を添加する触媒イミド化が挙げられる。
 ポリイミド前駆体を溶液中で熱イミド化させる場合の温度は、好ましくは100~400℃であり、より好ましくは120~250℃であり、イミド化反応により生成する水を系外に除きながら行う方が好ましい。
Examples of the method for imidizing the polyimide precursor include thermal imidization in which the solution of the polyimide precursor is heated as it is, and catalytic imidization in which a catalyst is added to the solution of the polyimide precursor.
When the polyimide precursor is thermally imidized in the solution, the temperature is preferably 100 to 400° C., more preferably 120 to 250° C., and water produced by the imidization reaction is removed from the system. is preferred.
 ポリイミド前駆体の触媒イミド化は、ポリイミド前駆体の溶液に、塩基性触媒と酸無水物とを添加し、好ましくは-20~250℃、より好ましくは0~180℃で撹拌することにより行うことができる。塩基性触媒の量はアミック酸基の好ましくは0.5~30モル倍、より好ましくは2~20モル倍であり、酸無水物の量はアミック酸基の好ましくは1~50モル倍、より好ましくは3~30モル倍である。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン又はトリオクチルアミンなどを挙げることができ、なかでも、ピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。酸無水物としては、無水酢酸、無水トリメリット酸又は無水ピロメリット酸などを挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより制御することができる。 Catalytic imidization of the polyimide precursor is carried out by adding a basic catalyst and an acid anhydride to the solution of the polyimide precursor, preferably -20 to 250°C, more preferably stirring at 0 to 180°C. can be done. The amount of the basic catalyst is preferably 0.5 to 30 times the molar amount of the amic acid group, more preferably 2 to 20 times the molar amount, and the amount of the acid anhydride is preferably 1 to 50 times the molar amount of the amic acid group. It is preferably 3 to 30 molar times. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine, etc. Among them, pyridine is preferable because it has appropriate basicity for advancing the reaction. Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, and pyromellitic anhydride. Among them, acetic anhydride is preferably used because it facilitates purification after the reaction is completed. The imidization rate by catalytic imidization can be controlled by adjusting the catalyst amount, reaction temperature, and reaction time.
 ポリイミド前駆体又はポリイミドの反応溶液から、生成したポリイミド前駆体又はポリイミドを回収する場合には、反応溶液を溶媒に投入して沈殿させればよい。沈殿に用いる溶媒としてはメタノール、エタノール、イソプロピルアルコール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、トルエン、ベンゼン、水などを挙げることができる。溶媒に投入して沈殿させた重合体は濾過して回収した後、常圧又は減圧下で、常温又は加熱して乾燥することができる。また、回収した重合体を、有機溶媒に再溶解させ、再沈殿回収する操作を2~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の溶媒として、例えば、アルコール、ケトン又は炭化水素などが挙げられ、これらのうちから選ばれる3種類以上の溶媒を用いると、より一層精製の効率が上がるので好ましい。 When recovering the generated polyimide precursor or polyimide from the polyimide precursor or polyimide reaction solution, the reaction solution may be put into a solvent to precipitate. Solvents used for precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, and water. The polymer precipitated by adding it to the solvent can be filtered and recovered, and then dried at room temperature or under heat under normal pressure or reduced pressure. In addition, the impurities in the polymer can be reduced by repeating the operation of redissolving the recovered polymer in an organic solvent and recovering it by reprecipitation 2 to 10 times. Solvents in this case include, for example, alcohols, ketones, hydrocarbons, and the like, and it is preferable to use three or more solvents selected from these, because the efficiency of purification is further increased.
 本発明におけるポリイミド前駆体やポリイミドを製造するに際して、テトラカルボン酸二無水物又はその誘導体を含むテトラカルボン酸成分、及び上記ジアミンを含むジアミン成分とともに、適当な末端封止剤を用いて末端封止型の重合体を製造してもよい。末端封止型の重合体は、塗膜によって得られる液晶配向膜の膜硬度の向上や、シール剤と液晶配向膜の密着特性の向上という効果を有する。
 本発明におけるポリイミド前駆体やポリイミドの末端の例としては、アミノ基、カルボキシ基、酸無水物基又は後述する末端封止剤に由来する基が挙げられる。アミノ基、カルボキシ基、酸無水物基は通常の縮合反応により得るか、又は以下の末端封止剤を用いて末端を封止することにより得ることができる。
When producing a polyimide precursor or polyimide in the present invention, a tetracarboxylic acid component containing a tetracarboxylic acid dianhydride or a derivative thereof, and a diamine component containing the diamine, together with an appropriate terminal blocker to end block A polymer of the type may be produced. The end-blocking polymer has effects of improving the film hardness of the liquid crystal alignment film obtained by the coating film and improving the adhesion properties between the sealing agent and the liquid crystal alignment film.
Examples of the terminal of the polyimide precursor or polyimide in the present invention include an amino group, a carboxyl group, an acid anhydride group, or a group derived from a terminal blocking agent to be described later. An amino group, a carboxyl group, and an acid anhydride group can be obtained by a normal condensation reaction, or can be obtained by terminal blocking using the following terminal blocking agents.
 末端封止剤としては、例えば、無水酢酸、無水マレイン酸、無水ナジック酸、無水フタル酸、無水イタコン酸、1,2-シクロヘキサンジカルボン酸無水物、3-ヒドロキシフタル酸無水物、トリメリット酸無水物、3-(3-トリメトキシシリル)プロピル)-3,4-ジヒドロフラン-2,5-ジオン、4,5,6,7-テトラフルオロイソベンゾフラン-1,3-ジオン、4-エチニルフタル酸無水物などの酸無水物;二炭酸ジ-tert-ブチル、二炭酸ジアリルなどの二炭酸ジエステル化合物;アクリロイルクロリド、メタクリロイルクロリド、ニコチン酸クロリドなどのクロロカルボニル化合物;アニリン、2-アミノフェノール、3-アミノフェノール、4-アミノサリチル酸、5-アミノサリチル酸、6-アミノサリチル酸、2-アミノ安息香酸、3-アミノ安息香酸、4-アミノ安息香酸、シクロヘキシルアミン、n-ブチルアミン、n-ペンチルアミン、n-ヘキシルアミン、n-ヘプチルアミン、n-オクチルアミンなどのモノアミン化合物;エチルイソシアネート、フェニルイソシアネート、ナフチルイソシアネート、又は、2-アクリロイルオキシエチルイソシアネ-ト、2-メタクリロイルオキシエチルイソシアネ-トなどの不飽和結合を有するイソシアネートなどを挙げることができる。
 末端封止剤の使用割合は、使用するジアミン成分の合計100モル部に対して、0.01~20モル部とすることが好ましく、0.01~10モル部とすることがより好ましい。
Terminal blockers include, for example, acetic anhydride, maleic anhydride, nadic anhydride, phthalic anhydride, itaconic anhydride, 1,2-cyclohexanedicarboxylic anhydride, 3-hydroxyphthalic anhydride, and trimellitic anhydride. 3-(3-trimethoxysilyl)propyl)-3,4-dihydrofuran-2,5-dione, 4,5,6,7-tetrafluoroisobenzofuran-1,3-dione, 4-ethynylphthal acid anhydrides such as acid anhydrides; dicarbonic acid diester compounds such as di-tert-butyl dicarbonate and diallyl dicarbonate; chlorocarbonyl compounds such as acryloyl chloride, methacryloyl chloride and nicotinic acid chloride; aniline, 2-aminophenol, 3 -aminophenol, 4-aminosalicylic acid, 5-aminosalicylic acid, 6-aminosalicylic acid, 2-aminobenzoic acid, 3-aminobenzoic acid, 4-aminobenzoic acid, cyclohexylamine, n-butylamine, n-pentylamine, n - monoamine compounds such as hexylamine, n-heptylamine, n-octylamine; Examples include isocyanates having unsaturated bonds.
The proportion of the terminal blocker used is preferably 0.01 to 20 mol parts, more preferably 0.01 to 10 mol parts, per 100 mol parts of the total diamine component used.
 ポリイミド前駆体及びポリイミドのゲルパーミエーションクロマトグラフィー(GPC)により測定したポリスチレン換算の重量平均分子量(Mw)は、好ましくは1,000~500,000であり、より好ましくは2,000~300,000である。また、Mwと、GPCにより測定したポリスチレン換算の数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)は、好ましくは15以下であり、より好ましくは10以下である。かかる分子量範囲にあることで、液晶表示素子の良好な液晶配向性を確保することができる。 The polystyrene equivalent weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of the polyimide precursor and polyimide is preferably 1,000 to 500,000, more preferably 2,000 to 300,000. is. In addition, the molecular weight distribution (Mw/Mn) represented by the ratio of Mw to the polystyrene equivalent number average molecular weight (Mn) measured by GPC is preferably 15 or less, more preferably 10 or less. By being in this molecular weight range, it is possible to ensure good liquid crystal orientation of the liquid crystal display element.
 本発明に係る液晶配向剤に含有される有機溶媒は、重合体(P)や必要に応じて添加されるその他の重合体が均一に溶解するものであれば特に限定されない。例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルラクトアミド、N,N-ジメチルプロピオンアミド、テトラメチル尿素、N,N-ジエチルホルムアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン、γ-バレロラクトン、1,3-ジメチル-2-イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、N-(n-プロピル)-2-ピロリドン、N-イソプロピル-2-ピロリドン、N-(n-ブチル)-2-ピロリドン、N-(tert-ブチル)-2-ピロリドン、N-(n-ペンチル)-2-ピロリドン、N-(3-メトキシプロピル)-2-ピロリドン、N-(2-エトキシエチル)-2-ピロリドン、N-(4-メトキシブチル)-2-ピロリドン、N-シクロヘキシル-2-ピロリドン(これらを総称して、良溶媒ともいう)などが挙げられる。なかでも、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド又はγ-ブチロラクトンが好ましい。良溶媒の含有量は、液晶配向剤に含まれる溶媒全体の20~99質量%であることが好ましく、20~90質量%がより好ましく、特に好ましいのは、30~80質量%である。 The organic solvent contained in the liquid crystal aligning agent according to the present invention is not particularly limited as long as it uniformly dissolves the polymer (P) and other polymers added as necessary. For example, N,N-dimethylformamide, N,N-dimethylacetamide, N,N-dimethyllactamide, N,N-dimethylpropionamide, tetramethylurea, N,N-diethylformamide, N-methyl-2-pyrrolidone , N-ethyl-2-pyrrolidone, dimethyl sulfoxide, γ-butyrolactone, γ-valerolactone, 1,3-dimethyl-2-imidazolidinone, methyl ethyl ketone, cyclohexanone, cyclopentanone, 3-methoxy-N,N-dimethyl Propanamide, 3-butoxy-N,N-dimethylpropanamide, N-(n-propyl)-2-pyrrolidone, N-isopropyl-2-pyrrolidone, N-(n-butyl)-2-pyrrolidone, N-( tert-butyl)-2-pyrrolidone, N-(n-pentyl)-2-pyrrolidone, N-(3-methoxypropyl)-2-pyrrolidone, N-(2-ethoxyethyl)-2-pyrrolidone, N-( 4-methoxybutyl)-2-pyrrolidone, N-cyclohexyl-2-pyrrolidone (these are collectively referred to as good solvents), and the like. Among them, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 3-methoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide and γ-butyrolactone are preferred. The content of the good solvent is preferably 20 to 99% by mass, more preferably 20 to 90% by mass, and particularly preferably 30 to 80% by mass of the total solvent contained in the liquid crystal aligning agent.
 また、液晶配向剤に含有される有機溶媒は、上記溶媒に加えて液晶配向剤を塗布する際の塗布性や塗膜の表面平滑性を向上させる溶媒(貧溶媒ともいう。)を併用した混合溶媒の使用が好ましい。貧溶媒の具体例を下記するが、これらに限定されない。貧溶媒の含有量は、液晶配向剤に含まれる溶媒全体の1~80質量%が好ましく、10~80質量%がより好ましく、20~70質量%が特に好ましい。貧溶媒の種類及び含有量は、液晶配向剤の塗布装置、塗布条件、塗布環境などに応じて適宜選択される。 Further, the organic solvent contained in the liquid crystal aligning agent is a mixture of the above solvents and a solvent (also referred to as a poor solvent) that improves the coatability and the surface smoothness of the coating film when applying the liquid crystal aligning agent. The use of solvents is preferred. Specific examples of the poor solvent are given below, but are not limited thereto. The content of the poor solvent is preferably 1 to 80% by mass, more preferably 10 to 80% by mass, particularly preferably 20 to 70% by mass, of the total solvent contained in the liquid crystal aligning agent. The type and content of the poor solvent are appropriately selected according to the liquid crystal aligning agent coating device, coating conditions, coating environment, and the like.
 貧溶媒としては、例えば、ジイソプロピルエーテル、ジイソブチルエーテル、ジイソブチルカルビノール(2,6-ジメチル-4-ヘプタノール)、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、エチレングリコールモノブチルエーテル、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、1-(2-ブトキシエトキシ)-2-プロパノール、2-(2-ブトキシエトキシ)-1-プロパノール、プロピレングリコールモノメチルエーテルアセタート、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジメチルエーテル、エチレングリコールモノブチルエーテルアセタート、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールジアセタート、プロピレングリコールジアセテート、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、酢酸シクロヘキシル、酢酸4-メチル-2-ペンチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸エチル、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸n-ブチル、乳酸イソアミル、ジエチレングリコールモノエチルエーテル、ジイソブチルケトン(2,6-ジメチル-4-ヘプタノン)などが挙げられる。 Examples of poor solvents include diisopropyl ether, diisobutyl ether, diisobutylcarbinol (2,6-dimethyl-4-heptanol), ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, -hydroxy-4-methyl-2-pentanone, diethylene glycol methyl ethyl ether, diethylene glycol dibutyl ether, 3-ethoxybutyl acetate, 1-methylpentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, ethylene glycol mono Acetate, ethylene glycol diacetate, propylene carbonate, ethylene carbonate, ethylene glycol monobutyl ether, ethylene glycol monoisoamyl ether, ethylene glycol monohexyl ether, propylene glycol monomethyl ether, propylene glycol monobutyl ether, 1-(2-butoxyethoxy) -2-propanol, 2-(2-butoxyethoxy)-1-propanol, propylene glycol monomethyl ether acetate, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol dimethyl ether, ethylene glycol monobutyl ether acetate, Diethylene glycol monopropyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, 2-(2-ethoxyethoxy) ethyl acetate, diethylene glycol diacetate, propylene glycol diacetate, n-butyl acetate, propylene glycol monoethyl acetate ether, cyclohexyl acetate, 4-methyl-2-pentyl acetate, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, propyl 3-methoxypropionate, butyl 3-methoxypropionate, lactic acid n-butyl, isoamyl lactate, diethylene glycol monoethyl ether, diisobutyl ketone (2,6-dimethyl-4-heptanone) and the like.
 なかでも、ジイソブチルカルビノール、プロピレングリコールモノブチルエーテル、プロピレングリコールジアセテート、ジエチレングリコールジエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジメチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、エチレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテルアセタート、又はジイソブチルケトンが好ましい。 Among them, diisobutyl carbinol, propylene glycol monobutyl ether, propylene glycol diacetate, diethylene glycol diethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol dimethyl ether, 4-hydroxy-4-methyl-2-pentanone, ethylene glycol monobutyl ether, ethylene Glycol monobutyl ether acetate or diisobutyl ketone are preferred.
 良溶媒と貧溶媒との好ましい溶媒の組み合わせとしては、N-メチル-2-ピロリドンとエチレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとエチレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテル、N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテル、N-エチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノン、N-エチル-2-ピロリドンとプロピレングリコールジアセテート、N,N-ジメチルラクトアミドとジイソブチルケトン、N-メチル-2-ピロリドンと3-エトキシプロピオン酸エチル、N-エチル-2-ピロリドンと3-エトキシプロピオン酸エチル、N-メチル-2-ピロリドンと3-エトキシプロピオン酸エチルとジプロピレングリコールモノメチルエーテル、N-エチル-2-ピロリドンと3-エトキシプロピオン酸エチルとプロピレングリコールモノブチルエーテル、N-メチル-2-ピロリドンと3-エトキシプロピオン酸エチルとジエチレングリコールモノプロピルエーテル、N-エチル-2-ピロリドンと3-エトキシプロピオン酸エチルとジエチレングリコールモノプロピルエーテル、N-メチル-2-ピロリドンとエチレングリコールモノブチルエーテルアセタート、N-エチル-2-ピロリドンとジプロピレングリコールジメチルエーテル、N,N-ジメチルラクトアミドとエチレングリコールモノブチルエーテル、N,N-ジメチルラクトアミドとプロピレングリコールジアセテート、N-エチル-2-ピロリドンとジエチレングリコールジエチルエーテル、N-エチル-2-ピロリドンとジエチレングリコールモノエチルエーテルとブチルセロソルブアセテート、N-メチル-2-ピロリドンとジエチレングリコールモノメチルエーテルとブチルセロソルブアセテート、N,N-ジメチルラクトアミドとジエチレングリコールジエチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンと4-ヒドロキシ-4-メチル-2-ペンタノンとジエチレングリコールジエチルエーテル、N-エチル-2-ピロリドンとN-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノン、N-エチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとプロピレングリコールモノブチルエーテル、N-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとジイソブチルケトン、N-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとジプロピレングリコールモノメチルエーテル、N-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとプロピレングリコールモノブチルエーテル、N-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとプロピレングリコールジアセテート、N-エチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとジプロピレングリコールジメチルエーテル、γ-ブチロラクトンと4-ヒドロキシ-4-メチル-2-ペンタノンとジイソブチルケトン、γ-ブチロラクトンと4-ヒドロキシ-4-メチル-2-ペンタノンとプロピレングリコールジアセテート、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルとジイソブチルケトン、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルとジイソプロピルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルとジイソブチルカルビノール、N-メチル-2-ピロリドンとγ-ブチロラクトンとジプロピレングリコールジメチルエーテル、N-メチル-2-ピロリドンとプロピレングリコールモノブチルエーテルとジプロピレングリコールジメチルエーテル、N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテルとジプロピレングリコールモノメチルエーテル、N-エチル-2-ピロリドンとジエチレングリコールジエチルエーテルとジプロピレングリコールモノメチルエーテル、N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテルとプロピレングリコールジアセテート、N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテルとジイソブチルケトン、N-エチル-2-ピロリドンとγ-ブチロラクトンとジイソブチルケトン、N-エチル-2-ピロリドンとN,N-ジメチルラクトアミドとジイソブチルケトン、N-メチル-2-ピロリドンとエチレングリコールモノブチルエーテルとエチレングリコールモノブチルエーテルアセタート、γ-ブチロラクトンとエチレングリコールモノブチルエーテルアセタートとジプロピレングリコールジメチルエーテル、N-エチル-2-ピロリドンとエチレングリコールモノブチルエーテルアセタートとプロピレングリコールジメチルエーテル、N-メチル-2-ピロリドンと酢酸4-メチル-2-ペンチルとエチレングリコールモノブチルエーテル、N-エチル-2-ピロリドンと酢酸シクロヘキシルと4-ヒドロキシ-4-メチル-2-ペンタノン、シクロヘキサノンとプロピレングリコールモノメチルエーテル、シクロペンタノンとプロピレングリコールモノメチルエーテル、N-メチル-2-ピロリドンとシクロヘキサノンとプロピレングリコールモノメチルエーテルなどを挙げることができる。 Preferred solvent combinations of a good solvent and a poor solvent include N-methyl-2-pyrrolidone and ethylene glycol monobutyl ether, N-methyl-2-pyrrolidone, γ-butyrolactone and ethylene glycol monobutyl ether, N-methyl-2- Pyrrolidone and γ-butyrolactone and propylene glycol monobutyl ether, N-ethyl-2-pyrrolidone and propylene glycol monobutyl ether, N-ethyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone, N-ethyl-2- pyrrolidone and propylene glycol diacetate, N,N-dimethyllactamide and diisobutyl ketone, N-methyl-2-pyrrolidone and ethyl 3-ethoxypropionate, N-ethyl-2-pyrrolidone and ethyl 3-ethoxypropionate, N- Methyl-2-pyrrolidone and ethyl 3-ethoxypropionate and dipropylene glycol monomethyl ether, N-ethyl-2-pyrrolidone and 3-ethoxyethyl propionate and propylene glycol monobutyl ether, N-methyl-2-pyrrolidone and 3-ethoxy Ethyl Propionate and Diethylene Glycol Monopropyl Ether, N-Ethyl-2-Pyrrolidone and 3-Ethoxy Ethyl Propionate and Diethylene Glycol Monopropyl Ether, N-Methyl-2-Pyrrolidone and Ethylene Glycol Monobutyl Ether Acetate, N-Ethyl-2- Pyrrolidone and dipropylene glycol dimethyl ether, N,N-dimethyl lactamide and ethylene glycol monobutyl ether, N,N-dimethyl lactamide and propylene glycol diacetate, N-ethyl-2-pyrrolidone and diethylene glycol diethyl ether, N-ethyl-2 - pyrrolidone and diethylene glycol monoethyl ether and butyl cellosolve acetate, N-methyl-2-pyrrolidone and diethylene glycol monomethyl ether and butyl cellosolve acetate, N,N-dimethyllactamide and diethylene glycol diethyl ether, N-methyl-2-pyrrolidone and γ-butyrolactone 4-hydroxy-4-methyl-2-pentanone and diethylene glycol diethyl ether, N-ethyl-2-pyrrolidone and N-methyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone, N-ethyl-2- pyrrolidone and 4-hydroxy-4-methyl-2-pentanone and propylene glycol monobutyl ether, N-methyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone and diisobutyl ketone, N-methyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone and dipropylene glycol monomethyl ether, N-methyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone and propylene glycol monobutyl ether, N-methyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone and propylene glycol diacetate, N-ethyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone and dipropylene glycol dimethyl ether, γ-butyrolactone and 4-hydroxy -4-methyl-2-pentanone and diisobutyl ketone, γ-butyrolactone and 4-hydroxy-4-methyl-2-pentanone and propylene glycol diacetate, N-methyl-2-pyrrolidone and γ-butyrolactone and propylene glycol monobutyl ether Diisobutyl ketone, N-methyl-2-pyrrolidone, γ-butyrolactone, propylene glycol monobutyl ether and diisopropyl ether, N-methyl-2-pyrrolidone, γ-butyrolactone, propylene glycol monobutyl ether and diisobutylcarbinol, N-methyl-2- pyrrolidone and γ-butyrolactone and dipropylene glycol dimethyl ether, N-methyl-2-pyrrolidone and propylene glycol monobutyl ether and dipropylene glycol dimethyl ether, N-ethyl-2-pyrrolidone and propylene glycol monobutyl ether and dipropylene glycol monomethyl ether, N- ethyl-2-pyrrolidone and diethylene glycol diethyl ether and dipropylene glycol monomethyl ether, N-ethyl-2-pyrrolidone and propylene glycol monobutyl ether and propylene glycol diacetate, N-ethyl-2-pyrrolidone and propylene glycol monobutyl ether and diisobutyl ketone, N-ethyl-2-pyrrolidone and γ-butyrolactone and diisobutyl ketone, N-ethyl-2-pyrrolidone and N,N-dimethyllactamide and diisobutyl ketone, N-methyl-2-pyrrolidone and ethylene glycol monobutyl ether and ethylene glycol monobutyl ketone Butyl ether acetate, γ-butyrolactone and ethylene glycol monobutyl ether acetate and dipropylene glycol dimethyl ether, N-ethyl-2-pyrrolidone and ethylene glycol monobutyl ether acetate and propylene glycol dimethyl ether, N-methyl-2-pyrrolidone and acetic acid 4- methyl-2-pentyl and ethylene glycol monobutyl ether, N-ethyl-2-pyrrolidone and cyclohexyl acetate and 4-hydroxy-4-methyl-2-pentanone, cyclohexanone and propylene glycol monomethyl ether, cyclopentanone and propylene glycol monomethyl ether, Examples include N-methyl-2-pyrrolidone, cyclohexanone and propylene glycol monomethyl ether.
(液晶配向剤)
 本発明の液晶配向剤は、上記重合体(P)、上記その他の重合体、及び上記有機溶媒に加えて、それ以外の成分(以下、添加剤成分ともいう。)を含有してもよい。かかる添加剤成分としては、例えば、オキシラニル基、オキセタニル基、ブロックイソシアネート基、オキサゾリン基、シクロカーボネート基、ヒドロキシ基及びアルコキシ基から選ばれる少なくとも1種の置換基を有する架橋性化合物、並びに重合性不飽和基を有する架橋性化合物からなる群から選ばれる少なくとも1種の架橋性化合物、官能性シラン化合物、金属キレート化合物、硬化促進剤、界面活性剤、酸化防止剤、増感剤、防腐剤、得られる液晶配向膜の誘電率や電気抵抗を調整するための化合物などが挙げられる。
(Liquid crystal aligning agent)
The liquid crystal aligning agent of the present invention may contain other components (hereinafter also referred to as additive components) in addition to the polymer (P), the other polymer, and the organic solvent. Such additive components include, for example, a crosslinkable compound having at least one substituent selected from an oxiranyl group, an oxetanyl group, a blocked isocyanate group, an oxazoline group, a cyclocarbonate group, a hydroxy group and an alkoxy group; At least one crosslinkable compound selected from the group consisting of crosslinkable compounds having saturated groups, functional silane compounds, metal chelate compounds, curing accelerators, surfactants, antioxidants, sensitizers, preservatives, and compounds for adjusting the dielectric constant and electrical resistance of the liquid crystal alignment film.
 上記架橋性化合物の好ましい具体例としては、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、エピコート828(三菱ケミカル社製)などのビスフェノールA型エポキシ樹脂、エピコート807(三菱ケミカル社製)などのビスフェノールF型エポキシ樹脂、YX-8000(三菱ケミカル社製)などの水添ビスフェノールA型エポキシ樹脂、YX6954BH30(三菱ケミカル社製)などのビフェニル骨格含有エポキシ樹脂、EPPN-201(日本化薬社製)などのフェノールノボラック型エポキシ樹脂、EOCN-102S(日本化薬社製)などの(o,m,p-)クレゾールノボラック型エポキシ樹脂、TEPIC(日産化学社製)などのトリグリシジルイソシアヌレート、セロキサイド2021P(ダイセル社製)などの脂環式エポキシ樹脂、N,N,N’,N’-テトラグリシジル-m-キシリレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、又はN,N,N’,N’-テトラグリシジル-4,4’-ジアミノジフェニルメタンに代表される第三級窒素原子を含有する化合物、テトラキス(グリシジルオキシメチル)メタンなどのオキシラニル基を2つ以上有する化合物;WO2011/132751号公報の段落[0170]~[0175]に記載の2個以上のオキセタニル基を2つ以上有する化合物;コロネートAPステーブルM、コロネート2503、2515、2507、2513、2555、ミリオネートMS-50(以上、東ソー社製)、タケネートB-830、B-815N、B-820NSU、B-842N、B-846N、B-870N、B-874N、B-882N(以上、三井化学社製)等のブロックイソシアネート基を有する化合物;2,2’-ビス(2-オキサゾリン)、2,2’-ビス(4-メチル-2-オキサゾリン)、2,2’-ビス(5-メチル-2-オキサゾリン)、1,2,4-トリス(2-オキサゾリニル)-ベンゼン、エポクロス(日本触媒社製)のようなオキサゾリン基を有する化合物;WO2011/155577号公報の段落[0025]~[0030]、[0032]に記載のシクロカーボネート基を有する化合物;N,N,N’,N’-テトラキス(2-ヒドロキシエチル)アジポアミド、2,2-ビス(4-ヒドロキシ-3,5-ジヒドロキシメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメトキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジヒドロキシメチルフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパンなどのヒドロキシ基やアルコキシ基を有する化合物;グリセリンモノ(メタ)アクリレート、グリセリンジ(メタ)アクリレート(1,2-,1,3-体混合物)、グリセリントリス(メタ)アクリレート、グリセリン1,3-ジグリセロラートジ(メタ)アクリレート、ペンタエリストールトリ(メタ)アクリレート、ジエチレングリコールモノ(メタ)アクリレート、トリエチレングリコールモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート、ペンタエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレートで示される化合物が挙げられる。上記架橋性化合物の含有量は液晶配向剤に含まれる重合体成分100質量部に対して0.1~30質量部であることが好ましく、より好ましくは0.1~20質量部である。 Preferred specific examples of the crosslinkable compound include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, ,6-hexanediol diglycidyl ether, glycerol diglycidyl ether, dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol, Epicoat 828 (manufactured by Mitsubishi Chemical Corporation), etc. Bisphenol A type epoxy resin, bisphenol F type epoxy resin such as Epicoat 807 (manufactured by Mitsubishi Chemical Corporation), hydrogenated bisphenol A type epoxy resin such as YX-8000 (manufactured by Mitsubishi Chemical Corporation), YX6954BH30 (manufactured by Mitsubishi Chemical Corporation) and the like biphenyl skeleton-containing epoxy resins, phenol novolac type epoxy resins such as EPPN-201 (manufactured by Nippon Kayaku Co., Ltd.), (o, m, p-) cresol novolac type epoxy resins such as EOCN-102S (manufactured by Nippon Kayaku Co., Ltd.), Triglycidyl isocyanurate such as TEPIC (manufactured by Nissan Chemical Industries, Ltd.), alicyclic epoxy resins such as Celoxide 2021P (manufactured by Daicel), N,N,N',N'-tetraglycidyl-m-xylylenediamine, 1, Compounds containing a tertiary nitrogen atom represented by 3-bis(N,N-diglycidylaminomethyl)cyclohexane or N,N,N',N'-tetraglycidyl-4,4'-diaminodiphenylmethane, compounds having two or more oxiranyl groups such as tetrakis(glycidyloxymethyl)methane; compounds having two or more oxetanyl groups described in paragraphs [0170] to [0175] of WO2011/132751; Coronate AP Stable M, Coronate 2503, 2515, 2507, 2513, 2555, Millionate MS-50 (manufactured by Tosoh Corporation), Takenate B-830, B-815N, B-820NSU, B-842N, B-846N, B- Compounds having a blocked isocyanate group such as 870N, B-874N, B-882N (manufactured by Mitsui Chemicals, Inc.); 2,2'-bis(2-oxazoline), 2,2'-bis(4-methyl-2 -oxazoline), 2,2'-bis(5-methyl-2-oxazoline), 1,2,4-tris(2-oxazolinyl)-benzene, compounds having an oxazoline group such as Epocross (manufactured by Nippon Shokubai Co., Ltd.) WO2011/155577, paragraphs [0025] to [0030] and [0032] having a cyclocarbonate group; N,N,N',N'-tetrakis(2-hydroxyethyl)adipamide, 2, 2-bis(4-hydroxy-3,5-dihydroxymethylphenyl)propane, 2,2-bis(4-hydroxy-3,5-dimethoxyphenyl)propane, 2,2-bis(4-hydroxy-3,5 -Dihydroxymethylphenyl)-1,1,1,3,3,3-hexafluoropropane and other compounds having a hydroxyl group or an alkoxy group; glycerin mono (meth) acrylate, glycerin di (meth) acrylate (1,2- , 1,3-body mixture), glycerin tris (meth) acrylate, glycerin 1,3-diglycerolate di (meth) acrylate, pentaerythritol tri (meth) acrylate, diethylene glycol mono (meth) acrylate, triethylene glycol mono Compounds represented by (meth)acrylate, tetraethylene glycol mono(meth)acrylate, pentaethylene glycol mono(meth)acrylate, and hexaethylene glycol mono(meth)acrylate can be mentioned. The content of the crosslinkable compound is preferably 0.1 to 30 parts by mass, more preferably 0.1 to 20 parts by mass, based on 100 parts by mass of the polymer component contained in the liquid crystal aligning agent.
 上記誘電率や電気抵抗を調整するための化合物としては、3-ピコリルアミンなどの窒素原子含有芳香族複素環を有するモノアミンが挙げられる。窒素原子含有芳香族複素環を有するモノアミンの含有量は液晶配向剤に含まれる重合体成分100質量部に対して0.1~30質量部であることが好ましく、より好ましくは0.1~20質量部である。 Examples of compounds for adjusting the dielectric constant and electrical resistance include monoamines having a nitrogen atom-containing aromatic heterocycle such as 3-picolylamine. The content of the monoamine having a nitrogen atom-containing aromatic heterocyclic ring is preferably 0.1 to 30 parts by mass, more preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal aligning agent. part by mass.
 上記官能性シラン化合物の好ましい具体例としては、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルジエトキシメチルシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、トリス[3-(トリメトキシシリル)プロピル]イソシアヌレート、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン等が挙げられる。官能性シラン化合物の含有量は、液晶配向剤に含まれる重合体成分100質量部に対して0.1~30質量部であることが好ましく、より好ましくは0.1~20質量部である。 Preferred specific examples of the above functional silane compounds include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldiethoxymethylsilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltrimethoxysilane. Ethoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltri ethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3- glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyl Diethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, tris[3-(trimethoxysilyl)propyl]isocyanurate, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane silane, 3-isocyanatopropyltriethoxysilane, and the like. The content of the functional silane compound is preferably 0.1 to 30 parts by mass, more preferably 0.1 to 20 parts by mass based on 100 parts by mass of the polymer component contained in the liquid crystal alignment agent.
 液晶配向剤における固形分濃度(液晶配向剤の溶媒以外の成分の合計質量が液晶配向剤の全質量に占める割合)は、粘性、揮発性などを考慮して適宜に選択されるが、好ましくは1~10質量%である。
 特に好ましい固形分濃度の範囲は、基板に液晶配向剤を塗布する際に用いる方法によって異なる。例えばスピンコート法を用いる場合には、固形分濃度が1.5~4.5質量%であることが特に好ましい。印刷法による場合には、固形分濃度を3~9質量%とし、それにより溶液粘度を12~50mPa・sとすることが特に好ましい。インクジェット法による場合には、固形分濃度を1~5質量%とし、それにより、溶液粘度を3~15mPa・sとすることが特に好ましい。液晶配向剤を調製する際の温度は、好ましくは10~50℃であり、より好ましくは20~30℃である。
The solid content concentration in the liquid crystal aligning agent (ratio of the total mass of components other than the solvent of the liquid crystal aligning agent to the total mass of the liquid crystal aligning agent) is appropriately selected in consideration of viscosity, volatility, etc., but preferably It is 1 to 10% by mass.
A particularly preferable solid content concentration range varies depending on the method used when applying the liquid crystal aligning agent to the substrate. For example, when a spin coating method is used, the solid content concentration is particularly preferably 1.5 to 4.5% by mass. When the printing method is used, it is particularly preferable to set the solid content concentration to 3 to 9% by mass and thereby the solution viscosity to 12 to 50 mPa·s. In the case of the inkjet method, it is particularly preferable to set the solid content concentration to 1 to 5% by mass and thereby the solution viscosity to 3 to 15 mPa·s. The temperature for preparing the liquid crystal aligning agent is preferably 10 to 50°C, more preferably 20 to 30°C.
(液晶配向膜及び液晶表示素子)
 本発明に係る液晶表示素子は、上記液晶配向剤を用いて形成した液晶配向膜を具備する。液晶表示素子の動作モードは特に限定せず、例えば、TN方式、STN方式、垂直配向方式(VA-MVA方式、VA-PVA方式などを含む。)、面内スイッチング方式(IPS方式、FFS方式)、光学補償ベンド方式(OCB方式)など種々の動作モードに適用することができる。
(Liquid crystal alignment film and liquid crystal display element)
A liquid crystal display element according to the present invention comprises a liquid crystal alignment film formed using the liquid crystal alignment agent. The operation mode of the liquid crystal display element is not particularly limited. , an optically compensated bend method (OCB method), and various other operation modes.
 本発明の液晶表示素子は、例えば、以下の工程(1)~(4)を含む方法、工程(1)~(2)及び(4)を含む方法、工程(1)~(3)、(4-2)及び(4-4)を含む方法、又は工程(1)~(3)、(4-3)及び(4-4)を含む方法により製造することができる。 The liquid crystal display element of the present invention can be produced, for example, by a method including the following steps (1) to (4), a method including steps (1) to (2) and (4), steps (1) to (3), ( 4-2) and (4-4), or by a method including steps (1) to (3), (4-3) and (4-4).
<工程(1):液晶配向剤を基板上に塗布する工程>
 工程(1)は、液晶配向剤を基板上に塗布する工程である。工程(1)の具体例は以下のとおりである。
 パターニングされた透明導電膜が設けられている基板の一面に、液晶配向剤を、例えばロールコーター法、スピンコート法、印刷法、インクジェット法、又はスプレー法などの適宜の塗布方法により塗布する。ここで基板の材質としては、透明性の高い基板であれば特に限定されず、ガラス、窒化珪素とともに、アクリル、ポリカーボネート等のプラスチック等を用いることもできる。また、反射型の液晶表示素子では、片側の基板のみにならば、シリコンウエハー等の不透明な物でも使用でき、この場合の電極にはアルミニウム等の光を反射する材料も使用できる。また、IPS方式又はFFS方式の液晶表示素子を製造する場合には、櫛歯型にパターニングされた透明導電膜又は金属膜からなる電極が設けられている基板と、電極が設けられていない対向基板とを用いる。
 IPS方式の液晶表示素子において使用される櫛歯電極基板であるIPS基板は、例えば、基材と、基材上に形成され、櫛歯状に配置された複数の線状電極と、基材上に線状電極を覆うように形成された液晶配向膜とを有する。
 なお、FFS方式の液晶表示素子において使用される櫛歯電極基板であるFFS基板は、例えば、基材と、基材上に形成された面電極と、面電極上に形成された絶縁膜と、絶縁膜上に形成され、櫛歯状に配置された複数の線状電極と、絶縁膜上に線状電極を覆うように形成された液晶配向膜とを有する。
<Step (1): Step of applying a liquid crystal aligning agent onto a substrate>
A process (1) is a process of apply|coating a liquid crystal aligning agent on a board|substrate. A specific example of step (1) is as follows.
A liquid crystal aligning agent is applied to one surface of the substrate provided with the patterned transparent conductive film by an appropriate coating method such as a roll coater method, a spin coat method, a printing method, an inkjet method, or a spray method. Here, the material of the substrate is not particularly limited as long as it is highly transparent, and glass, silicon nitride, plastic such as acrylic, polycarbonate, etc., can also be used. In addition, in a reflective liquid crystal display element, if only one substrate is used, an opaque material such as a silicon wafer can be used, and in this case, a light-reflecting material such as aluminum can be used for the electrodes. In the case of manufacturing an IPS or FFS liquid crystal display element, a substrate provided with electrodes made of a transparent conductive film or a metal film patterned in a comb shape and a counter substrate provided with no electrodes are used. and
An IPS substrate, which is a comb-teeth electrode substrate used in an IPS-type liquid crystal display element, includes, for example, a substrate, a plurality of linear electrodes formed on the substrate and arranged in a comb-teeth shape, and and a liquid crystal alignment film formed to cover the linear electrodes.
The FFS substrate, which is a comb-teeth electrode substrate used in an FFS mode liquid crystal display element, includes, for example, a base material, a plane electrode formed on the base material, an insulating film formed on the plane electrode, It has a plurality of linear electrodes formed on an insulating film and arranged in a comb shape, and a liquid crystal alignment film formed on the insulating film so as to cover the linear electrodes.
 液晶配向剤を基板に塗布し、成膜する方法のより好ましい例としては、スクリーン印刷、オフセット印刷、若しくはフレキソ印刷などの印刷法、スピンコート法、インクジェット法、又はスプレー法等が挙げられる。なかでも、フレキソ印刷、スピンコート法、又はインクジェット法による塗布、成膜法が好適に使用できる。 More preferable examples of the method of applying the liquid crystal aligning agent to the substrate to form a film include a printing method such as screen printing, offset printing, or flexo printing, a spin coating method, an inkjet method, or a spray method. Among them, flexographic printing, spin coating, or ink-jet coating and film-forming methods can be preferably used.
<工程(2):塗布した液晶配向剤を焼成する工程>
 工程(2)は、基板上に塗布した液晶配向剤を焼成し、膜を形成する工程である。工程(2)の具体例は以下のとおりである。
 工程(1)において液晶配向剤を基板上に塗布した後は、ホットプレート、熱循環型オーブン又はIR(赤外線)型オーブンなどの加熱手段により、溶媒を蒸発させたり、ポリアミック酸に代表されるポリイミド前駆体の熱イミド化を行ったりすることができる。液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができ、複数回行ってもよい。液晶配向剤を焼成する温度としては、例えば40~180℃で行うことができる。プロセスを短縮する観点で、40~150℃で行ってもよい。焼成時間としては特に限定されないが、1~10分又は、1~5分が挙げられる。ポリアミック酸に代表されるポリイミド前駆体の熱イミド化を行う場合には、上記工程の後、例えば150~300℃、又は150~250℃で焼成する工程を追加してもよい。焼成時間としては特に限定されないが、例えば5~40分であり、好ましくは5~30分の焼成時間が挙げられる。
 焼成後の膜状物の膜厚は、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5~300nmが好ましく、10~200nmがより好ましい。
<Step (2): Step of firing the applied liquid crystal aligning agent>
A process (2) is a process of baking the liquid crystal aligning agent apply|coated on the board|substrate, and forming a film|membrane. A specific example of step (2) is as follows.
After applying the liquid crystal aligning agent on the substrate in step (1), the solvent is evaporated by heating means such as a hot plate, a thermal circulation oven or an IR (infrared) oven, or polyimide typified by polyamic acid Thermal imidization of the precursor can be performed. Drying after applying a liquid crystal aligning agent and a baking process can select arbitrary temperature and time, and may be performed in multiple times. The temperature for baking the liquid crystal aligning agent can be, for example, 40 to 180.degree. From the viewpoint of shortening the process, it may be carried out at 40 to 150°C. The firing time is not particularly limited, but may be 1 to 10 minutes or 1 to 5 minutes. When a polyimide precursor represented by polyamic acid is thermally imidized, a step of baking at 150 to 300° C. or 150 to 250° C. may be added after the above step. The firing time is not particularly limited, but is, for example, 5 to 40 minutes, preferably 5 to 30 minutes.
The thickness of the film after baking is preferably 5 to 300 nm, more preferably 10 to 200 nm, because if it is too thin, the reliability of the liquid crystal display element may deteriorate.
<工程(3):工程(2)で得られた膜に配向処理する工程>
 工程(3)は、場合により、工程(2)で得られた膜に配向処理する工程である。即ち、IPS方式又はFFS方式等の水平配向型の液晶表示素子では該塗膜に対し配向能付与処理を行う。一方、VA方式又はPSA(Polymer Sustained Alignment)方式等の垂直配向型方式の液晶表示素子では、形成した塗膜をそのまま液晶配向膜として使用することができるが、該塗膜に対し配向能付与処理を施してもよい。液晶配向膜の配向処理方法としては、ラビング配向処理法、光配向処理法が挙げられる。光配向処理法としては、上記膜状物の表面に、一定方向に偏光された放射線を照射し、場合により、好ましくは、加熱処理を行い、液晶配向性(液晶配向能ともいう)を付与する方法が挙げられる。放射線としては、100~800nmの波長を有する紫外線又は可視光線を用いることができる。なかでも、好ましくは100~400nm、より好ましくは、200~400nmの波長を有する紫外線である。
<Step (3): Step of subjecting the film obtained in Step (2) to orientation treatment>
Step (3) is a step of subjecting the film obtained in step (2) to orientation treatment. That is, in a horizontally aligned liquid crystal display element such as an IPS system or an FFS system, the coating film is subjected to an alignment ability imparting treatment. On the other hand, in a liquid crystal display element of a vertical alignment type such as a VA system or a PSA (Polymer Sustained Alignment) system, the formed coating film can be used as it is as a liquid crystal alignment film. may be applied. Examples of the alignment treatment method for the liquid crystal alignment film include a rubbing alignment treatment method and a photo-alignment treatment method. As a photo-alignment treatment method, the surface of the film is irradiated with radiation polarized in a certain direction, and in some cases, preferably, heat treatment is performed to impart liquid crystal alignment (also referred to as liquid crystal alignment ability). method. As radiation, ultraviolet light or visible light having a wavelength of 100 to 800 nm can be used. Among them, ultraviolet rays having a wavelength of 100 to 400 nm, more preferably 200 to 400 nm are preferred.
 上記放射線の照射量は、1~10,000mJ/cmが好ましく、なかでも、100~5,000mJ/cmがより好ましい。また、放射線を照射する場合、液晶配向性を改善するために、上記膜状物を有する基板を、50~250℃で加熱しながら照射してもよい。このようにして作製した上記液晶配向膜は、液晶分子を一定の方向に安定して配向させることができる。 The radiation dose is preferably 1 to 10,000 mJ/cm 2 , more preferably 100 to 5,000 mJ/cm 2 . In addition, when irradiating with radiation, the substrate having the film-like material may be irradiated with heating at 50 to 250° C. in order to improve liquid crystal orientation. The liquid crystal alignment film thus produced can stably orient liquid crystal molecules in a fixed direction.
 更に、上記の方法で、偏光された放射線を照射した塗膜やラビング配向処理を行った塗膜に、水や溶媒を用いて、接触処理してもよい。また、上記配向処理を行った膜は、接触処理を行わず、加熱処理を行っても良い。さらに、上記接触処理を行った膜に更に加熱処理を行ってもよい。 Furthermore, the coating film irradiated with polarized radiation or the coating film subjected to rubbing alignment treatment by the above method may be subjected to contact treatment using water or a solvent. Further, the film subjected to the alignment treatment may be subjected to heat treatment without being subjected to contact treatment. Furthermore, the film subjected to the contact treatment may be further subjected to heat treatment.
 上記接触処理に使用する溶媒としては、放射線の照射によって膜状物から生成した分解物を溶解する溶媒であれば、特に限定されるものではない。具体例としては、水、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン、1-メトキシ-2-プロパノール、1-メトキシ-2-プロパノールアセテート、ブチルセロソルブ、乳酸エチル、乳酸メチル、ジアセトンアルコール、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、酢酸プロピル、酢酸ブチル、酢酸シクロヘキシル等が挙げられる。溶媒は、1種類でも、2種類以上組み合わせてもよい。 The solvent used in the contact treatment is not particularly limited as long as it dissolves the decomposed product produced from the film-like material by irradiation with radiation. Specific examples include water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, 1-methoxy-2-propanol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, methyl lactate, diacetone alcohol, 3- methyl methoxypropionate, ethyl 3-ethoxypropionate, propyl acetate, butyl acetate, cyclohexyl acetate and the like. Solvents may be used singly or in combination of two or more.
 上記の放射線を照射した塗膜に対する加熱処理の温度は、50~300℃がより好ましく、120~250℃がさらに好ましい。加熱処理の時間としては、それぞれ1~30分とすることが好ましい。 The temperature of the heat treatment for the above radiation-irradiated coating film is more preferably 50 to 300°C, more preferably 120 to 250°C. The heat treatment time is preferably 1 to 30 minutes.
<工程(4):液晶セルを作製する工程>
 上記のようにして液晶配向膜が形成された基板を2枚準備し、対向配置した2枚の基板間に液晶を配置する。具体的には以下の2つの方法が挙げられる。
 第一の方法は、先ず、それぞれの液晶配向膜が対向するように間隙(セルギャップ)を介して2枚の基板を対向配置する。次いで、2枚の基板の周辺部をシール剤を用いて貼り合わせ、基板表面及びシール剤により区画されたセルギャップ内に液晶組成物を注入充填して膜面に接触した後、注入孔を封止する。
 上記液晶組成物としては、特に制限はなく、少なくとも一種の液晶化合物(液晶分子)を含む組成物であって、誘電率異方性が正または負の各種の液晶組成物を用いることができる。なお、以下では、誘電率異方性が正の液晶組成物を、ポジ型液晶ともいい、誘電率異方性が負の液晶組成物を、ネガ型液晶ともいう。
 上記液晶組成物は、フッ素原子、ヒドロキシ基、アミノ基、フッ素原子含有基(例:トリフルオロメチル基)、シアノ基、アルキル基、アルコキシ基、アルケニル基、イソチオシアネート基、複素環、シクロアルカン、シクロアルケン、ステロイド骨格、ベンゼン環、又はナフタレン環を有する液晶化合物を含んでもよく、分子内に液晶性を発現する剛直な部位(メソゲン骨格)を2つ以上有する化合物(例えば、剛直な二つのビフェニル構造、又はターフェニル構造がアルキル基で連結されたバイメソゲン化合物など)を含んでもよい。液晶組成物は、ネマチック相を呈する液晶組成物、スメクチック相を呈する液晶組成物、又はコレステリック相を呈する液晶組成物であってもよい。
 また、上記液晶組成物は、液晶配向性を向上させる観点から、添加物をさらに添加してもよい。このような添加物は、重合性基((メタ)アクリロイル基、等)を有する化合物などの光重合性モノマー;光学活性な化合物(例:メルク(株)社製のS-811など);酸化防止剤;紫外線吸収剤;色素;消泡剤;重合開始剤;又は重合禁止剤などが挙げられる。
 ポジ型液晶としては、メルク社製のZLI-2293、ZLI-4792、MLC-2003、MLC-2041、MLC-3019又はMLC-7081などが挙げられる。
 ネガ型液晶としては、例えばメルク社製のMLC-6608、MLC-6609、MLC-6610、MLC-6882、MLC-6886、MLC-7026、MLC-7026-000、MLC-7026-100、又はMLC-7029などが挙げられる。
 また、PSAモードでは、重合性基を有する化合物を含有する液晶として、メルク社製のMLC-3023が挙げられる。
<Step (4): Step of producing a liquid crystal cell>
Two substrates on which liquid crystal alignment films are formed as described above are prepared, and liquid crystal is arranged between the two substrates facing each other. Specifically, the following two methods are mentioned.
In the first method, first, two substrates are arranged to face each other with a gap (cell gap) interposed therebetween so that the respective liquid crystal alignment films face each other. Next, the peripheries of the two substrates are bonded together using a sealing agent, and a liquid crystal composition is injected and filled into the cell gap defined by the substrate surface and the sealing agent to contact the film surface, and then the injection hole is sealed. stop.
The liquid crystal composition is not particularly limited, and various liquid crystal compositions containing at least one liquid crystal compound (liquid crystal molecule) and having positive or negative dielectric anisotropy can be used. In the following description, a liquid crystal composition with a positive dielectric anisotropy is also referred to as a positive liquid crystal, and a liquid crystal composition with a negative dielectric anisotropy is also referred to as a negative liquid crystal.
The above liquid crystal composition contains a fluorine atom, a hydroxy group, an amino group, a fluorine atom-containing group (e.g., trifluoromethyl group), a cyano group, an alkyl group, an alkoxy group, an alkenyl group, an isothiocyanate group, a heterocyclic ring, a cycloalkane, A liquid crystal compound having a cycloalkene, a steroid skeleton, a benzene ring, or a naphthalene ring may be included, and a compound having two or more rigid sites (mesogenic skeleton) exhibiting liquid crystallinity in the molecule (for example, two rigid biphenyl structure, or a bimesogenic compound in which a terphenyl structure is linked by an alkyl group). The liquid crystal composition may be a liquid crystal composition exhibiting a nematic phase, a liquid crystal composition exhibiting a smectic phase, or a liquid crystal composition exhibiting a cholesteric phase.
In addition, the liquid crystal composition may further contain an additive from the viewpoint of improving liquid crystal orientation. Such additives include photopolymerizable monomers such as compounds having a polymerizable group ((meth)acryloyl group, etc.); optically active compounds (eg, S-811 manufactured by Merck Co., Ltd.); oxidation Antifoaming agents; UV absorbers; dyes; antifoaming agents; polymerization initiators;
Positive liquid crystals include ZLI-2293, ZLI-4792, MLC-2003, MLC-2041, MLC-3019 and MLC-7081 manufactured by Merck.
As the negative liquid crystal, for example, MLC-6608, MLC-6609, MLC-6610, MLC-6882, MLC-6886, MLC-7026, MLC-7026-000, MLC-7026-100, or MLC- 7029 and the like.
In addition, in the PSA mode, MLC-3023 manufactured by Merck Co., Ltd. can be used as a liquid crystal containing a compound having a polymerizable group.
 また、第二の方法は、ODF(One Drop Fill)方式と呼ばれる手法である。液晶配向膜を形成した2枚の基板のうちの一方の基板上の所定の場所に、例えば紫外光硬化性のシール剤を塗布し、更に液晶配向膜面上の所定の数箇所に液晶組成物を滴下する。その後、液晶配向膜が対向するように他方の基板を貼り合わせて液晶組成物を基板の全面に押し広げて膜面に接触させる。次いで、基板の全面に紫外光を照射してシール剤を硬化する。いずれの方法による場合でも、更に、用いた液晶組成物が等方相をとる温度まで加熱した後、室温まで徐冷することにより、液晶充填時の流動配向を除去することが望ましい。
 なお、塗膜に対してラビング配向処理を行った場合には、2枚の基板は、各塗膜におけるラビング方向が互いに所定の角度、例えば直交又は逆平行となるように対向配置される。
 シール剤としては、例えば硬化剤及びスペーサーとしての酸化アルミニウム球を含有するエポキシ樹脂等を用いることができる。液晶としては、ネマチック液晶及びスメクチック液晶を挙げることができ、そのなかでもネマチック液晶が好ましい。
The second method is a method called ODF (One Drop Fill) method. A predetermined place on one of the two substrates on which the liquid crystal alignment film is formed is coated with, for example, an ultraviolet light-curing sealant, and a liquid crystal composition is applied to several predetermined places on the surface of the liquid crystal alignment film. drip. Thereafter, the other substrate is attached so that the liquid crystal alignment films face each other, and the liquid crystal composition is spread over the entire surface of the substrate and brought into contact with the film surface. Next, the entire surface of the substrate is irradiated with ultraviolet light to cure the sealant. In any method, it is desirable to remove the flow orientation at the time of liquid crystal filling by heating the liquid crystal composition to a temperature at which the used liquid crystal composition assumes an isotropic phase and then slowly cooling to room temperature.
When the coating film is subjected to the rubbing alignment treatment, the two substrates are arranged opposite to each other so that the rubbing directions of the respective coating films are at a predetermined angle, for example, orthogonal or antiparallel.
As the sealant, for example, an epoxy resin or the like containing a curing agent and aluminum oxide spheres as spacers can be used. Liquid crystals include nematic liquid crystals and smectic liquid crystals, among which nematic liquid crystals are preferred.
 本発明の液晶配向剤は、電極を備えた一対の基板の間に液晶層を有してなり、一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、電極間に電圧を印加しつつ、活性エネルギー線の照射及び加熱の少なくとも一方により、重合性化合物を重合させる工程を経て製造される液晶表示素子(PSA方式の液晶表示素子)にも好ましく用いられる。
 また、本発明の液晶配向剤は、電極を備えた一対の基板の間に液晶層を有してなり、上記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性基を含む液晶配向膜を配置し、電極間に電圧を印加する工程を経て製造される液晶表示素子(SC-PVA方式の液晶表示素子)にも好ましく用いられる。
The liquid crystal aligning agent of the present invention has a liquid crystal layer between a pair of substrates provided with electrodes, and a liquid crystal composition containing a polymerizable compound polymerized by at least one of active energy rays and heat between the pair of substrates. A liquid crystal display element (PSA type liquid crystal display element) manufactured through a process of polymerizing a polymerizable compound by at least one of irradiating an active energy ray and heating while placing an object and applying a voltage between electrodes. is also preferably used.
Further, the liquid crystal aligning agent of the present invention has a liquid crystal layer between a pair of substrates provided with electrodes, and a polymerizable group polymerized by at least one of active energy rays and heat is placed between the pair of substrates. It is also preferably used in a liquid crystal display element (SC-PVA type liquid crystal display element) manufactured through a process of arranging a liquid crystal alignment film containing the liquid crystal and applying a voltage between electrodes.
<工程(4-2):PSA方式の液晶表示素子の場合>
 重合性化合物を含有する液晶組成物を注入又は滴下する点以外は上記(4)と同様に実施される。重合性化合物としては、例えばアクリレート基やメタクリレート基などの重合性不飽和基を分子内に1個以上有する重合性化合物を挙げることができる。
<Step (4-2): For PSA liquid crystal display device>
It is carried out in the same manner as in (4) above, except that the liquid crystal composition containing a polymerizable compound is injected or dropped. Examples of the polymerizable compound include polymerizable compounds having one or more polymerizable unsaturated groups such as acrylate groups and methacrylate groups in the molecule.
<工程(4-3):SC-PVA方式の液晶表示素子の場合>
 上記(4)と同様にした後、後述する紫外線を照射する工程を経て液晶表示素子を製造する方法を採用してもよい。この方法によれば、上記PSA方式の液晶表示素子を製造する場合と同様に、少ない光照射量で応答速度に優れた液晶表示素子を得ることができる。重合性基を有する化合物は、上記重合性不飽和基を分子内に1個以上有する化合物であってもよく、その含有量は、全ての重合体成分100質量部に対して0.1~30質量部であることが好ましく、より好ましくは1~20質量部である。また、上記重合性基は液晶配向剤に用いる重合体が有していてもよく、このような重合体としては、例えば上記光重合性基を末端に有するジアミンを含むジアミン成分を反応に用いて得られる重合体が挙げられる。
<Step (4-3): For SC-PVA liquid crystal display element>
A method of manufacturing a liquid crystal display element may be employed in which a step of irradiating ultraviolet rays, which will be described later, is performed after performing the same as in the above (4). According to this method, a liquid crystal display device having an excellent response speed can be obtained with a small amount of light irradiation, as in the case of manufacturing the PSA type liquid crystal display device. The compound having a polymerizable group may be a compound having one or more polymerizable unsaturated groups in the molecule, and its content is 0.1 to 30 per 100 parts by mass of all polymer components. It is preferably parts by mass, more preferably 1 to 20 parts by mass. Further, the polymerizable group may be present in the polymer used for the liquid crystal alignment agent, and such a polymer includes, for example, a diamine component containing a diamine having a photopolymerizable group at the end thereof, which is used in the reaction. The polymer obtained is mentioned.
<工程(4-4):紫外線を照射する工程>
 上記(4-2)又は(4-3)で得られた一対の基板の有する導電膜間に電圧を印加した状態で液晶セルに光照射する。ここで印加する電圧は、例えば5~50Vの直流又は交流とすることができる。また、照射する光としては、例えば150~800nmの波長の光を含む紫外線及び可視光線を用いることができるが、300~400nmの波長の光を含む紫外線が好ましい。照射光の光源としては、例えば低圧水銀ランプ、高圧水銀ランプ、重水素ランプ、メタルハライドランプ、アルゴン共鳴ランプ、キセノンランプ、エキシマレーザーなどを使用することができる。光の照射量は、好ましくは1,000~200,000J/mであり、より好ましくは1,000~100,000J/mである。
<Step (4-4): Step of irradiating with ultraviolet rays>
The liquid crystal cell is irradiated with light while a voltage is applied between the conductive films of the pair of substrates obtained in (4-2) or (4-3) above. The voltage applied here can be, for example, 5 to 50 V direct current or alternating current. As the light for irradiation, for example, ultraviolet light containing light with a wavelength of 150 to 800 nm and visible light can be used, but ultraviolet light containing light with a wavelength of 300 to 400 nm is preferable. A low-pressure mercury lamp, a high-pressure mercury lamp, a deuterium lamp, a metal halide lamp, an argon resonance lamp, a xenon lamp, an excimer laser, or the like can be used as the light source for the irradiation light. The irradiation amount of light is preferably 1,000 to 200,000 J/m 2 , more preferably 1,000 to 100,000 J/m 2 .
 そして、必要に応じて液晶セルの外側表面に偏光板を貼り合わせることにより液晶表示素子を得ることができる。液晶セルの外表面に貼り合わされる偏光板としては、ポリビニルアルコールを延伸配向させながらヨウ素を吸収させた「H膜」と称される偏光フィルムを酢酸セルロース保護膜で挟んだ偏光板又はH膜そのものからなる偏光板を挙げることができる。 Then, a liquid crystal display element can be obtained by bonding a polarizing plate to the outer surface of the liquid crystal cell as necessary. As the polarizing plate to be attached to the outer surface of the liquid crystal cell, a polarizing film called "H film" in which polyvinyl alcohol is stretched and oriented while absorbing iodine is sandwiched between cellulose acetate protective films, or the H film itself. A polarizing plate consisting of
 以下に実施例を挙げ、本発明をさらに詳しく説明するが、本発明は、これらに限定して解釈されるものではない。使用した化合物の略号及び各物性の測定方法は、以下の通りである。 Although the present invention will be described in more detail with reference to examples below, the present invention should not be construed as being limited to these examples. The abbreviations of the compounds used and methods for measuring physical properties are as follows.
(有機溶媒)
NMP:N-メチル-2-ピロリドン
BCS:ブチルセロソルブ(エチレングリコールモノブチルエーテル)
THF:テトラヒドロフラン
DMF:N,N-ジメチルホルムアミド
(organic solvent)
NMP: N-methyl-2-pyrrolidone BCS: butyl cellosolve (ethylene glycol monobutyl ether)
THF: Tetrahydrofuran DMF: N,N-dimethylformamide
(酸二無水物)
CA-1~CA-2:それぞれ、下記式(CA-1)~(CA-2)で表される化合物
Figure JPOXMLDOC01-appb-C000016
(Acid dianhydride)
CA-1 to CA-2: compounds represented by the following formulas (CA-1) to (CA-2), respectively
Figure JPOXMLDOC01-appb-C000016
(ジアミン)
DA-1~DA-10:それぞれ、下記式(DA-1)~(DA-10)で表される化合物。本発明の特定ジアミンの範囲に含まれるジアミンは、下記式(DA-1)~(DA-2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000017
(diamine)
DA-1 to DA-10: compounds represented by the following formulas (DA-1) to (DA-10), respectively. Diamines included in the scope of the specific diamine of the present invention are compounds represented by the following formulas (DA-1) to (DA-2).
Figure JPOXMLDOC01-appb-C000017
(反応試剤)
BocO:二炭酸ジ-tert-ブチル
(reaction reagent)
Boc 2 O: di-tert-butyl dicarbonate
[分子量の測定]
 下記の常温GPC(ゲル浸透クロマトグラフィー)装置によって測定し、ポリエチレングリコール、ポリエチレンオキサイド換算値としてMn及びMwを算出した。
 GPC装置:GPC-101(昭和電工社製)、カラム:GPC KD-803、GPC KD-805(昭和電工社製)の直列、カラム温度:50℃、溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム一水和物(LiBr・HO)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10mL/L)、流速:1.0mL/分
 検量線作成用標準サンプル:TSK 標準ポリエチレンオキサイド(分子量;約900,000、150,000、100,000及び30,000)(東ソー社製)及びポリエチレングリコール(分子量;約12,000、4,000及び1,000)(ポリマーラボラトリー社製)。
[Measurement of molecular weight]
Measurement was performed using the following normal temperature GPC (gel permeation chromatography) apparatus, and Mn and Mw were calculated as values converted to polyethylene glycol and polyethylene oxide.
GPC apparatus: GPC-101 (manufactured by Showa Denko), column: GPC KD-803, GPC KD-805 (manufactured by Showa Denko) in series, column temperature: 50 ° C., eluent: N,N-dimethylformamide (addition As agents, lithium bromide monohydrate (LiBr.H 2 O) is 30 mmol/L, phosphoric acid/anhydride crystals (o-phosphoric acid) is 30 mmol/L, and tetrahydrofuran (THF) is 10 mL/L), flow rate: 1.0 mL/min Standard sample for creating a calibration curve: TSK standard polyethylene oxide (molecular weight; about 900,000, 150,000, 100,000 and 30,000) (manufactured by Tosoh Corporation) and polyethylene glycol (molecular weight; 000, 4,000 and 1,000) (manufactured by Polymer Laboratories).
[モノマーの合成]
 DA-1及びDA-2は文献等未公開の新規化合物であり、以下に合成法を詳述する。-OTMSはテトラメチルシロキシ基を表す。
[Synthesis of Monomer]
DA-1 and DA-2 are novel compounds that have not been published in literature, etc., and their synthesis methods are described in detail below. -OTMS represents a tetramethylsiloxy group.
 下記モノマー合成例に記載の生成物はH-NMR分析により同定した(分析条件は下記の通り)。
 装置:フーリエ変換型超伝導核磁気共鳴装置(FT-NMR)「AVANCE III」(BRUKER製)500MHz。
 溶媒:重水素化ジメチルスルホキシド(DMSO-d、標準物質:テトラメチルシラン)
The products described in the monomer synthesis examples below were identified by 1 H-NMR analysis (analysis conditions are as follows).
Apparatus: Fourier transform superconducting nuclear magnetic resonance apparatus (FT-NMR) "AVANCE III" (manufactured by BRUKER) 500 MHz.
Solvent: deuterated dimethyl sulfoxide (DMSO-d 6 , standard: tetramethylsilane)
(モノマー合成例1 DA-1の合成)
 下記に示す経路に従って、DA-1を合成した。
Figure JPOXMLDOC01-appb-C000018
(Monomer Synthesis Example 1 Synthesis of DA-1)
DA-1 was synthesized according to the route shown below.
Figure JPOXMLDOC01-appb-C000018
 N,N’-ビス(2-ヒドロキシエチル)エチレンジアミン(25.0g,0.169mol)に対し、THF(200g)を加えた後、50℃で撹拌した。そこへ、THF(50g)で希釈したBocO(75.5g,0.346mol)の溶液を滴下し、20時間加熱撹拌し、反応させた。反応終了後、室温(25℃)に冷却し、溶液を濃縮した後、アセトニトリル(118g)を加えて室温(25℃)で30分撹拌し、析出した結晶を濾別した。得られた結晶を40℃で乾燥させ、DA-1-1を得た。一方、濾液は濃縮し、再度アセトニトリル(59g)を加えて30分撹拌し、析出した結晶を濾別することで結晶を回収した。得られた結晶を乾燥させ、DA-1-1を得た(合計の収量:54.4g,0.156mol,収率:92%)。以下に示すH-NMRの結果から、この固体がDA-1-1であることを確認した。
H-NMR(500MHz) in DMSO-d:δ(ppm)=4.65(br,2H),3.45(s,4H),3.28(s,4H),3.18-3.16(m,4H),1.39-1.38(m,18H).
Figure JPOXMLDOC01-appb-C000019
After THF (200 g) was added to N,N'-bis(2-hydroxyethyl)ethylenediamine (25.0 g, 0.169 mol), the mixture was stirred at 50°C. A solution of Boc 2 O (75.5 g, 0.346 mol) diluted with THF (50 g) was added dropwise thereto, and the mixture was heated and stirred for 20 hours to react. After completion of the reaction, the solution was cooled to room temperature (25°C), concentrated, added with acetonitrile (118 g), stirred at room temperature (25°C) for 30 minutes, and precipitated crystals were separated by filtration. The obtained crystals were dried at 40° C. to obtain DA-1-1. On the other hand, the filtrate was concentrated, acetonitrile (59 g) was added again, the mixture was stirred for 30 minutes, and the precipitated crystals were collected by filtration. The obtained crystals were dried to obtain DA-1-1 (total yield: 54.4 g, 0.156 mol, yield: 92%). From the 1 H-NMR results shown below, this solid was confirmed to be DA-1-1.
1 H-NMR (500 MHz) in DMSO-d 6 : δ (ppm) = 4.65 (br, 2H), 3.45 (s, 4H), 3.28 (s, 4H), 3.18-3 .16 (m, 4H), 1.39-1.38 (m, 18H).
Figure JPOXMLDOC01-appb-C000019
 フラスコに、水素化ナトリウム(13.8g,60%-流動パラフィンに分散)及びDMF(200g)を加えた後、氷浴0℃で冷却しながら撹拌した。そこへ、DMF(300g)で溶解させた、上記で得られたDA-1-1(50.0g,0.143mol)の溶液を滴下し、30分撹拌した。さらに、DMF(50g)で溶解させた4-フルオロニトロベンゼン(42.5g,0.301mol)の溶液を滴下し、滴下終了後、室温(25℃)で6時間撹拌し、反応させた。反応液にメタノール(100g)を加えて過剰な水素化ナトリウムを失活させ、反応液をメタノール(1550g)に加えて撹拌することで結晶を析出させた。結晶を濾別し、メタノール(150g)で洗浄し、得られた結晶を40℃で乾燥させ、DA-1-2を得た(収量:66.0g,0.112mol,収率:78%)。以下に示すH-NMRの結果から、この固体がDA-1-2であることを確認した。
H-NMR(500MHz) in DMSO-d:δ(ppm)=8.18(d,J=7.5Hz,4H),7.15(d,J=9.0Hz,4H),4.23(s,4H),3.55(t,4H),3.38(s,4H),1.38(s,9H),1.35(s,9H).
Figure JPOXMLDOC01-appb-C000020
After sodium hydride (13.8 g, 60%-dispersed in liquid paraffin) and DMF (200 g) were added to the flask, the mixture was stirred while cooling at 0° C. in an ice bath. A solution of DA-1-1 (50.0 g, 0.143 mol) obtained above dissolved in DMF (300 g) was added dropwise thereto and stirred for 30 minutes. Furthermore, a solution of 4-fluoronitrobenzene (42.5 g, 0.301 mol) dissolved in DMF (50 g) was added dropwise, and after completion of the dropwise addition, the mixture was stirred at room temperature (25° C.) for 6 hours for reaction. Methanol (100 g) was added to the reaction solution to deactivate excess sodium hydride, and the reaction solution was added to methanol (1550 g) and stirred to precipitate crystals. Crystals were separated by filtration, washed with methanol (150 g), and dried at 40° C. to obtain DA-1-2 (yield: 66.0 g, 0.112 mol, yield: 78%). . From the 1 H-NMR results shown below, this solid was confirmed to be DA-1-2.
1 H-NMR (500 MHz) in DMSO-d 6 : δ (ppm) = 8.18 (d, J = 7.5 Hz, 4H), 7.15 (d, J = 9.0 Hz, 4H), 4. 23 (s, 4H), 3.55 (t, 4H), 3.38 (s, 4H), 1.38 (s, 9H), 1.35 (s, 9H).
Figure JPOXMLDOC01-appb-C000020
 上記で得られたDA-1-2(65.9g,0.112mol)に対し、THF(989g)を加え窒素置換した後、カーボン担持パラジウム(5%Pdカーボン粉末(含水品)Kタイプ、エヌ・イー・ケムキャット社製)(5.27g)を加え再度窒素置換し、水素を充填したテドラーバッグを取り付け、45℃で18時間加熱撹拌し、反応させた。反応の進行に伴い結晶が溶解し、その後溶液中から再度大量の結晶が析出したため、DMF(1318g)を加えて結晶を溶解させ、桐山ロートにて濾過し、濾液をさらにメンブレンフィルターに通してカーボン担持パラジウムを除去した。濾液を濃縮することで、DA-1粗体を得た。
 上記DA-1粗体に対しメタノール(200g)を加え、室温(25℃)でスラリー状態にて撹拌し、濾過した。得られた結晶を乾燥させ、DA-1を得た(収量:45.2g,0.0852mol,収率:76%)。以下に示すH-NMRの結果から、この固体がDA-1であることを確認した。
H-NMR(500MHz) in DMSO-d:δ(ppm)=6.64(d,J=7.5Hz,4H),6.49(d,J=7.5Hz,4H),4.59(s,4H),3.90(s,4H),3.43(s,4H),3.35(s,4H),1.39(s,9H),1.37(s,9H).
To DA-1-2 (65.9 g, 0.112 mol) obtained above, THF (989 g) was added and nitrogen-substituted, and then carbon-supported palladium (5% Pd carbon powder (hydrous product) K type, N E Chemcat Co.) (5.27 g) was added and the mixture was replaced with nitrogen again, a Tedlar bag filled with hydrogen was attached, and the mixture was heated and stirred at 45° C. for 18 hours to react. As the reaction progressed, the crystals dissolved, and then a large amount of crystals precipitated again from the solution. Supported palladium was removed. By concentrating the filtrate, crude DA-1 was obtained.
Methanol (200 g) was added to the crude DA-1, stirred at room temperature (25° C.) in a slurry state, and filtered. The obtained crystals were dried to obtain DA-1 (yield: 45.2 g, 0.0852 mol, yield: 76%). From the 1 H-NMR results shown below, this solid was confirmed to be DA-1.
1 H-NMR (500 MHz) in DMSO-d 6 : δ (ppm) = 6.64 (d, J = 7.5 Hz, 4H), 6.49 (d, J = 7.5 Hz, 4H), 4. 59 (s, 4H), 3.90 (s, 4H), 3.43 (s, 4H), 3.35 (s, 4H), 1.39 (s, 9H), 1.37 (s, 9H) ).
(モノマー合成例2 DA-2の合成)
 下記に示す経路に従って、DA-2を合成した。
Figure JPOXMLDOC01-appb-C000021
(Monomer Synthesis Example 2 Synthesis of DA-2)
DA-2 was synthesized according to the route shown below.
Figure JPOXMLDOC01-appb-C000021
 窒素雰囲気下、1L四つ口フラスコに3-アミノ-1-プロパノール(30.0g、399mmol)、塩化メチレン(600g)及びトリエチルアミン(60.7g,600mmol)を加え、0℃に冷却後にトリメチルシリルクロリド(47.8g、440mmol)を30分かけて滴下した。滴下終了後、0℃で1時間撹拌させた後にカルボニルジイミダゾール(31.1g,192mmol)を加え反応を行った。0℃で1時間撹拌後、さらに室温で48時間撹拌し反応を完結させた。反応液を分液漏斗に移し、水(300g)で2回分液洗浄後に有機層を硫酸マグネシウム(40.0g)で乾燥し、ろ過により硫酸マグネシウムを取り除いた。得られたろ液を濃縮後、真空乾燥(40℃)により、オイル状のDA-2-1を得た(60.3g、188mmol、収率98.0%、無色透明オイル)。
Figure JPOXMLDOC01-appb-C000022
In a nitrogen atmosphere, 3-amino-1-propanol (30.0 g, 399 mmol), methylene chloride (600 g) and triethylamine (60.7 g, 600 mmol) were added to a 1 L four-necked flask, and after cooling to 0° C., trimethylsilyl chloride ( 47.8 g, 440 mmol) was added dropwise over 30 minutes. After completion of dropping, the mixture was stirred at 0° C. for 1 hour, and then carbonyldiimidazole (31.1 g, 192 mmol) was added to carry out the reaction. After stirring at 0° C. for 1 hour, the mixture was further stirred at room temperature for 48 hours to complete the reaction. The reaction solution was transferred to a separatory funnel, washed twice with water (300 g), the organic layer was dried over magnesium sulfate (40.0 g), and the magnesium sulfate was removed by filtration. After concentrating the resulting filtrate, it was vacuum-dried (40° C.) to obtain oily DA-2-1 (60.3 g, 188 mmol, yield 98.0%, colorless and transparent oil).
Figure JPOXMLDOC01-appb-C000022
 窒素雰囲気下、1L四つ口フラスコにDA-2-1(41.2g、129mmol)、4-ニトロフルオロベンゼン(39.8g,282mmol)、水酸化カリウム(17.2g,307mmol)、及びNMP(380g)を加え、0℃で24時間撹拌し反応を行った。反応後、反応液に0℃に冷却した水(460g)を加え、析出した固体をろ過して得た湿品を水(300g)で3回、次にアセトニトリル(300g)で3回ケーキ洗浄を行った。得られた固体を乾燥させてDA-2-2を得た(38.9g、93.0mmol、収率72.1%、黄色固体)。
Figure JPOXMLDOC01-appb-C000023
Under a nitrogen atmosphere, DA-2-1 (41.2 g, 129 mmol), 4-nitrofluorobenzene (39.8 g, 282 mmol), potassium hydroxide (17.2 g, 307 mmol), and NMP ( 380 g) was added, and the mixture was stirred at 0° C. for 24 hours to react. After the reaction, water (460 g) cooled to 0° C. was added to the reaction solution, and the wet product obtained by filtering the precipitated solid was washed with water (300 g) three times and then with acetonitrile (300 g) three times. gone. The resulting solid was dried to give DA-2-2 (38.9 g, 93.0 mmol, 72.1% yield, yellow solid).
Figure JPOXMLDOC01-appb-C000023
 窒素雰囲気下、500mL四つ口フラスコにDA-2-2(34.0g,81.3mmol)、二炭酸ジ-tert-ブチル(28.0g、128mmol)、THF(169g)、及び4-ジメチルアミノピリジン(99.8mg、0.82mmol)を加え、60℃で24時間反応させた。反応後、内容物重量が117gになるまで濃縮した後にイソプロピルアルコール(156g)を加え結晶を析出させた。その後、0℃に冷却後5時間撹拌してからろ過を行い、イソプロピルアルコール(39g)とテトラヒドロフラン(18g)の混合溶液で1回ケーキ洗浄を行った。得られた結晶を真空乾燥(50℃)し、DA-2-3の粗物を26.5g得た。次に窒素雰囲気下、500mL四つ口フラスコにDA-2-3粗物(26.5g)、トルエン(160g)を加えて80℃で溶解させた後、45℃に保温し析出している不純物をろ過で除去した。得られたろ液の質量が40.0gになるまで濃縮後、室温で静置して析出した結晶をろ別し、真空乾燥(50℃)を行ってDA-2-3を得た(18.9g、36.5mmol、収率44.9%、黄色固体)。
Figure JPOXMLDOC01-appb-C000024
Under a nitrogen atmosphere, DA-2-2 (34.0 g, 81.3 mmol), di-tert-butyl dicarbonate (28.0 g, 128 mmol), THF (169 g), and 4-dimethylamino were placed in a 500 mL four-necked flask. Pyridine (99.8 mg, 0.82 mmol) was added and reacted at 60° C. for 24 hours. After the reaction, the mixture was concentrated until the content weight reached 117 g, and then isopropyl alcohol (156 g) was added to precipitate crystals. Thereafter, the mixture was cooled to 0° C., stirred for 5 hours, filtered, and the cake was washed once with a mixed solution of isopropyl alcohol (39 g) and tetrahydrofuran (18 g). The obtained crystals were vacuum-dried (50° C.) to obtain 26.5 g of crude DA-2-3. Next, in a nitrogen atmosphere, DA-2-3 crude (26.5 g) and toluene (160 g) were added to a 500 mL four-necked flask and dissolved at 80 ° C., and then heated to 45 ° C. to precipitate impurities. was removed by filtration. After concentrating until the mass of the obtained filtrate reached 40.0 g, the precipitated crystals were separated by filtration and vacuum-dried (50° C.) to obtain DA-2-3 (18. 9 g, 36.5 mmol, 44.9% yield, yellow solid).
Figure JPOXMLDOC01-appb-C000024
 窒素雰囲気下、500mL四つ口フラスコに、DA-2-3(17.9g、34.5mmol)、テトラヒドロフラン(151g)、カーボン担持パラジウム(5%Pdカーボン粉末(50%含水品)Kタイプ、エヌ・イー・ケムキャット社製、1.89g)を加え、水素雰囲気に置換後、室温で反応させた。反応終了後、カーボン担持パラジウムをろ過により取り除き、得られたろ液を濃縮して得た湿品を50℃で真空乾燥させてDA-2を得た(12.8g、27.9mmol、収率80.9%、茶色固体)。以下に示すH-NMRの結果から、この固体がDA-2であることを確認した。
H-NMR(500MHz,DMSO-d6):δ(ppm)=8.66(t,1H,J=5.5Hz),6.65(d,2H,J=9.0Hz),6.60(d,2H,J=9.0Hz),6.48(dd,4H,J=9.0Hz,2.1Hz),4.54(d,4H,J=7.0Hz),3.85-3.75(m,6H,),3.29(q,2H,J=7.0Hz),1.87-1.81(m,4H),1.44(s,9H).
In a nitrogen atmosphere, DA-2-3 (17.9 g, 34.5 mmol), tetrahydrofuran (151 g), carbon-supported palladium (5% Pd carbon powder (50% water content) K type, N・E Chemcat Co., Ltd., 1.89 g) was added, and after substituting a hydrogen atmosphere, the mixture was reacted at room temperature. After completion of the reaction, carbon-supported palladium was removed by filtration, and the resulting wet product obtained by concentrating the filtrate was vacuum-dried at 50° C. to obtain DA-2 (12.8 g, 27.9 mmol, yield 80 .9%, brown solid). From the 1 H-NMR results shown below, this solid was confirmed to be DA-2.
1 H-NMR (500 MHz, DMSO-d6): δ (ppm) = 8.66 (t, 1H, J = 5.5 Hz), 6.65 (d, 2H, J = 9.0 Hz), 6.60 (d, 2H, J = 9.0Hz), 6.48 (dd, 4H, J = 9.0Hz, 2.1Hz), 4.54 (d, 4H, J = 7.0Hz), 3.85- 3.75 (m, 6H,), 3.29 (q, 2H, J=7.0Hz), 1.87-1.81 (m, 4H), 1.44 (s, 9H).
[重合体の合成]
(合成例1)
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-3(0.541g、5.00mmol)、DA-1(2.65g、5.00mmol)及びNMP(23.4g)を加えて、窒素を送りながら60℃で撹拌して溶解させた。その後、室温に冷却した後、CA-1(2.15g、9.60mmol)及びNMP(15.8g)を加えて、40℃で24時間撹拌することで、固形分濃度12質量%のポリアミック酸(PAA-1)の溶液を得た。このポリアミック酸のMnは10,600、Mwは31,900であった。
[Synthesis of polymer]
(Synthesis example 1)
DA-3 (0.541 g, 5.00 mmol), DA-1 (2.65 g, 5.00 mmol) and NMP (23.4 g) were added to a 50 mL four-necked flask equipped with a stirrer and nitrogen inlet tube. was dissolved by stirring at 60° C. while supplying nitrogen. Then, after cooling to room temperature, CA-1 (2.15 g, 9.60 mmol) and NMP (15.8 g) were added and stirred at 40 ° C. for 24 hours to obtain a polyamic acid with a solid content concentration of 12% by mass. A solution of (PAA-1) was obtained. This polyamic acid had an Mn of 10,600 and an Mw of 31,900.
(合成例2)
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-3(0.541g、5.00mmol)、DA-2(2.29g、5.00mmol)及びNMP(20.8g)を加えて、窒素を送りながら室温で撹拌して溶解させた。その後、CA-1(2.16g、9.65mmol)及びNMP(15.9g)を加えて、40℃で24時間撹拌することで、固形分濃度12質量%のポリアミック酸(PAA-2)の溶液を得た。このポリアミック酸のMnは14,400、Mwは46,300であった。
(Synthesis example 2)
DA-3 (0.541 g, 5.00 mmol), DA-2 (2.29 g, 5.00 mmol) and NMP (20.8 g) were added to a 50 mL four-necked flask equipped with a stirrer and nitrogen inlet tube. was dissolved by stirring at room temperature while blowing nitrogen. After that, CA-1 (2.16 g, 9.65 mmol) and NMP (15.9 g) were added and stirred at 40 ° C. for 24 hours to obtain polyamic acid (PAA-2) having a solid content concentration of 12% by mass. A solution was obtained. This polyamic acid had an Mn of 14,400 and an Mw of 46,300.
(合成例3)
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-3(0.541g、5.00mmol)、DA-6(1.71g、5.00mmol)及びNMP(16.5g)を加えて、窒素を送りながら室温で撹拌して溶解させた。その後、CA-1(2.19g、9.78mmol)及びNMP(16.1g)を加えて、40℃で24時間撹拌することで、固形分濃度12質量%のポリアミック酸(PAA-3)の溶液を得た。このポリアミック酸のMnは16,700、Mwは52,800であった。
(Synthesis Example 3)
DA-3 (0.541 g, 5.00 mmol), DA-6 (1.71 g, 5.00 mmol) and NMP (16.5 g) were added to a 50 mL four-necked flask equipped with a stirrer and nitrogen inlet tube. was dissolved by stirring at room temperature while blowing nitrogen. After that, CA-1 (2.19 g, 9.78 mmol) and NMP (16.1 g) were added and stirred at 40 ° C. for 24 hours to obtain polyamic acid (PAA-3) having a solid content concentration of 12% by mass. A solution was obtained. This polyamic acid had an Mn of 16,700 and an Mw of 52,800.
(合成例4)
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-3(0.541g、5.00mmol)、DA-7(1.99g、5.00mmol)及びNMP(18.5g)を加えて、窒素を送りながら室温で撹拌して溶解させた。その後、CA-1(2.16g、9.65mmol)及びNMP(15.9g)を加えて、40℃で24時間撹拌することで、固形分濃度12質量%のポリアミック酸(PAA-4)の溶液を得た。このポリアミック酸のMnは13,000、Mwは37,800であった。
(Synthesis Example 4)
DA-3 (0.541 g, 5.00 mmol), DA-7 (1.99 g, 5.00 mmol) and NMP (18.5 g) were added to a 50 mL four-necked flask equipped with a stirrer and nitrogen inlet tube. was dissolved by stirring at room temperature while blowing nitrogen. After that, CA-1 (2.16 g, 9.65 mmol) and NMP (15.9 g) were added and stirred at 40 ° C. for 24 hours to obtain polyamic acid (PAA-4) having a solid content concentration of 12% by mass. A solution was obtained. This polyamic acid had an Mn of 13,000 and an Mw of 37,800.
(合成例5)
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-3(0.541g、5.00mmol)、DA-8(1.79g、5.00mmol)及びNMP(17.1g)を加えて、窒素を送りながら室温で撹拌して溶解させた。その後、CA-1(2.15g、9.60mmol)及びNMP(15.8g)を加えて、40℃で24時間撹拌することで、固形分濃度12質量%のポリアミック酸(PAA-5)の溶液を得た。このポリアミック酸のMnは16,100、Mwは52,300であった。
(Synthesis Example 5)
DA-3 (0.541 g, 5.00 mmol), DA-8 (1.79 g, 5.00 mmol) and NMP (17.1 g) were added to a 50 mL four-necked flask equipped with a stirrer and nitrogen inlet tube. was dissolved by stirring at room temperature while blowing nitrogen. After that, CA-1 (2.15 g, 9.60 mmol) and NMP (15.8 g) were added and stirred at 40 ° C. for 24 hours to obtain a polyamic acid (PAA-5) having a solid content concentration of 12% by mass. A solution was obtained. This polyamic acid had an Mn of 16,100 and an Mw of 52,300.
(合成例6)
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-3(0.324g、3.00mmol)、DA-4(0.733g、3.00mmol)、DA-5(0.641g、2.00mmol)、DA-1(1.06g、2.00mmol)及びNMP(20.2g)を加えて、窒素を送りながら60℃で撹拌して溶解させた。その後、室温に冷却した後、CA-1(2.15g、9.57mmol)及びNMP(15.7g)を加えて、40℃で24時間撹拌することで、固形分濃度12質量%のポリアミック酸(PAA-6)の溶液を得た。このポリアミック酸のMnは14,600、Mwは37,500であった。
(Synthesis Example 6)
DA-3 (0.324 g, 3.00 mmol), DA-4 (0.733 g, 3.00 mmol), DA-5 (0.641 g, 2.00 mmol), DA-1 (1.06 g, 2.00 mmol) and NMP (20.2 g) were added and dissolved by stirring at 60° C. while purging with nitrogen. Then, after cooling to room temperature, CA-1 (2.15 g, 9.57 mmol) and NMP (15.7 g) were added and stirred at 40 ° C. for 24 hours to obtain a polyamic acid with a solid content concentration of 12% by mass. A solution of (PAA-6) was obtained. This polyamic acid had an Mn of 14,600 and an Mw of 37,500.
(合成例7)
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-3(0.324g、3.00mmol)、DA-4(0.733g、3.00mmol)、DA-5(0.641g、2.00mmol)、DA-2(0.917g、2.00mmol)及びNMP(19.2g)を加えて、窒素を送りながら室温で撹拌して溶解させた。その後、CA-1(2.14g、9.53mmol)及びNMP(15.7g)を加えて、40℃で24時間撹拌することで、固形分濃度12質量%のポリアミック酸(PAA-7)の溶液を得た。このポリアミック酸のMnは14,100、Mwは36,500であった。
(Synthesis Example 7)
DA-3 (0.324 g, 3.00 mmol), DA-4 (0.733 g, 3.00 mmol), DA-5 (0.641 g, 2.00 mmol), DA-2 (0.917 g, 2.00 mmol) and NMP (19.2 g) were added and dissolved by stirring at room temperature with nitrogen sparging. After that, CA-1 (2.14 g, 9.53 mmol) and NMP (15.7 g) were added and stirred at 40 ° C. for 24 hours to obtain polyamic acid (PAA-7) having a solid content concentration of 12% by mass. A solution was obtained. This polyamic acid had an Mn of 14,100 and an Mw of 36,500.
(合成例8)
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-3(0.324g、3.00mmol)、DA-4(0.733g、3.00mmol)、DA-5(0.641g、2.00mmol)、DA-6(0.683g、2.00mmol)及びNMP(17.5g)を加えて、窒素を送りながら室温で撹拌して溶解させた。その後、CA-1(2.16g、9.62mmol)及びNMP(15.8g)を加えて、40℃で24時間撹拌することで、固形分濃度12質量%のポリアミック酸(PAA-8)の溶液を得た。このポリアミック酸のMnは12,100、Mwは32,400であった。
(Synthesis Example 8)
DA-3 (0.324 g, 3.00 mmol), DA-4 (0.733 g, 3.00 mmol), DA-5 (0.641 g, 2.00 mmol), DA-6 (0.683 g, 2.00 mmol) and NMP (17.5 g) were added and dissolved by stirring at room temperature with nitrogen sparging. After that, CA-1 (2.16 g, 9.62 mmol) and NMP (15.8 g) were added and stirred at 40 ° C. for 24 hours to obtain polyamic acid (PAA-8) having a solid content concentration of 12% by mass. A solution was obtained. This polyamic acid had an Mn of 12,100 and an Mw of 32,400.
(合成例9)
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-3(0.324g、3.00mmol)、DA-4(0.733g、3.00mmol)、DA-5(0.641g、2.00mmol)、DA-7(0.797g、2.00mmol)及びNMP(18.3g)を加えて、窒素を送りながら室温で撹拌して溶解させた。その後、CA-1(2.14g、9.56mmol)及びNMP(15.7g)を加えて、40℃で24時間撹拌することで、固形分濃度12質量%のポリアミック酸(PAA-9)の溶液を得た。このポリアミック酸のMnは12,100、Mwは32,300であった。
(Synthesis Example 9)
DA-3 (0.324 g, 3.00 mmol), DA-4 (0.733 g, 3.00 mmol), DA-5 (0.641 g, 2.00 mmol), DA-7 (0.797 g, 2.00 mmol) and NMP (18.3 g) were added and dissolved by stirring at room temperature under nitrogen sparging. After that, CA-1 (2.14 g, 9.56 mmol) and NMP (15.7 g) were added and stirred at 40 ° C. for 24 hours to obtain polyamic acid (PAA-9) having a solid content concentration of 12% by mass. A solution was obtained. This polyamic acid had an Mn of 12,100 and an Mw of 32,300.
(合成例10)
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-3(0.324g、3.00mmol)、DA-4(0.733g、3.00mmol)、DA-5(0.641g、2.00mmol)、DA-8(0.717g、2.00mmol)及びNMP(17.7g)を加えて、窒素を送りながら室温で撹拌して溶解させた。その後、CA-1(2.13g、9.49mmol)及びNMP(15.6g)を加えて、40℃で24時間撹拌することで、固形分濃度12質量%のポリアミック酸(PAA-10)の溶液を得た。このポリアミック酸のMnは12,600、Mwは32,900であった。
(Synthesis Example 10)
DA-3 (0.324 g, 3.00 mmol), DA-4 (0.733 g, 3.00 mmol), DA-5 (0.641 g, 2.00 mmol), DA-8 (0.717 g, 2.00 mmol) and NMP (17.7 g) were added and dissolved by stirring at room temperature under nitrogen sparging. After that, CA-1 (2.13 g, 9.49 mmol) and NMP (15.6 g) were added and stirred at 40 ° C. for 24 hours to obtain a polyamic acid (PAA-10) having a solid content concentration of 12% by mass. A solution was obtained. This polyamic acid had an Mn of 12,600 and an Mw of 32,900.
(合成例11)
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-9(1.59g、8.00mmol)、DA-10(0.304g、2.00mmol)及びNMP(13.9g)を加えて、窒素を送りながら室温で撹拌して溶解させた。その後、CA-2(2.74g、9.30mmol)及びNMP(20.1g)を加えて、70℃で12時間撹拌することで、固形分濃度12質量%のポリアミック酸(PAA-11)の溶液を得た。このポリアミック酸のMnは9,700、Mwは21,800であった。
(Synthesis Example 11)
DA-9 (1.59 g, 8.00 mmol), DA-10 (0.304 g, 2.00 mmol) and NMP (13.9 g) were added to a 50 mL four-necked flask equipped with a stirrer and nitrogen inlet tube. was dissolved by stirring at room temperature while blowing nitrogen. After that, CA-2 (2.74 g, 9.30 mmol) and NMP (20.1 g) were added and stirred at 70 ° C. for 12 hours to obtain a polyamic acid (PAA-11) having a solid content concentration of 12% by mass. A solution was obtained. This polyamic acid had an Mn of 9,700 and an Mw of 21,800.
 上記合成例で得られたポリアミック酸溶液の仕様を表1に示す。表1において、テトラカルボン酸成分及びジアミン成分の括弧内の数値は、各重合工程において使用したジアミン成分の合計量100モル部に対する、各テトラカルボン酸成分及び各ジアミン成分の使用量(モル部)を表す。 Table 1 shows the specifications of the polyamic acid solution obtained in the above synthesis example. In Table 1, the numbers in parentheses for the tetracarboxylic acid component and the diamine component are the amounts (mol parts) of each tetracarboxylic acid component and each diamine component used with respect to the total amount of 100 mol parts of the diamine component used in each polymerization step. represents
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
[液晶配向剤の調製]
(実施例1)
 上記合成例1で得られたポリアミック酸(PAA-1)の溶液(10.0g)にNMP(14.0g)及びBCS(6.00g)を加えて、室温で30分間撹拌することで、液晶配向剤(AL-1)を得た。
[Preparation of Liquid Crystal Aligning Agent]
(Example 1)
NMP (14.0 g) and BCS (6.00 g) were added to the polyamic acid (PAA-1) solution (10.0 g) obtained in Synthesis Example 1 above, and the mixture was stirred at room temperature for 30 minutes to obtain a liquid crystal. An alignment agent (AL-1) was obtained.
(実施例2、比較例1~3)
使用するポリアミック酸の溶液を(PAA-1)から(PAA-2)~(PAA-5)に置き換えた点以外は実施例1と同様に実施することで、液晶配向剤(AL-2)、(AL-C1)~(AL-C3)を得た。
(Example 2, Comparative Examples 1 to 3)
Liquid crystal aligning agent (AL-2), (AL-C1) to (AL-C3) were obtained.
(実施例3)
 上記合成例6で得られたポリアミック酸(PAA-6)の溶液(3.0g)と上記合成例11で得られたポリアミック酸(PAA-11)の溶液(7.0g)にNMP(6.80g)及びBCS(7.20g)を加えて、室温で2時間撹拌することで、液晶配向剤(AL-3)を得た。
(Example 3)
NMP (6. 80 g) and BCS (7.20 g) were added and stirred at room temperature for 2 hours to obtain a liquid crystal aligning agent (AL-3).
(実施例4)
 上記合成例7で得られたポリアミック酸(PAA-7)の溶液(4.0g)と上記合成例11で得られたポリアミック酸(PAA-11)の溶液(6.0g)にNMP(6.80g)及びBCS(7.20g)を加えて、室温で2時間撹拌することで、液晶配向剤(AL-4)を得た。
(Example 4)
NMP (6.0 g) was added to the solution (4.0 g) of polyamic acid (PAA-7) obtained in Synthesis Example 7 and the solution (6.0 g) of polyamic acid (PAA-11) obtained in Synthesis Example 11 above. 80 g) and BCS (7.20 g) were added and stirred at room temperature for 2 hours to obtain a liquid crystal aligning agent (AL-4).
(比較例4)
 使用するポリアミック酸の溶液を(PAA-6)から(PAA-8)に置き換えた点以外は実施例3と同様に実施することで、液晶配向剤(AL-C4)を得た。
(Comparative Example 4)
A liquid crystal aligning agent (AL-C4) was obtained in the same manner as in Example 3 except that the polyamic acid solution used was replaced with (PAA-8) from (PAA-6).
(比較例5~6)
 使用するポリアミック酸の溶液を(PAA-7)から(PAA-9)~(PAA-10)に置き換えた点以外は実施例4と同様に実施することで、液晶配向剤(AL-C5)~(AL-C6)を得た。
(Comparative Examples 5-6)
Liquid crystal alignment agent (AL-C5) ~ (AL-C6) was obtained.
 上記実施例及び比較例で得られた液晶配向剤の仕様を表2に示す。表中、ポリアミック酸の括弧内の数値は、重合体成分の合計100質量部に対する、各重合体の配合量(質量部)を表す。 Table 2 shows the specifications of the liquid crystal aligning agents obtained in the above examples and comparative examples. In the table, the numbers in parentheses for the polyamic acid represent the blending amount (parts by mass) of each polymer with respect to the total of 100 parts by mass of the polymer components.
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
[液晶セルの作製]
 上記で得られた液晶配向剤を用いて下記に示すような手順で液晶セルの作製を行った。液晶配向剤をそれぞれ孔径1.0μmのフィルターで濾過した後、ITO電極付きガラス基板(縦40mm×横30mm×厚み0.7mm)にスピンコート法により塗布し、80℃のホットプレート上で60秒間乾燥した後、230℃の赤外線加熱炉で20分間焼成を行い、膜厚100nmの液晶配向膜を形成した。この塗膜面に偏光板を介して消光比26:1の直線偏光した波長254nmの紫外線を200mJ/cm、300mJ/cm、又は400mJ/cmのいずれかを照射して配向処理を施し、更に230℃の赤外線加熱炉で30分間焼成して液晶配向膜付き基板(第1のガラス基板)を得た。配向方向が第1のガラス基板と直交するように配向処理することを除いては上記と同様にして、液晶配向膜付き基板(第2のガラス基板)を得た。上記2枚の基板を一組とし、その1枚の液晶配向膜上に直径4μmのビーズスペーサー(日揮触媒化成社製、真絲球、SW-D1)を塗布し、液晶注入口を残して周囲にシール剤(三井化学社製、XN-1500T)を印刷し、もう1枚の基板を、液晶配向膜面が向き合う配向方向が0°になるようにして貼り合わせた。その後、150℃で60分間の加熱処理を行い、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-3019(メルク社製)を注入し、注入口を封止して、液晶セルを得た。その後、得られた液晶セルを120℃で1時間加熱してから評価に使用した。
[Production of liquid crystal cell]
Using the liquid crystal aligning agent obtained above, a liquid crystal cell was produced in the following procedure. After each liquid crystal aligning agent was filtered through a filter with a pore size of 1.0 μm, it was applied to a glass substrate with ITO electrodes (length 40 mm×width 30 mm×thickness 0.7 mm) by a spin coating method and placed on a hot plate at 80° C. for 60 seconds. After drying, it was baked in an infrared heating furnace at 230° C. for 20 minutes to form a liquid crystal alignment film with a film thickness of 100 nm. The coating film surface was subjected to an orientation treatment by irradiating linearly polarized ultraviolet light having a wavelength of 254 nm with an extinction ratio of 26:1 through a polarizing plate at 200 mJ/cm 2 , 300 mJ/cm 2 or 400 mJ/cm 2 . Furthermore, it was baked in an infrared heating furnace at 230° C. for 30 minutes to obtain a substrate with a liquid crystal alignment film (first glass substrate). A substrate with a liquid crystal alignment film (second glass substrate) was obtained in the same manner as described above, except that the alignment treatment was performed so that the alignment direction was orthogonal to that of the first glass substrate. The above two substrates are set as a set, and a bead spacer with a diameter of 4 μm (manufactured by Nikki Shokubai Kasei Co., Ltd., Shinshikyu, SW-D1) is applied on one of the liquid crystal alignment films, leaving a liquid crystal injection port. A sealant (XN-1500T, manufactured by Mitsui Chemicals, Inc.) was printed, and another substrate was attached so that the alignment direction of the liquid crystal alignment film surfaces facing each other was 0°. After that, a heat treatment was performed at 150° C. for 60 minutes to cure the sealant to prepare an empty cell. Liquid crystal MLC-3019 (manufactured by Merck & Co.) was injected into this empty cell by a vacuum injection method, and the injection port was sealed to obtain a liquid crystal cell. Thereafter, the obtained liquid crystal cell was heated at 120° C. for 1 hour and then used for evaluation.
[コントラストの面内均一性の評価]
 AXOMETRICS社製AxoStepを用いて液晶セルのツイスト角のばらつきの評価を行った。上記で作製した液晶セルを測定ステージに設置し、電圧無印加の状態で、画素面内のCircular Retardanceの分布を測定して標準偏差σの3倍である3σを算出した。面内均一性は、この3σの値が小さいほど良好であると言える。
[Evaluation of in-plane uniformity of contrast]
Variation in the twist angle of the liquid crystal cell was evaluated using AxoStep manufactured by AXOMETRICS. The liquid crystal cell produced above was placed on a measurement stage, and the distribution of Circular Retardance in the pixel plane was measured with no voltage applied to calculate 3σ, which is three times the standard deviation σ. It can be said that the smaller the 3σ value, the better the in-plane uniformity.
[コントラストの面内均一性]
 実施例1~2及び比較例1~3の液晶配向剤から得られた液晶配向膜(単独膜)及び実施例3~4及び比較例4~6の液晶配向剤から得られた液晶配向膜(ブレンド膜)において、上記コントラストの面内均一性の評価を行った。評価基準として、上記3σの値が1.65未満の場合を「○」、1.65以上の場合を「×」とした。結果を表3(単独膜)及び表4(ブレンド膜)に示す。
[In-plane uniformity of contrast]
Liquid crystal alignment films (single films) obtained from the liquid crystal alignment agents of Examples 1 and 2 and Comparative Examples 1 and 3 and liquid crystal alignment films obtained from the liquid crystal alignment agents of Examples 3 and 4 and Comparative Examples 4 and 6 ( In the blend film), the in-plane uniformity of the contrast was evaluated. As the evaluation criteria, the case where the value of 3σ was less than 1.65 was evaluated as “◯”, and the case where the value was 1.65 or more was evaluated as “X”. The results are shown in Table 3 (single membrane) and Table 4 (blend membrane).
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
[層分離性の評価]
 上記液晶配向剤の調製例の実施例3~4及び比較例4~6において、(PAA-11)を用いない以外は同様の手順で液晶配向剤を調製し、液晶配向剤(AL-3a)~(AL-4a)及び(AL-C4a)~(AL-C6a)をそれぞれ得た。
 次に、上記で得た液晶配向剤(AL-3a)~(AL-4a)及び(AL-C4a)~(AL-C6a)を用いて、紫外線の照射量を300mJ/cmとして、上記と同様の手順で液晶セルを作製し、コントラストの面内均一性の評価をそれぞれ行った。(以下、該評価によって得られた値を、3σ(単独膜)とする。)
 また、上記液晶配向剤の調製例で得た液晶配向剤(AL-3)~(AL-4)及び(AL-C4)~(AL-C6)を用いて、紫外線の照射量を300mJ/cmとして、上記と同様の手順で液晶セルを作製し、コントラストの面内均一性の評価を行った。(以下、該評価によって得られた値を、3σ(ブレンド膜)とする。)
 そして、3σ(単独膜)と3σ(ブレンド膜)の差分をΔ3σとして、Δ3σが0.60未満の場合を「○」、0.60以上の場合を「×」として、層分離性の評価を行った。結果を表5に示す。
 層分離性が低い場合、3σ(単独膜)よりも3σ(ブレンド膜)の値が大きくなり、Δ3σの値が大きくなる。一方、層分離性が高い場合は、Δ3σの値は小さくなる。
[Evaluation of layer separability]
In Examples 3 to 4 and Comparative Examples 4 to 6 of the preparation example of the liquid crystal aligning agent, a liquid crystal aligning agent was prepared in the same procedure except that (PAA-11) was not used, and a liquid crystal aligning agent (AL-3a) was prepared. ~ (AL-4a) and (AL-C4a) ~ (AL-C6a) were obtained, respectively.
Next, using the liquid crystal aligning agents (AL-3a) to (AL-4a) and (AL-C4a) to (AL-C6a) obtained above, the irradiation amount of ultraviolet rays is set to 300 mJ / cm 2 , and the above A liquid crystal cell was produced in the same procedure, and the in-plane uniformity of contrast was evaluated. (Hereinafter, the value obtained by the evaluation is referred to as 3σ (single film).)
Further, using the liquid crystal aligning agents (AL-3) to (AL-4) and (AL-C4) to (AL-C6) obtained in the liquid crystal aligning agent preparation examples, the irradiation amount of ultraviolet rays was 300 mJ / cm. As 2 , a liquid crystal cell was produced in the same procedure as above, and the in-plane uniformity of contrast was evaluated. (Hereinafter, the value obtained by the evaluation is referred to as 3σ (blend film).)
Then, the difference between 3σ (single film) and 3σ (blended film) is Δ3σ, and the case where Δ3σ is less than 0.60 is “○” and the case of 0.60 or more is “×”, and the layer separation property is evaluated. gone. Table 5 shows the results.
When the layer separability is low, the value of 3σ (blend film) becomes larger than that of 3σ (single film), and the value of Δ3σ becomes large. On the other hand, when the layer separability is high, the value of Δ3σ becomes small.
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
 表3及び表4に示されるように、特定ジアミン(0)を含むジアミン成分を用いた液晶配向剤から得られる液晶配向膜は、コントラストの面内均一性が良好であった。また、表5に示されるように、2種類以上の重合体を用いた場合において高い層分離性を示した。 As shown in Tables 3 and 4, the liquid crystal alignment film obtained from the liquid crystal alignment agent using the diamine component containing the specific diamine (0) had good in-plane uniformity of contrast. Moreover, as shown in Table 5, high layer separation was exhibited when two or more types of polymers were used.
 本発明の液晶配向剤から得られる液晶配向膜は、各種の動作モードの液晶表示素子に広く使用されるが、例えば、位相差フィルム用の液晶配向膜、走査アンテナや液晶アレイアンテナ用の液晶配向膜又は透過散乱型の液晶調光素子用としての液晶配向膜に用いることもできる。 The liquid crystal alignment film obtained from the liquid crystal alignment agent of the present invention is widely used in liquid crystal display elements of various operation modes. It can also be used for a film or a liquid crystal alignment film for a transmission scattering type liquid crystal light control device.
 本発明の液晶表示素子は、種々の機能を有する装置に有効に適用することができ、例えば、液晶テレビ、時計、携帯型ゲーム、ワープロ、ノート型パソコン、カーナビゲーションシステム、カムコーダー、PDA、デジタルカメラ、携帯電話、スマートフォン、各種モニター、インフォメーションディスプレイなどに用いることができる。 The liquid crystal display device of the present invention can be effectively applied to devices having various functions, such as liquid crystal televisions, clocks, portable games, word processors, notebook computers, car navigation systems, camcorders, PDAs, and digital cameras. , mobile phones, smart phones, various monitors, information displays, etc.
 なお、2021年10月28日に出願された日本特許出願2021-177006号の明細書、特許請求の範囲、図面及び要約書の全内容、および2021年11月22日に出願された日本特許出願2021-189681号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 In addition, the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2021-177006 filed on October 28, 2021, and the Japanese Patent Application filed on November 22, 2021 The entire contents of the specification, claims, drawings and abstract of No. 2021-189681 are hereby incorporated by reference and incorporated as disclosure for the present specification.

Claims (16)

  1.  下記式(D)で表されるジアミン(0)を含むジアミン成分を用いて得られるポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体(P)を含有することを特徴とする液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
    (Zは、互いに独立して、水素原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基または炭素数2~6のアルキニル基を表し、上記アルキル基、アルケニル基、又はアルキニル基が有する水素原子は、1価の基で置換されてもよい。両端のアミノ基が結合しているベンゼン環上の任意の水素原子は、1価の基で置換されてもよい。
    Aは、炭素数4~10のアルキレン基において、任意の炭素-炭素結合が以下の条件(1)および(2)のいずれかを満たす2価の有機基(a)を表す。なお、以下の条件(1)および(2)において、*1は、アルキレン基が有する炭素原子と結合し、上記炭素-炭素結合は、重合体(P)の主鎖を形成する炭素-炭素結合から選ばれる。
    (1)2箇所以上の炭素-炭素結合間に「*1-N(Boc)-*1」が挿入される。
    (2)1箇所以上の炭素-炭素結合間に「*1-N(Boc)-C(=O)-N(R)-*1」が挿入される。Rは、水素原子又は1価の有機基を表す。Bocは、tert-ブトキシカルボニル基を表す。)
    At least one polymer selected from the group consisting of a polyimide precursor obtained using a diamine component containing a diamine (0) represented by the following formula (D A ) and a polyimide that is an imidized product of the polyimide precursor ( P), a liquid crystal aligning agent characterized by containing.
    Figure JPOXMLDOC01-appb-C000001
    (Z 1 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms or an alkynyl group having 2 to 6 carbon atoms, and the above alkyl group, alkenyl group, or A hydrogen atom of the alkynyl group may be substituted with a monovalent group Any hydrogen atom on the benzene ring to which the amino groups at both ends are bonded may be substituted with a monovalent group.
    A represents a divalent organic group (a) in which any carbon-carbon bond in an alkylene group having 4 to 10 carbon atoms satisfies either of the following conditions (1) and (2). In the following conditions (1) and (2), *1 is bonded to a carbon atom possessed by an alkylene group, and the carbon-carbon bond is a carbon-carbon bond forming the main chain of the polymer (P). selected from
    (1) "*1-N(Boc)-*1" is inserted between two or more carbon-carbon bonds.
    (2) "*1-N(Boc)-C(=O)-N(R)-*1" is inserted between one or more carbon-carbon bonds. R represents a hydrogen atom or a monovalent organic group. Boc represents a tert-butoxycarbonyl group. )
  2.  上記式(D)におけるAが、以下のいずれかから選ばれる、請求項1に記載の液晶配向剤。
     *-(CHn1-N(Boc)-(CHn1’-N(Boc)-(CHn1”-*、*-(CHn2-N(Boc)-C(=O)-N(R)-(CHn2’-*、*-(CHn3-N(Boc)-C(=O)-N(R)-(CHn3’ -N(R)-C(=O)-N(Boc)-(CHn3”-*。
    (n1、n1’、n1”、n2、n2’、n3、n3’及びn3”は、互いに独立して、1以上の整数であり、n1、n1’及びn1”の合計は4~10であり、n2及びn2’の合計は4~10であり、n3、n3’及びn3”の合計は4~10である。RおよびBocは、請求項1で定義された通りである。Rが複数個存在する場合は、互いに独立して上記定義を有する。)
    The liquid crystal aligning agent according to claim 1, wherein A in the formula (D A ) is selected from any one of the following.
    *-(CH 2 ) n1 -N(Boc)-(CH 2 ) n1′ -N(Boc)-(CH 2 ) n1″ -*, *-(CH 2 ) n2 -N(Boc)-C(= O)-N(R)-( CH2 ) n2' -*, *-( CH2 ) n3 -N(Boc)-C(=O)-N(R)-( CH2 ) n3'- N( R)-C(=O)-N(Boc)-( CH2 ) n3'' -*.
    (n1, n1′, n1″, n2, n2′, n3, n3′ and n3″ are each independently an integer of 1 or more, and the sum of n1, n1′ and n1″ is 4 to 10; , n2 and n2′ are 4 to 10, and the sum of n3, n3′ and n3″ is 4 to 10. R and Boc are as defined in claim 1. R is more than one if present, have the above definitions independently of each other.)
  3.  前記ジアミン(0)が、下記式(d-1)~(d-2)からなる群から選ばれるいずれかのジアミンである、請求項1又は2に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000002
    (Zは式(D)と同義である。n1、n1’、n1”、n2及びn2’は、互いに独立して、1以上の整数であり、n1、n1’及びn1”の合計は4~10である。n2及びn2’の合計は4~10である。両端のアミノ基が結合しているベンゼン環上の任意の水素原子は、1価の基で置換されてもよい。RおよびBocは、請求項1で定義された通りである。)
    3. The liquid crystal aligning agent according to claim 1, wherein the diamine (0) is any diamine selected from the group consisting of the following formulas (d A -1) to (d A -2).
    Figure JPOXMLDOC01-appb-C000002
    (Z 1 has the same definition as formula (D A ). n1, n1′, n1″, n2 and n2′ are each independently an integer of 1 or more, and the sum of n1, n1′ and n1″ is 4 to 10. The sum of n2 and n2' is 4 to 10. Any hydrogen atom on the benzene ring to which the amino groups at both ends are bonded may be substituted with a monovalent group. and Boc are as defined in claim 1.)
  4.  前記重合体(P)は、下記式(1)で表される繰り返し単位(p1)及び該繰り返し単位(p1)のイミド化構造単位からなる群から選ばれる少なくとも1種の繰り返し単位を有する重合体である、請求項1~3のいずれか1項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000003
    (式(1)中、Xは4価の有機基を表す。Yは前記式(D)で表されるジアミン(0)から2つのアミノ基を除いた2価の有機基である。R及びZはそれぞれ独立して水素原子又は1価の有機基を表す。)
    The polymer (P) is a polymer having at least one repeating unit selected from the group consisting of repeating units (p1) represented by the following formula (1) and imidized structural units of the repeating units (p1). The liquid crystal aligning agent according to any one of claims 1 to 3.
    Figure JPOXMLDOC01-appb-C000003
    (In the formula (1), X 1 represents a tetravalent organic group. Y 1 is a divalent organic group obtained by removing two amino groups from the diamine (0) represented by the formula (D A ). (R and Z each independently represent a hydrogen atom or a monovalent organic group.)
  5.  前記重合体(P)が、前記ジアミン成分と、非環式脂肪族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、芳香族テトラカルボン酸二無水物、又はこれらの誘導体を含有するテトラカルボン酸成分と、の重縮合反応により得られる、請求項1~4のいずれか1項に記載の液晶配向剤。 The polymer (P) contains the diamine component, an acyclic aliphatic tetracarboxylic dianhydride, an alicyclic tetracarboxylic dianhydride, an aromatic tetracarboxylic dianhydride, or a derivative thereof. The liquid crystal aligning agent according to any one of claims 1 to 4, obtained by a polycondensation reaction with a tetracarboxylic acid component.
  6.  前記ジアミン(0)の使用量が、前記ジアミン成分に対して、5モル%以上である、請求項1~5のいずれか1項に記載の液晶配向剤。 The liquid crystal aligning agent according to any one of claims 1 to 5, wherein the diamine (0) is used in an amount of 5 mol% or more with respect to the diamine component.
  7.  さらに、前記ジアミン(0)を含有しないジアミン成分を用いて得られるポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体(B)を含有する、請求項1~6のいずれか一項に記載の液晶配向剤。 Furthermore, at least one polymer selected from the group consisting of a polyimide precursor obtained using a diamine component that does not contain the diamine (0) and a polyimide that is an imidized product of the polyimide precursor (B). The liquid crystal aligning agent according to any one of claims 1 to 6.
  8.  請求項1~7のいずれか1項に記載の液晶配向剤から得られる液晶配向膜。 A liquid crystal alignment film obtained from the liquid crystal alignment agent according to any one of claims 1 to 7.
  9.  請求項8に記載の液晶配向膜を具備する液晶表示素子。 A liquid crystal display element comprising the liquid crystal alignment film according to claim 8.
  10.  下記の工程(1)~(3)を含む、液晶表示素子の製造方法。
     工程(1):請求項1~7のいずれか一項に記載の液晶配向剤を基板上に塗布する工程
     工程(2):塗布した前記液晶配向剤を焼成し、膜を得る工程
     工程(3):工程(2)で得られた前記膜に配向処理する工程
    A method for manufacturing a liquid crystal display device, comprising the following steps (1) to (3).
    Step (1): A step of applying the liquid crystal aligning agent according to any one of claims 1 to 7 onto a substrate Step (2): A step of baking the applied liquid crystal aligning agent to obtain a film Step (3) ): a step of subjecting the film obtained in step (2) to orientation treatment
  11.  前記配向処理が、光配向処理である、請求項10に記載の液晶表示素子の製造方法。 The method for manufacturing a liquid crystal display element according to claim 10, wherein the alignment treatment is a photo-alignment treatment.
  12.  下記式(d-1)~(d-2)で表されるジアミン。
    Figure JPOXMLDOC01-appb-C000004
    (Zは、互いに独立して、水素原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基または炭素数2~6のアルキニル基を表し、上記アルキル基、アルケニル基、又はアルキニル基が有する水素原子は、1価の基で置換されてもよい。n1、n1’、n1”、n2及びn2’は、互いに独立して、1以上の整数であり、n1、n1’及びn1”の合計は4~10である。n2及びn2’の合計は4~10である。Bocは、tert-ブトキシカルボニル基を表す。
    両端のアミノ基が結合しているベンゼン環上の任意の水素原子は、1価の基で置換されてもよい。)
    Diamines represented by the following formulas (d A -1) to (d A -2).
    Figure JPOXMLDOC01-appb-C000004
    (Z 1 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms or an alkynyl group having 2 to 6 carbon atoms, and the above alkyl group, alkenyl group, or A hydrogen atom of the alkynyl group may be substituted with a monovalent group. n1, n1′, n1″, n2 and n2′ are each independently an integer of 1 or more, and n1, n1′ and The sum of n1″ is 4 to 10. The sum of n2 and n2′ is 4 to 10. Boc represents a tert-butoxycarbonyl group.
    Any hydrogen atom on the benzene ring to which the amino groups at both ends are bound may be substituted with a monovalent group. )
  13.  請求項12に記載のジアミンを含むジアミン成分から得られる重合体。 A polymer obtained from a diamine component containing the diamine according to claim 12.
  14.  請求項12に記載のジアミンを含むジアミン成分とテトラカルボン酸成分との重縮合反
    応により得られるポリイミド前駆体又はそのイミド化物であるポリイミド。
    A polyimide that is a polyimide precursor or an imidized product thereof obtained by a polycondensation reaction of a diamine component containing the diamine according to claim 12 and a tetracarboxylic acid component.
  15.  下記式(D)で表されるジアミン(0)を含むジアミン成分を用いて得られるポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体。
    Figure JPOXMLDOC01-appb-C000005
    (Zは、互いに独立して、水素原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基または炭素数2~6のアルキニル基を表し、上記アルキル基、アルケニル基、又はアルキニル基が有する水素原子は、1価の基で置換されてもよい。両端のアミノ基が結合しているベンゼン環上の任意の水素原子は、1価の基で置換されてもよい。
    Aは、炭素数4~10のアルキレン基において、任意の炭素-炭素結合が以下の条件(1)および(2)のいずれかを満たす2価の有機基(a)を表す。なお、以下の条件(1)および(2)において、*1は、アルキレン基が有する炭素原子と結合し、上記炭素-炭素結合は、重合体(P)の主鎖を形成する炭素-炭素結合から選ばれる。
    (1)2箇所以上の炭素-炭素結合間に「*1-N(Boc)-*1」が挿入される。
    (2)1箇所以上の炭素-炭素結合間に「*1-N(Boc)-C(=O)-N(R)-*1」が挿入される。Rは、水素原子又は1価の有機基を表す。Bocは、tert-ブトキシカルボニル基を表す。)
    At least one polymer selected from the group consisting of a polyimide precursor obtained using a diamine component containing a diamine (0) represented by the following formula (D A ) and a polyimide that is an imidized product of the polyimide precursor.
    Figure JPOXMLDOC01-appb-C000005
    (Z 1 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms or an alkynyl group having 2 to 6 carbon atoms, and the above alkyl group, alkenyl group, or A hydrogen atom of the alkynyl group may be substituted with a monovalent group Any hydrogen atom on the benzene ring to which the amino groups at both ends are bonded may be substituted with a monovalent group.
    A represents a divalent organic group (a) in which any carbon-carbon bond in an alkylene group having 4 to 10 carbon atoms satisfies either of the following conditions (1) and (2). In the following conditions (1) and (2), *1 is bonded to a carbon atom possessed by an alkylene group, and the carbon-carbon bond is a carbon-carbon bond forming the main chain of the polymer (P). selected from
    (1) "*1-N(Boc)-*1" is inserted between two or more carbon-carbon bonds.
    (2) "*1-N(Boc)-C(=O)-N(R)-*1" is inserted between one or more carbon-carbon bonds. R represents a hydrogen atom or a monovalent organic group. Boc represents a tert-butoxycarbonyl group. )
  16.  前記式(d-1)~(d-2)が、下記式DA-1またはDA-2である、請求項12に記載のジアミン。
    Figure JPOXMLDOC01-appb-C000006
    The diamine according to claim 12, wherein the formulas (d A -1) to (d A -2) are the following formulas DA-1 or DA-2.
    Figure JPOXMLDOC01-appb-C000006
PCT/JP2022/039298 2021-10-28 2022-10-21 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element WO2023074570A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023556398A JPWO2023074570A1 (en) 2021-10-28 2022-10-21
CN202280029013.4A CN117178225A (en) 2021-10-28 2022-10-21 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021177006 2021-10-28
JP2021-177006 2021-10-28
JP2021189681 2021-11-22
JP2021-189681 2021-11-22

Publications (1)

Publication Number Publication Date
WO2023074570A1 true WO2023074570A1 (en) 2023-05-04

Family

ID=86159449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039298 WO2023074570A1 (en) 2021-10-28 2022-10-21 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Country Status (3)

Country Link
JP (1) JPWO2023074570A1 (en)
TW (1) TW202328409A (en)
WO (1) WO2023074570A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019022215A1 (en) * 2017-07-28 2019-01-31 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2021161989A1 (en) * 2020-02-14 2021-08-19 日産化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display device, and diamine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019022215A1 (en) * 2017-07-28 2019-01-31 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2021161989A1 (en) * 2020-02-14 2021-08-19 日産化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display device, and diamine

Also Published As

Publication number Publication date
JPWO2023074570A1 (en) 2023-05-04
TW202328409A (en) 2023-07-16

Similar Documents

Publication Publication Date Title
WO2023286733A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, method for producing liquid crystal display element, and liquid crystal display element
WO2022176680A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP7351435B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2023074570A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2022220199A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2023074569A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2023032753A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2023286735A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element production method, and liquid crystal display element
WO2023210532A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2022270287A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2022190896A1 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2022239658A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal element
WO2023074392A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2022250007A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, diamine, and polymer
WO2023219112A1 (en) Novel diamine compound, polymer obtained using diamine, liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2022234820A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
TW202409152A (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
CN117178225A (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2023068085A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element, and compound
WO2023013622A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2023032784A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
TW202409148A (en) Manufacturing method of liquid crystal alignment film, manufacturing method of liquid crystal display element, liquid crystal alignment film, and liquid crystal display element
JP2024007369A (en) Manufacturing method of liquid crystal orientation film, manufacturing method of liquid crystal display element, liquid crystal orientation film and liquid crystal display element
WO2023074390A1 (en) Liquid crystal aligning agent, liquid crystal aligned film, liquid crystal display element, and compound
WO2023008203A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, compound and polymer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22886897

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023556398

Country of ref document: JP