WO2022220199A1 - Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element - Google Patents

Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element Download PDF

Info

Publication number
WO2022220199A1
WO2022220199A1 PCT/JP2022/017388 JP2022017388W WO2022220199A1 WO 2022220199 A1 WO2022220199 A1 WO 2022220199A1 JP 2022017388 W JP2022017388 W JP 2022017388W WO 2022220199 A1 WO2022220199 A1 WO 2022220199A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
diamine
aligning agent
crystal aligning
Prior art date
Application number
PCT/JP2022/017388
Other languages
French (fr)
Japanese (ja)
Inventor
昂太郎 溝口
達也 結城
夏樹 佐藤
雄介 山本
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to JP2023514632A priority Critical patent/JPWO2022220199A1/ja
Priority to CN202280026076.4A priority patent/CN117222939A/en
Priority to KR1020237030110A priority patent/KR20230169081A/en
Publication of WO2022220199A1 publication Critical patent/WO2022220199A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to a liquid crystal aligning agent, a liquid crystal aligning film obtained from the liquid crystal aligning agent, a liquid crystal display element comprising the liquid crystal aligning film, and a novel diamine and polymer suitable for them.
  • Liquid crystal display elements are used in a wide range of applications, from small applications such as mobile phones and smartphones to relatively large applications such as televisions and monitors.
  • various driving methods with different electrode structures and physical properties of the liquid crystal molecules used have been developed.
  • -Plane Switching FFS (Fringe Field Switching), and other liquid crystal display devices using various modes are known.
  • These liquid crystal display elements generally have a liquid crystal alignment film that is indispensable for controlling the alignment state of liquid crystal molecules.
  • Polyamic acid and polyimide are generally used as materials for liquid crystal alignment films because of their excellent properties such as heat resistance, mechanical strength, and affinity with liquid crystals.
  • Liquid crystal display elements are required to have high display quality, and one of the required characteristics is, for example, to exhibit a high voltage holding ratio.
  • Patent Document 1 discloses a composition for a liquid crystal alignment film containing an aromatic diamine such as 1,5-bis(4-aminophenoxy)pentane.
  • Patent Document 2 discloses that a polyamic acid or the like obtained by reacting a diamine having two aromatic rings linked by a specific alkylene group with a tetracarboxylic acid derivative is used as a polymer component of a liquid crystal aligning agent. It is
  • liquid crystal display elements In recent years, as the performance of liquid crystal display elements has improved, in addition to large-screen, high-definition liquid crystal televisions, it has been applied to in-vehicle applications such as car navigation systems, meter panels, surveillance cameras, and medical camera monitors. being considered. Therefore, the demand for higher performance, particularly higher definition, of liquid crystal display elements is increasing, and a liquid crystal alignment film capable of further improving various characteristics of liquid crystal display elements is desired.
  • the present invention provides long-term reliability of so-called display quality, in which display defects such as image burn-in (image burn-in of divisions and lines), unevenness, and staining that occur over time due to external stimuli such as light and temperature are suppressed. It is an object of the present invention to form a liquid crystal alignment film having a high voltage holding ratio which is a condition for bringing about. In addition, the present invention can form a liquid crystal alignment film exhibiting low liquid crystal pretilt angle characteristics that can suppress afterimages (hereinafter, also referred to as AC afterimages) generated by long-term AC driving and can meet the demand for viewing angle characteristics. Another object of the present invention is to provide a liquid crystal aligning agent, a liquid crystal display device having the liquid crystal aligning film, and a novel diamine and polymer suitable for them.
  • liquid crystal aligning agent containing a specific polymer is effective for achieving the above objects, and have completed the present invention. reached.
  • the gist of the present invention is as follows. Characterized by containing a polymer having at least one repeating unit selected from the group consisting of a repeating unit (p1) represented by the following formula (1) and an imidized structural unit of the repeating unit (p1) Liquid crystal aligning agent.
  • a repeating unit (p1) represented by the following formula (1)
  • an imidized structural unit of the repeating unit (p1) Liquid crystal aligning agent Liquid crystal aligning agent.
  • X 1 represents a tetravalent organic group.
  • Y 1 represents a divalent organic group represented by "-Ar 1 -OWO-Ar 2 -".
  • Ar 1 and Ar 2 each independently represent a divalent aromatic group of either a divalent benzene ring or a biphenyl structure, any hydrogen atom of the aromatic group being replaced with a monovalent group may
  • m is an integer of 1-6.
  • a liquid crystal aligning agent for forming a liquid crystal aligning film exhibiting a high voltage holding ratio, suppressing the generation of an afterimage, and exhibiting a low liquid crystal pretilt angle characteristic, and a liquid crystal aligning film obtained from the liquid crystal aligning agent.
  • a high-performance liquid crystal display device comprising the liquid crystal alignment film, and novel diamines and polymers used for their production are obtained.
  • the specific diamine which will be described later, has a structure in which an oxygen atom is bonded to an aromatic group, so when it is used as a liquid crystal alignment film, it interacts with ionic impurities that cause display defects, and the diffusion of impurities is suppressed. It is considered that the voltage holding ratio is improved by the trapping phenomenon that is suppressed. In addition, it is considered that the above effect was obtained because the same trapping phenomenon for impurities also occurs in the ester bond of the specific diamine. Furthermore, since the specific diamine has an ester bond or an alkylene chain, the stretchability of the polymer during alignment treatment is increased, and high liquid crystal alignment is obtained, so the occurrence of AC afterimage is suppressed. Liquid crystal alignment film is obtained.
  • FIG. 1 is a schematic partial cross-sectional view showing an example of a lateral electric field liquid crystal display device of the present invention
  • FIG. 4 is a schematic partial cross-sectional view showing another example of the horizontal electric field liquid crystal display device of the present invention
  • the liquid crystal aligning agent of the present invention comprises at least one repeating unit selected from the group consisting of a repeating unit (p1) represented by the following formula (1) and an imidized structural unit of the repeating unit (p1) It is characterized by containing a polymer having a unit.
  • a repeating unit represented by the following formula (1)
  • an imidized structural unit of the repeating unit It is characterized by containing a polymer having a unit.
  • Ar 1 , W and Ar 2 in Y 1 (“—Ar 1 —OW—O—Ar 2 —”) in formula (1) above are Ar 1 in formula (D A ) described below, including preferred embodiments. , W and Ar2 .
  • “—N(Z)—Ar 1 —OW—O—Ar 2 —N(Z)—” in the above formula (1) means that, for example, a diamine component containing the following specific diamine is used as a starting material for the polymer. However, it is not limited to this method.
  • the monovalent organic group for R and Z in the above formula (1) includes a monovalent hydrocarbon group having 1 to 6 carbon atoms, and the methylene group of the hydrocarbon group is -O-, -S-, -CO -, -COO-, -COS-, -NR 3 -, -CO-NR 3 -, -Si(R 3 ) 2 - (where R 3 is a hydrogen atom or a monovalent carbon atom having 1 to 6 carbon atoms) is a hydrogen group), a monovalent group A substituted with —SO 2 —, etc., the above monovalent hydrocarbon group, or at least one hydrogen atom bonded to a carbon atom of the above monovalent group A is a halogen Atoms, hydroxy groups, alkoxy groups, nitro groups, amino groups, mercapto groups, nitroso groups, alkylsilyl groups, alkoxysilyl groups, silanol groups, sulphino groups, phosphino groups,
  • Examples include a substituted monovalent group and a monovalent group having a heterocyclic ring.
  • the monovalent organic group for R and Z in the above formula (1) includes, among others, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, or a tert A -butoxycarbonyl group is preferred, an alkyl group having 1 to 3 carbon atoms is more preferred, and a methyl group is even more preferred.
  • R and Z are each independently preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, more preferably a hydrogen atom or a methyl group.
  • X 1 in the above formula (1) includes, for example, a tetravalent organic group derived from a tetracarboxylic dianhydride or a derivative thereof, which will be described later.
  • Preferred embodiments of the tetracarboxylic dianhydride or derivative thereof in X 1 above include preferred embodiments of the tetracarboxylic dianhydride or derivative thereof that can be used for synthesizing the polymer (P) described later.
  • the polymer contained in the liquid crystal aligning agent of the present invention is, for example, a polyimide precursor obtained using a diamine component containing a diamine (0) represented by the following formula (D A ) (hereinafter also referred to as a specific diamine) and at least one polymer (P) selected from the group consisting of a polyimide which is an imidized product of the polyimide precursor.
  • D A diamine component containing a diamine (0) represented by the following formula (D A ) (hereinafter also referred to as a specific diamine) and at least one polymer (P) selected from the group consisting of a polyimide which is an imidized product of the polyimide precursor.
  • D A diamine component containing a diamine (0) represented by the following formula (D A ) (hereinafter also referred to as a specific diamine) and at least one polymer (P) selected from the group consisting of a polyimide which is an imidized product of the polyimide precursor.
  • m is more preferably an integer of 2 to 6, more preferably an integer of 2 to 4, and even more preferably an integer of 2 or 4.
  • n is preferably 1-13.
  • a fluorine atom is preferable as the halogen atom that replaces the hydrogen atom of W.
  • p is an integer of 1-6, preferably an integer of 2-6.
  • q is an integer of 1 to 6, more preferably an integer of 2 to 6, even more preferably an integer of 2, 4 or 6.
  • r is an integer of 1-6, preferably an integer of 2-6.
  • the monovalent group that substitutes the divalent aromatic hydrogen atoms of Ar 1 and Ar 2 in the above formula (D A ) includes a halogen atom, an alkyl group having 1 to 10 carbon atoms, and an alkenyl group having 2 to 10 carbon atoms. group, alkoxy group having 1 to 10 carbon atoms, fluoroalkyl group having 1 to 10 carbon atoms, fluoroalkenyl group having 2 to 10 carbon atoms, fluoroalkoxy group having 1 to 10 carbon atoms, carboxy group, hydroxy group, 1 carbon atom to 10 alkyloxycarbonyl groups, cyano groups, nitro groups, and the like.
  • a halogen atom an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, a fluoroalkyl group having 1 to 5 carbon atoms, or a fluoroalkoxy group having 1 to 5 carbon atoms is preferable.
  • Preferred examples of divalent aromatic groups represented by Ar 1 and Ar 2 include 1,4-phenylene, 1,3-phenylene, 2-methyl-1,4-phenylene, 2-ethyl-1, 4-phenylene, 2-propyl-1,4-phenylene, 2-butyl-1,4-phenylene, 2-isopropyl-1,4-phenylene, 2-tert-butyl-1,4-phenylene, 2-methoxy- 1,4-phenylene, 2-ethoxy-1,4-phenylene, 2-propoxy-1,4-phenylene, 2-butoxy-1,4-phenylene, 2-fluoro-1,4-phenylene, 2,3- dimethyl-1,4-phenylene, 4-methyl-1,3-phenylene, 5-methyl-1,3-phenylene, 4-fluoro-1,3-phenylene, 2,3,5,6-tetramethyl-1 ,4-phenylene, 4,4'-biphenylylene, 2-methyl-4,4'-biphenylylene, 2-eth
  • Preferred examples of the above formula (D A ) include the following formulas (d A -1) to (d A -5).
  • a hydrogen atom on the benzene ring in the following formulas (d A -1) to (d A -5) may be substituted with a monovalent substituent, and preferred specific examples of the substituent include the above formula ( Examples include the structures exemplified by the monovalent groups substituting the divalent aromatic hydrogen atoms of Ar 1 and Ar 2 in D A ).
  • the polymer (P) contained in the liquid crystal aligning agent of the present invention is, for example, a polyimide precursor obtained using a diamine component containing the diamine (0), or a polyimide that is an imidized product of the polyimide precursor.
  • the polyimide precursor is a polymer from which a polyimide can be obtained by imidating polyamic acid, polyamic acid ester, or the like.
  • a polyamic acid (P′), which is a polyimide precursor of the polymer (P) can be obtained by a polymerization reaction between a diamine component containing the diamine (0) and a tetracarboxylic acid component.
  • the diamine (0) may be used alone or in combination of two or more.
  • the amount of diamine (0) used is preferably 5 mol % or more, more preferably 10 mol % or more, and even more preferably 20 mol % or more, relative to the total diamine component.
  • the polymer (P) has a total of repeating units (p1) and the imidized structure of the repeating units (p1) of 5 moles of all repeating units that the polymer (P) has. % or more, more preferably 10 mol % or more, and even more preferably 20 mol % or more.
  • the total here includes the case where either the repeating unit (p1) or the imidized structure of the repeating unit (p1) is 0 mol %.
  • the term "total” also includes the case where one or more of the constituent elements are 0 mol %.
  • the diamine component used for producing the polyamic acid (P') may contain diamines other than diamine (0) (hereinafter also referred to as other diamines).
  • diamines other diamines
  • the amount of the diamine (0) used is preferably 90 mol % or less, more preferably 80 mol % or less, relative to the diamine component.
  • diamines examples include other diamines listed below, but are not limited to these.
  • the other diamines may be used singly or in combination of two or more.
  • m and n are integers from 1 to 3 and satisfy 1 ⁇ m+n ⁇ 4.
  • j is an integer of 0 or 1;
  • X 1 is -(CH 2 ) a - (a is an integer of 1 to 15), -CONH-, -NHCO-, -CO-N(CH 3 )-, -NH-, -O-, represents -CH 2 O-, -CH 2 -OCO-, -COO- or -OCO-;
  • R 1 is a fluorine atom, a fluorine atom-containing alkyl group having 1 to 10 carbon atoms, a fluorine atom-containing alkoxy group having 1 to 10 carbon atoms, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and It represents a monovalent group such as an alkoxyalkyl group having 2 to 10 carbon atoms.
  • X 2 represents -O-, -CH 2 O-, -CH 2 -OCO-, -COO- or -OCO-.
  • m, n, X 1 and R 1 each independently has the above definition.
  • the amount of the other diamines used is preferably 10 to 90 mol%, more preferably 20 to 90 mol%, based on the total diamine components used. 80 mol %.
  • the amount of the other diamine used is preferably 10 to 90 mol %, more preferably 20 to 80 mol %, based on the total diamine components used in the production of the polymer (P).
  • the tetracarboxylic acid component to be reacted with the diamine component is not only tetracarboxylic dianhydride, but also tetracarboxylic acid, tetracarboxylic acid dihalide, tetracarboxylic acid dialkyl ester, or tetracarboxylic acid.
  • tetracarboxylic dianhydrides such as carboxylic acid dialkyl ester dihalides can also be used.
  • the tetracarboxylic dianhydride or derivative thereof includes an acyclic aliphatic tetracarboxylic dianhydride, an alicyclic tetracarboxylic dianhydride, an aromatic tetracarboxylic dianhydride, or derivatives thereof. . Among them, it is more preferable to contain a tetracarboxylic dianhydride having at least one partial structure selected from the group consisting of a benzene ring, a cyclobutane ring, a cyclopentane ring and a cyclohexane ring, or a derivative thereof.
  • a tetracarboxylic dianhydride having at least one structure selected from the group consisting of a cyclobutane ring, a cyclopentane ring and a cyclohexane ring, or a derivative thereof.
  • the aromatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups including at least one carboxy group bonded to an aromatic ring.
  • An acyclic aliphatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups bonded to a chain hydrocarbon structure.
  • An alicyclic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups including at least one carboxy group bonded to an alicyclic structure. However, none of these four carboxy groups are bonded to the aromatic ring. Moreover, it is not necessary to consist only of an alicyclic structure, and a part thereof may have a chain hydrocarbon structure or an aromatic ring structure.
  • the tetracarboxylic acid component that can be used in the production of the polyamic acid (P′) preferably includes the following tetracarboxylic dianhydrides or derivatives thereof (in the present invention, these are collectively referred to as specific tetracarboxylic acids Also called derivatives.).
  • Acyclic aliphatic tetracarboxylic dianhydrides such as 1,2,3,4-butanetetracarboxylic dianhydride; 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2-dimethyl -1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-dichloro-1,2,3 ,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-difluoro-1,2,3, 4-cyclobutanetetracarboxylic dianhydride, 1,3-bis(trifluoromethyl)-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracar
  • Preferred examples of the above specific tetracarboxylic acid derivatives include 1,2,3,4-butanetetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2-dimethyl -1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-tetramethyl- 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-difluoro-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-bis(trifluoromethyl)-1 , 2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 3, 3
  • the proportion of the above-mentioned specific tetracarboxylic acid derivative used is preferably 10 mol% or more, more preferably 20 mol% or more, and even more preferably 50 mol% or more, relative to the total tetracarboxylic acid components used.
  • the liquid crystal aligning agent of the present invention is, for example, a liquid composition in which the polymer (P) and optionally other components are preferably dispersed or dissolved in a suitable solvent.
  • the total content of the polymer contained in the liquid crystal aligning agent of the present invention can be appropriately changed depending on the setting of the thickness of the coating film to be formed. % or more is preferable, and 10% by mass or less is preferable from the viewpoint of storage stability of the solution. A particularly preferred total polymer content is 2 to 8% by weight.
  • the content of the polymer (P) used in the present invention is preferably 1 to 100% by mass, more preferably 10 to 100% by mass, and 20 to 100% by mass with respect to the total amount of the polymer contained in the liquid crystal aligning agent. % is particularly preferred.
  • the liquid crystal aligning agent of the present invention may contain polymers other than the polymer (P).
  • polymers other than the polymer (P) include, in addition to the polymer (P), a polyimide precursor obtained using a diamine component that does not have the specific diamine and a polyimide that is an imidized product of the polyimide precursor.
  • poly(styrene-maleic anhydride) copolymer examples include SMA1000, SMA2000, SMA3000 (manufactured by Cray Valley), GSM301 (manufactured by Gifu Shellac Manufacturing Co., Ltd.) and the like.
  • Anhydride) copolymers include Isoban-600 (manufactured by Kuraray Co., Ltd.).
  • a specific example of the poly(vinyl ether-maleic anhydride) copolymer is Gantrez AN-139 (methyl vinyl ether maleic anhydride resin, manufactured by Ashland).
  • the polymer (B) is more preferable from the viewpoint of reducing afterimages derived from residual DC.
  • the content of the other polymer is preferably 90 parts by mass or less, more preferably 10 to 90 parts by mass, and further 20 to 80 parts by mass with respect to the total 100 parts by mass of the polymer contained in the liquid crystal aligning agent. preferable.
  • the tetracarboxylic acid component used in the production of the polymer (B) include the same compounds as those exemplified for the polymer (P), including preferred specific examples.
  • the tetracarboxylic acid component used for producing the polymer (B) is more preferably a tetracarboxylic dianhydride having at least one partial structure selected from the group consisting of a benzene ring, a cyclobutane ring, a cyclopentane ring and a cyclohexane ring.
  • the amount of the specific tetracarboxylic acid derivative used is preferably 10 mol % or more, more preferably 20 mol % or more, more preferably 50 mol % or more, relative to the total tetracarboxylic acid component used in the production of the polymer (B). More preferably mol% or more.
  • diamine component for obtaining the polymer (B) examples include the diamines exemplified for the polymer (P) above.
  • diamines having at least one group selected from the group consisting of a urea bond, an amide bond, a carboxy group and a hydroxy group in the molecule represented by the above formulas (d AL -1) to (d AL -10) It preferably contains at least one diamine selected from the group consisting of diamines and diamines having a specific nitrogen atom-containing structure (in the present invention, these are also referred to as specific diamines (b)).
  • the diamine component one type of diamine may be used alone, or two or more types may be used in combination.
  • the amount used is preferably 10 mol % or more, more preferably 20 mol % or more, of the total diamine component used in the production of the polymer (B).
  • the amount used is preferably 90 mol % or less, more preferably 80 mol % or less, of the total diamine component used in the production of the polymer (B).
  • a polyamic acid is produced by reacting a diamine component and a tetracarboxylic acid component in an organic solvent.
  • the ratio of the tetracarboxylic acid component and the diamine component used in the polyamic acid production reaction is 0.5 to 2 equivalents of the acid anhydride group of the tetracarboxylic acid component per 1 equivalent of the amino group of the diamine component. is preferably 0.8 to 1.2 equivalents.
  • the closer the equivalent of the acid anhydride group of the tetracarboxylic acid component is to 1 equivalent the greater the molecular weight of the resulting polyamic acid.
  • the reaction temperature in the production of polyamic acid is preferably -20 to 150°C, more preferably 0 to 100°C. Also, the reaction time is preferably 0.1 to 24 hours, more preferably 0.5 to 12 hours. Polyamic acid can be produced at any concentration, but the concentration of polyamic acid is preferably 1 to 50% by mass, more preferably 5 to 30% by mass. The initial stage of the reaction can be carried out at a high concentration, and then the solvent can be added.
  • organic solvent examples include cyclohexanone, cyclopentanone, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, ⁇ -butyrolactone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethyl sulfoxide, 1,3-dimethyl-2-imidazolidinone.
  • methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, propylene glycol monomethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene Solvents such as glycol monopropyl ether, diethylene glycol monomethyl ether, or diethylene glycol monoethyl ether can be used.
  • Polyamic acid esters are produced by, for example, [I] a method of reacting the polyamic acid obtained by the above method with an esterifying agent, [II] a method of reacting a tetracarboxylic acid diester with a diamine, [III] a tetracarboxylic acid It can be obtained by a known method such as a method of reacting a diester dihalide and a diamine.
  • a polyimide can be obtained by ring-closing (imidizing) a polyimide precursor such as the above polyamic acid or polyamic acid ester.
  • the imidization ratio as used herein means the ratio of imide groups to the total amount of imide groups derived from tetracarboxylic dianhydride or derivatives thereof and carboxy groups (or derivatives thereof).
  • the imidization rate does not necessarily have to be 100%, and can be arbitrarily adjusted according to the application and purpose.
  • Examples of the method for imidizing the polyimide precursor include thermal imidization in which the solution of the polyimide precursor is heated as it is, and catalytic imidization in which a catalyst is added to the solution of the polyimide precursor.
  • the temperature is preferably 100 to 400° C., more preferably 120 to 250° C., and water generated by the imidization reaction is removed from the system. is preferred.
  • the catalytic imidization of the polyimide precursor can be carried out by adding a basic catalyst and an acid anhydride to the solution of the polyimide precursor and stirring at -20 to 250°C, preferably 0 to 180°C.
  • the amount of the basic catalyst is 0.5 to 30 times the molar amount of the amic acid group, preferably 2 to 20 times the molar amount, and the amount of the acid anhydride is 1 to 50 times the molar amount of the amic acid group, preferably 3 to 30 times the molar amount.
  • the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine, etc. Among them, pyridine is preferable because it has appropriate basicity for advancing the reaction.
  • Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, and pyromellitic anhydride. Among them, acetic anhydride is preferably used because it facilitates purification after the reaction is completed.
  • the imidization rate by catalytic imidization can be controlled by adjusting the catalyst amount, reaction temperature, and reaction time.
  • the reaction solution may be put into a solvent to precipitate.
  • Solvents used for precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, and water.
  • the polymer precipitated by adding it to the solvent can be filtered and recovered, and then dried at room temperature or under heat under normal pressure or reduced pressure.
  • the impurities in the polymer can be reduced by repeating the operation of redissolving the recovered polymer in an organic solvent and recovering it by reprecipitation 2 to 10 times.
  • Solvents in this case include, for example, alcohols, ketones, hydrocarbons, and the like, and it is preferable to use three or more solvents selected from these, because the efficiency of purification is further increased.
  • a tetracarboxylic acid component containing a tetracarboxylic acid dianhydride or a derivative thereof, and a diamine component containing the diamine, together with an appropriate terminal blocker to end block A polymer of the type may be produced.
  • the end-blocking polymer has the effect of improving the film hardness of the alignment film obtained by coating and improving the adhesion properties between the sealant and the alignment film.
  • the terminal of the polyimide precursor or polyimide in the present invention include an amino group, a carboxyl group, an acid anhydride group, or a group derived from a terminal blocking agent to be described later.
  • An amino group, a carboxyl group, and an acid anhydride group can be obtained by a normal condensation reaction, or can be obtained by terminal blocking using the following terminal blocking agents.
  • Terminal blockers include, for example, acetic anhydride, maleic anhydride, nadic anhydride, phthalic anhydride, itaconic anhydride, cyclohexanedicarboxylic anhydride, 3-hydroxyphthalic anhydride, trimellitic anhydride, 3- (3-trimethoxysilyl)propyl)-3,4-dihydrofuran-2,5-dione, 4,5,6,7-tetrafluoroisobenzofuran-1,3-dione, 4-ethynylphthalic anhydride, etc.
  • the proportion of the terminal blocker used is preferably 0.01 to 20 mol parts, more preferably 0.01 to 10 mol parts, per 100 mol parts of the total diamine component used.
  • the polystyrene equivalent weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of the polyimide precursor and polyimide is preferably 1,000 to 500,000, more preferably 2,000 to 300,000. and more preferably 10,000 to 50,000.
  • the molecular weight distribution (Mw/Mn) represented by the ratio of Mw to the polystyrene equivalent number average molecular weight (Mn) measured by GPC is preferably 15 or less, more preferably 10 or less. By being in this molecular weight range, it is possible to ensure good liquid crystal orientation of the liquid crystal display element.
  • the organic solvent contained in the liquid crystal aligning agent according to the present invention is not particularly limited as long as it uniformly dissolves the polymer (P) and other polymers added as necessary.
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 3-methoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide and ⁇ -butyrolactone are preferred.
  • the content of the good solvent is preferably 20 to 99% by mass, more preferably 20 to 90% by mass, and particularly preferably 30 to 80% by mass of the total solvent contained in the liquid crystal aligning agent.
  • the organic solvent contained in the liquid crystal aligning agent is a mixture of the above solvents and a solvent (also referred to as a poor solvent) that improves the coatability and the surface smoothness of the coating film when applying the liquid crystal aligning agent.
  • a solvent also referred to as a poor solvent
  • the use of solvents is preferred. Specific examples of the poor solvent are given below, but are not limited thereto.
  • the content of the poor solvent is preferably 1 to 80% by mass, more preferably 10 to 80% by mass, particularly preferably 20 to 70% by mass, of the total solvent contained in the liquid crystal aligning agent.
  • the type and content of the poor solvent are appropriately selected according to the liquid crystal aligning agent coating device, coating conditions, coating environment, and the like.
  • poor solvents examples include diisopropyl ether, diisobutyl ether, diisobutyl carbinol (2,6-dimethyl-4-heptanol), ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, 1,2-butoxyethane, and diethylene glycol.
  • diisobutyl carbinol propylene glycol monobutyl ether, propylene glycol diacetate, diethylene glycol diethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol dimethyl ether, 4-hydroxy-4-methyl-2-pentanone, ethylene glycol monobutyl ether, ethylene Glycol monobutyl ether acetate or diisobutyl ketone are preferred.
  • Preferred solvent combinations of a good solvent and a poor solvent include N-methyl-2-pyrrolidone and ethylene glycol monobutyl ether, N-methyl-2-pyrrolidone, ⁇ -butyrolactone and ethylene glycol monobutyl ether, N-methyl-2- Pyrrolidone and ⁇ -butyrolactone and propylene glycol monobutyl ether, N-ethyl-2-pyrrolidone and propylene glycol monobutyl ether, N-ethyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone, N-ethyl-2- pyrrolidone and propylene glycol diacetate, N,N-dimethyllactamide and diisobutyl ketone, N-methyl-2-pyrrolidone and ethyl 3-ethoxypropionate, N-ethyl-2-pyrrolidone and ethyl 3-ethoxypropionate, N- Methy
  • the liquid crystal aligning agent of the present invention may contain other components (hereinafter also referred to as additive components) in addition to the polymer (P), the other polymer, and the organic solvent.
  • additive components include, for example, a crosslinkable compound having at least one substituent selected from an oxiranyl group, an oxetanyl group, a blocked isocyanate group, an oxazoline group, a cyclocarbonate group, a hydroxy group and an alkoxy group; At least one crosslinkable compound selected from the group consisting of crosslinkable compounds having saturated groups, functional silane compounds, metal chelate compounds, curing accelerators, surfactants, antioxidants, sensitizers, preservatives, and compounds for adjusting the dielectric constant and electrical resistance of the liquid crystal alignment film.
  • crosslinkable compound examples include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, ,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol, Epicoat 828 (Mitsubishi Chemical Co., Ltd.) ), bisphenol F type epoxy resins such as Epicoat 807 (manufactured by Mitsubishi Chemical Corporation), hydrogenated bisphenol A type epoxy resins such as YX-8000 (manufactured by Mitsubishi Chemical Corporation), YX6954BH30 (Mitsubishi Chemical Corporation
  • triglycidyl isocyanurates such as TEPIC (manufactured by Nissan Chemical Industries, Ltd.), alicyclic epoxy resins such as Celoxide 2021P (manufactured by Daicel Chemical Industries, Ltd.), N,N,N',N'-tetraglycidyl-m- Tertiary nitrogen atoms represented by xylylenediamine, 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane, or N,N,N',N'-tetraglycidyl-4,4'-diaminodiphenylmethane a compound having two or more oxiranyl groups such as tetrakis(glycidyloxymethyl)methane; Compounds having; Coronate AP Stable M, Coronate 2503, 2515, 2507, 2513, 2555, Millionate MS-50 (manufactured by Tosoh Corporation), Takenate B-830,
  • Examples of compounds for adjusting the dielectric constant and electrical resistance include monoamines having a nitrogen atom-containing aromatic heterocycle such as 3-picolylamine.
  • the content of the monoamine having a nitrogen atom-containing aromatic heterocyclic ring is preferably 0.1 to 30 parts by mass, more preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal aligning agent. part by mass.
  • Preferred specific examples of the above functional silane compounds include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldiethoxymethylsilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltrimethoxysilane.
  • the solid content concentration in the liquid crystal aligning agent (ratio of the total mass of components other than the solvent of the liquid crystal aligning agent to the total mass of the liquid crystal aligning agent) is appropriately selected in consideration of viscosity, volatility, etc., but preferably It is 1 to 10% by mass.
  • a particularly preferable solid content concentration range varies depending on the method used when applying the liquid crystal aligning agent to the substrate. For example, when a spin coating method is used, the solid content concentration is particularly preferably 1.5 to 4.5% by mass. When the printing method is used, it is particularly preferable to set the solid content concentration to 3 to 9% by mass and thereby the solution viscosity to 12 to 50 mPa ⁇ s.
  • the solid content concentration is preferably 1 to 5% by mass and thereby the solution viscosity to 3 to 15 mPa ⁇ s.
  • the temperature in preparing the polymer composition is preferably 10-50°C, more preferably 20-30°C.
  • a liquid crystal display element according to the present invention comprises a liquid crystal alignment film formed using the liquid crystal alignment agent.
  • the operation mode of the liquid crystal display element is not particularly limited. , optically compensated bend type (OCB type), and various other operation modes.
  • the liquid crystal display element of the present invention can be produced, for example, by a method including the following steps (1) to (4), a method including steps (1) to (2) and (4), steps (1) to (3), ( 4-2) and (4-4), or by a method including steps (1) to (3), (4-3) and (4-4).
  • a process (1) is a process of apply
  • a specific example of step (1) is as follows.
  • a liquid crystal aligning agent is applied to one surface of the substrate provided with the patterned transparent conductive film by an appropriate coating method such as a roll coater method, a spin coat method, a printing method, an inkjet method, or the like.
  • the material of the substrate is not particularly limited as long as it is highly transparent, and glass, silicon nitride, plastic such as acrylic, polycarbonate, etc. can also be used.
  • the reflective liquid crystal display element if only one substrate is used, an opaque material such as a silicon wafer can be used, and in this case, a light-reflecting material such as aluminum can be used for the electrodes.
  • a substrate provided with electrodes made of a transparent conductive film or a metal film patterned in a comb shape and a counter substrate provided with no electrodes are used.
  • Screen printing, offset printing, flexographic printing, inkjet method, spray method, etc. can be used as methods for applying the liquid crystal aligning agent to the substrate and forming a film.
  • the coating method and the film-forming method by the inkjet method can be preferably used.
  • a process (2) is a process of baking the liquid crystal aligning agent apply
  • a specific example of step (2) is as follows. After the liquid crystal aligning agent is applied onto the substrate in step (1), the solvent is evaporated or the polyamic acid is thermally imidized by heating means such as a hot plate, thermal circulation oven or IR (infrared) oven. you can go Drying after applying a liquid crystal aligning agent and a baking process can select arbitrary temperature and time, and may be performed in multiple times.
  • the temperature for baking the liquid crystal aligning agent can be, for example, 40 to 180.degree.
  • the firing time is not particularly limited, but may be 1 to 10 minutes or 1 to 5 minutes.
  • a step of firing at, for example, 150 to 300° C. or 150 to 250° C. may be added after the above step.
  • the firing time is not particularly limited, but may be 5 to 40 minutes or 5 to 30 minutes.
  • the thickness of the film-like material after baking is preferably 5 to 300 nm, more preferably 10 to 200 nm, because if it is too thin, the reliability of the liquid crystal display element may be lowered.
  • Step (3) is a step of subjecting the film obtained in step (2) to orientation treatment. That is, in a horizontally aligned liquid crystal display element such as an IPS system or an FFS system, the coating film is subjected to an alignment ability imparting treatment. On the other hand, in a vertical alignment type liquid crystal display element such as VA mode or PSA mode, the formed coating film can be used as a liquid crystal alignment film as it is, but the coating film may be subjected to an alignment ability imparting treatment. Examples of the alignment treatment method for the liquid crystal alignment film include a rubbing treatment method and a photo-alignment treatment method.
  • the surface of the film is irradiated with radiation polarized in a certain direction, and optionally, preferably, heat treatment is performed at a temperature of 150 to 250 ° C. to improve liquid crystal orientation (liquid crystal orientation (also referred to as ability).
  • radiation ultraviolet light or visible light having a wavelength of 100 to 800 nm can be used. Among them, ultraviolet rays having a wavelength of 100 to 400 nm, more preferably 200 to 400 nm are preferred.
  • the radiation dose is preferably 1 to 10,000 mJ/cm 2 , more preferably 100 to 5,000 mJ/cm 2 .
  • the substrate having the film-like material may be irradiated with heating at 50 to 250° C. in order to improve liquid crystal orientation.
  • the liquid crystal alignment film thus produced can stably orient liquid crystal molecules in a fixed direction.
  • the liquid crystal alignment film irradiated with polarized radiation can be subjected to contact treatment using water or a solvent, or the liquid crystal alignment film irradiated with radiation can be heat-treated.
  • the solvent used in the contact treatment is not particularly limited as long as it dissolves the decomposed product produced from the film-like material by irradiation with radiation.
  • Specific examples include water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, 1-methoxy-2-propanol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, methyl lactate, diacetone alcohol, 3- methyl methoxypropionate, ethyl 3-ethoxypropionate, propyl acetate, butyl acetate, cyclohexyl acetate and the like.
  • Solvents may be used singly or in combination of two or more.
  • the temperature of the heat treatment for the above radiation-irradiated coating film is more preferably 50 to 300°C, more preferably 120 to 250°C.
  • the heat treatment time is preferably 1 to 30 minutes.
  • Step (4) Step of producing a liquid crystal cell> Two substrates on which liquid crystal alignment films are formed as described above are prepared, and a liquid crystal composition is placed between the two substrates facing each other. Specifically, the following two methods are mentioned. In the first method, first, two substrates are arranged to face each other with a gap (cell gap) interposed therebetween so that the respective liquid crystal alignment films face each other. Next, the peripheries of the two substrates are bonded together using a sealing agent, and a liquid crystal composition is injected and filled into the cell gap defined by the substrate surface and the sealing agent to contact the film surface, and then the injection hole is sealed. stop.
  • the second method is a method called ODF (One Drop Fill) method.
  • ODF One Drop Fill
  • a predetermined place on one of the two substrates on which the liquid crystal alignment film is formed is coated with, for example, an ultraviolet light-curing sealant, and a liquid crystal composition is applied to several predetermined places on the surface of the liquid crystal alignment film. drip.
  • the other substrate is attached so that the liquid crystal alignment films face each other, and the liquid crystal composition is spread over the entire surface of the substrate and brought into contact with the film surface.
  • the entire surface of the substrate is irradiated with ultraviolet light to cure the sealant.
  • the two substrates are arranged opposite to each other so that the rubbing directions of the respective coating films are at a predetermined angle, for example, orthogonal or antiparallel.
  • the sealant for example, an epoxy resin or the like containing a curing agent and aluminum oxide spheres as spacers can be used.
  • the liquid crystal composition is not particularly limited, and may be a composition containing at least one liquid crystal compound (liquid crystal molecule) exhibiting a nematic phase (hereinafter also referred to as a nematic liquid crystal), or a liquid crystal exhibiting a smectic phase. , or liquid crystal compositions exhibiting a cholesteric phase, among which nematic liquid crystals are preferred. Also, various liquid crystal compositions having positive or negative dielectric anisotropy can be used. In the following description, a liquid crystal composition with a positive dielectric anisotropy is also referred to as a positive liquid crystal, and a liquid crystal composition with a negative dielectric anisotropy is also referred to as a negative liquid crystal.
  • the above liquid crystal composition contains a fluorine atom, a hydroxy group, an amino group, a fluorine atom-containing group (e.g., trifluoromethyl group), a cyano group, an alkyl group, an alkoxy group, an alkenyl group, an isothiocyanate group, a heterocyclic ring, a cycloalkane,
  • a liquid crystal compound having a cycloalkene, a steroid skeleton, a benzene ring, or a naphthalene ring may be included, and a compound having two or more rigid sites (mesogenic skeleton) exhibiting liquid crystallinity in the molecule (for example, two rigid biphenyl structures or terphenyl structures linked by alkyl groups).
  • the liquid crystal composition may further contain an additive from the viewpoint of improving liquid crystal orientation.
  • additives include photopolymerizable monomers such as compounds having a polymerizable group; optically active compounds (eg, S-811 manufactured by Merck Co., Ltd.); antioxidants; UV absorbers; dyes; antifoaming agents; polymerization initiators; or polymerization inhibitors.
  • Positive liquid crystals include ZLI-2293, ZLI-4792, MLC-2003, MLC-2041, MLC-3019, and MLC-7081 manufactured by Merck.
  • negative liquid crystal include MLC-6608, MLC-6609, MLC-6610, MLC-7026 and MLC-7026-100 manufactured by Merck.
  • MLC-3023 manufactured by Merck & Co., Ltd. can be mentioned.
  • the liquid crystal aligning agent of the present invention comprises a liquid crystal layer between a pair of substrates provided with electrodes, and a liquid crystal composition containing a polymerizable compound polymerized by at least one of active energy rays and heat between the pair of substrates.
  • a liquid crystal display element (PSA type liquid crystal display element) manufactured through a process of polymerizing a polymerizable compound by at least one of irradiating an active energy ray and heating while placing an object and applying a voltage between electrodes. It is preferably used.
  • the liquid crystal aligning agent of the present invention has a liquid crystal layer between a pair of substrates provided with electrodes, and a polymerizable group polymerizable by at least one of active energy rays and heat is placed between the pair of substrates. It is also preferably used for a liquid crystal display element (SC-PVA mode type liquid crystal display element) manufactured through a process of arranging a liquid crystal alignment film containing a liquid crystal and applying a voltage between electrodes.
  • SC-PVA mode type liquid crystal display element manufactured through a process of arranging a liquid crystal alignment film containing a liquid crystal and applying a voltage between electrodes.
  • the polymerizable compound include polymerizable compounds having one or more polymerizable unsaturated groups such as acrylate groups and methacrylate groups in the molecule.
  • a method of manufacturing a liquid crystal display element may be employed in which a step of irradiating ultraviolet rays, which will be described later, is performed after performing the same as in the above (4). According to this method, a liquid crystal display device excellent in response speed can be obtained with a small amount of light irradiation, as in the case of manufacturing the PSA type liquid crystal display device.
  • the compound having a polymerizable group may be a compound having one or more polymerizable unsaturated groups in the molecule, and its content is 0.1 to 30 per 100 parts by mass of all polymer components. It is preferably parts by mass, more preferably 1 to 20 parts by mass.
  • the polymerizable group may be present in the polymer used for the liquid crystal alignment agent, and such a polymer includes, for example, a diamine component containing a diamine having a photopolymerizable group at the end thereof, which is used in the reaction.
  • a diamine component containing a diamine having a photopolymerizable group at the end thereof which is used in the reaction.
  • the polymer obtained is mentioned.
  • Step (4-4) Step of irradiating with ultraviolet rays>
  • the liquid crystal cell is irradiated with light while a voltage is applied between the conductive films of the pair of substrates obtained in (4-2) or (4-3) above.
  • the voltage applied here can be, for example, 5 to 50 V direct current or alternating current.
  • As the light to be irradiated for example, ultraviolet rays and visible rays containing light having a wavelength of 150 to 800 nm can be used, but ultraviolet rays containing light having a wavelength of 300 to 400 nm are preferable.
  • a light source for irradiation light for example, a low-pressure mercury lamp, a high-pressure mercury lamp, a deuterium lamp, a metal halide lamp, an argon resonance lamp, a xenon lamp, an excimer laser, or the like can be used.
  • the irradiation amount of light is preferably 1,000 to 200,000 J/m 2 , more preferably 1,000 to 100,000 J/m 2 .
  • a liquid crystal display element can be obtained by bonding a polarizing plate to the outer surface of the liquid crystal cell as necessary.
  • a polarizing plate to be attached to the outer surface of the liquid crystal cell, a polarizing film called "H film” in which polyvinyl alcohol is stretched and oriented while absorbing iodine is sandwiched between cellulose acetate protective films, or the H film itself.
  • a polarizing plate consisting of
  • the IPS substrate which is a comb-teeth electrode substrate used in the IPS mode, includes a base material, a plurality of linear electrodes formed on the base material and arranged in a comb-like shape, and the base material covering the linear electrodes. and a liquid crystal alignment film formed as follows.
  • the FFS substrate which is a comb-teeth electrode substrate used in the FFS mode, includes a substrate, a plane electrode formed on the substrate, an insulating film formed on the plane electrode, and an insulating film formed on the insulating film. , a plurality of linear electrodes arranged in a comb shape, and a liquid crystal alignment film formed on an insulating film so as to cover the linear electrodes.
  • FIG. 1 is a schematic partial cross-sectional view showing an example of the lateral electric field liquid crystal display device of the present invention, which is an example of an IPS mode liquid crystal display device.
  • the liquid crystal 3 is sandwiched between the comb-teeth electrode substrate 2 having the liquid crystal alignment film 2c and the opposing substrate 4 having the liquid crystal alignment film 4a.
  • the comb-shaped electrode substrate 2 includes a substrate 2a, a plurality of linear electrodes 2b formed on the substrate 2a and arranged in a comb-like shape, and formed on the substrate 2a so as to cover the linear electrodes 2b. and a liquid crystal alignment film 2c.
  • the counter substrate 4 has a base material 4b and a liquid crystal alignment film 4a formed on the base material 4b.
  • the liquid crystal alignment film 2c is, for example, the liquid crystal alignment film of the present invention.
  • the liquid crystal alignment film 4c is also the liquid crystal alignment film of the present invention.
  • the lateral electric field liquid crystal display element 1 when a voltage is applied to the linear electrodes 2b, an electric field is generated between the linear electrodes 2b as indicated by the lines of electric force L.
  • FIG. 2 is a schematic partial sectional view showing another example of the horizontal electric field liquid crystal display device of the present invention, which is an example of the FFS mode liquid crystal display device.
  • the liquid crystal 3 is sandwiched between the comb-teeth electrode substrate 2 having the liquid crystal alignment film 2h and the opposing substrate 4 having the liquid crystal alignment film 4a.
  • the comb-teeth electrode substrate 2 includes a base material 2d, a plane electrode 2e formed on the base material 2d, an insulating film 2f formed on the plane electrode 2e, and formed on the insulating film 2f to form a comb-like shape.
  • the counter substrate 4 has a base material 4b and a liquid crystal alignment film 4a formed on the base material 4b.
  • the liquid crystal alignment film 2h is, for example, the liquid crystal alignment film of the present invention.
  • the liquid crystal alignment film 4a is also the liquid crystal alignment film of the present invention.
  • GPC apparatus GPC-101 (manufactured by Showa Denko), column: GPC KD-803, GPC KD-805 (manufactured by Showa Denko) in series, column temperature: 50 ° C., eluent: N,N-dimethylformamide (added As agents, 30 mmol/L of lithium bromide monohydrate (LiBr.H2O), 30 mmol/L of phosphoric acid/anhydrous crystals (o-phosphoric acid), and 10 mL/L of tetrahydrofuran (THF)), flow rate: 1.
  • TSK standard polyethylene oxide molecular weight: about 900,000, 150,000, 100,000 and 30,000
  • polyethylene glycol molecular weight: about 12,000, 4,000 and 1,000
  • DA-1 (2.54 g, 6.10 mmol) and NMP (18.6 g) were added to a 50 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, and dissolved by stirring at room temperature while sending nitrogen. rice field. While stirring the resulting diamine solution under water cooling, CA-2 (1.14 g, 5.81 mmol) and NMP (8.00 g) were added and stirred at room temperature for 18 hours to give a solid content concentration of 12 mass. % solution of polyamic acid (A-2) (viscosity: 241 mPa ⁇ s). This polyamic acid had an Mn of 12,332 and an Mw of 46,258.
  • A-2 polyamic acid (A-2) (viscosity: 241 mPa ⁇ s). This polyamic acid had an Mn of 12,332 and an Mw of 46,258.
  • DA-1 (3.12 g, 7.50 mmol) and NMP (22.9 g) were added to a 50 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, and dissolved by stirring at room temperature while sending nitrogen. rice field. While stirring the resulting diamine solution under water cooling, CA-3 (1.60 g, 7.14 mmol) and NMP (10.8 g) were added and stirred at 40° C. for 18 hours to obtain a solid content concentration of 12. A mass % solution of polyamic acid (A-3) (viscosity: 282 mPa ⁇ s) was obtained. This polyamic acid had an Mn of 10,704 and an Mw of 39,144.
  • A-3 viscosity: 282 mPa ⁇ s
  • DA-1 (2.27 g, 5.44 mmol), DA-6 (0.390 g, 1.36 mmol) and NMP (19.5 g) were added to a 50 mL four-necked flask equipped with a stirrer and nitrogen inlet tube. was dissolved by stirring at room temperature while blowing nitrogen. While stirring the resulting diamine solution under water cooling, CA-3 (1.45 g, 6.46 mmol) and NMP (10.1 g) were added and stirred at 40° C. for 18 hours to give a solid content concentration of 12. A mass % solution of polyamic acid (A-5) (viscosity: 327 mPa ⁇ s) was obtained. This polyamic acid had an Mn of 10,534 and an Mw of 37,647.
  • A-5 viscosity: 327 mPa ⁇ s
  • DA-3 (0.80 g, 1.80 mmol), DA-6 (1.55 g, 5.41 mmol) and NMP (21.1 g) were added to a 50 mL four-necked flask equipped with a stirrer and nitrogen inlet tube. was dissolved by stirring at room temperature while blowing nitrogen. While stirring the resulting diamine solution under water cooling, CA-3 (1.52 g, 6.78 mmol) and NMP (7.0 g) were added and stirred at 40° C. for 18 hours to obtain a solid content of 12. A solution (viscosity: 209 mPa ⁇ s) of polyamic acid (A-8) with a mass % was obtained. This polyamic acid had an Mn of 9,900 and an Mw of 28,856.
  • DA-2 (2.50 g, 4.40 mmol) and NMP (19.6 g) are added to a 50 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, and dissolved by stirring at room temperature while sending nitrogen. rice field. While stirring the resulting diamine solution under water cooling, CA-1 (0.873 g, 4.00 mmol) and NMP (5.10 g) were added and stirred at 50° C. for 18 hours to give a solid content concentration of 12. A solution (viscosity: 231 mPa ⁇ s) of polyamic acid (A-10) of mass % was obtained. This polyamic acid had an Mn of 9,716 and an Mw of 25,390.
  • DA-6 (3.72 g, 13.0 mmol) and NMP (31.3 g) were added to a 50 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, and dissolved by stirring at room temperature while sending nitrogen. rice field. While stirring the resulting diamine solution under water cooling, CA-2 (2.37 g, 12.1 mmol) and NMP (13.4 g) were added and stirred at room temperature for 18 hours to give a solid content concentration of 12 mass. % solution of polyamic acid (A-12) (viscosity: 229 mPa ⁇ s). This polyamic acid had an Mn of 10,585 and an Mw of 27,581.
  • DA-7 (2.46 g, 6.40 mmol) and NMP (18.0 g) were added to a 50 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, and dissolved by stirring at room temperature while sending nitrogen. rice field. While stirring the obtained diamine solution under water cooling, CA-2 (1.23 g, 6.26 mmol) and NMP (8.40 g) were added and stirred at room temperature for 18 hours to obtain a solid content concentration of 12 mass. % solution of polyamic acid (A-13) (viscosity: 292 mPa ⁇ s). This polyamic acid had an Mn of 16,511 and an Mw of 60,289.
  • DA-5 (2.07 g, 8.01 mmol) and NMP (18.6 g) were added to a 50 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, and dissolved by stirring at room temperature while sending nitrogen. rice field. While stirring the obtained diamine solution under water cooling, CA-1 (1.65 g, 7.56 mmol) and NMP (14.8 g) were added and stirred at 50 ° C. for 18 hours to give a solid content concentration of 10. A solution (viscosity: 115 mPa ⁇ s) of polyamic acid (A-14) was obtained at 1% by mass. This polyamic acid had an Mn of 12,045 and an Mw of 27,326.
  • DA-6 (3.72 g, 13.0 mmol) and NMP (37.3 g) are added to a 50 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, and dissolved by stirring at room temperature while sending nitrogen. rice field. While stirring the resulting diamine solution under water cooling, CA-1 (2.64 g, 12.1 mmol) and NMP (9.30 g) were added and stirred at 50° C. for 18 hours to give a solid content concentration of 12. A solution (viscosity: 278 mPa ⁇ s) of polyamic acid (A-15) with a mass % was obtained. This polyamic acid had an Mn of 10,832 and an Mw of 43,395.
  • DA-7 (3.08 g, 8.00 mmol) and NMP (22.6 g) are added to a 50 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, and dissolved by stirring at room temperature while sending nitrogen. rice field. While stirring the resulting diamine solution under water cooling, CA-1 (1.61 g, 7.36 mmol) and NMP (11.8 g) were added and stirred at 50° C. for 18 hours to give a solid content concentration of 12. A mass % solution of polyamic acid (A-16) (viscosity: 256 mPa ⁇ s) was obtained. This polyamic acid had an Mn of 10,700 and an Mw of 37,763.
  • DA-6 (2.29 g, 8.00 mmol) and NMP (16.8 g) were added to a 50 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, and dissolved by stirring at room temperature while sending nitrogen. rice field. While stirring the resulting diamine solution under water cooling, CA-3 (1.69 g, 7.52 mmol) and NMP (12.4 g) were added and stirred at 40° C. for 18 hours to give a solid content concentration of 12. A solution (viscosity: 240 mPa ⁇ s) of polyamic acid (A-17) with a mass % was obtained. This polyamic acid had an Mn of 11,482 and an Mw of 38,490.
  • DA-7 (2.69 g, 7.00 mmol) and NMP (19.7 g) were added to a 50 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, and dissolved by stirring at room temperature while sending nitrogen. rice field. While stirring the resulting diamine solution under water cooling, CA-3 (1.54 g, 6.86 mmol) and NMP (10.1 g) were added and stirred at 40° C. for 18 hours to give a solid content concentration of 12. A solution (viscosity: 283 mPa ⁇ s) of polyamic acid (A-18) with a mass % was obtained. This polyamic acid had an Mn of 13,087 and an Mw of 45,255.
  • DA-8 (1.28 g, 6.42 mmol), DA-10 (0.32 g, 1.61 mmol) and NMP (14.3 g) were added to a 50 mL four-necked flask equipped with a stirrer and nitrogen inlet tube. was dissolved by stirring at room temperature while blowing nitrogen. While stirring the obtained diamine solution under water cooling, CA-2 (1.49 g, 7.60 mmol) and NMP (13.3 g) were added and stirred at room temperature for 18 hours to obtain a solid content concentration of 10 mass. % solution of polyamic acid (A-19) (viscosity: 125 mPa ⁇ s). This polyamic acid had an Mn of 11,120 and an Mw of 41,992.
  • DA-8 (5.42 g, 27.2 mmol), DA-10 (1.35 g, 6.80 mmol) and NMP (64.5 g) were added to a 100 mL four-necked flask equipped with a stirrer and nitrogen inlet tube. was dissolved by stirring at room temperature while blowing nitrogen. While stirring the resulting diamine solution under water cooling, CA-2 (1.53 g, 7.82 mmol) and NMP (10.2 g) were added and stirred at room temperature for 0.5 hours. Then, while stirring this solution under water cooling, CA-4 (6.38 g, 25.5 mmol) and NMP (8.50 g) were added and stirred at 50 ° C. for 18 hours to give a solid content concentration of 15 mass. % solution of polyamic acid (A-21) (viscosity: 1,250 mPa ⁇ s). This polyamic acid had an Mn of 15,100 and an Mw of 54,900.
  • A-21 viscosity: 1,250 mPa ⁇ s
  • DA-4 (2.81 g, 11.5 mmol), DA-8 (2.29 g, 11.5 mmol) and NMP (45.9 g) were added to a 100 mL four-necked flask equipped with a stirrer and nitrogen inlet tube. was dissolved by stirring at room temperature while blowing nitrogen. While stirring the resulting diamine solution under water cooling, CA-6 (2.58 g, 11.5 mmol) and NMP (10.4 g) were added and stirred at room temperature for 2 hours. Then, while stirring this solution under water cooling, CA-5 (2.87 g, 9.72 mmol) and NMP (3.3 g) were added and stirred at 50 ° C. for 18 hours to give a solid content concentration of 15 mass. % solution of polyamic acid (A-24) (viscosity: 300 mPa ⁇ s). This polyamic acid had an Mn of 9,018 and an Mw of 27,228.
  • A-24 viscosity: 300 mPa ⁇ s
  • DA-8 (4.14 g, 20.8 mmol), DA-10 (1.03 g, 5.19 mmol) and NMP (46.6 g) were added to a 100 mL four-necked flask equipped with a stirrer and nitrogen inlet tube. was dissolved by stirring at room temperature while blowing nitrogen. While stirring the resulting diamine solution under water cooling, CA-2 (2.20 g, 11.4 mmol) and NMP (7.50 g) were added and stirred at room temperature for 0.5 hours. Then, while stirring this solution under water cooling, CA-4 (3.25 g, 13.0 mmol) and NMP (6.20 g) were added and stirred at 50 ° C. for 18 hours to give a solid content concentration of 15 mass. % solution of polyamic acid (A-25) (viscosity: 535 mPa ⁇ s). This polyamic acid had an Mn of 10,218 and an Mw of 29,128.
  • DA-8 (5.42 g, 27.2 mmol), DA-10 (1.35 g, 6.80 mmol) and NMP (64.5 g) were added to a 100 mL four-necked flask equipped with a stirrer and nitrogen inlet tube. was dissolved by stirring at room temperature while blowing nitrogen. While stirring the resulting diamine solution under water cooling, CA-2 (1.48 g, 7.55 mmol) and NMP (10.2 g) were added and stirred at room temperature for 0.5 hours. Then, while stirring this solution under water cooling, CA-4 (6.38 g, 25.5 mmol) and NMP (8.50 g) were added and stirred at 50 ° C.
  • polyamic acid (A-26) (viscosity: 530 mPa ⁇ s). This polyamic acid had an Mn of 9,982 and an Mw of 28,927.
  • Table 1 shows the types and amounts of the tetracarboxylic acid components and diamine components used in Synthesis Examples 1 to 26 above.
  • Liquid crystal aligning agents AL-2 to AL-6 of Examples 2 to 6 and Comparative Example 1 were prepared in the same manner as in Example 1 except that the polyamic acid solution used was changed as shown in Table 2. Liquid crystal aligning agents AL-C1 to AL-C6, which are ⁇ 6, were obtained.
  • Example 7 To the solution (0.90 g) of polyamic acid (A-3) obtained in Synthesis Example 3, the solution (2.88 g) of polyamic acid (A-21) obtained in Synthesis Example 21, NMP (4.68 g ), BCS (3.00 g), and AD-1 (1% by mass NMP solution, 0.54 g) were added and stirred at room temperature for 2 hours to obtain a polymer mass ratio ((A-3): (A -15)) is 20: 80, the mass ratio of the polymer solid content and each solvent (polymer solid content: NMP: BCS) is 4.5: 70.5: 25, and 100 parts by mass of the polymer On the other hand, a liquid crystal aligning agent (AL-7) containing 1 part by mass of AD-1 was obtained.
  • A-7 liquid crystal aligning agent
  • Examples 8 to 18, and Comparative Examples 7 to 10 The polyamic acid solution to be used, the solvent, and the type and amount of the additive were changed as shown in Table 2. -8 to AL-18 and liquid crystal aligning agents AL-C7 to AL-C10 of Comparative Examples 7 to 10 were obtained.
  • a liquid crystal cell for negative liquid crystal having the structure of an FFS mode liquid crystal display element was produced.
  • a substrate with electrodes was prepared.
  • a glass substrate having a size of 30 mm ⁇ 35 mm and a thickness of 0.7 mm was used as the substrate.
  • An ITO electrode having a solid pattern is formed as the first layer on the substrate to constitute the counter electrode, and a CVD (chemical vapor deposition) electrode is formed as the second layer on the first layer counter electrode.
  • a SiN (silicon nitride) film was formed by the method.
  • the SiN film of the second layer has a film thickness of 300 nm and functions as an interlayer insulating film.
  • a comb-shaped pixel electrode formed by patterning an ITO film is arranged as a third layer, and two pixels of a first pixel and a second pixel are formed.
  • the size of each pixel was 10 mm long and about 5 mm wide.
  • the counter electrode of the first layer and the pixel electrode of the third layer were electrically insulated by the action of the SiN film of the second layer.
  • the pixel electrode of the third layer has a comb shape in which a plurality of electrode elements each having a width of 3 ⁇ m and having a central portion bent at an internal angle of 160° are arranged in parallel with an interval of 6 ⁇ m.
  • the pixel had a first region and a second region bounded by a line connecting bent portions of a plurality of electrode elements. Comparing the first region and the second region of each pixel, the forming directions of the electrode elements of the pixel electrodes constituting them were different.
  • the electrode elements of the pixel electrode are formed so as to form an angle of 80° clockwise in the first region of the pixel, and the electrode elements of the pixel electrode in the second region of the pixel.
  • the electrode elements of the pixel electrode are formed so as to form an angle of 80° counterclockwise. That is, in the first region and the second region of each pixel, the directions of the rotational movement (in-plane switching) of the liquid crystal induced by the voltage application between the pixel electrode and the counter electrode in the plane of the substrate are mutually different. It was configured in the opposite direction.
  • the liquid crystal aligning agent obtained above was filtered through a filter with a pore size of 1.0 ⁇ m, and then applied to the surface of the prepared substrate with electrodes by a spin coating method. After drying on a hot plate at 80° C. for 2 minutes, baking was performed in an infrared heating furnace at 230° C. for 20 minutes to obtain a polyimide film with a film thickness of 60 nm.
  • This polyimide film is rubbed and oriented with a rayon cloth (HY-5318 manufactured by Hyperflex) (roller diameter: 120 mm, roller rotation speed: 1000 rpm, moving speed: 20 mm / sec, indentation length: 0.4 mm, rubbing direction: 3rd layer 180° with respect to the line connecting the bent portions of the plurality of pixel electrode elements of the pixel electrode of the eye), ultrasonic irradiation is performed for 1 minute in pure water for cleaning, and water droplets are removed by air blow. Removed. Then, it dried at 80 degreeC for 10 minutes, and obtained the board
  • HY-5318 manufactured by Hyperflex roller diameter: 120 mm, roller rotation speed: 1000 rpm, moving speed: 20 mm / sec, indentation length: 0.4 mm, rubbing direction: 3rd layer 180° with respect to the line connecting the bent portions of the plurality of pixel electrode elements of the pixel electrode of the eye
  • a glass substrate having columnar spacers with a height of 4 ⁇ m and having an ITO electrode formed on the back surface was also treated in the same manner as described above to obtain a substrate with a liquid crystal alignment film subjected to alignment treatment as a counter substrate.
  • These two substrates with a liquid crystal alignment film are used as a set, and a sealant (Mitsui Chemicals XN-1500T) is printed on one of the substrates while leaving the liquid crystal injection port. They were laminated so that the alignment film surfaces faced each other and the rubbing directions were anti-parallel. After that, a heat treatment was performed at 150° C. for 60 minutes to cure the sealant, thereby producing an empty cell with a cell gap of 4 ⁇ m.
  • a negative type liquid crystal MLC-7026-100 (manufactured by Merck Ltd.) was injected into this empty cell by a vacuum injection method, and the injection port was sealed to obtain an FFS liquid crystal cell for negative liquid crystals. After that, the obtained liquid crystal cell was heated at 120° C. for 1 hour, left at 23° C. overnight, and then used for evaluation.
  • a liquid crystal cell for positive liquid crystal having the structure of an FFS mode liquid crystal display element was produced.
  • the substrate with electrodes the same one as in the FFS drive liquid crystal cell for negative liquid crystal was used.
  • the rubbing direction of the electrode-attached substrate is changed to a direction of 90° with respect to the line connecting the bent portions of the plurality of pixel electrode elements of the pixel electrode of the third layer, and the liquid crystal injected by the reduced-pressure injection method is positive.
  • An FFS mode liquid crystal cell for positive liquid crystal was obtained in the same manner as the manufacturing method of the FFS drive liquid crystal cell for negative liquid crystal except that the liquid crystal was changed to type liquid crystal MLC-3019 (manufactured by Merck). After that, the obtained liquid crystal cell was heated at 120° C. for 1 hour and allowed to stand at 23° C. overnight before being used for evaluation.
  • a substrate with electrodes was prepared.
  • the substrate is a glass substrate with a size of 30 mm ⁇ 40 mm and a thickness of 0.7 mm.
  • An ITO electrode having a film thickness of 35 nm was formed on the substrate, and the electrode had a stripe pattern with an interval of 40 mm in length and 10 mm in width.
  • the liquid crystal aligning agent obtained above was filtered through a filter having a pore size of 1.0 ⁇ m, and then applied to the prepared substrate with electrodes by a spin coating method. After drying on a hot plate at 80° C. for 2 minutes, baking was performed in an infrared heating furnace at 230° C.
  • Two substrates with the liquid crystal alignment film were prepared, and spherical spacers with a particle size of 4 ⁇ m were sprayed on the surface of one of the liquid crystal alignment films. 1500T) was printed thereon, and another substrate was pasted with the rubbing direction reversed and the film surfaces facing each other. After that, a heat treatment was performed at 150° C. for 60 minutes to cure the sealant to prepare an empty cell. A negative type liquid crystal MLC-7026-100 (manufactured by Merck & Co.) was injected into this empty cell by a vacuum injection method, and the injection port was sealed to obtain a liquid crystal cell. After that, the obtained liquid crystal cell was heated at 120° C. for 1 hour and allowed to stand at 23° C. overnight before being used for each evaluation.
  • the voltage holding rate was evaluated as "O” when it was 54% or more, and as “X” when it was less than 54%.
  • the voltage holding ratio was evaluated as "O” when it was 85% or more, and as “B” when it was less than 85%. It is known that when the voltage holding ratio, which is one of the electrical characteristics of the liquid crystal display element, is increased, line burn-in, which is one of the display defects of the liquid crystal display element, is less likely to occur.
  • the rotation angle when the liquid crystal cell is rotated from the angle at which the second region of the first pixel is darkest to the angle at which the first region of the first pixel is darkest is calculated as the angle ⁇ .
  • the angle ⁇ was similarly calculated by comparing the second region and the first region. When this angle ⁇ was 0.1° or less, the afterimage property was excellent, that is, it was evaluated as “good”, and when the angle ⁇ was greater than 0.1°, it was defined as “poor” and evaluated.
  • Table 3 shows the evaluation results of the voltage holding ratio, afterimage evaluation, and viewing angle characteristics of the liquid crystal cells for negative liquid crystals using the liquid crystal aligning agents of Examples 1 to 15 and Comparative Examples 1 to 9.
  • the liquid crystal display elements using the liquid crystal alignment films of Examples 1 to 15 obtained from liquid crystal alignment agents using diamine components containing specific diamines DA-1 to DA-3 had a voltage holding rate of , afterimage characteristics and viewing angle characteristics were all good.
  • Table 4 shows the evaluation results of the voltage holding ratio, afterimage evaluation, and viewing angle characteristics of the liquid crystal cells for positive liquid crystals using the liquid crystal aligning agents of Examples 16 to 18 and Comparative Examples 9 and 10 above.
  • the liquid crystal display elements using the liquid crystal alignment films of Examples 16 to 18 obtained from liquid crystal alignment agents using diamine components containing specific diamines DA-1 to DA-3 had a voltage holding rate of , afterimage characteristics and viewing angle characteristics were all good.
  • the liquid crystal alignment film obtained from the liquid crystal alignment agent of the present invention is widely used in liquid crystal display elements of various operation modes. It can also be used for a film or a liquid crystal alignment film for a transmission scattering type liquid crystal light control device.
  • the liquid crystal display device of the present invention can be effectively applied to devices having various functions, such as liquid crystal televisions, clocks, portable games, word processors, notebook computers, car navigation systems, camcorders, PDAs, and digital cameras. , mobile phones, smart phones, various monitors, information displays, etc.
  • Horizontal electric field liquid crystal display element 2 Comb electrode substrate 2a, 4b, 2d: Base material 2b, 2g: Linear electrodes 2c, 2h, 4a: Liquid crystal alignment film 2e: Surface electrode 2f: Insulation Film, 3: liquid crystal, 4: counter substrate, L: electric lines of force

Abstract

Provided are: a liquid crystal aligning agent which forms a liquid crystal alignment film that exhibits a high voltage retention ratio, suppresses the occurrence of after-images, and exhibits low liquid crystal pretilt angle characteristics; a liquid crystal alignment film obtained from said liquid crystal aligning agent; and a liquid crystal display element comprising said liquid crystal alignment film. The liquid crystal aligning agent is characterized by containing a polymer having at least one repeating unit selected from the group consisting of a repeating unit (p1) represented by formula (1) and an imidized structure unit of said repeating unit (p1). (In formula (1), X1 represents a tetravalent organic group. Y1 is a divalent organic group represented by "-Ar1-O-W-O-Ar2-". Ar1 and Ar2 each independently represent a divalent aromatic group of any one of a divalent benzene ring or a biphenyl structure, and any hydrogen atom of the aromatic group may be substituted with a monovalent group. W is a divalent organic group having 4 to 20 carbon atoms, which is represented by *-(CH2)m-L-A-*(L represents -O-C(=O)- or -C(=O)-O-, and A represents -(CH2)n-. m is an integer of 1-6. n is an integer of 1-16. When n is 2 or greater, any -CH2- constituting A may be substituted with -O-, -C(=O)-, -NH-, -O-C(=O)-, -C(=O)-O-, -C=C-, a phenylene group, or a cyclohexylene group. In addition, a portion of hydrogen atoms of W may be substituted with a halogen atom, a methyl group, a trifluoromethyl group, or a hydroxy group.)The symbol * represents a bond.) The symbol * represents a bond. R and Z each independently represent a hydrogen atom or a monovalent organic group.)

Description

液晶配向剤、液晶配向膜及び液晶表示素子Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
 本発明は、液晶配向剤、該液晶配向剤から得られた液晶配向膜、及び該液晶配向膜を具備する液晶表示素子、並びにそれらに適した新規なジアミン、及び重合体に関する。 The present invention relates to a liquid crystal aligning agent, a liquid crystal aligning film obtained from the liquid crystal aligning agent, a liquid crystal display element comprising the liquid crystal aligning film, and a novel diamine and polymer suitable for them.
 液晶表示素子は、携帯電話、スマートフォンなどの小型用途から、テレビ用、モニター用などの比較的大型の用途まで幅広く使用されている。また、電極構造や、使用する液晶分子の物性等が異なる種々の駆動方式が開発され、例えば、TN(Twisted Nematic)方式、STN(Super Twisted Nematic)方式、VA(Vertical Alignment)方式、IPS(In-Plane Switching)方式、FFS(Fringe Field Switching)方式等の各種のモードを用いた液晶表示素子が知られている。これらの液晶表示素子は、一般的に、液晶分子の配列状態を制御するために不可欠な液晶配向膜を有する。液晶配向膜の材料としては、耐熱性、機械的強度、液晶との親和性などの各種特性が良好である点から、ポリアミック酸やポリイミドが一般に使用されている。 Liquid crystal display elements are used in a wide range of applications, from small applications such as mobile phones and smartphones to relatively large applications such as televisions and monitors. In addition, various driving methods with different electrode structures and physical properties of the liquid crystal molecules used have been developed. -Plane Switching), FFS (Fringe Field Switching), and other liquid crystal display devices using various modes are known. These liquid crystal display elements generally have a liquid crystal alignment film that is indispensable for controlling the alignment state of liquid crystal molecules. Polyamic acid and polyimide are generally used as materials for liquid crystal alignment films because of their excellent properties such as heat resistance, mechanical strength, and affinity with liquid crystals.
 液晶表示素子には、高い表示品位が求められ、例えば、高い電圧保持率を示すことが要求特性の一つとなっている。この目的で、特許文献1には、1,5-ビス(4-アミノフェノキシ)ペンタン等の、芳香族ジアミンを含有してなる液晶配向膜用組成物が開示されている。また、特許文献2には、2つの芳香環が特定のアルキレン基によって連結されたジアミンとテトラカルボン酸誘導体とを反応させて得られるポリアミック酸等を液晶配向剤の重合体成分として用いることが開示されている。 Liquid crystal display elements are required to have high display quality, and one of the required characteristics is, for example, to exhibit a high voltage holding ratio. For this purpose, Patent Document 1 discloses a composition for a liquid crystal alignment film containing an aromatic diamine such as 1,5-bis(4-aminophenoxy)pentane. Further, Patent Document 2 discloses that a polyamic acid or the like obtained by reacting a diamine having two aromatic rings linked by a specific alkylene group with a tetracarboxylic acid derivative is used as a polymer component of a liquid crystal aligning agent. It is
日本特開平06-194670号公報Japanese Patent Laid-Open No. 06-194670 日本特開2014-132326号公報Japanese Patent Application Laid-Open No. 2014-132326
 近年、液晶表示素子の高性能化に伴い、大画面で高精細な液晶テレビに加えて、車載用、例えば、カーナビゲーションシステムやメーターパネル、監視用カメラや医療用カメラのモニターなどへの適用が検討されている。そのため、液晶表示素子の特に高精細化などの高性能化に対する要求は更に高まっており、液晶配向膜としては液晶表示素子における各種特性を更に良好にできるものが求められている。 In recent years, as the performance of liquid crystal display elements has improved, in addition to large-screen, high-definition liquid crystal televisions, it has been applied to in-vehicle applications such as car navigation systems, meter panels, surveillance cameras, and medical camera monitors. being considered. Therefore, the demand for higher performance, particularly higher definition, of liquid crystal display elements is increasing, and a liquid crystal alignment film capable of further improving various characteristics of liquid crystal display elements is desired.
 本発明は、光や温度などの外部刺激により経時的に発生する画像焼き付き(区画及び線の画像焼き付き)、ムラ、又はヨゴレなどの表示不良の発生が抑制される、所謂表示品位の長期信頼性をもたらすための条件となる高い電圧保持率を有する液晶配向膜を形成することを一つの目的とする。また、本発明は、長期交流駆動によって発生する残像(以下、AC残像ともいう)を抑制し、視野角特性の需要に対応できる、低い液晶プレチルト角特性を示す液晶配向膜を形成することができる液晶配向剤、及び該液晶配向膜を具備する液晶表示素子、並びにそれらに適した新規なジアミン、及び重合体を提供することを他の一つの目的とする。 The present invention provides long-term reliability of so-called display quality, in which display defects such as image burn-in (image burn-in of divisions and lines), unevenness, and staining that occur over time due to external stimuli such as light and temperature are suppressed. It is an object of the present invention to form a liquid crystal alignment film having a high voltage holding ratio which is a condition for bringing about. In addition, the present invention can form a liquid crystal alignment film exhibiting low liquid crystal pretilt angle characteristics that can suppress afterimages (hereinafter, also referred to as AC afterimages) generated by long-term AC driving and can meet the demand for viewing angle characteristics. Another object of the present invention is to provide a liquid crystal aligning agent, a liquid crystal display device having the liquid crystal aligning film, and a novel diamine and polymer suitable for them.
 本発明者は、上記課題を達成するために鋭意研究を行った結果、特定重合体を含有する液晶配向剤が、上記の目的を達成するために有効であることを見出し、本発明を完成するに至った。 As a result of intensive research to achieve the above objects, the present inventors have found that a liquid crystal aligning agent containing a specific polymer is effective for achieving the above objects, and have completed the present invention. reached.
 本発明は、下記を要旨とするものである。
 下記式(1)で表される繰り返し単位(p1)及び該繰り返し単位(p1)のイミド化構造単位からなる群から選ばれる少なくとも1種の繰り返し単位を有する重合体を含有することを特徴とする液晶配向剤。
Figure JPOXMLDOC01-appb-C000005
(式(1)中、Xは4価の有機基を表す。Yは「-Ar-O-W-O-Ar-」で表される2価の有機基である。
 Ar、Arは、それぞれ独立して、2価のベンゼン環又はビフェニル構造のいずれかの2価の芳香族基を表し、該芳香族基の任意の水素原子は1価の基で置き換えられてもよい。
 Wは、*-(CH-L-A-*(Lは、-O-C(=O)-又は-C(=O)-O-を表し、Aは-(CH-を表す。
 mは1~6の整数である。nは、1~16の整数である。nが2以上の場合、Aを構成する任意の-CH-は、-O-、-C(=O)-、-NH-、-O-C(=O)-、-C(=O)-O-、-C=C-、フェニレン基、又はシクロへキシレン基で置換されていてもよい。
 また、Wが有する水素原子の一部は、ハロゲン原子、メチル基、トリフルオロメチル基、又はヒドロキシ基で置換されていてもよい。)で表される炭素数4~20の2価の有機基である。*は結合手を表す。
 R及びZはそれぞれ独立して水素原子又は1価の有機基を表す。)
 なお、本発明において、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、*は結合手を表す。
The gist of the present invention is as follows.
Characterized by containing a polymer having at least one repeating unit selected from the group consisting of a repeating unit (p1) represented by the following formula (1) and an imidized structural unit of the repeating unit (p1) Liquid crystal aligning agent.
Figure JPOXMLDOC01-appb-C000005
(In Formula (1), X 1 represents a tetravalent organic group. Y 1 represents a divalent organic group represented by "-Ar 1 -OWO-Ar 2 -".
Ar 1 and Ar 2 each independently represent a divalent aromatic group of either a divalent benzene ring or a biphenyl structure, any hydrogen atom of the aromatic group being replaced with a monovalent group may
W represents *-(CH 2 ) m -L-A-* (L represents -O-C(=O)- or -C(=O)-O-, and A represents -(CH 2 ) n - represents.
m is an integer of 1-6. n is an integer from 1 to 16; When n is 2 or more, any —CH 2 — constituting A is —O—, —C(=O)—, —NH—, —OC(=O)—, —C(=O ) —O—, —C═C—, a phenylene group, or a cyclohexylene group.
Also, some of the hydrogen atoms of W may be substituted with a halogen atom, a methyl group, a trifluoromethyl group, or a hydroxy group. ) is a divalent organic group having 4 to 20 carbon atoms. * represents a bond.
R and Z each independently represent a hydrogen atom or a monovalent organic group. )
In the present invention, the halogen atom includes a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like, and * represents a bond.
 本発明によれば、高い電圧保持率を示し、また、残像の発生が抑制され、低い液晶プレチルト角特性を示す液晶配向膜を形成する液晶配向剤、該液晶配向剤から得られた液晶配向膜、該液晶配向膜を備えた高性能な液晶表示素子、及びそれらの製造に使用する新規なジアミン、及び重合体が得られる。 INDUSTRIAL APPLICABILITY According to the present invention, a liquid crystal aligning agent for forming a liquid crystal aligning film exhibiting a high voltage holding ratio, suppressing the generation of an afterimage, and exhibiting a low liquid crystal pretilt angle characteristic, and a liquid crystal aligning film obtained from the liquid crystal aligning agent. , a high-performance liquid crystal display device comprising the liquid crystal alignment film, and novel diamines and polymers used for their production are obtained.
 本発明の上記効果が得られるメカニズムは必ずしも明らかではないが、ほぼ次のように推定される。まず、後述する特定ジアミンは、芳香族基に酸素原子が結合した構造を有するため、液晶配向膜とした際に、表示不良の原因となるイオン性不純物との相互作用が働き、不純物の拡散を抑えるトラップ現象によって電圧保持率が向上すると考えられる。また、不純物に対する同様のトラップ現象が、特定ジアミンの有するエステル結合にも起こるため、上記効果が得られたと考えられる。更には、特定ジアミンがエステル結合やアルキレン鎖を有することで、配向処理する際の重合体の延伸性が高くなり、高い液晶配向性が得られるため、AC残像の発生が抑制された液晶配向膜が得られるものと考えられる。 Although the mechanism by which the above effects of the present invention are obtained is not necessarily clear, it is estimated as follows. First, the specific diamine, which will be described later, has a structure in which an oxygen atom is bonded to an aromatic group, so when it is used as a liquid crystal alignment film, it interacts with ionic impurities that cause display defects, and the diffusion of impurities is suppressed. It is considered that the voltage holding ratio is improved by the trapping phenomenon that is suppressed. In addition, it is considered that the above effect was obtained because the same trapping phenomenon for impurities also occurs in the ester bond of the specific diamine. Furthermore, since the specific diamine has an ester bond or an alkylene chain, the stretchability of the polymer during alignment treatment is increased, and high liquid crystal alignment is obtained, so the occurrence of AC afterimage is suppressed. Liquid crystal alignment film is obtained.
本発明の横電界液晶表示素子の一例を示す概略部分断面図である。1 is a schematic partial cross-sectional view showing an example of a lateral electric field liquid crystal display device of the present invention; FIG. 本発明の横電界液晶表示素子の他の例を示す概略部分断面図である。FIG. 4 is a schematic partial cross-sectional view showing another example of the horizontal electric field liquid crystal display device of the present invention;
 <液晶配向剤に含有される重合体>
 本発明の液晶配向剤は、上記のように、下記式(1)で表される繰り返し単位(p1)及び該繰り返し単位(p1)のイミド化構造単位からなる群から選ばれる少なくとも1種の繰り返し単位を有する重合体を含有することを特徴とする。
Figure JPOXMLDOC01-appb-C000006
(式(1)中、X、Y、R及びZは、それぞれ上記で定義したとおりである。)
<Polymer Contained in Liquid Crystal Aligning Agent>
As described above, the liquid crystal aligning agent of the present invention comprises at least one repeating unit selected from the group consisting of a repeating unit (p1) represented by the following formula (1) and an imidized structural unit of the repeating unit (p1) It is characterized by containing a polymer having a unit.
Figure JPOXMLDOC01-appb-C000006
(In formula (1), X 1 , Y 1 , R and Z are each as defined above.)
 上記式(1)におけるY(「-Ar-O-W-O-Ar-」)におけるAr、W及びArは、好ましい態様を含め、後述する式(D)におけるAr、W及びArと同様である。
 上記式(1)における「-N(Z)-Ar-O-W-O-Ar-N(Z)-」は、例えば、下記の特定ジアミンを含むジアミン成分を重合体の原料に用いることで形成することが可能になるが、この方法に限定されない。
 上記式(1)におけるR、及びZにおける1価の有機基としては、炭素数1~6の1価の炭化水素基、当該炭化水素基のメチレン基を-O-、-S-、-CO-、-COO-、-COS-、-NR-、-CO-NR-、-Si(R-(ただし、Rは、水素原子又は炭素数1~6の1価の炭化水素基である。)、-SO-等で置き換えてなる1価の基A、上記1価の炭化水素基又は上記1価の基Aの炭素原子に結合する水素原子の少なくとも1個をハロゲン原子、ヒドロキシ基、アルコキシ基、ニトロ基、アミノ基、メルカプト基、ニトロソ基、アルキルシリル基、アルコキシシリル基、シラノール基、スルフィノ基、ホスフィノ基、カルボキシ基、シアノ基、スルホ基、アシル基等で置換してなる1価の基、複素環を有する1価の基が挙げられる。
 上記式(1)におけるR、及びZにおける1価の有機基としては、中でも、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、又はtert-ブトキシカルボニル基が好ましく、炭素数1~3のアルキル基が更に好ましく、メチル基がより一層好ましい。
 R及びZは、本発明の効果を好適に得る観点から、それぞれ独立に、水素原子又は炭素数1~3のアルキル基が好ましく、水素原子またはメチル基がより好ましい。
 上記式(1)におけるXとしては、例えば、後述するテトラカルボン酸二無水物又はその誘導体に由来する4価の有機基が挙げられる。上記Xにおけるテトラカルボン酸二無水物又はその誘導体の好ましい態様として、後述の重合体(P)の合成に用いることが出来るテトラカルボン酸二無水物又はその誘導体の好ましい態様を挙げることが出来る。
Ar 1 , W and Ar 2 in Y 1 (“—Ar 1 —OW—O—Ar 2 —”) in formula (1) above are Ar 1 in formula (D A ) described below, including preferred embodiments. , W and Ar2 .
“—N(Z)—Ar 1 —OW—O—Ar 2 —N(Z)—” in the above formula (1) means that, for example, a diamine component containing the following specific diamine is used as a starting material for the polymer. However, it is not limited to this method.
The monovalent organic group for R and Z in the above formula (1) includes a monovalent hydrocarbon group having 1 to 6 carbon atoms, and the methylene group of the hydrocarbon group is -O-, -S-, -CO -, -COO-, -COS-, -NR 3 -, -CO-NR 3 -, -Si(R 3 ) 2 - (where R 3 is a hydrogen atom or a monovalent carbon atom having 1 to 6 carbon atoms) is a hydrogen group), a monovalent group A substituted with —SO 2 —, etc., the above monovalent hydrocarbon group, or at least one hydrogen atom bonded to a carbon atom of the above monovalent group A is a halogen Atoms, hydroxy groups, alkoxy groups, nitro groups, amino groups, mercapto groups, nitroso groups, alkylsilyl groups, alkoxysilyl groups, silanol groups, sulphino groups, phosphino groups, carboxy groups, cyano groups, sulfo groups, acyl groups, etc. Examples include a substituted monovalent group and a monovalent group having a heterocyclic ring.
The monovalent organic group for R and Z in the above formula (1) includes, among others, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, or a tert A -butoxycarbonyl group is preferred, an alkyl group having 1 to 3 carbon atoms is more preferred, and a methyl group is even more preferred.
From the viewpoint of suitably obtaining the effects of the present invention, R and Z are each independently preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, more preferably a hydrogen atom or a methyl group.
X 1 in the above formula (1) includes, for example, a tetravalent organic group derived from a tetracarboxylic dianhydride or a derivative thereof, which will be described later. Preferred embodiments of the tetracarboxylic dianhydride or derivative thereof in X 1 above include preferred embodiments of the tetracarboxylic dianhydride or derivative thereof that can be used for synthesizing the polymer (P) described later.
<特定ジアミン>
 本発明の液晶配向剤に含有される重合体は、例えば、下記式(D)で表されるジアミン(0)(以下、特定ジアミンともいう。)を含むジアミン成分を用いて得られるポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体(P)である。
Figure JPOXMLDOC01-appb-C000007
 上記式(D)において、Ar、Ar、及びWは、それぞれ上記で定義したとおりである。
<Specific diamine>
The polymer contained in the liquid crystal aligning agent of the present invention is, for example, a polyimide precursor obtained using a diamine component containing a diamine (0) represented by the following formula (D A ) (hereinafter also referred to as a specific diamine) and at least one polymer (P) selected from the group consisting of a polyimide which is an imidized product of the polyimide precursor.
Figure JPOXMLDOC01-appb-C000007
In the above formula (D A ), Ar 1 , Ar 2 and W are each as defined above.
 上記式(D)において、Wは、*-(CH-L-A-*で表される炭素数4~20の2価の有機基であるが、本発明の効果を好適に得る観点から、炭素数4~18の2価の有機基がより好ましく、4~16の2価の有機基が更に好ましい。
 また、上記WにおけるLは、好ましくは、-O-C(=O)-である。Aは、好ましくは、-(CH-(nは1~16の整数である。)、又は-(CHn’-(n’は2~16の整数である。)における任意の-CH-が、-O-、-C(=O)-、-NH-、-O-C(=O)-、-C(=O)-O-、-C=C-、フェニレン基、又はシクロへキシレン基で置換されてなる2価の有機基である。
 mは、高い液晶配向性が得られる観点から、2~6の整数がより好ましく、2~4の整数がより好ましく、2又は4の整数であることがさらに好ましい。nは、好ましくは1~13である。また、Wが有する水素原子を置換するハロゲン原子としては、フッ素原子が好ましい。
In the above formula (D A ), W is a divalent organic group having 4 to 20 carbon atoms represented by *-(CH 2 ) m -LA-*. From the viewpoint of obtaining, a divalent organic group having 4 to 18 carbon atoms is more preferable, and a divalent organic group having 4 to 16 carbon atoms is even more preferable.
Further, L in W above is preferably -OC(=O)-. A is preferably —(CH 2 ) n — (n is an integer of 1 to 16) or —(CH 2 ) n′ — (n′ is an integer of 2 to 16). of -CH 2 - is -O-, -C(=O)-, -NH-, -O-C(=O)-, -C(=O)-O-, -C=C-, phenylene or a divalent organic group substituted with a cyclohexylene group.
From the viewpoint of obtaining high liquid crystal orientation, m is more preferably an integer of 2 to 6, more preferably an integer of 2 to 4, and even more preferably an integer of 2 or 4. n is preferably 1-13. A fluorine atom is preferable as the halogen atom that replaces the hydrogen atom of W.
 上記Wのより好ましい具体例を挙げると、*-(CH-O-C(=O)-(CH-*、*-(CH-O-C(=O)-(CH-C(=O)-O-(CH-、*-(CH-C(=O)-O-(CH-O-C(=O)-(CH-*、*-(CH-O-C(=O)-Q-C(=O)-O-(CH-*(Qはフェニレン基又はシクロヘキシレン基を表す。)、*-(CH-C(=O)-O-Q-O-C(=O)-(CH-*(Qはフェニレン基又はシクロヘキシレン基を表す。)が挙げられる。ここにおいて、pは1~6の整数であり、好ましくは2~6の整数である。qは1~6の整数であり、2~6の整数がより好ましく、2、4又は6の整数であることが更に好ましい。rは1~6の整数であり、好ましくは2~6の整数である。 More preferred specific examples of W are *-(CH 2 ) p -OC(=O)-(CH 2 ) q -*, *-(CH 2 ) p -OC(=O) -(CH 2 ) q -C(=O)-O-(CH 2 ) r -, *-(CH 2 ) p -C(=O)-O-(CH 2 ) q -O-C(=O )—(CH 2 ) r −*, *—(CH 2 ) p —O—C(=O)—QC(=O)—O—(CH 2 ) q —* (Q is a phenylene group or cyclohexane represents a silene group.), *-(CH 2 ) p -C(=O)-OQ-O-C(=O)-(CH 2 ) q -* (Q represents a phenylene group or a cyclohexylene group; represents.). Here, p is an integer of 1-6, preferably an integer of 2-6. q is an integer of 1 to 6, more preferably an integer of 2 to 6, even more preferably an integer of 2, 4 or 6. r is an integer of 1-6, preferably an integer of 2-6.
 上記式(D)におけるAr、Arの2価の芳香族の水素原子を置換する1価の基としては、ハロゲン原子、炭素数1~10のアルキル基、炭素数2~10のアルケニル基、炭素数1~10のアルコキシ基、炭素数1~10のフルオロアルキル基、炭素数2~10のフルオロアルケニル基、炭素数1~10のフルオロアルコキシ基、カルボキシ基、ヒドロキシ基、炭素数1~10のアルキルオキシカルボニル基、シアノ基、ニトロ基等が挙げられる。なかでも、ハロゲン原子、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、炭素数1~5のフルオロアルキル基、又は炭素数1~5のフルオロアルコキシ基、が好ましい。 The monovalent group that substitutes the divalent aromatic hydrogen atoms of Ar 1 and Ar 2 in the above formula (D A ) includes a halogen atom, an alkyl group having 1 to 10 carbon atoms, and an alkenyl group having 2 to 10 carbon atoms. group, alkoxy group having 1 to 10 carbon atoms, fluoroalkyl group having 1 to 10 carbon atoms, fluoroalkenyl group having 2 to 10 carbon atoms, fluoroalkoxy group having 1 to 10 carbon atoms, carboxy group, hydroxy group, 1 carbon atom to 10 alkyloxycarbonyl groups, cyano groups, nitro groups, and the like. Among them, a halogen atom, an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, a fluoroalkyl group having 1 to 5 carbon atoms, or a fluoroalkoxy group having 1 to 5 carbon atoms is preferable.
 Ar及びArで表される2価の芳香族基の好適な例としては、1,4-フェニレン、1,3-フェニレン、2-メチル-1,4-フェニレン、2-エチル-1,4-フェニレン、2-プロピル-1,4-フェニレン、2-ブチル-1,4-フェニレン、2-イソプロピル-1,4-フェニレン、2-tert-ブチル-1,4-フェニレン、2-メトキシ-1,4-フェニレン、2-エトキシ-1,4-フェニレン、2-プロポキシ-1,4-フェニレン、2-ブトキシ-1,4-フェニレン、2-フルオロ-1,4-フェニレン、2,3-ジメチル-1,4-フェニレン、4-メチル-1,3-フェニレン、5-メチル-1,3-フェニレン、4-フルオロ-1,3-フェニレン、2,3,5,6-テトラメチル-1,4-フェニレン、4,4’-ビフェニリレン、2-メチル-4,4’-ビフェニリレン、2-エチル-4,4’-ビフェニリレン、2-プロピル-4,4’-ビフェニリレン、2-ブチル-4,4’-ビフェニリレン、2-tert-ブチル-4,4’-ビフェニリレン、2-メトキシ-4,4’-ビフェニリレン、2-エトキシ-4,4’-ビフェニリレン、2-フルオロ-4,4’-ビフェニリレン、3-メチル-4,4’-ビフェニリレン、3-エチル-4,4’-ビフェニリレン、3-プロピル-4,4’-ビフェニリレン、3-ブチル-4,4’-ビフェニリレン、3-tert-ブチル-4,4’-ビフェニリレン、3-メトキシ-4,4’-ビフェニリレン、3-エトキシ-4,4’-ビフェニリレン、3-フルオロ-4,4’-ビフェニリレン、2,2’-ジメチル-4,4’-ビフェニリレン、3,3’-ジメチル-4,4’-ビフェニリレン、3,3’-ビフェニリレン、5-メチル-3,3’-ビフェニリレン、5,5’-ジメチル-3,3’-ビフェニリレン等が挙げられる。 Preferred examples of divalent aromatic groups represented by Ar 1 and Ar 2 include 1,4-phenylene, 1,3-phenylene, 2-methyl-1,4-phenylene, 2-ethyl-1, 4-phenylene, 2-propyl-1,4-phenylene, 2-butyl-1,4-phenylene, 2-isopropyl-1,4-phenylene, 2-tert-butyl-1,4-phenylene, 2-methoxy- 1,4-phenylene, 2-ethoxy-1,4-phenylene, 2-propoxy-1,4-phenylene, 2-butoxy-1,4-phenylene, 2-fluoro-1,4-phenylene, 2,3- dimethyl-1,4-phenylene, 4-methyl-1,3-phenylene, 5-methyl-1,3-phenylene, 4-fluoro-1,3-phenylene, 2,3,5,6-tetramethyl-1 ,4-phenylene, 4,4'-biphenylylene, 2-methyl-4,4'-biphenylylene, 2-ethyl-4,4'-biphenylylene, 2-propyl-4,4'-biphenylylene, 2-butyl-4 ,4'-biphenylylene, 2-tert-butyl-4,4'-biphenylylene, 2-methoxy-4,4'-biphenylylene, 2-ethoxy-4,4'-biphenylylene, 2-fluoro-4,4'- biphenylylene, 3-methyl-4,4'-biphenylylene, 3-ethyl-4,4'-biphenylylene, 3-propyl-4,4'-biphenylylene, 3-butyl-4,4'-biphenylylene, 3-tert- Butyl-4,4'-biphenylylene, 3-methoxy-4,4'-biphenylylene, 3-ethoxy-4,4'-biphenylylene, 3-fluoro-4,4'-biphenylylene, 2,2'-dimethyl-4 ,4'-biphenylylene, 3,3'-dimethyl-4,4'-biphenylylene, 3,3'-biphenylylene, 5-methyl-3,3'-biphenylylene, 5,5'-dimethyl-3,3'- biphenylylene and the like.
 上記式(D)の好ましい例としては、下記式(d-1)~(d-5)が挙げられる。尚、下記式(d-1)~(d-5)におけるベンゼン環上の水素原子は、1価の置換基で置換されてもよく、該置換基の好ましい具体例として、上記式(D)におけるAr、Arの2価の芳香族の水素原子を置換する1価の基で例示した構造が挙げられる。
Figure JPOXMLDOC01-appb-C000008
Preferred examples of the above formula (D A ) include the following formulas (d A -1) to (d A -5). A hydrogen atom on the benzene ring in the following formulas (d A -1) to (d A -5) may be substituted with a monovalent substituent, and preferred specific examples of the substituent include the above formula ( Examples include the structures exemplified by the monovalent groups substituting the divalent aromatic hydrogen atoms of Ar 1 and Ar 2 in D A ).
Figure JPOXMLDOC01-appb-C000008
(重合体(P))
 本発明の液晶配向剤に含有される重合体(P)は、例えば、上記ジアミン(0)を含有するジアミン成分を用いて得られるポリイミド前駆体、又は該ポリイミド前駆体のイミド化物であるポリイミドである。ここにおいて、ポリイミド前駆体は、ポリアミック酸、ポリアミック酸エステルなどのイミド化することによりポリイミドを得ることができる重合体である。
 上記重合体(P)のポリイミド前駆体であるポリアミック酸(P’)は、上記ジアミン(0)を含有するジアミン成分とテトラカルボン酸成分との重合反応により得ることができる。上記ジアミン(0)は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 ジアミン(0)の使用量は、全ジアミン成分に対して、5モル%以上が好ましく、10モル%以上がより好ましく、20モル%以上がさらに好ましい。
(Polymer (P))
The polymer (P) contained in the liquid crystal aligning agent of the present invention is, for example, a polyimide precursor obtained using a diamine component containing the diamine (0), or a polyimide that is an imidized product of the polyimide precursor. be. Here, the polyimide precursor is a polymer from which a polyimide can be obtained by imidating polyamic acid, polyamic acid ester, or the like.
A polyamic acid (P′), which is a polyimide precursor of the polymer (P), can be obtained by a polymerization reaction between a diamine component containing the diamine (0) and a tetracarboxylic acid component. The diamine (0) may be used alone or in combination of two or more.
The amount of diamine (0) used is preferably 5 mol % or more, more preferably 10 mol % or more, and even more preferably 20 mol % or more, relative to the total diamine component.
 本発明の効果を好適に得る観点から、重合体(P)は、繰り返し単位(p1)と繰り返し単位(p1)のイミド化構造との合計を重合体(P)が有する全繰り返し単位の5モル%以上含むことが好ましく、10モル%以上含むことがより好ましく、20モル%以上がさらに好ましい。なお、ここでの合計においては、繰り返し単位(p1)と繰り返し単位(p1)のイミド化構造とのいずれかが0モル%である場合も含まれる。以下においても合計という場合、構成要素の1又は2以上が0モル%である場合も含まれる。 From the viewpoint of suitably obtaining the effects of the present invention, the polymer (P) has a total of repeating units (p1) and the imidized structure of the repeating units (p1) of 5 moles of all repeating units that the polymer (P) has. % or more, more preferably 10 mol % or more, and even more preferably 20 mol % or more. The total here includes the case where either the repeating unit (p1) or the imidized structure of the repeating unit (p1) is 0 mol %. In the following description, the term "total" also includes the case where one or more of the constituent elements are 0 mol %.
 上記ポリアミック酸(P’)の製造に用いられるジアミン成分は、ジアミン(0)以外のジアミン(以下、その他のジアミンともいう。)を含んでいてもよい。上記ジアミン(0)に加えて、その他のジアミンを併用する場合は、ジアミン成分に対するジアミン(0)の使用量は、90モル%以下が好ましく、80モル%以下がより好ましい。 The diamine component used for producing the polyamic acid (P') may contain diamines other than diamine (0) (hereinafter also referred to as other diamines). When other diamines are used in addition to the diamine (0), the amount of the diamine (0) used is preferably 90 mol % or less, more preferably 80 mol % or less, relative to the diamine component.
 以下にその他のジアミンの例を挙げるが、これらに限定されるものではない。上記その他のジアミンは、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。p-フェニレンジアミン、2,3,5,6-テトラメチル-p-フェニレンジアミン、2,5-ジメチル-p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジメチル-m-フェニレンジアミン、2,5-ジアミノトルエン、2,6-ジアミノトルエン、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、2,2’-ジフルオロ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、3,3’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、4,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、2,2’-ジアミノビフェニル、2,3’-ジアミノビフェニル、下記式(dAL-1)~(dAL-10)で表されるジアミン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,7-ビス(3-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,8-ビス(3-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,9-ビス(3-アミノフェノキシ)ノナン、1,10-ビス(4-アミノフェノキシ)デカン、1,10-ビス(3-アミノフェノキシ)デカン、1,11-ビス(4-アミノフェノキシ)ウンデカン、1,11-ビス(3-アミノフェノキシ)ウンデカン、1,12-ビス(4-アミノフェノキシ)ドデカン、1,12-ビス(3-アミノフェノキシ)ドデカン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(4-アミノフェノキシ)ジフェニルエーテル、1,4-ビス[4-(4-アミノフェノキシ)フェノキシ]ベンゼン、1,2-ビス(6-アミノ-2-ナフチルオキシ)エタン、1,2-ビス(6-アミノ-2-ナフチル)エタン、6-[2-(4-アミノフェノキシ)エトキシ]-2-ナフチルアミン、1,4-フェニレンビス(4-アミノベンゾエート)、1,4-フェニレンビス(3-アミノベンゾエート)、1,3-フェニレンビス(4-アミノベンゾエート)、1,3-フェニレンビス(3-アミノベンゾエート)、ビス(4-アミノフェニル)テレフタレート、ビス(3-アミノフェニル)テレフタレート、ビス(4-アミノフェニル)イソフタレート、ビス(3-アミノフェニル)イソフタレート;4,4’-ジアミノアゾベンゼン又はジアミノトランなどの光配向性基を有するジアミン;メタクリル酸2-(2,4-ジアミノフェノキシ)エチル又は2,4-ジアミノ-N,N-ジアリルアニリン等の光重合性基を末端に有するジアミン;1-(4-(2-(2,4-ジアミノフェノキシ)エトキシ)フェニル)-2-ヒドロキシ-2-メチルプロパノン、2-(4-(2-ヒドロキシ-2-メチルプロパノイル)フェノキシ)エチル-3,5-ジアミノベンゾエートなどのラジカル重合開始剤機能を有するジアミン;4,4’-ジアミノベンズアニリドなどのアミド結合を有するジアミン、1,3-ビス(4-アミノフェニル)ウレア、1,3-ビス(4-アミノベンジル)ウレア、1,3-ビス(4-アミノフェネチル)ウレアなどのウレア結合を有するジアミン;3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)プロパン、2,2’-ビス(3-アミノフェニル)プロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)プロパン、4,4’-ジアミノベンゾフェノン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(4-アミノベンジル)ベンゼン;2,6-ジアミノピリジン、3,4-ジアミノピリジン、2,4-ジアミノピリミジン、3,6-ジアミノカルバゾール、N-メチル-3,6-ジアミノカルバゾール、1,4-ビス-(4-アミノフェニル)-ピペラジン、3,6-ジアミノアクリジン、N-エチル-3,6-ジアミノカルバゾール、N-フェニル-3,6-ジアミノカルバゾール、N-(3-(1H-イミダゾール-1-イル)プロピル-3,5-ジアミノベンズアミド、4-[4-[(4-アミノフェノキシ)メチル]-4,5-ジヒドロ-4-メチル-2-オキサゾリル]-ベンゼンアミン、若しくは下記式(z-1)~式(z-13)で表されるジアミンなどの複素環含有ジアミン、又は、4,4’-ジアミノジフェニルアミン、4,4’-ジアミノジフェニル-N-メチルアミン、N,N’-ビス(4-アミノフェニル)-ベンジジン、N,N’-ビス(4-アミノフェニル)-N,N’-ジメチルベンジジン、若しくは、N,N’-ビス(4-アミノフェニル)-N,N’-ジメチル-1,4-ベンゼンジアミンなどのジフェニルアミン構造を有するジアミンに代表される、窒素原子含有複素環、第二級アミノ基及び第三級アミノ基よりなる群から選ばれる少なくとも一種の窒素原子含有構造(以下、特定の窒素原子含有構造ともいう。)を有するジアミン(但し、加熱によって脱離し、水素原子に置き換わる保護基が結合したアミノ基を分子内に有しない。);2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、4,6-ジアミノレゾルシノール、4,4’-ジアミノ-3,3’-ジヒドロキシビフェニル;2,4-ジアミノ安息香酸、2,5-ジアミノ安息香酸、3,5-ジアミノ安息香酸、4,4’-ジアミノビフェニル-3-カルボン酸、4,4’-ジアミノジフェニルメタン-3-カルボン酸、4,4’-ジアミノジフェニルエタン-3-カルボン酸、4,4’-ジアミノビフェニル-3,3’-ジカルボン酸、4,4’-ジアミノビフェニル-2,2’-ジカルボン酸、3,3’-ジアミノビフェニル-4,4’-ジカルボン酸、3,3’-ジアミノビフェニル-2,4’-ジカルボン酸、4,4’-ジアミノジフェニルメタン-3,3’-ジカルボン酸、4,4’-ジアミノジフェニルエタン-3,3’-ジカルボン酸、4,4’-ジアミノジフェニルエーテル-3,3’-ジカルボン酸などのカルボキシ基を有するジアミン;4-(2-(メチルアミノ)エチル)アニリン、4-(2-アミノエチル)アニリン、1-(4-アミノフェニル)-1,3,3-トリメチル-1H-インダン-5-アミン、1-(4-アミノフェニル)-2,3-ジヒドロ-1,3,3-トリメチル-1H-インデン-6-アミン;下記式(5-1)~(5-6)などの基「-N(D)-」(Dは加熱によって脱離し水素原子に置き換わる保護基を表し、好ましくはカルバメート系保護基であり、より好ましくはtert-ブトキシカルボニル基である。)を有するジアミン、コレスタニルオキシ-3,5-ジアミノベンゼン、コレステニルオキシ-3,5-ジアミノベンゼン、コレスタニルオキシ-2,4-ジアミノベンゼン、3,5-ジアミノ安息香酸コレスタニル、3,5-ジアミノ安息香酸コレステニル、3,5-ジアミノ安息香酸ラノスタニル及び3,6-ビス(4-アミノベンゾイルオキシ)コレスタン等のステロイド骨格を有するジアミン、下記式(V-1)~(V-2)で表されるジアミン;1,3-ビス(3-アミノプロピル)-テトラメチルジシロキサン等のシロキサン結合を有するジアミン;メタキシリレンジアミン、1,3-プロパンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ジアミノシクロヘキサン、4,4’-メチレンビス(シクロヘキシルアミン)、国際公開第2018/117239号に記載の式(Y-1)~(Y-167)のいずれかで表される基に2つのアミノ基が結合したジアミン等。 Examples of other diamines are listed below, but are not limited to these. The other diamines may be used singly or in combination of two or more. p-phenylenediamine, 2,3,5,6-tetramethyl-p-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, m-phenylenediamine, 2,4-dimethyl-m-phenylenediamine, 2, 5-diaminotoluene, 2,6-diaminotoluene, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethoxy-4 ,4'-diaminobiphenyl, 3,3'-dihydroxy-4,4'-diaminobiphenyl, 2,2'-difluoro-4,4'-diaminobiphenyl, 3,3'-difluoro-4,4'-diamino biphenyl, 2,2′-bis(trifluoromethyl)-4,4′-diaminobiphenyl, 3,3′-bis(trifluoromethyl)-4,4′-diaminobiphenyl, 3,4′-diaminobiphenyl, 4,4′-diaminobiphenyl, 3,3′-diaminobiphenyl, 2,2′-diaminobiphenyl, 2,3′-diaminobiphenyl represented by the following formulas (d AL -1) to (d AL -10) diamine, 1,7-bis(4-aminophenoxy)heptane, 1,7-bis(3-aminophenoxy)heptane, 1,8-bis(4-aminophenoxy)octane, 1,8-bis(3- aminophenoxy)octane, 1,9-bis(4-aminophenoxy)nonane, 1,9-bis(3-aminophenoxy)nonane, 1,10-bis(4-aminophenoxy)decane, 1,10-bis( 3-aminophenoxy)decane, 1,11-bis(4-aminophenoxy)undecane, 1,11-bis(3-aminophenoxy)undecane, 1,12-bis(4-aminophenoxy)dodecane, 1,12- bis(3-aminophenoxy)dodecane, 1,4-bis(4-aminophenoxy)benzene, 1,3-bis(4-aminophenoxy)benzene, 4-bis(4-aminophenoxy)biphenyl, 4,4' -bis(4-aminophenoxy)diphenyl ether, 1,4-bis[4-(4-aminophenoxy)phenoxy]benzene, 1,2-bis(6-amino-2-naphthyloxy)ethane, 1,2-bis (6-amino-2-naphthyl)ethane, 6-[2-(4-aminophenoxy)ethoxy]-2-naphthylamine, 1,4-phenylenebis(4-aminobenzoate), 1,4-phenylenebis(3 -aminobenzoate), 1,3-phenyl lenbis(4-aminobenzoate), 1,3-phenylenebis(3-aminobenzoate), bis(4-aminophenyl)terephthalate, bis(3-aminophenyl)terephthalate, bis(4-aminophenyl)isophthalate, bis (3-aminophenyl) isophthalate; diamines having photoalignable groups such as 4,4′-diaminoazobenzene or diaminotran; 2-(2,4-diaminophenoxy)ethyl methacrylate or 2,4-diamino-N , N-diallylaniline and other photopolymerizable group-terminated diamines; 1-(4-(2-(2,4-diaminophenoxy)ethoxy)phenyl)-2-hydroxy-2-methylpropanone, 2- Diamines with a radical polymerization initiator function such as (4-(2-hydroxy-2-methylpropanoyl)phenoxy)ethyl-3,5-diaminobenzoate; Diamines with an amide bond such as 4,4′-diaminobenzanilide , 1,3-bis(4-aminophenyl)urea, 1,3-bis(4-aminobenzyl)urea, 1,3-bis(4-aminophenethyl)urea, diamines having a urea bond; '-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 1,4-bis(4-aminophenoxy)benzene, 1,3-bis(4-aminophenoxy)benzene, 2,2 '-bis[4-(4-aminophenoxy)phenyl]propane, 2,2'-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane, 2,2'-bis(4-aminophenyl)hexa Fluoropropane, 2,2'-bis(3-aminophenyl)hexafluoropropane, 2,2'-bis(3-amino-4-methylphenyl)hexafluoropropane, 2,2'-bis(4-aminophenyl ) propane, 2,2′-bis(3-aminophenyl)propane, 2,2′-bis(3-amino-4-methylphenyl)propane, 4,4′-diaminobenzophenone, 1,4-bis(4 -aminophenyl)benzene, 1,3-bis(4-aminophenyl)benzene, 1,4-bis(4-aminobenzyl)benzene; 2,6-diaminopyridine, 3,4-diaminopyridine, 2,4- Diaminopyrimidine, 3,6-diaminocarbazole, N-methyl-3,6-diaminocarbazole, 1,4-bis-(4-aminophenyl)-pipe Radin, 3,6-diaminoacridine, N-ethyl-3,6-diaminocarbazole, N-phenyl-3,6-diaminocarbazole, N-(3-(1H-imidazol-1-yl)propyl-3,5 -Diaminobenzamide, 4-[4-[(4-aminophenoxy)methyl]-4,5-dihydro-4-methyl-2-oxazolyl]-benzenamine, or the following formulas (z-1) to (z- 13), or heterocycle-containing diamines such as diamines represented by benzidine, N,N'-bis(4-aminophenyl)-N,N'-dimethylbenzidine, or N,N'-bis(4-aminophenyl)-N,N'-dimethyl-1,4-benzene At least one nitrogen atom-containing structure (hereinafter referred to as a specific nitrogen atom Also called inclusion structure. ) (provided that the molecule does not have an amino group bonded with a protective group that is eliminated by heating and replaced with a hydrogen atom.); 2,4-diaminophenol, 3,5-diaminophenol, 3,5- diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol, 4,6-diaminoresorcinol, 4,4'-diamino-3,3'-dihydroxybiphenyl; 2,4-diaminobenzoic acid, 2,5-diaminobenzoic acid, 3,5-diaminobenzoic acid, 4,4'-diaminobiphenyl-3-carboxylic acid, 4,4'-diaminodiphenylmethane-3-carboxylic acid, 4,4'-diaminodiphenylethane-3-carboxylic acid, 4, 4'-diaminobiphenyl-3,3'-dicarboxylic acid, 4,4'-diaminobiphenyl-2,2'-dicarboxylic acid, 3,3'-diaminobiphenyl-4,4'-dicarboxylic acid, 3,3'-diaminobiphenyl-2,4'-dicarboxylic acid, 4,4'-diaminodiphenylmethane-3,3'-dicarboxylic acid, 4,4'-diaminodiphenylethane-3,3'-dicarboxylic acid, 4,4'- Diamines having a carboxyl group such as diaminodiphenyl ether-3,3′-dicarboxylic acid; 4-(2-(methylamino)ethyl)aniline, 4-(2-aminoethyl)aniline, 1-(4-aminophenyl)- 1,3,3-trimethyl-1H-indan-5-amine, 1-(4-aminophenyl)-2,3-dihydro-1,3,3-trimethyl-1H-indene-6-amine; 5-1) to (5-6) groups such as "-N(D)-" (D represents a protecting group that is eliminated by heating and replaced by a hydrogen atom, preferably a carbamate-based protecting group, more preferably a tert -butoxycarbonyl group), cholestanyloxy-3,5-diaminobenzene, cholestanyloxy-3,5-diaminobenzene, cholestanyloxy-2,4-diaminobenzene, 3,5-diamino Diamines having a steroid skeleton such as cholestanyl benzoate, cholestenyl 3,5-diaminobenzoate, lanostanyl 3,5-diaminobenzoate and 3,6-bis(4-aminobenzoyloxy)cholestane, the following formula (V-1) Diamine represented by ~ (V-2); diamine having a siloxane bond such as 1,3-bis(3-aminopropyl)-tetramethyldisiloxane; meta-xylylenediamine, 1,3-propanediamine, Tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, 1,3-bis(aminomethyl)cyclohexane, 1,4-diaminocyclohexane, 4,4'-methylenebis(cyclohexylamine), described in WO 2018/117239 diamines in which two amino groups are bonded to a group represented by any one of the formulas (Y-1) to (Y-167);
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
(Bocは、tert-ブトキシカルボニル基を表す。)
Figure JPOXMLDOC01-appb-C000010
(Boc represents a tert-butoxycarbonyl group.)
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
 上記式(V-1)中、m、nは1~3の整数であり、1≦m+n≦4を満たす。jは0又は1の整数である。Xは、-(CH-(aは1~15の整数である。)、-CONH-、-NHCO-、-CO-N(CH)-、-NH-、-O-、-CHO-、-CH-OCO-、-COO-、又は-OCO-を表す。Rは、フッ素原子、炭素数1~10のフッ素原子含有アルキル基、炭素数1~10のフッ素原子含有アルコキシ基、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、及び炭素数2~10のアルコキシアルキル基などの1価の基を表す。上記式(V-2)中、Xは-O-、-CHO-、-CH-OCO-、-COO-、又は-OCO-を表す。m、n、X、Rが2つ存在する場合、それぞれ独立して上記定義を有する。
Figure JPOXMLDOC01-appb-C000013
In the above formula (V-1), m and n are integers from 1 to 3 and satisfy 1≦m+n≦4. j is an integer of 0 or 1; X 1 is -(CH 2 ) a - (a is an integer of 1 to 15), -CONH-, -NHCO-, -CO-N(CH 3 )-, -NH-, -O-, represents -CH 2 O-, -CH 2 -OCO-, -COO- or -OCO-; R 1 is a fluorine atom, a fluorine atom-containing alkyl group having 1 to 10 carbon atoms, a fluorine atom-containing alkoxy group having 1 to 10 carbon atoms, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and It represents a monovalent group such as an alkoxyalkyl group having 2 to 10 carbon atoms. In formula (V-2) above, X 2 represents -O-, -CH 2 O-, -CH 2 -OCO-, -COO- or -OCO-. When two of m, n, X 1 and R 1 are present, each independently has the above definition.
 上記ジアミン(0)に加えてその他のジアミンを使用する場合、上記その他のジアミンの使用量は、使用される全ジアミン成分に対して、好ましくは10~90モル%であり、より好ましくは20~80モル%である。
 上記その他のジアミンの使用量は、重合体(P)の製造に使用される全ジアミン成分に対して、好ましくは10~90モル%であり、より好ましくは20~80モル%である。
When other diamines are used in addition to the diamine (0), the amount of the other diamines used is preferably 10 to 90 mol%, more preferably 20 to 90 mol%, based on the total diamine components used. 80 mol %.
The amount of the other diamine used is preferably 10 to 90 mol %, more preferably 20 to 80 mol %, based on the total diamine components used in the production of the polymer (P).
(テトラカルボン酸成分)
 上記ポリアミック酸(P’)を製造する場合、ジアミン成分と反応させるテトラカルボン酸成分は、テトラカルボン酸二無水物だけでなく、テトラカルボン酸、テトラカルボン酸ジハライド、テトラカルボン酸ジアルキルエステル、又はテトラカルボン酸ジアルキルエステルジハライドなどのテトラカルボン酸二無水物の誘導体を用いることもできる。
(Tetracarboxylic acid component)
When producing the polyamic acid (P'), the tetracarboxylic acid component to be reacted with the diamine component is not only tetracarboxylic dianhydride, but also tetracarboxylic acid, tetracarboxylic acid dihalide, tetracarboxylic acid dialkyl ester, or tetracarboxylic acid. Derivatives of tetracarboxylic dianhydrides such as carboxylic acid dialkyl ester dihalides can also be used.
 上記テトラカルボン酸二無水物又はその誘導体は、非環式脂肪族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、芳香族テトラカルボン酸二無水物、又はこれらの誘導体が挙げられる。なかでも、ベンゼン環、シクロブタン環、シクロペンタン環及びシクロヘキサン環よりなる群から選ばれる少なくとも一種の部分構造を有するテトラカルボン酸二無水物又はこれらの誘導体を含むことがより好ましい。特に、シクロブタン環、シクロペンタン環及びシクロヘキサン環よりなる群から選ばれる少なくとも一種の構造を有するテトラカルボン酸二無水物又はこれらの誘導体を含むことが更に好ましい。
 なお、芳香族テトラカルボン酸二無水物は、芳香環に結合する少なくとも1つのカルボキシ基を含めて4つのカルボキシ基が分子内脱水することにより得られる酸二無水物である。
 非環式脂肪族テトラカルボン酸二無水物は、鎖状炭化水素構造に結合する4つのカルボキシ基が分子内脱水することにより得られる酸二無水物である。但し、鎖状炭化水素構造のみで構成されている必要はなく、その一部に脂環式構造や芳香環構造を有していてもよい。
 脂環式テトラカルボン酸二無水物は、脂環式構造に結合する少なくとも1つのカルボキシ基を含めて4つのカルボキシ基が分子内脱水することにより得られる酸二無水物である。但し、これら4つのカルボキシ基はいずれも芳香環には結合していない。また、脂環式構造のみで構成されている必要はなく、その一部に鎖状炭化水素構造や芳香環構造を有していてもよい。
The tetracarboxylic dianhydride or derivative thereof includes an acyclic aliphatic tetracarboxylic dianhydride, an alicyclic tetracarboxylic dianhydride, an aromatic tetracarboxylic dianhydride, or derivatives thereof. . Among them, it is more preferable to contain a tetracarboxylic dianhydride having at least one partial structure selected from the group consisting of a benzene ring, a cyclobutane ring, a cyclopentane ring and a cyclohexane ring, or a derivative thereof. In particular, it is more preferable to contain a tetracarboxylic dianhydride having at least one structure selected from the group consisting of a cyclobutane ring, a cyclopentane ring and a cyclohexane ring, or a derivative thereof.
The aromatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups including at least one carboxy group bonded to an aromatic ring.
An acyclic aliphatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups bonded to a chain hydrocarbon structure. However, it does not need to be composed only of a chain hydrocarbon structure, and may partially have an alicyclic structure or an aromatic ring structure.
An alicyclic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups including at least one carboxy group bonded to an alicyclic structure. However, none of these four carboxy groups are bonded to the aromatic ring. Moreover, it is not necessary to consist only of an alicyclic structure, and a part thereof may have a chain hydrocarbon structure or an aromatic ring structure.
 上記ポリアミック酸(P’)の製造に用いることのできるテトラカルボン酸成分としては、好ましくは、以下のテトラカルボン酸二無水物又はその誘導体(本発明では、これらを総称して特定のテトラカルボン酸誘導体ともいう。)を含む。
 1,2,3,4-ブタンテトラカルボン酸二無水物等の非環式脂肪族テトラカルボン酸二無水物;1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジクロロ-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジフルオロ-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ビス(トリフルオロメチル)-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、3,3’,4,4’-ジシクロヘキシルテトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)テトラヒドロナフタレン-1,2-ジカルボン酸二無水物、5-(2,5-ジオキソテトラヒドロフラン-3-イル)-3a,4,5,9b-テトラヒドロナフト[1,2-c]フラン-1,3-ジオン、5-(2,5-ジオキソテトラヒドロフラン-3-イル)-8-メチル-3a,4,5,9b-テトラヒドロナフト[1,2-c]フラン-1,3-ジオン、ビシクロ[2.2.2]オクタ-7-エン-2,3,5,6-テトラカルボン酸二無水物、ビシクロ[2.2.2]オクタン-2,3,5,6-テトラカルボン酸二無水物、2,4,6,8-テトラカルボキシビシクロ[3.3.0]オクタン-2:4,6:8-二無水物等の脂環式テトラカルボン酸二無水物;ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルスルホンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’-パーフルオロイソプロピリデンジフタル酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルプロパン二無水物、エチレングリコールビスアンヒドロトリメート、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、4,4’-カルボニルジフタル酸無水物、4,4’-オキシジ(1,4-フェニレン)ビス(フタル酸)二無水物、又は4,4’-メチレンジ(1,4-フェニレン)ビス(フタル酸)二無水物等の芳香族テトラカルボン酸二無水物;そのほか、特開2010-97188号公報に記載のテトラカルボン酸二無水物等。
The tetracarboxylic acid component that can be used in the production of the polyamic acid (P′) preferably includes the following tetracarboxylic dianhydrides or derivatives thereof (in the present invention, these are collectively referred to as specific tetracarboxylic acids Also called derivatives.).
Acyclic aliphatic tetracarboxylic dianhydrides such as 1,2,3,4-butanetetracarboxylic dianhydride; 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2-dimethyl -1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-dichloro-1,2,3 ,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-difluoro-1,2,3, 4-cyclobutanetetracarboxylic dianhydride, 1,3-bis(trifluoromethyl)-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic acid dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 3,3′,4,4′-dicyclohexyltetracarboxylic dianhydride, 2,3,5-tricarboxycyclopentylacetic dianhydride product, 4-(2,5-dioxotetrahydrofuran-3-yl)tetrahydronaphthalene-1,2-dicarboxylic dianhydride, 5-(2,5-dioxotetrahydrofuran-3-yl)-3a, 4, 5,9b-tetrahydronaphtho[1,2-c]furan-1,3-dione, 5-(2,5-dioxotetrahydrofuran-3-yl)-8-methyl-3a,4,5,9b-tetrahydro naphtho[1,2-c]furan-1,3-dione, bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, bicyclo[2.2 .2]octane-2,3,5,6-tetracarboxylic dianhydride, 2,4,6,8-tetracarboxybicyclo[3.3.0]octane-2:4,6:8-dianhydride alicyclic tetracarboxylic dianhydrides such as products; pyromellitic dianhydride, 3,3′,4,4′-benzophenonetetracarboxylic dianhydride, 3,3′,4,4′-biphenylsulfone Tetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 3,3',4,4'-biphenyl ethertetracarboxylic dianhydride, 3,3′,4,4′-perfluoroisopropylidene diphthalic dianhydride, 3,3′,4,4′-biphenyltetracarboxylic dianhydride, 2,2 ',3,3'-biphenyltetracarboxylic dianhydride, 4,4'-bi Su(3,4-dicarboxyphenoxy)diphenylpropane dianhydride, ethylene glycol bisanhydrotrimate, 4,4'-(hexafluoroisopropylidene)diphthalic anhydride, 4,4'-carbonyldiphthalic anhydride 4,4′-oxydi(1,4-phenylene)bis(phthalic acid) dianhydride, or 4,4′-methylenedi(1,4-phenylene)bis(phthalic acid) dianhydride, etc. tetracarboxylic dianhydrides; other tetracarboxylic dianhydrides described in JP-A-2010-97188.
 上記特定のテトラカルボン酸誘導体の好ましい例としては、1,2,3,4-ブタンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジフルオロ-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ビス(トリフルオロメチル)-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、3,3’,4,4’-ジシクロヘキシルテトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、5-(2,5-ジオキソテトラヒドロフラン-3-イル)-3a,4,5,9b-テトラヒドロナフト[1,2-c]フラン-1,3-ジオン、5-(2,5-ジオキソテトラヒドロフラン-3-イル)-8-メチル-3a,4,5,9b-テトラヒドロナフト[1,2-c]フラン-1,3-ジオン、2,4,6,8-テトラカルボキシビシクロ[3.3.0]オクタン-2:4,6:8-二無水物、ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルスルホンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、又はこれらの誘導体である。 Preferred examples of the above specific tetracarboxylic acid derivatives include 1,2,3,4-butanetetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2-dimethyl -1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-tetramethyl- 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-difluoro-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-bis(trifluoromethyl)-1 , 2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 3, 3′,4,4′-dicyclohexyltetracarboxylic dianhydride, 2,3,5-tricarboxycyclopentylacetic dianhydride, 5-(2,5-dioxotetrahydrofuran-3-yl)-3a,4, 5,9b-tetrahydronaphtho[1,2-c]furan-1,3-dione, 5-(2,5-dioxotetrahydrofuran-3-yl)-8-methyl-3a,4,5,9b-tetrahydro naphtho[1,2-c]furan-1,3-dione, 2,4,6,8-tetracarboxybicyclo[3.3.0]octane-2:4,6:8-dianhydride, pyromellit acid dianhydride, 3,3′,4,4′-benzophenonetetracarboxylic dianhydride, 3,3′,4,4′-biphenylsulfonetetracarboxylic dianhydride, 1,4,5,8- naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 3,3′,4,4′-biphenyl ether tetracarboxylic dianhydride, 3,3′,4, 4′-biphenyltetracarboxylic dianhydride, 2,2′,3,3′-biphenyltetracarboxylic dianhydride, or derivatives thereof.
 上記特定のテトラカルボン酸誘導体の使用割合は、使用される全テトラカルボン酸成分に対して、10モル%以上が好ましく、20モル%以上がより好ましく、50モル%以上がさらに好ましい。 The proportion of the above-mentioned specific tetracarboxylic acid derivative used is preferably 10 mol% or more, more preferably 20 mol% or more, and even more preferably 50 mol% or more, relative to the total tetracarboxylic acid components used.
(液晶配向剤)
 本発明の液晶配向剤は、例えば、重合体(P)、及び必要に応じて使用されるその他の成分が、好ましくは適当な溶媒中に分散又は溶解してなる液状の組成物である。
 本発明の液晶配向剤に含まれる重合体の合計含有量は、形成させようとする塗膜の厚みの設定によっても適宜変更できるが、均一で欠陥のない塗膜を形成させるという点から1質量%以上が好ましく、溶液の保存安定性の点からは、10質量%以下が好ましい。特に好ましい重合体の合計含有量は、2~8質量%である。
 本発明に用いられる重合体(P)の含有量は、液晶配向剤に含有される重合体の合計に対し、1~100質量%が好ましく、10~100質量%がより好ましく、20~100質量%が特に好ましい。
(Liquid crystal aligning agent)
The liquid crystal aligning agent of the present invention is, for example, a liquid composition in which the polymer (P) and optionally other components are preferably dispersed or dissolved in a suitable solvent.
The total content of the polymer contained in the liquid crystal aligning agent of the present invention can be appropriately changed depending on the setting of the thickness of the coating film to be formed. % or more is preferable, and 10% by mass or less is preferable from the viewpoint of storage stability of the solution. A particularly preferred total polymer content is 2 to 8% by weight.
The content of the polymer (P) used in the present invention is preferably 1 to 100% by mass, more preferably 10 to 100% by mass, and 20 to 100% by mass with respect to the total amount of the polymer contained in the liquid crystal aligning agent. % is particularly preferred.
 本発明の液晶配向剤は、重合体(P)以外のその他の重合体を含有してもよい。その他の重合体の具体例を挙げると、上記重合体(P)に加えて、上記特定ジアミンを有しないジアミン成分を用いて得られるポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体(本発明では重合体(B)ともいう。)、ポリシロキサン、ポリエステル、ポリアミド、ポリウレア、ポリオルガノシロキサン、セルロース誘導体、ポリアセタール、ポリスチレン誘導体、ポリ(スチレン-マレイン酸無水物)共重合体、ポリ(イソブチレン-マレイン酸無水物)共重合体、ポリ(ビニルエーテル-マレイン酸無水物)共重合体、ポリ(スチレン-フェニルマレイミド)誘導体、ポリ(メタ)アクリレートからなる群から選ばれる重合体などが挙げられる。 The liquid crystal aligning agent of the present invention may contain polymers other than the polymer (P). Specific examples of other polymers include, in addition to the polymer (P), a polyimide precursor obtained using a diamine component that does not have the specific diamine and a polyimide that is an imidized product of the polyimide precursor. At least one polymer selected from the group (also referred to as polymer (B) in the present invention), polysiloxane, polyester, polyamide, polyurea, polyorganosiloxane, cellulose derivative, polyacetal, polystyrene derivative, poly(styrene-malein acid anhydride) copolymer, poly(isobutylene-maleic anhydride) copolymer, poly(vinyl ether-maleic anhydride) copolymer, poly(styrene-phenylmaleimide) derivative, poly(meth)acrylate and polymers selected from the group.
 ポリ(スチレン-マレイン酸無水物)共重合体の具体例としては、SMA1000、SMA2000、SMA3000(Cray Valley社製)、GSM301(岐阜セラツク製造所社製)などが挙げられ、ポリ(イソブチレン-マレイン酸無水物)共重合体の具体例としては、イソバン-600(クラレ社製)が挙げられる。ポリ(ビニルエーテル-マレイン酸無水物)共重合体の具体例としては、Gantrez AN-139(メチルビニルエーテル無水マレイン酸樹脂、アシュランド社製)が挙げられる。
 なかでも、残留DC由来の残像を少なくする点から、重合体(B)がより好ましい。
 上記その他の重合体は、一種を単独で使用してもよく、また二種以上を組み合わせて使用してもよい。その他の重合体の含有割合は、液晶配向剤中に含まれる重合体の合計100質量部に対して、90質量部以下が好ましく、10~90質量部がより好ましく、20~80質量部が更に好ましい。
Specific examples of the poly(styrene-maleic anhydride) copolymer include SMA1000, SMA2000, SMA3000 (manufactured by Cray Valley), GSM301 (manufactured by Gifu Shellac Manufacturing Co., Ltd.) and the like. Anhydride) copolymers include Isoban-600 (manufactured by Kuraray Co., Ltd.). A specific example of the poly(vinyl ether-maleic anhydride) copolymer is Gantrez AN-139 (methyl vinyl ether maleic anhydride resin, manufactured by Ashland).
Among them, the polymer (B) is more preferable from the viewpoint of reducing afterimages derived from residual DC.
These other polymers may be used singly or in combination of two or more. The content of the other polymer is preferably 90 parts by mass or less, more preferably 10 to 90 parts by mass, and further 20 to 80 parts by mass with respect to the total 100 parts by mass of the polymer contained in the liquid crystal aligning agent. preferable.
(重合体(B))
 上記重合体(B)の製造に用いられるテトラカルボン酸成分の具体例は、好ましい具体例を含めて、重合体(P)で例示した化合物と同様の化合物が挙げられる。重合体(B)の製造に用いられるテトラカルボン酸成分は、より好ましくは、ベンゼン環、シクロブタン環、シクロペンタン環及びシクロヘキサン環よりなる群から選ばれる少なくとも一種の部分構造を有するテトラカルボン酸二無水物又はこれらの誘導体を含むことがより好ましく、上記特定のテトラカルボン酸誘導体がさらに好ましく、上記特定のテトラカルボン酸誘導体のより好ましい具体例を用いることが最も好ましい。
 また、上記特定のテトラカルボン酸誘導体の使用量は、重合体(B)の製造に使用される全テトラカルボン酸成分に対して、10モル%以上が好ましく、20モル%以上がより好ましく、50モル%以上がさらに好ましい。
(Polymer (B))
Specific examples of the tetracarboxylic acid component used in the production of the polymer (B) include the same compounds as those exemplified for the polymer (P), including preferred specific examples. The tetracarboxylic acid component used for producing the polymer (B) is more preferably a tetracarboxylic dianhydride having at least one partial structure selected from the group consisting of a benzene ring, a cyclobutane ring, a cyclopentane ring and a cyclohexane ring. or derivatives thereof, more preferably the above-mentioned specific tetracarboxylic acid derivative, and most preferably using more preferred specific examples of the above-mentioned specific tetracarboxylic acid derivative.
The amount of the specific tetracarboxylic acid derivative used is preferably 10 mol % or more, more preferably 20 mol % or more, more preferably 50 mol % or more, relative to the total tetracarboxylic acid component used in the production of the polymer (B). More preferably mol% or more.
 重合体(B)を得るためのジアミン成分としては、例えば、上記重合体(P)で例示したジアミンが挙げられる。中でも、分子内にウレア結合、アミド結合、カルボキシ基及びヒドロキシ基からなる群から選ばれる少なくとも1種の基を有するジアミン、上記式(dAL-1)~(dAL-10)で表されるジアミン及び、上記特定の窒素原子含有構造を有するジアミンからなる群から選ばれる少なくとも1種のジアミン(本発明では、これらを特定ジアミン(b)ともいう。)を含むことが好ましい。前記ジアミン成分は、一種のジアミンを単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 上記特定ジアミン(b)を用いる場合、その使用量は、重合体(B)の製造に用いられる全ジアミン成分の10モル%以上が好ましく、20モル%以上がより好ましい。特定ジアミン(b)以外のジアミンを用いる場合、その使用量は、重合体(B)の製造に用いられる全ジアミン成分の90モル%以下が好ましく、80モル%以下がより好ましい。
Examples of the diamine component for obtaining the polymer (B) include the diamines exemplified for the polymer (P) above. Among them, diamines having at least one group selected from the group consisting of a urea bond, an amide bond, a carboxy group and a hydroxy group in the molecule, represented by the above formulas (d AL -1) to (d AL -10) It preferably contains at least one diamine selected from the group consisting of diamines and diamines having a specific nitrogen atom-containing structure (in the present invention, these are also referred to as specific diamines (b)). As the diamine component, one type of diamine may be used alone, or two or more types may be used in combination.
When the specific diamine (b) is used, the amount used is preferably 10 mol % or more, more preferably 20 mol % or more, of the total diamine component used in the production of the polymer (B). When using a diamine other than the specific diamine (b), the amount used is preferably 90 mol % or less, more preferably 80 mol % or less, of the total diamine component used in the production of the polymer (B).
(ポリアミック酸の製造)
 ポリアミック酸の製造は、ジアミン成分とテトラカルボン酸成分とを有機溶媒中で反応させることにより行われる。ポリアミック酸の製造反応に供されるテトラカルボン酸成分とジアミン成分との使用割合は、ジアミン成分のアミノ基1当量に対して、テトラカルボン酸成分の酸無水物基が0.5~2当量となる割合が好ましく、さらに好ましくは0.8~1.2当量である。通常の重縮合反応と同様に、このテトラカルボン酸成分の酸無水物基の当量が1当量に近いほど、生成するポリアミック酸の分子量は大きくなる。
 ポリアミック酸の製造における反応温度は-20~150℃が好ましく、0~100℃がより好ましい。また、反応時間は0.1~24時間が好ましく、0.5~12時間がより好ましい。ポリアミック酸の製造は任意の濃度で行うことができるがポリアミック酸の濃度は好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、溶媒を追加することもできる。
(Production of polyamic acid)
A polyamic acid is produced by reacting a diamine component and a tetracarboxylic acid component in an organic solvent. The ratio of the tetracarboxylic acid component and the diamine component used in the polyamic acid production reaction is 0.5 to 2 equivalents of the acid anhydride group of the tetracarboxylic acid component per 1 equivalent of the amino group of the diamine component. is preferably 0.8 to 1.2 equivalents. As in ordinary polycondensation reactions, the closer the equivalent of the acid anhydride group of the tetracarboxylic acid component is to 1 equivalent, the greater the molecular weight of the resulting polyamic acid.
The reaction temperature in the production of polyamic acid is preferably -20 to 150°C, more preferably 0 to 100°C. Also, the reaction time is preferably 0.1 to 24 hours, more preferably 0.5 to 12 hours. Polyamic acid can be produced at any concentration, but the concentration of polyamic acid is preferably 1 to 50% by mass, more preferably 5 to 30% by mass. The initial stage of the reaction can be carried out at a high concentration, and then the solvent can be added.
 上記有機溶媒の具体例としては、シクロヘキサノン、シクロペンタノン、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、1,3-ジメチル-2-イミダゾリジノンが挙げられる。また、重合体の溶媒溶解性が高い場合は、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、ジエチレングリコールモノメチルエーテル、又はジエチレングリコールモノエチルエーテルなどの溶媒を用いることができる。 Specific examples of the organic solvent include cyclohexanone, cyclopentanone, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, γ-butyrolactone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethyl sulfoxide, 1,3-dimethyl-2-imidazolidinone. In addition, when the solvent solubility of the polymer is high, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, propylene glycol monomethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene Solvents such as glycol monopropyl ether, diethylene glycol monomethyl ether, or diethylene glycol monoethyl ether can be used.
(ポリアミック酸エスエルの製造)
 ポリアミック酸エステルは、例えば、[I]上記の方法で得られたポリアミック酸とエステル化剤とを反応させる方法、[II]テトラカルボン酸ジエステルとジアミンとを反応させる方法、[III]テトラカルボン酸ジエステルジハロゲン化物とジアミンとを反応させる方法、などの既知の方法によって得ることができる。
(Production of Polyamic Acid Ester)
Polyamic acid esters are produced by, for example, [I] a method of reacting the polyamic acid obtained by the above method with an esterifying agent, [II] a method of reacting a tetracarboxylic acid diester with a diamine, [III] a tetracarboxylic acid It can be obtained by a known method such as a method of reacting a diester dihalide and a diamine.
(ポリイミドの製造)
 ポリイミドは、上記ポリアミック酸又はポリアミック酸エステルなどのポリイミド前駆体を閉環(イミド化)させることによりポリイミドを得ることができる。なお、本明細書でいうイミド化率とは、テトラカルボン酸二無水物又はその誘導体由来のイミド基とカルボキシ基(又はその誘導体)との合計量に占めるイミド基の割合のことである。イミド化率は、必ずしも100%である必要はなく、用途や目的に応じて任意に調整できる。
(Manufacturing of polyimide)
A polyimide can be obtained by ring-closing (imidizing) a polyimide precursor such as the above polyamic acid or polyamic acid ester. The imidization ratio as used herein means the ratio of imide groups to the total amount of imide groups derived from tetracarboxylic dianhydride or derivatives thereof and carboxy groups (or derivatives thereof). The imidization rate does not necessarily have to be 100%, and can be arbitrarily adjusted according to the application and purpose.
 ポリイミド前駆体をイミド化させる方法としては、ポリイミド前駆体の溶液をそのまま加熱する熱イミド化又はポリイミド前駆体の溶液に触媒を添加する触媒イミド化が挙げられる。
 ポリイミド前駆体を溶液中で熱イミド化させる場合の温度は、好ましくは100~400℃であり、より好ましくは120~250℃であり、イミド化反応により生成する水を系外に除きながら行う方が好ましい。
Examples of the method for imidizing the polyimide precursor include thermal imidization in which the solution of the polyimide precursor is heated as it is, and catalytic imidization in which a catalyst is added to the solution of the polyimide precursor.
When the polyimide precursor is thermally imidized in the solution, the temperature is preferably 100 to 400° C., more preferably 120 to 250° C., and water generated by the imidization reaction is removed from the system. is preferred.
 ポリイミド前駆体の触媒イミド化は、ポリイミド前駆体の溶液に、塩基性触媒と酸無水物とを添加し、-20~250℃、好ましくは0~180℃で撹拌することにより行うことができる。塩基性触媒の量はアミック酸基の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量はアミック酸基の1~50モル倍、好ましくは3~30モル倍である。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン又はトリオクチルアミンなどを挙げることができ、なかでも、ピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。酸無水物としては、無水酢酸、無水トリメリット酸又は無水ピロメリット酸などを挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより制御することができる。 The catalytic imidization of the polyimide precursor can be carried out by adding a basic catalyst and an acid anhydride to the solution of the polyimide precursor and stirring at -20 to 250°C, preferably 0 to 180°C. The amount of the basic catalyst is 0.5 to 30 times the molar amount of the amic acid group, preferably 2 to 20 times the molar amount, and the amount of the acid anhydride is 1 to 50 times the molar amount of the amic acid group, preferably 3 to 30 times the molar amount. Double. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine, etc. Among them, pyridine is preferable because it has appropriate basicity for advancing the reaction. Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, and pyromellitic anhydride. Among them, acetic anhydride is preferably used because it facilitates purification after the reaction is completed. The imidization rate by catalytic imidization can be controlled by adjusting the catalyst amount, reaction temperature, and reaction time.
 ポリイミド前駆体又はポリイミドの反応溶液から、生成したポリイミド前駆体又はポリイミドを回収する場合には、反応溶液を溶媒に投入して沈殿させればよい。沈殿に用いる溶媒としてはメタノール、エタノール、イソプロピルアルコール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、トルエン、ベンゼン、水などを挙げることができる。溶媒に投入して沈殿させた重合体は濾過して回収した後、常圧又は減圧下で、常温又は加熱して乾燥することができる。また、回収した重合体を、有機溶媒に再溶解させ、再沈殿回収する操作を2~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の溶媒として、例えば、アルコール、ケトン又は炭化水素などが挙げられ、これらのうちから選ばれる3種類以上の溶媒を用いると、より一層精製の効率が上がるので好ましい。 When recovering the generated polyimide precursor or polyimide from the polyimide precursor or polyimide reaction solution, the reaction solution may be put into a solvent to precipitate. Solvents used for precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, and water. The polymer precipitated by adding it to the solvent can be filtered and recovered, and then dried at room temperature or under heat under normal pressure or reduced pressure. In addition, the impurities in the polymer can be reduced by repeating the operation of redissolving the recovered polymer in an organic solvent and recovering it by reprecipitation 2 to 10 times. Solvents in this case include, for example, alcohols, ketones, hydrocarbons, and the like, and it is preferable to use three or more solvents selected from these, because the efficiency of purification is further increased.
 本発明におけるポリイミド前駆体やポリイミドを製造するに際して、テトラカルボン酸二無水物又はその誘導体を含むテトラカルボン酸成分、及び上記ジアミンを含むジアミン成分とともに、適当な末端封止剤を用いて末端封止型の重合体を製造してもよい。末端封止型の重合体は、塗膜によって得られる配向膜の膜硬度の向上や、シール剤と配向膜の密着特性の向上という効果を有する。
 本発明におけるポリイミド前駆体やポリイミドの末端の例としては、アミノ基、カルボキシ基、酸無水物基又は後述する末端封止剤に由来する基が挙げられる。アミノ基、カルボキシ基、酸無水物基は通常の縮合反応により得るか、又は以下の末端封止剤を用いて末端を封止することにより得ることができる。
When producing a polyimide precursor or polyimide in the present invention, a tetracarboxylic acid component containing a tetracarboxylic acid dianhydride or a derivative thereof, and a diamine component containing the diamine, together with an appropriate terminal blocker to end block A polymer of the type may be produced. The end-blocking polymer has the effect of improving the film hardness of the alignment film obtained by coating and improving the adhesion properties between the sealant and the alignment film.
Examples of the terminal of the polyimide precursor or polyimide in the present invention include an amino group, a carboxyl group, an acid anhydride group, or a group derived from a terminal blocking agent to be described later. An amino group, a carboxyl group, and an acid anhydride group can be obtained by a normal condensation reaction, or can be obtained by terminal blocking using the following terminal blocking agents.
 末端封止剤としては、例えば、無水酢酸、無水マレイン酸、無水ナジック酸、無水フタル酸、無水イタコン酸、シクロヘキサンジカルボン酸無水物、3-ヒドロキシフタル酸無水物、トリメリット酸無水物、3-(3-トリメトキシシリル)プロピル)-3,4-ジヒドロフラン-2,5-ジオン、4,5,6,7-テトラフルオロイソベンゾフラン-1,3-ジオン、4-エチニルフタル酸無水物などの酸無水物;二炭酸ジ-tert-ブチル、二炭酸ジアリルなどの二炭酸ジエステル化合物;アクリロイルクロリド、メタクリロイルクロリド、ニコチン酸クロリドなどのクロロカルボニル化合物;アニリン、2-アミノフェノール、3-アミノフェノール、4-アミノサリチル酸、5-アミノサリチル酸、6-アミノサリチル酸、2-アミノ安息香酸、3-アミノ安息香酸、4-アミノ安息香酸、シクロヘキシルアミン、n-ブチルアミン、n-ペンチルアミン、n-ヘキシルアミン、n-ヘプチルアミン、n-オクチルアミンなどのモノアミン化合物;エチルイソシアネート、フェニルイソシアネート、ナフチルイソシアネート、又は、2-アクリロイルオキシエチルイソシアネ-ト、2-メタクリロイルオキシエチルイソシアネ-トなどの不飽和結合を有するイソシアネートなどを挙げることができる。
 末端封止剤の使用割合は、使用するジアミン成分の合計100モル部に対して、0.01~20モル部とすることが好ましく、0.01~10モル部とすることがより好ましい。
Terminal blockers include, for example, acetic anhydride, maleic anhydride, nadic anhydride, phthalic anhydride, itaconic anhydride, cyclohexanedicarboxylic anhydride, 3-hydroxyphthalic anhydride, trimellitic anhydride, 3- (3-trimethoxysilyl)propyl)-3,4-dihydrofuran-2,5-dione, 4,5,6,7-tetrafluoroisobenzofuran-1,3-dione, 4-ethynylphthalic anhydride, etc. acid anhydrides; dicarbonic acid diester compounds such as di-tert-butyl dicarbonate and diallyl dicarbonate; acryloyl chloride, methacryloyl chloride, chlorocarbonyl compounds such as nicotinic acid chloride; aniline, 2-aminophenol, 3-aminophenol, 4-aminosalicylic acid, 5-aminosalicylic acid, 6-aminosalicylic acid, 2-aminobenzoic acid, 3-aminobenzoic acid, 4-aminobenzoic acid, cyclohexylamine, n-butylamine, n-pentylamine, n-hexylamine, Monoamine compounds such as n-heptylamine and n-octylamine; isocyanate having.
The proportion of the terminal blocker used is preferably 0.01 to 20 mol parts, more preferably 0.01 to 10 mol parts, per 100 mol parts of the total diamine component used.
 ポリイミド前駆体及びポリイミドのゲルパーミエーションクロマトグラフィー(GPC)により測定したポリスチレン換算の重量平均分子量(Mw)は、好ましくは1,000~500,000であり、より好ましくは2,000~300,000であり、さらに好ましくは10,000~50,000である。また、Mwと、GPCにより測定したポリスチレン換算の数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)は、好ましくは15以下であり、より好ましくは10以下である。かかる分子量範囲にあることで、液晶表示素子の良好な液晶配向性を確保することができる。 The polystyrene equivalent weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of the polyimide precursor and polyimide is preferably 1,000 to 500,000, more preferably 2,000 to 300,000. and more preferably 10,000 to 50,000. In addition, the molecular weight distribution (Mw/Mn) represented by the ratio of Mw to the polystyrene equivalent number average molecular weight (Mn) measured by GPC is preferably 15 or less, more preferably 10 or less. By being in this molecular weight range, it is possible to ensure good liquid crystal orientation of the liquid crystal display element.
 本発明に係る液晶配向剤に含有される有機溶媒は、重合体(P)や必要に応じて添加されるその他の重合体が均一に溶解するものであれば特に限定されない。例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルラクトアミド、N,N-ジメチルプロピオンアミド、テトラメチル尿素、N,N-ジエチルホルムアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン、γ-バレロラクトン、1,3-ジメチル-2-イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、N-(n-プロピル)-2-ピロリドン、N-イソプロピル-2-ピロリドン、N-(n-ブチル)-2-ピロリドン、N-(t-ブチル)-2-ピロリドン、N-(n-ペンチル)-2-ピロリドン、N-メトキシプロピル-2-ピロリドン、N-エトキシエチル-2-ピロリドン、N-メトキシブチル-2-ピロリドン、N-シクロヘキシル-2-ピロリドン(これらを総称して、良溶媒ともいう)などが挙げられる。なかでも、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド又はγ-ブチロラクトンが好ましい。良溶媒の含有量は、液晶配向剤に含まれる溶媒全体の20~99質量%であることが好ましく、20~90質量%がより好ましく、特に好ましいのは、30~80質量%である。 The organic solvent contained in the liquid crystal aligning agent according to the present invention is not particularly limited as long as it uniformly dissolves the polymer (P) and other polymers added as necessary. For example, N,N-dimethylformamide, N,N-dimethylacetamide, N,N-dimethyllactamide, N,N-dimethylpropionamide, tetramethylurea, N,N-diethylformamide, N-methyl-2-pyrrolidone , N-ethyl-2-pyrrolidone, dimethyl sulfoxide, γ-butyrolactone, γ-valerolactone, 1,3-dimethyl-2-imidazolidinone, methyl ethyl ketone, cyclohexanone, cyclopentanone, 3-methoxy-N,N-dimethyl Propanamide, 3-butoxy-N,N-dimethylpropanamide, N-(n-propyl)-2-pyrrolidone, N-isopropyl-2-pyrrolidone, N-(n-butyl)-2-pyrrolidone, N-( t-butyl)-2-pyrrolidone, N-(n-pentyl)-2-pyrrolidone, N-methoxypropyl-2-pyrrolidone, N-ethoxyethyl-2-pyrrolidone, N-methoxybutyl-2-pyrrolidone, N- Cyclohexyl-2-pyrrolidone (collectively referred to as a good solvent) and the like. Among them, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 3-methoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide and γ-butyrolactone are preferred. The content of the good solvent is preferably 20 to 99% by mass, more preferably 20 to 90% by mass, and particularly preferably 30 to 80% by mass of the total solvent contained in the liquid crystal aligning agent.
 また、液晶配向剤に含有される有機溶媒は、上記溶媒に加えて液晶配向剤を塗布する際の塗布性や塗膜の表面平滑性を向上させる溶媒(貧溶媒ともいう。)を併用した混合溶媒の使用が好ましい。貧溶媒の具体例を下記するが、これらに限定されない。貧溶媒の含有量は、液晶配向剤に含まれる溶媒全体の1~80質量%が好ましく、10~80質量%がより好ましく、20~70質量%が特に好ましい。貧溶媒の種類及び含有量は、液晶配向剤の塗布装置、塗布条件、塗布環境などに応じて適宜選択される。 Further, the organic solvent contained in the liquid crystal aligning agent is a mixture of the above solvents and a solvent (also referred to as a poor solvent) that improves the coatability and the surface smoothness of the coating film when applying the liquid crystal aligning agent. The use of solvents is preferred. Specific examples of the poor solvent are given below, but are not limited thereto. The content of the poor solvent is preferably 1 to 80% by mass, more preferably 10 to 80% by mass, particularly preferably 20 to 70% by mass, of the total solvent contained in the liquid crystal aligning agent. The type and content of the poor solvent are appropriately selected according to the liquid crystal aligning agent coating device, coating conditions, coating environment, and the like.
 貧溶媒としては、例えば、ジイソプロピルエーテル、ジイソブチルエーテル、ジイソブチルカルビノール(2,6-ジメチル-4-ヘプタノール)、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、1,2-ブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、エチレングリコールモノブチルエーテル、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、1-(2-ブトキシエトキシ)-2-プロパノール、2-(2-ブトキシエトキシ)-1-プロパノール、プロピレングリコールモノメチルエーテルアセタート、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジメチルエーテル、エチレングリコールモノブチルエーテルアセタート、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、プロピレングリコールジアセテート、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、酢酸シクロヘキシル、酢酸4-メチル-2-ペンチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸エチル、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸n-ブチル、乳酸イソアミル、ジエチレングリコールモノエチルエーテル、ジイソブチルケトン(2,6-ジメチル-4-ヘプタノン)などが挙げられる。 Examples of poor solvents include diisopropyl ether, diisobutyl ether, diisobutyl carbinol (2,6-dimethyl-4-heptanol), ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, 1,2-butoxyethane, and diethylene glycol. dimethyl ether, diethylene glycol diethyl ether, 4-hydroxy-4-methyl-2-pentanone, diethylene glycol methyl ethyl ether, diethylene glycol dibutyl ether, 3-ethoxybutyl acetate, 1-methylpentyl acetate, 2-ethylbutyl acetate, 2- ethylhexyl acetate, ethylene glycol monoacetate, ethylene glycol diacetate, propylene carbonate, ethylene carbonate, ethylene glycol monobutyl ether, ethylene glycol monoisoamyl ether, ethylene glycol monohexyl ether, propylene glycol monomethyl ether, propylene glycol monobutyl ether, 1 -(2-butoxyethoxy)-2-propanol, 2-(2-butoxyethoxy)-1-propanol, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol dimethyl ether, ethylene glycol monobutyl ether acetate, diethylene glycol monopropyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, 2-(2-ethoxyethoxy)ethyl acetate, diethylene glycol acetate, propylene glycol diacetate, n-butyl acetate, Propylene glycol monoethyl ether acetate, cyclohexyl acetate, 4-methyl-2-pentyl acetate, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, propyl 3-methoxypropionate, 3-methoxy Butyl propionate, n-butyl lactate, isoamyl lactate, diethylene glycol monoethyl ether, diisobutyl ketone (2,6-dimethyl-4-heptanone) and the like.
 なかでも、ジイソブチルカルビノール、プロピレングリコールモノブチルエーテル、プロピレングリコールジアセテート、ジエチレングリコールジエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジメチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、エチレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテルアセタート、又はジイソブチルケトンが好ましい。 Among them, diisobutyl carbinol, propylene glycol monobutyl ether, propylene glycol diacetate, diethylene glycol diethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol dimethyl ether, 4-hydroxy-4-methyl-2-pentanone, ethylene glycol monobutyl ether, ethylene Glycol monobutyl ether acetate or diisobutyl ketone are preferred.
 良溶媒と貧溶媒との好ましい溶媒の組み合わせとしては、N-メチル-2-ピロリドンとエチレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとエチレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテル、N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテル、N-エチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノン、N-エチル-2-ピロリドンとプロピレングリコールジアセテート、N,N-ジメチルラクトアミドとジイソブチルケトン、N-メチル-2-ピロリドンと3-エトキシプロピオン酸エチル、N-エチル-2-ピロリドンと3-エトキシプロピオン酸エチル、N-メチル-2-ピロリドンと3-エトキシプロピオン酸エチルとジプロピレングリコールモノメチルエーテル、N-エチル-2-ピロリドンと3-エトキシプロピオン酸エチルとプロピレングリコールモノブチルエーテル、N-メチル-2-ピロリドンと3-エトキシプロピオン酸エチルとジエチレングリコールモノプロピルエーテル、N-エチル-2-ピロリドンと3-エトキシプロピオン酸エチルとジエチレングリコールモノプロピルエーテル、N-メチル-2-ピロリドンとエチレングリコールモノブチルエーテルアセタート、N-エチル-2-ピロリドンとジプロピレングリコールジメチルエーテル、N,N-ジメチルラクトアミドとエチレングリコールモノブチルエーテル、N,N-ジメチルラクトアミドとプロピレングリコールジアセテート、N-エチル-2-ピロリドンとジエチレングリコールジエチルエーテル、N-エチル-2-ピロリドンとジエチレングリコールモノエチルエーテルとブチルセロソルブアセテート、N-メチル-2-ピロリドンとジエチレングリコールモノメチルエーテルとブチルセロソルブアセテート、N,N-ジメチルラクトアミドとジエチレングリコールジエチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンと4-ヒドロキシ-4-メチル-2-ペンタノンとジエチレングリコールジエチルエーテル、N-エチル-2-ピロリドンとN-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノン、N-エチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとプロピレングリコールモノブチルエーテル、N-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとジイソブチルケトン、N-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとジプロピレングリコールモノメチルエーテル、N-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとプロピレングリコールモノブチルエーテル、N-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとプロピレングリコールジアセテート、N-エチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとジプロピレングリコールジメチルエーテル、γ-ブチロラクトンと4-ヒドロキシ-4-メチル-2-ペンタノンとジイソブチルケトン、γ-ブチロラクトンと4-ヒドロキシ-4-メチル-2-ペンタノンとプロピレングリコールジアセテート、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルとジイソブチルケトン、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルとジイソプロピルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルとジイソブチルカルビノール、N-メチル-2-ピロリドンとγ-ブチロラクトンとジプロピレングリコールジメチルエーテル、N-メチル-2-ピロリドンとプロピレングリコールモノブチルエーテルとジプロピレングリコールジメチルエーテル、N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテルとジプロピレングリコールモノメチルエーテル、N-エチル-2-ピロリドンとジエチレングリコールジエチルエーテルとジプロピレングリコールモノメチルエーテル、N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテルとプロピレングリコールジアセテート、N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテルとジイソブチルケトン、N-エチル-2-ピロリドンとγ-ブチロラクトンとジイソブチルケトン、N-エチル-2-ピロリドンとN,N-ジメチルラクトアミドとジイソブチルケトン、N-メチル-2-ピロリドンとエチレングリコールモノブチルエーテルとエチレングリコールモノブチルエーテルアセタート、γ-ブチロラクトンとエチレングリコールモノブチルエーテルアセタートとジプロピレングリコールジメチルエーテル、N-エチル-2-ピロリドンとエチレングリコールモノブチルエーテルアセタートとプロピレングリコールジメチルエーテル、N-メチル-2-ピロリドンと酢酸4-メチル-2-ペンチルとエチレングリコールモノブチルエーテル、N-エチル-2-ピロリドンと酢酸シクロヘキシルと4-ヒドロキシ-4-メチル-2-ペンタノン、シクロヘキサノンとプロピレングリコールモノメチルエーテル、シクロペンタノンとプロピレングリコールモノメチルエーテル、N-メチル-2-ピロリドンとシクロヘキサノンとプロピレングリコールモノメチルエーテルなどを挙げることができる。 Preferred solvent combinations of a good solvent and a poor solvent include N-methyl-2-pyrrolidone and ethylene glycol monobutyl ether, N-methyl-2-pyrrolidone, γ-butyrolactone and ethylene glycol monobutyl ether, N-methyl-2- Pyrrolidone and γ-butyrolactone and propylene glycol monobutyl ether, N-ethyl-2-pyrrolidone and propylene glycol monobutyl ether, N-ethyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone, N-ethyl-2- pyrrolidone and propylene glycol diacetate, N,N-dimethyllactamide and diisobutyl ketone, N-methyl-2-pyrrolidone and ethyl 3-ethoxypropionate, N-ethyl-2-pyrrolidone and ethyl 3-ethoxypropionate, N- Methyl-2-pyrrolidone and ethyl 3-ethoxypropionate and dipropylene glycol monomethyl ether, N-ethyl-2-pyrrolidone and 3-ethoxyethyl propionate and propylene glycol monobutyl ether, N-methyl-2-pyrrolidone and 3-ethoxy Ethyl Propionate and Diethylene Glycol Monopropyl Ether, N-Ethyl-2-Pyrrolidone and 3-Ethoxy Ethyl Propionate and Diethylene Glycol Monopropyl Ether, N-Methyl-2-Pyrrolidone and Ethylene Glycol Monobutyl Ether Acetate, N-Ethyl-2- Pyrrolidone and dipropylene glycol dimethyl ether, N,N-dimethyl lactamide and ethylene glycol monobutyl ether, N,N-dimethyl lactamide and propylene glycol diacetate, N-ethyl-2-pyrrolidone and diethylene glycol diethyl ether, N-ethyl-2 - pyrrolidone and diethylene glycol monoethyl ether and butyl cellosolve acetate, N-methyl-2-pyrrolidone and diethylene glycol monomethyl ether and butyl cellosolve acetate, N,N-dimethyllactamide and diethylene glycol diethyl ether, N-methyl-2-pyrrolidone and γ-butyrolactone 4-hydroxy-4-methyl-2-pentanone and diethylene glycol diethyl ether, N-ethyl-2-pyrrolidone and N-methyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone, N-ethyl-2- pyrrolidone and 4-hydroxy-4-methyl-2-pentanone and propylene glycol mono Butyl ether, N-methyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone and diisobutyl ketone, N-methyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone and dipropylene glycol monomethyl ether , N-methyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone and propylene glycol monobutyl ether, N-methyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone and propylene glycol diacetate , N-ethyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone and dipropylene glycol dimethyl ether, γ-butyrolactone and 4-hydroxy-4-methyl-2-pentanone and diisobutyl ketone, γ-butyrolactone and 4 -hydroxy-4-methyl-2-pentanone and propylene glycol diacetate, N-methyl-2-pyrrolidone and γ-butyrolactone and propylene glycol monobutyl ether and diisobutyl ketone, N-methyl-2-pyrrolidone and γ-butyrolactone and propylene glycol Monobutyl ether and diisopropyl ether, N-methyl-2-pyrrolidone, γ-butyrolactone, propylene glycol monobutyl ether and diisobutylcarbinol, N-methyl-2-pyrrolidone, γ-butyrolactone and dipropylene glycol dimethyl ether, N-methyl-2- pyrrolidone and propylene glycol monobutyl ether and dipropylene glycol dimethyl ether, N-ethyl-2-pyrrolidone and propylene glycol monobutyl ether and dipropylene glycol monomethyl ether, N-ethyl-2-pyrrolidone and diethylene glycol diethyl ether and dipropylene glycol monomethyl ether, N -ethyl-2-pyrrolidone and propylene glycol monobutyl ether and propylene glycol diacetate, N-ethyl-2-pyrrolidone and propylene glycol monobutyl ether and diisobutyl ketone, N-ethyl-2-pyrrolidone and γ-butyrolactone and diisobutyl ketone, N- Ethyl-2-pyrrolidone and N,N-dimethyllactamide and diisobutyl ketone, N-methyl-2-pyrrolidone and ethylene glycol monobutyl ether and ethylene glycol monobutyl ether acetate, γ-butyrolactone and ethylene glycol monobutyl ether acetate Dipropylene glycol dimethyl ether, N-ethyl-2-pyrrolidone and ethylene glycol monobutyl ether acetate and propylene glycol dimethyl ether, N-methyl-2-pyrrolidone and 4-methyl-2-pentyl acetate and ethylene glycol monobutyl ether, N-ethyl- 2-pyrrolidone and cyclohexyl acetate and 4-hydroxy-4-methyl-2-pentanone, cyclohexanone and propylene glycol monomethyl ether, cyclopentanone and propylene glycol monomethyl ether, N-methyl-2-pyrrolidone and cyclohexanone and propylene glycol monomethyl ether, etc. can be mentioned.
(液晶配向剤)
 本発明の液晶配向剤は、上記重合体(P)、上記その他の重合体、及び上記有機溶媒に加えて、それ以外の成分(以下、添加剤成分ともいう。)を含有してもよい。かかる添加剤成分としては、例えば、オキシラニル基、オキセタニル基、ブロックイソシアネート基、オキサゾリン基、シクロカーボネート基、ヒドロキシ基及びアルコキシ基から選ばれる少なくとも1種の置換基を有する架橋性化合物、並びに重合性不飽和基を有する架橋性化合物からなる群から選ばれる少なくとも1種の架橋性化合物、官能性シラン化合物、金属キレート化合物、硬化促進剤、界面活性剤、酸化防止剤、増感剤、防腐剤、得られる液晶配向膜の誘電率や電気抵抗を調整するための化合物などが挙げられる。
(Liquid crystal aligning agent)
The liquid crystal aligning agent of the present invention may contain other components (hereinafter also referred to as additive components) in addition to the polymer (P), the other polymer, and the organic solvent. Such additive components include, for example, a crosslinkable compound having at least one substituent selected from an oxiranyl group, an oxetanyl group, a blocked isocyanate group, an oxazoline group, a cyclocarbonate group, a hydroxy group and an alkoxy group; At least one crosslinkable compound selected from the group consisting of crosslinkable compounds having saturated groups, functional silane compounds, metal chelate compounds, curing accelerators, surfactants, antioxidants, sensitizers, preservatives, and compounds for adjusting the dielectric constant and electrical resistance of the liquid crystal alignment film.
 上記架橋性化合物の好ましい具体例としては、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、エピコート828(三菱ケミカル社製)などのビスフェノールA型エポキシ樹脂、エピコート807(三菱ケミカル社製)などのビスフェノールF型エポキシ樹脂、YX-8000(三菱ケミカル社製)などの水添ビスフェノールA型エポキシ樹脂、YX6954BH30(三菱ケミカル社製)などのビフェニル骨格含有エポキシ樹脂、EPPN-201(日本化薬社製)などのフェノールノボラック型エポキシ樹脂、EOCN-102S(日本化薬社製)などの(o,m,p-)クレゾールノボラック型エポキシ樹脂、TEPIC(日産化学社製)などのトリグリシジルイソシアヌレート、セロキサイド2021P(ダイセル化学工業社製)などの脂環式エポキシ樹脂、N,N,N’,N’-テトラグリシジル-m-キシリレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、又はN,N,N’,N’-テトラグリシジル-4、4’-ジアミノジフェニルメタンに代表される3級窒素原子を含有する化合物、テトラキス(グリシジルオキシメチル)メタンなどのオキシラニル基を2つ以上有する化合物;WO2011/132751号公報の段落[0170]~[0175]に記載の2個以上のオキセタニル基を2つ以上有する化合物;コロネートAPステーブルM、コロネート2503、2515、2507、2513、2555、ミリオネートMS-50(以上、東ソー社製)、タケネートB-830、B-815N、B-820NSU、B-842N、B-846N、B-870N、B-874N、B-882N(以上、三井化学社製)等のブロックイソシアネート基を有する化合物;2,2’-ビス(2-オキサゾリン)、2,2’-ビス(4-メチル-2-オキサゾリン)、2,2’-ビス(5-メチル-2-オキサゾリン)、1,2,4-トリス-(2-オキサゾリニル-2)-ベンゼン、エポクロス(日本触媒社製)のようなオキサゾリン基を有する化合物;WO2011/155577号公報の段落[0025]~[0030]、[0032]に記載のシクロカーボネート基を有する化合物;n,n,n’,n’-テトラキス(2-ヒドロキシエチル)アジポアミド、2,2-ビス(4-ヒドロキシ-3,5-ジヒドロキシメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメトキシメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジヒドロキシメチルフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパンなどのヒドロキシ基やアルコキシ基を有する化合物;グリセリンモノ(メタ)アクリレート、グリセリンジ(メタ)アクリレート(1,2-,1,3-体混合物)、グリセリントリス(メタ)アクリレート、グリセロール1,3-ジグリセロラートジ(メタ)アクリレート、ペンタエリストールトリ(メタ)アクリレート、ジエチレングリコールモノ(メタ)アクリレート、トリエチレングリコールモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート、ペンタエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレートで示される化合物が挙げられる。
 上記架橋性化合物の含有量は液晶配向剤に含まれる重合体成分100質量部に対して0.1~30質量部であることが好ましく、より好ましくは0.1~20質量部である。
Preferred specific examples of the crosslinkable compound include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, ,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol, Epicoat 828 (Mitsubishi Chemical Co., Ltd.) ), bisphenol F type epoxy resins such as Epicoat 807 (manufactured by Mitsubishi Chemical Corporation), hydrogenated bisphenol A type epoxy resins such as YX-8000 (manufactured by Mitsubishi Chemical Corporation), YX6954BH30 (Mitsubishi Chemical Corporation (manufactured by Nippon Kayaku Co., Ltd.), phenol novolac type epoxy resins such as EPPN-201 (manufactured by Nippon Kayaku Co., Ltd.), and (o, m, p-) cresol novolacs such as EOCN-102S (manufactured by Nippon Kayaku Co., Ltd.). type epoxy resins, triglycidyl isocyanurates such as TEPIC (manufactured by Nissan Chemical Industries, Ltd.), alicyclic epoxy resins such as Celoxide 2021P (manufactured by Daicel Chemical Industries, Ltd.), N,N,N',N'-tetraglycidyl-m- Tertiary nitrogen atoms represented by xylylenediamine, 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane, or N,N,N',N'-tetraglycidyl-4,4'-diaminodiphenylmethane a compound having two or more oxiranyl groups such as tetrakis(glycidyloxymethyl)methane; Compounds having; Coronate AP Stable M, Coronate 2503, 2515, 2507, 2513, 2555, Millionate MS-50 (manufactured by Tosoh Corporation), Takenate B-830, B-815N, B-820NSU, B-842N, B -846N, B-870N, B-874N, compounds having a blocked isocyanate group such as B-882N (manufactured by Mitsui Chemicals, Inc.); 2,2'-bis(2-oxazoline), 2,2'-bis( 4-methyl-2-oxazoline), 2,2'-bis(5-methyl-2-oxazoline phosphorus), 1,2,4-tris-(2-oxazolinyl-2)-benzene, compounds having an oxazoline group such as Epocross (manufactured by Nippon Shokubai Co., Ltd.); paragraphs [0025] to [0030 of WO2011/155577 ], a compound having a cyclocarbonate group according to [0032]; phenyl)propane, 2,2-bis(4-hydroxy-3,5-dimethoxymethylphenyl)propane, 2,2-bis(4-hydroxy-3,5-dihydroxymethylphenyl)-1,1,1,3 , 3,3-hexafluoropropane and other compounds having a hydroxy group or an alkoxy group; glycerin mono(meth)acrylate, glycerin di(meth)acrylate (1,2-, 1,3-body mixture), ) acrylate, glycerol 1,3-diglycerolate di (meth) acrylate, pentaerythrol tri (meth) acrylate, diethylene glycol mono (meth) acrylate, triethylene glycol mono (meth) acrylate, tetraethylene glycol mono (meth) acrylate , pentaethylene glycol mono(meth)acrylate, and hexaethylene glycol mono(meth)acrylate.
The content of the crosslinkable compound is preferably 0.1 to 30 parts by mass, more preferably 0.1 to 20 parts by mass, based on 100 parts by mass of the polymer component contained in the liquid crystal aligning agent.
 上記誘電率や電気抵抗を調整するための化合物としては、3-ピコリルアミンなどの窒素原子含有芳香族複素環を有するモノアミンが挙げられる。窒素原子含有芳香族複素環を有するモノアミンの含有量は液晶配向剤に含まれる重合体成分100質量部に対して0.1~30質量部であることが好ましく、より好ましくは0.1~20質量部である。 Examples of compounds for adjusting the dielectric constant and electrical resistance include monoamines having a nitrogen atom-containing aromatic heterocycle such as 3-picolylamine. The content of the monoamine having a nitrogen atom-containing aromatic heterocyclic ring is preferably 0.1 to 30 parts by mass, more preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal aligning agent. part by mass.
 上記官能性シラン化合物の好ましい具体例としては、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルジエトキシメチルシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、トリス(3-トリメトキシシリルプロピル)イソシアヌレート、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン等が挙げられる。官能性シラン化合物の含有量は、液晶配向剤に含まれる重合体成分100質量部に対して0.1~30質量部であることが好ましく、より好ましくは0.1~20質量部である。 Preferred specific examples of the above functional silane compounds include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldiethoxymethylsilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltrimethoxysilane. Ethoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltri ethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3- glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyl diethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, tris(3-trimethoxysilylpropyl) isocyanurate, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane and the like. The content of the functional silane compound is preferably 0.1 to 30 parts by mass, more preferably 0.1 to 20 parts by mass based on 100 parts by mass of the polymer component contained in the liquid crystal alignment agent.
 液晶配向剤における固形分濃度(液晶配向剤の溶媒以外の成分の合計質量が液晶配向剤の全質量に占める割合)は、粘性、揮発性などを考慮して適宜に選択されるが、好ましくは1~10質量%である。
 特に好ましい固形分濃度の範囲は、基板に液晶配向剤を塗布する際に用いる方法によって異なる。例えばスピンコート法を用いる場合には、固形分濃度が1.5~4.5質量%であることが特に好ましい。印刷法による場合には、固形分濃度を3~9質量%とし、それにより溶液粘度を12~50mPa・sとすることが特に好ましい。インクジェット法による場合には、固形分濃度を1~5質量%とし、それにより、溶液粘度を3~15mPa・sとすることが特に好ましい。重合体組成物を調製する際の温度は、好ましくは10~50℃であり、より好ましくは20~30℃である。
The solid content concentration in the liquid crystal aligning agent (ratio of the total mass of components other than the solvent of the liquid crystal aligning agent to the total mass of the liquid crystal aligning agent) is appropriately selected in consideration of viscosity, volatility, etc., but preferably It is 1 to 10% by mass.
A particularly preferable solid content concentration range varies depending on the method used when applying the liquid crystal aligning agent to the substrate. For example, when a spin coating method is used, the solid content concentration is particularly preferably 1.5 to 4.5% by mass. When the printing method is used, it is particularly preferable to set the solid content concentration to 3 to 9% by mass and thereby the solution viscosity to 12 to 50 mPa·s. In the case of the inkjet method, it is particularly preferable to set the solid content concentration to 1 to 5% by mass and thereby the solution viscosity to 3 to 15 mPa·s. The temperature in preparing the polymer composition is preferably 10-50°C, more preferably 20-30°C.
(液晶配向膜及び液晶表示素子)
 本発明に係る液晶表示素子は、上記液晶配向剤を用いて形成した液晶配向膜を具備する。液晶表示素子の動作モードは特に限定せず、例えば、TN型、STN型、垂直配向型(VA-MVA型、VA-PVA型などを含む。)、面内スイッチング型(IPS型、FFS型)、光学補償ベンド型(OCB型)など種々の動作モードに適用することができる。
(Liquid crystal alignment film and liquid crystal display element)
A liquid crystal display element according to the present invention comprises a liquid crystal alignment film formed using the liquid crystal alignment agent. The operation mode of the liquid crystal display element is not particularly limited. , optically compensated bend type (OCB type), and various other operation modes.
 本発明の液晶表示素子は、例えば、以下の工程(1)~(4)を含む方法、工程(1)~(2)及び(4)を含む方法、工程(1)~(3)、(4-2)及び(4-4)を含む方法、又は工程(1)~(3)、(4-3)及び(4-4)を含む方法により製造することができる。 The liquid crystal display element of the present invention can be produced, for example, by a method including the following steps (1) to (4), a method including steps (1) to (2) and (4), steps (1) to (3), ( 4-2) and (4-4), or by a method including steps (1) to (3), (4-3) and (4-4).
<工程(1):液晶配向剤を基板上に塗布する工程>
 工程(1)は、液晶配向剤を基板上に塗布する工程である。工程(1)の具体例は以下のとおりである。
 パターニングされた透明導電膜が設けられている基板の一面に、液晶配向剤を、例えばロールコーター法、スピンコート法、印刷法、インクジェット法などの適宜の塗布方法により塗布する。ここで基板の材質としては、透明性の高い基板であれば特に限定されず、ガラス、窒化珪素とともに、アクリル、ポリカーボネート等のプラスチック等を用いることもできる。また、反射型の液晶表示素子では、片側の基板のみにならば、シリコンウエハー等の不透明な物でも使用でき、この場合の電極にはアルミニウム等の光を反射する材料も使用できる。また、IPS型又はFFS型の液晶表示素子を製造する場合には、櫛歯型にパターニングされた透明導電膜又は金属膜からなる電極が設けられている基板と、電極が設けられていない対向基板とを用いる。
<Step (1): Step of applying a liquid crystal aligning agent onto a substrate>
A process (1) is a process of apply|coating a liquid crystal aligning agent on a board|substrate. A specific example of step (1) is as follows.
A liquid crystal aligning agent is applied to one surface of the substrate provided with the patterned transparent conductive film by an appropriate coating method such as a roll coater method, a spin coat method, a printing method, an inkjet method, or the like. Here, the material of the substrate is not particularly limited as long as it is highly transparent, and glass, silicon nitride, plastic such as acrylic, polycarbonate, etc. can also be used. In addition, in the reflective liquid crystal display element, if only one substrate is used, an opaque material such as a silicon wafer can be used, and in this case, a light-reflecting material such as aluminum can be used for the electrodes. In the case of manufacturing an IPS-type or FFS-type liquid crystal display element, a substrate provided with electrodes made of a transparent conductive film or a metal film patterned in a comb shape and a counter substrate provided with no electrodes are used. and
 液晶配向剤を基板に塗布し、成膜する方法としては、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェット法、又はスプレー法等が挙げられる。なかでも、インクジェット法による塗布、成膜法が好適に使用できる。 Screen printing, offset printing, flexographic printing, inkjet method, spray method, etc., can be used as methods for applying the liquid crystal aligning agent to the substrate and forming a film. Among them, the coating method and the film-forming method by the inkjet method can be preferably used.
<工程(2):塗布した液晶配向剤を焼成する工程>
 工程(2)は、基板上に塗布した液晶配向剤を焼成し、膜を形成する工程である。工程(2)の具体例は以下のとおりである。
 工程(1)において液晶配向剤を基板上に塗布した後は、ホットプレート、熱循環型オーブン又はIR(赤外線)型オーブンなどの加熱手段により、溶媒を蒸発させたり、ポリアミック酸の熱イミド化を行ったりすることができる。液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができ、複数回行ってもよい。液晶配向剤を焼成する温度としては、例えば40~180℃で行うことができる。プロセスを短縮する観点で、40~150℃で行ってもよい。焼成時間としては特に限定されないが、1~10分又は、1~5分が挙げられる。ポリアミック酸の熱イミド化を行う場合には、上記工程の後、例えば150~300℃、又は150~250℃で焼成する工程を追加してもよい。焼成時間としては特に限定されないが、5~40分、又は、5~30分の焼成時間が挙げられる。
 焼成後の膜状物の膜厚は、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5~300nmが好ましく、10~200nmがより好ましい。
<Step (2): Step of firing the applied liquid crystal aligning agent>
A process (2) is a process of baking the liquid crystal aligning agent apply|coated on the board|substrate, and forming a film|membrane. A specific example of step (2) is as follows.
After the liquid crystal aligning agent is applied onto the substrate in step (1), the solvent is evaporated or the polyamic acid is thermally imidized by heating means such as a hot plate, thermal circulation oven or IR (infrared) oven. you can go Drying after applying a liquid crystal aligning agent and a baking process can select arbitrary temperature and time, and may be performed in multiple times. The temperature for baking the liquid crystal aligning agent can be, for example, 40 to 180.degree. From the viewpoint of shortening the process, it may be carried out at 40 to 150°C. The firing time is not particularly limited, but may be 1 to 10 minutes or 1 to 5 minutes. When the polyamic acid is thermally imidized, a step of firing at, for example, 150 to 300° C. or 150 to 250° C. may be added after the above step. The firing time is not particularly limited, but may be 5 to 40 minutes or 5 to 30 minutes.
The thickness of the film-like material after baking is preferably 5 to 300 nm, more preferably 10 to 200 nm, because if it is too thin, the reliability of the liquid crystal display element may be lowered.
 <工程(3):工程(2)で得られた膜に配向処理する工程>
 工程(3)は、場合により、工程(2)で得られた膜に配向処理する工程である。即ち、IPS方式又はFFS方式等の水平配向型の液晶表示素子では該塗膜に対し配向能付与処理を行う。一方、VA方式又はPSAモード等の垂直配向型の液晶表示素子では、形成した塗膜をそのまま液晶配向膜として使用することができるが、該塗膜に対し配向能付与処理を施してもよい。液晶配向膜の配向処理方法としては、ラビング処理法、光配向処理法が挙げられる。光配向処理法としては、上記膜状物の表面に、一定方向に偏光された放射線を照射し、場合により、好ましくは、150~250℃の温度で加熱処理を行い、液晶配向性(液晶配向能ともいう)を付与する方法が挙げられる。放射線としては、100~800nmの波長を有する紫外線又は可視光線を用いることができる。なかでも、好ましくは100~400nm、より好ましくは、200~400nmの波長を有する紫外線である。
<Step (3): Step of performing alignment treatment on the film obtained in Step (2)>
Step (3) is a step of subjecting the film obtained in step (2) to orientation treatment. That is, in a horizontally aligned liquid crystal display element such as an IPS system or an FFS system, the coating film is subjected to an alignment ability imparting treatment. On the other hand, in a vertical alignment type liquid crystal display element such as VA mode or PSA mode, the formed coating film can be used as a liquid crystal alignment film as it is, but the coating film may be subjected to an alignment ability imparting treatment. Examples of the alignment treatment method for the liquid crystal alignment film include a rubbing treatment method and a photo-alignment treatment method. As a photo-alignment treatment method, the surface of the film is irradiated with radiation polarized in a certain direction, and optionally, preferably, heat treatment is performed at a temperature of 150 to 250 ° C. to improve liquid crystal orientation (liquid crystal orientation (also referred to as ability). As radiation, ultraviolet light or visible light having a wavelength of 100 to 800 nm can be used. Among them, ultraviolet rays having a wavelength of 100 to 400 nm, more preferably 200 to 400 nm are preferred.
 上記放射線の照射量は、1~10,000mJ/cmが好ましく、なかでも、100~5,000mJ/cmがより好ましい。また、放射線を照射する場合、液晶配向性を改善するために、上記膜状物を有する基板を、50~250℃で加熱しながら照射してもよい。このようにして作製した上記液晶配向膜は、液晶分子を一定の方向に安定して配向させることができる。
 更に、上記の方法で、偏光された放射線を照射した液晶配向膜に、水や溶媒を用いて、接触処理するか、放射線を照射した液晶配向膜を加熱処理することもできる。
The radiation dose is preferably 1 to 10,000 mJ/cm 2 , more preferably 100 to 5,000 mJ/cm 2 . In addition, when irradiating with radiation, the substrate having the film-like material may be irradiated with heating at 50 to 250° C. in order to improve liquid crystal orientation. The liquid crystal alignment film thus produced can stably orient liquid crystal molecules in a fixed direction.
Furthermore, the liquid crystal alignment film irradiated with polarized radiation can be subjected to contact treatment using water or a solvent, or the liquid crystal alignment film irradiated with radiation can be heat-treated.
 上記接触処理に使用する溶媒としては、放射線の照射によって膜状物から生成した分解物を溶解する溶媒であれば、特に限定されるものではない。具体例としては、水、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン、1-メトキシ-2-プロパノール、1-メトキシ-2-プロパノールアセテート、ブチルセロソルブ、乳酸エチル、乳酸メチル、ジアセトンアルコール、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、酢酸プロピル、酢酸ブチル、酢酸シクロヘキシル等が挙げられる。溶媒は、1種類でも、2種類以上組み合わせてもよい。 The solvent used in the contact treatment is not particularly limited as long as it dissolves the decomposed product produced from the film-like material by irradiation with radiation. Specific examples include water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, 1-methoxy-2-propanol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, methyl lactate, diacetone alcohol, 3- methyl methoxypropionate, ethyl 3-ethoxypropionate, propyl acetate, butyl acetate, cyclohexyl acetate and the like. Solvents may be used singly or in combination of two or more.
 上記の放射線を照射した塗膜に対する加熱処理の温度は、50~300℃がより好ましく、120~250℃がさらに好ましい。加熱処理の時間としては、それぞれ1~30分とすることが好ましい。 The temperature of the heat treatment for the above radiation-irradiated coating film is more preferably 50 to 300°C, more preferably 120 to 250°C. The heat treatment time is preferably 1 to 30 minutes.
<工程(4):液晶セルを作製する工程>
 上記のようにして液晶配向膜が形成された基板を2枚準備し、対向配置した2枚の基板間に液晶組成物を配置する。具体的には以下の2つの方法が挙げられる。
 第一の方法は、先ず、それぞれの液晶配向膜が対向するように間隙(セルギャップ)を介して2枚の基板を対向配置する。次いで、2枚の基板の周辺部をシール剤を用いて貼り合わせ、基板表面及びシール剤により区画されたセルギャップ内に液晶組成物を注入充填して膜面に接触した後、注入孔を封止する。
<Step (4): Step of producing a liquid crystal cell>
Two substrates on which liquid crystal alignment films are formed as described above are prepared, and a liquid crystal composition is placed between the two substrates facing each other. Specifically, the following two methods are mentioned.
In the first method, first, two substrates are arranged to face each other with a gap (cell gap) interposed therebetween so that the respective liquid crystal alignment films face each other. Next, the peripheries of the two substrates are bonded together using a sealing agent, and a liquid crystal composition is injected and filled into the cell gap defined by the substrate surface and the sealing agent to contact the film surface, and then the injection hole is sealed. stop.
 また、第二の方法は、ODF(One Drop Fill)方式と呼ばれる手法である。液晶配向膜を形成した2枚の基板のうちの一方の基板上の所定の場所に、例えば紫外光硬化性のシール剤を塗布し、更に液晶配向膜面上の所定の数箇所に液晶組成物を滴下する。その後、液晶配向膜が対向するように他方の基板を貼り合わせて液晶組成物を基板の全面に押し広げて膜面に接触させる。次いで、基板の全面に紫外光を照射してシール剤を硬化する。いずれの方法による場合でも、更に、用いた液晶組成物が等方相をとる温度まで加熱した後、室温まで徐冷することにより、液晶充填時の流動配向を除去することが望ましい。
 なお、塗膜に対してラビング処理を行った場合には、2枚の基板は、各塗膜におけるラビング方向が互いに所定の角度、例えば直交又は逆平行となるように対向配置される。
 シール剤としては、例えば硬化剤及びスペーサーとしての酸化アルミニウム球を含有するエポキシ樹脂等を用いることができる。液晶組成物としては、特に制限はなく、少なくとも一種の液晶化合物(液晶分子)を含む組成物であって、ネマチック相を呈する液晶組成物(以下、ネマチック液晶ともいう。)、スメクチック相を呈する液晶、又はコレステリック相を呈する液晶組成物を挙げることができ、そのなかでもネマチック液晶が好ましい。また、誘電率異方性が正または負の各種の液晶組成物を用いることができる。なお、以下では、誘電率異方性が正の液晶組成物を、ポジ型液晶ともいい、誘電異方性が負の液晶組成物を、ネガ型液晶ともいう。
 上記液晶組成物は、フッ素原子、ヒドロキシ基、アミノ基、フッ素原子含有基(例えば、トリフルオロメチル基)、シアノ基、アルキル基、アルコキシ基、アルケニル基、イソチオシアネート基、複素環、シクロアルカン、シクロアルケン、ステロイド骨格、ベンゼン環、又はナフタレン環を有する液晶化合物を含んでもよく、分子内に液晶性を発現する剛直な部位(メソゲン骨格)を2つ以上有する化合物(例えば、剛直な二つのビフェニル構造、又はターフェニル構造がアルキル基で連結されたバイメソゲン化合物)を含んでもよい。
 また、上記液晶組成物は、液晶配向性を向上させる観点から、添加物をさらに含有してもよい。このような添加物は、重合性基を有する化合物などの光重合性モノマー;光学活性な化合物(例:メルク(株)社製のS-811など);酸化防止剤;紫外線吸収剤;色素;消泡剤;重合開始剤;又は重合禁止剤などが挙げられる。
 ポジ型液晶としては、メルク社製のZLI-2293、ZLI-4792、MLC-2003、MLC-2041、MLC-3019、又はMLC-7081などが挙げられる。
 ネガ型液晶としては、例えばメルク社製のMLC-6608、MLC-6609、MLC-6610、MLC-7026、又はMLC-7026-100などが挙げられる。
 また、重合性基を有する化合物を含有する液晶として、メルク社製のMLC-3023が挙げられる。
The second method is a method called ODF (One Drop Fill) method. A predetermined place on one of the two substrates on which the liquid crystal alignment film is formed is coated with, for example, an ultraviolet light-curing sealant, and a liquid crystal composition is applied to several predetermined places on the surface of the liquid crystal alignment film. drip. Thereafter, the other substrate is attached so that the liquid crystal alignment films face each other, and the liquid crystal composition is spread over the entire surface of the substrate and brought into contact with the film surface. Next, the entire surface of the substrate is irradiated with ultraviolet light to cure the sealant. In any method, it is desirable to remove the flow orientation at the time of liquid crystal filling by heating the liquid crystal composition to a temperature at which the used liquid crystal composition assumes an isotropic phase and then slowly cooling to room temperature.
When the coating film is subjected to the rubbing treatment, the two substrates are arranged opposite to each other so that the rubbing directions of the respective coating films are at a predetermined angle, for example, orthogonal or antiparallel.
As the sealant, for example, an epoxy resin or the like containing a curing agent and aluminum oxide spheres as spacers can be used. The liquid crystal composition is not particularly limited, and may be a composition containing at least one liquid crystal compound (liquid crystal molecule) exhibiting a nematic phase (hereinafter also referred to as a nematic liquid crystal), or a liquid crystal exhibiting a smectic phase. , or liquid crystal compositions exhibiting a cholesteric phase, among which nematic liquid crystals are preferred. Also, various liquid crystal compositions having positive or negative dielectric anisotropy can be used. In the following description, a liquid crystal composition with a positive dielectric anisotropy is also referred to as a positive liquid crystal, and a liquid crystal composition with a negative dielectric anisotropy is also referred to as a negative liquid crystal.
The above liquid crystal composition contains a fluorine atom, a hydroxy group, an amino group, a fluorine atom-containing group (e.g., trifluoromethyl group), a cyano group, an alkyl group, an alkoxy group, an alkenyl group, an isothiocyanate group, a heterocyclic ring, a cycloalkane, A liquid crystal compound having a cycloalkene, a steroid skeleton, a benzene ring, or a naphthalene ring may be included, and a compound having two or more rigid sites (mesogenic skeleton) exhibiting liquid crystallinity in the molecule (for example, two rigid biphenyl structures or terphenyl structures linked by alkyl groups).
Moreover, the liquid crystal composition may further contain an additive from the viewpoint of improving liquid crystal orientation. Such additives include photopolymerizable monomers such as compounds having a polymerizable group; optically active compounds (eg, S-811 manufactured by Merck Co., Ltd.); antioxidants; UV absorbers; dyes; antifoaming agents; polymerization initiators; or polymerization inhibitors.
Positive liquid crystals include ZLI-2293, ZLI-4792, MLC-2003, MLC-2041, MLC-3019, and MLC-7081 manufactured by Merck.
Examples of negative liquid crystal include MLC-6608, MLC-6609, MLC-6610, MLC-7026 and MLC-7026-100 manufactured by Merck.
Further, as a liquid crystal containing a compound having a polymerizable group, MLC-3023 manufactured by Merck & Co., Ltd. can be mentioned.
 本発明の液晶配向剤は、電極を備えた一対の基板の間に液晶層を有してなり、一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、電極間に電圧を印加しつつ、活性エネルギー線の照射及び加熱の少なくとも一方により、重合性化合物を重合させる工程を経て製造される液晶表示素子(PSA型液晶表示素子)にも好ましく用いられる。
 また、本発明の液晶配向剤は、電極を備えた一対の基板の間に液晶層を有してなり、上記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性基を含む液晶配向膜を配置し、電極間に電圧を印加する工程を経て製造される液晶表示素子(SC-PVAモード型の液晶表示素子)にも好ましく用いられる。
The liquid crystal aligning agent of the present invention comprises a liquid crystal layer between a pair of substrates provided with electrodes, and a liquid crystal composition containing a polymerizable compound polymerized by at least one of active energy rays and heat between the pair of substrates. A liquid crystal display element (PSA type liquid crystal display element) manufactured through a process of polymerizing a polymerizable compound by at least one of irradiating an active energy ray and heating while placing an object and applying a voltage between electrodes. It is preferably used.
Further, the liquid crystal aligning agent of the present invention has a liquid crystal layer between a pair of substrates provided with electrodes, and a polymerizable group polymerizable by at least one of active energy rays and heat is placed between the pair of substrates. It is also preferably used for a liquid crystal display element (SC-PVA mode type liquid crystal display element) manufactured through a process of arranging a liquid crystal alignment film containing a liquid crystal and applying a voltage between electrodes.
<工程(4-2):PSA型液晶表示素子の場合>
 重合性化合物を含有する液晶組成物を注入又は滴下する点以外は上記(4)と同様に実施される。重合性化合物としては、例えばアクリレート基やメタクリレート基などの重合性不飽和基を分子内に1個以上有する重合性化合物を挙げることができる。
<Step (4-2): For PSA type liquid crystal display element>
It is carried out in the same manner as in (4) above, except that the liquid crystal composition containing a polymerizable compound is injected or dropped. Examples of the polymerizable compound include polymerizable compounds having one or more polymerizable unsaturated groups such as acrylate groups and methacrylate groups in the molecule.
<工程(4-3):SC-PVAモード型の液晶表示素子の場合>
 上記(4)と同様にした後、後述する紫外線を照射する工程を経て液晶表示素子を製造する方法を採用してもよい。この方法によれば、上記PSA型液晶表示素子を製造する場合と同様に、少ない光照射量で応答速度に優れた液晶表示素子を得ることができる。重合性基を有する化合物は、上記重合性不飽和基を分子内に1個以上有する化合物であってもよく、その含有量は、全ての重合体成分100質量部に対して0.1~30質量部であることが好ましく、より好ましくは1~20質量部である。また、上記重合性基は液晶配向剤に用いる重合体が有していてもよく、このような重合体としては、例えば上記光重合性基を末端に有するジアミンを含むジアミン成分を反応に用いて得られる重合体が挙げられる。
<Step (4-3): For SC-PVA mode liquid crystal display element>
A method of manufacturing a liquid crystal display element may be employed in which a step of irradiating ultraviolet rays, which will be described later, is performed after performing the same as in the above (4). According to this method, a liquid crystal display device excellent in response speed can be obtained with a small amount of light irradiation, as in the case of manufacturing the PSA type liquid crystal display device. The compound having a polymerizable group may be a compound having one or more polymerizable unsaturated groups in the molecule, and its content is 0.1 to 30 per 100 parts by mass of all polymer components. It is preferably parts by mass, more preferably 1 to 20 parts by mass. Further, the polymerizable group may be present in the polymer used for the liquid crystal alignment agent, and such a polymer includes, for example, a diamine component containing a diamine having a photopolymerizable group at the end thereof, which is used in the reaction. The polymer obtained is mentioned.
<工程(4-4):紫外線を照射する工程>
 上記(4-2)又は(4-3)で得られた一対の基板の有する導電膜間に電圧を印加した状態で液晶セルに光照射する。ここで印加する電圧は、例えば5~50Vの直流又は交流とすることができる。また、照射する光としては、例えば150~800nmの波長の光を含む紫外線及び可視光線を用いることができるが、300~400nmの波長の光を含む紫外線が好ましい。照射光の光源としては、例えば低圧水銀ランプ、高圧水銀ランプ、重水素ランプ、メタルハライドランプ、アルゴン共鳴ランプ、キセノンランプ、エキシマレーザーなどを使用することができる。光の照射量は、好ましくは1,000~200,000J/mであり、より好ましくは1,000~100,000J/mである。
<Step (4-4): Step of irradiating with ultraviolet rays>
The liquid crystal cell is irradiated with light while a voltage is applied between the conductive films of the pair of substrates obtained in (4-2) or (4-3) above. The voltage applied here can be, for example, 5 to 50 V direct current or alternating current. As the light to be irradiated, for example, ultraviolet rays and visible rays containing light having a wavelength of 150 to 800 nm can be used, but ultraviolet rays containing light having a wavelength of 300 to 400 nm are preferable. As a light source for irradiation light, for example, a low-pressure mercury lamp, a high-pressure mercury lamp, a deuterium lamp, a metal halide lamp, an argon resonance lamp, a xenon lamp, an excimer laser, or the like can be used. The irradiation amount of light is preferably 1,000 to 200,000 J/m 2 , more preferably 1,000 to 100,000 J/m 2 .
 そして、必要に応じて液晶セルの外側表面に偏光板を貼り合わせることにより液晶表示素子を得ることができる。液晶セルの外表面に貼り合わされる偏光板としては、ポリビニルアルコールを延伸配向させながらヨウ素を吸収させた「H膜」と称される偏光フィルムを酢酸セルロース保護膜で挟んだ偏光板又はH膜そのものからなる偏光板を挙げることができる。 Then, a liquid crystal display element can be obtained by bonding a polarizing plate to the outer surface of the liquid crystal cell as necessary. As the polarizing plate to be attached to the outer surface of the liquid crystal cell, a polarizing film called "H film" in which polyvinyl alcohol is stretched and oriented while absorbing iodine is sandwiched between cellulose acetate protective films, or the H film itself. A polarizing plate consisting of
 IPSモードにおいて使用される櫛歯電極基板であるIPS基板は、基材と、基材上に形成され、櫛歯状に配置された複数の線状電極と、基材上に線状電極を覆うように形成された液晶配向膜とを有する。
 なお、FFSモードにおいて使用される櫛歯電極基板であるFFS基板は、基材と、基材上に形成された面電極と、面電極上に形成された絶縁膜と、絶縁膜上に形成され、櫛歯状に配置された複数の線状電極と、絶縁膜上に線状電極を覆うように形成された液晶配向膜とを有する。
The IPS substrate, which is a comb-teeth electrode substrate used in the IPS mode, includes a base material, a plurality of linear electrodes formed on the base material and arranged in a comb-like shape, and the base material covering the linear electrodes. and a liquid crystal alignment film formed as follows.
The FFS substrate, which is a comb-teeth electrode substrate used in the FFS mode, includes a substrate, a plane electrode formed on the substrate, an insulating film formed on the plane electrode, and an insulating film formed on the insulating film. , a plurality of linear electrodes arranged in a comb shape, and a liquid crystal alignment film formed on an insulating film so as to cover the linear electrodes.
 図1は、本発明の横電界液晶表示素子の一例を示す概略部分断面図であり、IPSモード液晶表示素子の例である。
 図1に例示する横電界液晶表示素子1においては、液晶配向膜2cを具備する櫛歯電極基板2と液晶配向膜4aを具備する対向基板4との間に、液晶3が挟持されている。櫛歯電極基板2は、基材2aと、基材2a上に形成され、櫛歯状に配置された複数の線状電極2bと、基材2a上に線状電極2bを覆うように形成された液晶配向膜2cとを有している。対向基板4は、基材4bと、基材4b上に形成された液晶配向膜4aとを有している。液晶配向膜2cは、例えば、本発明の液晶配向膜である。液晶配向膜4cも同様に本発明の液晶配向膜である。
 この横電界液晶表示素子1においては、線状電極2bに電圧が印加されると、電気力線Lで示すように線状電極2b間で電界が発生する。
FIG. 1 is a schematic partial cross-sectional view showing an example of the lateral electric field liquid crystal display device of the present invention, which is an example of an IPS mode liquid crystal display device.
In the lateral electric field liquid crystal display element 1 illustrated in FIG. 1, the liquid crystal 3 is sandwiched between the comb-teeth electrode substrate 2 having the liquid crystal alignment film 2c and the opposing substrate 4 having the liquid crystal alignment film 4a. The comb-shaped electrode substrate 2 includes a substrate 2a, a plurality of linear electrodes 2b formed on the substrate 2a and arranged in a comb-like shape, and formed on the substrate 2a so as to cover the linear electrodes 2b. and a liquid crystal alignment film 2c. The counter substrate 4 has a base material 4b and a liquid crystal alignment film 4a formed on the base material 4b. The liquid crystal alignment film 2c is, for example, the liquid crystal alignment film of the present invention. The liquid crystal alignment film 4c is also the liquid crystal alignment film of the present invention.
In the lateral electric field liquid crystal display element 1, when a voltage is applied to the linear electrodes 2b, an electric field is generated between the linear electrodes 2b as indicated by the lines of electric force L. FIG.
 図2は、本発明の横電界液晶表示素子の他の例を示す概略部分断面図であり、FFSモード液晶表示素子の例である。
 図2に例示する横電界液晶表示素子1においては、液晶配向膜2hを具備する櫛歯電極基板2と液晶配向膜4aを具備する対向基板4との間に、液晶3が挟持されている。櫛歯電極基板2は、基材2dと、基材2d上に形成された面電極2eと、面電極2e上に形成された絶縁膜2fと、絶縁膜2f上に形成され、櫛歯状に配置された複数の線状電極2gと、絶縁膜2f上に線状電極2gを覆うように形成された液晶配向膜2hとを有している。対向基板4は、基材4bと、基材4b上に形成された液晶配向膜4aとを有している。液晶配向膜2hは、例えば、本発明の液晶配向膜である。液晶配向膜4aも同様に本発明の液晶配向膜である。
 この横電界液晶表示素子1においては、面電極2e及び線状電極2gに電圧が印加されると、電気力線Lで示すように面電極2e及び線状電極2g間で電界が発生する。
FIG. 2 is a schematic partial sectional view showing another example of the horizontal electric field liquid crystal display device of the present invention, which is an example of the FFS mode liquid crystal display device.
In the lateral electric field liquid crystal display element 1 illustrated in FIG. 2, the liquid crystal 3 is sandwiched between the comb-teeth electrode substrate 2 having the liquid crystal alignment film 2h and the opposing substrate 4 having the liquid crystal alignment film 4a. The comb-teeth electrode substrate 2 includes a base material 2d, a plane electrode 2e formed on the base material 2d, an insulating film 2f formed on the plane electrode 2e, and formed on the insulating film 2f to form a comb-like shape. It has a plurality of arranged linear electrodes 2g and a liquid crystal alignment film 2h formed on the insulating film 2f so as to cover the linear electrodes 2g. The counter substrate 4 has a base material 4b and a liquid crystal alignment film 4a formed on the base material 4b. The liquid crystal alignment film 2h is, for example, the liquid crystal alignment film of the present invention. The liquid crystal alignment film 4a is also the liquid crystal alignment film of the present invention.
In the horizontal electric field liquid crystal display element 1, when a voltage is applied to the plane electrode 2e and the linear electrode 2g, an electric field is generated between the plane electrode 2e and the linear electrode 2g as indicated by electric lines of force L. FIG.
 以下に実施例を挙げ、本発明をさらに詳しく説明するが、本発明は、これらに限定して解釈されるものではない。使用した化合物の略号及び各物性の測定方法は、以下の通りである。
(有機溶媒)
NMP:N-メチル-2-ピロリドン、  GBL:γ-ブチロラクトン、
BCS:ブチルセロソルブ、  BCA:ブチルセロソルブアセテート
THF:テトラヒドロフラン、  DMF:N,N-ジメチルホルムアミド
EXAMPLES The present invention will be described in more detail below with reference to examples, but the present invention is not construed as being limited to these examples. The abbreviations of the compounds used and methods for measuring physical properties are as follows.
(organic solvent)
NMP: N-methyl-2-pyrrolidone, GBL: γ-butyrolactone,
BCS: butyl cellosolve, BCA: butyl cellosolve acetate THF: tetrahydrofuran, DMF: N,N-dimethylformamide
(酸二無水物)
Figure JPOXMLDOC01-appb-C000014
(Acid dianhydride)
Figure JPOXMLDOC01-appb-C000014
(ジアミン)
Figure JPOXMLDOC01-appb-C000015
(diamine)
Figure JPOXMLDOC01-appb-C000015
(添加剤)
Figure JPOXMLDOC01-appb-C000016
(Additive)
Figure JPOXMLDOC01-appb-C000016
<粘度の測定>
 E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL、コーンロータTE-1(1°34’、R24)を用いて、温度25℃で測定した。
<Measurement of viscosity>
Using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.), a sample amount of 1.1 mL, and a cone rotor TE-1 (1°34', R24), measurement was performed at a temperature of 25°C.
<分子量の測定>
 下記の常温GPC(ゲル浸透クロマトグラフィー)装置によって測定し、ポリエチレングリコール、ポリエチレンオキサイド換算値として、Mn及びMwを算出した。
   GPC装置:GPC-101(昭和電工社製)、カラム:GPC KD-803、GPC KD-805(昭和電工社製)の直列、カラム温度:50℃、溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム一水和物(LiBr・H2O)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10mL/L)、流速:1.0mL/分
 検量線作成用標準サンプル:TSK 標準ポリエチレンオキサイド(分子量;約900,000、150,000、100,000及び30,000)(東ソー社製)及びポリエチレングリコール(分子量;約12,000、4,000及び1,000)(ポリマーラボラトリー社製)。
<Measurement of molecular weight>
Mn and Mw were calculated as values in terms of polyethylene glycol and polyethylene oxide by measuring with the following normal temperature GPC (gel permeation chromatography) apparatus.
GPC apparatus: GPC-101 (manufactured by Showa Denko), column: GPC KD-803, GPC KD-805 (manufactured by Showa Denko) in series, column temperature: 50 ° C., eluent: N,N-dimethylformamide (added As agents, 30 mmol/L of lithium bromide monohydrate (LiBr.H2O), 30 mmol/L of phosphoric acid/anhydrous crystals (o-phosphoric acid), and 10 mL/L of tetrahydrofuran (THF)), flow rate: 1. 0 mL/min Standard sample for creating a calibration curve: TSK standard polyethylene oxide (molecular weight: about 900,000, 150,000, 100,000 and 30,000) (manufactured by Tosoh Corporation) and polyethylene glycol (molecular weight: about 12,000, 4,000 and 1,000) (manufactured by Polymer Laboratories).
[モノマーの合成]
 DA-1~DA-3は文献等未公開の新規化合物であり、下記モノマー合成例1~3における生成物はH-NMR分析により同定した。分析条件は下記のとおりである。
 装置:BRUKER ADVANCE III-500MHz
 測定溶媒:重水素化ジメチルスルホキシド(DMSO-d
 基準物質:テトラメチルシラン(TMS)(δ0.0 ppm for H)
[Synthesis of Monomer]
DA-1 to DA-3 are novel compounds not disclosed in literature, etc., and the products in Synthesis Examples 1 to 3 below were identified by 1 H-NMR analysis. Analysis conditions are as follows.
Equipment: BRUKER ADVANCE III-500MHz
Measurement solvent: deuterated dimethyl sulfoxide (DMSO-d 6 )
Reference substance: tetramethylsilane (TMS) (δ0.0 ppm for 1 H)
<モノマー合成例1:DA-1の合成>
Figure JPOXMLDOC01-appb-C000017
<Monomer Synthesis Example 1: Synthesis of DA-1>
Figure JPOXMLDOC01-appb-C000017
 2-(4-ニトロフェノキシ)エタノール(30.0g,0.164mol)に対し、THF(120g)及びピリジン(14.0g,0.177mol)を仕込み、氷浴(0℃)で冷却しながら撹拌した。得られた溶液中に、THF(60g)に溶解させたアジピン酸ジクロリド(17.0g,0.0929mol)を滴下し、滴下終了後、室温(25℃)で20分間撹拌し、その後45℃で18時間撹拌した。反応終了後、室温(25℃)へ冷却し、水(540g)を加えて結晶を析出させた。濾過により得られた結晶を乾燥させ、粗結晶(39g)を得た。粗結晶にTHF(300g)を加え70℃で加熱撹拌し、氷浴(0℃)で冷却しながらメタノール(400g)を加えて再結晶させた。これを濾過し、得られた結晶を乾燥させ、DA-1-1を得た(収量:34.0g,0.0713mol,収率88%)。
H-NMR(500MHz) in DMSO-d:δ(ppm)=8.19(d,J=9.5Hz,4H),7.16(d,J=9.5Hz,4H),4.37(q,4H),4.34(q,4H),2.33(t,4H),1.54-1.51(m,4H).
THF (120 g) and pyridine (14.0 g, 0.177 mol) were added to 2-(4-nitrophenoxy)ethanol (30.0 g, 0.164 mol), and the mixture was stirred while cooling in an ice bath (0°C). did. To the resulting solution, adipic acid dichloride (17.0 g, 0.0929 mol) dissolved in THF (60 g) was added dropwise. Stirred for 18 hours. After completion of the reaction, the mixture was cooled to room temperature (25° C.) and water (540 g) was added to precipitate crystals. The crystals obtained by filtration were dried to obtain crude crystals (39 g). THF (300 g) was added to the crude crystals, and the mixture was heated and stirred at 70° C., and was recrystallized by adding methanol (400 g) while cooling in an ice bath (0° C.). This was filtered and the obtained crystals were dried to obtain DA-1-1 (yield: 34.0 g, 0.0713 mol, yield 88%).
1 H-NMR (500 MHz) in DMSO-d 6 : δ (ppm) = 8.19 (d, J = 9.5 Hz, 4H), 7.16 (d, J = 9.5 Hz, 4H), 4. 37 (q, 4H), 4.34 (q, 4H), 2.33 (t, 4H), 1.54-1.51 (m, 4H).
 上記で得られたDA-1-1(29.0g,0.0609mol)に対し、DMF(290g)を加え窒素置換した後、カーボン担持パラジウム(5%Pdカーボン粉末(含水品)Kタイプ、エヌ・イー・ケムキャット社製)(2.32g)を加え再度窒素置換し、水素テドラーバッグを取り付け、50℃で18時間加熱撹拌した。反応終了後、メンブレンフィルターに通してカーボン担持パラジウムを除去後、濾液に水(1000g)を加えて撹拌し結晶を析出させた。これを濾過し、粗結晶(24g)を得た。粗結晶にTHF(92g)を加え50℃で加熱撹拌してスラリー洗浄し、次いで氷浴(0℃)で冷却後、濾過し、得られた結晶を乾燥させ、結晶(22g)を得た。得られた結晶にDMF(66g)を加え50℃で加熱撹拌し、次いで氷浴(0℃)で冷却後、アセトニトリル(88g)を加えて再結晶させた。これを濾過し、得られた結晶を乾燥させ、DA-1を得た(収量:17.0g,0.0408mol,収率67%)。
H-NMR(500MHz) in DMSO-d:δ(ppm)=6.65(d,J=9.0Hz,4H),6.49(d,J=9.0Hz,4H),4.60(s,4H),4.26(t,4H),4.01(t,4H),2.33(t,4H),1.56-1.53(m,4H).
To DA-1-1 (29.0 g, 0.0609 mol) obtained above, DMF (290 g) was added and nitrogen-substituted, and then carbon-supported palladium (5% Pd carbon powder (hydrous product) K type, N E Chemcat Co.) (2.32 g) was added, and the mixture was replaced with nitrogen again, attached with a hydrogen Tedlar bag, and heated and stirred at 50°C for 18 hours. After completion of the reaction, the solution was passed through a membrane filter to remove carbon-supported palladium, and water (1000 g) was added to the filtrate and stirred to precipitate crystals. This was filtered to obtain crude crystals (24 g). THF (92 g) was added to the crude crystals, and the slurry was washed with heating and stirring at 50° C., then cooled in an ice bath (0° C.), filtered, and the obtained crystals were dried to obtain crystals (22 g). DMF (66 g) was added to the obtained crystals, and the mixture was heated and stirred at 50°C, cooled in an ice bath (0°C), and recrystallized by adding acetonitrile (88 g). This was filtered and the obtained crystals were dried to obtain DA-1 (yield: 17.0 g, 0.0408 mol, yield 67%).
1 H-NMR (500 MHz) in DMSO-d 6 : δ (ppm) = 6.65 (d, J = 9.0 Hz, 4H), 6.49 (d, J = 9.0 Hz, 4H), 4. 60 (s, 4H), 4.26 (t, 4H), 4.01 (t, 4H), 2.33 (t, 4H), 1.56-1.53 (m, 4H).
<モノマー合成例2:DA-2の合成>
Figure JPOXMLDOC01-appb-C000018
<Monomer Synthesis Example 2: Synthesis of DA-2>
Figure JPOXMLDOC01-appb-C000018
 4’-ヒドロキシ-4-ニトロビフェニル(30.0g,0.139mol)に対し、DMF(210g)及び炭酸カリウム(48.0g,0.347mol)を仕込み、80℃で30分間加熱撹拌した。得られた溶液中に、DMF(30g)に溶解させた2-ブロモエタノール(26g,0.208mol)を滴下し、80℃で18時間加熱撹拌した。反応終了後、室温(25℃)へ冷却し、水(480g)を加えて結晶を析出させた。濾過し、得られた結晶を乾燥した。濾物にメタノールを加え、50℃で加熱撹拌してスラリー洗浄し、室温(25℃)へ冷却後、濾過した。濾液を濃縮後、同様の操作にて3次結晶まで取り出し、得られた結晶を乾燥させ、DA-2-1を得た(収量:31.0g,0.120mol,収率86%)。
H-NMR(500MHz) in DMSO-d:δ(ppm)=8.27(d,J=8.5Hz,2H),7.92(d,J=9.0Hz,2H),7.76(d,J=8.5Hz,2H),7.09(d,J=9.0Hz,2H),4.89(t,1H),4.09-4.06(m,2H),3.76-3.73(m,2H).
DMF (210 g) and potassium carbonate (48.0 g, 0.347 mol) were added to 4′-hydroxy-4-nitrobiphenyl (30.0 g, 0.139 mol), and the mixture was heated and stirred at 80° C. for 30 minutes. 2-Bromoethanol (26 g, 0.208 mol) dissolved in DMF (30 g) was added dropwise to the obtained solution, and the mixture was heated and stirred at 80° C. for 18 hours. After completion of the reaction, the mixture was cooled to room temperature (25° C.) and water (480 g) was added to precipitate crystals. It was filtered and the crystals obtained were dried. Methanol was added to the filtrate, and the slurry was washed with heating and stirring at 50° C., cooled to room temperature (25° C.), and filtered. After concentrating the filtrate, the third crystal was collected by the same operation, and the obtained crystal was dried to obtain DA-2-1 (yield: 31.0 g, 0.120 mol, yield 86%).
1 H-NMR (500 MHz) in DMSO-d 6 : δ (ppm) = 8.27 (d, J = 8.5 Hz, 2H), 7.92 (d, J = 9.0 Hz, 2H), 7. 76 (d, J = 8.5Hz, 2H), 7.09 (d, J = 9.0Hz, 2H), 4.89 (t, 1H), 4.09-4.06 (m, 2H), 3.76-3.73 (m, 2H).
 上記で得られたDA-2-1(26.0g,0.100mol)に対し、THF(230g)及びピリジン(8.20g,0.104mol)を仕込み、氷浴(0℃)で冷却しながら撹拌した。この溶液中に、THF(26g)に溶解させたアジピン酸ジクロリド(9.9g,0.0541mol)を滴下し、滴下終了後、室温(25℃)で5時間撹拌し、その後45℃で1時間撹拌した。反応終了後、室温(25℃)へ冷却し、水(765g)を加えて結晶を析出させた。これを濾過し、得られた結晶を乾燥して粗結晶(29g)を得た。粗結晶にTHF(290g)を加え60℃で加熱撹拌した後、氷浴(0℃)で冷却しながらメタノール(290g)を加えて再結晶させた。これを濾過し、得られた結晶を乾燥させ、DA-2-2を得た(収量:24.0g,0.0382mol,収率76%)。
H-NMR(500MHz) in DMSO-d:δ(ppm)=8.25(d,J=9.0Hz,4H),7.90(d,J=8.5Hz,4H),7.74(d,J=8.5Hz,4H),7.09(d,J=8.5Hz,4H),4.37(t,4H),4.25(t,4H),2.34(t,4H),1.57-1.54(m,4H).
THF (230 g) and pyridine (8.20 g, 0.104 mol) were added to DA-2-1 (26.0 g, 0.100 mol) obtained above, and cooled in an ice bath (0°C). Stirred. Into this solution, adipic acid dichloride (9.9 g, 0.0541 mol) dissolved in THF (26 g) was added dropwise. After the addition was completed, the mixture was stirred at room temperature (25°C) for 5 hours, and then at 45°C for 1 hour. Stirred. After completion of the reaction, the mixture was cooled to room temperature (25° C.) and water (765 g) was added to precipitate crystals. This was filtered and the obtained crystals were dried to obtain crude crystals (29 g). THF (290 g) was added to the crude crystals and the mixture was heated and stirred at 60° C., and then recrystallized by adding methanol (290 g) while cooling in an ice bath (0° C.). This was filtered and the obtained crystals were dried to obtain DA-2-2 (yield: 24.0 g, 0.0382 mol, yield 76%).
1 H-NMR (500 MHz) in DMSO-d 6 : δ (ppm) = 8.25 (d, J = 9.0 Hz, 4H), 7.90 (d, J = 8.5 Hz, 4H), 7. 74 (d, J = 8.5 Hz, 4H), 7.09 (d, J = 8.5 Hz, 4H), 4.37 (t, 4H), 4.25 (t, 4H), 2.34 ( t, 4H), 1.57-1.54 (m, 4H).
 上記で得られたDA-2-2(25.0g,0.0398mol)に対し、DMF(490g)を加え窒素置換した後、カーボン担持パラジウム(5%Pdカーボン粉末(含水品)Kタイプ、エヌ・イー・ケムキャット社製)(2.00g)を加え再度窒素置換し、水素テドラーバッグを取り付け室温(25℃)で48時間撹拌した。反応終了後、メンブレンフィルターに通しカーボン担持パラジウムを除去後、濾液を濃縮し結晶が析出し始めるまで濾液を濃縮した(DMFの残量:140g程度)。これを55℃で加熱撹拌・全溶解させ、室温(25℃)に冷却し、アセトニトリル(80g)を加え結晶を析出させた。これを濾過し、得られた結晶を乾燥させ、DA-2を得た(収量:20.0g,0.0352mol,収率88%)。
H-NMR(500MHz) in DMSO-d:δ(ppm)=7.43(d,J=9.0Hz,4H),7.27(d,J=8.5Hz,4H),6.93(d,J=8.5Hz,4H),6.61(d,J=8.5Hz,4H),5.10(s,4H),4.33(t,4H),4.17(t,4H),2.33(t,4H),1.56-1.54(m,4H).
<モノマー合成例3:DA-3の合成>
Figure JPOXMLDOC01-appb-C000019
 2-(4-ニトロフェノキシ)エタノール(35.7g,0.195mol)に対し、THF(180g)及びピリジン(18.4g,0.232mol)を仕込み、氷浴(0℃)で冷却しながら撹拌した。得られた溶液中に、THF(60g)に溶解させたスベリン酸ジクロリド(19.6g,0.0929mol)を滴下し、滴下終了後、室温(25℃)で20分間撹拌し、その後45℃で18時間撹拌した。反応終了後、室温(25℃)へ冷却し、水(400g)を加えて結晶を析出させた。濾過により得られた結晶を乾燥させ、粗結晶(35g)を得た。粗結晶にTHF(180g)を加え70℃で加熱撹拌し、氷浴(0℃)で冷却しながらメタノール(400g)を加えて再結晶させた。これを濾過し、得られた結晶を乾燥させ、DA-3-1を得た(収量:30.9g,0.0613mol,収率66%)。
H-NMR(500MHz) in DMSO-d:δ(ppm)=8.19(d,J=9.5Hz,4H),7.17(d,J=9.5Hz,4H),4.38-4.34(m,8H),2.28(t,4H),1.48-1.45(m,4H),1.25-1.23(m,4H).
 上記で得られたDA-3-1(30.9g,0.0613mol)に対し、THF(770g)を加え窒素置換した後、カーボン担持パラジウム(5%Pdカーボン粉末(含水品)Kタイプ、エヌ・イー・ケムキャット社製)(3.1g)を加え再度窒素置換し、水素テドラーバッグを取り付け、45℃で24時間加熱撹拌した。反応終了後、メンブレンフィルターに通してカーボン担持パラジウムを除去後、濾液を濃縮した後、撹拌しながらイソプロピルアルコール(240g)を加え、結晶を析出させた。これを濾過し、得られた結晶を乾燥させ、DA-3を得た(収量:24.9g,0.0560mol,収率91%)。
H-NMR(500MHz) in DMSO-d:δ(ppm)=6.66(d,J=9.0Hz,4H),6.50(d,J=9.0Hz,4H),4.61(s,4H),4.26(t,4H),4.01(t,4H),2.31-2.28(m,4H),1.51-1.47(m,4H)、1.28-1.24(m、4H).
To DA-2-2 (25.0 g, 0.0398 mol) obtained above, DMF (490 g) was added and nitrogen-substituted, and then carbon-supported palladium (5% Pd carbon powder (hydrous product) K type, N E Chemcat Co., Ltd.) (2.00 g) was added, and the mixture was replaced with nitrogen again, attached with a hydrogen Tedlar bag, and stirred at room temperature (25°C) for 48 hours. After completion of the reaction, the solution was passed through a membrane filter to remove carbon-supported palladium, and the filtrate was concentrated until crystals began to precipitate (remaining amount of DMF: about 140 g). This was heated and stirred at 55° C. to completely dissolve, cooled to room temperature (25° C.), and acetonitrile (80 g) was added to precipitate crystals. This was filtered and the obtained crystals were dried to obtain DA-2 (yield: 20.0 g, 0.0352 mol, yield 88%).
1 H-NMR (500 MHz) in DMSO-d 6 : δ (ppm) = 7.43 (d, J = 9.0 Hz, 4H), 7.27 (d, J = 8.5 Hz, 4H), 6. 93 (d, J = 8.5 Hz, 4H), 6.61 (d, J = 8.5 Hz, 4H), 5.10 (s, 4H), 4.33 (t, 4H), 4.17 ( t, 4H), 2.33 (t, 4H), 1.56-1.54 (m, 4H).
<Monomer Synthesis Example 3: Synthesis of DA-3>
Figure JPOXMLDOC01-appb-C000019
THF (180 g) and pyridine (18.4 g, 0.232 mol) were added to 2-(4-nitrophenoxy)ethanol (35.7 g, 0.195 mol), and the mixture was stirred while cooling in an ice bath (0°C). did. To the resulting solution, suberic acid dichloride (19.6 g, 0.0929 mol) dissolved in THF (60 g) was added dropwise. Stirred for 18 hours. After completion of the reaction, the mixture was cooled to room temperature (25° C.) and water (400 g) was added to precipitate crystals. The crystals obtained by filtration were dried to obtain crude crystals (35 g). THF (180 g) was added to the crude crystals and the mixture was heated and stirred at 70° C., and was recrystallized by adding methanol (400 g) while cooling in an ice bath (0° C.). This was filtered and the obtained crystals were dried to obtain DA-3-1 (yield: 30.9 g, 0.0613 mol, yield 66%).
1 H-NMR (500 MHz) in DMSO-d 6 : δ (ppm) = 8.19 (d, J = 9.5 Hz, 4H), 7.17 (d, J = 9.5 Hz, 4H), 4. 38-4.34 (m, 8H), 2.28 (t, 4H), 1.48-1.45 (m, 4H), 1.25-1.23 (m, 4H).
To DA-3-1 (30.9 g, 0.0613 mol) obtained above, THF (770 g) was added and nitrogen-substituted, and then carbon-supported palladium (5% Pd carbon powder (hydrous product) K type, N E Chemcat Co.) (3.1 g) was added, and the mixture was replaced with nitrogen again, attached with a hydrogen Tedlar bag, and heated with stirring at 45° C. for 24 hours. After completion of the reaction, the filtrate was passed through a membrane filter to remove carbon-supported palladium, and after concentrating the filtrate, isopropyl alcohol (240 g) was added with stirring to precipitate crystals. This was filtered and the obtained crystals were dried to obtain DA-3 (yield: 24.9 g, 0.0560 mol, yield 91%).
1 H-NMR (500 MHz) in DMSO-d 6 : δ (ppm) = 6.66 (d, J = 9.0 Hz, 4H), 6.50 (d, J = 9.0 Hz, 4H), 4. 61 (s, 4H), 4.26 (t, 4H), 4.01 (t, 4H), 2.31-2.28 (m, 4H), 1.51-1.47 (m, 4H) , 1.28-1.24 (m, 4H).
[重合体の合成]
<合成例1>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-1(2.29g、5.50mmol)及びNMP(16.8g)を加えて、窒素を送りながら室温で撹拌して溶解させた。得られたジアミン溶液を水冷下で撹拌しながら、CA-1(1.15g、5.27mmol)及びNMP(8.10g)を加えて、50℃で18時間撹拌することで、固形分濃度12質量%のポリアミック酸(A-1)の溶液(粘度:239mPa・s)を得た。このポリアミック酸のMnは10,094、Mwは33,198であった。
[Synthesis of polymer]
<Synthesis Example 1>
DA-1 (2.29 g, 5.50 mmol) and NMP (16.8 g) are added to a 50 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, and dissolved by stirring at room temperature while sending nitrogen. rice field. While stirring the resulting diamine solution under water cooling, CA-1 (1.15 g, 5.27 mmol) and NMP (8.10 g) were added and stirred at 50° C. for 18 hours to obtain a solid content concentration of 12. A mass % solution of polyamic acid (A-1) (viscosity: 239 mPa·s) was obtained. This polyamic acid had an Mn of 10,094 and an Mw of 33,198.
<合成例2>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-1(2.54g、6.10mmol)及びNMP(18.6g)を加えて、窒素を送りながら室温で撹拌して溶解させた。得られたジアミン溶液を水冷下で撹拌しながら、CA-2(1.14g、5.81mmol)及びNMP(8.00g)を加えて、室温で18時間撹拌することで、固形分濃度12質量%のポリアミック酸(A-2)の溶液(粘度:241mPa・s)を得た。このポリアミック酸のMnは12,332、Mwは46,258であった。
<Synthesis Example 2>
DA-1 (2.54 g, 6.10 mmol) and NMP (18.6 g) were added to a 50 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, and dissolved by stirring at room temperature while sending nitrogen. rice field. While stirring the resulting diamine solution under water cooling, CA-2 (1.14 g, 5.81 mmol) and NMP (8.00 g) were added and stirred at room temperature for 18 hours to give a solid content concentration of 12 mass. % solution of polyamic acid (A-2) (viscosity: 241 mPa·s). This polyamic acid had an Mn of 12,332 and an Mw of 46,258.
<合成例3>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-1(3.12g、7.50mmol)及びNMP(22.9g)を加えて、窒素を送りながら室温で撹拌して溶解させた。得られたジアミン溶液を水冷下で撹拌しながら、CA-3(1.60g、7.14mmol)及びNMP(10.8g)を加えて、40℃で18時間撹拌することで、固形分濃度12質量%のポリアミック酸(A-3)の溶液(粘度:282mPa・s)を得た。このポリアミック酸のMnは10,704、Mwは39,144であった。
<Synthesis Example 3>
DA-1 (3.12 g, 7.50 mmol) and NMP (22.9 g) were added to a 50 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, and dissolved by stirring at room temperature while sending nitrogen. rice field. While stirring the resulting diamine solution under water cooling, CA-3 (1.60 g, 7.14 mmol) and NMP (10.8 g) were added and stirred at 40° C. for 18 hours to obtain a solid content concentration of 12. A mass % solution of polyamic acid (A-3) (viscosity: 282 mPa·s) was obtained. This polyamic acid had an Mn of 10,704 and an Mw of 39,144.
<合成例4>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-3(2.58g、5.80mmol)及びNMP(23.2g)を加えて、窒素を送りながら室温で撹拌して溶解させた。得られたジアミン溶液を水冷下で撹拌しながら、CA-3(1.21g、5.40mmol)及びNMP(4.4g)を加えて、40℃で18時間撹拌することで、固形分濃度12質量%のポリアミック酸(A-4)の溶液(粘度:190mPa・s)を得た。このポリアミック酸のMnは10,832、Mwは43,395であった。
<Synthesis Example 4>
DA-3 (2.58 g, 5.80 mmol) and NMP (23.2 g) were added to a 50 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, and dissolved by stirring at room temperature while sending nitrogen. rice field. While stirring the resulting diamine solution under water cooling, CA-3 (1.21 g, 5.40 mmol) and NMP (4.4 g) were added and stirred at 40° C. for 18 hours to give a solid content of 12. A solution (viscosity: 190 mPa·s) of polyamic acid (A-4) was obtained at 1% by mass. This polyamic acid had an Mn of 10,832 and an Mw of 43,395.
<合成例5>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-1(2.27g、5.44mmol)、DA-6(0.390g、1.36mmol)及びNMP(19.5g)を加えて、窒素を送りながら室温で撹拌して溶解させた。得られたジアミン溶液を水冷下で撹拌しながら、CA-3(1.45g、6.46mmol)及びNMP(10.1g)を加えて、40℃で18時間撹拌することで、固形分濃度12質量%のポリアミック酸(A-5)の溶液(粘度:327mPa・s)を得た。このポリアミック酸のMnは10,534、Mwは37,647であった。
<Synthesis Example 5>
DA-1 (2.27 g, 5.44 mmol), DA-6 (0.390 g, 1.36 mmol) and NMP (19.5 g) were added to a 50 mL four-necked flask equipped with a stirrer and nitrogen inlet tube. was dissolved by stirring at room temperature while blowing nitrogen. While stirring the resulting diamine solution under water cooling, CA-3 (1.45 g, 6.46 mmol) and NMP (10.1 g) were added and stirred at 40° C. for 18 hours to give a solid content concentration of 12. A mass % solution of polyamic acid (A-5) (viscosity: 327 mPa·s) was obtained. This polyamic acid had an Mn of 10,534 and an Mw of 37,647.
<合成例6>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-1(1.46g、3.50mmol)、DA-6(1.00g、3.50mmol)及びNMP(18.0g)を加えて、窒素を送りながら室温で撹拌して溶解させた。得られたジアミン溶液を水冷下で撹拌しながら、CA-3(1.48g、6.58mmol)及びNMP(10.8g)を加えて、40℃で18時間撹拌することで、固形分濃度12質量%のポリアミック酸(A-6)の溶液(粘度:225mPa・s)を得た。このポリアミック酸のMnは10,400、Mwは25,285であった。
<Synthesis Example 6>
DA-1 (1.46 g, 3.50 mmol), DA-6 (1.00 g, 3.50 mmol) and NMP (18.0 g) were added to a 50 mL four-necked flask equipped with a stirrer and nitrogen inlet tube. was dissolved by stirring at room temperature while blowing nitrogen. While stirring the resulting diamine solution under water cooling, CA-3 (1.48 g, 6.58 mmol) and NMP (10.8 g) were added and stirred at 40° C. for 18 hours to give a solid content of 12. A solution (viscosity: 225 mPa·s) of polyamic acid (A-6) with a mass % was obtained. This polyamic acid had an Mn of 10,400 and an Mw of 25,285.
<合成例7>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-1(0.73g、1.75mmol)、DA-6(1.50g、5.24mmol)及びNMP(20.1g)を加えて、窒素を送りながら室温で撹拌して溶解させた。得られたジアミン溶液を水冷下で撹拌しながら、CA-3(1.47g、6.56mmol)及びNMP(6.9g)を加えて、40℃で18時間撹拌することで、固形分濃度12質量%のポリアミック酸(A-7)の溶液(粘度:236mPa・s)を得た。このポリアミック酸のMnは10,634、Mwは31,097であった。
<Synthesis Example 7>
DA-1 (0.73 g, 1.75 mmol), DA-6 (1.50 g, 5.24 mmol) and NMP (20.1 g) were added to a 50 mL four-necked flask equipped with a stirrer and nitrogen inlet tube. was dissolved by stirring at room temperature while blowing nitrogen. While stirring the resulting diamine solution under water cooling, CA-3 (1.47 g, 6.56 mmol) and NMP (6.9 g) were added and stirred at 40° C. for 18 hours to give a solid content of 12. A solution (viscosity: 236 mPa·s) of polyamic acid (A-7) was obtained at a mass %. This polyamic acid had an Mn of 10,634 and an Mw of 31,097.
<合成例8>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-3(0.80g、1.80mmol)、DA-6(1.55g、5.41mmol)及びNMP(21.1g)を加えて、窒素を送りながら室温で撹拌して溶解させた。得られたジアミン溶液を水冷下で撹拌しながら、CA-3(1.52g、6.78mmol)及びNMP(7.0g)を加えて、40℃で18時間撹拌することで、固形分濃度12質量%のポリアミック酸(A-8)の溶液(粘度:209mPa・s)を得た。このポリアミック酸のMnは9,900、Mwは28,856であった。
<Synthesis Example 8>
DA-3 (0.80 g, 1.80 mmol), DA-6 (1.55 g, 5.41 mmol) and NMP (21.1 g) were added to a 50 mL four-necked flask equipped with a stirrer and nitrogen inlet tube. was dissolved by stirring at room temperature while blowing nitrogen. While stirring the resulting diamine solution under water cooling, CA-3 (1.52 g, 6.78 mmol) and NMP (7.0 g) were added and stirred at 40° C. for 18 hours to obtain a solid content of 12. A solution (viscosity: 209 mPa·s) of polyamic acid (A-8) with a mass % was obtained. This polyamic acid had an Mn of 9,900 and an Mw of 28,856.
<合成例9>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-1(1.67g、4.01mmol)、DA-4(0.98g、4.01mmol)及びNMP(23.8g)を加えて、窒素を送りながら室温で撹拌して溶解させた。得られたジアミン溶液を水冷下で撹拌しながら、CA-1(1.63g、7.47mmol)及びNMP(7.6g)を加えて、50℃で18時間撹拌することで、固形分濃度12質量%のポリアミック酸(A-9)の溶液(粘度:300mPa・s)を得た。このポリアミック酸のMnは9,351、Mwは31,020であった。
<Synthesis Example 9>
DA-1 (1.67 g, 4.01 mmol), DA-4 (0.98 g, 4.01 mmol) and NMP (23.8 g) were added to a 50 mL four-necked flask equipped with a stirrer and nitrogen inlet tube. was dissolved by stirring at room temperature while blowing nitrogen. While stirring the resulting diamine solution under water cooling, CA-1 (1.63 g, 7.47 mmol) and NMP (7.6 g) were added and stirred at 50° C. for 18 hours to give a solid content concentration of 12. A solution (viscosity: 300 mPa·s) of polyamic acid (A-9) with a mass % was obtained. This polyamic acid had an Mn of 9,351 and an Mw of 31,020.
<合成例10>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-2(2.50g、4.40mmol)及びNMP(19.6g)を加えて、窒素を送りながら室温で撹拌して溶解させた。得られたジアミン溶液を水冷下で撹拌しながら、CA-1(0.873g、4.00mmol)及びNMP(5.10g)を加えて、50℃で18時間撹拌することで、固形分濃度12質量%のポリアミック酸(A-10)の溶液(粘度:231mPa・s)を得た。このポリアミック酸のMnは9,716、Mwは25,390であった。
<Synthesis Example 10>
DA-2 (2.50 g, 4.40 mmol) and NMP (19.6 g) are added to a 50 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, and dissolved by stirring at room temperature while sending nitrogen. rice field. While stirring the resulting diamine solution under water cooling, CA-1 (0.873 g, 4.00 mmol) and NMP (5.10 g) were added and stirred at 50° C. for 18 hours to give a solid content concentration of 12. A solution (viscosity: 231 mPa·s) of polyamic acid (A-10) of mass % was obtained. This polyamic acid had an Mn of 9,716 and an Mw of 25,390.
<合成例11>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-2(2.79g、4.90mmol)及びNMP(20.4g)を加えて、窒素を送りながら室温で撹拌して溶解させた。得られたジアミン溶液を水冷下で撹拌しながら、CA-2(0.88g、4.49mmol)及びNMP(6.35g)を加えて、室温で18時間撹拌することで、固形分濃度12質量%のポリアミック酸(A-11)の溶液(粘度:230mPa・s)を得た。このポリアミック酸のMnは11,774、Mwは32,286であった。
<Synthesis Example 11>
DA-2 (2.79 g, 4.90 mmol) and NMP (20.4 g) were added to a 50 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, and dissolved by stirring at room temperature while sending nitrogen. rice field. While stirring the resulting diamine solution under water cooling, CA-2 (0.88 g, 4.49 mmol) and NMP (6.35 g) were added and stirred at room temperature for 18 hours to give a solid content concentration of 12 mass. % solution of polyamic acid (A-11) (viscosity: 230 mPa·s). This polyamic acid had an Mn of 11,774 and an Mw of 32,286.
<合成例12>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-6(3.72g、13.0mmol)及びNMP(31.3g)を加えて、窒素を送りながら室温で撹拌して溶解させた。得られたジアミン溶液を水冷下で撹拌しながら、CA-2(2.37g、12.1mmol)及びNMP(13.4g)を加えて、室温で18時間撹拌することで、固形分濃度12質量%のポリアミック酸(A-12)の溶液(粘度:229mPa・s)を得た。このポリアミック酸のMnは10,585、Mwは27,581であった。
<Synthesis Example 12>
DA-6 (3.72 g, 13.0 mmol) and NMP (31.3 g) were added to a 50 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, and dissolved by stirring at room temperature while sending nitrogen. rice field. While stirring the resulting diamine solution under water cooling, CA-2 (2.37 g, 12.1 mmol) and NMP (13.4 g) were added and stirred at room temperature for 18 hours to give a solid content concentration of 12 mass. % solution of polyamic acid (A-12) (viscosity: 229 mPa·s). This polyamic acid had an Mn of 10,585 and an Mw of 27,581.
<合成例13>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-7(2.46g、6.40mmol)及びNMP(18.0g)を加えて、窒素を送りながら室温で撹拌して溶解させた。得られたジアミン溶液を水冷下で撹拌しながら、CA-2(1.23g、6.26mmol)及びNMP(8.40g)を加えて、室温で18時間撹拌することで、固形分濃度12質量%のポリアミック酸(A-13)の溶液(粘度:292mPa・s)を得た。このポリアミック酸のMnは16,511、Mwは60,289であった。
<Synthesis Example 13>
DA-7 (2.46 g, 6.40 mmol) and NMP (18.0 g) were added to a 50 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, and dissolved by stirring at room temperature while sending nitrogen. rice field. While stirring the obtained diamine solution under water cooling, CA-2 (1.23 g, 6.26 mmol) and NMP (8.40 g) were added and stirred at room temperature for 18 hours to obtain a solid content concentration of 12 mass. % solution of polyamic acid (A-13) (viscosity: 292 mPa·s). This polyamic acid had an Mn of 16,511 and an Mw of 60,289.
<合成例14>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-5(2.07g、8.01mmol)及びNMP(18.6g)を加えて、窒素を送りながら室温で撹拌して溶解させた。得られたジアミン溶液を水冷下で撹拌しながら、CA-1(1.65g、7.56mmol)及びNMP(14.8g)を加えて、50℃で18時間撹拌することで、固形分濃度10質量%のポリアミック酸(A-14)の溶液(粘度:115mPa・s)を得た。このポリアミック酸のMnは12,045、Mwは27,326であった。
<Synthesis Example 14>
DA-5 (2.07 g, 8.01 mmol) and NMP (18.6 g) were added to a 50 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, and dissolved by stirring at room temperature while sending nitrogen. rice field. While stirring the obtained diamine solution under water cooling, CA-1 (1.65 g, 7.56 mmol) and NMP (14.8 g) were added and stirred at 50 ° C. for 18 hours to give a solid content concentration of 10. A solution (viscosity: 115 mPa·s) of polyamic acid (A-14) was obtained at 1% by mass. This polyamic acid had an Mn of 12,045 and an Mw of 27,326.
<合成例15>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-6(3.72g、13.0mmol)及びNMP(37.3g)を加えて、窒素を送りながら室温で撹拌して溶解させた。得られたジアミン溶液を水冷下で撹拌しながら、CA-1(2.64g、12.1mmol)及びNMP(9.30g)を加えて、50℃で18時間撹拌することで、固形分濃度12質量%のポリアミック酸(A-15)の溶液(粘度:278mPa・s)を得た。このポリアミック酸のMnは10,832、Mwは43,395であった。
<Synthesis Example 15>
DA-6 (3.72 g, 13.0 mmol) and NMP (37.3 g) are added to a 50 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, and dissolved by stirring at room temperature while sending nitrogen. rice field. While stirring the resulting diamine solution under water cooling, CA-1 (2.64 g, 12.1 mmol) and NMP (9.30 g) were added and stirred at 50° C. for 18 hours to give a solid content concentration of 12. A solution (viscosity: 278 mPa·s) of polyamic acid (A-15) with a mass % was obtained. This polyamic acid had an Mn of 10,832 and an Mw of 43,395.
<合成例16>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-7(3.08g、8.00mmol)及びNMP(22.6g)を加えて、窒素を送りながら室温で撹拌して溶解させた。得られたジアミン溶液を水冷下で撹拌しながら、CA-1(1.61g、7.36mmol)及びNMP(11.8g)を加えて、50℃で18時間撹拌することで、固形分濃度12質量%のポリアミック酸(A-16)の溶液(粘度:256mPa・s)を得た。このポリアミック酸のMnは10,700、Mwは37,763であった。
<Synthesis Example 16>
DA-7 (3.08 g, 8.00 mmol) and NMP (22.6 g) are added to a 50 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, and dissolved by stirring at room temperature while sending nitrogen. rice field. While stirring the resulting diamine solution under water cooling, CA-1 (1.61 g, 7.36 mmol) and NMP (11.8 g) were added and stirred at 50° C. for 18 hours to give a solid content concentration of 12. A mass % solution of polyamic acid (A-16) (viscosity: 256 mPa·s) was obtained. This polyamic acid had an Mn of 10,700 and an Mw of 37,763.
<合成例17>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-6(2.29g、8.00mmol)及びNMP(16.8g)を加えて、窒素を送りながら室温で撹拌して溶解させた。得られたジアミン溶液を水冷下で撹拌しながら、CA-3(1.69g、7.52mmol)及びNMP(12.4g)を加えて、40℃で18時間撹拌することで、固形分濃度12質量%のポリアミック酸(A-17)の溶液(粘度:240mPa・s)を得た。このポリアミック酸のMnは11,482、Mwは38,490であった。
<Synthesis Example 17>
DA-6 (2.29 g, 8.00 mmol) and NMP (16.8 g) were added to a 50 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, and dissolved by stirring at room temperature while sending nitrogen. rice field. While stirring the resulting diamine solution under water cooling, CA-3 (1.69 g, 7.52 mmol) and NMP (12.4 g) were added and stirred at 40° C. for 18 hours to give a solid content concentration of 12. A solution (viscosity: 240 mPa·s) of polyamic acid (A-17) with a mass % was obtained. This polyamic acid had an Mn of 11,482 and an Mw of 38,490.
<合成例18>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-7(2.69g、7.00mmol)及びNMP(19.7g)を加えて、窒素を送りながら室温で撹拌して溶解させた。得られたジアミン溶液を水冷下で撹拌しながら、CA-3(1.54g、6.86mmol)及びNMP(10.1g)を加えて、40℃で18時間撹拌することで、固形分濃度12質量%のポリアミック酸(A-18)の溶液(粘度:283mPa・s)を得た。このポリアミック酸のMnは13,087、Mwは45,255であった。
<Synthesis Example 18>
DA-7 (2.69 g, 7.00 mmol) and NMP (19.7 g) were added to a 50 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, and dissolved by stirring at room temperature while sending nitrogen. rice field. While stirring the resulting diamine solution under water cooling, CA-3 (1.54 g, 6.86 mmol) and NMP (10.1 g) were added and stirred at 40° C. for 18 hours to give a solid content concentration of 12. A solution (viscosity: 283 mPa·s) of polyamic acid (A-18) with a mass % was obtained. This polyamic acid had an Mn of 13,087 and an Mw of 45,255.
<合成例19>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-8(1.28g、6.42mmol)、DA-10(0.32g、1.61mmol)及びNMP(14.3g)を加えて、窒素を送りながら室温で撹拌して溶解させた。得られたジアミン溶液を水冷下で撹拌しながら、CA-2(1.49g、7.60mmol)及びNMP(13.3g)を加えて、室温で18時間撹拌することで、固形分濃度10質量%のポリアミック酸(A-19)の溶液(粘度:125mPa・s)を得た。このポリアミック酸のMnは11,120、Mwは41,992であった。
<Synthesis Example 19>
DA-8 (1.28 g, 6.42 mmol), DA-10 (0.32 g, 1.61 mmol) and NMP (14.3 g) were added to a 50 mL four-necked flask equipped with a stirrer and nitrogen inlet tube. was dissolved by stirring at room temperature while blowing nitrogen. While stirring the obtained diamine solution under water cooling, CA-2 (1.49 g, 7.60 mmol) and NMP (13.3 g) were added and stirred at room temperature for 18 hours to obtain a solid content concentration of 10 mass. % solution of polyamic acid (A-19) (viscosity: 125 mPa·s). This polyamic acid had an Mn of 11,120 and an Mw of 41,992.
<合成例20>
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、DA-8(2.99g、15.0mmol)、DA-9(2.11g、5.01mmol)、DA-10(0.99g、4.99mmol)及びNMP(44.6g)を加えて、窒素を送りながら室温で撹拌して溶解させた。得られたジアミン溶液を水冷下で撹拌しながら、CA-2(4.51g、23.0mmol)及びNMP(15.4g)を加えて、室温で18時間撹拌することで、固形分濃度15質量%のポリアミック酸(A-20)の溶液(粘度:592mPa・s)を得た。このポリアミック酸のMnは12,080、Mwは32,115であった。
<Synthesis Example 20>
DA-8 (2.99 g, 15.0 mmol), DA-9 (2.11 g, 5.01 mmol), DA-10 (0.99 g, 4.99 mmol) and NMP (44.6 g) were added and dissolved by stirring at room temperature with nitrogen sparging. While stirring the obtained diamine solution under water cooling, CA-2 (4.51 g, 23.0 mmol) and NMP (15.4 g) were added and stirred at room temperature for 18 hours to obtain a solid content concentration of 15 mass. % solution of polyamic acid (A-20) (viscosity: 592 mPa·s). This polyamic acid had an Mn of 12,080 and an Mw of 32,115.
<合成例21>
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、DA-8(5.42g、27.2mmol)、DA-10(1.35g、6.80mmol)及びNMP(64.5g)を加えて、窒素を送りながら室温で撹拌して溶解させた。得られたジアミン溶液を水冷下で撹拌しながら、CA-2(1.53g、7.82mmol)及びNMP(10.2g)を加えて、室温で0.5時間撹拌した。その後、この溶液を水冷下で撹拌しながら、CA-4(6.38g、25.5mmol)及びNMP(8.50g)を加えて、50℃で18時間撹拌することで、固形分濃度15質量%のポリアミック酸(A-21)の溶液(粘度:1,250mPa・s)を得た。このポリアミック酸のMnは15,100、Mwは54,900であった。
<Synthesis Example 21>
DA-8 (5.42 g, 27.2 mmol), DA-10 (1.35 g, 6.80 mmol) and NMP (64.5 g) were added to a 100 mL four-necked flask equipped with a stirrer and nitrogen inlet tube. was dissolved by stirring at room temperature while blowing nitrogen. While stirring the resulting diamine solution under water cooling, CA-2 (1.53 g, 7.82 mmol) and NMP (10.2 g) were added and stirred at room temperature for 0.5 hours. Then, while stirring this solution under water cooling, CA-4 (6.38 g, 25.5 mmol) and NMP (8.50 g) were added and stirred at 50 ° C. for 18 hours to give a solid content concentration of 15 mass. % solution of polyamic acid (A-21) (viscosity: 1,250 mPa·s). This polyamic acid had an Mn of 15,100 and an Mw of 54,900.
<合成例22>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-4(0.98g、4.00mmol)、DA-8(0.78g、4.00mmol)及びNMP(10.1g)を加えて、窒素を送りながら室温で撹拌して溶解させた。得られたジアミン溶液を水冷下で撹拌しながら、CA-4(1.50g、6.00mmol)及びNMP(8.50g)を加えて、50℃で2時間撹拌した。その後、この溶液を水冷下で撹拌しながら、CA-5(0.49g、1.68mmol)及びNMP(2.80g)を加えて、50℃で18時間撹拌することで、固形分濃度15質量%のポリアミック酸(A-22)の溶液(粘度:315mPa・s)を得た。このポリアミック酸のMnは9,491、Mwは26,134であった。
<Synthesis Example 22>
DA-4 (0.98 g, 4.00 mmol), DA-8 (0.78 g, 4.00 mmol) and NMP (10.1 g) were added to a 50 mL four-necked flask equipped with a stirrer and nitrogen inlet tube. was dissolved by stirring at room temperature while blowing nitrogen. While stirring the resulting diamine solution under water cooling, CA-4 (1.50 g, 6.00 mmol) and NMP (8.50 g) were added and stirred at 50° C. for 2 hours. Then, while stirring this solution under water cooling, CA-5 (0.49 g, 1.68 mmol) and NMP (2.80 g) were added and stirred at 50 ° C. for 18 hours to give a solid content concentration of 15 mass. % solution of polyamic acid (A-22) (viscosity: 315 mPa·s). This polyamic acid had an Mn of 9,491 and an Mw of 26,134.
<合成例23>
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、DA-4(2.81g、11.5mmol)、DA-8(2.29g、11.5mmol)及びNMP(45.9g)を加えて、窒素を送りながら室温で撹拌して溶解させた。得られたジアミン溶液を水冷下で撹拌しながら、CA-4(2.88g、11.5mmol)及びNMP(15.4g)を加えて、50℃で2時間撹拌した。その後、この溶液を水冷下で撹拌しながら、CA-5(2.86g、9.72mmol)及びNMP(2.8g)を加えて、50℃で18時間撹拌することで、固形分濃度15質量%のポリアミック酸(A-23)の溶液(粘度:298mPa・s)を得た。このポリアミック酸のMnは8,290、Mwは22,181であった。
<Synthesis Example 23>
DA-4 (2.81 g, 11.5 mmol), DA-8 (2.29 g, 11.5 mmol) and NMP (45.9 g) were added to a 100 mL four-necked flask equipped with a stirrer and nitrogen inlet tube. was dissolved by stirring at room temperature while blowing nitrogen. While stirring the resulting diamine solution under water cooling, CA-4 (2.88 g, 11.5 mmol) and NMP (15.4 g) were added and stirred at 50° C. for 2 hours. Then, while stirring this solution under water cooling, CA-5 (2.86 g, 9.72 mmol) and NMP (2.8 g) were added and stirred at 50 ° C. for 18 hours to give a solid content concentration of 15 mass. % solution of polyamic acid (A-23) (viscosity: 298 mPa·s). This polyamic acid had an Mn of 8,290 and an Mw of 22,181.
<合成例24>
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、DA-4(2.81g、11.5mmol)、DA-8(2.29g、11.5mmol)及びNMP(45.9g)を加えて、窒素を送りながら室温で撹拌して溶解させた。得られたジアミン溶液を水冷下で撹拌しながら、CA-6(2.58g、11.5mmol)及びNMP(10.4g)を加えて、室温で2時間撹拌した。その後、この溶液を水冷下で撹拌しながら、CA-5(2.87g、9.72mmol)及びNMP(3.3g)を加えて、50℃で18時間撹拌することで、固形分濃度15質量%のポリアミック酸(A-24)の溶液(粘度:300mPa・s)を得た。このポリアミック酸のMnは9,018、Mwは27,228であった。
<Synthesis Example 24>
DA-4 (2.81 g, 11.5 mmol), DA-8 (2.29 g, 11.5 mmol) and NMP (45.9 g) were added to a 100 mL four-necked flask equipped with a stirrer and nitrogen inlet tube. was dissolved by stirring at room temperature while blowing nitrogen. While stirring the resulting diamine solution under water cooling, CA-6 (2.58 g, 11.5 mmol) and NMP (10.4 g) were added and stirred at room temperature for 2 hours. Then, while stirring this solution under water cooling, CA-5 (2.87 g, 9.72 mmol) and NMP (3.3 g) were added and stirred at 50 ° C. for 18 hours to give a solid content concentration of 15 mass. % solution of polyamic acid (A-24) (viscosity: 300 mPa·s). This polyamic acid had an Mn of 9,018 and an Mw of 27,228.
<合成例25>
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、DA-8(4.14g、20.8mmol)、DA-10(1.03g、5.19mmol)及びNMP(46.6g)を加えて、窒素を送りながら室温で撹拌して溶解させた。得られたジアミン溶液を水冷下で撹拌しながら、CA-2(2.20g、11.4mmol)及びNMP(7.50g)を加えて、室温で0.5時間撹拌した。その後、この溶液を水冷下で撹拌しながら、CA-4(3.25g、13.0mmol)及びNMP(6.20g)を加えて、50℃で18時間撹拌することで、固形分濃度15質量%のポリアミック酸(A-25)の溶液(粘度:535mPa・s)を得た。このポリアミック酸のMnは10,218、Mwは29,128であった。
<Synthesis Example 25>
DA-8 (4.14 g, 20.8 mmol), DA-10 (1.03 g, 5.19 mmol) and NMP (46.6 g) were added to a 100 mL four-necked flask equipped with a stirrer and nitrogen inlet tube. was dissolved by stirring at room temperature while blowing nitrogen. While stirring the resulting diamine solution under water cooling, CA-2 (2.20 g, 11.4 mmol) and NMP (7.50 g) were added and stirred at room temperature for 0.5 hours. Then, while stirring this solution under water cooling, CA-4 (3.25 g, 13.0 mmol) and NMP (6.20 g) were added and stirred at 50 ° C. for 18 hours to give a solid content concentration of 15 mass. % solution of polyamic acid (A-25) (viscosity: 535 mPa·s). This polyamic acid had an Mn of 10,218 and an Mw of 29,128.
<合成例26>
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、DA-8(5.42g、27.2mmol)、DA-10(1.35g、6.80mmol)及びNMP(64.5g)を加えて、窒素を送りながら室温で撹拌して溶解させた。得られたジアミン溶液を水冷下で撹拌しながら、CA-2(1.48g、7.55mmol)及びNMP(10.2g)を加えて、室温で0.5時間撹拌した。その後、この溶液を水冷下で撹拌しながら、CA-4(6.38g、25.5mmol)及びNMP(8.50g)を加えて、50℃で18時間撹拌することで、固形分濃度15質量%のポリアミック酸(A-26)の溶液(粘度:530mPa・s)を得た。このポリアミック酸のMnは9,982、Mwは28,927であった。
<Synthesis Example 26>
DA-8 (5.42 g, 27.2 mmol), DA-10 (1.35 g, 6.80 mmol) and NMP (64.5 g) were added to a 100 mL four-necked flask equipped with a stirrer and nitrogen inlet tube. was dissolved by stirring at room temperature while blowing nitrogen. While stirring the resulting diamine solution under water cooling, CA-2 (1.48 g, 7.55 mmol) and NMP (10.2 g) were added and stirred at room temperature for 0.5 hours. Then, while stirring this solution under water cooling, CA-4 (6.38 g, 25.5 mmol) and NMP (8.50 g) were added and stirred at 50 ° C. for 18 hours to give a solid content concentration of 15 mass. % solution of polyamic acid (A-26) (viscosity: 530 mPa·s). This polyamic acid had an Mn of 9,982 and an Mw of 28,927.
 上記合成例1~26において使用したテトラカルボン酸成分及びジアミン成分の種類及び量を表1に示す。
Figure JPOXMLDOC01-appb-T000020
Table 1 shows the types and amounts of the tetracarboxylic acid components and diamine components used in Synthesis Examples 1 to 26 above.
Figure JPOXMLDOC01-appb-T000020
[液晶配向剤の調製]
<実施例1>
 合成例2で得られたポリアミック酸(A-2)の溶液(3.90g)に、NMP(0.17g)、GBL(5.53g)、BCS(1.80g)、及びBCA(0.60g)を加え、室温で2時間撹拌することで、重合体固形分と各溶媒の質量比(重合体固形分:NMP:GBL:BCS:BCA)が4:30:46:15:5となる液晶配向剤(AL-1)を得た。
[Preparation of Liquid Crystal Aligning Agent]
<Example 1>
NMP (0.17 g), GBL (5.53 g), BCS (1.80 g), and BCA (0.60 g) were added to the solution (3.90 g) of polyamic acid (A-2) obtained in Synthesis Example 2. ) is added and stirred at room temperature for 2 hours, so that the mass ratio of the polymer solid content and each solvent (polymer solid content: NMP: GBL: BCS: BCA) is 4: 30: 46: 15: 5 liquid crystal An alignment agent (AL-1) was obtained.
<実施例2~6、及び比較例1~6>
 使用するポリアミック酸溶液を表2に示すように変更した点以外は上記実施例1と同様に実施することで、実施例2~6である液晶配向剤AL-2~AL-6及び比較例1~6である液晶配向剤AL-C1~AL-C6を得た。
<Examples 2 to 6, and Comparative Examples 1 to 6>
Liquid crystal aligning agents AL-2 to AL-6 of Examples 2 to 6 and Comparative Example 1 were prepared in the same manner as in Example 1 except that the polyamic acid solution used was changed as shown in Table 2. Liquid crystal aligning agents AL-C1 to AL-C6, which are ∼6, were obtained.
<実施例7>
 合成例3で得られたポリアミック酸(A-3)の溶液(0.90g)に、合成例21で得られたポリアミック酸(A-21)の溶液(2.88g)、NMP(4.68g)、BCS(3.00g)、及びAD-1(1質量%NMP溶液、0.54g)を加え、室温で2時間撹拌することで、重合体の質量比((A-3):(A-15))が20:80であり、重合体固形分と各溶媒の質量比(重合体固形分:NMP:BCS)が4.5:70.5:25であり、重合体100質量部に対してAD-1の配合割合が1質量部となる液晶配向剤(AL-7)を得た。
<Example 7>
To the solution (0.90 g) of polyamic acid (A-3) obtained in Synthesis Example 3, the solution (2.88 g) of polyamic acid (A-21) obtained in Synthesis Example 21, NMP (4.68 g ), BCS (3.00 g), and AD-1 (1% by mass NMP solution, 0.54 g) were added and stirred at room temperature for 2 hours to obtain a polymer mass ratio ((A-3): (A -15)) is 20: 80, the mass ratio of the polymer solid content and each solvent (polymer solid content: NMP: BCS) is 4.5: 70.5: 25, and 100 parts by mass of the polymer On the other hand, a liquid crystal aligning agent (AL-7) containing 1 part by mass of AD-1 was obtained.
<実施例8~18、及び比較例7~10>
 使用するポリアミック酸溶液、溶媒、及び添加剤の種類や量を表2に示すように変更した点以外は上記実施例7と同様に操作することで、実施例8~18である液晶配向剤AL-8~AL-18及び比較例7~10である液晶配向剤AL-C7~AL-C10を得た。
<Examples 8 to 18, and Comparative Examples 7 to 10>
The polyamic acid solution to be used, the solvent, and the type and amount of the additive were changed as shown in Table 2. -8 to AL-18 and liquid crystal aligning agents AL-C7 to AL-C10 of Comparative Examples 7 to 10 were obtained.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 表2中、括弧内の数値は、重合体成分の合計100質量部に対する、各重合体及び添加剤の割合(質量部)を表す。 In Table 2, the numbers in parentheses represent the ratio (parts by mass) of each polymer and additive to the total 100 parts by mass of the polymer components.
[液晶セルの作製]
<ネガ液晶用FFS駆動液晶セルの作製>
 FFSモード液晶表示素子の構成を備えたネガ液晶用液晶セルを作製した。
 始めに、電極付きの基板を準備した。基板は、30mm×35mmの大きさで、厚さが0.7mmのガラス基板を用いた。基板上には第1層目として対向電極を構成する、ベタ状のパターンを備えたITO電極が形成され、第1層目の対向電極の上には第2層目として、CVD(化学蒸着)法によりSiN(窒化珪素)膜が形成されていた。第2層目のSiN膜は、層間絶縁膜として機能する膜厚が300nmのものを用いた。第2層目のSiN膜の上には、第3層目としてITO膜をパターニングして形成された櫛歯状の画素電極が配置され、第1画素及び第2画素の2つの画素が形成されていた。各画素のサイズは、縦10mmで横約5mmであった。このとき、第1層目の対向電極と第3層目の画素電極とは、第2層目のSiN膜の作用により電気的に絶縁されていた。
[Production of liquid crystal cell]
<Fabrication of FFS driven liquid crystal cell for negative liquid crystal>
A liquid crystal cell for negative liquid crystal having the structure of an FFS mode liquid crystal display element was produced.
First, a substrate with electrodes was prepared. A glass substrate having a size of 30 mm×35 mm and a thickness of 0.7 mm was used as the substrate. An ITO electrode having a solid pattern is formed as the first layer on the substrate to constitute the counter electrode, and a CVD (chemical vapor deposition) electrode is formed as the second layer on the first layer counter electrode. A SiN (silicon nitride) film was formed by the method. The SiN film of the second layer has a film thickness of 300 nm and functions as an interlayer insulating film. On the SiN film of the second layer, a comb-shaped pixel electrode formed by patterning an ITO film is arranged as a third layer, and two pixels of a first pixel and a second pixel are formed. was The size of each pixel was 10 mm long and about 5 mm wide. At this time, the counter electrode of the first layer and the pixel electrode of the third layer were electrically insulated by the action of the SiN film of the second layer.
 第3層目の画素電極は、中央部分が内角160°で屈曲した幅3μmの電極要素が6μmの間隔を開けて平行になるように複数配列された櫛歯形状を有しており、1つの画素は、複数の電極要素の屈曲部を結ぶ線を境に第1領域と第2領域を有していた。
 各画素の第1領域と第2領域とを比較すると、それらを構成する画素電極の電極要素の形成方向が異なるものとなっていた。すなわち、複数の画素電極要素の屈曲部を結ぶ線を基準とした場合、画素の第1領域では画素電極の電極要素が時計回りに80°の角度をなすように形成され、画素の第2領域では画素電極の電極要素が反時計回りに80°の角度をなすように形成されていた。すなわち、各画素の第1領域と第2領域とでは、画素電極と対向電極との間の電圧印加によって誘起される液晶の、基板面内での回転動作(インプレーン・スイッチング)の方向が互いに逆方向となるように構成されていた。
The pixel electrode of the third layer has a comb shape in which a plurality of electrode elements each having a width of 3 μm and having a central portion bent at an internal angle of 160° are arranged in parallel with an interval of 6 μm. The pixel had a first region and a second region bounded by a line connecting bent portions of a plurality of electrode elements.
Comparing the first region and the second region of each pixel, the forming directions of the electrode elements of the pixel electrodes constituting them were different. That is, when the line connecting the bent portions of the plurality of pixel electrode elements is used as a reference, the electrode elements of the pixel electrode are formed so as to form an angle of 80° clockwise in the first region of the pixel, and the electrode elements of the pixel electrode in the second region of the pixel. The electrode elements of the pixel electrode are formed so as to form an angle of 80° counterclockwise. That is, in the first region and the second region of each pixel, the directions of the rotational movement (in-plane switching) of the liquid crystal induced by the voltage application between the pixel electrode and the counter electrode in the plane of the substrate are mutually different. It was configured in the opposite direction.
 次に、上記で得られた液晶配向剤を孔径1.0μmのフィルターで濾過した後、準備された上記電極付き基板の表面に、スピンコート法にて塗布した。80℃のホットプレート上で2分間乾燥させた後、230℃の赤外線加熱炉で20分間焼成を行い、膜厚60nmのポリイミド膜を得た。このポリイミド膜をレーヨン布(Hyperflex社製HY-5318)でラビング配向処理(ローラー直径:120mm、ローラー回転数:1000rpm、移動速度:20mm/sec、押し込み長:0.4mm、ラビング方向:第3層目の画素電極の上記複数の画素電極要素の屈曲部を結ぶ線に対して180°の方向)した後、純水中にて1分間超音波照射をして洗浄を行い、エアブローにて水滴を除去した。その後、80℃で10分間乾燥して、液晶配向膜付き基板を得た。対向基板として、裏面にITO電極が形成されている、高さ4μmの柱状スペーサーを有するガラス基板にも、上記と同様に処理して、配向処理が施された液晶配向膜付き基板を得た。これら2枚の液晶配向膜付き基板を1組とし、片方の基板上に液晶注入口を残した形でシール剤(三井化学社製 XN-1500T)を印刷し、もう1枚の基板を、液晶配向膜面が向き合い、ラビング方向が逆平行になるようにして張り合わせた。その後、150℃で60分間の加熱処理を行い、シール剤を硬化させて、セルギャップが4μmの空セルを作製した。この空セルに減圧注入法によって、ネガ型液晶MLC-7026-100(メルク社製)を注入し、注入口を封止して、ネガ液晶用FFS方式の液晶セルを得た。その後、得られた液晶セルを120℃で1時間加熱し、23℃で一晩放置してから評価に使用した。 Next, the liquid crystal aligning agent obtained above was filtered through a filter with a pore size of 1.0 μm, and then applied to the surface of the prepared substrate with electrodes by a spin coating method. After drying on a hot plate at 80° C. for 2 minutes, baking was performed in an infrared heating furnace at 230° C. for 20 minutes to obtain a polyimide film with a film thickness of 60 nm. This polyimide film is rubbed and oriented with a rayon cloth (HY-5318 manufactured by Hyperflex) (roller diameter: 120 mm, roller rotation speed: 1000 rpm, moving speed: 20 mm / sec, indentation length: 0.4 mm, rubbing direction: 3rd layer 180° with respect to the line connecting the bent portions of the plurality of pixel electrode elements of the pixel electrode of the eye), ultrasonic irradiation is performed for 1 minute in pure water for cleaning, and water droplets are removed by air blow. Removed. Then, it dried at 80 degreeC for 10 minutes, and obtained the board|substrate with a liquid crystal aligning film. A glass substrate having columnar spacers with a height of 4 μm and having an ITO electrode formed on the back surface was also treated in the same manner as described above to obtain a substrate with a liquid crystal alignment film subjected to alignment treatment as a counter substrate. These two substrates with a liquid crystal alignment film are used as a set, and a sealant (Mitsui Chemicals XN-1500T) is printed on one of the substrates while leaving the liquid crystal injection port. They were laminated so that the alignment film surfaces faced each other and the rubbing directions were anti-parallel. After that, a heat treatment was performed at 150° C. for 60 minutes to cure the sealant, thereby producing an empty cell with a cell gap of 4 μm. A negative type liquid crystal MLC-7026-100 (manufactured by Merck Ltd.) was injected into this empty cell by a vacuum injection method, and the injection port was sealed to obtain an FFS liquid crystal cell for negative liquid crystals. After that, the obtained liquid crystal cell was heated at 120° C. for 1 hour, left at 23° C. overnight, and then used for evaluation.
<ポジ液晶用FFS駆動液晶セルの作製>
 FFSモード液晶表示素子の構成を備えたポジ液晶用液晶セルを作製した。
 電極付きの基板は、上記ネガ液晶用FFS駆動液晶セルと同様のものを用いた。
 電極付きの基板におけるラビング方向を第3層目の画素電極の上記複数の画素電極要素の屈曲部を結ぶ線に対して90°の方向に変更した点と、減圧注入法によって注入する液晶をポジ型液晶MLC-3019(メルク社製)に変更した点以外はネガ液晶用FFS駆動液晶セルの作製方法と同様に操作することで、ポジ液晶用FFS方式の液晶セルを得た。その後、得られた液晶セルを120℃で1時間加熱し、23℃で一晩放置してから評価に使用した。
<Fabrication of FFS driven liquid crystal cell for positive liquid crystal>
A liquid crystal cell for positive liquid crystal having the structure of an FFS mode liquid crystal display element was produced.
As the substrate with electrodes, the same one as in the FFS drive liquid crystal cell for negative liquid crystal was used.
The rubbing direction of the electrode-attached substrate is changed to a direction of 90° with respect to the line connecting the bent portions of the plurality of pixel electrode elements of the pixel electrode of the third layer, and the liquid crystal injected by the reduced-pressure injection method is positive. An FFS mode liquid crystal cell for positive liquid crystal was obtained in the same manner as the manufacturing method of the FFS drive liquid crystal cell for negative liquid crystal except that the liquid crystal was changed to type liquid crystal MLC-3019 (manufactured by Merck). After that, the obtained liquid crystal cell was heated at 120° C. for 1 hour and allowed to stand at 23° C. overnight before being used for evaluation.
<プレチルト角及び電圧保持率評価用のネガ液晶用液晶セルの作製>
 始めに電極付きの基板を準備した。基板は、30mm×40mmの大きさで、厚さが0.7mmのガラス基板である。基板上には膜厚35nmのITO電極が形成されており、電極は間隔が縦40mm、横10mmのストライプパターン状のものを用いた。
 次に、上記で得られた液晶配向剤を孔径1.0μmのフィルターで濾過した後、準備された上記電極付き基板に、スピンコート法にて塗布した。80℃のホットプレート上で2分間乾燥させた後、230℃の赤外線加熱炉で20分間焼成を行い、膜厚60nmの塗膜を形成させて液晶配向膜付き基板を得た。この液晶配向膜をレーヨン布(Hyperflex社製HY-5318)でラビング配向処理(ローラー直径:120mm、ローラー回転数:1000rpm、移動速度:20mm/sec、押し込み長:0.4mm)した後、純水中にて1分間超音波照射をして洗浄を行い、エアブローにて水滴を除去した後、80℃で10分間乾燥して液晶配向膜付き基板を得た。この液晶配向膜付き基板を2枚用意し、その1枚の液晶配向膜面上に粒径4μmの球状スペーサーを散布した後、液晶注入口を残して周囲にシール剤(三井化学社製 XN-1500T)を印刷し、もう1枚の基板をラビング方向が逆方向、かつ膜面が向き合うようにして張り合わせた。その後、150℃で60分間の加熱処理を行い、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、ネガ型液晶MLC-7026-100(メルク社製)を注入し、注入口を封止して液晶セルを得た。その後、得られた液晶セルを120℃で1時間加熱し、23℃で一晩放置してから各評価に用いた。
<Preparation of liquid crystal cell for negative liquid crystal for evaluation of pretilt angle and voltage holding rate>
First, a substrate with electrodes was prepared. The substrate is a glass substrate with a size of 30 mm×40 mm and a thickness of 0.7 mm. An ITO electrode having a film thickness of 35 nm was formed on the substrate, and the electrode had a stripe pattern with an interval of 40 mm in length and 10 mm in width.
Next, the liquid crystal aligning agent obtained above was filtered through a filter having a pore size of 1.0 μm, and then applied to the prepared substrate with electrodes by a spin coating method. After drying on a hot plate at 80° C. for 2 minutes, baking was performed in an infrared heating furnace at 230° C. for 20 minutes to form a coating film having a thickness of 60 nm to obtain a substrate with a liquid crystal alignment film. Rubbing alignment treatment (roller diameter: 120 mm, roller rotation speed: 1000 rpm, moving speed: 20 mm / sec, indentation length: 0.4 mm) with a rayon cloth (HY-5318 manufactured by Hyperflex) is applied to the liquid crystal alignment film, and then pure water is applied. The substrate was cleaned by irradiating ultrasonic waves for 1 minute inside, water droplets were removed by an air blow, and dried at 80° C. for 10 minutes to obtain a substrate with a liquid crystal alignment film. Two substrates with the liquid crystal alignment film were prepared, and spherical spacers with a particle size of 4 μm were sprayed on the surface of one of the liquid crystal alignment films. 1500T) was printed thereon, and another substrate was pasted with the rubbing direction reversed and the film surfaces facing each other. After that, a heat treatment was performed at 150° C. for 60 minutes to cure the sealant to prepare an empty cell. A negative type liquid crystal MLC-7026-100 (manufactured by Merck & Co.) was injected into this empty cell by a vacuum injection method, and the injection port was sealed to obtain a liquid crystal cell. After that, the obtained liquid crystal cell was heated at 120° C. for 1 hour and allowed to stand at 23° C. overnight before being used for each evaluation.
<プレチルト角及び電圧保持率評価用のポジ液晶用液晶セルの作製>
 電極付きの基板は、上記プレチルト角及び電圧保持率評価用のネガ液晶用液晶セルと同様のものを用いた。減圧注入法によって注入する液晶をポジ型液晶MLC-3019(メルク社製)に変更した点以外はプレチルト角及び電圧保持率評価用のネガ液晶用液晶セルの作製方法と同様に操作することで、ポジ液晶用の液晶セルを得た。その後、得られた液晶セルを120℃で1時間加熱し、23℃で一晩放置してから評価に使用した。
<Preparation of liquid crystal cell for positive liquid crystal for evaluation of pretilt angle and voltage holding rate>
As the substrate with electrodes, the same one as the liquid crystal cell for negative liquid crystal for evaluating the pretilt angle and voltage holding rate was used. Except for changing the liquid crystal to be injected by the reduced pressure injection method to the positive type liquid crystal MLC-3019 (manufactured by Merck), by operating in the same manner as the manufacturing method of the negative liquid crystal cell for evaluating the pretilt angle and voltage holding rate, A liquid crystal cell for positive liquid crystal was obtained. After that, the obtained liquid crystal cell was heated at 120° C. for 1 hour and allowed to stand at 23° C. overnight before being used for evaluation.
[液晶セルの特性評価]
 前記で作製したFFS駆動液晶セル、及びプレチルト角及び電圧保持率評価用液晶セルの特性を以下のようにして評価した。
<バックライト耐性試験後の電圧保持率の評価>
 上記電圧保持率評価用液晶セルを、表面温度が50℃の高輝度バックライト(光源:LED、輝度:30000cd/m)の照射下で96時間放置した。次いで、液晶セルに60℃の温度で1Vの電圧を60μsec印加し、167msec後の電圧を測定して、電圧がどのくらい保持できているかを電圧保持率として算出した。電圧保持率の値が高いほど良好である。具体的には、ネガ液晶用液晶セルを用いた場合には、電圧保持率が54%以上となる場合は「○」、54%より小さくなる場合には「×」として評価した。ポジ液晶用液晶セルを用いた場合には、電圧保持率が85%以上となる場合は「○」、85%より小さくなる場合には「×」として評価した。なお、液晶表示素子の電気特性の1つである電圧保持率が上昇すると、液晶表示素子の表示不良の1つである線焼き付きが発生しにくくなることが知られている。
[Characteristic evaluation of liquid crystal cell]
The characteristics of the FFS drive liquid crystal cell and the pretilt angle and voltage holding rate evaluation liquid crystal cell produced above were evaluated as follows.
<Evaluation of voltage holding ratio after backlight resistance test>
The voltage holding rate evaluation liquid crystal cell was left for 96 hours under irradiation with a high-brightness backlight (light source: LED, brightness: 30000 cd/m 2 ) having a surface temperature of 50°C. Next, a voltage of 1 V was applied to the liquid crystal cell at a temperature of 60° C. for 60 μsec, the voltage was measured after 167 msec, and how much voltage was retained was calculated as a voltage holding ratio. The higher the voltage holding ratio, the better. Specifically, when a liquid crystal cell for negative liquid crystal was used, the voltage holding rate was evaluated as "O" when it was 54% or more, and as "X" when it was less than 54%. When the liquid crystal cell for positive liquid crystal was used, the voltage holding ratio was evaluated as "O" when it was 85% or more, and as "B" when it was less than 85%. It is known that when the voltage holding ratio, which is one of the electrical characteristics of the liquid crystal display element, is increased, line burn-in, which is one of the display defects of the liquid crystal display element, is less likely to occur.
<長期交流駆動による残像評価>
 上記で作製したFFS駆動液晶セルを用い、高輝度バックライト(光源:LED、輝度:30000cd/m)の照射下、周波数30Hzで±5.5Vの交流電圧を96時間印加した。その後、FFS駆動液晶セルの画素電極と対向電極との間をショートさせた状態にし、そのまま室温に一日放置した。
 放置の後、FFS駆動液晶セルを偏光軸が直交するように配置された2枚の偏光板の間に設置し、電圧無印加の状態でバックライトを点灯させておき、透過光の輝度が最も小さくなるようにFFS駆動液晶セルルの配置角度を調整した。そして、第1画素の第2領域が最も暗くなる角度から第1画素の第1領域が最も暗くなる角度まで液晶セルを回転させたときの回転角度を角度Δとして算出した。第2画素でも同様に、第2領域と第1領域とを比較し同様の角度Δを算出した。
 この角度Δが0.1°以下であるとき、残像特性に優れている、即ち「○」とし、0.1°よりも大きい場合は「×」と定義して評価を行った。
<Afterimage evaluation by long-term AC drive>
Using the FFS-driven liquid crystal cell produced above, an AC voltage of ±5.5 V was applied at a frequency of 30 Hz for 96 hours under illumination from a high-brightness backlight (light source: LED, brightness: 30000 cd/m 2 ). After that, the pixel electrode and the counter electrode of the FFS-driven liquid crystal cell were short-circuited and left at room temperature for one day.
After standing, the FFS-driven liquid crystal cell is placed between two polarizing plates arranged so that the polarizing axes are orthogonal to each other, and the backlight is turned on with no voltage applied to minimize the brightness of the transmitted light. The arrangement angle of the FFS-driven liquid crystal cell was adjusted as follows. Then, the rotation angle when the liquid crystal cell is rotated from the angle at which the second region of the first pixel is darkest to the angle at which the first region of the first pixel is darkest is calculated as the angle Δ. Similarly, for the second pixel, the angle Δ was similarly calculated by comparing the second region and the first region.
When this angle Δ was 0.1° or less, the afterimage property was excellent, that is, it was evaluated as “good”, and when the angle Δ was greater than 0.1°, it was defined as “poor” and evaluated.
<視野角特性の評価>
 オプトメトリクス社製AxoScanミュラーマトリクスポーラリメーターを用い、上記プレチルト角評価用液晶セル内のプレチルト角を測定した。視野角特性は、プレチルト角の値が低いほど良好である。具体的には、プレチルト角が1.7°以下となる場合は「○」、1.7°より大きくなる場合には「×」として評価した。
<Evaluation of Viewing Angle Characteristics>
Using an AxoScan Muller matrix polarimeter manufactured by Optometrix, the pretilt angle in the liquid crystal cell for pretilt angle evaluation was measured. Viewing angle characteristics are better as the pretilt angle value is lower. Specifically, when the pretilt angle was 1.7° or less, it was evaluated as “◯”, and when it was greater than 1.7°, it was evaluated as “X”.
 上記実施例1~15、及び比較例1~9の各液晶配向剤を使用したネガ液晶用液晶セルの電圧保持率、残像評価及び視野角特性の評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000022
Table 3 shows the evaluation results of the voltage holding ratio, afterimage evaluation, and viewing angle characteristics of the liquid crystal cells for negative liquid crystals using the liquid crystal aligning agents of Examples 1 to 15 and Comparative Examples 1 to 9.
Figure JPOXMLDOC01-appb-T000022
 表3に示されるように、特定ジアミンDA-1~DA-3を含むジアミン成分を用いた液晶配向剤から得られる実施例1~15の液晶配向膜を使用した液晶表示素子は、電圧保持率、残像特性及び視野角特性のすべてが良好であった。 As shown in Table 3, the liquid crystal display elements using the liquid crystal alignment films of Examples 1 to 15 obtained from liquid crystal alignment agents using diamine components containing specific diamines DA-1 to DA-3 had a voltage holding rate of , afterimage characteristics and viewing angle characteristics were all good.
 上記実施例16~18、及び比較例9、10の各液晶配向剤を使用したポジ液晶用液晶セルの電圧保持率、残像評価及び視野角特性の評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000023
Table 4 shows the evaluation results of the voltage holding ratio, afterimage evaluation, and viewing angle characteristics of the liquid crystal cells for positive liquid crystals using the liquid crystal aligning agents of Examples 16 to 18 and Comparative Examples 9 and 10 above.
Figure JPOXMLDOC01-appb-T000023
 表4に示されるように、特定ジアミンDA-1~DA-3を含むジアミン成分を用いた液晶配向剤から得られる実施例16~18の液晶配向膜を使用した液晶表示素子は、電圧保持率、残像特性及び視野角特性のすべてが良好であった。 As shown in Table 4, the liquid crystal display elements using the liquid crystal alignment films of Examples 16 to 18 obtained from liquid crystal alignment agents using diamine components containing specific diamines DA-1 to DA-3 had a voltage holding rate of , afterimage characteristics and viewing angle characteristics were all good.
 本発明の液晶配向剤から得られる液晶配向膜は、各種の動作モードの液晶表示素子に広く使用されるが、例えば、位相差フィルム用の液晶配向膜、走査アンテナや液晶アレイアンテナ用の液晶配向膜又は透過散乱型の液晶調光素子用としての液晶配向膜に用いることもできる。 The liquid crystal alignment film obtained from the liquid crystal alignment agent of the present invention is widely used in liquid crystal display elements of various operation modes. It can also be used for a film or a liquid crystal alignment film for a transmission scattering type liquid crystal light control device.
 本発明の液晶表示素子は、種々の機能を有する装置に有効に適用することができ、例えば、液晶テレビ、時計、携帯型ゲーム、ワープロ、ノート型パソコン、カーナビゲーションシステム、カムコーダー、PDA、デジタルカメラ、携帯電話、スマートフォン、各種モニター、インフォメーションディスプレイなどに用いることができる。 The liquid crystal display device of the present invention can be effectively applied to devices having various functions, such as liquid crystal televisions, clocks, portable games, word processors, notebook computers, car navigation systems, camcorders, PDAs, and digital cameras. , mobile phones, smart phones, various monitors, information displays, etc.
 1:横電界液晶表示素子、  2:櫛歯電極基板、  2a、4b、2d:基材、  2b、2g:線状電極、  2c、2h、4a:液晶配向膜、  2e:面電極、  2f:絶縁膜、  3:液晶、  4:対向基板、  L:電気力線 1: Horizontal electric field liquid crystal display element 2: Comb electrode substrate 2a, 4b, 2d: Base material 2b, 2g: Linear electrodes 2c, 2h, 4a: Liquid crystal alignment film 2e: Surface electrode 2f: Insulation Film, 3: liquid crystal, 4: counter substrate, L: electric lines of force
 なお、2021年4月13日に出願された日本特許出願2021-067838号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 In addition, the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2021-067838 filed on April 13, 2021 are cited here, and as a disclosure of the specification of the present invention, It is taken in.

Claims (15)

  1.  下記式(1)で表される繰り返し単位(p1)及び該繰り返し単位(p1)のイミド化構造単位からなる群から選ばれる少なくとも1種の繰り返し単位を有する重合体を含有することを特徴とする液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Xは4価の有機基を表す。Yは「-Ar-O-W-O-Ar-」で表される2価の有機基である。
     Ar、Arは、それぞれ独立して、2価のベンゼン環又はビフェニル構造のいずれかの2価の芳香族基を表し、該芳香族基の任意の水素原子は1価の基で置き換えられてもよい。
     Wは、*-(CH-L-A-*(Lは、-O-C(=O)-又は-C(=O)-O-を表し、Aは-(CH-を表す。
     mは1~6の整数である。nは、1~16の整数である。nが2以上の場合、Aを構成する任意の-CH-は、-O-、-C(=O)-、-NH-、-O-C(=O)-、-C(=O)-O-、-C=C-、フェニレン基、又はシクロへキシレン基で置換されていてもよい。
     また、Wが有する水素原子の一部は、ハロゲン原子、メチル基、トリフルオロメチル基、又はヒドロキシ基で置換されていてもよい。)で表される炭素数4~20の2価の有機基である。*は結合手を表す。
     R及びZはそれぞれ独立して水素原子又は1価の有機基を表す。)
    Characterized by containing a polymer having at least one repeating unit selected from the group consisting of a repeating unit (p1) represented by the following formula (1) and an imidized structural unit of the repeating unit (p1) Liquid crystal aligning agent.
    Figure JPOXMLDOC01-appb-C000001
    (In formula (1), X 1 represents a tetravalent organic group. Y 1 represents a divalent organic group represented by "-Ar 1 -OWO-Ar 2 -".
    Ar 1 and Ar 2 each independently represent a divalent aromatic group of either a divalent benzene ring or a biphenyl structure, any hydrogen atom of the aromatic group being replaced with a monovalent group may
    W is *-(CH 2 ) m -L-A-* (L represents -O-C(=O)- or -C(=O)-O-, A is -(CH 2 ) n - represents.
    m is an integer of 1-6. n is an integer from 1 to 16; When n is 2 or more, any —CH 2 — constituting A is —O—, —C(=O)—, —NH—, —OC(=O)—, —C(=O ) —O—, —C═C—, a phenylene group, or a cyclohexylene group.
    Also, some of the hydrogen atoms of W may be substituted with a halogen atom, a methyl group, a trifluoromethyl group, or a hydroxy group. ) is a divalent organic group having 4 to 20 carbon atoms. * represents a bond.
    R and Z each independently represent a hydrogen atom or a monovalent organic group. )
  2.  前記重合体が、下記式(D)で表されるジアミン(0)を含むジアミン成分を用いて得られるポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体(P)である、請求項1に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000002
    (Ar、Ar及びWは、請求項1で定義したとおりである。)
    At least one polymer selected from the group consisting of a polyimide precursor obtained using a diamine component containing a diamine (0) represented by the following formula (D A ) and a polyimide that is an imidized product of the polyimide precursor 2. The liquid crystal aligning agent according to claim 1, which is a seed polymer (P).
    Figure JPOXMLDOC01-appb-C000002
    (Ar 1 , Ar 2 and W are as defined in claim 1.)
  3.  前記式(D)におけるWが、*-(CH-O-C(=O)-(CH-*、*-(CH-O-C(=O)-(CH-C(=O)-O-(CH-*、*-(CH-C(=O)-O-(CH-O-C(=O)-(CH-*、*-(CH-O-C(=O)-Q-C(=O)-O-(CH-*、又は*-(CH-C(=O)-O-Q-O-C(=O)-(CH-*であり、Qはフェニレン基又はシクロヘキシレン基を表し、p、q、rは、それぞれ独立して、1~6の整数である、請求項2に記載の液晶配向剤。 W in the formula (D A ) is *-(CH 2 ) p -O-C(=O)-(CH 2 ) q -*, *-(CH 2 ) p -O-C(=O)- (CH 2 ) q —C(=O)—O—(CH 2 ) r —*,*—(CH 2 ) p —C(=O)—O—(CH 2 ) q —O—C(=O )-(CH 2 ) r -*, *-(CH 2 ) p -O-C(=O)-QC(=O)-O-(CH 2 ) q -* or *-(CH 2 ) p —C(=O)—OQ—O—C(=O)—(CH 2 ) q −*, Q represents a phenylene group or a cyclohexylene group, and p, q, and r are each The liquid crystal aligning agent according to claim 2, which is independently an integer of 1 to 6.
  4.  前記ジアミン(0)が、下記式(d-1)~(d-5)からなる群から選ばれるいずれかのジアミンである、請求項2又は3に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000003
    (前記式(d-1)~(d-5)におけるベンゼン環上の水素原子は、1価の置換基で置換されてもよい。)
    4. The liquid crystal aligning agent according to claim 2, wherein the diamine (0) is any diamine selected from the group consisting of the following formulas (d A -1) to (d A -5).
    Figure JPOXMLDOC01-appb-C000003
    (The hydrogen atom on the benzene ring in formulas (d A -1) to (d A -5) may be substituted with a monovalent substituent.)
  5.  前記重合体(P)が、前記ジアミン成分と、非環式脂肪族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、芳香族テトラカルボン酸二無水物、又はこれらの誘導体を含有するテトラカルボン酸成分と、の重縮合反応により得られる、請求項2~4のいずれか1項に記載の液晶配向剤。 The polymer (P) contains the diamine component, an acyclic aliphatic tetracarboxylic dianhydride, an alicyclic tetracarboxylic dianhydride, an aromatic tetracarboxylic dianhydride, or a derivative thereof. The liquid crystal aligning agent according to any one of claims 2 to 4, obtained by a polycondensation reaction with a tetracarboxylic acid component.
  6.  前記ジアミン(0)の使用量が、前記ジアミン成分に対して、5モル%以上である、請求項2~5のいずれか1項に記載の液晶配向剤。 The liquid crystal aligning agent according to any one of claims 2 to 5, wherein the diamine (0) is used in an amount of 5 mol% or more with respect to the diamine component.
  7.  さらに、前記ジアミン(0)を含有しないジアミン成分を用いて得られるポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体(B)を含有する、請求項2~6のいずれか一項に記載の液晶配向剤。 Furthermore, at least one polymer selected from the group consisting of a polyimide precursor obtained using a diamine component that does not contain the diamine (0) and a polyimide that is an imidized product of the polyimide precursor (B). The liquid crystal aligning agent according to any one of claims 2 to 6.
  8.  オキシラニル基、オキセタニル基、ブロックイソシアネート基、オキサゾリン基、シクロカーボネート基、ヒドロキシ基及びアルコキシ基から選ばれる少なくとも1種の置換基を有する架橋性化合物、並びに重合性不飽和基を有する架橋性化合物からなる群から選ばれる少なくとも1種の架橋性化合物、官能性シラン化合物、金属キレート化合物、硬化促進剤、界面活性剤、酸化防止剤、増感剤、防腐剤、並びに得られる液晶配向膜の誘電率や電気抵抗を調整するための化合物から選ばれる添加剤成分をさらに含有する、請求項2~7のいずれか一項に記載の液晶配向剤。 A crosslinkable compound having at least one substituent selected from an oxiranyl group, an oxetanyl group, a blocked isocyanate group, an oxazoline group, a cyclocarbonate group, a hydroxy group and an alkoxy group, and a crosslinkable compound having a polymerizable unsaturated group. At least one crosslinkable compound selected from the group, a functional silane compound, a metal chelate compound, a curing accelerator, a surfactant, an antioxidant, a sensitizer, an antiseptic, and the dielectric constant of the obtained liquid crystal alignment film, The liquid crystal aligning agent according to any one of claims 2 to 7, further comprising an additive component selected from compounds for adjusting electric resistance.
  9.  請求項1~8のいずれか1項に記載の液晶配向剤から得られる液晶配向膜。 A liquid crystal alignment film obtained from the liquid crystal alignment agent according to any one of claims 1 to 8.
  10.  請求項9に記載の液晶配向膜を具備する液晶表示素子。 A liquid crystal display element comprising the liquid crystal alignment film according to claim 9.
  11.  横電界液晶表示素子である、請求項10に記載の液晶表示素子。 The liquid crystal display element according to claim 10, which is a horizontal electric field liquid crystal display element.
  12.  下記の工程(1)~(3)を含む、液晶表示素子の製造方法。
     工程(1):請求項1~8のいずれか一項に記載の液晶配向剤を基板上に塗布する工程
     工程(2):塗布した前記液晶配向剤を焼成し、膜を得る工程
     工程(3):工程(2)で得られた前記膜に配向処理する工程
    A method for manufacturing a liquid crystal display element, comprising the following steps (1) to (3).
    Step (1): A step of applying the liquid crystal aligning agent according to any one of claims 1 to 8 onto a substrate Step (2): A step of baking the applied liquid crystal aligning agent to obtain a film Step (3) ): the step of subjecting the film obtained in step (2) to orientation treatment
  13.  下記式(d-1)又は式(d-3)で表されるジアミン。
    Figure JPOXMLDOC01-appb-C000004
    (前記式(d-1)、(d-3)におけるベンゼン環上の水素原子は、1価の置換基で置換されてもよい。)
    A diamine represented by the following formula (d A -1) or (d A -3).
    Figure JPOXMLDOC01-appb-C000004
    (The hydrogen atom on the benzene ring in formulas (d A -1) and (d A -3) may be substituted with a monovalent substituent.)
  14.  請求項13に記載のジアミンを含むジアミン成分から得られる重合体。 A polymer obtained from a diamine component containing the diamine according to claim 13.
  15.  請求項13に記載のジアミンを含むジアミン成分とテトラカルボン酸成分との重縮合反応により得られるポリイミド前駆体又はそのイミド化物であるポリイミド。 A polyimide that is a polyimide precursor or an imidized product thereof obtained by a polycondensation reaction of a diamine component containing the diamine according to claim 13 and a tetracarboxylic acid component.
PCT/JP2022/017388 2021-04-13 2022-04-08 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element WO2022220199A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023514632A JPWO2022220199A1 (en) 2021-04-13 2022-04-08
CN202280026076.4A CN117222939A (en) 2021-04-13 2022-04-08 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
KR1020237030110A KR20230169081A (en) 2021-04-13 2022-04-08 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-067838 2021-04-13
JP2021067838 2021-04-13

Publications (1)

Publication Number Publication Date
WO2022220199A1 true WO2022220199A1 (en) 2022-10-20

Family

ID=83640053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017388 WO2022220199A1 (en) 2021-04-13 2022-04-08 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Country Status (5)

Country Link
JP (1) JPWO2022220199A1 (en)
KR (1) KR20230169081A (en)
CN (1) CN117222939A (en)
TW (1) TW202307184A (en)
WO (1) WO2022220199A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090060979A1 (en) * 2007-08-30 2009-03-05 Bezwada Rao S Controlled release of biologically active compounds
JP2011257527A (en) * 2010-06-08 2011-12-22 Jsr Corp Rubbing agent
WO2020175559A1 (en) * 2019-02-27 2020-09-03 日産化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202821252U (en) 2012-10-25 2013-03-27 宁波德腾工业设计有限公司 Single-body mop pail

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090060979A1 (en) * 2007-08-30 2009-03-05 Bezwada Rao S Controlled release of biologically active compounds
JP2011257527A (en) * 2010-06-08 2011-12-22 Jsr Corp Rubbing agent
WO2020175559A1 (en) * 2019-02-27 2020-09-03 日産化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using same

Also Published As

Publication number Publication date
KR20230169081A (en) 2023-12-15
TW202307184A (en) 2023-02-16
JPWO2022220199A1 (en) 2022-10-20
CN117222939A (en) 2023-12-12

Similar Documents

Publication Publication Date Title
WO2023286733A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, method for producing liquid crystal display element, and liquid crystal display element
WO2022176680A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2022153873A1 (en) Polymer composition, liquid crystal aligning agent, resin film, liquid crystal alignment film, method for manufacturing liquid crystal display element, and liquid crystal display element
WO2022220199A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP7351435B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2023286735A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element production method, and liquid crystal display element
WO2022270287A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2023210532A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2022190896A1 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2022168722A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, method for producing liquid crystal display element, and liquid crystal display element
JP7311047B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2023074569A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2023074392A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2022234820A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2023074570A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2023074391A1 (en) Polymer composition, liquid crystal aligning agent, resin film, liquid crystal alignment film, method for producing liquid crystal display element, and liquid crystal display element
WO2023068085A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element, and compound
WO2023219112A1 (en) Novel diamine compound, polymer obtained using diamine, liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
TW202405141A (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2022250007A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, diamine, and polymer
TW202409152A (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2023008203A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, compound and polymer
WO2023074390A1 (en) Liquid crystal aligning agent, liquid crystal aligned film, liquid crystal display element, and compound
TW202317741A (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2023013622A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22788124

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023514632

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22788124

Country of ref document: EP

Kind code of ref document: A1