WO2022270287A1 - Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element - Google Patents

Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element Download PDF

Info

Publication number
WO2022270287A1
WO2022270287A1 PCT/JP2022/022806 JP2022022806W WO2022270287A1 WO 2022270287 A1 WO2022270287 A1 WO 2022270287A1 JP 2022022806 W JP2022022806 W JP 2022022806W WO 2022270287 A1 WO2022270287 A1 WO 2022270287A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
formula
polyamic acid
organic group
Prior art date
Application number
PCT/JP2022/022806
Other languages
French (fr)
Japanese (ja)
Inventor
圭太 慈道
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to JP2023529791A priority Critical patent/JPWO2022270287A1/ja
Priority to KR1020237044415A priority patent/KR20240023525A/en
Priority to CN202280044600.0A priority patent/CN117546082A/en
Publication of WO2022270287A1 publication Critical patent/WO2022270287A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure

Definitions

  • the present invention relates to a liquid crystal aligning agent, a liquid crystal aligning film, and a liquid crystal display element that can provide a liquid crystal aligning film that has a small variation in the twist angle of liquid crystals, can suppress AC afterimages, and is less prone to substrate peeling.
  • a liquid crystal display device includes, for example, a liquid crystal layer sandwiched between an element substrate and a color filter substrate, a pixel electrode and a common electrode for applying an electric field to the liquid crystal layer, an alignment film for controlling the orientation of liquid crystal molecules in the liquid crystal layer, A thin film transistor (TFT) or the like is provided for switching an electric signal supplied to the pixel electrode.
  • TFT thin film transistor
  • Known methods for driving liquid crystal molecules include vertical electric field methods such as the TN (Twisted Nematic) method and VA (Vertical Alignment) method, and horizontal electric field methods such as the IPS (In Plane Switching) method and the FFS (Fringe Field Switching) method. It is
  • the liquid crystal alignment film that is most widely used industrially is formed on an electrode substrate, and the surface of a film made of polyamic acid and/or polyimide imidized thereof is covered with a cloth such as cotton, nylon, or polyester. It is produced by rubbing in one direction, that is, by performing a so-called rubbing process.
  • the rubbing treatment is a simple and useful method with excellent productivity.
  • Liquid crystal alignment films used in liquid crystal display elements of the IPS driving method and the FFS driving method require a high alignment regulating force for suppressing afterimages (hereinafter also referred to as AC afterimages) generated by long-term AC driving.
  • AC afterimages afterimages
  • the alignment treatment is performed by a photo-alignment method, the amount of light irradiation is a factor that affects the energy cost and the production speed, so it is preferable that the alignment treatment can be performed with a small amount of light irradiation.
  • the size of the liquid crystal display element increases, a problem arises that the twist angle of the liquid crystal within the plane of the liquid crystal display element varies slightly due to variations in the manufacturing process.
  • an object of the present invention is to obtain a liquid crystal alignment film that has a small variation (non-uniformity) in the twist angle of the liquid crystal in the plane of the liquid crystal alignment film and can suppress the AC afterimage, and at the time of manufacturing the liquid crystal display device.
  • a liquid crystal aligning agent that can obtain a liquid crystal aligning film that is difficult to peel off from a substrate in such as, a liquid crystal aligning film obtained from the liquid crystal aligning agent, and a liquid crystal display element using the liquid crystal aligning film.
  • the present invention specifically has the following aspects.
  • a liquid crystal aligning agent characterized by containing the following (A) component and (B) component.
  • Component (A) As a structural unit derived from a tetracarboxylic acid derivative, it has a structural unit (a-1Ta) represented by the following formula (1Ta), and as a structural unit derived from a diamine, represented by the following formula (1Da). Polyamic acid ester (A) having two or more types of structural units (a-1Da).
  • Component (B) As a structural unit derived from a tetracarboxylic acid derivative, it has a structural unit (b-1Tb) represented by the following formula (1Tb), and as a structural unit derived from a diamine, represented by the following formula (1Db). Polyamic acid (B) having a structural unit (b-1Db).
  • R 11 to R 14 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, group, a monovalent organic group having 1 to 6 carbon atoms containing a fluorine atom, or a phenyl group, and at least one of R 11 to R 14 represents a group other than a hydrogen atom as defined above.
  • Each 1 independently represents a hydrogen atom or a tert-alkyl group, at least one of which represents a tert-alkyl group.
  • Y 1 is a divalent organic group represented by the following formula (H 1 ). Each Z independently represents a hydrogen atom or a monovalent organic group. ) (In formula (H 1 ), Ar 1 and Ar 1 ′ each independently represent a benzene ring, a biphenyl structure, or a naphthalene ring .
  • A represents a divalent organic group having an alkylene structure and having 1 to 10 carbon atoms
  • a halogen atom includes a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like.
  • "Tert-" meaning tertiary is also referred to as "t-”.
  • a Boc group represents a tert-butoxycarbonyl group. * represents a bond.
  • the liquid crystal aligning film which can suppress an AC afterimage with little dispersion
  • the liquid crystal aligning agent of the present invention contains a specific polyamic acid ester (A) and polyamic acid (B) as polymer components. Since the polyamic acid ester (A) has a highly hydrophobic t-alkyl ester structure, the formation of hydrogen bonds with the polyamic acid (B) is suppressed, and the component to the air interface when used as a liquid crystal alignment film. The migration becomes high, and the uneven distribution of the polyamic acid ester at the liquid crystal interface becomes high. In addition, since the polyamic acid ester (A) having a bulky structure has a t-alkyl ester that is easily eliminated when the coating film is baked, thermal imidization proceeds more easily than with a normal methyl ester structure. It becomes difficult for the t-alkyl ester to remain in the resulting liquid crystal alignment film.
  • liquid crystal alignment film that can be obtained is obtained.
  • polyamic acid ester (A) for example, when R 1 is a t-butyl group, isobutene is eliminated during firing, and imidization proceeds via polyamic acid, so the obtained liquid crystal The film strength of the alignment film is also improved.
  • the liquid crystal aligning agent of the present invention contains the polyamic acid (B) and has a highly polar structure, it is thought that a liquid crystal aligning film that is less prone to substrate peeling can be obtained.
  • FIG. 1 is a schematic partial cross-sectional view showing an example of a lateral electric field liquid crystal display device of the present invention
  • FIG. 4 is a schematic partial cross-sectional view showing another example of the horizontal electric field liquid crystal display device of the present invention
  • the liquid crystal aligning agent of the present invention has a structural unit (a-1Ta) represented by the above formula (1Ta) as a structural unit derived from a tetracarboxylic acid derivative, and a structural unit derived from a diamine having the above formula (1Da).
  • a-1Ta structural unit represented by the above formula (1Ta)
  • a diamine having the above formula (1Da) a structural unit derived from a diamine having the above formula (1Da).
  • the polymer (A) may be composed of one type or two or more types.
  • the polyamic acid ester (A) has two or more types of structural units (a-1Da) represented by the above formula (1Da), thereby achieving an appropriate balance with respect to multiple properties such as high alignment control force and high photosensitivity. Therefore, it is possible to obtain a liquid crystal alignment film capable of suppressing an AC afterimage and reduce the
  • All the repeating units of the polyamic acid ester (A) of the present invention may have an amic acid ester structure, or a part of the repeating units may have an amic acid ester structure.
  • the remaining repeating units may have an amic acid structure, or may have an imidized structure of the amic acid structure.
  • the remaining repeating units it may have a repeating unit with an amic acid structure and a repeating unit with an imidized structure.
  • alkyl group having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms in R 11 to R 14 in the formula (1Ta) representing the structural unit derived from the tetracarboxylic acid derivative of the polyamic acid ester (A) include: Examples include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, t-butyl group, n-pentyl group and the like.
  • alkenyl group having 2 to 6 carbon atoms, preferably 2 to 4 carbon atoms in R 11 to R 14 include a vinyl group, a propenyl group, a butynyl group and the like, and these may be linear or branched.
  • alkynyl groups having 2 to 6 carbon atoms, preferably 2 to 4 carbon atoms in R 11 to R 14 include ethynyl group, 1-propynyl group and 2-propynyl group.
  • the fluorine atom-containing monovalent organic group having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms for R 11 to R 14 is fluoromethyl group, trifluoromethyl group, pentafluoroethyl group, pentafluoropropyl and the like.
  • R 11 to R 14 is that, from the viewpoint of high photoreactivity, R 11 to R 14 are hydrogen atoms or methyl groups, and at least one of R 11 to R 14 is a methyl group. , R 11 to R 14 are more preferably methyl groups. More preferably, R 11 and R 14 are methyl groups and R 12 and R 13 are hydrogen atoms.
  • the t-alkyl group of R 1 of the polyamic acid ester (A) is a t-alkyl group having 4 to 10 carbon atoms, preferably 4 to 7 carbon atoms. Specific examples include t-butyl group, t-pentyl group, t-hexyl group and t-heptyl group. Among them, a t-butyl group is preferred.
  • the structural unit (a-1Ta) of the polyamic acid ester (A) of the present invention is, from the viewpoint of suitably obtaining the effects of the present invention, 1 mol of all structural units derived from the tetracarboxylic acid derivative of the polyamic acid ester (A). is preferably 5 mol % or more, more preferably 25 mol % or more, and even more preferably 60 mol % or more.
  • the polyamic acid ester (A) of the present invention may have a structural unit (a-2Ta) represented by the following formula (2Ta) as a structural unit derived from a tetracarboxylic acid derivative.
  • a-2Ta a structural unit represented by the following formula (2Ta) as a structural unit derived from a tetracarboxylic acid derivative.
  • Two R 2 each independently represent a hydrogen atom or a monovalent organic group.
  • X 2a represents a tetravalent organic group, provided that X 2a is 4 represented by the following formula (g).
  • R2 represents a hydrogen atom.
  • R 11′ to R 14′ are synonymous with R 11 to R 14 in formula (1Ta) above.
  • the monovalent organic group for R 2 in the above formula (2Ta) is a monovalent hydrocarbon group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, and the methylene group of the hydrocarbon group is -O-, - S—, —CO—, —COO—, —COS—, —NR 3 — (where R 3 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms), —CO—NR 3 - (provided that R 3 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms), -Si(R 3 ) 2 - (provided that R 3 is a hydrogen atom or a to 10 monovalent hydrocarbon groups), a monovalent group A substituted with —SO 2 — or the like, the above monovalent hydrocarbon group or a hydrogen bonded to a carbon atom of the above monovalent group A at least one of the atoms is a halogen atom, a hydroxy group
  • Examples of the monovalent organic group for R 2 in the above formula (2Ta) include, among others, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkynyl group having 2 to 10 carbon atoms, and t-butoxycarbonyl. or a 9-fluorenylmethoxycarbonyl group, more preferably an alkyl group having 1 to 3 carbon atoms, and even more preferably a methyl group.
  • the two R 2 are each independently preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, more preferably a hydrogen atom or a methyl group.
  • tetravalent organic group of X 2a in the above formula (2Ta) include, in addition to the tetravalent organic group represented by the above formula (g), the following tetracarboxylic dianhydrides (hereinafter collectively referred to as (also referred to as other tetracarboxylic dianhydrides.) with two acid anhydride groups removed.
  • tetracarboxylic dianhydrides hereinafter collectively referred to as (also referred to as other tetracarboxylic dianhydrides.) with two acid anhydride groups removed.
  • Acyclic aliphatic tetracarboxylic dianhydrides such as 1,2,3,4-butanetetracarboxylic dianhydride; 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3 ,4-cyclopentanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 3,3′,4,4′-dicyclohexyltetracarboxylic dianhydride, 2,3, 5-Tricarboxycyclopentylacetic acid dianhydride, 4-(2,5-dioxotetrahydrofuran-3-yl)tetrahydronaphthalene-1,2-dicarboxylic dianhydride, 5-(2,5-dioxotetrahydrofuran-3 -yl)-3a,4,5,9b-tetrahydronaphtho[1,2-c]furan-1,3-dione, 5-(2,
  • More preferred examples of the other tetracarboxylic dianhydrides include 1,2,3,4-butanetetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1, 2,3,4-cyclopentanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 3,3′,4,4′-dicyclohexyltetracarboxylic dianhydride, 2 , 3,5-tricarboxycyclopentyl acetic acid dianhydride, 5-(2,5-dioxotetrahydrofuran-3-yl)-3a,4,5,9b-tetrahydronaphtho[1,2-c]furan-1, 3-dione, 5-(2,5-dioxotetrahydrofuran-3-yl)-8-methyl-3a,4,5,9b-tetrahydronaphtho[1,2-c]fur
  • the tetravalent organic group of X 2a in the above formula (2Ta) is more preferably a tetravalent organic group represented by the above formula (g) from the viewpoint of suitably obtaining the effects of the present invention.
  • the ratio of the structural units represented by the formula (2Ta) in the polyamic acid ester (A) is 95 mol% or less with respect to 1 mol of all structural units derived from the tetracarboxylic acid derivative in the polyamic acid ester (A).
  • Y 1 in the above formula (1Da) is a divalent organic group represented by the above formula (H 1 ).
  • L 1 and L 1' are as described above.
  • a monovalent organic group in which a part of the hydrogen atoms of the group is substituted with at least one of a halogen atom and a hydroxy group can be mentioned.
  • the monovalent group which is a substituent of any hydrogen atom on the ring of Ar 1 and Ar 1′ in the above formula (H 1 ) includes a halogen atom; an alkyl group having 1 to 3 carbon atoms; Alkyl group with 1 to 3 carbon atoms partially substituted with halogen atom or hydroxy group; an alkoxy group having 1 to 3 carbon atoms; an alkenyl group having 2 to 3 carbon atoms; an acyl group having 2 to 3 carbon atoms; an alkylsilyl group having 1 to 3 carbon atoms; an alkoxysilyl group having 1 to 3 carbon atoms; A monovalent group such as a nitrile group can be mentioned.
  • Ar 1 and Ar 1′ in the above formula (H 1 ) include 1,4-phenylene, 1,3-phenylene, 2-methyl-1,4-phenylene, 2-ethyl-1,4-phenylene , 2-propyl-1,4-phenylene, 2-butyl-1,4-phenylene, 2-isopropyl-1,4-phenylene, 2-t-butyl-1,4-phenylene, 2-methoxy-1,4 -phenylene, 2-ethoxy-1,4-phenylene, 2-propoxy-1,4-phenylene, 2-butoxy-1,4-phenylene, 2-fluoro-1,4-phenylene, 2,3-dimethyl-1 ,4-phenylene, 4-methyl-1,3-phenylene, 5-methyl-1,3-phenylene, 4-fluoro-1,3-phenylene, 2,3,5,6-tetramethyl-1,4- Benzene ring optionally having a substituent such as phenylene; 4,4'-biphen
  • a in the above formula (H 1 ) is a divalent organic group having an alkylene structure.
  • R represents a hydrogen atom or a monovalent organic group.
  • Two R's may be the same or different.
  • n is an integer of 1-10, more preferably an integer of 2-10, more preferably an integer of 2-6.
  • m1 and m2 are each independently an integer of 0 to 4, n' is an integer of 1 to 6, and the sum of m1, m2 and n' is 1 to 8.
  • n1 and n2 in *-(CH 2 ) n1 -O-(CH 2 ) n2 -* are each independently an integer of 1-6, and the sum of n1 and n2 is 2-10.
  • the polyamic acid ester (A) is represented by the above formula (1Da), in which Y 1 is a divalent organic group having three or more benzene rings as a diamine-derived structural unit. It preferably contains at least one structural unit represented.
  • the benzene ring in the "divalent organic group having 3 or more benzene rings” includes a benzene ring constituting a condensed ring.
  • At least one of Y 1 is a divalent organic compound represented by the formula (H 1 ) in which Ar 1 and Ar 1' have the same structure.
  • a structural unit represented by the formula (1Da) wherein at least one of the other Y 1 is a divalent organic group represented by the formula (H 1 ) in which Ar 1 and Ar 1′ have different structures
  • Ar 1 and Ar 1′ have different structures
  • a preferable combination when Ar 1 and Ar 1′ have the same structure is a combination of the biphenyl structure optionally having the above substituent and the biphenyl structure optionally having the above substituent, and A combination of a naphthalene ring which may be substituted with a naphthalene ring which may have one of the above substituents may be mentioned.
  • a combination of a benzene ring optionally having the above substituent and a biphenyl structure optionally having the above substituent A combination of a benzene ring which may have a substituent and a naphthalene ring which may have a substituent, and a combination of a biphenyl structure which may have a substituent and a naphthalene ring which may have a substituent. mentioned.
  • Y 1 in the above formula (1Da) is preferably a divalent organic group represented by any one of the following formulas (h1-1) to (h1-13) from the viewpoint of favorably obtaining the effects of the present invention.
  • the bonding positions of the benzene ring are preferably the 1- and 4-positions, and the bonding positions of the naphthalene ring are preferably the 2- and 6-positions.
  • the total number of —CH 2 — is 10 or less.
  • formulas (h1-7) and (h1-8) the total number of —CH 2 — is 8 or less, and two m may be the same or different.
  • the ratio of the structural unit (a-1Da) contained in the polyamic acid ester (A) is preferably 5 to 95 mol% with respect to 1 mol of all diamine-derived structural units possessed by the polyamic acid ester (A), 10 to 95 mol % is more preferred, and 20 to 80 mol % is even more preferred.
  • the monovalent organic group of Z in the above formula (1Da) includes a monovalent hydrocarbon group having 1 to 6 carbon atoms, and the methylene group of the hydrocarbon group is -O-, -S-, -CO-, - COO-, -COS-, -NR 3 -, -CO-NR 3 -, -Si(R 3 ) 2 - (where R 3 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms) ), the monovalent group A substituted with —SO 2 —, etc., the monovalent hydrocarbon group, or at least one of the hydrogen atoms bonded to the carbon atoms of the monovalent group A is a halogen atom, hydroxy group, alkoxy group, nitro group, amino group, mercapto group, nitroso group, alkylsilyl group, alkoxysilyl group, silanol group, sulfino group, phosphino group, carboxy group
  • the monovalent organic group for Z in the above formula (1Da) includes, among others, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, or tert-butoxycarbonyl. is preferred, an alkyl group having 1 to 3 carbon atoms is more preferred, and a methyl group is even more preferred.
  • Two Zs in the above formula (1Da) are each independently preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, more preferably a hydrogen atom or a methyl group, from the viewpoint of suitably obtaining the effects of the present invention.
  • the polyamic acid ester (A) used in the present invention may contain other diamine-derived structural units (a-1Da-2) other than the structural units (a-1Da) as diamine-derived structural units. good.
  • the structural unit (a-1Da-2) may be of one type or two or more types. Examples of other diamines in the structural unit (a-1Da-2) derived from other diamines include the following.
  • p-phenylenediamine 2,3,5,6-tetramethyl-p-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, m-phenylenediamine, 2,4-dimethyl-m-phenylenediamine, 1, 4-diamino-2,5-methoxybenzene, 2,5-diaminotoluene, 2,6-diaminotoluene, 4-aminobenzylamine, 2-(4-aminophenyl)ethylamine, 4-(2-(methylamino) ethyl)aniline, 4-(2-aminoethyl)aniline, 2-(6-aminonaphthyl)ethylamine, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4' -diaminobiphenyl, 3,3'-dimethoxy-4,4'-diaminobiphen
  • At least one nitrogen atom-containing structure selected from the group consisting of a nitrogen atom-containing heterocycle, a secondary or tertiary amino group, typified by a diamine having a diphenylamine structure of -N(D)- (D represents a protective group that is eliminated by heating and replaced with a hydrogen atom. ) except amino groups derived from Hereinafter, it is also referred to as a specific nitrogen atom-containing structure. );
  • 2,4-diaminophenol 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol, 4,6-diaminoresorcinol, 4,4'-diamino-3,3'-dihydroxy Biphenyl; 2,4-diaminobenzoic acid, 2,5-diaminobenzoic acid, 3,5-diaminobenzoic acid, 4,4'-diaminobiphenyl-3-carboxylic acid, 4,4'-diaminodiphenylmethane-3-carboxylic acid acid, 4,4'-diaminodiphenylethane-3-carboxylic acid, 4,4'-diaminobiphenyl-3,3'-dicarboxylic acid, 4,4'-diaminobiphenyl-2,2'-dicarboxylic acid, 3, 3'-diaminobiphenyl-4,4'-dicarboxylic acid
  • m and n are integers of 0 to 3 (provided that 1 ⁇ m + n ⁇ 4), j is an integer of 0 or 1,
  • X 1 is -(CH 2 ) a- (a is an integer of 1 to 15), -CONH-, -NHCO-, -CO-N(CH 3 )-, -NH-, -O-, -CH 2 O-, - represents CH 2 —OCO—, —COO—, or —OCO—, where R 1 is a fluorine atom, a fluorine atom-containing alkyl group having 1 to 10 carbon atoms, a fluorine atom-containing alkoxy group having 1 to 10 carbon atoms, or represents an alkyl group having 3 to 10 carbon atoms, an alkoxy group having 3 to 10 carbon atoms, or an alkoxyalkyl group having 3 to 10 carbon atoms, wherein X 2 is —O—, —CH 2
  • D in -N(D)- of the other diamines described above is a carbamate-based organic compound represented by a benzyloxycarbonyl group, a 9-fluorenylmethyloxycarbonyl group, an allyloxycarbonyl group, a Boc group, and the like. groups are preferred.
  • the Boc group is particularly preferred from the viewpoint that it is efficiently desorbed by heat, is desorbed at a relatively low temperature, and is discharged as a harmless gas when desorbed.
  • diamines having a thermally leaving group are diamines selected from the following formulas (d-1) to (d-7).
  • R represents a hydrogen atom or a Boc group.
  • the polyamic acid ester (A) used in the present invention has a structural unit (a-1Da-2), it contains a structural unit derived from the specific diamine (1) from the viewpoint of suitably obtaining the effects of the present invention. is more preferable.
  • the structural unit derived from the specific diamine (1) is preferably 5 to 95 mol%, more preferably 5 to 90, with respect to 1 mol of all structural units derived from the diamine contained in the polyamic acid ester (A). mol %, more preferably 20 to 80 mol %.
  • the polyamic acid ester (A) has a structure derived from the diamine having the thermally releasable group as the structural unit (a-1Da-2), from the viewpoint of enhancing the two-layer separability from the polyamic acid (B). May contain units.
  • the structural unit derived from the diamine having the thermally leaving group is preferably 5 to 40 mol% with respect to 1 mol of all structural units derived from the diamine contained in the polyamic acid ester (A), more preferably It is 5 to 35 mol %, more preferably 5 to 30 mol %.
  • the liquid crystal aligning agent of the present invention has a structural unit (b-1Tb) represented by the above formula (1Tb) as a structural unit derived from a tetracarboxylic acid derivative together with the polyamic acid ester (A), and has a diamine-derived structural unit (b-1Tb).
  • a structural unit it contains a polyamic acid (B) having a structural unit (b-1Db) represented by the above formula (1Db).
  • the polyamic acid (B) may be composed of one type or two or more types. Further, each of the structural units constituting the polyamic acid (B) may be composed of one type or two or more types.
  • the polyamic acid (B) preferably does not have the structural unit (a-1Ta) and the structural unit (a-1Da) of the polyamic acid ester (A) in the same molecule.
  • the tetravalent organic group for X b in the above formula (1Tb) includes a tetravalent organic group obtained by removing two acid dianhydride groups from an acyclic aliphatic tetracarboxylic dianhydride, an alicyclic tetracarboxylic acid
  • a tetravalent organic group obtained by removing two dianhydride groups from an acid dianhydride or a tetravalent organic group obtained by removing two acid dianhydride groups from an aromatic tetracarboxylic dianhydride specifically Examples include the tetravalent organic groups exemplified for X 2a above.
  • the aromatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups including at least one carboxy group bonded to an aromatic ring.
  • An acyclic aliphatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups bonded to a chain hydrocarbon structure. However, it does not need to be composed only of a chain hydrocarbon structure, and may have an alicyclic structure or an aromatic ring structure in part thereof.
  • An alicyclic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups including at least one carboxy group bonded to an alicyclic structure. However, none of these four carboxy groups are bonded to the aromatic ring. Moreover, it is not necessary to consist only of an alicyclic structure, and a part thereof may have a chain hydrocarbon structure or an aromatic ring structure.
  • the tetravalent organic group in Xb has at least one partial structure selected from the group consisting of a benzene ring, a cyclobutane ring structure, a cyclopentane ring structure and a cyclohexane ring structure.
  • Tetracarboxylic dianhydrides are preferred.
  • More preferable X b includes a tetravalent organic group represented by the above formula (g), a structure exemplified for X 2a in the above formula (2Ta), and other tetravalent organic groups exemplified for the polyamic acid ester (A) above.
  • a tetravalent organic group obtained by removing two acid dianhydride groups from a carboxylic acid dianhydride is more preferable.
  • the acyclic aliphatic or alicyclic tetracarboxylic dianhydride is at least one selected from the group consisting of a cyclobutane ring structure, a cyclopentane ring structure, and a cyclohexane ring structure, from the viewpoint of enhancing the liquid crystal orientation.
  • a tetracarboxylic dianhydride having a partial structure of is preferred.
  • X b is a tetravalent organic group obtained by removing two acid anhydride groups from an acyclic aliphatic tetracarboxylic dianhydride, an alicyclic A structure that is a tetravalent organic group obtained by removing two acid anhydride groups from the formula tetracarboxylic dianhydride, or a tetravalent organic group obtained by removing two acid anhydride groups from an aromatic tetracarboxylic dianhydride
  • the unit (b-1Tb) is preferably 5 mol% or more, more preferably 10 mol% or more, relative to 1 mol of all structural units derived from the tetracarboxylic acid derivative contained in the polyamic acid (B), More preferably, it is 20 mol % or more.
  • Examples of the divalent organic group in Yb of the formula ( 1Tb ) include divalent organic groups obtained by removing two amino groups from Y1 and the other diamines exemplified in the polyamic acid ester (A). be done.
  • Y b is a diamine having a urea bond (for example, A in the above formula (H 1 ) represents a divalent organic group (q2), and the Diamines in which two amino groups are bonded to a divalent organic group represented by the formula (H 1 ), diamines having a urea bond as exemplified in the other diamines above, etc.), diamines having the above-mentioned amide bond, the above-mentioned specific diamine having a nitrogen atom-containing structure, the diamine having a carboxy group, 4,4'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 3,3'-dimethyl-4,
  • the structural unit (b-1Db) represented by the formula (1Db) in which Y b is the specific divalent organic group is added to the polyamic acid ( It may be contained in an amount of 5 mol% or more, preferably 10 mol% or more preferably 20 mol% or more, relative to 1 mol of all diamine-derived structural units of B).
  • Examples of the monovalent organic group for Z in the above formula (1Db) include the structures exemplified for Z in the above formula (1Da).
  • the effect of the present invention especially from the viewpoint of less afterimage derived from residual DC, the content ratio of the polyamic acid ester (A) and the polyamic acid (B) is set to [polyamic acid ester (A) /polyamic acid (B)] may be 10/90 to 90/10, may be 20/80 to 90/10, or may be 20/80 to 80/20. .
  • Polyamic acid esters such as polyamic acid ester (A) and polyamic acids such as polyamic acid (B) contained in the liquid crystal aligning agent of the present invention can be produced, for example, by the following methods.
  • the tetracarboxylic acid derivative not only tetracarboxylic dianhydride but also its derivatives such as tetracarboxylic acid dihalide compounds, tetracarboxylic acid dialkyl esters, and tetracarboxylic acid dialkyl ester dihalides can be used. .
  • a polymer having an amic acid structure (polyamic acid) is obtained by reacting the tetracarboxylic dianhydride component and the diamine component.
  • the polyamic acid has a structure represented by the above formula (1Db)
  • the diamine component has a structure of -N(Z)-Y 1 -N(Z)- (where Y 1 and Z are defined as is the same as above)
  • a tetracarboxylic dianhydride having X b (the definition of X b is the same as above) is used.
  • the polyamic acid ester (A) is, for example, a tetracarboxylic acid derivative component containing a tetracarboxylic dianhydride represented by the following formula (T 1 ) and a diamine component containing a diamine represented by the formula (D 1 ). After reacting to obtain a polyamic acid, it can be obtained as a polyamic acid ester by the method described later.
  • R 11 to R 14 have the same definitions as R 11 to R 14 in formula (1Ta)
  • Y 1 and Z have the same definitions as Y 1 in formula (1Ta) and Z in formula (1Da), respectively.
  • the ratio of the tetracarboxylic dianhydride and the diamine used in the production of the polyamic acid is 0.2 to 2 equivalents of the acid anhydride group of the tetracarboxylic dianhydride with respect to 1 equivalent of the amino group of the diamine. and more preferably 0.3 to 1.2 equivalents.
  • the reaction temperature in the production of polyamic acid is preferably -20 to 150°C, more preferably 0 to 100°C.
  • the reaction time is preferably 0.1 to 24 hours, more preferably 0.5 to 12 hours.
  • Polyamic acid can be produced at any concentration, preferably 1 to 50% by mass, more preferably 5 to 30% by mass. The initial stage of the reaction may be carried out at a high concentration, and then the solvent may be added.
  • organic solvent used for producing the polyamic acid examples include cyclohexanone, cyclopentanone, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, ⁇ -butyrolactone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, 1,3-dimethyl-2-imidazolidinone.
  • the polyamic acid ester can be obtained, for example, by [I] a method of reacting the polyamic acid obtained by the above method with an esterifying agent, [II] a tetracarboxylic acid diester and a diamine, preferably in an organic solvent, with a dehydration catalyst (for example, 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium halide, carbonylimidazole, phosphorus-based condensing agent, etc.), [III ] with a tetracarboxylic acid diester dihalide and a diamine, preferably in an organic solvent, with a base (e.g.
  • tertiary amines such as pyridine, triethylamine, sodium hydride, potassium hydride, sodium hydroxide, potassium hydroxide, sodium, potassium Alkali metals such as),
  • Polyamic acid and dehydration condensation agent such as trifluoroacetic anhydride
  • isoimidize followed by alcohol (e.g., methanol, ethanol, n- (fatty alcohols such as propanol, isopropanol, butanol, t-butanol) can be obtained by known methods such as a method of reacting.
  • the tetracarboxylic diester used in [II] above can be obtained by ring-opening a tetracarboxylic dianhydride with an alcohol or the like.
  • the tetracarboxylic acid diester dihalide used in the above [III] can be obtained by reacting the tetracarboxylic acid diester obtained as described above with a suitable chlorinating agent such as thionyl chloride.
  • a suitable chlorinating agent such as thionyl chloride.
  • a more preferable method of [I] above is a method of adding an esterifying agent to a solution of polyamic acid and stirring to obtain a polyamic acid ester.
  • the solvent used in this reaction the same organic solvents as exemplified as those used in the production of the polyamic acid can be mentioned.
  • the reaction is carried out in an organic solvent at a reaction temperature of preferably 0-100° C., more preferably 0-50° C., for 0.5-48 hours.
  • an esterification agent may be added at the time of preparation of the liquid crystal aligning agent mentioned later, and may form polyamic acid ester.
  • the esterification rate can be arbitrarily adjusted by changing the addition amount of the esterifying agent used.
  • the "esterification rate" referred to here is, for example, in the case of the polyamic acid ester (A), based on all the amic acid structures of the polyamic acid before being esterified, esterified to an amic acid ester structure. It is the ratio expressed in %.
  • the esterification rate can be estimated from the amount of change in the peak intensity of the carboxy group using 1 H-NMR.
  • the esterification rate of the polyamic acid ester (A) used in the present invention is preferably 5 to 100%, more preferably 25 to 100%, still more preferably 25 to 65%.
  • the amount of the esterifying agent added in the method [I] is 0.01 to 50 molar equivalents, more preferably 0.1 to 20 molar equivalents, relative to 1 molar equivalent of the structural unit of the amic acid contained in the polyamic acid. , more preferably 1 to 10 molar equivalents.
  • the esterifying agent include t-butyl 2,2,2-trichloroacetimidate, Ot-butyl-N,N'-diisopropyl isopropyl, and t-butyl-N,N'-diisopropyl isopropyl.
  • Urea, N,N-dimethylformamide di-t-butyl acetal can be mentioned.
  • the polyamic acid and polyamic acid ester used in the present invention preferably have a solution viscosity of, for example, 10 to 1000 mPa ⁇ s when made into a solution having a concentration of 10 to 15% by mass.
  • the solution viscosity (mPa s) of the polymer is a polymer having a concentration of 10 to 15 mass% prepared using a good solvent for the polymer (eg, ⁇ -butyrolactone, N-methyl-2-pyrrolidone, etc.). It is a value measured at 25° C. for a solution using an E-type rotational viscometer.
  • the polystyrene equivalent weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of the polyamic acid and polyamic acid ester is preferably 1,000 to 500,000, more preferably 2,000 to 300,000.
  • the molecular weight distribution (Mw/Mn) represented by the ratio of Mw to the polystyrene equivalent number average molecular weight (Mn) measured by GPC is preferably 15 or less, more preferably 10 or less. With such a molecular weight range, good orientation and stability of the liquid crystal display device can be ensured.
  • the polyamic acid ester and polyamic acid in the present invention may be converted into a terminal-blocked polymer by using an appropriate terminal-blocking agent together with the tetracarboxylic acid derivative component and the diamine component as described above. .
  • the end-blocking polymer has effects of improving the film hardness of the liquid crystal alignment film obtained by the coating film and improving the adhesion properties between the sealant and the liquid crystal alignment film.
  • Examples of the terminal of the polyamic acid ester (A) and polyamic acid (B) in the present invention include an amino group, a carboxyl group, an acid anhydride group, or a group derived from a terminal blocking agent to be described later.
  • An amino group, a carboxyl group, and an acid anhydride group can be obtained by a normal condensation reaction, or can be obtained by terminal blocking using the following terminal blocking agents.
  • Terminal blockers include, for example, acetic anhydride, maleic anhydride, nadic anhydride, phthalic anhydride, itaconic anhydride, cyclohexanedicarboxylic anhydride, 3-hydroxyphthalic anhydride, trimellitic anhydride, 3- (3-trimethoxysilyl)propyl)-3,4-dihydrofuran-2,5-dione, 4,5,6,7-tetrafluoroisobenzofuran-1,3-dione, 4-ethynylphthalic anhydride, etc.
  • di-t-butyl dicarbonate dicarbonic acid diester compounds such as diallyl dicarbonate
  • acryloyl chloride methacryloyl chloride, chlorocarbonyl compounds such as nicotinic acid chloride
  • aniline 2-aminophenol, 3-aminophenol
  • 4-aminosalicylic acid 5-aminosalicylic acid, 6-aminosalicylic acid, 2-aminobenzoic acid, 3-aminobenzoic acid, 4-aminobenzoic acid, cyclohexylamine, n-butylamine, n-pentylamine, n-hexylamine , n-heptylamine, n-octylamine and other monoamine compounds
  • ethyl isocyanate phenyl isocyanate, naphthyl isocyanate, 2-acryloyloxyethyl isocyanate, 2-methacryloyloxyethyl isocyanate and other unsaturated bonds
  • the liquid crystal aligning agent of the present invention contains polyamic acid ester (A) and polyamic acid (B).
  • the liquid crystal aligning agent of the present invention may contain other polymers in addition to the polyamic acid ester (A) and the polyamic acid (B). Specific examples of such other polymers include polyimide precursors other than polyamic acid ester (A) and polyamic acid (B), polyimides, polysiloxanes, polyesters, polyamides, polyureas, polyurethanes, polyorganosiloxanes, cellulose derivatives, and polyacetals.
  • polystyrene derivatives examples include derivatives, polymers selected from the group consisting of poly(meth)acrylates, and the like.
  • poly(styrene-maleic anhydride) copolymer examples include SMA1000, 2000 and 3000 (manufactured by Cray Valley) and GSM301 (manufactured by Gifu Shellac Mfg. Co.).
  • a specific example of the poly(isobutylene-maleic anhydride) copolymer is Isovan-600 (manufactured by Kuraray Co., Ltd.).
  • a specific example of the poly(vinyl ether-maleic anhydride) copolymer is Gantrez AN-139 (methyl vinyl ether maleic anhydride resin, manufactured by Ashland).
  • Other polymers may be used in combination of two or more.
  • the content of the other polymer is preferably 90 parts by mass or less, more preferably 10 to 90 parts by mass, and further 20 to 80 parts by mass with respect to the total 100 parts by mass of the polymer contained in the liquid crystal aligning agent. preferable.
  • the liquid crystal alignment agent is used to produce the liquid crystal alignment film, and takes the form of a coating liquid from the viewpoint of forming a uniform thin film.
  • the liquid crystal aligning agent of the present invention it is preferable that the liquid crystal aligning agent is a coating liquid containing the above-described polymer component and an organic solvent.
  • the concentration of the polymer in the liquid crystal aligning agent can be appropriately changed by setting the thickness of the coating film to be formed.
  • the concentration of the polymer in the liquid crystal aligning agent is preferably 1% by mass or more from the viewpoint of forming a uniform and defect-free coating film, and is preferably 10% by mass or less from the viewpoint of the storage stability of the solution.
  • a particularly preferred polymer concentration is 2 to 8% by weight.
  • the organic solvent contained in the liquid crystal aligning agent is not particularly limited as long as it dissolves the polymer component uniformly.
  • Specific examples include N,N-dimethylformamide, N,N-dimethylacetamide, N,N-dimethyllactamide, N,N-dimethylpropionamide, N,N-diethylpropionamide, tetramethylurea, N, N-diethylformamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethyl sulfoxide, ⁇ -butyrolactone, ⁇ -valerolactone, 1,3-dimethyl-2-imidazolidinone, methyl ethyl ketone, cyclohexanone, cyclo pentanone, 3-methoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide, N-(n-propyl)-2-pyrrolidone, N-isopropy
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 3-methoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide and ⁇ -butyrolactone are preferred.
  • the content of the good solvent is preferably 20 to 99% by mass, more preferably 20 to 90% by mass, and particularly preferably 30 to 80% by mass of the total solvent contained in the liquid crystal aligning agent. .
  • the organic solvent contained in the liquid crystal aligning agent is a mixture of the above solvents and a solvent (also referred to as a poor solvent) that improves the coatability and the surface smoothness of the coating film when applying the liquid crystal aligning agent.
  • a solvent also referred to as a poor solvent
  • the use of solvents is preferred.
  • the content of the poor solvent is preferably 1 to 80% by mass, more preferably 10 to 80% by mass, particularly preferably 20 to 70% by mass, of the total solvent contained in the liquid crystal aligning agent.
  • the type and content of the poor solvent are appropriately selected according to the liquid crystal aligning agent coating device, coating conditions, coating environment, and the like. Specific examples of the poor solvent used in combination are shown below, but are not limited thereto.
  • Poor solvents are, inter alia, diisobutyl carbinol, propylene glycol monobutyl ether, propylene glycol diacetate, diethylene glycol diethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol dimethyl ether, 4-hydroxy-4-methyl-2-pentanone, ethylene glycol Monobutyl ether, ethylene glycol monobutyl ether acetate or diisobutyl ketone are preferred.
  • Preferred combinations of a good solvent and a poor solvent include N-methyl-2-pyrrolidone and ethylene glycol monobutyl ether, N-methyl-2-pyrrolidone, ⁇ -butyrolactone and ethylene glycol monobutyl ether, and N-methyl-2-pyrrolidone.
  • the liquid crystal aligning agent of the present invention may contain components (hereinafter also referred to as additive components) other than the polymer component and the organic solvent.
  • Additive components include adhesion aids for enhancing the adhesion between the liquid crystal alignment film and the substrate and the adhesion between the liquid crystal alignment film and the sealant, compounds for increasing the strength of the liquid crystal alignment film (hereinafter referred to as cross-linking compounds ), compounds for promoting imidization, and dielectrics and conductive substances for adjusting the dielectric constant and electrical resistance of the liquid crystal alignment film.
  • the crosslinkable compound includes an oxiranyl group, an oxetanyl group, a protected isocyanate group, a protected isothiocyanate group, a group containing an oxazoline ring structure, a group containing a Meldrum's acid structure, a cyclocarbonate group, and A compound having at least one group selected from the group consisting of a hydroxyalkylamide bond; a phenolic compound having at least one of an alkoxymethyl group and a methylol group; and at least a compound having a polymerizable unsaturated group. It may be one compound.
  • the compound having an oxiranyl group examples include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol, Epicoat 828 (Mitsubishi Chemical bisphenol A type epoxy resins such as Epicoat 807 (manufactured by Mitsubishi Chemical Corporation), hydrogenated bisphenol A type epoxy resins such as YX-8000 (manufactured by Mitsubishi Chemical Corporation), YX6954BH30 (Mitsubishi Chemical (manufactured by
  • Novolak epoxy resins triglycidyl isocyanurates such as TEPIC (manufactured by Nissan Chemical Industries, Ltd.), alicyclic epoxy resins such as Celoxide 2021P (manufactured by Daicel Chemical Industries, Ltd.), N,N,N',N'-tetraglycidyl-m -xylylenediamine, 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane, N,N,N',N'-tetraglycidyl-4,4'-diaminodiphenylmethane, tetrakis(glycidyloxymethyl)methane is mentioned.
  • TEPIC manufactured by Nissan Chemical Industries, Ltd.
  • alicyclic epoxy resins such as Celoxide 2021P (manufactured by Daicel Chemical Industries, Ltd.)
  • N,N,N',N'-tetraglycidyl-m -xylylenediamine
  • the compound having an oxetanyl group include compounds having two or more oxetanyl groups described in [0170] to [0175] of WO2011/132751.
  • Specific examples of the compound having a protected isocyanate group include compounds having two or more protected isocyanate groups described in [0046] to [0047] of JP-A-2014-224978, [0119] of WO2015/141598. ] to [0120], and compounds having three or more protected isocyanate groups.
  • Coronate AP Stable M Coronate 2503, 2515, 2507, 2513, 2555, Millionate MS-50 (manufactured by Tosoh Corporation), Takenate B-830, B-815N, B-820NSU, B -842N, B-846N, B-870N, B-874N, B-882N (manufactured by Mitsui Chemicals, Inc.) and the like can be preferably used. Also included are compounds having two or more protected isothiocyanate groups described in Japanese Patent Application Laid-Open No. 2016-200798.
  • the compound having a group containing an oxazoline ring structure include compounds containing two or more oxazoline ring structures, preferably 2,2', described in [0115] of JP-A-2007-286597. -bis(2-oxazoline), 2,2'-bis(4-methyl-2-oxazoline), 2,2'-bis(5-methyl-2-oxazoline), 1,2,4-tris-(2 -oxazolinyl-2)-benzene and compounds having an oxazoline group such as Epocross (manufactured by Nippon Shokubai Co., Ltd.).
  • Specific examples of the compound having a group containing a Meldrum's acid structure include compounds having two or more Meldrum's acid structures described in WO2012/091088.
  • Specific examples of the compound having a cyclocarbonate group include compounds described in WO2011/155577.
  • Specific examples of the compound having a hydroxyalkylamide bond include WO2015/072554, compounds described in [0058] of JP-A-2016-118753, compounds described in JP-A-2016-200798, N,N,N',N'-tetrakis(2-hydroxyethyl)adipamide is preferred.
  • phenol compound having at least one of an alkoxyalkyl group and a methylol group include compounds described in WO2010/074269, preferably 2,2-bis(4-hydroxy-3,5-dihydroxymethylphenyl).
  • Propane 2,2-bis(4-hydroxy-3,5-dimethoxymethylphenyl)propane, 2,2-bis(4-hydroxy-3,5-dihydroxymethylphenyl)-1,1,1,3,3 , 3-hexafluoropropane.
  • Examples of the compound having a polymerizable unsaturated bond include glycerin mono(meth)acrylate, glycerin di(meth)acrylate (1,2-,1,3-body mixture), glycerin tris(meth)acrylate, glycerol 1,3 - diglycerolate di(meth)acrylate, pentaerythritol tri(meth)acrylate, diethylene glycol mono(meth)acrylate, triethylene glycol mono(meth)acrylate, tetraethylene glycol mono(meth)acrylate, pentaethylene glycol mono(meth)acrylate ) acrylate, hexaethylene glycol mono(meth)acrylate and the like.
  • crosslinkable compounds are examples of crosslinkable compounds, and are not limited to these.
  • components other than the above disclosed in [0105] to [0116] on pages 55 of WO2015/060357 may be used.
  • the crosslinkable compounds are, among others, N,N,N',N'-tetraglycidyl-m-xylylenediamine, 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane, N,N,N' , N'-tetraglycidyl-4, 4'-diaminodiphenylmethane, Takenate B-830, B-815N, B-820NSU, B-842N, B-846N, B-870N, B-874N, B-882N, 1, 3,5-tris(2-hydroxyethyl)isocyanurate, triglycidyl isocyanurate, N,N,N',N'-tetrakis(2-hydroxyethyl)adipamide, 2,2-bis(4-hydroxy-3 ,5-dihydroxymethylphenyl)propane, 2,2-bis(4-hydroxy-3,5-dimethoxymethylphenyl)propane, 2,2-bis(4
  • the content of the crosslinkable compound in the liquid crystal aligning agent of the present invention is preferably 0.5 to 20 parts by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal aligning agent, and the effect of the present invention is preferably obtained. From the viewpoint of obtaining , it is more preferably 1 to 15 parts by mass.
  • adhesion aid examples include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldiethoxymethylsilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysi
  • silane coupling agent When using a silane coupling agent, from the viewpoint of expressing good resistance to AC afterimage, it is 0.1 to 30 parts by weight with respect to 100 parts by weight of the polymer component contained in the liquid crystal aligning agent. It is preferably from 0.1 to 20 parts by mass.
  • Compounds for promoting imidization include basic sites (e.g., primary amino groups, aliphatic heterocycles (e.g., pyrrolidine skeleton), aromatic heterocycles (e.g., imidazole ring, indole ring), guanidino groups, etc.) (excluding the above-mentioned cross-linking compounds and adhesion aids), or compounds in which the above-mentioned basic sites are generated during baking. More preferably, it is a compound in which the above-mentioned basic site is generated during baking.
  • Specific examples include a protecting group (for example, a Boc group, or a 9-fluorene Amino acids protected with a carbamate-based protecting group such as a nylmethoxycarbonyl group) can be mentioned.
  • Specific examples of the above amino acids include glycine, alanine, cysteine, methionine, asparagine, glutamine, valine, leucine, phenylalanine, tyrosine, tryptophan, proline, hydroxyproline, arginine, histidine, lysine, ornithine.
  • a more preferred specific example of the compound for promoting imidization is N- ⁇ -(9-fluorenylmethoxycarbonyl)-N- ⁇ -(t-butoxycarbonyl)-L-histidine.
  • the content of the compound for promoting imidization is preferably 2 mol parts or less, more preferably 1 mol part or less, with respect to 1 mol part of the amic acid site or amic acid ester site possessed by the polyamic acid ester or polyamic acid. , more preferably 0.5 mol parts or less.
  • the solid content concentration in the liquid crystal aligning agent (ratio of the total mass of components other than the solvent of the liquid crystal aligning agent to the total mass of the liquid crystal aligning agent) is appropriately selected in consideration of viscosity, volatility, etc., but preferably It is in the range of 1 to 10% by mass.
  • a particularly preferable range of the solid content concentration varies depending on the method used when applying the liquid crystal aligning agent to the substrate. For example, when a spin coating method is used, the solid content concentration is particularly preferably in the range of 1.5 to 4.5% by mass. When the printing method is used, it is particularly preferable to set the solid content concentration in the range of 3 to 9% by mass, thereby setting the solution viscosity in the range of 12 to 50 mPa ⁇ s.
  • the solid content concentration in the range of 1 to 5% by mass, thereby setting the solution viscosity in the range of 3 to 15 mPa ⁇ s.
  • the temperature in preparing the polymer composition is preferably 10-50°C, more preferably 20-30°C.
  • the liquid crystal alignment film of the present invention is obtained from the above liquid crystal alignment agent.
  • the liquid crystal alignment film of the present invention can be used for horizontal alignment type or vertical alignment type (VA type) liquid crystal display elements, and is particularly suitable for horizontal alignment type liquid crystal display elements such as IPS mode and FFS mode.
  • VA type vertical alignment type
  • the liquid crystal alignment film of the present invention is preferably used as a liquid crystal alignment film for photo-alignment treatment.
  • the liquid crystal display element of the present invention comprises the liquid crystal alignment film, for example, by the following steps (1) to (3) and (5), or by a method including steps (1) to (2) and (5) can be manufactured. More preferably, it is produced by a method comprising steps (1) to (5).
  • Step (1) Step of applying a liquid crystal aligning agent onto a substrate>
  • a process (1) is a process of apply
  • a specific example of step (1) is as follows.
  • a liquid crystal aligning agent is applied to one surface of the substrate provided with the patterned transparent conductive film by an appropriate coating method such as a roll coater method, a spin coat method, a printing method, an inkjet method, or the like.
  • the material of the substrate is not particularly limited as long as it is highly transparent, and glass, silicon nitride, plastics such as acrylic and polycarbonate can also be used.
  • a reflective liquid crystal display element if only one substrate is used, an opaque material such as a silicon wafer can be used, and in this case, a light-reflecting material such as aluminum can be used for the electrodes.
  • a substrate provided with electrodes made of a transparent conductive film or a metal film patterned in a comb shape and a counter substrate provided with no electrodes are used.
  • Screen printing, offset printing, flexographic printing, an inkjet method, a spray method, etc. are mentioned as a method of apply
  • the coating method and the film-forming method by the inkjet method can be preferably used.
  • a process (2) is a process of baking the liquid crystal aligning agent apply
  • a specific example of step (2) is as follows. After applying the liquid crystal aligning agent on the substrate in step (1), the solvent is evaporated or the polyamic acid or polyamic acid ester is heated by heating means such as a hot plate, a thermal circulation oven, or an IR (infrared) oven. Thermal imidization can be performed.
  • the drying and baking steps after applying the liquid crystal aligning agent of the present invention can be performed at any desired temperature and time, and may be performed multiple times.
  • the firing temperature can be, for example, 40 to 180°C.
  • the firing time at that time is not particularly limited, but may be 1 to 10 minutes or 1 to 5 minutes.
  • a step of firing at 150 to 300°C or 150 to 250°C may be added.
  • the firing time at that time is not particularly limited, but includes a firing time of 5 to 40 minutes or 5 to 30 minutes.
  • the thickness of the film after baking is preferably 5 to 300 nm, more preferably 10 to 200 nm, because if it is too thin, the reliability of the liquid crystal display element may be lowered.
  • Step (3) is a step of subjecting the baked film (coating film) obtained in step (2) to an orientation treatment depending on the case. That is, in a horizontal alignment type liquid crystal display element such as an IPS system or an FFS system, the coating film is subjected to an alignment ability-imparting treatment. On the other hand, in a vertical alignment type liquid crystal display element such as a VA system or a PSA system (Polymer Sustained Alignment), the formed coating film can be used as it is as a liquid crystal alignment film, but the coating film is subjected to an alignment ability imparting treatment. may be applied.
  • a horizontal alignment type liquid crystal display element such as an IPS system or an FFS system
  • VA system Vertical alignment type liquid crystal display element
  • PSA system Polymer Sustained Alignment
  • the alignment treatment method for the liquid crystal alignment film includes a rubbing treatment method and a photo-alignment treatment method, and the photo-alignment treatment method is more preferable.
  • a photo-alignment treatment method the surface of the film is irradiated with radiation polarized in a certain direction, and optionally, preferably, heat treatment is performed at a temperature of 150 to 250 ° C. to improve liquid crystal alignment (liquid crystal alignment (also referred to as ability).
  • radiation ultraviolet light or visible light having a wavelength of 100 to 800 nm can be used. Among them, ultraviolet rays having a wavelength of 100 to 400 nm, more preferably 200 to 400 nm are preferred.
  • the irradiation dose of the radiation is preferably 1 to 10,000 mJ/cm 2 , more preferably 100 to 5,000 mJ/cm 2 , still more preferably 100 to 1,500 mJ/cm 2 , and 100 to 1,000 mJ/cm 2 . is particularly preferred, and 100-400 mJ/cm 2 is even more preferred.
  • the light irradiation amount in the alignment treatment is 100 to 5,000 mJ/cm 2 , but in the liquid crystal aligning agent of the present invention, the light irradiation amount in the alignment treatment is reduced.
  • the substrate having the film-like material may be irradiated with heating at 50 to 250° C. in order to improve liquid crystal orientation.
  • the liquid crystal alignment film thus produced can stably orient liquid crystal molecules in a fixed direction.
  • the liquid crystal alignment film irradiated with polarized radiation can be subjected to contact treatment using a solvent, or the liquid crystal alignment film irradiated with radiation can be heat-treated.
  • the solvent used in the contact treatment is not particularly limited as long as it dissolves the decomposed product produced from the film-like material by irradiation with radiation.
  • Specific examples include water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, 1-methoxy-2-propanol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, methyl lactate, diacetone alcohol, 3- methyl methoxypropionate, ethyl 3-ethoxypropionate, propyl acetate, butyl acetate, cyclohexyl acetate and the like.
  • water, 2-propanol, 1-methoxy-2-propanol and ethyl lactate are preferable from the viewpoint of versatility and solvent safety. More preferred are water, 1-methoxy-2-propanol or ethyl lactate.
  • Solvents may be used singly or in combination of two or more.
  • Step (4) is a step of heat-treating the liquid crystal alignment film oriented in step (3). You may heat-process with respect to the irradiation film (coating film) which irradiated the said radiation.
  • the temperature of the heat treatment for the coating film irradiated with radiation is preferably 50 to 300.degree. C., more preferably 120 to 250.degree.
  • the heat treatment time is preferably 1 to 30 minutes.
  • Step (5) Step of producing a liquid crystal cell> Two substrates on which liquid crystal alignment films are formed as described above are prepared, and liquid crystal is arranged between the two substrates facing each other. Specifically, the following two methods are mentioned. In the first method, first, two substrates are arranged to face each other with a gap (cell gap) therebetween so that the respective liquid crystal alignment films face each other. Next, the peripheral portions of the two substrates are bonded together using a sealing agent, and a liquid crystal composition is injected and filled into the cell gap defined by the substrate surface and the sealing agent to contact the film surface, and then the injection hole is opened. Seal.
  • the liquid crystal composition is not particularly limited, and various liquid crystal compositions containing at least one liquid crystal compound (liquid crystal molecule) and having positive or negative dielectric anisotropy can be used.
  • a liquid crystal composition with a positive dielectric anisotropy is also referred to as a positive liquid crystal
  • a liquid crystal composition with a negative dielectric anisotropy is also referred to as a negative liquid crystal.
  • the above liquid crystal composition contains a fluorine atom, a hydroxy group, an amino group, a fluorine atom-containing group (e.g., trifluoromethyl group), a cyano group, an alkyl group, an alkoxy group, an alkenyl group, an isothiocyanate group, a heterocyclic ring, a cycloalkane,
  • a liquid crystal compound having a cycloalkene, a steroid skeleton, a benzene ring, or a naphthalene ring may be included, and a compound having two or more rigid sites (mesogenic skeleton) exhibiting liquid crystallinity in the molecule (for example, two rigid biphenyl structure, or a bimesogenic compound in which a terphenyl structure is linked by an alkyl group).
  • the liquid crystal composition may be a liquid crystal composition exhibiting a nematic phase, a liquid crystal composition exhibiting a smectic phase, or a liquid crystal composition exhibiting a cholesteric phase.
  • the liquid crystal composition may further contain an additive from the viewpoint of improving liquid crystal orientation.
  • additives include photopolymerizable monomers such as compounds having a polymerizable group described below; optically active compounds (eg, S-811 manufactured by Merck Co., Ltd.); antioxidants; UV absorbers; dyes; antifoaming agents; polymerization initiators; or polymerization inhibitors.
  • Positive liquid crystals include ZLI-2293, ZLI-4792, MLC-2003, MLC-2041, MLC-3019 and MLC-7081 manufactured by Merck.
  • MLC-3023 manufactured by Merck Co., Ltd. can be used as a liquid crystal containing a compound having a polymerizable group.
  • the second method is a method called the ODF (One Drop Fill) method.
  • a predetermined place on one of the two substrates on which the liquid crystal alignment film is formed is coated with, for example, an ultraviolet light-curing sealant, and a liquid crystal composition is applied to several predetermined places on the surface of the liquid crystal alignment film. drip.
  • the other substrate is attached so that the liquid crystal alignment films face each other, and the liquid crystal composition is spread over the entire surface of the substrate and brought into contact with the film surface.
  • the entire surface of the substrate is irradiated with ultraviolet light to cure the sealant.
  • it is desirable to remove the flow orientation at the time of liquid crystal filling by heating the liquid crystal composition to a temperature at which the used liquid crystal composition assumes an isotropic phase and then slowly cooling to room temperature.
  • the two substrates are arranged opposite to each other so that the rubbing directions of the respective coating films are at a predetermined angle, for example, orthogonal or antiparallel.
  • the sealing agent for example, an epoxy resin containing aluminum oxide spheres as a curing agent and spacers can be used.
  • Liquid crystals include nematic liquid crystals and smectic liquid crystals, among which nematic liquid crystals are preferred. Then, a liquid crystal display element can be obtained by bonding a polarizing plate to the outer surface of the liquid crystal cell as necessary.
  • a polarizing film As the polarizing plate to be attached to the outer surface of the liquid crystal cell, a polarizing film called "H film” in which polyvinyl alcohol is stretched and oriented while absorbing iodine is sandwiched between cellulose acetate protective films, or the H film itself.
  • a polarizing plate consisting of
  • the IPS substrate which is a comb-teeth electrode substrate used in the IPS system, includes a base material, a plurality of linear electrodes formed on the base material and arranged in a comb-like shape, and the base material covering the linear electrodes. and a liquid crystal alignment film formed as follows.
  • the FFS substrate which is a comb-teeth electrode substrate used in the FFS method, includes a base material, a plane electrode formed on the base material, an insulating film formed on the plane electrode, and an insulating film formed on the insulating film. , a plurality of linear electrodes arranged in a comb shape, and a liquid crystal alignment film formed on an insulating film so as to cover the linear electrodes.
  • FIG. 1 is a schematic partial cross-sectional view showing an example of the lateral electric field liquid crystal display device of the present invention, which is an example of an IPS mode liquid crystal display device.
  • the liquid crystal 3 is sandwiched between the comb-teeth electrode substrate 2 having the liquid crystal alignment film 2c and the opposing substrate 4 having the liquid crystal alignment film 4a.
  • the comb-shaped electrode substrate 2 includes a base material 2a, a plurality of linear electrodes 2b formed on the base material 2a and arranged in a comb-like shape, and a plurality of linear electrodes 2b formed on the base material 2a so as to cover the linear electrodes 2b. and a liquid crystal alignment film 2c.
  • the counter substrate 4 has a base material 4b and a liquid crystal alignment film 4a formed on the base material 4b.
  • the liquid crystal alignment film 2c is, for example, the liquid crystal alignment film of the present invention.
  • the liquid crystal alignment film 4c is also the liquid crystal alignment film of the present invention.
  • the horizontal electric field liquid crystal display element 1 when a voltage is applied to the linear electrodes 2b, an electric field is generated between the linear electrodes 2b as indicated by electric lines of force L.
  • FIG. 2 is a schematic partial sectional view showing another example of the horizontal electric field liquid crystal display device of the present invention, which is an example of the FFS mode liquid crystal display device.
  • the liquid crystal 3 is sandwiched between the comb-teeth electrode substrate 2 having the liquid crystal alignment film 2h and the opposing substrate 4 having the liquid crystal alignment film 4a.
  • the comb-teeth electrode substrate 2 includes a base material 2d, a plane electrode 2e formed on the base material 2d, an insulating film 2f formed on the plane electrode 2e, and formed on the insulating film 2f to form a comb-like shape.
  • the counter substrate 4 has a base material 4b and a liquid crystal alignment film 4a formed on the base material 4b.
  • the liquid crystal alignment film 2h is, for example, the liquid crystal alignment film of the present invention.
  • the liquid crystal alignment film 4a is also the liquid crystal alignment film of the present invention.
  • NMP N-methyl-2-pyrrolidone
  • GBL ⁇ -butyrolactone
  • BCS ethylene glycol monobutyl ether
  • Esterification rate a proton derived from a structure that does not change before and after esterification is determined as a reference proton, and the peak integrated value of this proton and the proton peak integrated value derived from the COOH group of the carboxylic acid appearing around 11 to 13.5 ppm. and was obtained by the following formula.
  • Esterification rate (%) (1- ⁇ x/y) x 100
  • x is the proton peak integrated value derived from the COOH group of the carboxylic acid
  • y the peak integrated value of the reference protons
  • is the COOH of the carboxylic acid in the case of polyamic acid (the esterification rate is 0%). It is the ratio of the number of reference protons to one base proton.
  • NMR sample tube NMR sampling tube standard, ⁇ 5 (manufactured by Kusano Kagaku Co., Ltd.)
  • deuterated dimethyl sulfoxide 0.05% TMS mixture
  • Imidation rate (%) (1- ⁇ x/y) x 100
  • x is the proton peak integrated value derived from the NH group of the amic acid
  • y is the peak integrated value of the reference protons
  • is the NH of the amic acid in the case of polyamic acid (imidization rate is 0%). It is the ratio of the number of reference protons to one base proton.
  • Table 1 summarizes the types and amounts of the diamine component and the tetracarboxylic anhydride component used in Synthesis Examples 1-7.
  • the numbers in parentheses represent the amounts (mol parts) of the monomers used per 100 mol parts in total in each component.
  • Example 2 Example 3
  • a liquid crystal aligning agent (V- 2) and (V-3) were obtained.
  • Table 2 shows the specifications of the liquid crystal aligning agents obtained in Examples 1 to 3, Reference Example 1 and Comparative Examples 1 to 4.
  • a liquid crystal cell having the structure of an FFS mode liquid crystal display element was produced.
  • a substrate with electrodes was prepared.
  • the substrate was a 30 mm x 50 mm rectangular glass plate with a thickness of 0.7 mm.
  • An ITO electrode having a solid pattern is formed on the substrate as a first layer to form a counter electrode, and a CVD (chemical vapor deposition) electrode is formed as a second layer on the first layer counter electrode.
  • a SiN (silicon nitride) film formed by the method was formed.
  • the SiN film of the second layer has a film thickness of 300 nm and functions as an interlayer insulating film.
  • a comb-shaped pixel electrode formed by patterning an ITO film is arranged as a third layer, and two pixels of a first pixel and a second pixel are formed.
  • the size of each pixel was 10 mm long and 5 mm wide.
  • the counter electrode of the first layer and the pixel electrode of the third layer were electrically insulated by the action of the SiN film of the second layer.
  • the pixel electrode of the third layer has a comb shape in which a plurality of electrode elements each having a width of 3 ⁇ m and having a central portion bent at an internal angle of 160° are arranged in parallel with an interval of 6 ⁇ m.
  • Each pixel had a first region and a second region bounded by a line connecting bent portions of a plurality of electrode elements.
  • liquid crystal aligning agents (V-1) to (V-3) and (RV-1) to (RV-2) obtained in Examples 1 to 3 and Comparative Examples 1 and 2 were each sized to have a pore size of 1.5.
  • baking was performed in a hot air circulating oven at 230° C. for 30 minutes to form a coating film with a thickness of 100 nm.
  • the coated film surface was subjected to alignment treatment by irradiating linearly polarized ultraviolet light having a wavelength of 254 nm and an extinction ratio of 26:1 through a polarizing plate for each dose shown in Table 3 to obtain a substrate with a liquid crystal alignment film.
  • the liquid crystal alignment film formed on the substrate with the electrode is aligned so that the direction of equally dividing the interior angle of the bent portion of the pixel is orthogonal to the alignment direction of the liquid crystal, and the liquid crystal alignment film is formed on the second glass substrate.
  • alignment treatment was performed so that the alignment direction of the liquid crystal on the first glass substrate and the alignment direction of the liquid crystal on the second glass substrate were the same when the liquid crystal cell was produced.
  • a sealant Mitsubishi Chemicals XN-1500T
  • another substrate is placed so that the alignment direction facing the liquid crystal alignment film surface is 0°. and glued together.
  • the sealant was heat-treated at 150° C. for 60 minutes and cured to prepare an empty cell.
  • Liquid crystal MLC-3019 manufactured by Merck & Co.
  • the deviation between the alignment direction of the liquid crystal in the first region of the pixel and the alignment direction of the liquid crystal in the second region was calculated as an angle when no voltage was applied.
  • a liquid crystal cell is placed between two polarizing plates whose polarization axes are orthogonal to each other, a backlight is turned on, and the liquid crystal cell is arranged so that the transmitted light intensity in the first region of the pixel is minimized. was adjusted, and then the rotation angle required when the liquid crystal cell was rotated so that the intensity of transmitted light in the second region of the pixel was minimized was obtained. It can be said that the smaller the rotation angle, the better the stability of the liquid crystal alignment.
  • the value of the rotation angle is "excellent” if it is less than 0.10, “good” if it is 0.10° or more and 0.20° or less, and is greater than 0.20°. was defined as "defective”.
  • Table 3 shows the evaluation results of the liquid crystal display devices using the liquid crystal aligning agents of Examples 1-3 and Comparative Examples 1-2.
  • a liquid crystal alignment film obtained from a liquid crystal aligning agent that is a mixture of a specific polyamic acid ester and a specific polyamic acid is a mixture of two polyamic acids, or a mixture of polyimide and polyamic acid.
  • the liquid crystal alignment film obtained from the liquid crystal alignment agent it exhibited high in-plane uniformity or high stability of liquid crystal alignment under a small amount of ultraviolet irradiation.
  • Table 4 shows the evaluation results of the rubbing resistance test of the liquid crystal alignment films formed using the liquid crystal alignment agents obtained in Reference Example 1 and Comparative Examples 3 and 4.
  • the liquid crystal alignment film obtained from the polyamic acid ester (PAE-1A) liquid crystal alignment agent exhibits the same rubbing resistance as the liquid crystal alignment film obtained from the polyamic acid (PAA-1), and the polyimide ( It exhibits higher rubbing resistance than the liquid crystal alignment film obtained from SPI-1). Therefore, the liquid crystal alignment film of the present invention obtained from the liquid crystal alignment agent containing the polyamic acid ester (A) and the polyamic acid (B) is comparable to the liquid crystal alignment film obtained from the liquid crystal alignment agent containing the polyamic acid. It is suggested that it exhibits rubbing resistance and exhibits higher rubbing resistance than a liquid crystal aligning film obtained from a liquid crystal aligning agent containing polyimide and polyamic acid.
  • the liquid crystal alignment film obtained from the liquid crystal alignment agent of the present invention is used for various types of liquid crystal display elements for display purposes, light control windows and optical shutters for controlling the transmission and blocking of light, and other than these. It is also effectively used for various uses.
  • liquid crystal alignment films for retardation films liquid crystal alignment films for scanning antennas and array antennas
  • liquid crystal alignment films for transmission scattering type liquid crystal light control elements and other applications such as protective films (e.g. protective films for color filters), spacer films, interlayer insulating films, antireflection films, wiring coating films, antistatic films, electric motor insulating films (gate insulating films of flexible displays), etc.
  • Horizontal electric field liquid crystal display element 2 Comb tooth electrode substrates 2a, 4b, 2d: Base material 2b, 2g: Linear electrodes 2c, 2h, 4a: Liquid crystal alignment film 2e: Planar electrodes 2f: Insulating film 3: Liquid crystal 4: Opposite substrate L: Line of electric force

Abstract

The present invention provides: a liquid crystal alignment agent which makes it possible to obtain a liquid crystal alignment film in which there is little variation of liquid crystal twist angles, in which an AC afterimage can be suppressed, and in which substrate separation is unlikely to occur; a liquid crystal alignment film; and a liquid crystal display element. The liquid crystal alignment agent contains component (A) and component (B). Component (A): A polyamic acid ester (A) which has two or more types of a structural unit (a-1Da) represented by formula (1Da) and a structural unit (a-1Ta) represented by formula (1Ta). Component (B): A polyamic acid (B) which has a structural unit (b-1Tb) represented by formula (1Tb) and a structural unit (b-1Db) represented by formula (1Db). (R11 to R14 represent a hydrogen atom, a C1-C6 alkyl group, or the like, and at least one of R11 to R14 represents a group other than a hydrogen atom. The two R1 represent a hydrogen atom or a t-alkyl group, where at least one of the two represents a t-alkyl group. Y1 is a divalent organic group represented by formula (H1). Z represents a hydrogen atom or the like.) (Ar1 and Ar1' represent a benzene ring or the like. A represents a C1-C10 divalent organic group having an alkylene structure. L1 and L1' represent a single bond or the like.) (Xb represents a tetravalent organic group, Yb represents a divalent organic group, and Z represents a hydrogen atom or the like.)

Description

液晶配向剤、液晶配向膜及び液晶表示素子Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
 本発明は液晶のツイスト角度のバラツキが小さく、AC残像を抑制でき、かつ基板剥がれが生じにくい液晶配向膜が得られる液晶配向剤、液晶配向膜及び液晶表示素子に関する。 The present invention relates to a liquid crystal aligning agent, a liquid crystal aligning film, and a liquid crystal display element that can provide a liquid crystal aligning film that has a small variation in the twist angle of liquid crystals, can suppress AC afterimages, and is less prone to substrate peeling.
 液晶表示装置は、携帯電話、スマートフォンなどの小型用途から、テレビ用、モニター用などの比較的大型の用途まで幅広く使用されている。液晶表示装置は、例えば、素子基板とカラーフィルタ基板との間に挟持された液晶層、液晶層に電界を印加する画素電極及び共通電極、液晶層の液晶分子の配向性を制御する配向膜、画素電極に供給される電気信号をスイッチングする薄膜トランジスタ(TFT)などを備えている。液晶分子の駆動方式としては、TN(Twisted Nematic)方式、VA(Vertical Alignment)方式などの縦電界方式や、IPS(In Plane Switching)方式、FFS(Fringe Field Switching)方式などの横電界方式が知られている。 Liquid crystal display devices are widely used, from small applications such as mobile phones and smartphones to relatively large applications such as televisions and monitors. A liquid crystal display device includes, for example, a liquid crystal layer sandwiched between an element substrate and a color filter substrate, a pixel electrode and a common electrode for applying an electric field to the liquid crystal layer, an alignment film for controlling the orientation of liquid crystal molecules in the liquid crystal layer, A thin film transistor (TFT) or the like is provided for switching an electric signal supplied to the pixel electrode. Known methods for driving liquid crystal molecules include vertical electric field methods such as the TN (Twisted Nematic) method and VA (Vertical Alignment) method, and horizontal electric field methods such as the IPS (In Plane Switching) method and the FFS (Fringe Field Switching) method. It is
 現在、工業的に最も普及している液晶配向膜は、電極基板上に形成された、ポリアミック酸及び/又はこれをイミド化したポリイミドからなる膜の表面を、綿、ナイロン、ポリエステルなどの布で一方向に擦る、いわゆるラビング処理を行うことで作製されている。ラビング処理は、簡便で生産性に優れた有用な方法である。しかし、液晶表示素子の高性能化、高精細化、大型化に伴い、ラビング処理で発生する配向膜の表面の傷、発塵、機械的な力や静電気による影響、更には、配向処理面内の不均一性などの種々の問題が明らかとなっている。ラビング処理に代わる配向処理方法としては、偏光された放射線を照射することにより、液晶配向能を付与する光配向法が知られている。光配向法は、光異性化反応を利用したもの、光架橋反応を利用したもの、光分解反応を利用したものなどが提案されている(例えば、非特許文献1、特許文献1、特許文献2参照)。 Currently, the liquid crystal alignment film that is most widely used industrially is formed on an electrode substrate, and the surface of a film made of polyamic acid and/or polyimide imidized thereof is covered with a cloth such as cotton, nylon, or polyester. It is produced by rubbing in one direction, that is, by performing a so-called rubbing process. The rubbing treatment is a simple and useful method with excellent productivity. However, along with the high performance, high definition, and large size of liquid crystal display elements, scratches on the surface of the alignment film caused by rubbing, dust generation, mechanical force and static electricity, and furthermore, the alignment processing surface Various problems such as the non-uniformity of the As an alignment treatment method that replaces the rubbing treatment, a photo-alignment method is known in which polarized radiation is applied to impart liquid crystal alignment ability. As the photo-alignment method, a method using a photoisomerization reaction, a method using a photocrosslinking reaction, a method using a photodecomposition reaction, etc. have been proposed (for example, Non-Patent Document 1, Patent Document 1, Patent Document 2 reference).
日本特開平9-297313号公報Japanese Patent Laid-Open No. 9-297313 日本特開2004-206091号公報Japanese Patent Application Laid-Open No. 2004-206091
 IPS駆動方式やFFS駆動方式の液晶表示素子に用いられる液晶配向膜には、長期交流駆動によって発生する残像(以下、AC残像ともいう)を抑制するための高い配向規制力が必要とされる。また、光配向法により配向処理を行う場合、光の照射量はエネルギーコストや生産スピードに影響を与える因子となるので、少ない光照射量で配向処理できることが好ましい。一方、液晶表示素子が大型化するに伴い、製造工程でのバラツキによって液晶表示素子面内での液晶のツイスト角がわずかにばらついてしまう、という不具合が発生するようになった。このようなバラツキは、液晶表示素子では黒表示とした際に明るさが面内で不均一となり、液晶表示素子の品位を低下させることにつながる。
 さらに、近年では、タッチパネル方式の液晶表示装置において、指や、ペンなどのポインティングデバイスによる押圧などの外部圧力に対して耐久性が高いこと、つまり外部圧力が付与された場合にも配向不良や輝点不良が生じにくいことが求められる。また、タブレット型端末やモバイル端末では、軽量化及び薄型化が進み、液晶表示装置の製造時のパネル組み立て工程において、パネルの歪みが生じることにより、パネル内部に応力がかかりやすくなっている。こうしたパネルの歪みや応力は、液晶配向膜の基板からの剥がれの原因となり、輝点不良や配向不良が発生する原因にもなる。そのため、液晶配向膜には、基板剥がれが生じにくい、高い膜強度が要求される。
Liquid crystal alignment films used in liquid crystal display elements of the IPS driving method and the FFS driving method require a high alignment regulating force for suppressing afterimages (hereinafter also referred to as AC afterimages) generated by long-term AC driving. Moreover, when the alignment treatment is performed by a photo-alignment method, the amount of light irradiation is a factor that affects the energy cost and the production speed, so it is preferable that the alignment treatment can be performed with a small amount of light irradiation. On the other hand, as the size of the liquid crystal display element increases, a problem arises that the twist angle of the liquid crystal within the plane of the liquid crystal display element varies slightly due to variations in the manufacturing process. Such variations lead to non-uniform brightness in the plane of the liquid crystal display element when black is displayed, leading to deterioration of the quality of the liquid crystal display element.
Furthermore, in recent years, in touch panel type liquid crystal display devices, it has been found that the durability against external pressure such as pressure from a finger or a pointing device such as a pen is high. It is required that point defects hardly occur. In addition, tablet terminals and mobile terminals are becoming lighter and thinner, and stress is more likely to be applied to the inside of the panel due to the distortion of the panel during the panel assembly process during the manufacture of the liquid crystal display device. Such panel distortion and stress may cause the liquid crystal alignment film to peel off from the substrate, and may also cause defects such as bright spots and poor alignment. Therefore, the liquid crystal alignment film is required to have a high film strength to prevent substrate peeling.
 そこで、本発明の目的は、液晶配向膜面内での液晶のツイスト角度のバラツキ(不均一性)が小さく、また、AC残像を抑制できる液晶配向膜が得られると共に、液晶表示装置の製造時などにおいて基板からの剥がれが生じにくい液晶配向膜を得ることができる液晶配向剤、該液晶配向剤から得られる液晶配向膜、及び該液晶配向膜を用いた液晶表示素子を提供することにある。 Therefore, an object of the present invention is to obtain a liquid crystal alignment film that has a small variation (non-uniformity) in the twist angle of the liquid crystal in the plane of the liquid crystal alignment film and can suppress the AC afterimage, and at the time of manufacturing the liquid crystal display device. To provide a liquid crystal aligning agent that can obtain a liquid crystal aligning film that is difficult to peel off from a substrate in such as, a liquid crystal aligning film obtained from the liquid crystal aligning agent, and a liquid crystal display element using the liquid crystal aligning film.
 本発明者は、鋭意研究を進めたところ、特定の成分を含有する液晶配向剤を使用することにより、上記課題を解決し得ることを見出し、本発明を完成するに至った。
 本発明は、具体的には、下記の態様を有するものである。
As a result of intensive research, the present inventors have found that the above problems can be solved by using a liquid crystal aligning agent containing a specific component, and have completed the present invention.
The present invention specifically has the following aspects.
 下記の(A)成分及び(B)成分を含有することを特徴とする液晶配向剤。
(A)成分:テトラカルボン酸誘導体由来の構造単位として、下記式(1Ta)で表される構造単位(a-1Ta)を有し、ジアミン由来の構造単位として、下記式(1Da)で表される構造単位(a-1Da)を2種類以上有するポリアミック酸エステル(A)。
(B)成分:テトラカルボン酸誘導体由来の構造単位として、下記式(1Tb)で表される構造単位(b-1Tb)を有し、ジアミン由来の構造単位として、下記式(1Db)で表される構造単位(b-1Db)を有するポリアミック酸(B)。
A liquid crystal aligning agent characterized by containing the following (A) component and (B) component.
Component (A): As a structural unit derived from a tetracarboxylic acid derivative, it has a structural unit (a-1Ta) represented by the following formula (1Ta), and as a structural unit derived from a diamine, represented by the following formula (1Da). Polyamic acid ester (A) having two or more types of structural units (a-1Da).
Component (B): As a structural unit derived from a tetracarboxylic acid derivative, it has a structural unit (b-1Tb) represented by the following formula (1Tb), and as a structural unit derived from a diamine, represented by the following formula (1Db). Polyamic acid (B) having a structural unit (b-1Db).
Figure JPOXMLDOC01-appb-C000005
(式(1Ta)中、R11~R14は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、又はフェニル基を表し、R11~R14の少なくとも一つは上記定義中の水素原子以外の基を表す。2つのRは、それぞれ独立して、水素原子又はtert-アルキル基を表し、その少なくとも一つはtert-アルキル基を表す。
 式(1Da)中、Yは下記式(H)で表される2価の有機基である。Zはそれぞれ独立して、水素原子又は1価の有機基を表す。)
Figure JPOXMLDOC01-appb-C000006
(式(H)中、Ar、Ar1’は、それぞれ独立して、ベンゼン環、ビフェニル構造、又はナフタレン環を表す。Ar、Ar1’の環上の任意の水素原子は、1価の基で置換されてもよい。Aは、アルキレン構造を有する炭素数1~10の2価の有機基を表す。L、L1’は、それぞれ独立して、単結合、-O-、-S-、-C(=O)-、-O-C(=O)-、-C(=O)-NR-(Rは水素原子又は1価の有機基を表す。)、又は-NR-C(=O)-(Rは水素原子又は1価の有機基を表す。)を表す。*は結合手を表す。)
Figure JPOXMLDOC01-appb-C000007
(式(1Tb)中、Xは4価の有機基を表し、式(1Db)中、Yは2価の有機基を表し、Zはそれぞれ独立して水素原子又は1価の有機基を表す。)
Figure JPOXMLDOC01-appb-C000005
(In formula (1Ta), R 11 to R 14 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, group, a monovalent organic group having 1 to 6 carbon atoms containing a fluorine atom, or a phenyl group, and at least one of R 11 to R 14 represents a group other than a hydrogen atom as defined above. Each 1 independently represents a hydrogen atom or a tert-alkyl group, at least one of which represents a tert-alkyl group.
In formula (1Da), Y 1 is a divalent organic group represented by the following formula (H 1 ). Each Z independently represents a hydrogen atom or a monovalent organic group. )
Figure JPOXMLDOC01-appb-C000006
(In formula (H 1 ), Ar 1 and Ar 1 each independently represent a benzene ring, a biphenyl structure, or a naphthalene ring . may be substituted with a valent group, A represents a divalent organic group having an alkylene structure and having 1 to 10 carbon atoms, L 1 and L 1′ each independently represent a single bond, —O— , -S-, -C(=O)-, -OC(=O)-, -C(=O)-NR- (R represents a hydrogen atom or a monovalent organic group.), or - NR-C(=O)-(R represents a hydrogen atom or a monovalent organic group. * represents a bond.)
Figure JPOXMLDOC01-appb-C000007
(In formula (1Tb), Xb represents a tetravalent organic group, Yb in formula ( 1Db ) represents a divalent organic group, and Z each independently represents a hydrogen atom or a monovalent organic group. show.)
 なお、本明細書全体を通して、以下の用語及び略号の意味は、それぞれ、以下のとおりである。ハロゲン原子は、フッ素原子、塩素原子、臭素原子、ヨウ素原子などである。第三級を意味する「tert-」は、「t-」とも表す。Boc基は、tert-ブトキシカルボニル基を表す。*は結合手を表す。 Throughout this specification, the meanings of the following terms and abbreviations are as follows. A halogen atom includes a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like. "Tert-" meaning tertiary is also referred to as "t-". A Boc group represents a tert-butoxycarbonyl group. * represents a bond.
 本発明によれば、少ない光照射量での配向処理においても、液晶配向膜面内での液晶のツイスト角度のバラツキ(不均一性)が小さく、また、AC残像を抑制できる液晶配向膜が得られると共に、液晶表示装置の製造時などにおいて基板からの剥がれが生じにくい液晶配向膜を得ることができる液晶配向剤、該液晶配向膜、及び該液晶配向膜を用いた液晶表示素子が得られる。
 本発明によって上記効果が得られるメカニズムは必ずしも明らかではないが、以下に述べることが一因と考えられる。本発明の液晶配向剤は重合体成分として特定のポリアミック酸エステル(A)とポリアミック酸(B)を含有する。ポリアミック酸エステル(A)は、疎水性の高いt-アルキルエステル構造を有するため、ポリアミック酸(B)との水素結合形成が抑制されると共に、液晶配向膜とした際の空気界面への成分の移行性が高くなり、液晶界面におけるポリアミック酸エステルの偏在性が高くなる。また、嵩高い構造を有するポリアミック酸エステル(A)は、塗布膜を焼成した際に、そのt-アルキルエステルが脱離しやすいため、熱イミド化が通常のメチルエステル構造より進行しやすくなると共に、得られる液晶配向膜にt-アルキルエステルが残存しにくくなる。
ADVANTAGE OF THE INVENTION According to this invention, the liquid crystal aligning film which can suppress an AC afterimage with little dispersion|variation (non-uniformity) of the twist angle of the liquid crystal in a liquid crystal aligning film surface is obtained, even in the alignment process by the light irradiation amount with a small amount. At the same time, it is possible to obtain a liquid crystal aligning agent, the liquid crystal aligning film, and a liquid crystal display element using the liquid crystal aligning film that can obtain a liquid crystal aligning film that does not easily peel off from the substrate during manufacturing of the liquid crystal display device.
Although the mechanism by which the above effects are obtained by the present invention is not necessarily clear, the following is considered to be one of the reasons. The liquid crystal aligning agent of the present invention contains a specific polyamic acid ester (A) and polyamic acid (B) as polymer components. Since the polyamic acid ester (A) has a highly hydrophobic t-alkyl ester structure, the formation of hydrogen bonds with the polyamic acid (B) is suppressed, and the component to the air interface when used as a liquid crystal alignment film. The migration becomes high, and the uneven distribution of the polyamic acid ester at the liquid crystal interface becomes high. In addition, since the polyamic acid ester (A) having a bulky structure has a t-alkyl ester that is easily eliminated when the coating film is baked, thermal imidization proceeds more easily than with a normal methyl ester structure. It becomes difficult for the t-alkyl ester to remain in the resulting liquid crystal alignment film.
 これにより、高い液晶配向性が面内で均一に得られるため、少ない光照射量でも、液晶配向膜面内での液晶のツイスト角度のバラツキ(不均一性)が小さく、また、AC残像を抑制できる液晶配向膜が得られると考えられる。また、上記ポリアミック酸エステル(A)は、例えば、Rがt-ブチル基の場合は焼成する際にイソブテンが脱離し、ポリアミック酸を経由してイミド化が進行すると考えられるため、得られる液晶配向膜の膜強度も改善される。加えて、本発明の液晶配向剤は、ポリアミック酸(B)を含有し、極性の高い構造を有するため、基板剥がれが生じにくい液晶配向膜を得ることができると考えられる。 As a result, high liquid crystal orientation can be uniformly obtained in the plane, so even with a small amount of light irradiation, the variation (non-uniformity) in the twist angle of the liquid crystal in the plane of the liquid crystal alignment film is small, and AC afterimages are suppressed. It is considered that a liquid crystal alignment film that can be obtained is obtained. Further, in the above polyamic acid ester (A), for example, when R 1 is a t-butyl group, isobutene is eliminated during firing, and imidization proceeds via polyamic acid, so the obtained liquid crystal The film strength of the alignment film is also improved. In addition, since the liquid crystal aligning agent of the present invention contains the polyamic acid (B) and has a highly polar structure, it is thought that a liquid crystal aligning film that is less prone to substrate peeling can be obtained.
本発明の横電界液晶表示素子の一例を示す概略部分断面図である。1 is a schematic partial cross-sectional view showing an example of a lateral electric field liquid crystal display device of the present invention; FIG. 本発明の横電界液晶表示素子の他の例を示す概略部分断面図である。FIG. 4 is a schematic partial cross-sectional view showing another example of the horizontal electric field liquid crystal display device of the present invention;
<ポリアミック酸エステル(A)>
 本発明の液晶配向剤は、テトラカルボン酸誘導体由来の構造単位として、上記式(1Ta)で表される構造単位(a-1Ta)を有し、ジアミン由来の構造単位として、上記式(1Da)で表される構造単位(a-1Da)を2種類以上有するポリアミック酸エステル(A)を含有する。尚、重合体(A)は1種類又は2種類以上で構成されてもよい。
 ポリアミック酸エステル(A)は、上記式(1Da)で表される構造単位(a-1Da)を2種類以上有することで、高い配向規制力と高い光感度という複数の特性に対して適切なバランスを有する液晶配向膜が得られるため、AC残像を抑制できる液晶配向膜が得られると共に、配向処理に必要な光の照射量を低減することができる。
<Polyamic acid ester (A)>
The liquid crystal aligning agent of the present invention has a structural unit (a-1Ta) represented by the above formula (1Ta) as a structural unit derived from a tetracarboxylic acid derivative, and a structural unit derived from a diamine having the above formula (1Da). Contains a polyamic acid ester (A) having two or more structural units (a-1Da) represented by. In addition, the polymer (A) may be composed of one type or two or more types.
The polyamic acid ester (A) has two or more types of structural units (a-1Da) represented by the above formula (1Da), thereby achieving an appropriate balance with respect to multiple properties such as high alignment control force and high photosensitivity. Therefore, it is possible to obtain a liquid crystal alignment film capable of suppressing an AC afterimage and reduce the irradiation amount of light required for the alignment treatment.
 本発明のポリアミック酸エステル(A)は、その全ての繰り返し単位が、アミック酸エステル構造となっていてもよく、その一部の繰り返し単位が、アミック酸エステル構造となっていてもよい。一部の繰り返し単位がアミック酸エステル構造となっている場合、残りの繰り返し単位はアミック酸構造であってもよく、そのアミック酸構造がイミド化された構造であってもよい。また、当該残りの繰り返し単位として、アミック酸構造の繰り返し単位を有するとともに、イミド化された構造の繰り返し単位を有していてもよい。 All the repeating units of the polyamic acid ester (A) of the present invention may have an amic acid ester structure, or a part of the repeating units may have an amic acid ester structure. When some of the repeating units have an amic acid ester structure, the remaining repeating units may have an amic acid structure, or may have an imidized structure of the amic acid structure. Moreover, as the remaining repeating units, it may have a repeating unit with an amic acid structure and a repeating unit with an imidized structure.
 ポリアミック酸エステル(A)が有するテトラカルボン酸誘導体由来の構造単位を表す上記式(1Ta)のR11~R14における炭素数1~6、好ましくは1~4のアルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基などが挙げられる。上記R11~R14における炭素数2~6、好ましくは2~4のアルケニル基の具体例としては、ビニル基、プロペニル基、ブチニル基などが挙げられ、これらは直鎖状でも分岐状でもよい。上記R11~R14における炭素数2~6、好ましくは2~4のアルキニル基の具体例としては、例えばエチニル基、1-プロピニル基、2-プロピニル基などが挙げられる。上記R11~R14における、フッ素原子を含有する炭素数1~6、好ましくは1~4の1価の有機基としては、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロプロピル基などが挙げられる。 Specific examples of the alkyl group having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms in R 11 to R 14 in the formula (1Ta) representing the structural unit derived from the tetracarboxylic acid derivative of the polyamic acid ester (A) include: Examples include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, t-butyl group, n-pentyl group and the like. Specific examples of the alkenyl group having 2 to 6 carbon atoms, preferably 2 to 4 carbon atoms in R 11 to R 14 include a vinyl group, a propenyl group, a butynyl group and the like, and these may be linear or branched. . Specific examples of alkynyl groups having 2 to 6 carbon atoms, preferably 2 to 4 carbon atoms in R 11 to R 14 include ethynyl group, 1-propynyl group and 2-propynyl group. The fluorine atom-containing monovalent organic group having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms for R 11 to R 14 is fluoromethyl group, trifluoromethyl group, pentafluoroethyl group, pentafluoropropyl and the like.
 R11~R14のより好ましい組合せは、光反応性が高い観点から、R11~R14が、水素原子又はメチル基であり、R11~R14の少なくとも一つがメチル基であることが好ましく、R11~R14の少なくとも2つがメチル基であることがより好ましい。更に好ましいのは、R11及びR14がメチル基であり、R12及びR13が水素原子である場合である。
 ポリアミック酸エステル(A)のRが有するt-アルキル基としては、炭素数4~10、好ましくは4~7のt-アルキル基である。具体的には、t-ブチル基、t-ペンチル基、t-ヘキシル基、t-ヘプチル基が例示される。なかでも、t-ブチル基が好ましい。
A more preferable combination of R 11 to R 14 is that, from the viewpoint of high photoreactivity, R 11 to R 14 are hydrogen atoms or methyl groups, and at least one of R 11 to R 14 is a methyl group. , R 11 to R 14 are more preferably methyl groups. More preferably, R 11 and R 14 are methyl groups and R 12 and R 13 are hydrogen atoms.
The t-alkyl group of R 1 of the polyamic acid ester (A) is a t-alkyl group having 4 to 10 carbon atoms, preferably 4 to 7 carbon atoms. Specific examples include t-butyl group, t-pentyl group, t-hexyl group and t-heptyl group. Among them, a t-butyl group is preferred.
 本発明のポリアミック酸エステル(A)が有する構造単位(a-1Ta)は、本発明の効果を好適に得る観点から、ポリアミック酸エステル(A)が有するテトラカルボン酸誘導体由来の全構造単位1モルに対して、5モル%以上が好ましく、25モル%以上がより好ましく、60モル%以上が更に好ましい。 The structural unit (a-1Ta) of the polyamic acid ester (A) of the present invention is, from the viewpoint of suitably obtaining the effects of the present invention, 1 mol of all structural units derived from the tetracarboxylic acid derivative of the polyamic acid ester (A). is preferably 5 mol % or more, more preferably 25 mol % or more, and even more preferably 60 mol % or more.
 本発明のポリアミック酸エステル(A)は、テトラカルボン酸誘導体由来の構造単位として、下記式(2Ta)で表される構造単位(a-2Ta)を有していてもよい。
Figure JPOXMLDOC01-appb-C000008
(2つのRは、それぞれ独立して、水素原子又は1価の有機基を表す。X2aは、4価の有機基を表す。但し、X2aが下記式(g)で表される4価の有機基である場合、Rは水素原子を表す。)
The polyamic acid ester (A) of the present invention may have a structural unit (a-2Ta) represented by the following formula (2Ta) as a structural unit derived from a tetracarboxylic acid derivative.
Figure JPOXMLDOC01-appb-C000008
(Two R 2 each independently represent a hydrogen atom or a monovalent organic group. X 2a represents a tetravalent organic group, provided that X 2a is 4 represented by the following formula (g). In the case of a valent organic group, R2 represents a hydrogen atom.)
Figure JPOXMLDOC01-appb-C000009
(R11’~R14’は、それらの好ましい態様を含めて、上記式(1Ta)のそれぞれR11~R14と同義である。)
Figure JPOXMLDOC01-appb-C000009
(R 11′ to R 14′ , including their preferred embodiments, are synonymous with R 11 to R 14 in formula (1Ta) above.)
 上記式(2Ta)におけるRの1価の有機基としては、炭素数1~20、好ましくは1~10を有する1価の炭化水素基、当該炭化水素基のメチレン基を-O-、-S-、-CO-、-COO-、-COS-、-NR-(但し、Rは、水素原子又は炭素数1~10の1価の炭化水素基である。)、-CO-NR-(但し、Rは、水素原子又は炭素数1~10の1価の炭化水素基である。)、-Si(R-(但し、Rは、水素原子又は炭素数1~10の1価の炭化水素基である。)、-SO-などで置き換えてなる1価の基A、上記1価の炭化水素基又は上記1価の基Aの炭素原子に結合する水素原子の少なくとも1個をハロゲン原子、ヒドロキシ基、アルコキシ基、ニトロ基、アミノ基、メルカプト基、ニトロソ基、アルキルシリル基、アルコキシシリル基、シラノール基、スルフィノ基、ホスフィノ基、カルボキシ基、シアノ基、スルホ基、アシル基などで置換してなる1価の基、又は複素環を有する1価の基が挙げられる。
 上記式(2Ta)におけるRの1価の有機基としては、中でも、炭素数1~10のアルキル基、炭素数2~10のアルケニル基、炭素数2~10のアルキニル基、t-ブトキシカルボニル基、又は9-フルオレニルメトキシカルボニル基が好ましく、炭素数1~3のアルキル基が更に好ましく、メチル基がより一層好ましい。
 2つのRは、本発明の効果を好適に得る観点から、それぞれ独立に、水素原子又は炭素数1~3のアルキル基が好ましく、水素原子又はメチル基がより好ましい。
The monovalent organic group for R 2 in the above formula (2Ta) is a monovalent hydrocarbon group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, and the methylene group of the hydrocarbon group is -O-, - S—, —CO—, —COO—, —COS—, —NR 3 — (where R 3 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms), —CO—NR 3 - (provided that R 3 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms), -Si(R 3 ) 2 - (provided that R 3 is a hydrogen atom or a to 10 monovalent hydrocarbon groups), a monovalent group A substituted with —SO 2 — or the like, the above monovalent hydrocarbon group or a hydrogen bonded to a carbon atom of the above monovalent group A at least one of the atoms is a halogen atom, a hydroxy group, an alkoxy group, a nitro group, an amino group, a mercapto group, a nitroso group, an alkylsilyl group, an alkoxysilyl group, a silanol group, a sulfino group, a phosphino group, a carboxy group, a cyano group, A monovalent group substituted with a sulfo group, an acyl group, or the like, or a monovalent group having a heterocyclic ring can be mentioned.
Examples of the monovalent organic group for R 2 in the above formula (2Ta) include, among others, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkynyl group having 2 to 10 carbon atoms, and t-butoxycarbonyl. or a 9-fluorenylmethoxycarbonyl group, more preferably an alkyl group having 1 to 3 carbon atoms, and even more preferably a methyl group.
From the viewpoint of suitably obtaining the effects of the present invention, the two R 2 are each independently preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, more preferably a hydrogen atom or a methyl group.
 上記式(2Ta)におけるX2aの4価の有機基の具体例として、上記式(g)で表される4価の有機基の他、以下のテトラカルボン酸二無水物(以下、これらを総称して、その他のテトラカルボン酸二無水物ともいう。)から2つの酸無水物基を除いた4価の有機基が挙げられる。 Specific examples of the tetravalent organic group of X 2a in the above formula (2Ta) include, in addition to the tetravalent organic group represented by the above formula (g), the following tetracarboxylic dianhydrides (hereinafter collectively referred to as (also referred to as other tetracarboxylic dianhydrides.) with two acid anhydride groups removed.
 1,2,3,4-ブタンテトラカルボン酸二無水物などの非環式脂肪族テトラカルボン酸二無水物;1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、3,3’,4,4’-ジシクロヘキシルテトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)テトラヒドロナフタレン-1,2-ジカルボン酸二無水物、5-(2,5-ジオキソテトラヒドロフラン-3-イル)-3a,4,5,9b-テトラヒドロナフト[1,2-c]フラン-1,3-ジオン、5-(2,5-ジオキソテトラヒドロフラン-3-イル)-8-メチル-3a,4,5,9b-テトラヒドロナフト[1,2-c]フラン-1,3-ジオン、ビシクロ[2.2.2]オクタ-7-エン-2,3,5,6-テトラカルボン酸二無水物、ビシクロ[2.2.2]オクタン-2,3,5,6-テトラカルボン酸二無水物、2,4,6,8-テトラカルボキシビシクロ[3.3.0]オクタン-2:4,6:8-二無水物などの脂環式テトラカルボン酸二無水物;ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’-パーフルオロイソプロピリデンジ(フタル酸無水物)、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)-2,2-ジフェニルプロパン二無水物、エチレングリコールビスアンヒドロトリメリテート、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、4,4’-カルボニルジフタル酸無水物、4,4’-オキシジ(1,4-フェニレン)ビス(フタル酸)二無水物、又は4,4’-メチレンジ(1,4-フェニレン)ビス(フタル酸)二無水物などの芳香族テトラカルボン酸二無水物;そのほか、日本特開2010-97188号公報に記載のテトラカルボン酸二無水物など。 Acyclic aliphatic tetracarboxylic dianhydrides such as 1,2,3,4-butanetetracarboxylic dianhydride; 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3 ,4-cyclopentanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 3,3′,4,4′-dicyclohexyltetracarboxylic dianhydride, 2,3, 5-Tricarboxycyclopentylacetic acid dianhydride, 4-(2,5-dioxotetrahydrofuran-3-yl)tetrahydronaphthalene-1,2-dicarboxylic dianhydride, 5-(2,5-dioxotetrahydrofuran-3 -yl)-3a,4,5,9b-tetrahydronaphtho[1,2-c]furan-1,3-dione, 5-(2,5-dioxotetrahydrofuran-3-yl)-8-methyl-3a ,4,5,9b-tetrahydronaphtho[1,2-c]furan-1,3-dione, bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic acid di anhydride, bicyclo[2.2.2]octane-2,3,5,6-tetracarboxylic dianhydride, 2,4,6,8-tetracarboxybicyclo[3.3.0]octane-2: Alicyclic tetracarboxylic dianhydrides such as 4,6:8-dianhydride; pyromellitic dianhydride, 3,3′,4,4′-benzophenonetetracarboxylic dianhydride, 3,3′ ,4,4′-diphenylsulfonetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 3,3 ',4,4'-diphenyl ether tetracarboxylic dianhydride, 3,3',4,4'-perfluoroisopropylidenedi(phthalic anhydride), 3,3',4,4'-biphenyltetracarboxylic acid acid dianhydride, 2,2',3,3'-biphenyltetracarboxylic dianhydride, 4,4'-bis(3,4-dicarboxyphenoxy)-2,2-diphenylpropane dianhydride, ethylene Glycol bisanhydrotrimellitate, 4,4'-(hexafluoroisopropylidene)diphthalic anhydride, 4,4'-carbonyldiphthalic anhydride, 4,4'-oxydi(1,4-phenylene)bis (Phthalic acid) dianhydride, or aromatic tetracarboxylic dianhydride such as 4,4′-methylenedi(1,4-phenylene)bis(phthalic acid) dianhydride; Tetraka described in the publication Rubonic acid dianhydride, etc.
 上記その他のテトラカルボン酸二無水物のより好ましい例としては、1,2,3,4-ブタンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、3,3’,4,4’-ジシクロヘキシルテトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、5-(2,5-ジオキソテトラヒドロフラン-3-イル)-3a,4,5,9b-テトラヒドロナフト[1,2-c]フラン-1,3-ジオン、5-(2,5-ジオキソテトラヒドロフラン-3-イル)-8-メチル-3a,4,5,9b-テトラヒドロナフト[1,2-c]フラン-1,3-ジオン、2,4,6,8-テトラカルボキシビシクロ[3.3.0]オクタン-2:4,6:8-二無水物、ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物が挙げられる。 More preferred examples of the other tetracarboxylic dianhydrides include 1,2,3,4-butanetetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1, 2,3,4-cyclopentanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 3,3′,4,4′-dicyclohexyltetracarboxylic dianhydride, 2 , 3,5-tricarboxycyclopentyl acetic acid dianhydride, 5-(2,5-dioxotetrahydrofuran-3-yl)-3a,4,5,9b-tetrahydronaphtho[1,2-c]furan-1, 3-dione, 5-(2,5-dioxotetrahydrofuran-3-yl)-8-methyl-3a,4,5,9b-tetrahydronaphtho[1,2-c]furan-1,3-dione, 2 ,4,6,8-tetracarboxybicyclo[3.3.0]octane-2:4,6:8-dianhydride, pyromellitic dianhydride, 3,3′,4,4′-benzophenone tetra Carboxylic dianhydride, 3,3',4,4'-diphenylsulfonetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalene tetracarboxylic dianhydride, 3,3′,4,4′-diphenyl ether tetracarboxylic dianhydride, 3,3′,4,4′-biphenyltetracarboxylic dianhydride, 2,2′,3, 3'-biphenyltetracarboxylic dianhydride is mentioned.
 上記式(2Ta)におけるX2aの4価の有機基は、本発明の効果を好適に得る観点から、上記式(g)で表される4価の有機基がより好ましい。 The tetravalent organic group of X 2a in the above formula (2Ta) is more preferably a tetravalent organic group represented by the above formula (g) from the viewpoint of suitably obtaining the effects of the present invention.
 ポリアミック酸エステル(A)が有する式(2Ta)で表される構造単位の割合は、ポリアミック酸エステル(A)が有するテトラカルボン酸誘導体由来の全構造単位1モルに対して、95モル%以下が好ましく、75モル%以下がより好ましく、40モル%以下が更に好ましい。 The ratio of the structural units represented by the formula (2Ta) in the polyamic acid ester (A) is 95 mol% or less with respect to 1 mol of all structural units derived from the tetracarboxylic acid derivative in the polyamic acid ester (A). Preferably, 75 mol % or less is more preferable, and 40 mol % or less is even more preferable.
 上記式(1Da)におけるYは、上記式(H)で表される2価の有機基である。式(H)において、L、L1’は、上記したとおりである。なお、L、L1’を表す-C(=O)-NR-、又は-NR-C(=O)-におけるRの1価の有機基としては、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数2~3のアルケニル基、炭素数2~3のアシル基、炭素数1~3のアルキルシリル基、炭素数1~3のアルコキシシリル基、又はこれらの基が有する水素原子の一部がハロゲン原子及びヒドロキシ基の少なくともいずれかで置換された1価の有機基が挙げられる。 Y 1 in the above formula (1Da) is a divalent organic group represented by the above formula (H 1 ). In formula (H 1 ), L 1 and L 1' are as described above. The monovalent organic group for R in -C(=O)-NR- or -NR-C(=O)- representing L 1 or L 1' is an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, an alkenyl group having 2 to 3 carbon atoms, an acyl group having 2 to 3 carbon atoms, an alkylsilyl group having 1 to 3 carbon atoms, an alkoxysilyl group having 1 to 3 carbon atoms, or any of these A monovalent organic group in which a part of the hydrogen atoms of the group is substituted with at least one of a halogen atom and a hydroxy group can be mentioned.
 上記式(H)中のAr及びAr1’の環上の任意の水素原子の置換基である1価の基としては、ハロゲン原子;炭素数1~3のアルキル基;水素原子の少なくとも一部がハロゲン原子若しくはヒドロキシ基で置換された炭素数1~3のアルキル基;炭素数1~3アルコキシ基、水素原子の少なくとも一部が上記ハロゲン原子及びヒドロキシ基の少なくともいずれかで置換された炭素数1~3のアルコキシ基;炭素数2~3のアルケニル基;炭素数2~3のアシル基;炭素数1~3のアルキルシリル基;炭素数1~3のアルコキシシリル基;ヒドロキシ基、ニトリル基などの1価の基が挙げられる。 The monovalent group which is a substituent of any hydrogen atom on the ring of Ar 1 and Ar 1′ in the above formula (H 1 ) includes a halogen atom; an alkyl group having 1 to 3 carbon atoms; Alkyl group with 1 to 3 carbon atoms partially substituted with halogen atom or hydroxy group; an alkoxy group having 1 to 3 carbon atoms; an alkenyl group having 2 to 3 carbon atoms; an acyl group having 2 to 3 carbon atoms; an alkylsilyl group having 1 to 3 carbon atoms; an alkoxysilyl group having 1 to 3 carbon atoms; A monovalent group such as a nitrile group can be mentioned.
 上記式(H)におけるAr及びAr1’の具体例としては、1,4-フェニレン、1,3-フェニレン、2-メチル-1,4-フェニレン、2-エチル-1,4-フェニレン、2-プロピル-1,4-フェニレン、2-ブチル-1,4-フェニレン、2-イソプロピル-1,4-フェニレン、2-t-ブチル-1,4-フェニレン、2-メトキシ-1,4-フェニレン、2-エトキシ-1,4-フェニレン、2-プロポキシ-1,4-フェニレン、2-ブトキシ-1,4-フェニレン、2-フルオロ-1,4-フェニレン、2,3-ジメチル-1,4-フェニレン、4-メチル-1,3-フェニレン、5-メチル-1,3-フェニレン、4-フルオロ-1,3-フェニレン、2,3,5,6-テトラメチル-1,4-フェニレンなどの置換基を有してもよいベンゼン環;4,4’-ビフェニリレン、2-メチル-4,4’-ビフェニリレン、2-エチル-4,4’-ビフェニリレン、2-プロピル-4,4’-ビフェニリレン、2-ブチル-4,4’-ビフェニリレン、2-t-ブチル-4,4’-ビフェニリレン、2-メトキシ-4,4’-ビフェニリレン、2-エトキシ-4,4’-ビフェニリレン、2-フルオロ-4,4’-ビフェニリレン、3-メチル-4,4’-ビフェニリレン、3-エチル-4,4’-ビフェニリレン、3-プロピル-4,4’-ビフェニリレン、3-ブチル-4,4’-ビフェニリレン、3-t-ブチル-4,4’-ビフェニリレン、3-メトキシ-4,4’-ビフェニリレン、3-エトキシ-4,4’-ビフェニリレン、3-フルオロ-4,4’-ビフェニリレン、2,2’-ジメチル-4,4’-ビフェニリレン、3,3’-ジメチル-4,4’-ビフェニリレン、3,3’-ビフェニリレン、5-メチル-3,3’-ビフェニリレン、5,5’-ジメチル-3,3’-ビフェニリレンなどの置換基を有してもよいビフェニル構造;1,5-ナフチレン、2,6-ナフチレン、1-メチル-2,6-ナフチレンなどの置換基を有してもよいナフタレン環などが挙げられる。 Specific examples of Ar 1 and Ar 1′ in the above formula (H 1 ) include 1,4-phenylene, 1,3-phenylene, 2-methyl-1,4-phenylene, 2-ethyl-1,4-phenylene , 2-propyl-1,4-phenylene, 2-butyl-1,4-phenylene, 2-isopropyl-1,4-phenylene, 2-t-butyl-1,4-phenylene, 2-methoxy-1,4 -phenylene, 2-ethoxy-1,4-phenylene, 2-propoxy-1,4-phenylene, 2-butoxy-1,4-phenylene, 2-fluoro-1,4-phenylene, 2,3-dimethyl-1 ,4-phenylene, 4-methyl-1,3-phenylene, 5-methyl-1,3-phenylene, 4-fluoro-1,3-phenylene, 2,3,5,6-tetramethyl-1,4- Benzene ring optionally having a substituent such as phenylene; 4,4'-biphenylylene, 2-methyl-4,4'-biphenylylene, 2-ethyl-4,4'-biphenylylene, 2-propyl-4,4 '-biphenylylene, 2-butyl-4,4'-biphenylylene, 2-t-butyl-4,4'-biphenylylene, 2-methoxy-4,4'-biphenylylene, 2-ethoxy-4,4'-biphenylylene, 2-fluoro-4,4'-biphenylylene, 3-methyl-4,4'-biphenylylene, 3-ethyl-4,4'-biphenylylene, 3-propyl-4,4'-biphenylylene, 3-butyl-4, 4'-biphenylylene, 3-t-butyl-4,4'-biphenylylene, 3-methoxy-4,4'-biphenylylene, 3-ethoxy-4,4'-biphenylylene, 3-fluoro-4,4'-biphenylylene , 2,2′-dimethyl-4,4′-biphenylylene, 3,3′-dimethyl-4,4′-biphenylylene, 3,3′-biphenylylene, 5-methyl-3,3′-biphenylylene, 5,5 biphenyl structure optionally having a substituent such as '-dimethyl-3,3'-biphenylylene; a naphthalene ring that may be used.
 上記式(H)におけるAは、アルキレン構造を有する2価の有機基である。アルキレン構造が3以上の炭素-炭素結合を有する場合、アルキレン構造を構成する任意の炭素-炭素結合は、炭素-炭素二重結合で置き換えられてもよい。Aは、好ましくは、炭素数1~10のアルキレン基(q0);当該アルキレン基の炭素-炭素結合間に、-O-、-C(=O)-、-NH-、-O-C(=O)-、又は-C(=O)-O-が挿入されてなる2価の有機基(q1);或いは当該アルキレン基の炭素-炭素結合間に、-NR-C(=O)-NR-(Rは水素原子又は1価の有機基を表す。)を少なくとも1つ有する2価の有機基(q2)である。
 ここで、上記-NR-C(=O)-NR-におけるRの1価の有機基としては、上記式(H)のL及びL1’を表す-C(=O)-NR-におけるRについて例示した構造が挙げられる。
A in the above formula (H 1 ) is a divalent organic group having an alkylene structure. When the alkylene structure has 3 or more carbon-carbon bonds, any carbon-carbon bonds making up the alkylene structure may be replaced with a carbon-carbon double bond. A is preferably an alkylene group having 1 to 10 carbon atoms (q0); =O)-, or a divalent organic group (q1) in which -C(=O)-O- is inserted; or between the carbon-carbon bonds of the alkylene group, -NR-C(=O)- A divalent organic group (q2) having at least one NR- (R represents a hydrogen atom or a monovalent organic group).
Here, the monovalent organic group for R in -NR-C(=O)-NR- is -C(=O)-NR- representing L 1 and L 1' of formula (H 1 ). Structures exemplified for R in are mentioned.
 上記(q0)、(q1)、(q2)の好ましい具体例は、下記のとおりである。
  *-(CH-*、
  *-(CHn1-O-(CHn2-*、
  *-(CHm1-O-C(=O)-(CHn’-C(=O)-O-(CH)m2-*、
  *-(CHm1-C(=O)-O-(CHn’-O-C(=O)-(CH)m2-*、
  *-(CHn1-NR-C(=O)-NR-(CHn2-*
Preferable specific examples of (q0), (q1), and (q2) above are as follows.
*-( CH2 ) n- *,
*-(CH 2 ) n1 -O-(CH 2 ) n2 -*,
*-(CH 2 ) m1 -O-C(=O)-(CH 2 ) n' -C(=O)-O-(CH 2 ) m2 -*,
*-(CH 2 ) m1 -C(=O)-O-(CH 2 ) n' -O-C(=O)-(CH 2 ) m2 -*,
*-(CH 2 ) n1 -NR-C(=O)-NR-(CH 2 ) n2 -*
 上記化学式中、Rは、水素原子又は1価の有機基を表す。該1価の有機基としては、上記式(H)のL及びL1’を表す-C(=O)-NR-におけるRについて例示した構造が挙げられる。2つのRは互いに同一でも異なっても良い。nは1~10の整数であり、より好ましくは2~10の整数であり、さらに好ましくは2~6の整数である。m1、m2は、それぞれ独立して0~4の整数であり、n’は、1~6の整数であり、m1、m2及びn’の合計は1~8である。*-(CHn1-O-(CHn2-*におけるn1、n2は、それぞれ独立して1~6の整数であり、n1及びn2の合計は2~10である。*-(CHn1-NR-C(=O)-NR-(CHn2-*におけるn1、n2は、それぞれ独立して1~6の整数であり、n1及びn2の合計は2~9である。 In the above chemical formula, R represents a hydrogen atom or a monovalent organic group. Examples of the monovalent organic group include the structures exemplified for R in -C(=O)-NR- representing L 1 and L 1' of the above formula (H 1 ). Two R's may be the same or different. n is an integer of 1-10, more preferably an integer of 2-10, more preferably an integer of 2-6. m1 and m2 are each independently an integer of 0 to 4, n' is an integer of 1 to 6, and the sum of m1, m2 and n' is 1 to 8. n1 and n2 in *-(CH 2 ) n1 -O-(CH 2 ) n2 -* are each independently an integer of 1-6, and the sum of n1 and n2 is 2-10. n1 and n2 in *-(CH 2 ) n1 -NR-C(=O)-NR-(CH 2 ) n2 -* are each independently an integer of 1 to 6, and the sum of n1 and n2 is 2 ~9.
 *-L-A-L1’-*は、本発明の効果を好適に得る観点から、以下の態様が好ましい。下記式における、m1、m2、n、n’、n1、n2の定義は上記式と同じである。また、下記式における、-C(=O)-NR-、又は-NR-C(=O)-NR-におけるRは、水素原子又は1価の有機基を表す。上記1価の有機基としては、上記式(H)のL及びL1’を表す-C(=O)-NR-におけるRについて例示した構造が挙げられる。
  *-(CH-*、-O-(CH-O-*、
  *-O-(CHn1-O-(CHn2-O-*、
  *-C(=O)-(CH-C(=O)-*、
  *-C(=O)-NR-(CH-O-*、
  *-O-C(=O)-(CH-O-*、
  *-O-C(=O)-(CH-O-C(=O)-*、
  *-O-C(=O)-(CH-C(=O)-O-*、
  *-(CH)m1-O-C(=O)-(CH)n’-C(=O)-O-(CH)m2-*
  *-S-(CH-S-*、
  *-C(=O)-NR-(CH-NR-C(=O)-*、
  *-C(=O)-O-(CH-O-C(=O)-*、
  *-(CH)m1-C(=O)-O-(CHn’-O-C(=O)-(CH)m2-*
  *-O-(CH-*、*-S-(CH-*、
  *-NR-C(=O)-(CH-C(=O)-NR-*
  *-(CHn1-NR-C(=O)-NR-(CHn2-*
 さらに、本発明の効果を好適に得る観点から、*-(CH-*、*-O-(CH-O-*、*-O-(CH-*が好ましい。
*-L 1 -AL 1′ -* preferably has the following aspects from the viewpoint of suitably obtaining the effects of the present invention. Definitions of m1, m2, n, n', n1 and n2 in the following formula are the same as those in the above formula. In the following formula, R in -C(=O)-NR- or -NR-C(=O)-NR- represents a hydrogen atom or a monovalent organic group. Examples of the monovalent organic group include the structures exemplified for R in -C(=O)-NR- representing L 1 and L 1' of the formula (H 1 ).
*-(CH 2 ) n -*, -O-(CH 2 ) n -O-*,
*—O—(CH 2 ) n1 —O—(CH 2 ) n2 —O—*,
*-C(=O)-( CH2 ) n -C(=O)-*,
*-C(=O)-NR-( CH2 ) n -O-*,
*-O-C(=O)-( CH2 ) n -O-*,
*-OC(=O)-( CH2 ) n -OC(=O)-*,
*-O-C(=O)-( CH2 ) n -C(=O)-O-*,
*-(CH 2 ) m1 -O-C(=O)-(CH 2 ) n' -C(=O)-O-(CH 2 ) m2 -*
*-S-(CH 2 ) n -S-*,
*-C(=O)-NR-( CH2 ) n -NR-C(=O)-*,
*-C(=O)-O-( CH2 ) n -O-C(=O)-*,
*-(CH 2 ) m1 -C(=O)-O-(CH 2 ) n' -O-C(=O)-(CH 2 ) m2 -*
*-O-(CH 2 ) n -*, *-S-(CH 2 ) n -*,
*-NR-C(=O)-( CH2 ) n -C(=O)-NR-*
*-(CH 2 ) n1 -NR-C(=O)-NR-(CH 2 ) n2 -*
Furthermore, *-(CH 2 ) n -*, *-O-(CH 2 ) n -O-*, and *-O-(CH 2 ) n -* are preferable from the viewpoint of suitably obtaining the effects of the present invention. .
 ポリアミック酸エステル(A)は、本発明の効果を好適に得る観点から、ジアミン由来の構造単位として、Yがベンゼン環を3つ以上有する2価の有機基である、上記式(1Da)で表される構造単位を少なくとも一つ含むことが好ましい。
 ここで、「ベンゼン環を3つ以上有する2価の有機基」におけるベンゼン環には、縮合環を構成するベンゼン環も含まれる。そして、上記式(H)におけるベンゼン環の数を数える場合、それぞれ、ナフタレン環はベンゼン環を2つ有するとし、アントラセン環はベンゼン環を3つ有するとし、ビフェニル構造はベンゼン環を2つ有するとして数える。
From the viewpoint of suitably obtaining the effects of the present invention, the polyamic acid ester (A) is represented by the above formula (1Da), in which Y 1 is a divalent organic group having three or more benzene rings as a diamine-derived structural unit. It preferably contains at least one structural unit represented.
Here, the benzene ring in the "divalent organic group having 3 or more benzene rings" includes a benzene ring constituting a condensed ring. When counting the number of benzene rings in the formula (H 1 ), the naphthalene ring has two benzene rings, the anthracene ring has three benzene rings, and the biphenyl structure has two benzene rings. count as having one.
 ポリアミック酸エステル(A)は、本発明の効果を好適に得る観点から、Yの少なくとも一つが、ArとAr1’が同じ構造となる式(H)で表される2価の有機基であって、他のYの少なくとも一つがArとAr1’が異なる構造となる式(H)で表される2価の有機基である式(1Da)で表される構造単位を有することが好ましい。
 ArとAr1’が同じ構造となる場合の好ましい組合せとして、上記置換基を有してもよいビフェニル構造と上記置換基を有してもよいビフェニル構造の組合せ、上記置換基を有してもよいナフタレン環と上記置換基を有してもよいナフタレン環との組合せが挙げられる。また、ArとAr1’が異なる構造となる場合の好ましい組み合わせとして、上記置換基を有してもよいベンゼン環と上記置換基を有してもよいビフェニル構造との組合せ、上記置換基を有してもよいベンゼン環と上記置換基を有してもよいナフタレン環との組合せ、上記置換基を有してもよいビフェニル構造と上記置換基を有してもよいナフタレン環との組合せが挙げられる。
In the polyamic acid ester (A), from the viewpoint of suitably obtaining the effects of the present invention, at least one of Y 1 is a divalent organic compound represented by the formula (H 1 ) in which Ar 1 and Ar 1' have the same structure. a structural unit represented by the formula (1Da), wherein at least one of the other Y 1 is a divalent organic group represented by the formula (H 1 ) in which Ar 1 and Ar 1′ have different structures It is preferred to have
A preferable combination when Ar 1 and Ar 1′ have the same structure is a combination of the biphenyl structure optionally having the above substituent and the biphenyl structure optionally having the above substituent, and A combination of a naphthalene ring which may be substituted with a naphthalene ring which may have one of the above substituents may be mentioned. Further, as a preferable combination when Ar 1 and Ar 1′ have different structures, a combination of a benzene ring optionally having the above substituent and a biphenyl structure optionally having the above substituent, A combination of a benzene ring which may have a substituent and a naphthalene ring which may have a substituent, and a combination of a biphenyl structure which may have a substituent and a naphthalene ring which may have a substituent. mentioned.
 上記式(1Da)におけるYは、本発明の効果を好適に得る観点から、下記式(h1-1)~(h1-13)のいずれかで表される2価の有機基が好ましい。式(h1-1)~(h1-13)において、ベンゼン環の結合位置は1位及び4位であることが好ましく、ナフタレン環の結合位置は、2位及び6位であることが好ましい。式(h1-4)において、-CH-の合計数は10以下である。式(h1-7)、(h1-8)において、-CH-の合計数は8以下であり、2つのmは互いに同一でも異なっても良い。
Figure JPOXMLDOC01-appb-C000010
Y 1 in the above formula (1Da) is preferably a divalent organic group represented by any one of the following formulas (h1-1) to (h1-13) from the viewpoint of favorably obtaining the effects of the present invention. In formulas (h1-1) to (h1-13), the bonding positions of the benzene ring are preferably the 1- and 4-positions, and the bonding positions of the naphthalene ring are preferably the 2- and 6-positions. In formula (h1-4), the total number of —CH 2 — is 10 or less. In formulas (h1-7) and (h1-8), the total number of —CH 2 — is 8 or less, and two m may be the same or different.
Figure JPOXMLDOC01-appb-C000010
 ポリアミック酸エステル(A)が含有する構造単位(a-1Da)の割合は、ポリアミック酸エステル(A)が有するジアミン由来の全構造単位1モルに対して、好ましくは5~95モル%であり、10~95モル%がより好ましく、さらに好ましくは20~80モル%である。 The ratio of the structural unit (a-1Da) contained in the polyamic acid ester (A) is preferably 5 to 95 mol% with respect to 1 mol of all diamine-derived structural units possessed by the polyamic acid ester (A), 10 to 95 mol % is more preferred, and 20 to 80 mol % is even more preferred.
 上記式(1Da)におけるZの1価の有機基としては、炭素数1~6の1価の炭化水素基、当該炭化水素基のメチレン基を-O-、-S-、-CO-、-COO-、-COS-、-NR-、-CO-NR-、-Si(R-(ただし、Rは、水素原子又は炭素数1~6の1価の炭化水素基である。)、-SO-等で置き換えてなる1価の基A、上記1価の炭化水素基又は上記1価の基Aの炭素原子に結合する水素原子の少なくとも1個をハロゲン原子、ヒドロキシ基、アルコキシ基、ニトロ基、アミノ基、メルカプト基、ニトロソ基、アルキルシリル基、アルコキシシリル基、シラノール基、スルフィノ基、ホスフィノ基、カルボキシ基、シアノ基、スルホ基、アシル基等で置換してなる1価の基、複素環を有する1価の基が挙げられる。
 上記式(1Da)におけるZの1価の有機基としては、中でも、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、又はtert-ブトキシカルボニル基が好ましく、炭素数1~3のアルキル基が更に好ましく、メチル基がより一層好ましい。
 上記式(1Da)における2つのZは、本発明の効果を好適に得る観点から、それぞれ独立に、水素原子又は炭素数1~3のアルキル基が好ましく、水素原子又はメチル基がより好ましい。
The monovalent organic group of Z in the above formula (1Da) includes a monovalent hydrocarbon group having 1 to 6 carbon atoms, and the methylene group of the hydrocarbon group is -O-, -S-, -CO-, - COO-, -COS-, -NR 3 -, -CO-NR 3 -, -Si(R 3 ) 2 - (where R 3 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms) ), the monovalent group A substituted with —SO 2 —, etc., the monovalent hydrocarbon group, or at least one of the hydrogen atoms bonded to the carbon atoms of the monovalent group A is a halogen atom, hydroxy group, alkoxy group, nitro group, amino group, mercapto group, nitroso group, alkylsilyl group, alkoxysilyl group, silanol group, sulfino group, phosphino group, carboxy group, cyano group, sulfo group, acyl group, etc. and monovalent groups having a heterocyclic ring.
The monovalent organic group for Z in the above formula (1Da) includes, among others, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, or tert-butoxycarbonyl. is preferred, an alkyl group having 1 to 3 carbon atoms is more preferred, and a methyl group is even more preferred.
Two Zs in the above formula (1Da) are each independently preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, more preferably a hydrogen atom or a methyl group, from the viewpoint of suitably obtaining the effects of the present invention.
 本発明に用いられるポリアミック酸エステル(A)は、ジアミン由来の構造単位として、構造単位(a-1Da)以外の、その他のジアミン由来の構造単位(a-1Da-2)を含有していてもよい。構造単位(a-1Da-2)は1種又は2種類以上であってもよい。
 上記その他のジアミン由来の構造単位(a-1Da-2)におけるその他のジアミンの例としては以下のものが挙げられる。
 p-フェニレンジアミン、2,3,5,6-テトラメチル-p-フェニレンジアミン、2,5-ジメチル-p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジメチル-m-フェニレンジアミン、1,4-ジアミノ-2,5-メトキシベンゼン、2,5-ジアミノトルエン、2,6-ジアミノトルエン、4-アミノベンジルアミン、2-(4-アミノフェニル)エチルアミン、4-(2-(メチルアミノ)エチル)アニリン、4-(2-アミノエチル)アニリン、2-(6-アミノナフチル)エチルアミン、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、3-トリフルオロメチル-4,4’-ジアミノビフェニル、2-トリフルオロメチル-4,4’-ジアミノビフェニル、3-フルオロ-4,4’-ジアミノビフェニル、2-フルオロ-4,4’-ジアミノビフェニル、2,2’-ジフルオロ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、3,3’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、4,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、2,2’-ジアミノビフェニル、2,3’-ジアミノビフェニル、1,5-ジアミノナフタレン、1,6-ジアミノナフタレン、1,7-ジアミノナフタレン、2,5-ジアミノナフタレン、2,6-ジアミノナフタレン、2,7-ジアミノナフタレンなどの特定のジアミン(以下、これらを特定ジアミン(1)ともいう。);
The polyamic acid ester (A) used in the present invention may contain other diamine-derived structural units (a-1Da-2) other than the structural units (a-1Da) as diamine-derived structural units. good. The structural unit (a-1Da-2) may be of one type or two or more types.
Examples of other diamines in the structural unit (a-1Da-2) derived from other diamines include the following.
p-phenylenediamine, 2,3,5,6-tetramethyl-p-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, m-phenylenediamine, 2,4-dimethyl-m-phenylenediamine, 1, 4-diamino-2,5-methoxybenzene, 2,5-diaminotoluene, 2,6-diaminotoluene, 4-aminobenzylamine, 2-(4-aminophenyl)ethylamine, 4-(2-(methylamino) ethyl)aniline, 4-(2-aminoethyl)aniline, 2-(6-aminonaphthyl)ethylamine, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4' -diaminobiphenyl, 3,3'-dimethoxy-4,4'-diaminobiphenyl, 3,3'-dihydroxy-4,4'-diaminobiphenyl, 3-trifluoromethyl-4,4'-diaminobiphenyl, 2- trifluoromethyl-4,4'-diaminobiphenyl, 3-fluoro-4,4'-diaminobiphenyl, 2-fluoro-4,4'-diaminobiphenyl, 2,2'-difluoro-4,4'-diaminobiphenyl , 3,3′-difluoro-4,4′-diaminobiphenyl, 2,2′-bis(trifluoromethyl)-4,4′-diaminobiphenyl, 3,3′-bis(trifluoromethyl)-4, 4'-diaminobiphenyl, 3,4'-diaminobiphenyl, 4,4'-diaminobiphenyl, 3,3'-diaminobiphenyl, 2,2'-diaminobiphenyl, 2,3'-diaminobiphenyl, 1,5- Specific diamines such as diaminonaphthalene, 1,6-diaminonaphthalene, 1,7-diaminonaphthalene, 2,5-diaminonaphthalene, 2,6-diaminonaphthalene, and 2,7-diaminonaphthalene (hereinafter referred to as specific diamines ( 1).);
 1,4-フェニレンビス(4-アミノベンゾエート)、1,4-フェニレンビス(3-アミノベンゾエート)、1,3-フェニレンビス(4-アミノベンゾエート)、1,3-フェニレンビス(3-アミノベンゾエート)、ビス(4-アミノフェニル)テレフタレート、ビス(3-アミノフェニル)テレフタレート、ビス(4-アミノフェニル)イソフタレート、ビス(3-アミノフェニル)イソフタレート;4,4’-ジアミノアゾベンゼン、ジアミノトラン、4,4-ジアミノカルコン、又は[4-[(E)-3-[2-(2,4-ジアミノフェニル)エトキシ]-3-オキソ-プロパ-1-エニル]フェニル]4-(4,4,4-トリフルオロブトキシ)ベンゾエート、若しくは[4-[(E)-3-[[5-アミノ-2-[4-アミノ-2-[[(E)-3-[4-[4-(4,4,4-トリフルオロブトキシ)ベンゾイル]オキシフェニル]プロパ-2-エノイル]オキシメチル]フェニル]フェニル]メトキシ]-3-オキソ-プロパ-1-エニル]フェニル]4-(4,4,4-トリフルオロブトキシ)ベンゾエートに代表されるシンナメート構造を有する芳香族ジアミンなどの光配向性基を有するジアミン;メタクリル酸2-(2,4-ジアミノフェノキシ)エチル又は2,4-ジアミノ-N,N-ジアリルアニリンなどの光重合性基を末端に有するジアミン;1-(4-(2-(2,4-ジアミノフェノキシ)エトキシ)フェニル)-2-ヒドロキシ-2-メチルプロパノン、2-(4-(2-ヒドロキシ-2-メチルプロパノイル)フェノキシ)エチル-3,5-ジアミノベンゾエートなどのラジカル重合開始剤機能を有するジアミン;4,4’-ジアミノベンズアニリドなどのアミド結合を有するジアミン;1,3-ビス(4-アミノフェニル)ウレアなどのウレア結合を有するジアミン;HN-Y-NH(Yは、分子内に、-N(D)-(Dは、加熱によって脱離して水素原子に置き換わる保護基を表す。)を有する2価の有機基を表す。)などの熱脱離性基を有するジアミン; 1,4-phenylene bis(4-aminobenzoate), 1,4-phenylene bis(3-aminobenzoate), 1,3-phenylene bis(4-aminobenzoate), 1,3-phenylene bis(3-aminobenzoate ), bis(4-aminophenyl) terephthalate, bis(3-aminophenyl) terephthalate, bis(4-aminophenyl) isophthalate, bis(3-aminophenyl) isophthalate; 4,4′-diaminoazobenzene, diaminotran , 4,4-diaminochalcone, or [4-[(E)-3-[2-(2,4-diaminophenyl)ethoxy]-3-oxo-prop-1-enyl]phenyl]4-(4, 4,4-trifluorobutoxy)benzoate, or [4-[(E)-3-[[5-amino-2-[4-amino-2-[[(E)-3-[4-[4- (4,4,4-trifluorobutoxy)benzoyl]oxyphenyl]prop-2-enoyl]oxymethyl]phenyl]phenyl]methoxy]-3-oxo-prop-1-enyl]phenyl]4-(4,4 ,4-trifluorobutoxy) diamines having photoalignable groups such as aromatic diamines having a cinnamate structure typified by benzoate; 2-(2,4-diaminophenoxy)ethyl methacrylate or 2,4-diamino-N , N-diallylaniline and other photopolymerizable group-terminated diamines; 1-(4-(2-(2,4-diaminophenoxy)ethoxy)phenyl)-2-hydroxy-2-methylpropanone, 2- Diamines with a radical polymerization initiator function such as (4-(2-hydroxy-2-methylpropanoyl)phenoxy)ethyl-3,5-diaminobenzoate; Diamines with an amide bond such as 4,4′-diaminobenzanilide diamines having a urea bond such as 1,3-bis(4-aminophenyl)urea; H 2 N-Y D -NH 2 (Y D is intramolecular, Represents a protective group that is eliminated and replaced by a hydrogen atom.) Represents a divalent organic group having a diamine having a thermally releasable group such as);
 3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、4,4’-スルホニルジアニリン、3,3’-スルホニルジアニリン、ビス(4-アミノフェニル)シラン、ビス(3-アミノフェニル)シラン、ジメチル-ビス(4-アミノフェニル)シラン、ジメチル-ビス(3-アミノフェニル)シラン、4,4’-チオジアニリン、3,3’-チオジアニリン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)プロパン、2,2’-ビス(3-アミノフェニル)プロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)プロパン、4,4’-ジアミノベンゾフェノン、1,4-ビス(4-アミノベンジル)ベンゼン;2,6-ジアミノピリジン、3,4-ジアミノピリジン、2,4-ジアミノピリミジン、3,6-ジアミノカルバゾール、N-メチル-3,6-ジアミノカルバゾール、1,4-ビス-(4-アミノフェニル)-ピペラジン、3,6-ジアミノアクリジン、N-エチル-3,6-ジアミノカルバゾール、N-フェニル-3,6-ジアミノカルバゾール、N-(3-(1H-イミダゾール-1-イル)プロピル-3,5-ジアミノベンズアミド、4-[4-[(4-アミノフェノキシ)メチル]-4,5-ジヒドロ-4-メチル-2-オキサゾリル]-ベンゼンアミン、4-[4-[(4-アミノフェノキシ)メチル]-4,5-ジヒドロ-2-オキサゾリル]-ベンゼンアミン、1,4-ビス(p-アミノベンジル)ピペラジン、4,4’-[4,4’-プロパン-1,3-ジイルビス(ピペリジン-1,4-ジイル)]ジアニリン、4-(4-アミノフェノキシカルボニル)-1-(4-アミノフェニル)ピペリジン、2,5-ビス(4-アミノフェニル)ピロール、4,4’-(1-メチル-1H-ピロール-2,5-ジイル)ビス[ベンゼンアミン]、1,4-ビス-(4-アミノフェニル)-ピペラジン、2-N-(4-アミノフェニル)ピリジン-2,5-ジアミン、2-N-(5-アミノピリジン-2-イル)ピリジン-2,5-ジアミン、2-(4-アミノフェニル)-5-アミノベンズイミダゾール、2-(4-アミノフェニル)-6-アミノベンズイミダゾール、5-(1H-ベンズイミダゾール-2-イル)ベンゼン-1,3-ジアミン、若しくは下記式(z-1)~式(z-5)で表されるジアミンなどの複素環含有ジアミン、又は、4,4’-ジアミノジフェニルアミン、4,4’-ジアミノジフェニル-N-メチルアミン、N,N’-ビス(4-アミノフェニル)-ベンジジン、N,N’-ビス(4-アミノフェニル)-N,N’-ジメチルベンジジン、若しくは、N,N’-ビス(4-アミノフェニル)-N,N’-ジメチル-1,4-ベンゼンジアミンなどのジフェニルアミン構造を有するジアミンに代表される、窒素原子を含む複素環、第二級又は第三級のアミノ基よりなる群から選ばれる少なくとも一種の窒素原子含有構造(但し、-N(D)-(Dは加熱によって脱離し水素原子に置き換わる保護基を表す。)に由来するアミノ基を除く。以下、特定の窒素原子含有構造ともいう。)を有するジアミン; 3,3′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, 3,3′-diaminodiphenylmethane, 3,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylmethane, 4, 4′-sulfonyldianiline, 3,3′-sulfonyldianiline, bis(4-aminophenyl)silane, bis(3-aminophenyl)silane, dimethyl-bis(4-aminophenyl)silane, dimethyl-bis(3 -aminophenyl)silane, 4,4'-thiodianiline, 3,3'-thiodianiline, 1,4-bis(4-aminophenyl)benzene, 1,3-bis(4-aminophenyl)benzene, 2,2' -bis[4-(4-aminophenoxy)phenyl]propane, 2,2'-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane, 2,2'-bis(4-aminophenyl)hexafluoro Propane, 2,2'-bis(3-aminophenyl)hexafluoropropane, 2,2'-bis(3-amino-4-methylphenyl)hexafluoropropane, 2,2'-bis(4-aminophenyl) Propane, 2,2'-bis(3-aminophenyl)propane, 2,2'-bis(3-amino-4-methylphenyl)propane, 4,4'-diaminobenzophenone, 1,4-bis(4- aminobenzyl)benzene; 2,6-diaminopyridine, 3,4-diaminopyridine, 2,4-diaminopyrimidine, 3,6-diaminocarbazole, N-methyl-3,6-diaminocarbazole, 1,4-bis- (4-aminophenyl)-piperazine, 3,6-diaminoacridine, N-ethyl-3,6-diaminocarbazole, N-phenyl-3,6-diaminocarbazole, N-(3-(1H-imidazole-1- yl)propyl-3,5-diaminobenzamide, 4-[4-[(4-aminophenoxy)methyl]-4,5-dihydro-4-methyl-2-oxazolyl]-benzenamine, 4-[4-[ (4-aminophenoxy)methyl]-4,5-dihydro-2-oxazolyl]-benzenamine, 1,4-bis(p-aminobenzyl)piperazine, 4,4′-[4,4′-propane-1 ,3-diylbis(piperidine-1,4-diyl)]dianiline, 4-(4-aminophenoxycarbonyl)-1-(4-aminophenyl)piperidine, 2,5-bis(4-aminophenyl) phenyl)pyrrole, 4,4′-(1-methyl-1H-pyrrole-2,5-diyl)bis[benzenamine], 1,4-bis-(4-aminophenyl)-piperazine, 2-N-( 4-aminophenyl)pyridine-2,5-diamine, 2-N-(5-aminopyridin-2-yl)pyridine-2,5-diamine, 2-(4-aminophenyl)-5-aminobenzimidazole, 2-(4-aminophenyl)-6-aminobenzimidazole, 5-(1H-benzimidazol-2-yl)benzene-1,3-diamine, or the following formulas (z-1) to (z-5) Heterocycle-containing diamines such as diamines represented by or 4,4′-diaminodiphenylamine, 4,4′-diaminodiphenyl-N-methylamine, N,N′-bis(4-aminophenyl)-benzidine, N,N'-bis(4-aminophenyl)-N,N'-dimethylbenzidine, or N,N'-bis(4-aminophenyl)-N,N'-dimethyl-1,4-benzenediamine, etc. At least one nitrogen atom-containing structure selected from the group consisting of a nitrogen atom-containing heterocycle, a secondary or tertiary amino group, typified by a diamine having a diphenylamine structure of -N(D)- (D represents a protective group that is eliminated by heating and replaced with a hydrogen atom. ) except amino groups derived from Hereinafter, it is also referred to as a specific nitrogen atom-containing structure. );
 2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、4,6-ジアミノレゾルシノール、4,4’-ジアミノ-3,3’-ジヒドロキシビフェニル;2,4-ジアミノ安息香酸、2,5-ジアミノ安息香酸、3,5-ジアミノ安息香酸、4,4’-ジアミノビフェニル-3-カルボン酸、4,4’-ジアミノジフェニルメタン-3-カルボン酸、4,4’-ジアミノジフェニルエタン-3-カルボン酸、4,4’-ジアミノビフェニル-3,3’-ジカルボン酸、4,4’-ジアミノビフェニル-2,2’-ジカルボン酸、3,3’-ジアミノビフェニル-4,4’-ジカルボン酸、3,3’-ジアミノビフェニル-2,4’-ジカルボン酸、4,4’-ジアミノジフェニルメタン-3,3’-ジカルボン酸、4,4’-ジアミノジフェニルエタン-3,3’-ジカルボン酸、4,4’-ジアミノジフェニルエーテル-3,3’-ジカルボン酸などのカルボキシ基を有するジアミン;1-(4-アミノフェニル)-1,3,3-トリメチル-1H-インダン-5-アミン、1-(4-アミノフェニル)-2,3-ジヒドロ-1,3,3-トリメチル-1H-インデン-6-アミン;コレスタニルオキシ-3,5-ジアミノベンゼン、コレステニルオキシ-3,5-ジアミノベンゼン、コレスタニルオキシ-2,4-ジアミノベンゼン、3,5-ジアミノ安息香酸コレスタニル、3,5-ジアミノ安息香酸コレステニル、3,5-ジアミノ安息香酸ラノスタニル及び3,6-ビス(4-アミノベンゾイルオキシ)コレスタンなどのステロイド骨格を有するジアミン;下記式(V-1)~(V-2)で表されるジアミン;1,3-ビス(3-アミノプロピル)-テトラメチルジシロキサンなどのシロキサン結合を有するジアミン;メタキシリレンジアミン、1,3-プロパンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミンなどの非環式脂肪族ジアミン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ジアミノシクロヘキサン、4,4’-メチレンビス(シクロヘキシルアミン)などの脂環式ジアミン、WO2018/117239号に記載の式(Y-1)~(Y-167)のいずれかで表される基に2つのアミノ基が結合したジアミンなどが挙げられる。 2,4-diaminophenol, 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol, 4,6-diaminoresorcinol, 4,4'-diamino-3,3'-dihydroxy Biphenyl; 2,4-diaminobenzoic acid, 2,5-diaminobenzoic acid, 3,5-diaminobenzoic acid, 4,4'-diaminobiphenyl-3-carboxylic acid, 4,4'-diaminodiphenylmethane-3-carboxylic acid acid, 4,4'-diaminodiphenylethane-3-carboxylic acid, 4,4'-diaminobiphenyl-3,3'-dicarboxylic acid, 4,4'-diaminobiphenyl-2,2'-dicarboxylic acid, 3, 3'-diaminobiphenyl-4,4'-dicarboxylic acid, 3,3'-diaminobiphenyl-2,4'-dicarboxylic acid, 4,4'-diaminodiphenylmethane-3,3'-dicarboxylic acid, 4,4' -Diamines having a carboxy group such as diaminodiphenylethane-3,3'-dicarboxylic acid, 4,4'-diaminodiphenyl ether-3,3'-dicarboxylic acid; 1-(4-aminophenyl)-1,3,3 -trimethyl-1H-indan-5-amine, 1-(4-aminophenyl)-2,3-dihydro-1,3,3-trimethyl-1H-indene-6-amine; cholestanyloxy-3,5- Diaminobenzene, cholestenyloxy-3,5-diaminobenzene, cholestanyloxy-2,4-diaminobenzene, cholestanyl 3,5-diaminobenzoate, cholestenyl 3,5-diaminobenzoate, 3,5-diaminobenzoic acid Diamines having a steroid skeleton such as lanostanil and 3,6-bis(4-aminobenzoyloxy)cholestane; diamines represented by the following formulas (V-1) to (V-2); 1,3-bis(3- aminopropyl)-tetramethyldisiloxane, diamines having siloxane bonds; Alicyclic diamines such as 3-bis(aminomethyl)cyclohexane, 1,4-diaminocyclohexane, 4,4′-methylenebis(cyclohexylamine), formulas (Y-1) to (Y- 167) in which two amino groups are bonded to a group represented by any one of the groups, and the like.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
(式(V-1)中、m、nは0~3の整数(但し、1≦m+n≦4を満たす。)であり、jは0又は1の整数であり、Xは、-(CH-(aは1~15の整数である。)、-CONH-、-NHCO-、-CO-N(CH)-、-NH-、-O-、-CHO-、-CH-OCO-、-COO-、又は-OCO-を表す。Rは、フッ素原子、炭素数1~10のフッ素原子含有アルキル基、炭素数1~10のフッ素原子含有アルコキシ基、炭素数3~10のアルキル基、炭素数3~10のアルコキシ基、又は炭素数3~10のアルコキシアルキル基を表す。式(V-2)中、Xは-O-、-CHO-、-CH-OCO-、-COO-、又は-OCO-を表し、m、n、X、Rが2つ存在する場合、それぞれ独立して、上記定義を有する。)
Figure JPOXMLDOC01-appb-C000012
(In the formula (V-1), m and n are integers of 0 to 3 (provided that 1 ≤ m + n ≤ 4), j is an integer of 0 or 1, X 1 is -(CH 2 ) a- (a is an integer of 1 to 15), -CONH-, -NHCO-, -CO-N(CH 3 )-, -NH-, -O-, -CH 2 O-, - represents CH 2 —OCO—, —COO—, or —OCO—, where R 1 is a fluorine atom, a fluorine atom-containing alkyl group having 1 to 10 carbon atoms, a fluorine atom-containing alkoxy group having 1 to 10 carbon atoms, or represents an alkyl group having 3 to 10 carbon atoms, an alkoxy group having 3 to 10 carbon atoms, or an alkoxyalkyl group having 3 to 10 carbon atoms, wherein X 2 is —O—, —CH 2 O—, —CH 2 —OCO—, —COO—, or —OCO—, and when there are two m, n, X 1 and R 1 , each independently has the above definition.)
 なお、上記したその他のジアミンが有する-N(D)-におけるDは、ベンジルオキシカルボニル基、9-フルオレニルメチルオキシカルボニル基、アリルオキシカルボニル基、Boc基などに代表されるカルバメート系の有機基が好ましい。熱による脱離の効率が良く、比較的低い温度で脱離し、脱離した際に無害な気体として排出されるという観点では、Boc基が特に好ましい。 D in -N(D)- of the other diamines described above is a carbamate-based organic compound represented by a benzyloxycarbonyl group, a 9-fluorenylmethyloxycarbonyl group, an allyloxycarbonyl group, a Boc group, and the like. groups are preferred. The Boc group is particularly preferred from the viewpoint that it is efficiently desorbed by heat, is desorbed at a relatively low temperature, and is discharged as a harmless gas when desorbed.
 上記その他のジアミンとして例示した熱脱離性基を有するジアミンの好ましい例として、下記式(d-1)~(d-7)から選ばれるジアミンが好ましい。
Figure JPOXMLDOC01-appb-C000013
(式(d-2)、(d-6)、(d-7)中、Rは水素原子又はBoc基を表す。)
Preferred examples of diamines having a thermally leaving group exemplified as other diamines are diamines selected from the following formulas (d-1) to (d-7).
Figure JPOXMLDOC01-appb-C000013
(In formulas (d-2), (d-6) and (d-7), R represents a hydrogen atom or a Boc group.)
 本発明に用いられるポリアミック酸エステル(A)が構造単位(a-1Da-2)を有する場合、本発明の効果を好適に得る観点から、上記特定ジアミン(1)に由来する構造単位を含有することがより好ましい。上記特定ジアミン(1)に由来する構造単位は、ポリアミック酸エステル(A)が含有するジアミン由来の全構造単位1モルに対して、好ましくは5~95モル%であり、より好ましくは5~90モル%であり、更に好ましくは20~80モル%である。
 また、ポリアミック酸エステル(A)は上記構造単位(a-1Da-2)として、ポリアミック酸(B)との二層分離性を高める観点から、上記熱脱離性基を有するジアミンに由来する構造単位を含有してもよい。上記熱脱離性基を有するジアミンに由来する構造単位は、ポリアミック酸エステル(A)が含有するジアミン由来の全構造単位1モルに対して、好ましくは5~40モル%であり、より好ましくは5~35モル%であり、更に好ましくは5~30モル%である。
When the polyamic acid ester (A) used in the present invention has a structural unit (a-1Da-2), it contains a structural unit derived from the specific diamine (1) from the viewpoint of suitably obtaining the effects of the present invention. is more preferable. The structural unit derived from the specific diamine (1) is preferably 5 to 95 mol%, more preferably 5 to 90, with respect to 1 mol of all structural units derived from the diamine contained in the polyamic acid ester (A). mol %, more preferably 20 to 80 mol %.
In addition, the polyamic acid ester (A) has a structure derived from the diamine having the thermally releasable group as the structural unit (a-1Da-2), from the viewpoint of enhancing the two-layer separability from the polyamic acid (B). May contain units. The structural unit derived from the diamine having the thermally leaving group is preferably 5 to 40 mol% with respect to 1 mol of all structural units derived from the diamine contained in the polyamic acid ester (A), more preferably It is 5 to 35 mol %, more preferably 5 to 30 mol %.
<ポリアミック酸(B)>
 本発明の液晶配向剤は、上記ポリアミック酸エステル(A)とともに、テトラカルボン酸誘導体由来の構造単位として、上記式(1Tb)で表される構造単位(b-1Tb)を有し、ジアミン由来の構造単位として、上記式(1Db)で表される構造単位(b-1Db)を有するポリアミック酸(B)を含有する。ポリアミック酸(B)は、1種類又は2種類以上で構成されてもよい。また、ポリアミック酸(B)を構成する上記構造単位は、それぞれ、1種類又は2種類以上で構成されてもよい。なお、ポリアミック酸(B)は、ポリアミック酸エステル(A)の有する上記構造単位(a-1Ta)と上記構造単位(a-1Da)を同一の分子内に有しないのが好ましい。
<Polyamic acid (B)>
The liquid crystal aligning agent of the present invention has a structural unit (b-1Tb) represented by the above formula (1Tb) as a structural unit derived from a tetracarboxylic acid derivative together with the polyamic acid ester (A), and has a diamine-derived structural unit (b-1Tb). As a structural unit, it contains a polyamic acid (B) having a structural unit (b-1Db) represented by the above formula (1Db). The polyamic acid (B) may be composed of one type or two or more types. Further, each of the structural units constituting the polyamic acid (B) may be composed of one type or two or more types. The polyamic acid (B) preferably does not have the structural unit (a-1Ta) and the structural unit (a-1Da) of the polyamic acid ester (A) in the same molecule.
 上記式(1Tb)のXにおける4価の有機基としては、非環式脂肪族テトラカルボン酸二無水物から2つの酸二無水物基を除いた4価の有機基、脂環式テトラカルボン酸二無水物から2つの酸二無水物基を除いた4価の有機基又は芳香族テトラカルボン酸二無水物から2つの酸二無水物基を除いた4価の有機基が挙げられ、具体例としては上記X2aで例示した4価の有機基が挙げられる。
 なお、芳香族テトラカルボン酸二無水物は、芳香環に結合する少なくとも1つのカルボキシ基を含めて4つのカルボキシ基が分子内脱水することにより得られる酸二無水物である。
 非環式脂肪族テトラカルボン酸二無水物は、鎖状炭化水素構造に結合する4つのカルボキシ基が分子内脱水することにより得られる酸二無水物である。但し、鎖状炭化水素構造のみで構成されている必要はなく、その一部に脂環式構造や芳香環構造を有していてもよい。
 脂環式テトラカルボン酸二無水物は、脂環式構造に結合する少なくとも1つのカルボキシ基を含めて4つのカルボキシ基が分子内脱水することにより得られる酸二無水物である。但し、これら4つのカルボキシ基はいずれも芳香環には結合していない。また、脂環式構造のみで構成されている必要はなく、その一部に鎖状炭化水素構造や芳香環構造を有していてもよい。
 本発明の効果を好適に得る観点において、上記Xにおける4価の有機基は、ベンゼン環、シクロブタン環構造、シクロペンタン環構造及びシクロヘキサン環構造よりなる群から選ばれる少なくとも一種の部分構造を有するテトラカルボン酸二無水物が好ましい。より好ましいXは、上記式(g)で表される4価の有機基、上記式(2Ta)におけるX2aで例示した構造が挙げられ、上記ポリアミック酸エステル(A)で例示したその他のテトラカルボン酸二無水物から2つの酸二無水物基を除いた4価の有機基が更に好ましい。また、上記非環式脂肪族若しくは脂環式テトラカルボン酸二無水物は、中でも液晶配向性を高める高い観点から、シクロブタン環構造、シクロペンタン環構造及びシクロヘキサン環構造よりなる群から選ばれる少なくとも一種の部分構造を有するテトラカルボン酸二無水物が好ましい。
The tetravalent organic group for X b in the above formula (1Tb) includes a tetravalent organic group obtained by removing two acid dianhydride groups from an acyclic aliphatic tetracarboxylic dianhydride, an alicyclic tetracarboxylic acid A tetravalent organic group obtained by removing two dianhydride groups from an acid dianhydride or a tetravalent organic group obtained by removing two acid dianhydride groups from an aromatic tetracarboxylic dianhydride, specifically Examples include the tetravalent organic groups exemplified for X 2a above.
The aromatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups including at least one carboxy group bonded to an aromatic ring.
An acyclic aliphatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups bonded to a chain hydrocarbon structure. However, it does not need to be composed only of a chain hydrocarbon structure, and may have an alicyclic structure or an aromatic ring structure in part thereof.
An alicyclic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups including at least one carboxy group bonded to an alicyclic structure. However, none of these four carboxy groups are bonded to the aromatic ring. Moreover, it is not necessary to consist only of an alicyclic structure, and a part thereof may have a chain hydrocarbon structure or an aromatic ring structure.
From the viewpoint of suitably obtaining the effect of the present invention, the tetravalent organic group in Xb has at least one partial structure selected from the group consisting of a benzene ring, a cyclobutane ring structure, a cyclopentane ring structure and a cyclohexane ring structure. Tetracarboxylic dianhydrides are preferred. More preferable X b includes a tetravalent organic group represented by the above formula (g), a structure exemplified for X 2a in the above formula (2Ta), and other tetravalent organic groups exemplified for the polyamic acid ester (A) above. A tetravalent organic group obtained by removing two acid dianhydride groups from a carboxylic acid dianhydride is more preferable. In addition, the acyclic aliphatic or alicyclic tetracarboxylic dianhydride is at least one selected from the group consisting of a cyclobutane ring structure, a cyclopentane ring structure, and a cyclohexane ring structure, from the viewpoint of enhancing the liquid crystal orientation. A tetracarboxylic dianhydride having a partial structure of is preferred.
 ポリアミック酸(B)は、本発明の効果を好適に得る観点において、Xが非環式脂肪族テトラカルボン酸二無水物から2つの酸無水物基を除いた4価の有機基、脂環式テトラカルボン酸二無水物から2つの酸無水物基を除いた4価の有機基、又は芳香族テトラカルボン酸二無水物から2つの酸無水物基を除いた4価の有機基である構造単位(b-1Tb)を、ポリアミック酸(B)が含有するテトラカルボン酸誘導体由来の全構造単位1モルに対して、好ましくは5モル%以上であり、より好ましくは10モル%以上であり、更に好ましくは20モル%以上であることが好ましい。 In the polyamic acid (B), from the viewpoint of suitably obtaining the effects of the present invention, X b is a tetravalent organic group obtained by removing two acid anhydride groups from an acyclic aliphatic tetracarboxylic dianhydride, an alicyclic A structure that is a tetravalent organic group obtained by removing two acid anhydride groups from the formula tetracarboxylic dianhydride, or a tetravalent organic group obtained by removing two acid anhydride groups from an aromatic tetracarboxylic dianhydride The unit (b-1Tb) is preferably 5 mol% or more, more preferably 10 mol% or more, relative to 1 mol of all structural units derived from the tetracarboxylic acid derivative contained in the polyamic acid (B), More preferably, it is 20 mol % or more.
 上記式(1Tb)のYにおける2価の有機基としては、上記Y1、及びポリアミック酸エステル(A)で例示した上記その他のジアミンから2つのアミノ基を除いた2価の有機基が挙げられる。ポリアミック酸(B)は、残留DC由来の残像が少ない観点において、Yが、ウレア結合を有するジアミン(例えば、上記式(H)におけるAが2価の有機基(q2)を表し、該式(H)で表される2価の有機基に2つのアミノ基が結合したジアミン、又は上記その他のジアミンで例示したウレア結合を有するジアミンなど。)、上記アミド結合を有するジアミン、上記特定の窒素原子含有構造を有するジアミン、上記カルボキシ基を有するジアミン、4,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、3,3’-ジメチル-4,4’-ジアミノジフェニルメタン、p-フェニレンジアミン及びm-フェニレンジアミン、から2つのアミノ基を除いた2価の有機基(これらを総称して特定の2価の有機基ともいう。)であることが好ましい。 Examples of the divalent organic group in Yb of the formula ( 1Tb ) include divalent organic groups obtained by removing two amino groups from Y1 and the other diamines exemplified in the polyamic acid ester (A). be done. In the polyamic acid (B), Y b is a diamine having a urea bond (for example, A in the above formula (H 1 ) represents a divalent organic group (q2), and the Diamines in which two amino groups are bonded to a divalent organic group represented by the formula (H 1 ), diamines having a urea bond as exemplified in the other diamines above, etc.), diamines having the above-mentioned amide bond, the above-mentioned specific diamine having a nitrogen atom-containing structure, the diamine having a carboxy group, 4,4'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, p-phenylene Divalent organic groups obtained by removing two amino groups from diamine and m-phenylenediamine (these are also collectively referred to as specific divalent organic groups) are preferred.
 ポリアミック酸(B)は、残留DC由来の残像が少ない観点において、Yが上記特定の2価の有機基である式(1Db)で表される構造単位(b-1Db)を、ポリアミック酸(B)が有するジアミン由来の全構造単位1モルに対して、5モル%以上含んでもよく、好ましくは10モル%含んでもよく、さらに好ましくは20モル%以上含んでもよい。 In the polyamic acid (B), the structural unit (b-1Db) represented by the formula (1Db) in which Y b is the specific divalent organic group is added to the polyamic acid ( It may be contained in an amount of 5 mol% or more, preferably 10 mol% or more preferably 20 mol% or more, relative to 1 mol of all diamine-derived structural units of B).
 上記式(1Db)におけるZの1価の有機基としては、上記式(1Da)におけるZについて例示した構造が挙げられる。 Examples of the monovalent organic group for Z in the above formula (1Db) include the structures exemplified for Z in the above formula (1Da).
 本発明の液晶配向剤では、本発明の効果、なかでも、残留DC由来の残像が少ない観点において、ポリアミック酸エステル(A)とポリアミック酸(B)の含有割合が、[ポリアミック酸エステル(A)/ポリアミック酸(B)]の質量比で、10/90~90/10であってもよく、20/80~90/10であってもよく、20/80~80/20であってもよい。 In the liquid crystal aligning agent of the present invention, the effect of the present invention, especially from the viewpoint of less afterimage derived from residual DC, the content ratio of the polyamic acid ester (A) and the polyamic acid (B) is set to [polyamic acid ester (A) /polyamic acid (B)] may be 10/90 to 90/10, may be 20/80 to 90/10, or may be 20/80 to 80/20. .
<ポリアミック酸、ポリアミック酸エステルの製造>
 本発明の液晶配向剤に含有されるポリアミック酸エステル(A)などのポリアミック酸エステル及びポリアミック酸(B)などのポリアミック酸は、例えば、下記の方法で製造できる。この場合、テトラカルボン酸誘導体としては、テトラカルボン酸二無水物だけでなく、その誘導体である、テトラカルボン酸ジハライド化合物、テトラカルボン酸ジアルキルエステル、テトラカルボン酸ジアルキルエステルジハライドなども用いることができる。
<Production of polyamic acid and polyamic acid ester>
Polyamic acid esters such as polyamic acid ester (A) and polyamic acids such as polyamic acid (B) contained in the liquid crystal aligning agent of the present invention can be produced, for example, by the following methods. In this case, as the tetracarboxylic acid derivative, not only tetracarboxylic dianhydride but also its derivatives such as tetracarboxylic acid dihalide compounds, tetracarboxylic acid dialkyl esters, and tetracarboxylic acid dialkyl ester dihalides can be used. .
(ポリアミック酸の製造)
 テトラカルボン酸二無水物成分とジアミン成分とを反応させることにより、アミック酸構造を有する重合体(ポリアミック酸)が得られる。ポリアミック酸が上記式(1Db)で表される構造を有する場合には、例えば、ジアミン成分としては、-N(Z)-Y-N(Z)-の構造(Y、Zの定義は上記と同じである。)を有するジアミンが使用され、また、テトラカルボン酸誘導体成分としては、X(Xの定義は上記と同じである。)を有するテトラカルボン酸二無水物が使用される。
(Production of polyamic acid)
A polymer having an amic acid structure (polyamic acid) is obtained by reacting the tetracarboxylic dianhydride component and the diamine component. When the polyamic acid has a structure represented by the above formula (1Db), for example, the diamine component has a structure of -N(Z)-Y 1 -N(Z)- (where Y 1 and Z are defined as is the same as above), and as the tetracarboxylic acid derivative component, a tetracarboxylic dianhydride having X b (the definition of X b is the same as above) is used. be.
 ポリアミック酸エステル(A)は、例えば、下記式(T)で表されるテトラカルボン酸二無水物を含むテトラカルボン酸誘導体成分と式(D)で表されるジアミンを含むジアミン成分とを反応させてポリアミック酸を得た後、後述する方法によりポリアミック酸エステルとして得ることができる。
Figure JPOXMLDOC01-appb-C000014
(R11~R14は、式(1Ta)のR11~R14と同義であり、Y及びZは、それぞれ、式(1Ta)のY及び式(1Da)のZと同義である。)
The polyamic acid ester (A) is, for example, a tetracarboxylic acid derivative component containing a tetracarboxylic dianhydride represented by the following formula (T 1 ) and a diamine component containing a diamine represented by the formula (D 1 ). After reacting to obtain a polyamic acid, it can be obtained as a polyamic acid ester by the method described later.
Figure JPOXMLDOC01-appb-C000014
(R 11 to R 14 have the same definitions as R 11 to R 14 in formula (1Ta), and Y 1 and Z have the same definitions as Y 1 in formula (1Ta) and Z in formula (1Da), respectively. )
 ポリアミック酸の製造に供されるテトラカルボン酸二無水物とジアミンとの使用割合は、ジアミンのアミノ基1当量に対して、テトラカルボン酸二無水物の酸無水物基が0.2~2当量であるのが好ましく、さらに好ましくは0.3~1.2当量である。通常の重縮合反応と同様に、このテトラカルボン酸二無水物の酸無水物基の当量が1当量に近いほど、生成するポリアミック酸の分子量は大きくなる。
 ポリアミック酸の製造における反応温度は-20~150℃が好ましく、0~100℃がより好ましい。また、反応時間は0.1~24時間が好ましく、0.5~12時間がより好ましい。
 ポリアミック酸の製造は任意の濃度で行うことができるが、好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、溶媒を追加することもできる。
The ratio of the tetracarboxylic dianhydride and the diamine used in the production of the polyamic acid is 0.2 to 2 equivalents of the acid anhydride group of the tetracarboxylic dianhydride with respect to 1 equivalent of the amino group of the diamine. and more preferably 0.3 to 1.2 equivalents. As in ordinary polycondensation reactions, the closer the equivalent of the acid anhydride group of this tetracarboxylic dianhydride to one equivalent, the greater the molecular weight of the polyamic acid produced.
The reaction temperature in the production of polyamic acid is preferably -20 to 150°C, more preferably 0 to 100°C. Also, the reaction time is preferably 0.1 to 24 hours, more preferably 0.5 to 12 hours.
Polyamic acid can be produced at any concentration, preferably 1 to 50% by mass, more preferably 5 to 30% by mass. The initial stage of the reaction may be carried out at a high concentration, and then the solvent may be added.
 上記ポリアミック酸の製造に供される有機溶媒の具体例としては、シクロヘキサノン、シクロペンタノン、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、1,3-ジメチル-2-イミダゾリジノンが挙げられる。また、製造されるポリアミック酸の溶媒溶解性が高い場合は、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、ジエチレングリコールモノメチルエーテル、又はジエチレングリコールモノエチルエーテルなどの溶媒を用いることができる。 Specific examples of the organic solvent used for producing the polyamic acid include cyclohexanone, cyclopentanone, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, γ-butyrolactone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, 1,3-dimethyl-2-imidazolidinone. Further, when the polyamic acid to be produced has high solvent solubility, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, propylene glycol monomethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl Solvents such as ether, ethylene glycol monopropyl ether, diethylene glycol monomethyl ether, or diethylene glycol monoethyl ether can be used.
(ポリアミック酸エスエルの製造)
 ポリアミック酸エステルは、例えば、[I]上記の方法で得られたポリアミック酸とエステル化剤とを反応させる方法、[II]テトラカルボン酸ジエステルとジアミンとを、好ましくは有機溶媒中、脱水触媒(例えば4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムハライド、カルボニルイミダゾール、リン系縮合剤など)の存在下で反応させる方法、[III]テトラカルボン酸ジエステルジハロゲン化物とジアミンと、好ましくは有機溶媒中、塩基(例えばピリジン、トリエチルアミンなどの第三級アミンや、水素化ナトリウム、水素化カリウム、水酸化ナトリウム、水酸化カリウム、ナトリウム、カリウムなどのアルカリ金属類)の存在下で反応させる方法、[IV]ポリアミック酸と脱水縮合剤(無水トリフルオロ酢酸など)とを反応させてイソイミド化した後、アルコール(例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、ブタノール、t-ブタノールなどの脂肪族アルコール)を反応させる方法などの既知の方法によって得ることができる。
(Production of Polyamic Acid Ester)
The polyamic acid ester can be obtained, for example, by [I] a method of reacting the polyamic acid obtained by the above method with an esterifying agent, [II] a tetracarboxylic acid diester and a diamine, preferably in an organic solvent, with a dehydration catalyst ( For example, 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium halide, carbonylimidazole, phosphorus-based condensing agent, etc.), [III ] with a tetracarboxylic acid diester dihalide and a diamine, preferably in an organic solvent, with a base (e.g. tertiary amines such as pyridine, triethylamine, sodium hydride, potassium hydride, sodium hydroxide, potassium hydroxide, sodium, potassium Alkali metals such as), [IV] Polyamic acid and dehydration condensation agent (such as trifluoroacetic anhydride) are reacted to isoimidize, followed by alcohol (e.g., methanol, ethanol, n- (fatty alcohols such as propanol, isopropanol, butanol, t-butanol) can be obtained by known methods such as a method of reacting.
 上記[II]で使用するテトラカルボン酸ジエステルは、テトラカルボン酸二無水物をアルコール類などで開環することにより得ることができる。上記[III]で使用するテトラカルボン酸ジエステルジハロゲン化物は、上記の如くして得たテトラカルボン酸ジエステルを、塩化チオニルなどの適当な塩素化剤と反応させることにより得ることができる。上記反応によりポリアミック酸エステルを溶液として得た場合、該溶液は、そのまま液晶配向剤の調製に供してもよく、反応溶液中に含まれるポリアミック酸エステルを単離したうえで液晶配向剤の調製に供してもよい。 The tetracarboxylic diester used in [II] above can be obtained by ring-opening a tetracarboxylic dianhydride with an alcohol or the like. The tetracarboxylic acid diester dihalide used in the above [III] can be obtained by reacting the tetracarboxylic acid diester obtained as described above with a suitable chlorinating agent such as thionyl chloride. When the polyamic acid ester is obtained as a solution by the above reaction, the solution may be directly subjected to the preparation of the liquid crystal aligning agent, and the polyamic acid ester contained in the reaction solution is isolated and used for the preparation of the liquid crystal aligning agent. may be provided.
 上記[I]のより好ましい方法として、ポリアミック酸の溶液にエステル化剤を添加し、撹拌することによってポリアミック酸エステルを得る方法が挙げられる。この反応に用いられる溶媒としては、ポリアミック酸の製造に用いられるものとして例示した有機溶媒と同じものを挙げることができる。反応は、有機溶媒中で、好ましくは0~100℃、より好ましくは0~50℃の反応温度で0.5~48時間に亘って行われる。また、エステル化剤は、後述する液晶配向剤の調製時に添加して、ポリアミック酸エステルを形成してもよい。
 上記[I]の方法において、用いるエステル化剤の添加量を変えることによって、任意にエステル化率を調整することができる。ここで言う「エステル化率」とは、例えば、ポリアミック酸エステル(A)の場合、エステル化される前のポリアミック酸が有する全てのアミック酸構造を基準として、エステル化されてアミック酸エステル構造となった割合を%で表したものである。エステル化率は、H-NMRを用いて、カルボキシ基のピーク強度の変化量から見積もることができる。本発明で用いられるポリアミック酸エステル(A)のエステル化率は、好ましくは5~100%、より好ましくは25~100%であり、さらに好ましくは25~65%である。
A more preferable method of [I] above is a method of adding an esterifying agent to a solution of polyamic acid and stirring to obtain a polyamic acid ester. As the solvent used in this reaction, the same organic solvents as exemplified as those used in the production of the polyamic acid can be mentioned. The reaction is carried out in an organic solvent at a reaction temperature of preferably 0-100° C., more preferably 0-50° C., for 0.5-48 hours. Moreover, an esterification agent may be added at the time of preparation of the liquid crystal aligning agent mentioned later, and may form polyamic acid ester.
In the above method [I], the esterification rate can be arbitrarily adjusted by changing the addition amount of the esterifying agent used. The "esterification rate" referred to here is, for example, in the case of the polyamic acid ester (A), based on all the amic acid structures of the polyamic acid before being esterified, esterified to an amic acid ester structure. It is the ratio expressed in %. The esterification rate can be estimated from the amount of change in the peak intensity of the carboxy group using 1 H-NMR. The esterification rate of the polyamic acid ester (A) used in the present invention is preferably 5 to 100%, more preferably 25 to 100%, still more preferably 25 to 65%.
 上記[I]の方法におけるエステル化剤の添加量は、ポリアミック酸に含まれるアミック酸の構造単位1モル当量に対して、0.01~50モル当量、より好ましくは0.1~20モル当量、さらに好ましくは1~10モル当量である。
 上記エステル化剤としては、t-ブチルエステル構造を有するポリアミック酸エステルを得る場合、例えば、t-ブチル 2,2,2-トリクロロアセトイミダート、O-t-ブチル-N,N’-ジイソプロピルイソ尿素、N,N-ジメチルホルムアミドジ-t-ブチルアセタールが挙げられる。
The amount of the esterifying agent added in the method [I] is 0.01 to 50 molar equivalents, more preferably 0.1 to 20 molar equivalents, relative to 1 molar equivalent of the structural unit of the amic acid contained in the polyamic acid. , more preferably 1 to 10 molar equivalents.
Examples of the esterifying agent include t- butyl 2,2,2-trichloroacetimidate, Ot-butyl-N,N'-diisopropyl isopropyl, and t-butyl-N,N'-diisopropyl isopropyl. Urea, N,N-dimethylformamide di-t-butyl acetal can be mentioned.
<ポリアミック酸、ポリアミック酸エステルの溶液粘度・分子量>
 本発明に用いられるポリアミック酸、ポリアミック酸エステルは、これを濃度10~15質量%の溶液としたときに、例えば、10~1000mPa・sの溶液粘度を持つものが作業性の観点から好ましい。なお、上記重合体の溶液粘度(mPa・s)は、当該重合体の良溶媒(例えばγ-ブチロラクトン、N-メチル-2-ピロリドンなど)を用いて調製した濃度10~15質量%の重合体溶液につき、E型回転粘度計を用いて25℃において測定した値である。
 上記ポリアミック酸、及びポリアミック酸エステルのゲルパーミエーションクロマトグラフィー(GPC)により測定したポリスチレン換算の重量平均分子量(Mw)は、好ましくは1,000~500,000であり、より好ましくは2,000~300,000である。また、Mwと、GPCにより測定したポリスチレン換算の数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)は、好ましくは15以下であり、より好ましくは10以下である。このような分子量範囲にあることで、液晶表示素子の良好な配向性及び安定性を確保することができる。
<Solution Viscosity/Molecular Weight of Polyamic Acid and Polyamic Acid Ester>
From the viewpoint of workability, the polyamic acid and polyamic acid ester used in the present invention preferably have a solution viscosity of, for example, 10 to 1000 mPa·s when made into a solution having a concentration of 10 to 15% by mass. The solution viscosity (mPa s) of the polymer is a polymer having a concentration of 10 to 15 mass% prepared using a good solvent for the polymer (eg, γ-butyrolactone, N-methyl-2-pyrrolidone, etc.). It is a value measured at 25° C. for a solution using an E-type rotational viscometer.
The polystyrene equivalent weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of the polyamic acid and polyamic acid ester is preferably 1,000 to 500,000, more preferably 2,000 to 300,000. In addition, the molecular weight distribution (Mw/Mn) represented by the ratio of Mw to the polystyrene equivalent number average molecular weight (Mn) measured by GPC is preferably 15 or less, more preferably 10 or less. With such a molecular weight range, good orientation and stability of the liquid crystal display device can be ensured.
<末端封止剤>
 本発明におけるポリアミック酸エステル、ポリアミック酸は、これを製造するに際して、上記の如きテトラカルボン酸誘導体成分、及びジアミン成分とともに、適当な末端封止剤を用いて末端封止型の重合体としてもよい。末端封止型の重合体は、塗膜によって得られる液晶配向膜の膜硬度の向上や、シール剤と液晶配向膜の密着特性の向上という効果を有する。
 本発明におけるポリアミック酸エステル(A)、ポリアミック酸(B)の末端の例としては、アミノ基、カルボキシ基、酸無水物基又は後述する末端封止剤に由来する基が挙げられる。アミノ基、カルボキシ基、酸無水物基は通常の縮合反応により得るか、又は以下の末端封止剤を用いて末端を封止することにより得ることができる。
<Terminal blocking agent>
The polyamic acid ester and polyamic acid in the present invention may be converted into a terminal-blocked polymer by using an appropriate terminal-blocking agent together with the tetracarboxylic acid derivative component and the diamine component as described above. . The end-blocking polymer has effects of improving the film hardness of the liquid crystal alignment film obtained by the coating film and improving the adhesion properties between the sealant and the liquid crystal alignment film.
Examples of the terminal of the polyamic acid ester (A) and polyamic acid (B) in the present invention include an amino group, a carboxyl group, an acid anhydride group, or a group derived from a terminal blocking agent to be described later. An amino group, a carboxyl group, and an acid anhydride group can be obtained by a normal condensation reaction, or can be obtained by terminal blocking using the following terminal blocking agents.
 末端封止剤としては、例えば、無水酢酸、無水マレイン酸、無水ナジック酸、無水フタル酸、無水イタコン酸、シクロヘキサンジカルボン酸無水物、3-ヒドロキシフタル酸無水物、トリメリット酸無水物、3-(3-トリメトキシシリル)プロピル)-3,4-ジヒドロフラン-2,5-ジオン、4,5,6,7-テトラフルオロイソベンゾフラン-1,3-ジオン、4-エチニルフタル酸無水物などの酸一無水物;二炭酸ジ-t-ブチル、二炭酸ジアリルなどの二炭酸ジエステル化合物;アクリロイルクロリド、メタクリロイルクロリド、ニコチン酸クロリドなどのクロロカルボニル化合物;アニリン、2-アミノフェノール、3-アミノフェノール、4-アミノサリチル酸、5-アミノサリチル酸、6-アミノサリチル酸、2-アミノ安息香酸、3-アミノ安息香酸、4-アミノ安息香酸、シクロヘキシルアミン、n-ブチルアミン、n-ペンチルアミン、n-ヘキシルアミン、n-ヘプチルアミン、n-オクチルアミンなどのモノアミン化合物;エチルイソシアネート、フェニルイソシアネート、ナフチルイソシアネート、2-アクリロイルオキシエチルイソシアネ-ト、2-メタクリロイルオキシエチルイソシアネ-トなどの不飽和結合を有するイソシアネートなどのモノイソシアネート化合物;エチルイソチオシアネート、アリルイソチオシアネートなどのイソチオシアネート化合物を挙げられる。
 末端封止剤の使用割合は、重合体の製造に使用するジアミン成分の合計100モル部に対して、0.01~20モル部とすることが好ましく、0.01~10モル部とすることがより好ましい。
Terminal blockers include, for example, acetic anhydride, maleic anhydride, nadic anhydride, phthalic anhydride, itaconic anhydride, cyclohexanedicarboxylic anhydride, 3-hydroxyphthalic anhydride, trimellitic anhydride, 3- (3-trimethoxysilyl)propyl)-3,4-dihydrofuran-2,5-dione, 4,5,6,7-tetrafluoroisobenzofuran-1,3-dione, 4-ethynylphthalic anhydride, etc. di-t-butyl dicarbonate, dicarbonic acid diester compounds such as diallyl dicarbonate; acryloyl chloride, methacryloyl chloride, chlorocarbonyl compounds such as nicotinic acid chloride; aniline, 2-aminophenol, 3-aminophenol , 4-aminosalicylic acid, 5-aminosalicylic acid, 6-aminosalicylic acid, 2-aminobenzoic acid, 3-aminobenzoic acid, 4-aminobenzoic acid, cyclohexylamine, n-butylamine, n-pentylamine, n-hexylamine , n-heptylamine, n-octylamine and other monoamine compounds; ethyl isocyanate, phenyl isocyanate, naphthyl isocyanate, 2-acryloyloxyethyl isocyanate, 2-methacryloyloxyethyl isocyanate and other unsaturated bonds monoisocyanate compounds such as isocyanate; and isothiocyanate compounds such as ethyl isothiocyanate and allyl isothiocyanate.
The proportion of the terminal blocking agent used is preferably 0.01 to 20 mol parts, more preferably 0.01 to 10 mol parts, with respect to the total 100 mol parts of the diamine component used in the production of the polymer. is more preferred.
<液晶配向剤>
 本発明の液晶配向剤は、ポリアミック酸エステル(A)及びポリアミック酸(B)を含有する。本発明の液晶配向剤は、ポリアミック酸エステル(A)、ポリアミック酸(B)に加えて、その他の重合体を含有していてもよい。
 かかるその他の重合体の具体例としては、ポリアミック酸エステル(A)およびポリアミック酸(B)以外のポリイミド前駆体、ポリイミド、ポリシロキサン、ポリエステル、ポリアミド、ポリウレア、ポリウレタン、ポリオルガノシロキサン、セルロース誘導体、ポリアセタール、ポリスチレン誘導体、ポリ(スチレン-マレイン酸無水物)共重合体、ポリ(イソブチレン-マレイン酸無水物)共重合体、ポリ(ビニルエーテル-マレイン酸無水物)共重合体、ポリ(スチレン-フェニルマレイミド)誘導体、ポリ(メタ)アクリレートからなる群から選ばれる重合体などが挙げられる。
<Liquid crystal aligning agent>
The liquid crystal aligning agent of the present invention contains polyamic acid ester (A) and polyamic acid (B). The liquid crystal aligning agent of the present invention may contain other polymers in addition to the polyamic acid ester (A) and the polyamic acid (B).
Specific examples of such other polymers include polyimide precursors other than polyamic acid ester (A) and polyamic acid (B), polyimides, polysiloxanes, polyesters, polyamides, polyureas, polyurethanes, polyorganosiloxanes, cellulose derivatives, and polyacetals. , polystyrene derivatives, poly(styrene-maleic anhydride) copolymer, poly(isobutylene-maleic anhydride) copolymer, poly(vinyl ether-maleic anhydride) copolymer, poly(styrene-phenylmaleimide) Examples include derivatives, polymers selected from the group consisting of poly(meth)acrylates, and the like.
 上記ポリ(スチレン-マレイン酸無水物)共重合体の具体例としては、SMA1000、2000、3000(Cray Valley社製)、GSM301(岐阜セラツク製造所社製)などが挙げられる。上記ポリ(イソブチレン-マレイン酸無水物)共重合体の具体例としては、イソバン-600(クラレ社製)が挙げられる。上記ポリ(ビニルエーテル-マレイン酸無水物)共重合体の具体例としては、Gantrez AN-139(メチルビニルエーテル無水マレイン酸樹脂、アシュランド社製)が挙げられる。その他の重合体は、二種以上を組み合わせて使用してもよい。
 その他の重合体の含有割合は、液晶配向剤中に含まれる重合体の合計100質量部に対して、90質量部以下が好ましく、10~90質量部がより好ましく、20~80質量部が更に好ましい。
Specific examples of the poly(styrene-maleic anhydride) copolymer include SMA1000, 2000 and 3000 (manufactured by Cray Valley) and GSM301 (manufactured by Gifu Shellac Mfg. Co.). A specific example of the poly(isobutylene-maleic anhydride) copolymer is Isovan-600 (manufactured by Kuraray Co., Ltd.). A specific example of the poly(vinyl ether-maleic anhydride) copolymer is Gantrez AN-139 (methyl vinyl ether maleic anhydride resin, manufactured by Ashland). Other polymers may be used in combination of two or more.
The content of the other polymer is preferably 90 parts by mass or less, more preferably 10 to 90 parts by mass, and further 20 to 80 parts by mass with respect to the total 100 parts by mass of the polymer contained in the liquid crystal aligning agent. preferable.
 液晶配向剤は、液晶配向膜を作製するために用いられるものであり、均一な薄膜を形成させるという観点から、塗布液の形態をとる。本発明の液晶配向剤においても上記した重合体成分と、有機溶媒とを含有する塗布液であることが好ましい。その際、液晶配向剤中の重合体の濃度は、形成させようとする塗膜の厚みの設定によって適宜変更することができる。均一で欠陥のない塗膜を形成させるという点から、液晶配向剤中の重合体の濃度は、1質量%以上が好ましく、溶液の保存安定性の点からは、10質量%以下が好ましい。特に好ましい重合体の濃度は、2~8質量%である。 The liquid crystal alignment agent is used to produce the liquid crystal alignment film, and takes the form of a coating liquid from the viewpoint of forming a uniform thin film. Also in the liquid crystal aligning agent of the present invention, it is preferable that the liquid crystal aligning agent is a coating liquid containing the above-described polymer component and an organic solvent. At that time, the concentration of the polymer in the liquid crystal aligning agent can be appropriately changed by setting the thickness of the coating film to be formed. The concentration of the polymer in the liquid crystal aligning agent is preferably 1% by mass or more from the viewpoint of forming a uniform and defect-free coating film, and is preferably 10% by mass or less from the viewpoint of the storage stability of the solution. A particularly preferred polymer concentration is 2 to 8% by weight.
 液晶配向剤に含有される有機溶媒は、重合体成分が均一に溶解するものであれば特に限定されない。その具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルラクトアミド、N,N-ジメチルプロピオンアミド、N,N-ジエチルプロピオンアミド、テトラメチル尿素、N,N-ジエチルホルムアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン、γ-バレロラクトン、1,3-ジメチル-2-イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、N-(n-プロピル)-2-ピロリドン、N-イソプロピル-2-ピロリドン、N-(n-ブチル)-2-ピロリドン、N-(t-ブチル)-2-ピロリドン、N-(n-ペンチル)-2-ピロリドン、N-メトキシプロピル-2-ピロリドン、N-エトキシエチル-2-ピロリドン、N-メトキシブチル-2-ピロリドン、N-シクロヘキシル-2-ピロリドン(これらを総称して「良溶媒」ともいう)が挙げられる。なかでも、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド又はγ-ブチロラクトンが好ましい。良溶媒の含有量は、液晶配向剤に含まれる溶媒全体の20~99質量%であることが好ましく、20~90質量%であることがより好ましく、30~80質量%であることが特に好ましい。 The organic solvent contained in the liquid crystal aligning agent is not particularly limited as long as it dissolves the polymer component uniformly. Specific examples include N,N-dimethylformamide, N,N-dimethylacetamide, N,N-dimethyllactamide, N,N-dimethylpropionamide, N,N-diethylpropionamide, tetramethylurea, N, N-diethylformamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethyl sulfoxide, γ-butyrolactone, γ-valerolactone, 1,3-dimethyl-2-imidazolidinone, methyl ethyl ketone, cyclohexanone, cyclo pentanone, 3-methoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide, N-(n-propyl)-2-pyrrolidone, N-isopropyl-2-pyrrolidone, N-( n-butyl)-2-pyrrolidone, N-(t-butyl)-2-pyrrolidone, N-(n-pentyl)-2-pyrrolidone, N-methoxypropyl-2-pyrrolidone, N-ethoxyethyl-2-pyrrolidone , N-methoxybutyl-2-pyrrolidone, and N-cyclohexyl-2-pyrrolidone (these are collectively referred to as “good solvents”). Among them, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 3-methoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide and γ-butyrolactone are preferred. The content of the good solvent is preferably 20 to 99% by mass, more preferably 20 to 90% by mass, and particularly preferably 30 to 80% by mass of the total solvent contained in the liquid crystal aligning agent. .
 また、液晶配向剤に含有される有機溶媒は、上記溶媒に加えて液晶配向剤を塗布する際の塗布性や塗膜の表面平滑性を向上させる溶媒(貧溶媒ともいう。)を併用した混合溶媒の使用が好ましい。貧溶媒の含有量は、液晶配向剤に含まれる溶媒全体の1~80質量%が好ましく、10~80質量%がより好ましく、20~70質量%が特に好ましい。貧溶媒の種類及び含有量は、液晶配向剤の塗布装置、塗布条件、塗布環境などに応じて適宜選択される。併用する貧溶媒の具体例を下記するが、これらに限定されない。
 例えば、ジイソプロピルエーテル、ジイソブチルエーテル、ジイソブチルカルビノール(2,6-ジメチル-4-ヘプタノール)、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、1,2-ブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、エチレングリコールモノブチルエーテル、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、1-(2-ブトキシエトキシ)-2-プロパノール、2-(2-ブトキシエトキシ)-1-プロパノール、プロピレングリコールモノメチルエーテルアセタート、プロピレングリコールジアセテート、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジメチルエーテル、エチレングリコールモノブチルエーテルアセタート、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、酢酸シクロヘキシル、酢酸4-メチル-2-ペンチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸エチル、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸n-ブチル、乳酸イソアミル、ジエチレングリコールモノエチルエーテル、ジイソブチルケトン(2,6-ジメチル-4-ヘプタノン)などを挙げることができる。
Further, the organic solvent contained in the liquid crystal aligning agent is a mixture of the above solvents and a solvent (also referred to as a poor solvent) that improves the coatability and the surface smoothness of the coating film when applying the liquid crystal aligning agent. The use of solvents is preferred. The content of the poor solvent is preferably 1 to 80% by mass, more preferably 10 to 80% by mass, particularly preferably 20 to 70% by mass, of the total solvent contained in the liquid crystal aligning agent. The type and content of the poor solvent are appropriately selected according to the liquid crystal aligning agent coating device, coating conditions, coating environment, and the like. Specific examples of the poor solvent used in combination are shown below, but are not limited thereto.
For example, diisopropyl ether, diisobutyl ether, diisobutylcarbinol (2,6-dimethyl-4-heptanol), ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, 1,2-butoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether , 4-hydroxy-4-methyl-2-pentanone, diethylene glycol methyl ethyl ether, diethylene glycol dibutyl ether, 3-ethoxybutyl acetate, 1-methylpentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, ethylene Glycol monoacetate, ethylene glycol diacetate, propylene carbonate, ethylene carbonate, ethylene glycol monobutyl ether, ethylene glycol monoisoamyl ether, ethylene glycol monohexyl ether, propylene glycol monomethyl ether, propylene glycol monobutyl ether, 1-(2-butoxy ethoxy)-2-propanol, 2-(2-butoxyethoxy)-1-propanol, propylene glycol monomethyl ether acetate, propylene glycol diacetate, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol dimethyl ether, Ethylene glycol monobutyl ether acetate, diethylene glycol monopropyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, 2-(2-ethoxyethoxy) ethyl acetate, diethylene glycol acetate, n-butyl acetate, propylene glycol monoacetate ethyl ether, cyclohexyl acetate, 4-methyl-2-pentyl acetate, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, propyl 3-methoxypropionate, butyl 3-methoxypropionate, Examples include n-butyl lactate, isoamyl lactate, diethylene glycol monoethyl ether, diisobutyl ketone (2,6-dimethyl-4-heptanone) and the like.
 貧溶媒は、なかでも、ジイソブチルカルビノール、プロピレングリコールモノブチルエーテル、プロピレングリコールジアセテート、ジエチレングリコールジエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジメチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、エチレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテルアセタート、又はジイソブチルケトンが好ましい。 Poor solvents are, inter alia, diisobutyl carbinol, propylene glycol monobutyl ether, propylene glycol diacetate, diethylene glycol diethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol dimethyl ether, 4-hydroxy-4-methyl-2-pentanone, ethylene glycol Monobutyl ether, ethylene glycol monobutyl ether acetate or diisobutyl ketone are preferred.
 良溶媒と貧溶媒との好ましい組み合わせとしては、N-メチル-2-ピロリドンとエチレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとエチレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテル、N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテル、N-エチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノン、N-エチル-2-ピロリドンとプロピレングリコールジアセテート、N,N-ジメチルラクトアミドとジイソブチルケトン、N-メチル-2-ピロリドンと3-エトキシプロピオン酸エチル、N-エチル-2-ピロリドンと3-エトキシプロピオン酸エチル、N-メチル-2-ピロリドンと3-エトキシプロピオン酸エチルとジプロピレングリコールモノメチルエーテル、N-エチル-2-ピロリドンと3-エトキシプロピオン酸エチルとプロピレングリコールモノブチルエーテル、N-メチル-2-ピロリドンと3-エトキシプロピオン酸エチルとジエチレングリコールモノプロピルエーテル、N-エチル-2-ピロリドンと3-エトキシプロピオン酸エチルとジエチレングリコールモノプロピルエーテル、N-メチル-2-ピロリドンとエチレングリコールモノブチルエーテルアセタート、N-エチル-2-ピロリドンとジプロピレングリコールジメチルエーテル、N,N-ジメチルラクトアミドとエチレングリコールモノブチルエーテル、N,N-ジメチルラクトアミドとプロピレングリコールジアセテート、N-エチル-2-ピロリドンとジエチレングリコールジエチルエーテル、N-エチル-2-ピロリドンとジエチレングリコールモノエチルエーテルとブチルセロソルブアセテート、N-メチル-2-ピロリドンとジエチレングリコールモノメチルエーテルとブチルセロソルブアセテート、N,N-ジメチルラクトアミドとジエチレングリコールジエチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンと4-ヒドロキシ-4-メチル-2-ペンタノンとジエチレングリコールジエチルエーテル、N-エチル-2-ピロリドンとN-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノン、N-エチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとプロピレングリコールモノブチルエーテル、N-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとジイソブチルケトン、N-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとジプロピレングリコールモノメチルエーテル、N-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとプロピレングリコールモノブチルエーテル、N-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとプロピレングリコールジアセテート、N-エチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとジプロピレングリコールジメチルエーテル、γ-ブチロラクトンと4-ヒドロキシ-4-メチル-2-ペンタノンとジイソブチルケトン、γ-ブチロラクトンと4-ヒドロキシ-4-メチル-2-ペンタノンとプロピレングリコールジアセテート、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルとジイソブチルケトン、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルとジイソプロピルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルとジイソブチルカルビノール、N-メチル-2-ピロリドンとγ-ブチロラクトンとジプロピレングリコールジメチルエーテル、N-メチル-2-ピロリドンとプロピレングリコールモノブチルエーテルとジプロピレングリコールジメチルエーテル、N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテルとジプロピレングリコールモノメチルエーテル、N-エチル-2-ピロリドンとジエチレングリコールジエチルエーテルとジプロピレングリコールモノメチルエーテル、N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテルとプロピレングリコールジアセテート、N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテルとジイソブチルケトン、N-エチル-2-ピロリドンとγ-ブチロラクトンとジイソブチルケトン、N-エチル-2-ピロリドンとN,N-ジメチルラクトアミドとジイソブチルケトン、N-メチル-2-ピロリドンとエチレングリコールモノブチルエーテルとエチレングリコールモノブチルエーテルアセタート、γ-ブチロラクトンとエチレングリコールモノブチルエーテルアセタートとジプロピレングリコールジメチルエーテル、N-エチル-2-ピロリドンとエチレングリコールモノブチルエーテルアセタートとプロピレングリコールジメチルエーテル、N-メチル-2-ピロリドンと酢酸4-メチル-2-ペンチルとエチレングリコールモノブチルエーテル、N-エチル-2-ピロリドンと酢酸シクロヘキシルとジアセトンアルコールシクロヘキサノンとプロピレングリコールモノメチルエーテル、シクロペンタノンとプロピレングリコールモノメチルエーテル、N-メチル-2-ピロリドンとシクロヘキサノンとプロピレングリコールモノメチルエーテルなどを挙げることができる。 Preferred combinations of a good solvent and a poor solvent include N-methyl-2-pyrrolidone and ethylene glycol monobutyl ether, N-methyl-2-pyrrolidone, γ-butyrolactone and ethylene glycol monobutyl ether, and N-methyl-2-pyrrolidone. γ-butyrolactone and propylene glycol monobutyl ether, N-ethyl-2-pyrrolidone and propylene glycol monobutyl ether, N-ethyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone, N-ethyl-2-pyrrolidone and Propylene glycol diacetate, N,N-dimethyl lactamide and diisobutyl ketone, N-methyl-2-pyrrolidone and ethyl 3-ethoxypropionate, N-ethyl-2-pyrrolidone and ethyl 3-ethoxypropionate, N-methyl- 2-pyrrolidone and ethyl 3-ethoxypropionate and dipropylene glycol monomethyl ether, N-ethyl-2-pyrrolidone and 3-ethoxyethyl propionate and propylene glycol monobutyl ether, N-methyl-2-pyrrolidone and 3-ethoxypropionic acid Ethyl and diethylene glycol monopropyl ether, N-ethyl-2-pyrrolidone and ethyl 3-ethoxypropionate and diethylene glycol monopropyl ether, N-methyl-2-pyrrolidone and ethylene glycol monobutyl ether acetate, N-ethyl-2-pyrrolidone and Dipropylene glycol dimethyl ether, N,N-dimethyl lactamide and ethylene glycol monobutyl ether, N,N-dimethyl lactamide and propylene glycol diacetate, N-ethyl-2-pyrrolidone and diethylene glycol diethyl ether, N-ethyl-2-pyrrolidone and diethylene glycol monoethyl ether and butyl cellosolve acetate, N-methyl-2-pyrrolidone and diethylene glycol monomethyl ether and butyl cellosolve acetate, N,N-dimethyllactamide and diethylene glycol diethyl ether, N-methyl-2-pyrrolidone and γ-butyrolactone and 4- Hydroxy-4-methyl-2-pentanone and diethylene glycol diethyl ether, N-ethyl-2-pyrrolidone and N-methyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone, N-ethyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone and propylene glycol monobutyl Ether, N-methyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone and diisobutyl ketone, N-methyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone and dipropylene glycol monomethyl ether , N-methyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone and propylene glycol monobutyl ether, N-methyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone and propylene glycol diacetate , N-ethyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone and dipropylene glycol dimethyl ether, γ-butyrolactone and 4-hydroxy-4-methyl-2-pentanone and diisobutyl ketone, γ-butyrolactone and 4 -hydroxy-4-methyl-2-pentanone and propylene glycol diacetate, N-methyl-2-pyrrolidone and γ-butyrolactone and propylene glycol monobutyl ether and diisobutyl ketone, N-methyl-2-pyrrolidone and γ-butyrolactone and propylene glycol Monobutyl ether and diisopropyl ether, N-methyl-2-pyrrolidone, γ-butyrolactone, propylene glycol monobutyl ether and diisobutylcarbinol, N-methyl-2-pyrrolidone, γ-butyrolactone and dipropylene glycol dimethyl ether, N-methyl-2- pyrrolidone and propylene glycol monobutyl ether and dipropylene glycol dimethyl ether, N-ethyl-2-pyrrolidone and propylene glycol monobutyl ether and dipropylene glycol monomethyl ether, N-ethyl-2-pyrrolidone and diethylene glycol diethyl ether and dipropylene glycol monomethyl ether, N -ethyl-2-pyrrolidone and propylene glycol monobutyl ether and propylene glycol diacetate, N-ethyl-2-pyrrolidone and propylene glycol monobutyl ether and diisobutyl ketone, N-ethyl-2-pyrrolidone and γ-butyrolactone and diisobutyl ketone, N- Ethyl-2-pyrrolidone and N,N-dimethyllactamide and diisobutyl ketone, N-methyl-2-pyrrolidone and ethylene glycol monobutyl ether and ethylene glycol monobutyl ether acetate, γ-butyrolactone and ethylene glycol monobutyl ether acetate and dipro pyrene glycol dimethyl ether, N-ethyl-2-pyrrolidone and ethylene glycol monobutyl ether acetate and propylene glycol dimethyl ether, N-methyl-2-pyrrolidone and 4-methyl-2-pentyl acetate and ethylene glycol monobutyl ether, N-ethyl-2 -pyrrolidone, cyclohexyl acetate, diacetone alcohol, cyclohexanone, propylene glycol monomethyl ether, cyclopentanone, propylene glycol monomethyl ether, N-methyl-2-pyrrolidone, cyclohexanone, propylene glycol monomethyl ether, and the like.
 本発明の液晶配向剤は、重合体成分及び有機溶媒以外の成分(以下、添加剤成分ともいう。)を含有してもよい。添加剤成分としては、液晶配向膜と基板との密着性や液晶配向膜とシール剤との密着性を高めるための密着助剤、液晶配向膜の強度を高めるための化合物(以下、架橋性化合物ともいう。)、イミド化を促進するための化合物、液晶配向膜の誘電率や電気抵抗を調整するための誘電体や導電物質などが挙げられる。
 上記架橋性化合物として、本発明の効果を好適に得る観点から、オキシラニル基、オキセタニル基、保護イソシアネート基、保護イソチオシアネート基、オキサゾリン環構造を含む基、メルドラム酸構造を含む基、シクロカーボネート基及びヒドロキシアルキルアミド結合よりなる群から選ばれる少なくとも1種の基を有する化合物;アルコキシメチル基及びメチロール基の少なくとも一つを有するフェノール化合物;並びに重合性不飽和基を有する化合物よりなる群から選ばれる少なくとも1種の化合物であってもよい。
The liquid crystal aligning agent of the present invention may contain components (hereinafter also referred to as additive components) other than the polymer component and the organic solvent. Additive components include adhesion aids for enhancing the adhesion between the liquid crystal alignment film and the substrate and the adhesion between the liquid crystal alignment film and the sealant, compounds for increasing the strength of the liquid crystal alignment film (hereinafter referred to as cross-linking compounds ), compounds for promoting imidization, and dielectrics and conductive substances for adjusting the dielectric constant and electrical resistance of the liquid crystal alignment film.
From the viewpoint of suitably obtaining the effects of the present invention, the crosslinkable compound includes an oxiranyl group, an oxetanyl group, a protected isocyanate group, a protected isothiocyanate group, a group containing an oxazoline ring structure, a group containing a Meldrum's acid structure, a cyclocarbonate group, and A compound having at least one group selected from the group consisting of a hydroxyalkylamide bond; a phenolic compound having at least one of an alkoxymethyl group and a methylol group; and at least a compound having a polymerizable unsaturated group. It may be one compound.
 上記オキシラニル基を有する化合物の具体例としては、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、エピコート828(三菱ケミカル社製)などのビスフェノールA型エポキシ樹脂、エピコート807(三菱ケミカル社製)などのビスフェノールF型エポキシ樹脂、YX-8000(三菱ケミカル社製)などの水添ビスフェノールA型エポキシ樹脂、YX6954BH30(三菱ケミカル社製)などのビフェニル骨格含有エポキシ樹脂、EPPN-201(日本化薬社製)などのフェノールノボラック型エポキシ樹脂、EOCN-102S(日本化薬社製)などの(o,m,p-)クレゾールノボラック型エポキシ樹脂、TEPIC(日産化学社製)などのトリグリシジルイソシアヌレート、セロキサイド2021P(ダイセル化学工業社製)などの脂環式エポキシ樹脂、N,N,N’,N’-テトラグリシジル-m-キシリレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’-テトラグリシジル-4、4’-ジアミノジフェニルメタン、テトラキス(グリシジルオキシメチル)メタンが挙げられる。 Specific examples of the compound having an oxiranyl group include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol, Epicoat 828 (Mitsubishi Chemical bisphenol A type epoxy resins such as Epicoat 807 (manufactured by Mitsubishi Chemical Corporation), hydrogenated bisphenol A type epoxy resins such as YX-8000 (manufactured by Mitsubishi Chemical Corporation), YX6954BH30 (Mitsubishi Chemical (manufactured by Nippon Kayaku Co., Ltd.), phenolic novolac type epoxy resins such as EPPN-201 (manufactured by Nippon Kayaku Co., Ltd.), and (o, m, p-) cresols such as EOCN-102S (manufactured by Nippon Kayaku Co., Ltd.). Novolak epoxy resins, triglycidyl isocyanurates such as TEPIC (manufactured by Nissan Chemical Industries, Ltd.), alicyclic epoxy resins such as Celoxide 2021P (manufactured by Daicel Chemical Industries, Ltd.), N,N,N',N'-tetraglycidyl-m -xylylenediamine, 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane, N,N,N',N'-tetraglycidyl-4,4'-diaminodiphenylmethane, tetrakis(glycidyloxymethyl)methane is mentioned.
 上記オキセタニル基を有する化合物の具体例としては、WO2011/132751号の[0170]~[0175]に記載の2個以上のオキセタニル基を有する化合物などが挙げられる。
 上記保護イソシアネート基を有する化合物の具体例としては、日本特開2014-224978号公報の[0046]~[0047]に記載の2個以上の保護イソシアネート基を有する化合物、WO2015/141598号の[0119]~[0120]に記載の3個以上の保護イソシアネート基を有する化合物などが挙げられる。市販品としては、例えば、コロネートAPステーブルM、コロネート2503、2515、2507、2513、2555、ミリオネートMS-50(以上、東ソー社製)、タケネートB-830、B-815N、B-820NSU、B-842N、B-846N、B-870N、B-874N、B-882N(以上、三井化学社製)などを好ましく使用できる。また、日本特開2016-200798号公報に記載の2個以上の保護イソチオシアネート基を有する化合物が挙げられる。
Specific examples of the compound having an oxetanyl group include compounds having two or more oxetanyl groups described in [0170] to [0175] of WO2011/132751.
Specific examples of the compound having a protected isocyanate group include compounds having two or more protected isocyanate groups described in [0046] to [0047] of JP-A-2014-224978, [0119] of WO2015/141598. ] to [0120], and compounds having three or more protected isocyanate groups. Commercially available products include, for example, Coronate AP Stable M, Coronate 2503, 2515, 2507, 2513, 2555, Millionate MS-50 (manufactured by Tosoh Corporation), Takenate B-830, B-815N, B-820NSU, B -842N, B-846N, B-870N, B-874N, B-882N (manufactured by Mitsui Chemicals, Inc.) and the like can be preferably used. Also included are compounds having two or more protected isothiocyanate groups described in Japanese Patent Application Laid-Open No. 2016-200798.
 上記オキサゾリン環構造を含む基を有する化合物の具体例としては、日本特開2007-286597号公報の[0115]に記載の、2個以上のオキサゾリン環構造を含む化合物、好ましくは、2,2’-ビス(2-オキサゾリン)、2,2’-ビス(4-メチル-2-オキサゾリン)、2,2’-ビス(5-メチル-2-オキサゾリン)、1,2,4-トリス-(2-オキサゾリニル-2)-ベンゼン、エポクロス(日本触媒社製)のようなオキサゾリン基を有する化合物が挙げられる。
 上記メルドラム酸構造を含む基を有する化合物の具体例としては、WO2012/091088号に記載の、メルドラム酸構造を2個以上有する化合物が挙げられる。
 上記シクロカーボネート基を有する化合物の具体例としては、WO2011/155577号に記載の化合物が挙げられる。上記ヒドロキシアルキルアミド結合を有する化合物の具体例としては、WO2015/072554号や、日本特開2016-118753号公報の[0058]に記載の化合物、日本特開2016-200798号公報に記載の化合物、好ましくはN,N,N’,N’-テトラキス(2-ヒドロキシエチル)アジポアミドなどが挙げられる。
Specific examples of the compound having a group containing an oxazoline ring structure include compounds containing two or more oxazoline ring structures, preferably 2,2', described in [0115] of JP-A-2007-286597. -bis(2-oxazoline), 2,2'-bis(4-methyl-2-oxazoline), 2,2'-bis(5-methyl-2-oxazoline), 1,2,4-tris-(2 -oxazolinyl-2)-benzene and compounds having an oxazoline group such as Epocross (manufactured by Nippon Shokubai Co., Ltd.).
Specific examples of the compound having a group containing a Meldrum's acid structure include compounds having two or more Meldrum's acid structures described in WO2012/091088.
Specific examples of the compound having a cyclocarbonate group include compounds described in WO2011/155577. Specific examples of the compound having a hydroxyalkylamide bond include WO2015/072554, compounds described in [0058] of JP-A-2016-118753, compounds described in JP-A-2016-200798, N,N,N',N'-tetrakis(2-hydroxyethyl)adipamide is preferred.
 上記アルコキシアルキル基及びメチロール基の少なくとも一つを有するフェノール化合物の具体例としては、WO2010/074269号に記載の化合物、好ましくは2,2-ビス(4-ヒドロキシ-3,5-ジヒドロキシメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメトキシメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジヒドロキシメチルフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパンが挙げられる。上記重合性不飽和結合を有する化合物としては、グリセリンモノ(メタ)アクリレート、グリセリンジ(メタ)アクリレート(1,2-,1,3-体混合物)、グリセリントリス(メタ)アクリレート、グリセロール 1,3-ジグリセロラート ジ(メタ)アクリレート、ペンタエリストール トリ(メタ)アクリレート、ジエチレングリコールモノ(メタ)アクリレート、トリエチレングリコールモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート、ペンタエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレートなどが挙げられる。上記化合物は架橋性化合物の一例であり、これらに限定されるものではない。例えば、WO2015/060357号の[0105]~55頁[0116]に開示されている上記以外の成分などが挙げられる。また、架橋性化合物は、2種類以上組み合わせてもよい。 Specific examples of the phenol compound having at least one of an alkoxyalkyl group and a methylol group include compounds described in WO2010/074269, preferably 2,2-bis(4-hydroxy-3,5-dihydroxymethylphenyl). Propane, 2,2-bis(4-hydroxy-3,5-dimethoxymethylphenyl)propane, 2,2-bis(4-hydroxy-3,5-dihydroxymethylphenyl)-1,1,1,3,3 , 3-hexafluoropropane. Examples of the compound having a polymerizable unsaturated bond include glycerin mono(meth)acrylate, glycerin di(meth)acrylate (1,2-,1,3-body mixture), glycerin tris(meth)acrylate, glycerol 1,3 - diglycerolate di(meth)acrylate, pentaerythritol tri(meth)acrylate, diethylene glycol mono(meth)acrylate, triethylene glycol mono(meth)acrylate, tetraethylene glycol mono(meth)acrylate, pentaethylene glycol mono(meth)acrylate ) acrylate, hexaethylene glycol mono(meth)acrylate and the like. The above compounds are examples of crosslinkable compounds, and are not limited to these. For example, components other than the above disclosed in [0105] to [0116] on pages 55 of WO2015/060357 may be used. Moreover, you may combine two or more types of crosslinkable compounds.
 上記架橋性化合物は、中でも、N,N,N’,N’-テトラグリシジル-m-キシリレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’-テトラグリシジル-4、4’-ジアミノジフェニルメタン、タケネートB-830、B-815N、B-820NSU、B-842N、B-846N、B-870N、B-874N、B-882N、1,3,5-トリス(2-ヒドロキシエチル)イソシアヌラート、イソシアヌル酸トリグリシジル、N,N,N’,N’-テトラキス(2-ヒドロキシエチル)アジポアミド、2,2-ビス(4-ヒドロキシ-3,5-ジヒドロキシメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメトキシメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジヒドロキシメチルフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパンが好ましい。 The crosslinkable compounds are, among others, N,N,N',N'-tetraglycidyl-m-xylylenediamine, 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane, N,N,N' , N'-tetraglycidyl-4, 4'-diaminodiphenylmethane, Takenate B-830, B-815N, B-820NSU, B-842N, B-846N, B-870N, B-874N, B-882N, 1, 3,5-tris(2-hydroxyethyl)isocyanurate, triglycidyl isocyanurate, N,N,N',N'-tetrakis(2-hydroxyethyl)adipamide, 2,2-bis(4-hydroxy-3 ,5-dihydroxymethylphenyl)propane, 2,2-bis(4-hydroxy-3,5-dimethoxymethylphenyl)propane, 2,2-bis(4-hydroxy-3,5-dihydroxymethylphenyl)-1, 1,1,3,3,3-hexafluoropropane is preferred.
 本発明の液晶配向剤における架橋性化合物の含有量は、液晶配向剤に含まれる重合体成分100質量部に対して、0.5~20質量部であることが好ましく、本発明の効果を好適に得る観点から、より好ましくは1~15質量部である。 The content of the crosslinkable compound in the liquid crystal aligning agent of the present invention is preferably 0.5 to 20 parts by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal aligning agent, and the effect of the present invention is preferably obtained. From the viewpoint of obtaining , it is more preferably 1 to 15 parts by mass.
 上記密着助剤としては、例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルジエトキシメチルシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、トリス-(トリメトキシシリルプロピル)イソシアヌレート、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシランなどのシランカップリング剤が挙げられる。シランカップリング剤を使用する場合は、AC残像に対して良好な耐性を発現する観点から、液晶配向剤に含まれる重合体成分100質量部に対して0.1~30質量部であることが好ましく、0.1~20質量部であることがより好ましい。 Examples of the adhesion aid include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldiethoxymethylsilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3- glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyl trimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, tris-(trimethoxysilylpropyl)isocyanurate, 3-mercaptopropylmethyldimethoxysilane , 3-mercaptopropyltrimethoxysilane, and 3-isocyanatopropyltriethoxysilane. When using a silane coupling agent, from the viewpoint of expressing good resistance to AC afterimage, it is 0.1 to 30 parts by weight with respect to 100 parts by weight of the polymer component contained in the liquid crystal aligning agent. It is preferably from 0.1 to 20 parts by mass.
 上記イミド化促進するための化合物としては、塩基性の部位(例:第一級アミノ基、脂肪族ヘテロ環(例:ピロリジン骨格)、芳香族ヘテロ環(例:イミダゾール環、インドール環)、グアニジノ基など)を有する化合物(但し、上記架橋性化合物及び密着助剤は除く。)、又は、焼成時に上記塩基性の部位が発生する化合物が好ましい。より好ましくは、焼成時に上記塩基性の部位が発生する化合物であり、具体例を挙げると、アミノ酸が有する塩基性の部位の一部又は全てが保護基(例えば、Boc基、又は9-フルオレニルメトキシカルボニル基などのカルバメート系保護基)で保護されたアミノ酸が挙げられる。上記アミノ酸の具体例としては、グリシン、アラニン、システイン、メチオニン、アスパラギン、グルタミン、バリン、ロイシン、フェニルアラニン、チロシン、トリプトファン、プロリン、ヒドロキシプロリン、アルギニン、ヒスチジン、リシン、オルニチンが挙げられる。イミド化を促進するための化合物のより好ましい具体例を挙げると、N-α-(9-フルオレニルメトキシカルボニル)-N-τ-(t-ブトキシカルボニル)-L-ヒスチジンが挙げられる。
 イミド化促進するための化合物の含有量は、ポリアミック酸エステル若しくはポリアミック酸が有するアミック酸部位、又はアミック酸エステル部位1モル部に対して、好ましくは2モル部以下、より好ましくは1モル部以下、更に好ましくは0.5モル部以下である。
Compounds for promoting imidization include basic sites (e.g., primary amino groups, aliphatic heterocycles (e.g., pyrrolidine skeleton), aromatic heterocycles (e.g., imidazole ring, indole ring), guanidino groups, etc.) (excluding the above-mentioned cross-linking compounds and adhesion aids), or compounds in which the above-mentioned basic sites are generated during baking. More preferably, it is a compound in which the above-mentioned basic site is generated during baking. Specific examples include a protecting group (for example, a Boc group, or a 9-fluorene Amino acids protected with a carbamate-based protecting group such as a nylmethoxycarbonyl group) can be mentioned. Specific examples of the above amino acids include glycine, alanine, cysteine, methionine, asparagine, glutamine, valine, leucine, phenylalanine, tyrosine, tryptophan, proline, hydroxyproline, arginine, histidine, lysine, ornithine. A more preferred specific example of the compound for promoting imidization is N-α-(9-fluorenylmethoxycarbonyl)-N-τ-(t-butoxycarbonyl)-L-histidine.
The content of the compound for promoting imidization is preferably 2 mol parts or less, more preferably 1 mol part or less, with respect to 1 mol part of the amic acid site or amic acid ester site possessed by the polyamic acid ester or polyamic acid. , more preferably 0.5 mol parts or less.
 液晶配向剤における固形分濃度(液晶配向剤の溶媒以外の成分の合計質量が液晶配向剤の全質量に占める割合)は、粘性、揮発性などを考慮して適宜に選択されるが、好ましくは1~10質量%の範囲である。
 固形分濃度の特に好ましい範囲は、基板に液晶配向剤を塗布する際に用いる方法によって異なる。例えばスピンコート法を用いる場合には、固形分濃度が1.5~4.5質量%の範囲であることが特に好ましい。印刷法による場合には、固形分濃度を3~9質量%の範囲とし、それにより溶液粘度を12~50mPa・sの範囲とすることが特に好ましい。インクジェット法による場合には、固形分濃度を1~5質量%の範囲とし、それにより、溶液粘度を3~15mPa・sの範囲とすることが特に好ましい。重合体組成物を調製する際の温度は、好ましくは10~50℃であり、より好ましくは20~30℃である。
The solid content concentration in the liquid crystal aligning agent (ratio of the total mass of components other than the solvent of the liquid crystal aligning agent to the total mass of the liquid crystal aligning agent) is appropriately selected in consideration of viscosity, volatility, etc., but preferably It is in the range of 1 to 10% by mass.
A particularly preferable range of the solid content concentration varies depending on the method used when applying the liquid crystal aligning agent to the substrate. For example, when a spin coating method is used, the solid content concentration is particularly preferably in the range of 1.5 to 4.5% by mass. When the printing method is used, it is particularly preferable to set the solid content concentration in the range of 3 to 9% by mass, thereby setting the solution viscosity in the range of 12 to 50 mPa·s. In the case of the ink jet method, it is particularly preferable to set the solid content concentration in the range of 1 to 5% by mass, thereby setting the solution viscosity in the range of 3 to 15 mPa·s. The temperature in preparing the polymer composition is preferably 10-50°C, more preferably 20-30°C.
<液晶配向膜・液晶表示素子>
 本発明の液晶配向膜は、上記液晶配向剤から得られる。本発明の液晶配向膜は、水平配向型若しくは垂直配向型(VA型)の液晶表示素子に用いることができ、なかでもIPS方式又はFFS方式などの水平配向型の液晶表示素子に好適である。本発明の液晶配向膜は、光配向処理法用の液晶配向膜により好ましく用いられる。
<Liquid crystal alignment film/liquid crystal display element>
The liquid crystal alignment film of the present invention is obtained from the above liquid crystal alignment agent. The liquid crystal alignment film of the present invention can be used for horizontal alignment type or vertical alignment type (VA type) liquid crystal display elements, and is particularly suitable for horizontal alignment type liquid crystal display elements such as IPS mode and FFS mode. The liquid crystal alignment film of the present invention is preferably used as a liquid crystal alignment film for photo-alignment treatment.
 本発明の液晶表示素子は、上記液晶配向膜を具備し、例えば、以下の工程(1)~(3)及び(5)、或いは工程(1)~(2)及び(5)を含む方法により製造することができる。より好ましくは、工程(1)~(5)を含む方法により製造される。
<工程(1):液晶配向剤を基板上に塗布する工程>
 工程(1)は、液晶配向剤を基板上に塗布する工程である。工程(1)の具体例は以下のとおりである。
 パターニングされた透明導電膜が設けられている基板の一面に、液晶配向剤を、例えばロールコーター法、スピンコート法、印刷法、インクジェット法などの適宜の塗布方法により塗布する。ここで基板の材質としては、透明性の高い基板であれば特に限定されず、ガラス、窒化珪素とともに、アクリル、ポリカーボネートなどのプラスチックなどを用いることもできる。また、反射型の液晶表示素子では、片側の基板のみにならば、シリコンウエハーなどの不透明な物でも使用でき、この場合の電極にはアルミニウムなどの光を反射する材料も使用できる。また、IPS方式又はFFS方式の液晶表示素子を製造する場合には、櫛歯型にパターニングされた透明導電膜又は金属膜からなる電極が設けられている基板と、電極が設けられていない対向基板とを用いる。
 液晶配向剤を基板に塗布し、成膜する方法としては、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェット法、又はスプレー法などが挙げられる。なかでも、インクジェット法による塗布、成膜法が好適に使用できる。
The liquid crystal display element of the present invention comprises the liquid crystal alignment film, for example, by the following steps (1) to (3) and (5), or by a method including steps (1) to (2) and (5) can be manufactured. More preferably, it is produced by a method comprising steps (1) to (5).
<Step (1): Step of applying a liquid crystal aligning agent onto a substrate>
A process (1) is a process of apply|coating a liquid crystal aligning agent on a board|substrate. A specific example of step (1) is as follows.
A liquid crystal aligning agent is applied to one surface of the substrate provided with the patterned transparent conductive film by an appropriate coating method such as a roll coater method, a spin coat method, a printing method, an inkjet method, or the like. Here, the material of the substrate is not particularly limited as long as it is highly transparent, and glass, silicon nitride, plastics such as acrylic and polycarbonate can also be used. In addition, in a reflective liquid crystal display element, if only one substrate is used, an opaque material such as a silicon wafer can be used, and in this case, a light-reflecting material such as aluminum can be used for the electrodes. In the case of manufacturing an IPS or FFS liquid crystal display element, a substrate provided with electrodes made of a transparent conductive film or a metal film patterned in a comb shape and a counter substrate provided with no electrodes are used. and
Screen printing, offset printing, flexographic printing, an inkjet method, a spray method, etc. are mentioned as a method of apply|coating a liquid crystal aligning agent to a board|substrate and forming into a film. Among them, the coating method and the film-forming method by the inkjet method can be preferably used.
<工程(2):塗布した液晶配向剤を焼成する工程>
 工程(2)は、基板上に塗布した液晶配向剤を焼成し、膜を形成する工程である。工程(2)の具体例は以下のとおりである。
 工程(1)において液晶配向剤を基板上に塗布した後は、ホットプレート、熱循環型オーブン又はIR(赤外線)型オーブンなどの加熱手段により、溶媒を蒸発させたり、ポリアミック酸又はポリアミック酸エステルの熱イミド化を行ったりすることができる。本発明の液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができ、複数回行ってもよい。焼成温度としては、例えば40~180℃で行うことができる。プロセスを短縮する観点で、40~150℃で行ってもよい。その際の焼成時間としては特に限定されないが、1~10分又は、1~5分が挙げられる。ポリアミック酸又はポリアミック酸エステルの熱イミド化を行う場合には、例えば150~300℃、又は150~250℃で焼成する工程を追加してもよい。その際の焼成時間としては特に限定されないが、5~40分、又は、5~30分の焼成時間が挙げられる。
 焼成後の膜状物は、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5~300nmが好ましく、10~200nmがより好ましい。
<Step (2): Step of firing the applied liquid crystal aligning agent>
A process (2) is a process of baking the liquid crystal aligning agent apply|coated on the board|substrate, and forming a film|membrane. A specific example of step (2) is as follows.
After applying the liquid crystal aligning agent on the substrate in step (1), the solvent is evaporated or the polyamic acid or polyamic acid ester is heated by heating means such as a hot plate, a thermal circulation oven, or an IR (infrared) oven. Thermal imidization can be performed. The drying and baking steps after applying the liquid crystal aligning agent of the present invention can be performed at any desired temperature and time, and may be performed multiple times. The firing temperature can be, for example, 40 to 180°C. From the viewpoint of shortening the process, it may be carried out at 40 to 150°C. The firing time at that time is not particularly limited, but may be 1 to 10 minutes or 1 to 5 minutes. When the polyamic acid or polyamic acid ester is thermally imidized, a step of firing at 150 to 300°C or 150 to 250°C may be added. The firing time at that time is not particularly limited, but includes a firing time of 5 to 40 minutes or 5 to 30 minutes.
The thickness of the film after baking is preferably 5 to 300 nm, more preferably 10 to 200 nm, because if it is too thin, the reliability of the liquid crystal display element may be lowered.
<工程(3):配向処理する工程>
 工程(3)は、場合により、工程(2)で得られた焼成膜(塗膜)に配向処理する工程である。即ち、IPS方式又はFFS方式などの水平配向型の液晶表示素子では該塗膜に対し配向能付与処理を行う。一方、VA方式又はPSA方式(Polymer Sustained Alignment)などの垂直配向型の液晶表示素子では、形成した塗膜をそのまま液晶配向膜として使用することができるが、該塗膜に対し配向能付与処理を施してもよい。液晶配向膜の配向処理方法としては、ラビング処理法、光配向処理法が挙げられ、光配向処理法がより好適である。光配向処理法としては、上記膜状物の表面に、一定方向に偏向された放射線を照射し、場合により、好ましくは、150~250℃の温度で加熱処理を行い、液晶配向性(液晶配向能ともいう)を付与する方法が挙げられる。放射線としては、100~800nmの波長を有する紫外線又は可視光線を用いることができる。なかでも、好ましくは100~400nm、より好ましくは、200~400nmの波長を有する紫外線である。
<Step (3): Step of Orientation Treatment>
Step (3) is a step of subjecting the baked film (coating film) obtained in step (2) to an orientation treatment depending on the case. That is, in a horizontal alignment type liquid crystal display element such as an IPS system or an FFS system, the coating film is subjected to an alignment ability-imparting treatment. On the other hand, in a vertical alignment type liquid crystal display element such as a VA system or a PSA system (Polymer Sustained Alignment), the formed coating film can be used as it is as a liquid crystal alignment film, but the coating film is subjected to an alignment ability imparting treatment. may be applied. The alignment treatment method for the liquid crystal alignment film includes a rubbing treatment method and a photo-alignment treatment method, and the photo-alignment treatment method is more preferable. As a photo-alignment treatment method, the surface of the film is irradiated with radiation polarized in a certain direction, and optionally, preferably, heat treatment is performed at a temperature of 150 to 250 ° C. to improve liquid crystal alignment (liquid crystal alignment (also referred to as ability). As radiation, ultraviolet light or visible light having a wavelength of 100 to 800 nm can be used. Among them, ultraviolet rays having a wavelength of 100 to 400 nm, more preferably 200 to 400 nm are preferred.
 上記放射線の照射量は、1~10,000mJ/cmが好ましく、100~5,000mJ/cmがより好ましく、100~1,500mJ/cmがさらに好ましく、100~1,000mJ/cmが特に好ましく、100~400mJ/cmがより一層好ましい。通常の液晶配向剤を使用した場合には、配向処理における光照射量は、100~5,000mJ/cmであるが、本発明の液晶配向剤においては、配向処理における光照射量を低減させても、液晶配向膜面内での液晶配向性のバラツキ(不均一性)が抑制された液晶配向膜を得ることができる。
 また、放射線を照射する場合、液晶配向性を改善するために、上記膜状物を有する基板を、50~250℃で加熱しながら照射してもよい。このようにして作製した上記液晶配向膜は、液晶分子を一定の方向に安定して配向させることができる。
 更に、上記の方法で、偏光された放射線を照射した液晶配向膜に、溶媒を用いて接触処理するか、放射線を照射した液晶配向膜を加熱処理することもできる。
The irradiation dose of the radiation is preferably 1 to 10,000 mJ/cm 2 , more preferably 100 to 5,000 mJ/cm 2 , still more preferably 100 to 1,500 mJ/cm 2 , and 100 to 1,000 mJ/cm 2 . is particularly preferred, and 100-400 mJ/cm 2 is even more preferred. When a normal liquid crystal aligning agent is used, the light irradiation amount in the alignment treatment is 100 to 5,000 mJ/cm 2 , but in the liquid crystal aligning agent of the present invention, the light irradiation amount in the alignment treatment is reduced. Even so, it is possible to obtain a liquid crystal alignment film in which the variation (non-uniformity) of the liquid crystal alignment in the plane of the liquid crystal alignment film is suppressed.
In addition, when irradiating with radiation, the substrate having the film-like material may be irradiated with heating at 50 to 250° C. in order to improve liquid crystal orientation. The liquid crystal alignment film thus produced can stably orient liquid crystal molecules in a fixed direction.
Further, the liquid crystal alignment film irradiated with polarized radiation can be subjected to contact treatment using a solvent, or the liquid crystal alignment film irradiated with radiation can be heat-treated.
 上記接触処理に使用する溶媒としては、放射線の照射によって膜状物から生成した分解物を溶解する溶媒であれば、特に限定されるものではない。具体例としては、水、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン、1-メトキシ-2-プロパノール、1-メトキシ-2-プロパノールアセテート、ブチルセロソルブ、乳酸エチル、乳酸メチル、ジアセトンアルコール、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、酢酸プロピル、酢酸ブチル、酢酸シクロヘキシルなどが挙げられる。なかでも、汎用性や溶媒の安全性の点から、水、2-プロパノール、1-メトキシ-2-プロパノール又は乳酸エチルが好ましい。より好ましいのは、水、1-メトキシ-2-プロパノール又は乳酸エチルである。溶媒は、1種類でも、2種類以上組み合わせてもよい。 The solvent used in the contact treatment is not particularly limited as long as it dissolves the decomposed product produced from the film-like material by irradiation with radiation. Specific examples include water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, 1-methoxy-2-propanol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, methyl lactate, diacetone alcohol, 3- methyl methoxypropionate, ethyl 3-ethoxypropionate, propyl acetate, butyl acetate, cyclohexyl acetate and the like. Among them, water, 2-propanol, 1-methoxy-2-propanol and ethyl lactate are preferable from the viewpoint of versatility and solvent safety. More preferred are water, 1-methoxy-2-propanol or ethyl lactate. Solvents may be used singly or in combination of two or more.
<工程(4):加熱処理を行う工程>
 工程(4)は、工程(3)で配向処理された液晶配向膜に対して加熱処理を行う工程である。上記の放射線を照射した照射膜(塗膜)に対して加熱処理を行ってもよい。上記の放射線を照射した塗膜に対する加熱処理の温度は、50~300℃が好ましく、120~250℃がより好ましい。加熱処理の時間は、1~30分が好ましい。
<Step (4): Step of performing heat treatment>
Step (4) is a step of heat-treating the liquid crystal alignment film oriented in step (3). You may heat-process with respect to the irradiation film (coating film) which irradiated the said radiation. The temperature of the heat treatment for the coating film irradiated with radiation is preferably 50 to 300.degree. C., more preferably 120 to 250.degree. The heat treatment time is preferably 1 to 30 minutes.
<工程(5):液晶セルを作製する工程>
 上記のようにして液晶配向膜が形成された基板を2枚準備し、対向配置した2枚の基板間に液晶を配置する。具体的には以下の2つの方法が挙げられる。
 第一の方法は、先ず、それぞれの液晶配向膜が対向するように間隙(セルギャップ)を介して2枚の基板を対向配置する。次いで、2枚の基板の周辺部を、シール剤を用いて貼り合わせ、基板表面及びシール剤により区画されたセルギャップ内に液晶組成物を注入充填して膜面に接触した後、注入孔を封止する。
<Step (5): Step of producing a liquid crystal cell>
Two substrates on which liquid crystal alignment films are formed as described above are prepared, and liquid crystal is arranged between the two substrates facing each other. Specifically, the following two methods are mentioned.
In the first method, first, two substrates are arranged to face each other with a gap (cell gap) therebetween so that the respective liquid crystal alignment films face each other. Next, the peripheral portions of the two substrates are bonded together using a sealing agent, and a liquid crystal composition is injected and filled into the cell gap defined by the substrate surface and the sealing agent to contact the film surface, and then the injection hole is opened. Seal.
 上記液晶組成物としては、特に制限はなく、少なくとも一種の液晶化合物(液晶分子)を含む組成物であって、誘電率異方性が正または負の各種の液晶組成物を用いることができる。なお、以下では、誘電率異方性が正の液晶組成物を、ポジ型液晶ともいい、誘電率異方性が負の液晶組成物を、ネガ型液晶ともいう。
 上記液晶組成物は、フッ素原子、ヒドロキシ基、アミノ基、フッ素原子含有基(例:トリフルオロメチル基)、シアノ基、アルキル基、アルコキシ基、アルケニル基、イソチオシアネート基、複素環、シクロアルカン、シクロアルケン、ステロイド骨格、ベンゼン環、又はナフタレン環を有する液晶化合物を含んでもよく、分子内に液晶性を発現する剛直な部位(メソゲン骨格)を2つ以上有する化合物(例えば、剛直な二つのビフェニル構造、又はターフェニル構造がアルキル基で連結されたバイメソゲン化合物など)を含んでもよい。液晶組成物は、ネマチック相を呈する液晶組成物、スメクチック相を呈する液晶組成物、又はコレステリック相を呈する液晶組成物であってもよい。
 また、上記液晶組成物は、液晶配向性を向上させる観点から、添加物をさらに添加してもよい。このような添加物は、下記する重合性基を有する化合物などの光重合性モノマー;光学活性な化合物(例:メルク(株)社製のS-811など);酸化防止剤;紫外線吸収剤;色素;消泡剤;重合開始剤;又は重合禁止剤などが挙げられる。
 ポジ型液晶としては、メルク社製のZLI-2293、ZLI-4792、MLC-2003、MLC-2041、MLC-3019又はMLC-7081などが挙げられる。
 ネガ型液晶としては、例えばメルク社製のMLC-6608、MLC-6609、MLC-6610、MLC-6882、MLC-6886、MLC-7026、MLC-7026-000、MLC-7026-100、又はMLC-7029などが挙げられる。
 また、PSAモードでは、重合性基を有する化合物を含有する液晶として、メルク社製のMLC-3023が挙げられる。
The liquid crystal composition is not particularly limited, and various liquid crystal compositions containing at least one liquid crystal compound (liquid crystal molecule) and having positive or negative dielectric anisotropy can be used. In the following description, a liquid crystal composition with a positive dielectric anisotropy is also referred to as a positive liquid crystal, and a liquid crystal composition with a negative dielectric anisotropy is also referred to as a negative liquid crystal.
The above liquid crystal composition contains a fluorine atom, a hydroxy group, an amino group, a fluorine atom-containing group (e.g., trifluoromethyl group), a cyano group, an alkyl group, an alkoxy group, an alkenyl group, an isothiocyanate group, a heterocyclic ring, a cycloalkane, A liquid crystal compound having a cycloalkene, a steroid skeleton, a benzene ring, or a naphthalene ring may be included, and a compound having two or more rigid sites (mesogenic skeleton) exhibiting liquid crystallinity in the molecule (for example, two rigid biphenyl structure, or a bimesogenic compound in which a terphenyl structure is linked by an alkyl group). The liquid crystal composition may be a liquid crystal composition exhibiting a nematic phase, a liquid crystal composition exhibiting a smectic phase, or a liquid crystal composition exhibiting a cholesteric phase.
In addition, the liquid crystal composition may further contain an additive from the viewpoint of improving liquid crystal orientation. Such additives include photopolymerizable monomers such as compounds having a polymerizable group described below; optically active compounds (eg, S-811 manufactured by Merck Co., Ltd.); antioxidants; UV absorbers; dyes; antifoaming agents; polymerization initiators; or polymerization inhibitors.
Positive liquid crystals include ZLI-2293, ZLI-4792, MLC-2003, MLC-2041, MLC-3019 and MLC-7081 manufactured by Merck.
As the negative liquid crystal, for example, MLC-6608, MLC-6609, MLC-6610, MLC-6882, MLC-6886, MLC-7026, MLC-7026-000, MLC-7026-100, or MLC- 7029 and the like.
In addition, in the PSA mode, MLC-3023 manufactured by Merck Co., Ltd. can be used as a liquid crystal containing a compound having a polymerizable group.
 また、第二の方法は、ODF(One Drop Fill)方式と呼ばれる手法である。液晶配向膜を形成した2枚の基板のうちの一方の基板上の所定の場所に、例えば紫外光硬化性のシール剤を塗布し、更に液晶配向膜面上の所定の数箇所に液晶組成物を滴下する。その後、液晶配向膜が対向するように他方の基板を貼り合わせて液晶組成物を基板の全面に押し広げて膜面に接触させる。次いで、基板の全面に紫外光を照射してシール剤を硬化する。いずれの方法による場合でも、更に、用いた液晶組成物が等方相をとる温度まで加熱した後、室温まで徐冷することにより、液晶充填時の流動配向を除去することが望ましい。 The second method is a method called the ODF (One Drop Fill) method. A predetermined place on one of the two substrates on which the liquid crystal alignment film is formed is coated with, for example, an ultraviolet light-curing sealant, and a liquid crystal composition is applied to several predetermined places on the surface of the liquid crystal alignment film. drip. Thereafter, the other substrate is attached so that the liquid crystal alignment films face each other, and the liquid crystal composition is spread over the entire surface of the substrate and brought into contact with the film surface. Next, the entire surface of the substrate is irradiated with ultraviolet light to cure the sealant. In any method, it is desirable to remove the flow orientation at the time of liquid crystal filling by heating the liquid crystal composition to a temperature at which the used liquid crystal composition assumes an isotropic phase and then slowly cooling to room temperature.
 なお、塗膜に対してラビング処理を行った場合には、2枚の基板は、各塗膜におけるラビング方向が互いに所定の角度、例えば直交又は逆平行となるように対向配置される。
 シール剤としては、例えば硬化剤及びスペーサーとしての酸化アルミニウム球を含有するエポキシ樹脂などを用いることができる。液晶としては、ネマチック液晶及びスメクチック液晶を挙げることができ、その中でもネマチック液晶が好ましい。
 そして、必要に応じて液晶セルの外側表面に偏光板を貼り合わせることにより液晶表示素子を得ることができる。液晶セルの外表面に貼り合わされる偏光板としては、ポリビニルアルコールを延伸配向させながらヨウ素を吸収させた「H膜」と称される偏光フィルムを酢酸セルロース保護膜で挟んだ偏光板又はH膜そのものからなる偏光板を挙げることができる。
When the coating film is subjected to the rubbing treatment, the two substrates are arranged opposite to each other so that the rubbing directions of the respective coating films are at a predetermined angle, for example, orthogonal or antiparallel.
As the sealing agent, for example, an epoxy resin containing aluminum oxide spheres as a curing agent and spacers can be used. Liquid crystals include nematic liquid crystals and smectic liquid crystals, among which nematic liquid crystals are preferred.
Then, a liquid crystal display element can be obtained by bonding a polarizing plate to the outer surface of the liquid crystal cell as necessary. As the polarizing plate to be attached to the outer surface of the liquid crystal cell, a polarizing film called "H film" in which polyvinyl alcohol is stretched and oriented while absorbing iodine is sandwiched between cellulose acetate protective films, or the H film itself. A polarizing plate consisting of
 IPS方式において使用される櫛歯電極基板であるIPS基板は、基材と、基材上に形成され、櫛歯状に配置された複数の線状電極と、基材上に線状電極を覆うように形成された液晶配向膜とを有する。
 なお、FFS方式において使用される櫛歯電極基板であるFFS基板は、基材と、基材上に形成された面電極と、面電極上に形成された絶縁膜と、絶縁膜上に形成され、櫛歯状に配置された複数の線状電極と、絶縁膜上に線状電極を覆うように形成された液晶配向膜とを有する。
The IPS substrate, which is a comb-teeth electrode substrate used in the IPS system, includes a base material, a plurality of linear electrodes formed on the base material and arranged in a comb-like shape, and the base material covering the linear electrodes. and a liquid crystal alignment film formed as follows.
The FFS substrate, which is a comb-teeth electrode substrate used in the FFS method, includes a base material, a plane electrode formed on the base material, an insulating film formed on the plane electrode, and an insulating film formed on the insulating film. , a plurality of linear electrodes arranged in a comb shape, and a liquid crystal alignment film formed on an insulating film so as to cover the linear electrodes.
 図1は、本発明の横電界液晶表示素子の一例を示す概略部分断面図であり、IPSモード液晶表示素子の例である。
 図1に例示する横電界液晶表示素子1においては、液晶配向膜2cを具備する櫛歯電極基板2と液晶配向膜4aを具備する対向基板4との間に、液晶3が挟持されている。櫛歯電極基板2は、基材2aと、基材2a上に形成され、櫛歯状に配置された複数の線状電極2bと、基材2a上に線状電極2bを覆うように形成された液晶配向膜2cとを有している。対向基板4は、基材4bと、基材4b上に形成された液晶配向膜4aとを有している。液晶配向膜2cは、例えば、本発明の液晶配向膜である。液晶配向膜4cも同様に本発明の液晶配向膜である。
 この横電界液晶表示素子1においては、線状電極2bに電圧が印加されると、電気力線Lで示すように線状電極2b間で電界が発生する。
FIG. 1 is a schematic partial cross-sectional view showing an example of the lateral electric field liquid crystal display device of the present invention, which is an example of an IPS mode liquid crystal display device.
In the lateral electric field liquid crystal display element 1 illustrated in FIG. 1, the liquid crystal 3 is sandwiched between the comb-teeth electrode substrate 2 having the liquid crystal alignment film 2c and the opposing substrate 4 having the liquid crystal alignment film 4a. The comb-shaped electrode substrate 2 includes a base material 2a, a plurality of linear electrodes 2b formed on the base material 2a and arranged in a comb-like shape, and a plurality of linear electrodes 2b formed on the base material 2a so as to cover the linear electrodes 2b. and a liquid crystal alignment film 2c. The counter substrate 4 has a base material 4b and a liquid crystal alignment film 4a formed on the base material 4b. The liquid crystal alignment film 2c is, for example, the liquid crystal alignment film of the present invention. The liquid crystal alignment film 4c is also the liquid crystal alignment film of the present invention.
In the horizontal electric field liquid crystal display element 1, when a voltage is applied to the linear electrodes 2b, an electric field is generated between the linear electrodes 2b as indicated by electric lines of force L. FIG.
 図2は、本発明の横電界液晶表示素子の他の例を示す概略部分断面図であり、FFSモード液晶表示素子の例である。
 図2に例示する横電界液晶表示素子1においては、液晶配向膜2hを具備する櫛歯電極基板2と液晶配向膜4aを具備する対向基板4との間に、液晶3が挟持されている。櫛歯電極基板2は、基材2dと、基材2d上に形成された面電極2eと、面電極2e上に形成された絶縁膜2fと、絶縁膜2f上に形成され、櫛歯状に配置された複数の線状電極2gと、絶縁膜2f上に線状電極2gを覆うように形成された液晶配向膜2hとを有している。対向基板4は、基材4bと、基材4b上に形成された液晶配向膜4aとを有している。液晶配向膜2hは、例えば、本発明の液晶配向膜である。液晶配向膜4aも同様に本発明の液晶配向膜である。
 この横電界液晶表示素子1においては、面電極2e及び線状電極2gに電圧が印加されると、電気力線Lで示すように面電極2e及び線状電極2g間で電界が発生する。
FIG. 2 is a schematic partial sectional view showing another example of the horizontal electric field liquid crystal display device of the present invention, which is an example of the FFS mode liquid crystal display device.
In the lateral electric field liquid crystal display element 1 illustrated in FIG. 2, the liquid crystal 3 is sandwiched between the comb-teeth electrode substrate 2 having the liquid crystal alignment film 2h and the opposing substrate 4 having the liquid crystal alignment film 4a. The comb-teeth electrode substrate 2 includes a base material 2d, a plane electrode 2e formed on the base material 2d, an insulating film 2f formed on the plane electrode 2e, and formed on the insulating film 2f to form a comb-like shape. It has a plurality of arranged linear electrodes 2g and a liquid crystal alignment film 2h formed on the insulating film 2f so as to cover the linear electrodes 2g. The counter substrate 4 has a base material 4b and a liquid crystal alignment film 4a formed on the base material 4b. The liquid crystal alignment film 2h is, for example, the liquid crystal alignment film of the present invention. The liquid crystal alignment film 4a is also the liquid crystal alignment film of the present invention.
In the horizontal electric field liquid crystal display element 1, when a voltage is applied to the plane electrode 2e and the linear electrode 2g, an electric field is generated between the plane electrode 2e and the linear electrode 2g as indicated by electric lines of force L. FIG.
 以下に実施例を挙げ、本発明をさらに詳しく説明するが、本発明は、これらに限定して解釈されない。使用した化合物の略号及び各物性の測定方法は、以下のとおりである。 Although the present invention will be described in more detail with examples below, the present invention should not be construed as being limited to these examples. The abbreviations of the compounds used and methods for measuring physical properties are as follows.
(ジアミン)
Figure JPOXMLDOC01-appb-C000015
(diamine)
Figure JPOXMLDOC01-appb-C000015
(テトラカルボン酸二無水物)
Figure JPOXMLDOC01-appb-C000016
(tetracarboxylic dianhydride)
Figure JPOXMLDOC01-appb-C000016
(エステル化剤)
Figure JPOXMLDOC01-appb-C000017
(Esterification agent)
Figure JPOXMLDOC01-appb-C000017
(添加剤)
Figure JPOXMLDOC01-appb-C000018
(Additive)
Figure JPOXMLDOC01-appb-C000018
(溶媒)
 NMP:N-メチル-2-ピロリドン、  GBL:γ-ブチロラクトン
 BCS:エチレングリコールモノブチルエーテル
(solvent)
NMP: N-methyl-2-pyrrolidone, GBL: γ-butyrolactone BCS: ethylene glycol monobutyl ether
(粘度の測定)
 E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL、コーンロータTE-1(1°34’、R24)を用いて、温度25℃で測定した。
H-NMRの測定)
 フーリエ変換型超伝導核磁気共鳴装置(FT-NMR)(AVANCE III、BRUKER社製)500MHz。
(Measurement of viscosity)
Using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.), a sample amount of 1.1 mL, and a cone rotor TE-1 (1°34', R24), measurement was performed at a temperature of 25°C.
(Measurement of 1 H-NMR)
Fourier transform superconducting nuclear magnetic resonance (FT-NMR) (AVANCE III, manufactured by BRUKER) 500 MHz.
(エステル化率の測定)
 固形分濃度12質量%のポリアミック酸エステルNMP溶液150mgをNMRサンプル管(草野科学社製 NMRサンプリングチューブスタンダード φ5)に入れ、重水素化ジメチルスルホキシド(DMSO-d、0.05%TMS(テトラメチルシラン)混合品)0.53mLを添加し、超音波をかけて完全に溶解させた。この溶液のH-NMRを測定した。エステル化率は、エステル化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、11~13.5ppm付近に現れるカルボン酸のCOOH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
 エステル化率(%)=(1-α・x/y)×100
 上記式において、xはカルボン酸のCOOH基由来のプロトンピーク積算値であり、yは基準プロトンのピーク積算値であり、αはポリアミック酸(エステル化率が0%)の場合におけるカルボン酸のCOOH基プロトン1個に対する基準プロトンの個数割合である。
(Measurement of esterification rate)
150 mg of a polyamic acid ester NMP solution with a solid content concentration of 12% by mass was placed in an NMR sample tube (NMR sampling tube standard φ5 manufactured by Kusano Kagaku Co., Ltd.), and deuterated dimethyl sulfoxide (DMSO-d 6 , 0.05% TMS (tetramethyl 0.53 mL of silane (mixture) was added and completely dissolved by applying ultrasonic waves. 1 H-NMR of this solution was measured. For the esterification rate, a proton derived from a structure that does not change before and after esterification is determined as a reference proton, and the peak integrated value of this proton and the proton peak integrated value derived from the COOH group of the carboxylic acid appearing around 11 to 13.5 ppm. and was obtained by the following formula.
Esterification rate (%) = (1-α x/y) x 100
In the above formula, x is the proton peak integrated value derived from the COOH group of the carboxylic acid, y is the peak integrated value of the reference protons, and α is the COOH of the carboxylic acid in the case of polyamic acid (the esterification rate is 0%). It is the ratio of the number of reference protons to one base proton.
<イミド化率の測定>
 ポリイミド粉末20mgをNMRサンプル管(NMRサンプリングチューブスタンダード,φ5(草野科学社製))に入れ、重水素化ジメチルスルホキシド(0.05%TMS混合品)(0.53mL)を添加し、超音波をかけて完全に溶解させた。この溶液のH-NMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5~10.0ppm付近に現れるアミック酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
 イミド化率(%)=(1-α・x/y)×100
 上記式において、xはアミック酸のNH基由来のプロトンピーク積算値であり、yは基準プロトンのピーク積算値であり、αはポリアミック酸(イミド化率が0%)の場合におけるアミック酸のNH基プロトン1個に対する基準プロトンの個数割合である。
<Measurement of imidization rate>
20 mg of polyimide powder is placed in an NMR sample tube (NMR sampling tube standard, φ5 (manufactured by Kusano Kagaku Co., Ltd.)), deuterated dimethyl sulfoxide (0.05% TMS mixture) (0.53 mL) is added, and ultrasonic waves are added. to dissolve completely. 1 H-NMR of this solution was measured. For the imidization rate, a proton derived from a structure that does not change before and after imidization is determined as a reference proton. It was obtained by the following formula using the integrated value.
Imidation rate (%) = (1-α x/y) x 100
In the above formula, x is the proton peak integrated value derived from the NH group of the amic acid, y is the peak integrated value of the reference protons, and α is the NH of the amic acid in the case of polyamic acid (imidization rate is 0%). It is the ratio of the number of reference protons to one base proton.
<ポリアミック酸の合成>
(合成例1)
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、A1(0.541g、5.00mmol)、A2(1.83g、7.50mmol)、A3(2.40g、7.50mmol)、A4(1.99g、5.00mmol)、B1(5.31g、23.7mmol)及びNMP(88g)を加えて、40℃で20時間撹拌することで、固形分濃度12質量%のポリアミック酸(PAA-1)の溶液(粘度:400mPa・s)を得た。
<Synthesis of polyamic acid>
(Synthesis example 1)
A1 (0.541 g, 5.00 mmol), A2 (1.83 g, 7.50 mmol), A3 (2.40 g, 7.50 mmol), A4 are added to a 100 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube. (1.99 g, 5.00 mmol), B1 (5.31 g, 23.7 mmol) and NMP (88 g) were added and stirred at 40 ° C. for 20 hours to obtain a polyamic acid (PAA -1) solution (viscosity: 400 mPa·s) was obtained.
(合成例2)
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、A5(2.99g、15.0mmol)、A6(2.11g、5.00mmol)、A7(1.49g、5.00mmol)、B2(6.91g、23.5mmol)及びNMP(99g)を加えて、40℃で20時間撹拌することで、固形分濃度12質量%のポリアミック酸(PAA-2)の溶液(粘度:380mPa・s)を得た。
(Synthesis example 2)
A5 (2.99 g, 15.0 mmol), A6 (2.11 g, 5.00 mmol), A7 (1.49 g, 5.00 mmol), B2 (6.91 g, 23.5 mmol) and NMP (99 g) were added and stirred at 40 ° C. for 20 hours to give a solution of polyamic acid (PAA-2) with a solid content concentration of 12% by mass (viscosity: 380 mPa s ).
(合成例3)
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、A1(0.541g、5.00mmol)、A2(1.83g、7.50mmol)、A3(2.40g、7.50mmol)、A8(1.71g、5.00mmol)、B1(5.31g、23.7mmol)及びNMP(86g)を加えて、40℃で20時間撹拌することで、固形分濃度12質量%のポリアミック酸(PAA-3)の溶液(粘度:400mPa・s)を得た。
(Synthesis Example 3)
A1 (0.541 g, 5.00 mmol), A2 (1.83 g, 7.50 mmol), A3 (2.40 g, 7.50 mmol), A8 were added to a 100 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube. (1.71 g, 5.00 mmol), B1 (5.31 g, 23.7 mmol) and NMP (86 g) were added and stirred at 40 ° C. for 20 hours to obtain a polyamic acid (PAA A solution of -3) (viscosity: 400 mPa·s) was obtained.
<ポリアミック酸エステルの合成>
(合成例4)
 ポリアミック酸(PAA-1)の溶液(30.0g)を、窒素導入管付きの100mL三角フラスコに分取し、C1(12.7g)を加え、室温で12時間撹拌することで、ポリアミック酸エステル(PAE-1)の溶液を得た。このポリアミック酸エステルのエステル化率は60%であった。
<Synthesis of polyamic acid ester>
(Synthesis Example 4)
A solution (30.0 g) of polyamic acid (PAA-1) was dispensed into a 100 mL Erlenmeyer flask equipped with a nitrogen inlet tube, C1 (12.7 g) was added, and the mixture was stirred at room temperature for 12 hours to obtain a polyamic acid ester. A solution of (PAE-1) was obtained. The esterification rate of this polyamic acid ester was 60%.
(合成例5)
 ポリアミック酸エステル(PAE-1)の溶液(42.7g)をイソプロピルアルコール(214g)に注ぎ、生成した沈殿物を濾別した。この沈殿物をイソプロピルアルコールで洗浄し、80℃で減圧乾燥しポリアミック酸エステルの粉末を得た。得られたポリアミック酸エステル粉末(3.6g)にNMP(26.4g)を加えて70℃にて20時間撹拌して溶解させることでポリアミック酸エステル溶液(PAE-1A)を得た。
(Synthesis Example 5)
A solution (42.7 g) of polyamic acid ester (PAE-1) was poured into isopropyl alcohol (214 g), and the precipitate formed was filtered off. The precipitate was washed with isopropyl alcohol and dried under reduced pressure at 80° C. to obtain polyamic acid ester powder. NMP (26.4 g) was added to the obtained polyamic acid ester powder (3.6 g) and dissolved by stirring at 70° C. for 20 hours to obtain a polyamic acid ester solution (PAE-1A).
(合成例6)
 C1の添加量を6.35gにすること以外は合成例4と同様の手法でポリアミック酸エステル(PAE-2)の溶液を得た。このポリアミック酸エステルのエステル化率は28%であった。
(Synthesis Example 6)
A solution of polyamic acid ester (PAE-2) was obtained in the same manner as in Synthesis Example 4, except that the amount of C1 added was 6.35 g. The esterification rate of this polyamic acid ester was 28%.
<ポリイミドの合成>
(合成例7)
 ポリアミック酸(PAA-3)の溶液(60.0g)を、200mLの三角フラスコに分取し、NMP(20.0g)を加えた後、無水酢酸(4.65g)及びピリジン(0.60g)を加え、55℃で2時間反応させた。この反応溶液をメタノール(341g)に注ぎ、生成した沈殿物を濾別した。この沈殿物をメタノールで洗浄し、80℃で減圧乾燥しポリイミドの粉末を得た。このポリイミドのイミド化率は66%であった。得られたポリイミド粉末(6.6g)にNMP(48.4g)を加えて60℃にて24時間撹拌して溶解させることでポリイミド(SPI-1)溶液を得た。
<Synthesis of polyimide>
(Synthesis Example 7)
A solution (60.0 g) of polyamic acid (PAA-3) was dispensed into a 200 mL Erlenmeyer flask, NMP (20.0 g) was added, then acetic anhydride (4.65 g) and pyridine (0.60 g). was added and reacted at 55° C. for 2 hours. This reaction solution was poured into methanol (341 g) and the precipitate formed was filtered off. This precipitate was washed with methanol and dried under reduced pressure at 80° C. to obtain polyimide powder. The imidization rate of this polyimide was 66%. NMP (48.4 g) was added to the obtained polyimide powder (6.6 g) and dissolved by stirring at 60° C. for 24 hours to obtain a polyimide (SPI-1) solution.
 合成例1~7において使用した、ジアミン成分及びテトラカルボン酸無水物成分の種類及び量を表1にまとめて示した。表1中、括弧内の数値は、各成分中の合計100モル部に対するモノマーの使用量(モル部)を表す。 Table 1 summarizes the types and amounts of the diamine component and the tetracarboxylic anhydride component used in Synthesis Examples 1-7. In Table 1, the numbers in parentheses represent the amounts (mol parts) of the monomers used per 100 mol parts in total in each component.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
<液晶配向剤の調製>
(実施例1)
 合成例4で得られたポリアミック酸エステル(PAE-1)溶液(2.75g)に、合成例2で得られたポリアミック酸(PAA-2)溶液(6.42g)、NMP(4.83g)及びBCS(6.00g)を加え、室温で2時間撹拌して、液晶配向剤(V-1)を得た。
<Preparation of liquid crystal aligning agent>
(Example 1)
Polyamic acid ester (PAE-1) solution (2.75 g) obtained in Synthesis Example 4, polyamic acid (PAA-2) solution (6.42 g) obtained in Synthesis Example 2, NMP (4.83 g) and BCS (6.00 g) were added and stirred at room temperature for 2 hours to obtain a liquid crystal aligning agent (V-1).
(実施例2)~(実施例3)
 使用するポリアミック酸エステル溶液を(PAE-1)溶液から(PAE-1A)及び(PAE-2)溶液に変更した点以外は、実施例1と同様に実施することで、液晶配向剤(V-2)及び(V-3)を得た。
(Example 2) to (Example 3)
In the same manner as in Example 1, except that the polyamic acid ester solution used was changed from the (PAE-1) solution to the (PAE-1A) and (PAE-2) solutions, a liquid crystal aligning agent (V- 2) and (V-3) were obtained.
(参考例1)
 合成例5で得られたポリアミック酸エステル(PAE-1A)溶液(9.17g)に、AD-1のNMP10質量%希釈溶液(0.550g)、NMP(4.28g)及びBCS(6.00g)を加え、室温で2時間撹拌して、液晶配向剤(SV-1)を得た。
(Reference example 1)
Polyamic acid ester (PAE-1A) solution (9.17 g) obtained in Synthesis Example 5, NMP 10 mass% diluted solution of AD-1 (0.550 g), NMP (4.28 g) and BCS (6.00 g ) was added and stirred at room temperature for 2 hours to obtain a liquid crystal aligning agent (SV-1).
(比較例1)
 使用するポリマー溶液をポリアミック酸エステル(PAE-1)溶液からポリアミック酸(PAA-1)溶液に変更した点以外は、実施例1と同様に実施することで、液晶配向剤(RV-1)を得た。
(Comparative example 1)
Except that the polymer solution used was changed from the polyamic acid ester (PAE-1) solution to the polyamic acid (PAA-1) solution, the liquid crystal aligning agent (RV-1) was prepared in the same manner as in Example 1. Obtained.
(比較例2)
 合成例7で得られたポリイミド(SPI-1)溶液(5.83g)に、合成例2で得られたポリアミック酸(PAA-2)溶液(2.50g)、NMP(2.77g)、GBL(4.90g)、及びBCS(4.00g)を加え、室温で2時間撹拌して、液晶配向剤(RV-2)を得た。
(Comparative example 2)
Polyimide (SPI-1) solution (5.83 g) obtained in Synthesis Example 7, polyamic acid (PAA-2) solution (2.50 g) obtained in Synthesis Example 2, NMP (2.77 g), GBL (4.90 g) and BCS (4.00 g) were added and stirred at room temperature for 2 hours to obtain a liquid crystal aligning agent (RV-2).
(比較例3)
 使用するポリマー溶液をポリアミック酸エステル(PAE-1A)溶液からポリアミック酸(PAA-1)溶液に変更した点以外は、参考例1と同様に実施することで、液晶配向剤(RV-3)を得た。
(Comparative Example 3)
Except that the polymer solution used was changed from the polyamic acid ester (PAE-1A) solution to the polyamic acid (PAA-1) solution, the liquid crystal aligning agent (RV-3) was prepared in the same manner as in Reference Example 1. Obtained.
(比較例4)
 合成例7で得られたポリイミド(SPI-1)溶液(8.33g)に、AD-1のNMP10質量%希釈溶液(0.50g)、NMP(4.93g)、GBL(2.33g)、及びBCS(4.00g)を加え、室温で2時間撹拌して、液晶配向剤(RV-4)を得た。
(Comparative Example 4)
The polyimide (SPI-1) solution (8.33 g) obtained in Synthesis Example 7 was added with a 10 mass% diluted solution of AD-1 in NMP (0.50 g), NMP (4.93 g), GBL (2.33 g), and BCS (4.00 g) were added and stirred at room temperature for 2 hours to obtain a liquid crystal aligning agent (RV-4).
 上記実施例1~3、参考例1及び比較例1~4で得られた液晶配向剤の仕様を表2に示す。 Table 2 shows the specifications of the liquid crystal aligning agents obtained in Examples 1 to 3, Reference Example 1 and Comparative Examples 1 to 4.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 上記で得られた各液晶配向剤を用いて以下に示す手順でFFS駆動液晶セルを作製し、各種評価を行った。
<FFS駆動液晶セルの構成>
 FFSモード液晶表示素子の構成を備えた液晶セルを作製した。
 始めに、電極付きの基板を準備した。基板は、30mm×50mmの長方形で、厚みが0.7mmのガラス板であった。基板上には第1層目として対向電極を構成する、ベタ状のパターンを備えたITO電極が形成され、第1層目の対向電極の上には第2層目として、CVD(化学蒸着)法により成膜されたSiN(窒化珪素)膜が形成されていた。第2層目のSiN膜は、層間絶縁膜として機能する膜厚が300nmのものを用いた。第2層目のSiN膜の上には、第3層目としてITO膜をパターニングして形成された櫛歯状の画素電極が配置され、第1画素及び第2画素の2つの画素が形成されており、各画素のサイズは、縦10mm、横5mmであった。このとき、第1層目の対向電極と第3層目の画素電極とは、第2層目のSiN膜の作用により電気的に絶縁されていた。
 第3層目の画素電極は、中央部分が内角160°で屈曲した幅3μmの電極要素が6μmの間隔を開けて平行になるように複数配列された櫛歯形状を有しており、1つの画素は、複数の電極要素の屈曲部を結ぶ線を境にそれぞれ第1領域と第2領域を有していた。
Using each liquid crystal aligning agent obtained above, an FFS-driven liquid crystal cell was produced in the following procedure, and various evaluations were performed.
<Configuration of FFS-driven liquid crystal cell>
A liquid crystal cell having the structure of an FFS mode liquid crystal display element was produced.
First, a substrate with electrodes was prepared. The substrate was a 30 mm x 50 mm rectangular glass plate with a thickness of 0.7 mm. An ITO electrode having a solid pattern is formed on the substrate as a first layer to form a counter electrode, and a CVD (chemical vapor deposition) electrode is formed as a second layer on the first layer counter electrode. A SiN (silicon nitride) film formed by the method was formed. The SiN film of the second layer has a film thickness of 300 nm and functions as an interlayer insulating film. On the SiN film of the second layer, a comb-shaped pixel electrode formed by patterning an ITO film is arranged as a third layer, and two pixels of a first pixel and a second pixel are formed. The size of each pixel was 10 mm long and 5 mm wide. At this time, the counter electrode of the first layer and the pixel electrode of the third layer were electrically insulated by the action of the SiN film of the second layer.
The pixel electrode of the third layer has a comb shape in which a plurality of electrode elements each having a width of 3 μm and having a central portion bent at an internal angle of 160° are arranged in parallel with an interval of 6 μm. Each pixel had a first region and a second region bounded by a line connecting bent portions of a plurality of electrode elements.
 次に、上記実施例1~3及び比較例1~2で得られた液晶配向剤(V-1)~(V-3)、(RV-1)~(RV-2)をそれぞれ孔径1.0μmのフィルターで濾過した後、上記で準備した電極付き基板(第1のガラス基板)の表面、及び裏面にITO膜が成膜されている高さ4μmの柱状スペーサーを有するガラス基板(第2のガラス基板)の表面にスピンコート法にて塗布した。次いで、80℃のホットプレート上で2分間乾燥させた後、230℃の熱風循環式オーブンで30分間焼成を行い、厚み100nmの塗膜を形成させた。この塗膜面に偏光板を介して消光比26:1の直線偏光した波長254nmの紫外線を表3に示すそれぞれの照射量分を照射して配向処理を施し、液晶配向膜付き基板を得た。なお、上記電極付き基板に形成する液晶配向膜は、画素屈曲部の内角を等分する方向と液晶の配向方向とが直交するように配向処理し、第2のガラス基板に形成する液晶配向膜は、液晶セルを作製した時に第1のガラス基板上の液晶の配向方向と第2のガラス基板上の液晶の配向方向とが一致するように配向処理した。上記2枚の基板を一組とし、基板上にシール剤(三井化学社製 XN-1500T)を印刷し、もう1枚の基板を、液晶配向膜面が向き合う配向方向が0°になるようにして張り合わせた。その後、シール剤を150℃で60分間の加熱処理を行い、硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-3019(メルク社製)を注入し、注入口を封止して、FFS駆動液晶セルを得た。その後、得られた液晶セルを120℃で1時間加熱し、一晩放置してから評価に使用した。 Next, the liquid crystal aligning agents (V-1) to (V-3) and (RV-1) to (RV-2) obtained in Examples 1 to 3 and Comparative Examples 1 and 2 were each sized to have a pore size of 1.5. After filtration with a 0 μm filter, the substrate with electrodes (first glass substrate) prepared above and a glass substrate (second glass substrate) having columnar spacers with a height of 4 μm and having an ITO film formed on the back surface (second It was applied to the surface of the glass substrate) by spin coating. Then, after drying on a hot plate at 80° C. for 2 minutes, baking was performed in a hot air circulating oven at 230° C. for 30 minutes to form a coating film with a thickness of 100 nm. The coated film surface was subjected to alignment treatment by irradiating linearly polarized ultraviolet light having a wavelength of 254 nm and an extinction ratio of 26:1 through a polarizing plate for each dose shown in Table 3 to obtain a substrate with a liquid crystal alignment film. . In addition, the liquid crystal alignment film formed on the substrate with the electrode is aligned so that the direction of equally dividing the interior angle of the bent portion of the pixel is orthogonal to the alignment direction of the liquid crystal, and the liquid crystal alignment film is formed on the second glass substrate. In No. 1, alignment treatment was performed so that the alignment direction of the liquid crystal on the first glass substrate and the alignment direction of the liquid crystal on the second glass substrate were the same when the liquid crystal cell was produced. The above two substrates are used as a set, a sealant (Mitsui Chemicals XN-1500T) is printed on the substrate, and another substrate is placed so that the alignment direction facing the liquid crystal alignment film surface is 0°. and glued together. After that, the sealant was heat-treated at 150° C. for 60 minutes and cured to prepare an empty cell. Liquid crystal MLC-3019 (manufactured by Merck & Co.) was injected into this empty cell by a vacuum injection method, and the injection port was sealed to obtain an FFS-driven liquid crystal cell. After that, the obtained liquid crystal cell was heated at 120° C. for 1 hour and left to stand overnight before being used for evaluation.
<コントラストの面内均一性の評価>
 AXOMETRICS社製AxoStepを用いて液晶表示素子のツイスト角のばらつきの評価を行った。上記で作製した液晶セルを測定ステージに設置し、電圧無印加の状態で、画素面内のCircular Retardanceの分布を測定して標準偏差σの3倍である3σを算出した。面内均一性は、この3σの値が小さいほど良好であると言える。評価基準として、上記3σ値が、それぞれ、1.10以下の場合を「優良」、1.10より大きく1.20以下の場合を「良」、1.20より大きい場合を「不良」とした。
 上記実施例及び比較例の各液晶配向剤を使用する液晶表示素子に関して実施した評価結果を表3に示す。
<Evaluation of in-plane uniformity of contrast>
Variation in the twist angle of the liquid crystal display element was evaluated using AxoStep manufactured by AXOMETRICS. The liquid crystal cell produced above was placed on a measurement stage, and the distribution of Circular Retardance in the pixel plane was measured with no voltage applied to calculate 3σ, which is three times the standard deviation σ. It can be said that the smaller the 3σ value, the better the in-plane uniformity. As evaluation criteria, the above 3σ value was "excellent" when it was 1.10 or less, "good" when it was greater than 1.10 and 1.20 or less, and "poor" when it was greater than 1.20. .
Table 3 shows the evaluation results of the liquid crystal display elements using the liquid crystal aligning agents of the above Examples and Comparative Examples.
<液晶配向の安定性の評価>
 本評価は、長期交流駆動において液晶配向膜の配向性能が低下することによって生ずる残像(AC残像ともいう。)を評価するものである。液晶配向の安定性が良好であるほどAC残像の抑制効果は高いとみなせる。
 上記で作製したFFS駆動液晶セルに対し、60℃の恒温環境下、周波数60Hzで±4Vの交流電圧を120時間印加した。その後、液晶セルの画素電極と対向電極との間をショートさせた状態にし、そのまま室温に一日放置した。上記の処理を行った液晶セルについて、電圧無印加状態における、画素の第1領域の液晶の配向方向と第2領域の液晶の配向方向とのずれを角度として算出した。具体的には、偏光軸が直交するように配置された2枚の偏光板の間に液晶セルを設置し、バックライトを点灯させ、画素の第1領域の透過光強度が最も小さくなるように液晶セルの配置角度を調整し、次に画素の第2領域の透過光強度が最も小さくなるように液晶セルを回転させたときに要する回転角度を求めた。液晶配向の安定性は、この回転角度の値が小さいほど良好であると言える。評価基準として、上記回転角度の値が、それぞれ、0.10未満の場合を「優良」、0.10°以上で0.20°以下の場合を「良」、0.20°より大きい場合値を「不良」とした。
 上記実施例1~3及び比較例1~2の各液晶配向剤を使用する液晶表示素子に関して実施した評価結果を表3に示す。
<Evaluation of stability of liquid crystal alignment>
This evaluation evaluates afterimages (also referred to as AC afterimages) caused by deterioration of the alignment performance of the liquid crystal alignment film during long-term AC driving. It can be considered that the better the stability of the liquid crystal alignment, the higher the effect of suppressing the AC afterimage.
An AC voltage of ±4 V at a frequency of 60 Hz was applied to the FFS-driven liquid crystal cell produced above for 120 hours in a constant temperature environment of 60°C. After that, the pixel electrode and the counter electrode of the liquid crystal cell were short-circuited and left at room temperature for one day. For the liquid crystal cell subjected to the above treatment, the deviation between the alignment direction of the liquid crystal in the first region of the pixel and the alignment direction of the liquid crystal in the second region was calculated as an angle when no voltage was applied. Specifically, a liquid crystal cell is placed between two polarizing plates whose polarization axes are orthogonal to each other, a backlight is turned on, and the liquid crystal cell is arranged so that the transmitted light intensity in the first region of the pixel is minimized. was adjusted, and then the rotation angle required when the liquid crystal cell was rotated so that the intensity of transmitted light in the second region of the pixel was minimized was obtained. It can be said that the smaller the rotation angle, the better the stability of the liquid crystal alignment. As evaluation criteria, the value of the rotation angle is "excellent" if it is less than 0.10, "good" if it is 0.10° or more and 0.20° or less, and is greater than 0.20°. was defined as "defective".
Table 3 shows the evaluation results of the liquid crystal display devices using the liquid crystal aligning agents of Examples 1-3 and Comparative Examples 1-2.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 表3に示されるように、特定のポリアミック酸エステルと特定のポリアミック酸の混合物である液晶配向剤から得られる液晶配向膜は、2種のポリアミック酸の混合物、又はポリイミドとポリアミック酸の混合物である液晶配向剤から得られる液晶配向膜に比べて、少ない紫外線照射量下で高い面内均一性、又は、高い液晶配向の安定性を示した。 As shown in Table 3, a liquid crystal alignment film obtained from a liquid crystal aligning agent that is a mixture of a specific polyamic acid ester and a specific polyamic acid is a mixture of two polyamic acids, or a mixture of polyimide and polyamic acid. Compared with the liquid crystal alignment film obtained from the liquid crystal alignment agent, it exhibited high in-plane uniformity or high stability of liquid crystal alignment under a small amount of ultraviolet irradiation.
<ラビング耐性試験>
 次に、参考例1及び比較例3~4で得られた各液晶配向剤を用いて形成された液晶配向膜の強度を確認するため、ラビング耐性試験を行った。ラビング耐性試験の評価が良いほど、液晶配向膜の基板からの剥がれが生じにくくなるとみなせる。
 それぞれ、参考例1、比較例3~4で得られた、液晶配向剤(SV-1)、(RV-3)~(RV-4)を、全面にITO電極が付いたガラス基板のITO面にスピンコートにて塗布した。80℃のホットプレート上で2分間乾燥させた後、IR式オーブンを用いて230℃、30分焼成を行い、厚み100nmの塗膜を形成させた。この塗膜面に偏光紫外線を300mJ/cmとなるように照射して配向処理を施した。再度IR式オーブンを用いて230℃、30分焼成を行って、液晶配向膜付き基板を得た。
 上記のようにして得られた液晶配向膜付き基板に対し、レーヨン布でラビング処理(ローラー直径:120mm、ローラー回転数:1000rpm、移動速度:20mm/sec、押し込み長:0.6mm)した後に、顕微鏡観察を行い、液晶配向膜のラビング耐性を評価した。
 液晶配向膜面にラビング処理によるスジが見られなかったものを「〇」、スジがみられたものを「×」として評価した。
<Rubbing resistance test>
Next, in order to confirm the strength of the liquid crystal alignment films formed using the respective liquid crystal alignment agents obtained in Reference Example 1 and Comparative Examples 3 and 4, a rubbing resistance test was performed. It can be considered that the better the evaluation of the rubbing resistance test, the more difficult it is for the liquid crystal alignment film to be peeled off from the substrate.
The liquid crystal aligning agents (SV-1) and (RV-3) to (RV-4) obtained in Reference Example 1 and Comparative Examples 3 and 4, respectively, were applied to the ITO surface of a glass substrate having an ITO electrode on the entire surface. was applied by spin coating. After drying on a hot plate at 80° C. for 2 minutes, baking was performed at 230° C. for 30 minutes using an IR oven to form a coating film with a thickness of 100 nm. The coated film surface was subjected to orientation treatment by irradiating polarized ultraviolet rays at 300 mJ/cm 2 . Baking was performed again at 230° C. for 30 minutes using an IR oven to obtain a substrate with a liquid crystal alignment film.
After rubbing the substrate with the liquid crystal alignment film obtained as described above with a rayon cloth (roller diameter: 120 mm, roller rotation speed: 1000 rpm, moving speed: 20 mm / sec, pushing length: 0.6 mm), Microscopic observation was performed to evaluate the rubbing resistance of the liquid crystal alignment film.
A film in which no streaks due to the rubbing treatment were observed on the surface of the liquid crystal alignment film was evaluated as "◯", and a film in which streaks were observed was evaluated as "x".
 参考例1、比較例3~4で得られた各液晶配向剤を用いて形成された液晶配向膜のラビング耐性試験の評価結果を下記表4に示す。
Figure JPOXMLDOC01-appb-T000022
Table 4 below shows the evaluation results of the rubbing resistance test of the liquid crystal alignment films formed using the liquid crystal alignment agents obtained in Reference Example 1 and Comparative Examples 3 and 4.
Figure JPOXMLDOC01-appb-T000022
 表4に示すように、ポリアミック酸エステル(PAE-1A)の液晶配向剤から得られる液晶配向膜は、ポリアミック酸(PAA-1)から得られる液晶配向膜と同等のラビング耐性を示し、ポリイミド(SPI-1)から得られる液晶配向膜に比べて高いラビング耐性を示す。したがって、ポリアミック酸エステル(A)とポリアミック酸(B)とを含有する液晶配向剤から得られる本発明の液晶配向膜は、ポリアミック酸を含有する液晶配向剤から得られる液晶配向膜と遜色ない高いラビング耐性を示し、また、ポリイミドとポリアミック酸とを含有する液晶配向剤から得られる液晶配向膜に比べて高いラビング耐性を示すことが示唆される。 As shown in Table 4, the liquid crystal alignment film obtained from the polyamic acid ester (PAE-1A) liquid crystal alignment agent exhibits the same rubbing resistance as the liquid crystal alignment film obtained from the polyamic acid (PAA-1), and the polyimide ( It exhibits higher rubbing resistance than the liquid crystal alignment film obtained from SPI-1). Therefore, the liquid crystal alignment film of the present invention obtained from the liquid crystal alignment agent containing the polyamic acid ester (A) and the polyamic acid (B) is comparable to the liquid crystal alignment film obtained from the liquid crystal alignment agent containing the polyamic acid. It is suggested that it exhibits rubbing resistance and exhibits higher rubbing resistance than a liquid crystal aligning film obtained from a liquid crystal aligning agent containing polyimide and polyamic acid.
 本発明の液晶配向剤から得られる液晶配向膜は、表示を目的とする種々の方式の液晶表示素子や、光の透過と遮断を制御する調光窓や光シャッターなどに用いられるほか、これら以外の種々の用途にも有効に用いられる。例えば、位相差フィルム用の液晶配向膜、走査アンテナやアレイアンテナ用の液晶配向膜、透過散乱型の液晶調光素子用の液晶配向膜、更には、その他の用途、例えば、保護膜(例:カラーフィルタ用の保護膜)、スペーサー膜、層間絶縁膜、反射防止膜、配線被覆膜、帯電防止フィルム、電動機絶縁膜(フレキシブルディスプレイのゲート絶縁膜)などにも広く用いられる。 The liquid crystal alignment film obtained from the liquid crystal alignment agent of the present invention is used for various types of liquid crystal display elements for display purposes, light control windows and optical shutters for controlling the transmission and blocking of light, and other than these. It is also effectively used for various uses. For example, liquid crystal alignment films for retardation films, liquid crystal alignment films for scanning antennas and array antennas, liquid crystal alignment films for transmission scattering type liquid crystal light control elements, and other applications such as protective films (e.g. protective films for color filters), spacer films, interlayer insulating films, antireflection films, wiring coating films, antistatic films, electric motor insulating films (gate insulating films of flexible displays), etc.
 1: 横電界液晶表示素子  2: 櫛歯電極基板  2a、4b、2d: 基材  2b、2g: 線状電極  2c、2h、4a: 液晶配向膜  2e: 面電極  2f: 絶縁膜  3: 液晶  4: 対向基板  L: 電気力線 1: Horizontal electric field liquid crystal display element 2: Comb tooth electrode substrates 2a, 4b, 2d: Base material 2b, 2g: Linear electrodes 2c, 2h, 4a: Liquid crystal alignment film 2e: Planar electrodes 2f: Insulating film 3: Liquid crystal 4: Opposite substrate L: Line of electric force
 なお、2021年6月24日に出願された日本特許出願2021-105052号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 In addition, the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2021-105052 filed on June 24, 2021 are cited here, and as a disclosure of the specification of the present invention, It is taken in.

Claims (15)

  1.  下記の(A)成分及び(B)成分を含有することを特徴とする液晶配向剤。
     (A)成分:テトラカルボン酸誘導体由来の構造単位として、下記式(1Ta)で表される構造単位(a-1Ta)を有し、ジアミン由来の構造単位として、下記式(1Da)で表される構造単位(a-1Da)を2種類以上有するポリアミック酸エステル(A)
     (B)成分:テトラカルボン酸誘導体由来の構造単位として、下記式(1Tb)で表される構造単位(b-1Tb)を有し、ジアミン由来の構造単位として、下記式(1Db)で表される構造単位(b-1Db)を有するポリアミック酸(B)
    Figure JPOXMLDOC01-appb-C000001
    (式(1Ta)中、R11~R14は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、又はフェニル基を表し、R11~R14の少なくとも一つは上記定義中の水素原子以外の基を表す。2つのRは、それぞれ独立して、水素原子又はtert-アルキル基を表し、その少なくとも一つはtert-アルキル基を表す。式(1Da)中、Yは下記式(H)で表される2価の有機基である。Zはそれぞれ独立して、水素原子又は1価の有機基を表す。)
    Figure JPOXMLDOC01-appb-C000002
    (式(H)中、Ar、Ar1’は、それぞれ独立して、ベンゼン環、ビフェニル構造、又はナフタレン環を表す。Ar、Ar1’の環上の任意の水素原子は、1価の基で置換されてもよい。Aは、アルキレン構造を有する炭素数1~10の2価の有機基を表す。L、L1’は、それぞれ独立して、単結合、-O-、-S-、-C(=O)-、-O-C(=O)-、-C(=O)-NR-(Rは水素原子又は1価の有機基を表す。)、又は-NR-C(=O)-(Rは水素原子又は1価の有機基を表す。)を表す。*は結合手を表す。)
    Figure JPOXMLDOC01-appb-C000003
    (式(1Tb)中、Xは4価の有機基を表し、式(1Db)中、Yは2価の有機基を表し、2つのZは、それぞれ独立して、水素原子又は1価の有機基を表す。)
    A liquid crystal aligning agent characterized by containing the following (A) component and (B) component.
    Component (A): As a structural unit derived from a tetracarboxylic acid derivative, it has a structural unit (a-1Ta) represented by the following formula (1Ta), and as a structural unit derived from a diamine, represented by the following formula (1Da). Polyamic acid ester (A) having two or more types of structural units (a-1Da)
    Component (B): As a structural unit derived from a tetracarboxylic acid derivative, it has a structural unit (b-1Tb) represented by the following formula (1Tb), and as a structural unit derived from a diamine, represented by the following formula (1Db). Polyamic acid (B) having a structural unit (b-1Db)
    Figure JPOXMLDOC01-appb-C000001
    (In formula (1Ta), R 11 to R 14 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, group, a monovalent organic group having 1 to 6 carbon atoms containing a fluorine atom, or a phenyl group, and at least one of R 11 to R 14 represents a group other than a hydrogen atom as defined above. 1 each independently represents a hydrogen atom or a tert-alkyl group, at least one of which represents a tert-alkyl group, in formula (1Da), Y 1 is represented by the following formula (H 1 ) 2 is a valent organic group. Each Z independently represents a hydrogen atom or a monovalent organic group.)
    Figure JPOXMLDOC01-appb-C000002
    (In formula (H 1 ), Ar 1 and Ar 1 each independently represent a benzene ring, a biphenyl structure, or a naphthalene ring . may be substituted with a valent group, A represents a divalent organic group having an alkylene structure and having 1 to 10 carbon atoms, L 1 and L 1′ each independently represent a single bond, —O— , -S-, -C(=O)-, -OC(=O)-, -C(=O)-NR- (R represents a hydrogen atom or a monovalent organic group.), or - NR-C(=O)-(R represents a hydrogen atom or a monovalent organic group. * represents a bond.)
    Figure JPOXMLDOC01-appb-C000003
    (In formula (1Tb), X b represents a tetravalent organic group, and in formula (1Db), Y b represents a divalent organic group, and two Z are each independently a hydrogen atom or a monovalent represents the organic group of
  2.  前記式(H)におけるAが下記のいずれかの基である(但し、Rは、水素原子又は1価の有機基を表す。2つのRは互いに同一でも異なっても良い。nは、1~10の整数である。*-(CHn1-O-(CHn2-*におけるn1、n2は、それぞれ独立して1~6の整数であり、n1及びn2の合計は2~10である。*-(CHn1-NR-C(=O)-NR-(CHn2-*におけるn1、n2は、それぞれ独立して1~6の整数であり、n1及びn2の合計は2~9である。m1、m2は、それぞれ独立して0~4の整数であり、n’は、1~6の整数であり、m1、m2及びn’の合計は1~8である。*は結合手を表す。)、請求項1に記載の液晶配向剤。
      *-(CH-*、
      *-(CHn1-O-(CHn2-*、
      *-(CHm1-O-C(=O)-(CHn’-C(=O)-O-(CH)m2-*、
      *-(CHm1-C(=O)-O-(CHn’-O-C(=O)-(CH)m2-*、
      *-(CHn1-NR-C(=O)-NR-(CHn2-*
    A in the formula (H 1 ) is any one of the following groups (provided that R represents a hydrogen atom or a monovalent organic group. Two R may be the same or different. n is 1 n1 and n2 in *-(CH 2 ) n1 -O-(CH 2 ) n2 -* are each independently an integer of 1 to 6, and the sum of n1 and n2 is 2 to 10. n1 and n2 in *-(CH 2 ) n1 -NR-C(=O)-NR-(CH 2 ) n2 -* are each independently an integer of 1 to 6, and n1 and n2 is 2 to 9. m1 and m2 are each independently an integer of 0 to 4, n' is an integer of 1 to 6, and the sum of m1, m2 and n' is 1 to 8. * represents a bond.), the liquid crystal aligning agent according to claim 1.
    *-( CH2 ) n- *,
    *-(CH 2 ) n1 -O-(CH 2 ) n2 -*,
    *-(CH 2 ) m1 -O-C(=O)-(CH 2 ) n' -C(=O)-O-(CH 2 ) m2 -*,
    *-(CH 2 ) m1 -C(=O)-O-(CH 2 ) n' -O-C(=O)-(CH 2 ) m2 -*,
    *-(CH 2 ) n1 -NR-C(=O)-NR-(CH 2 ) n2 -*
  3.  前記ポリアミック酸エステル(A)は、ジアミン由来の構造単位として、Yの少なくとも一つが、ArとAr1’が同じ構造である式(H)で表される2価の有機基であり、他のYの少なくとも一つがArとAr1’が異なる構造である式(H)で表される2価の有機基である、式(1Da)で表される構造単位を有する、請求項1又は2に記載の液晶配向剤。 In the polyamic acid ester (A), as a diamine-derived structural unit, at least one of Y 1 is a divalent organic group represented by the formula (H 1 ) in which Ar 1 and Ar 1' have the same structure. , and at least one of the other Y 1 is a divalent organic group represented by the formula (H 1 ) in which Ar 1 and Ar 1′ have different structures, having a structural unit represented by the formula (1Da), The liquid crystal aligning agent according to claim 1 or 2.
  4.  前記ポリアミック酸エステル(A)は、ジアミン由来の構造単位として、Yがベンゼン環を3つ以上有する2価の有機基である、式(1Da)で表される構造単位を少なくとも一つ含む、請求項1~3のいずれか一項に記載の液晶配向剤。 The polyamic acid ester (A) contains at least one structural unit represented by the formula (1Da), wherein Y 1 is a divalent organic group having three or more benzene rings, as a diamine-derived structural unit. The liquid crystal aligning agent according to any one of claims 1 to 3.
  5.  式(1Da)におけるYが、下記式(h1-1)~(h1-13)のいずれかで表される2価の有機基である、請求項1~4のいずれか一項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000004
    (式(h1-4)において、-CH-の合計数は10以下である。式(h1-7)、(h1-8)において、-CH-の合計数は8以下であり、2つのmは互いに同一でも異なっても良い。*は結合手を表す。)
    Y 1 in formula (1Da) is a divalent organic group represented by any one of the following formulas (h1-1) to (h1-13), according to any one of claims 1 to 4. Liquid crystal aligning agent.
    Figure JPOXMLDOC01-appb-C000004
    (In formula (h1-4), the total number of —CH 2 — is 10 or less. In formulas (h1-7) and (h1-8), the total number of —CH 2 — is 8 or less, The two m's may be the same or different, and * represents a bond.)
  6.  上記式(1Tb)におけるXが、非環式脂肪族テトラカルボン酸二無水物から2つの酸二無水物基を除いた4価の有機基、脂環式テトラカルボン酸二無水物から2つの酸二無水物基を除いた4価の有機基、又は芳香族テトラカルボン酸二無水物から2つの酸二無水物基を除いた4価の有機基であり、かつ、ベンゼン環、シクロブタン環構造、シクロペンタン環構造及びシクロヘキサン環構造よりなる群から選ばれる少なくとも一種の部分構造を有するテトラカルボン酸二無水物又はその誘導体に由来する4価の有機基である、請求項1~5のいずれか一項に記載の液晶配向剤。 X b in the above formula (1Tb) is a tetravalent organic group obtained by excluding two acid dianhydride groups from an acyclic aliphatic tetracarboxylic dianhydride, and two groups from an alicyclic tetracarboxylic dianhydride. A tetravalent organic group excluding an acid dianhydride group, or a tetravalent organic group excluding two acid dianhydride groups from an aromatic tetracarboxylic dianhydride, and a benzene ring or cyclobutane ring structure , a tetravalent organic group derived from a tetracarboxylic dianhydride or a derivative thereof having at least one partial structure selected from the group consisting of a cyclopentane ring structure and a cyclohexane ring structure, any one of claims 1 to 5 The liquid crystal aligning agent according to item 1.
  7.  ポリアミック酸エステル(A)が、前記構造単位(a-1Ta)をテトラカルボン酸誘導体由来の全構造単位1モルに対して5モル%以上含む、請求項1~6のいずれか一項に記載の液晶配向剤。 The polyamic acid ester (A) contains 5 mol% or more of the structural unit (a-1Ta) relative to 1 mol of all structural units derived from a tetracarboxylic acid derivative, according to any one of claims 1 to 6. Liquid crystal aligning agent.
  8.  ポリアミック酸エステル(A)が、前記構造単位(a-1Da)をポリアミック酸エステル(A)が有するジアミン由来の全構造単位1モルに対して5~95モル%含む、請求項1~7のいずれか一項に記載の液晶配向剤。 Any one of claims 1 to 7, wherein the polyamic acid ester (A) contains the structural unit (a-1Da) in an amount of 5 to 95 mol% with respect to 1 mol of all diamine-derived structural units of the polyamic acid ester (A). or the liquid crystal aligning agent according to item 1.
  9.  光配向処理法用の液晶配向膜の形成に用いられる、請求項1~8のいずれか一項に記載の液晶配向剤。 The liquid crystal aligning agent according to any one of claims 1 to 8, which is used for forming a liquid crystal alignment film for a photo-alignment method.
  10.  請求項1~9のいずれか一項に記載の液晶配向剤から得られる液晶配向膜。 A liquid crystal alignment film obtained from the liquid crystal alignment agent according to any one of claims 1 to 9.
  11.  請求項10に記載の液晶配向膜を具備する液晶表示素子。 A liquid crystal display element comprising the liquid crystal alignment film according to claim 10.
  12.  下記の工程(1)~(3)を含む、液晶表示素子の製造方法。
     工程(1):請求項1~9のいずれか一項に記載の液晶配向剤を基板上に塗布する工程
     工程(2):塗布した液晶配向剤を焼成する工程
     工程(3):工程(2)で得られた焼成膜に配向処理する工程
    A method for manufacturing a liquid crystal display element, comprising the following steps (1) to (3).
    Step (1): A step of applying the liquid crystal aligning agent according to any one of claims 1 to 9 onto a substrate Step (2): A step of baking the applied liquid crystal aligning agent Step (3): Step (2 ) Orientation treatment of the fired film obtained in
  13.  前記配向処理が光配向処理である、請求項12に記載の液晶表示素子の製造方法。 The method for manufacturing a liquid crystal display element according to claim 12, wherein the alignment treatment is a photo-alignment treatment.
  14.  前記光配向処理における放射線の照射量が100~1,500mJ/cmである、請求項13に記載の液晶表示素子の製造方法。 14. The method for manufacturing a liquid crystal display element according to claim 13, wherein the irradiation amount of radiation in the photo-alignment treatment is 100 to 1,500 mJ/cm 2 .
  15.  さらに下記の工程(4)を含む、請求項12~14のいずれか一項に記載の液晶表示素子の製造方法。
     工程(4):工程(3)で配向処理された焼成膜に対して50~300℃の加熱処理を更に行う工程。
    15. The method for manufacturing a liquid crystal display element according to any one of claims 12 to 14, further comprising the following step (4).
    Step (4): A step of further subjecting the fired film that has been oriented in step (3) to heat treatment at 50 to 300°C.
PCT/JP2022/022806 2021-06-24 2022-06-06 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element WO2022270287A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023529791A JPWO2022270287A1 (en) 2021-06-24 2022-06-06
KR1020237044415A KR20240023525A (en) 2021-06-24 2022-06-06 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device
CN202280044600.0A CN117546082A (en) 2021-06-24 2022-06-06 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021105052 2021-06-24
JP2021-105052 2021-06-24

Publications (1)

Publication Number Publication Date
WO2022270287A1 true WO2022270287A1 (en) 2022-12-29

Family

ID=84544538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022806 WO2022270287A1 (en) 2021-06-24 2022-06-06 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Country Status (5)

Country Link
JP (1) JPWO2022270287A1 (en)
KR (1) KR20240023525A (en)
CN (1) CN117546082A (en)
TW (1) TW202317740A (en)
WO (1) WO2022270287A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012098715A (en) * 2010-10-06 2012-05-24 Hitachi Displays Ltd Alignment layer, composition for forming alignment layer, and liquid crystal display device
JP2013156613A (en) * 2012-02-01 2013-08-15 Japan Display Inc Alignment layer and liquid-crystal display using the same
JP2017146595A (en) * 2016-02-15 2017-08-24 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3893659B2 (en) 1996-03-05 2007-03-14 日産化学工業株式会社 Liquid crystal alignment treatment method
KR100750451B1 (en) 2002-12-09 2007-08-22 가부시키가이샤 히타치 디스프레이즈 Liquid crystal display and method for manufacturing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012098715A (en) * 2010-10-06 2012-05-24 Hitachi Displays Ltd Alignment layer, composition for forming alignment layer, and liquid crystal display device
JP2013156613A (en) * 2012-02-01 2013-08-15 Japan Display Inc Alignment layer and liquid-crystal display using the same
JP2017146595A (en) * 2016-02-15 2017-08-24 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display

Also Published As

Publication number Publication date
TW202317740A (en) 2023-05-01
KR20240023525A (en) 2024-02-22
JPWO2022270287A1 (en) 2022-12-29
CN117546082A (en) 2024-02-09

Similar Documents

Publication Publication Date Title
WO2023286733A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, method for producing liquid crystal display element, and liquid crystal display element
WO2022176680A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP7468365B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using the same
WO2022270287A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
TW202037716A (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2023032753A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2022190896A1 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2022220199A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2023286735A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element production method, and liquid crystal display element
WO2023210532A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP7315106B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP7302744B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2022181311A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
TWI830451B (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2022234820A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2023157876A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2023068084A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element, compound and polymer
WO2023068085A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element, and compound
WO2023008203A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, compound and polymer
WO2023074392A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2023074569A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2022250007A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, diamine, and polymer
WO2023013622A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2023074570A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2023074390A1 (en) Liquid crystal aligning agent, liquid crystal aligned film, liquid crystal display element, and compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22828204

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023529791

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE